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Abstract. The first contribution of this work is a generalisation of Stern’s infor-
mation set decoding (ISD) algorithm. Stern’s algorithm, a variant of Stern’s algo-
rithm due to Dumer, as well as a recent generalisation of Stern’s algorithm due to
Bernstein and Chou are obtained as special cases of our generalisation. Our sec-
ond contribution is to introduce the notion of a set of effective time/memory trade-
off (TMTO) points for any ISD algorithm for given ranges of values of parameters
of the algorithm. Such a set succinctly and uniquely captures the entire landscape
of TMTO points with only a minor loss in precision. We further describe a method
to compute a set of effective TMTO points. As an application, we compute sets of
effective TMTO points for the five variants of the Classic McEliece cryptosystem
corresponding to the new algorithm as well as for Stern’s, Dumer’s and Bernstein
and Chou’s algorithms. The results show that while Dumer’s and Bernstein and
Chou’s algorithms do not provide any interesting TMTO points beyond what is
achieved by Stern’s algorithm, the new generalisation that we propose provide
about twice the number of effective TMTO points that is obtained from Stern’s
algorithm. Consequences of the obtained TMTO points to the classification of the
variants of Classic McEliece in appropriate NIST categories are discussed.
Keywords: information set decoding, code based cryptography, Classic McEliece
cryptosystem, concrete security, time/memory trade-off.

1 Introduction

Code based cryptography [20] is one of the approaches to building post-quantum secure
cryptosystems. There are three code-based cryptosystems, namely BIKE [1], Classic
McEliece [5] and HQC [21], in Round 4 of the NIST PQC competition [24].

The best known attack against general code-based cryptosystems is based on infor-
mation set decoding (ISD). The first ISD algorithm was proposed by Prange [25] and
since then there have been many important developments. The early ISD algorithms by
Prange [25], Lee and Brickell [16] and Leon [17] do not require any memory beyond
what is needed to store the input.

A cornerstone of ISD algorithms is the algorithm by Stern [27] which introduced
a meet-in-the-middle approach to ISD algorithms. The minimum time complexity of
Stern’s algorithm, however, is achieved by using a large amount of memory. In fact,



Section 8.2 of the specification of Classic McEliece (available from [5]) mentions the
following. “A closer look shows that the attack in [11] is bottlenecked by random ac-
cess to a huge array (much larger than the public key being attacked).” The reference
[11] in the quotation is [6] which introduced certain important practical efficiency im-
provements to Stern’s algorithm. A key point to note in the above criticism of Stern’s
algorithm is that the memory requirement is much larger than the size of the public key
of the cryptosystem being attacked.

Our first contribution is to introduce a generalisation of Stern’s algorithm. Stern’s
algorithm as well as a variant of Stern’s algorithm due to Dumer [9] (and later by Finiasz
and Sendrier [13]) are obtained as special cases of the generalisation. Further, a recent
generalisation of Stern’s algorithm due to Bernstein and Chou [4] is also obtained as a
special case. A justification for focusing on Stern’s algorithm is that it is a watershed
in the literature on ISD algorithms. While later work led to more advanced algorithms,
the community still continues to use Stern’s algorithm as the baseline ISD algorithm to
evaluate code based cryptosystems. This is exemplified by the discussion on the PQC
forum available at [14]. We also briefly sketch how our generalisation can be further
extended to obtain a unified algorithm from which Prange’s, Lee and Brickell’s, Leon’s
as well as Stern’s, Dumer’s, and Bernstein and Chou’s algorithms are obtained as special
cases.

The basic idea of our generalisation of Stern’s algorithm is the following. In Stern’s
algorithm, there is an enumeration step which builds a list. Storing this list requires a
large amount of memory. Our generalisation allows the list to be significantly smaller
by ignoring some elements which would otherwise be stored. This reduces the storage
requirement of the algorithm. On the flip side, it also reduces the success probability,
thus requiring more iterations. So the generalisation does not improve the runtime of
Stern’s algorithm. Rather it provides a larger number of time/memory trade-off (TMTO)
points than what would be achieved by Stern’s algorithm.

Varying the parameters of an ISD algorithm provides a large number of TMTO
points. It is quite difficult to directly analyse the entire set of all TMTO points. Our
second contribution tackles this issue. We introduce the notion of a set of effective
TMTO points of an ISD algorithm with respect to a range of values of the parameters of
the algorithm. Such a set succinctly and uniquely captures the entire TMTO landscape
at only a minor loss in precision. Further, we describe a method to compute a set of
effective TMTO points for any ISD algorithm.

As an application, we have obtained sets of effective TMTO points corresponding to
the five variants of the Classic McEliece cryptosystem for the generalisation of Stern’s
algorithm that we propose as well as for Stern’s, Dumer’s and Bernstein and Chou’s
algorithms. The results show that Dumer’s and Bernstein and Chou’s algorithms do not
provide any interesting TMTO points beyond what is achieved by Stern’s algorithm.
On the other hand, the sets of effective TMTO points obtained from the generalisa-
tion that we introduce are about twice the sizes of the corresponding sets of effective
TMTO points obtained from Stern’s algorithm. Further, in each case, the set of effec-
tive TMTO points obtained from the new generalised algorithm essentially subsumes
the corresponding set obtained from Stern’s algorithm. In particular, there are certain
TMTO points which are achieved by the new generalised algorithm, but not by either of



Stern’s, Dumer’s and Bernstein and Chou’s algorithms. The TMTO points themselves
are quite interesting. For example, these points show that in certain cases, by letting
the time estimates increase by factors which are at most 2, it is possible to reduce the
memory requirements by factors of about 28 to 210.

By obtaining sets of effective TMTO points, we are able to address the question of
what time complexity can be achieved without requiring memory much larger than the
public key size. For mceliece-4608-096, the size of the public key is about 222 and
the NIST target is 2207 gates. For this variant, it is possible to obtain TMTO points hav-
ing time complexities less than 2207 with memory requirement only about 1.5 times the
size of the public key for both the cases of constant memory access cost and logarithmic
memory access cost. For mceliece-6688-128 and mceliece-6960-119, the sizes of
the public key are also about 222 bits and the NIST target for both is 2272 gates. With
constant memory access cost, time complexities of about 2265 can be obtained for both
these variants. The corresponding memory complexities are 257.97 and 267.37 respec-
tively which are much larger than the size of the public key. By choosing values of the
parameters appropriately, we find that it is possible to obtain time complexities slightly
less than 2272 while keeping the memory complexities to be less than 230. While the
memory complexities are still larger than the size 222 of the public key, they are not too
large. If, on the other hand, logarithmic cost of memory access is incorporated into the
time estimates, then with memory restricted to be less than 230 bits, the minimum time
estimates for both the variants turn out to be more than the target value of 2272 by factors
which are less than 8. For the other two variants of the Classic McEliece cryptosystem,
we do not obtain any TMTO point, even with constant memory access cost, whose time
complexity is less than what is required for NIST classification.
1.1 Previous and related works. A number of works [18,3,19,8,11] described ad-
vanced ISD algorithms with improved asymptotic time complexities. The advanced
ISD algorithms require much more memory compared to Stern’s algorithm. It has
been proved in [28] that for codes which are relevant to the McEliece cryptosystem,
all known ISD algorithms have essentially the same asymptotic complexity as that of
Prange’s algorithm.

TMTO for ISD algorithms has not received much attention in the literature. A re-
cent work on this topic is [12] which mentions that “there has been very limited work
on time-memory trade-offs for ISD algorithms.” The work [12] considered TMTO with
respect to the MMT [18] algorithm and for Classic McEliece, reported time complex-
ities with an upper bound (260 or 280) on the memory complexities. Considering the
time estimates for memory at most 260 bits and comparing with the time estimates of
the (generalised) Stern’s algorithm also with memory at most 260 bits, we find that the
MMT algorithm is faster than Stern’s algorithm by factors which are less than 8. We
note, though, that the gap could be somewhat wider if certain techniques for improving
practical efficiency are incorporated into the method used in [12] for obtaining the time
estimates.

A systematic work to assess the concrete security of various code based cryptosys-
tems against a number of important ISD algorithm was reported in [2]. A work along
the same line and the corresponding code was provided in [10]. A recent work [4] pro-
vides a rigorous approach to obtaining time complexity estimates by comprehensively
automating the effects of various practical improvements as well as hidden costs. The



works [2,10,4] focus on obtaining the minimum time complexities achievable by the
different ISD algorithms. Unlike our approach, they do not provide any method to anal-
yse the entire landscape of all TMTO points.

2 Preliminaries

Let F2 denote the finite field of two elements. The cardinality of a finite set S will be
denoted as #S. For a positive integer k, the set {1, . . . ,k} will be denoted as [k].

Vectors will be considered to be row vectors and will be denoted by bold lower case
letters. Matrices will be denoted by bold upper case letters. By M> we will denote the
transpose of the matrix M. The identity matrix of order m will be denoted as Im. If M1
and M2 are two matrices having the same number of rows, then by [M1|M2] we will
denote the matrix obtained by juxtaposing M1 and M2. For a positive integer k, 0k and
1k will denote the all-zero and all-one vectors of length k respectively.

Vectors with elements from F2 will also be called binary strings. For a binary string
x, by wt(x) we will denote the number of positions where x is 1, i.e. for x= (x1, . . . ,xm),
wt(x) = #{i : xi = 1}. For a subset S of [k], by χ(S) we will denote the k-bit string
x = (x1, . . . ,xk) such that xi = 1 if and only if i ∈ S.

Let n and k be positive integers such that k < n. We will consider codes over F2. A
linear code C is a subspace of dimension k of Fn

2. Elements of C are called codewords.
A basis for C is given by a matrix G0 of order k×n and so C = {xG0 : x ∈ Fk

2}. Such
a matrix G0 is called a generator matrix for C . The null space of G0 has dimension
r = n− k. Let H0 be a matrix of order r×n such that the rows of H>0 form a basis for
the null space of G0, i.e. G0H>0 = 0. Such a matrix H0 is called a parity check matrix
for C . For any codeword y ∈ C , we have H0y> = 0.

Let w < n be a positive integer and e ∈ Fn
2 be a vector of weight w. Let y ∈ C

be a codeword and define z = y+ e. The vector e is called an error vector. Note that
s> = H0z> = H0(y>+ e>) = H0e>, since H0y> = 0. The vector s ∈ Fr

2 is called a
syndrome.

The computational problem to be solved is the following.

Definition 1 (Syndrome decoding problem (SDP)). Let n, k, r and w be positive inte-
gers such that k,w < n and r = n− k. Let H0 be a parity check matrix for a linear code
C ⊆ Fn

2 of dimension k. Given a syndrome s0 ∈ Fr
2, the goal is to find an error vector

e ∈ Fn
2 of weight w such that H0e> = s>0 . The triplet (H0,s0,w) is an instance of the

SDP.

2.1 ISD algorithms from Prange to Stern. The first ISD algorithm which can be
used to solve SDP was proposed by Prange [25]. Let (H0,s0,w) be an instance of SDP.
The requirement is to obtain a vector e0 ∈ Fn

2 of weight w such that H0e>0 = s>0 . The al-
gorithm proceeds as follows. Choose a random permutation matrix P of order n×n and
apply Gaussian elimination using row operations to the augmented matrix [H0P |s>0 ] to
obtain a matrix [H |s>], where H = UH0P is such that H can be written as H = [A |Ir]
and s> = Us>. Here U is the invertible matrix of order r× r which corresponds to the
sequence of row operations. (This may not always be possible; see Remark 2 in Sec-
tion 3.) Note that A is a matrix of order r× k.



To solve SDP on instance (H0,s0,w), it is sufficient to obtain a vector e ∈ Fn
2 of

weight w such that He> = s>, since in this case e>0 = Pe> satisfies the relation H0e>0 =
s>0 .

The structure of the algorithm is the following. In each iteration, it chooses an inde-
pendent and uniform random permutation matrix P and obtains H and s as mentioned
above. Then it checks the weight of s and returns e = [0k |s] if the weight is equal to w.
(Note: He> = s>.) Iterations are repeated until a solution is obtained.

Conceptually, each iteration has two steps, namely the linear algebra step and the
search step. The linear algebra step yields [H |s>], while the search step looks for a
solution using H and s. The search step in Prange’s algorithm is trivial and amounts to
checking the weight of s. Subsequent algorithms introduced more sophisticated ideas
to perform the search step.

Lee and Brickell [16] described an algorithm which can be considered to be a modi-
fication of Prange’s algorithm. In each iteration, the linear algebra step remains the same
as in Prange’s algorithm, i.e. [H |s>], where H = [A |Ir] is obtained as in Prange’s algo-
rithm. The search step in the Lee-Brickell algorithm uses a parameter p which is a pos-
itive integer satisfying p≤ w. This step proceeds over all possible subsets of [k] of size
p/2. For each such p-element subset S, let e1 = χ(S) and x=Ae>1 . If wt(x+s) =w− p,
then e = [e1 |s] satisfies He> = s>.

Leon [17] put forward an algorithm which can be considered to be a further modi-
fication of Prange’s algorithm. Apart from the parameter p in Lee and Brickell’s algo-
rithm, Leon’s algorithm introduced an additional parameter ` with 1≤ `≤ r. The linear
algebra step yielding [H |s>] remains the same as in Prange’s algorithm. In Leon’s al-
gorithm, H and s are written as

H =

A`×k I` 0`×(r−`)

B(r−`)×k 0(r−`)×` Ir−`
, s> =

u>

v> (1)

The search step uses the parameter p as in Lee and Brickell’s algorithm and proceeds
over all possible subsets of size of [k] of size p. For each p-element subset S, let e1 =
χ(S) and x = Ae>1 . (Note that in this case A is an `× k matrix and not an r× k matrix
as in Lee and Brickell’s algorithm.) If x = u, then let y = B1eT

1 ; if wt(y+ v) = w− p,
then e = [e1 |0` |v] satisfies He> = s>.

Stern [27] introduced the idea of using the meet-in-the-middle technique to perform
the search step. The algorithm uses the two parameters ` and p. For simplicity of the
basic description, assume that p and also k are even. The output [H |s>] of the linear
algebra step is written as in (1). Next write

A = [A1|A2] and B = [B1|B2], (2)

where A1, A2 are `× k/2 matrices and B1, B2 are (r− `)× k/2 matrices.
The search step has two phases. In the first phase, all possible subsets of [k/2] of size

p/2 are considered. For each such subset S, let e1 = χ(S) and a1 = A1e>1 . All such pairs



(a1,S) are stored in a list L and L is indexed on the first components of the entries.
In the second phase, again all possible subsets of [k/2] of size p/2 are considered. For
each such subset T , let e2 = χ(T ) and a2 = A2e>2 . Next, for each such pair (a2,T ),
find all entries (a1,S) in L such that a1 +u = a2. Let b1 = B1e>1 and b2 = B2e>2 . If
wt(y1 +y2 +v) = w− p, then e = [e1 |e2 |0` |v] satisfies He> = s>.

3 A generalisation of Stern’s ISD algorithm

We introduce a generalisation of Stern’s algorithm. The generalisation is obtained through
the use of two parameters λ and δ in addition to the parameters ` and p used in Stern’s
algorithm. The maximum possible ranges of values of the parameters are as follows.

0≤ `≤ r, −(k−2)≤ λ ≤ `, 0≤ p≤min(k+λ ,w), δ ∈ (0,1]. (3)

Remark 1. A generalisation of Stern’s algorithm (called isd1) has been given by Bern-
stein and Chou [4, Section 4.8] through the use of a parameter z, which is related to the
parameter λ that we use by z+λ = `. The only values of z mentioned in [4] are z = 0
and z = `. It is not clear whether [4] allows z to be greater than ` (corresponding to λ

less than 0). Note that due to the use of the additional parameter δ , our generalisation
of Stern’s algorithm subsumes the generalisation in [4]. As we will see later (Remark 7
in Section 5), it is the parameter δ that turns out to determine the non-triviality of the
generalisation that we propose.

The basic structure of the algorithm is shown in Algorithm 1. It consists of a linear
algebra step and a search step as in Stern’s algorithm. These two steps are explained
below. The input to the algorithm is (H0,s0,w) and the requirement is to find a vector
e0 ∈ Fn

2 such that H0e>0 = s>0 .

Algorithm 1: A general formulation of Stern’s ISD algorithm.
Input: (H0,s0,w)
Output: e0 such that H0e0

> = s>0 and wt(e0) = w.
1 while true do
2 Choose a random permutation matrix P of order n×n
3 (A1,A2,B1,B2,u,v)← LinAlg(H0,P,s0, `,λ )
4 (flg,e)← Srch(A1,A2,B1,B2,u,v,w, p,δ )
5 if flg = yes then
6 return Pe>

Linear algebra Apply Gaussian elimination using row operations to the augmented
matrix [H0P |s>0 ] to obtain a matrix [H |s>], where H = UH0P and s> = Us> are of the



following forms

H =

A`×(k+λ ) C`×(`−λ ) 0`×(r−`)

B(r−`)×(k+λ ) D(r−`)×(`−λ ) Ir−`
, s> =

u>

v> (4)

Here U is the invertible matrix of order r× r which corresponds to the sequence of row
operations, u ∈ F`

2 and v ∈ Fr−`
2 .

Remark 2. Consider the event E1 that H0P can be reduced to the form shown in (4), i.e.
the bottom right sub-matrix of H0P of order (r− `)× (r− `) is invertible. So E1 is the
event that the linear algebra step succeeds, and let π1 be the probability of E1. Under the
heuristic assumption that the entries of H0 are independent and uniform random bits,
π1 = ∏

r−`
i=1(1−2−i), which is about 0.288 for large enough values of r− `.

Write

A = [A1|A2] and B = [B1|B2], (5)

where A1 (resp. A2) is an `× b(k + λ )/2c (resp. `× d(k + λ )/2e) matrix, and B1
(resp. B2) is an (r− `)×b(k + λ )/2c (resp. (r− `)×d(k + λ )/2e) matrix. The call
LinAlg(H0,P,s0, `,λ ) in Algorithm 1 returns (A1,A2,B1,B2,u,v).
Search. As explained in Section 2.1, it is sufficient to obtain a vector e ∈ Fn

2 such that
He> = s>. The search step looks for such an e. The parameter δ is used in the search
step. As in Stern’s algorithm, the search step is done in two parts. The first part prepares
a list L and the second part searches for a collision. The difference with Stern’s algo-
rithm is that instead of storing all the

(b(k+λ )/2c
bp/2c

)
`-bit strings arising from considering

all bp/2c possible combinations of the b(k+λ )/2c columns of A1, only
(b(k+λ )/2c
bp/2c

)δ

of such combinations are considered and the corresponding `-bit strings stored in L .
The second part of the search step proceeds more or less in the same manner as that of
Stern’s algorithm. The complete search algorithm is shown in Algorithm 2. Note that
the list L is stored indexed on the first component of its entries.

Remark 3. From the description of the algorithm, we note that for the error vector e
returned by the algorithm, the matrix vector product He> is of the following form.

[
A1 A2 C 0`×(r−`)
B1 B2 D I(r−`)

]
e>1
e>2

0>`−λ

e>3

 . (6)

Note that there are `−λ positions where e has the value 0.

Correctness. It is easy to check that any solution returned by Algorithm 1 is correct.



Algorithm 2: The Srch procedure.
Input: (A1,A2,B1,B2,u,v,w, p,δ ) (see (4) and (5))
Output: (yes,e) such that He> = s> and wt(e) = w, or (no,⊥).

1 c← k+λ ; L1←
(bc/2c
bp/2c

)
2 L ← (); i = 0
3 for S⊆ [bc/2c] with #S = bp/2c do
4 if i < dLδ

1 e then
5 e1 = χ(S); a>1 = A1e>1 ; b>1 = B1e>1
6 L ←L ∪{(a1,b1,S)}
7 i← i+1

8 else
9 break

10 for T ⊆ [dc/2e] with #T = dp/2e do
11 e2 = χ(T ); a>2 = A2e>2 ; b>2 = B2e>2
12 for all (a1,b1,S) ∈L such that a1 +u = a2 do
13 if wt(b1 +b2 +v) = w− p then
14 e1 = χ(S); e3 = b1 +b2 +v
15 Return (yes, [e1|e2|0`−λ |e3])

16 Return (no,⊥)

Special cases. If we take δ = 1, then we obtain the generalisation of Stern’s algorithm
by Bernstein and Chou [4] (see Remark 1). If we take δ = 1 and λ = 0, then we essen-
tially get back Stern’s algorithm, and if we take δ = 1 and λ = `, then we essentially
obtain Dumer’s algorithm.
3.1 Further generalisation. The matrix A has been divided into A1 and A2, where
A1 (resp. A2) has b(k + λ )/2c (resp. d(k + λ )/2e) columns. We may instead let A1
and A2 to have κ1 and κ2 columns respectively, where κ1 and κ2 are two parameters
which are non-negative integers satisfying κ1+κ2 = k+λ . Correspondingly, we divide
B into matrices B1 and B2 having κ1 and κ2 columns respectively. Let p1 and p2 be two
additional parameters which are non-negative integers such that p1 + p2 = p.

The generalisation is the following. The first part of the search step will consider
column combinations of A1 taken p1 at a time and the second part will consider column
combinations of A2 taken p2 at a time. The description of the search step given in
Algorithm 2 can be easily modified to give effect to this generalisation: replace bc/2c
by κ1, dc/2e by κ2, bp/2c by p1 and dp/2e by p2.

With the above generalisation, we obtain a unified algorithm which provides as
special cases all the algorithms from Prange’s to Dumer’s. It is clear that the generalised
Stern’s algorithm is obtained by taking κ1 = b(k+λ )/2c, κ2 = d(k+λ )/2e, p1 = bp/2c
and p2 = dp/2e. Prange’s algorithm is obtained by setting ` = λ = κ1 = p = p1 =
p2 = 0, δ = 1 and κ2 = k; Lee and Brickell’s algorithm is obtained by setting `= λ =
κ1 = p1 = 0, δ = 1, κ2 = k and p2 = p; and Leon’s algorithm is obtained by setting
λ = κ1 = p1 = 0, δ = 1, κ2 = k and p2 = p.



3.2 Practical efficiency improvements. There are known techniques for improving
the practical efficiency of Stern’s algorithms. Below we briefly describe two of these
techniques which we will use in estimating the expected number of bit operations.
Chase’s sequence: For each choice S, the Srch procedure obtains e1 = χ(S) and com-
putes a>1 = A1e>. The latter computation involves adding together bp/2c columns of
A1. This requires a total of bp/2c−1 additions of `-bit vectors. Since L1 subsets S are
considered, the total number of `-bit vector additions is L1 · (bp/2c−1). An alternative
way to perform the entire computation is to use Chase’s sequence (see Section 7.2.1.3
of [15]) as was done in [29,30]. In this technique, the subsets S are generated incre-
mentally, where the next subset is obtained from the present subset by removing one
element and including a new one. So from the vector a1 corresponding to the present
subset, the vector a1 corresponding to the next subset can be obtained using exactly two
`-bit vector additions. As a result, the total number of `-bit vector additions required for
all the subsets becomes 2 ·L1. This is an improvement over the naive method if p > 5.
Similar efficiency improvements are obtained for the computations of b1, a2 and b2.
Even though the use of Chase’s sequence is advantageous only for p > 5, for the sake
of obtaining a single expression for the time complexity, we will assume 2 ·L1 vector
additions are required even for p < 5, and similarly for the computations of b1, a2 and
b2. This makes the time complexity estimates slightly worse for 2≤ p≤ 5.
Early abort: The final check for a solution is to compare the weight of x = b1+b2+v
with w− p. Note that the length of x is r− `, which in general is substantially greater
than w− p. This observation forms the basis of the technique of early abort in [6].
Instead of first computing x and then comparing its weight to w− p, it is faster to
compute x incrementally and abort once the weight of the partially computed x exceeds
w− p. If x does not correspond to a solution, it is reasonable to assume that it will
behave like a random binary string of length r− `. So the first 2(w− p+1) positions is
likely to have weight w− p+1 and such a vector x can be discarded without computing
the other bits. For most vectors x, this brings down the cost of checking wt(x) = w− p
from r− ` bit operations to an expected number 2(w− p+1) of bit operations.

There are several other sophisticated techniques to improve both the linear algebra
step and the search step of Stern’s algorithm [6,4]. All of these techniques also apply
to the generalised Stern’s algorithm. For the sake of simplicity we do not include the
effect of these techniques in the present analysis. Nonetheless, time estimates for the
variants of Classic McEliece obtained from our simple model are quite close to the
time estimates obtained using the more detailed techniques of [4]; see Section 5.1.
3.3 Time complexity. We estimate the number of bit operations required by Algo-
rithm 1. The quantity L1 is defined in Algorithm Srch. Recall that c = k+λ and let

L2 =

(
dc/2e
dp/2e

)
. (7)

Since the algorithm is probabilistic, first we calculate the success probability of the
algorithm in a single iteration. We assume that there is one solution e0 (of weight w)
to the ISD instance (H0,s0,w). By success probability we mean the probability of the
event that the algorithm returns this solution. (If there are more than one solutions, then
the success probability will be higher.)



We assume that the permutation matrix P is chosen uniformly and independently
in each iteration. So in each iteration, a uniform random permutation is applied to the
columns of the parity check matrix H0. The total number of such permutations is n!. Let
P be the set of ‘good’ permutations, i.e. if any permutation from P is applied to the
columns of H0, then a solution is obtained in the search step. So the success probability
π of the search step of a single iteration is

π =
#P

n!
. (8)

The set P can be constructed in the following manner. Let i1, . . . , iw be the one-
positions of e0 (i.e. the positions where e0 is 1). Call the other positions of e0 to be
zero-positions. It is helpful to visualise the construction of the permutations in P as
distributing the one-positions and the zero-positions to the cells of an array of length
n. Distribute the first bp/2c one-positions to a subset of the cells 1, . . . ,bc/2c of size
bp/2c in a manner such that these cells form some subset S in L (there are #L ways
to make this distribution); distribute the next dp/2e one-positions to some subset of
the cells (bc/2c+1), . . . ,c of size dp/2e (there are L2 ways to make this distribution);
distribute the remaining w− p one-positions to some subset of the cells (c+1), . . . ,n of
size w− p (there are

(n−k−`
w−p

)
ways to make this distribution); and then fill the remaining

n−w cells with the zero-positions in some particular order. This fixes the positions for
the one-positions and the zero-positions in the array. This fixing can be done in

#L ·L2 ·
(

n− k− `

w− p

)
ways. Now permute the cells filled with the one-positions among themselves and also
permute the cells filled with the zero-positions among themselves, which can be done
in w!(n−w)! ways. So the size of P is

#P = #L ·L2 ·
(

n− k− `

w− p

)
·w!(n−w)!. (9)

Algorithm Srch ensures that the size of L is dLδ
1 e. Using (8) and (9), we have

π =
dLδ

1 e ·L2 ·
(n−k−`

w−p

)(n
w

) . (10)

Let N be the number of iterations required to obtain success. Then N follows a
geometric distribution with parameter π . Consequently,

E[N] =
1
π
. (11)

Let Xi be the random variable whose value is given by the number of bit operations
performed in the i-th iteration. The total number of bit operations is X1 +X2 + · · ·+XN .
Let T be the expected value of the total number of bit operations. Under the heuristic as-
sumption that the Xi’s are independent and identically distributed, and N is independent
of the Xi’s, by Wald’s equation (see Page 300 of [22]),

T = E[X1 +X2 + · · ·+XN ] = E[X1] ·E[N]. (12)



Next we obtain an estimate for E[X1], i.e. the expected number of bit operations
in each iteration. This has two components, the number of bit operations due to linear
algebra step and the number of bit operations due to the search step. Denoting by TLA
and TSR the expected number of bit operations required for linear algebra and search
steps respectively, we have

E[X1] = TLA +TSR. (13)

Using (11), (12) and (13), we obtain

T =
1
π
· (TLA +TSR) =

(n
w

)
dLδ

1 e ·L2 ·
(n−k−`

w−p

) · (TLA +TSR) . (14)

Remark 4. The above analysis ignores the effect of E1, i.e. the event that the linear
algebra step succeeds (see Remark 2). We briefly consider this effect. Let E2 be the
event that the search step succeeds and so π = Pr[E2]. Let M be a random variable
whose value is the number of iterations required by Algorithm 1 to achieve success. For
i = 1, . . . ,M, let Ti be the binary valued random variable which takes the value 1 if and
only if E1 occurs in the i-th step. So E[Ti] = π1. Let N = ∑

M
i=1 Ti, i.e. N is the number of

times the search step is repeated until success is obtained (i.e. E2 occurs), and so E[N] =
1/π . Hence, by an application of Wald’s equation, E[M] = (π ·π1)

−1. Let Yi and Zi be
random variables whose values are the numbers of bit operations required for the linear
algebra and the search step respectively. As above, let Xi be the number of bit operations
required in the i-th step, and so Xi = Yi +TiZi. Note that E[Yi] = TLA and E[Zi] = TSR.
Letting T denote the expected value of the total number of bit operations, we have
T = E[∑M

i=1 Xi] = E[∑M
i=1 Yi]+E[∑M

i=1 TiZi]. Applying Wald’s equation separately to the
two terms and heuristically assuming that Ti and Zi are independent, we obtain T =
π−1 ·(TLA ·π−1

1 +TSR). Note the difference with the expression for T given by (14). This
difference, however, does not cause noticeable difference in the concrete time estimates
and so for simplicity, we consider T to be given by (14).

Next we describe estimates of TLA and TSR. If λ ≤ 0, then the last ` columns of the
matrices C and D in (4) are I` and the all-zero matrices respectively. This corresponds
to the row operations required in Stern’s algorithm. For 0< λ ≤ `, the matrices C and D
are smaller and the linear algebra step possibly requires less number of bit operations.
For simplicity of analysis, we assume that the number of bit operations required for
the linear algebra step is equal to that of Stern’s algorithm. Following [6], we estimate
the expected number of bit operations required for the linear algebra step in Stern’s
algorithm to be

TLA =
k2(n− k)(n− k−1)(3n− k)

4n2 . (15)

In the search step, bit operations are required to compute the quantities a1, a2, b1, b2
and b1 +b2 + v. Using the early abort technique (see Section 3.2) requires computing
only the first 2(w− p+1) bits of the last three quantities. Using Chase’s sequence (again
see Section 3.2) the computation of all the dLδ

1 e a1’s and b1’s require a total of (2`+



4(w− p+1))dLδ
1 e bit operations. Similarly, using Chase’s sequence the computation of

all the L2 a2’s and b2’s require a total of (2`+4(w− p+1))L2 bit operations. Finally,
we consider the number of bit operations in the collision phase. We make the heuristic
assumption that the a1’s that arise due to the different choices of S are independent
and uniformly distributed `-bit strings. So for any fixed `-bit string x, the probability
it arises as a1 due to any particular choice of S is equal to 1/2`; consequently, the
total number of times x occurs as a first component in the list L follows the binomial
distribution with parameters 1/2` and #L . So the expected number of times x occurs
as a first component in the list L is #L /2` = dLδ

1 e/2`. It then follows that for each of
the L2 a2’s (which are also `-bit strings) generated in the collision phase, on an average
there will be about dLδ

1 e/2` a1’s in L such that the condition a1 + u = a2 holds. So
the computation of b1 + b2 + v has to be done a total of about L2 · (dLδ

1 e/2`) times.
Using the early abort technique, this requires about L2 · (dLδ

1 e/2`) · (2(w− p+ 1)) bit
operations. Putting the calculations together, we have

TSR ≈ (2`+4(w− p+1))dLδ
1 e

+(2`+4(w− p+1))L2 +L2 · (dLδ
1 e/2`) · (2(w− p+1)). (16)

3.4 Memory complexity. An instance of the SDP is a triplet (H0,s0,w). So any ISD
algorithm has to store the matrix H0 and the syndrome s0. Let Mmat be the number of
bits required to store H0 and s0. Then

Mmat = (n− k)(n+1). (17)

The additional memory requirement of Algorithm 1 arises from the memory re-
quirement of Algorithm Srch, which needs to store the list L . The size of L is dLδ

1 e.
Each entry of L is of the form (a1,b1,S), where a1 is an `-bit vector, b1 is an (r− `)-
bit vector and M is a subset of [b(k+λ )/2c] of size bp/2c. Since we consider the early
abort technique, only the first 2(w− p+1) bits of b1 are stored. Let Mlst be the number
of bits required to store L . Then

Mlst = dLδ
1 e · (`+2(w− p+1)+ bp/2c · dlog2b(k+λ )/2ce) . (18)

The total memory required by Algorithm 1 is M, where

M = Mmat +Mlst. (19)

3.5 Cost of memory access. If M is large, then accessing memory will require non-
negligible time. The logarithmic memory access cost model has been suggested in pre-
vious works [2,11]. In this model, the time estimate is increased by a factor which is
equal to the logarithm to the base two of the memory estimate. So the time estimate Tma
taking logarithmic memory access cost into consideration is given by

Tma = T · log2 M. (20)

Remark 5. Estimating the cost of memory access using (20) is rather adhoc. For one
thing it assumes that each bit operation requires a memory access which is not the case.
Secondly, a large fraction of the bit operations are on the matrix H and not on the list L .
Compared to H, the list L can require much more memory to store. So assigning the
same cost of memory access to memory operations on H and L may not be justified.



Remark 6. A Boolean circuit model based analysis of time estimates of ISD algorithms
has been performed in [4]. Such an analysis inherently incorporates cost of memory
access which would otherwise be ignored in an analysis assuming constant time for
memory access. Note, however, that incorporating logarithmic memory access cost as
in (20) captures memory access cost in a manner which is different from that in [4].

4 A set of effective TMTO points

We describe what we mean by a set of effective TMTO points and a procedure to com-
pute such a set. Our initial description is based on Algorithm 1. Later we mention how
the procedure can be applied to any ISD algorithm.

For fixed values of n,k and w, it is possible to evaluate the expressions for T and
M given by (14) and (19) respectively for every possible choice of the values of the
parameters `, p,λ and δ . This leads to a large number of TMTO points (T,M). For
example, using the range of parameters given by (23) in Section 5 leads to more than 3
million TMTO points. There are, however, large clusters of values of T and M. As an
example, for the variant mceliece-3488-064 of Classic McEliece, we have n = 3488,
k = 2720 and w= 64. In this case, the minimum value of log2 T required by Algorithm 1
is 147.70988 and there are 819 values which are less than 148, the largest of which is
147.99983. Similar clustering also occurs for log2 M. Based on these observations, we
define two time complexities T and T ′ to be equivalent if dlog2 Te= dlog2 T ′e, and two
memory complexities M and M′ to be equivalent if dlog2 Me = dlog2 M′e. Extending
to TMTO points, we define two TMTO points (T,M) and (T ′,M′) to be equivalent if
dlog2 Te = dlog2 T ′e and dlog2 Me = dlog2 M′e. So the time and memory complexities
of a TMTO point differ from the respective complexities of an equivalent TMTO point
by factors which are less than 2.

For fixed values of n, k and w, let T0 be the set of all tuples

(dlog2 Te,dlog2 Me, `, p,λ ,δ , log2 T, log2 M) (21)

corresponding to a pre-determined range of values of the parameters `, p,λ and δ . The
list T0 captures all the TMTO points arising from the chosen range of values of the
parameters. We say that a TMTO point (T,M) is represented in T0 if (log2 T, log2 M)
occurs as the last two components of some tuple in T0. Let V be a non-empty set of
TMTO points represented in T0 satisfying the following two properties.
1. Minimality: If (T,M) 6= (T ′,M′) are in V , then dlog2 Te 6= dlog2 T ′e, dlog2 Me 6=
dlog2 M′e, and either dlog2 Te> dlog2 T ′e or dlog2 Me> dlog2 M′e.

2. Completeness: If (T ′,M′) is represented in T0, then there is a point (T,M) in V
such that dlog2 Te ≤ dlog2 T ′e and dlog2 Me ≤ dlog2 M′e.

We say that the set V is a set of effective TMTO points with respect to the chosen range
of parameters. A consequence of the first condition is that two distinct points in V are
inequivalent. Let

CL(V ) = {(dlog2 Te,dlog2 Me) : (T,M) ∈ V }. (22)



Proposition 1. If V and V ′ are two sets of effective TMTO points for the same ranges
of values of the parameters, then CL(V ) = CL(V ′).

Proof. Suppose (dlog2 T ′e,dlog2 M′e) is in CL(V ′) corresponding to some point (T ′,M′)
in V ′. Since V ′ is a set of effective TMTO points, by definition, (T ′,M′) is represented
in T0. Since V is also a set of effective TMTO points, by completeness of V , there
is a point (T,M) in V which is represented in T0 satisfying dlog2 Te ≤ dlog2 T ′e and
dlog2 Me ≤ dlog2 M′e. Further, (dlog2 Te,dlog2 Me) is in CL(V ). Since (T,M) is repre-
sented in T0 and V ′ is a set of effective TMTO points, by completeness of V ′, there is
a point (T ′′,M′′) in CL(V ′) satisfying dlog2 T ′′e ≤ dlog2 Te and dlog2 M′′e ≤ dlog2 Me.
So it follows that dlog2 T ′′e ≤ dlog2 T ′e and dlog2 M′′e ≤ dlog2 M′e. By minimality of
V ′, the condition in the previous sentence is only possible if dlog2 T ′′e = dlog2 T ′e
and dlog2 M′′e = dlog2 M′e, which implies that dlog2 Te = dlog2 T ′e and dlog2 Me =
dlog2 M′e, and so (dlog2 T ′e,dlog2 M′e) is in CL(V ). This shows that CL(V ′) is a sub-
set of CL(V ). Reversing the argument, we have CL(V ) to be a subset of CL(V ′). ut

Proposition 1 shows that a set of effective TMTO points uniquely captures the entire
landscape of all TMTO points up to loss of precision by factors which are less than
2. Later we will see examples which show that a set of effective TMTO points can be
much smaller than the size of all TMTO points.

We describe a method to compute a set of effective TMTO points. The idea is to
progressively process a list of tuples T which is initially set to be equal to T0. The
following steps are then performed successively on T .
1. Sorting: Perform an ascending order sort of the tuples in T , where the usual lex-

icographic ordering of tuples is assumed, i.e. a tuple is considered to be less than
another if for some i≥ 1, the first i−1 components of the two tuples are equal and
the i-th component of the first tuple is less than that of the second.

2. First filtering: Perform a filtering on T to ensure that for any particular value of
dlog2 Te, only the first tuple with the given value is retained while all other tuples
with the same value of dlog2 Te are dropped.

3. Second filtering: Perform a filtering on T to ensure that for any particular value of
dlog2 Me, only the first tuple with the given value is retained while all other tuples
with the same value of dlog2 Me are dropped.

4. Pruning: Discard all tuples from T starting from the point where dlog2 Te in-
creases but dlog2 Me does not decrease.

Let T1 be the final state of T and let U be the set of all TMTO points (T,M) which
are represented in T1. We have the following result.

Proposition 2. U is a set of effective TMTO points.

Proof. Since T1 is obtained from T0 by removing tuples, any tuple in T1 is also in T0.
So any TMTO point in U is represented in T0.

Suppose (T,M) and (T ′,M′) are two TMTO points in U . The first and the second
filtering steps ensure that dlog2 Te 6= dlog2 T ′e and dlog2 Me 6= dlog2 M′e respectively.
The pruning step ensures that if dlog2 Te < dlog2 T ′e, then dlog2 Me > dlog2 M′e, as
otherwise the tuple representing (T ′,M′) would be dropped in the pruning step. This
shows the minimality of U .



Suppose (T ′,M′) is a TMTO point represented in T0. If it is not in U , then the tuple
which represents it in T0 was dropped in one of the two filtering steps or in the pruning
step. If it was dropped in the first filtering step, then there is a TMTO point (T,M) in U
such that dlog2 Te= dlog2 T ′e and dlog2 Me≤ dlog2 M′e. If it was dropped in the second
filtering step, then there is a TMTO point (T,M) in U such that dlog2 Te ≤ dlog2 T ′e
and dlog2 Me = dlog2 M′e. Finally, if it was dropped in the pruning step, then there is
a TMTO point (T,M) in U such that dlog2 Te < dlog2 T ′e and dlog2 Me < dlog2 M′e.
This shows the completeness of U . ut

A simple SAGE [26] code to compute a set of effective TMTO points for Algorithm 1
for the range of parameters in (23) is given in Appendix A. Setting δ = 1 in the code pro-
vides a set of effective TMTO points for the Bernstein-Chou generalisation of Stern’s
algorithm; setting λ = 0 and δ = 1 in the code provides a set of effective TMTO points
for Stern’s algorithm; setting λ = ` and δ = 1 in the code provides a set of effective
TMTO points for Dumer’s algorithm.

The discussion above for obtaining a set of effective TMTO points was with refer-
ence to Algorithm 1. Changing the procedure to any other ISD algorithm is simply to
change the parameters and to use the appropriate expressions (or algorithms) to com-
pute the time and memory complexities of the algorithm. This leads to changing (21)
and affects the construction of the initial state T0 of T . The sorting, filtering and prun-
ing steps are applied to T as described above. A set U of effective TMTO points (with
respect to the chosen range of values of the parameters) can then be defined from the
final state T1 of T in the same manner as described above.
4.1 Comparison to previous TMTO analysis of ISD algorithms. The TMTO anal-
ysis considered in [12] is of the following type. Fix an upper bound M on the memory
complexity and then obtain the minimum time required by the algorithm utilising at
most M bits of memory. Let us call this a memory bounded approach to TMTO analy-
sis. Such an approach provides less information in comparison to the analysis using the
notion of an effective set of TMTO points. We illustrate this using an example. Consider
Table 2a which provides certain TMTO points for mceliece-3488-064 achieved by
Algorithm 1 using the notion of effective set of TMTO points. Now consider the mem-
ory bounded analysis. Suppose we fix the memory bound M to be 250 and ask what
is the minimum time that can be achieved by Algorithm 1 utilising at most 250 bits of
memory? From Table 2a the answer is 2147.93. However, from the table we also find
that the time 2147.93 can be achieved using 244.55 bits of memory. Similarly, if we fix
M to be 240, then the memory bounded analysis will provide minimum time estimate
of 2148.93, while the analysis based on effective set of TMTO points will provide the
additional information that the time estimate of 2148.93 can be achieved using 234.63 bits
of memory. In both the above cases, the actual memory requirements 244.55 or 234.63 are
lower than the upper bounds 250 and 240 respectively. So while the memory bounded
analysis obtains the minimum time subject to an upper bound on the memory, it does
not yield the actual memory that is required to achieve the minimum time. In contrast,
the analysis based on the notion of effective set of TMTO points provides for each time
estimate the minimum memory required to achieve the time estimate. More generally,
due to the completeness property an effective set of TMTO points captures (up to a mi-
nor loss in precision) the entire landscape of TMTO points. In particular, for any TMTO



point (T ′,M′) obtained using a memory bounded analysis, the completeness property
assures us that there is a TMTO point (T,M) in an effective set of TMTO points such
that dlog2 Te ≤ dlog2 T ′e and dlog2 Me ≤ dlog2 M′e.

5 Application to Classic McEliece

The NIST call for proposals [23] for post-quantum cryptosystems outlines five cate-
gories. Of these, Categories 1, 3 and 5 require cryptosystems to be secure under attacks
using 2143, 2207 and 2272 classical gates respectively.

The expected security categories of the five variants are given in Section 7 of the
Classic McEliece specification [5]. For the five variants, our abbreviations of the names,
the values of n, k and w for the five variants, and their categories are shown in Table 1.
Section 2.2.3 of the Classic McEliece specification [5], states that the public key is an
r× k binary matrix. Table 1 shows log2 P, where P = r · k is the size of the public key
in bits. An ISD instance is given by (H0,s0,w). So Mmat bits are required to store H0
and s0. The values of log2 Mmat for the variants of the Classic McEliece are shown in
Table 1.

category name n k w log2 P log2 Mmat
1 mceliece-3488-064 (m3488) 3488 2720 64 20.99 21.35
3 mceliece-4608-096 (m4608) 4608 3360 96 22.00 22.46

5
mceliece-6688-128 (m6688) 6688 5024 128 22.00 23.41
mceliece-6960-119 (m6960) 6960 5413 119 22.00 23.36
mceliece-8192-128 (m8192) 8192 6528 128 23.37 23.70

Table 1: Parameters for Classic McEliece and the corresponding values of log2 P and log2 Mmat.

For Algorithm 1, instead of using the maximum possible ranges of values of param-
eters given by (3), we have restricted to the following ranges of values of the parameters.
The concrete results obtained using these choices indicate that there are no interesting
TMTO points for values of parameters outside these ranges.

0≤ `≤ 100, 2≤ p≤ 30, −`≤ λ ≤ `, δ = 1−0.025 · i, i = 0, . . . ,12. (23)

The total number of choices of values for the parameters `, p,λ and δ in the above
ranges is 3712800. We have used the code in Appendix A to compute the sets of effec-
tive TMTO points for the variants of Classic McEliece corresponding to Algorithm 1
for both the cases where memory access cost is taken to be constant and the logarithmic
memory access cost model is assumed. We have also computed similar sets of effective
TMTO points corresponding to Stern’s (i.e. with δ = 1 and λ = 0) and Dumer’s (i.e.
with δ = 1 and λ = `) algorithms for the ranges of ` and p given by (23). For every case,
the sizes of the sets of effective TMTO points corresponding to Stern’s and Dumer’s are
the same and the corresponding time complexities are equivalent. The memory com-
plexities are also mostly equivalent, though in a few cases they vary a little. We have
similarly computed the sets of effective TMTO points corresponding to the Bernstein
and Chou’s (i.e. with δ = 1) algorithm for the ranges of `, p and λ given by (23). Again



the sizes of the sets of effective TMTO points are the same as those obtained for Stern’s
algorithm and the corresponding time complexities are equivalent, while the memory
complexities are mostly equivalent and vary a little for a small number of cases.

Remark 7. The generalisation of Algorithm 1 over Stern’s algorithm arises from the use
of two parameter λ and δ . From the above discussion, we see that it is the parameter
δ which provides the non-triviality of the generalisation. If we set δ = 1 (obtaining
Bernstein and Chou’s algorithm isd1), then we do not obtain any interesting TMTO
points beyond what is achieved by Stern’s algorithm. It is necessary to allow δ to be
less than 1 to explore the TMTO landscape not covered by Stern’s algorithm.

The sets of effective TMTO points for the variants of Classic McEliece obtained
from Algorithm 1 are shown in Tables 2 and 3. The tables also provide the values
of the parameters which achieve the corresponding TMTO points. In these tables, rows
marked with (*) indicate that Stern’s algorithm achieves TMTO points which are equiv-
alent to the corresponding TMTO points achieved by Algorithm 1. Further, Stern’s al-
gorithm does not achieve any TMTO point whose time complexity is equivalent to the
time complexity of any row not marked with (*). The values in the tables show that
the maximum and minimum values of dlog2 Te remain the same for Algorithm 1 and
Stern’s algorithm. For Algorithm 1, dlog2 Te achieves every value between the maxi-
mum and the minimum, while for Stern’s algorithm only about half of these values are
achieved. So Algorithm 1 provides a finer time/memory trade-off compared to Stern’s
algorithm. Note that for Algorithm 1 sets of 3712800 TMTO points reduce to sets of
6 to 13 effective TMTO points. This underlines the usefulness of the notion of a set of
effective TMTO points.

The minimum memory TMTO points for the five Classic McEliece variants have
log2 M to be equal to 21.45, 22.54, 23.49, 23.45 and 23.79. Comparing with the values
of log2 Mmat in Table 1, one may observe that the minimum memory is marginally
greater than log2 Mmat. The time estimates of the minimum memory trade-off points
are less than that of the minimum time estimates of Leon’s algorithm (whose memory
complexity is Mmat) given in Table 6 (provided in Appendix A.1) by factors of about 8
to 20.

It is interesting to observe that there are sharp drops in memory requirement at only
a moderate increase in the time complexity. As an example, if we consider the esti-
mates which take memory access cost to be constant, increasing log2 T by the amount
indicated below leads to log2 M dropping by the stated amount.

m3488: log2 T from 147.93 to 148.93; log2 M from 44.55 to 34.63;
m4608: log2 T from 189.98 to 190.80; log2 M from 46.22 to 37.70;
m6688: log2 T from 265.00 to 265.95; log2 M from 57.97 to 48.89;
m6960: log2 T from 265.00 to 265.96; log2 M from 67.37 to 58.38;
m8192: log2 T from 300.00 to 300.96; log2 M from 77.99 to 68.96.

This shows that allowing the time complexity to increase by factors which are at
most 2 result in the memory requirement dropping by factors varying from 28 to 210.
In general, one may observe that the drops in the memory requirement are sharper for
smaller values of T and become less sharp for larger values of T . Similar observations
hold when we consider the estimates which include logarithmic memory access cost.



We consider the implications of the new TMTO points to the classification in NIST
categories of the variants of Classic McEliece. Time estimates of Stern’s algorithm
from [2] have been used in a discussion [14] regarding the classifications of the five
variants. A criticism forwarded against these time estimates was that the corresponding
memory requirements are much larger than the size of the public key being attacked.

Since we have obtained the sets of effective TMTO points, we may consider points
where the memory size is not much larger than the size of the public key.

Let us first consider m4608. In this case the gate count requirement is 2207 and the
size of the public key is about 222 bits. The time estimates of all the TMTO points for
this variant given by Tables 2a and 2b are below the target 2207. The TMTO point with
highest of these time estimates is equal to (2197.99,222.52) when memory access cost is
taken to be constant, and is equal to (2202.00,222.54) when logarithmic memory access
cost is considered. So for m4608, it is possible to achieve time complexity less than 2207

by a factor of about 29 (for constant memory access cost) and about 25 (for logarithmic
memory access cost) while requiring memory which is only about 1.5 times the size of
the public key.

Let us now consider m6688 and m6960. The NIST gate count requirement is 2272

and the size of the public key is about 222 bits. From Table 3a, we see that for m6688,
Algorithm 1 has the TMTO points (2269.99,229.25) and (2271.00,227.69); and for m6960,
Algorithm 1 has the TMTO points (2270.00,229.93) and (2270.85,228.83). All of these
time estimates are slightly smaller than 2272. The corresponding memory requirements,
while still being larger than the size of the public key, are not too large. On the other
hand, if we consider logarithmic memory access cost, then with memory requirement
less than 230, we obtain time complexities 2274.97 and 2274.93 respectively, both of which
are greater than the NIST requirement of 2272 by factors which are less than 8.

In contrast to the above, for both m3488 and m8192, there is no TMTO point in
Tables 2 and 3, even with constant memory access cost, which has time estimate less
than the NIST requirement for classification in the respective categories.

Remark 8. For m4608 and m6688, the minimum gate count estimates obtained in [4]
for isd1 (which subsumes Stern’s and Dumer’s algorithms) are 2198.93 and 2275.41 re-
spectively. For m4608, the count of 2198.93 is lower than the NIST target of 2207 while
for m6688, the count of 2275.41 is about 10 times the NIST target of 2272. The methodol-
ogy used in [4] for obtaining gate count estimates incorporates cost of memory access
though in a manner which is different from the logarithmic memory access cost con-
sidered here (see Remark 6). From Tables 2b and 3b, the minimum bit complexity
estimates for m4608 and m6688 obtained in the present work are not too far from those
obtained in [4]. The main difference with the results reported in [4] is that, as discussed
above, the bit complexity estimate for m4608 falls below the NIST target and the bit
complexity estimate for m6688 (and also m6960) is a little above the NIST target even if
we restrict the memory requirement to be not too larger than the size of the public key.

5.1 Previous estimates. Previous works on concrete estimates of the performance
of ISD algorithms have focused on the minimum time that can be achieved for a fixed
set of values of n, k and w, where the minimum is over the appropriate choices of the
parameters.



(log2 T, log2 M) ` p λ δ

m3488

(*) (147.93, 44.55) 36 8 −36 1.000
(*) (148.93, 34.63) 27 6 −27 0.950
(*) (149.89, 27.15) 18 4 −18 1.000

(150.97, 25.71) 17 4 −17 0.925
(151.96, 24.77) 15 4 −14 0.875
(152.81, 23.90) 14 4 −14 0.825
(153.99, 22.80) 13 4 −13 0.750

(*) (154.98, 21.44) 13 4 −13 0.975

m4608

(*) (189.98, 46.22) 38 8 −38 1.000
(*) (190.88, 37.70) 28 6 −28 0.975

(191.81, 35.95) 26 6 −26 0.950
(*) (192.95, 27.75) 18 4 −18 0.975

(193.99, 26.76) 16 4 −16 0.925
(194.85, 25.81) 15 4 −15 0.875
(195.74, 24.92) 14 4 −14 0.825
(196.95, 23.81) 13 4 −13 0.750

(*) (197.99, 22.52) 7 3 −7 0.975

(a) Constant memory access cost.

(log2 Tma, log2 M) ` p λ δ

m3488

(*) (154.00, 34.69) 27 6 16 0.950
(*) (154.94, 26.67) 18 4 −18 0.975

(155.81, 25.70) 16 4 −16 0.925
(156.91, 24.76) 14 4 −14 0.875
(157.94, 23.50) 13 4 −13 0.800

(*) (158.93, 21.45) 8 3 -8 1.000

m4608

(*) (195.94, 36.70) 29 6 −29 0.975
(*) (196.98, 35.95) 26 6 −26 0.950
(*) (197.94, 27.75) 17 4 −17 0.975

(198.73, 26.76) 16 4 −16 0.925
(199.92, 25.80) 14 4 −14 0.875
(200.97, 24.51) 13 4 −13 0.800

(*) (202.00, 22.54) 8 3 −2 1.000

(b) Logarithmic memory access cost.

Table 2: TMTO points and the corresponding values of the parameters achieved by Algorithm 1
for m3488 and m4608. Stern’s algorithm provides equivalent TMTO points for only the rows
marked with (*).

For Classic McEliece, previous estimates of Stern’s algorithm in [2,4] are shown
in Table 4. To make the comparison clear, we have also included the minimum time
estimates and the corresponding memory estimates for Algorithm 1 for both constant
and logarithmic memory access costs; equivalent TMTO points can also be obtained
from Stern’s algorithm (see Tables 2 and 3). In the column headed by [2], T1 is the
minimum time estimate for Stern’s algorithm given in that work and M1 is the memory
required to achieve the corresponding time estimate. In the column headed by [4], T2 is
the minimum time estimate of either Stern’s or Dumer’s algorithm given in that work,
the specific algorithm for each time estimate is not mentioned in [4]. Also, [4] does not
provide the memory estimates. The time estimates in [4] include the cost of memory
access (see, however, Remark 6), while those in [2] do not1. From Table 4, we note
that the estimates T1 in [2] are higher than the estimates T achieved by Algorithm 1.
The reason is that the techniques of Chase’s sequence and early abort were not used in
the estimates in [2]. On the other hand, the estimates in [4] are higher than Tma. The
values of log2 T2− log2 Tma for m3488, m4608, m6688 and m8192 are 2.96, 2.99, 4.45
and 5.44 respectively. So the time estimates obtained from our simple cost model are
fairly accurate; in particular they are within 1.5% to 1.9% of the time estimates obtained
from the sophisticated methodology used in [4].

For Classic McEliece, bit complexity estimates of the MMT [18] algorithm were
given in [12] for various cases. We focus on the case where the memory requirement is
restricted to at most 260 bits. The bit complexity estimates from [12] for this case are
shown in Table 5 both for the cases where memory access time is taken to be constant
and for logarithmic memory access time. Table 5 also provides the time estimates for
Algorithm 1 with memory restricted to at most 260 bits. These estimates are obtained
from Tables 2 and 3. Since our methodology permits obtaining the memory estimates

1 While [2] mentions the logarithmic memory access cost model, to the best of our understanding
Table 4 of [2] provides estimates of bit operations assuming constant memory access time. The
values in Table 4 in the column headed by [2] are from Table 4 of [2].



(log2 T, log2 M) ` p λ δ

m6688

(*) (265.00, 57.97) 50 10 −16 1.000
(*) (265.95, 48.89) 39 8 −39 1.000
(*) (267.00, 38.82) 31 6 30 0.975

(268.80, 36.41) 28 6 −28 0.900
(*) (269.99, 29.25) 18 4 −18 0.975

(271.00, 27.69) 18 4 7 0.900
(271.93, 26.68) 17 4 −17 0.850
(273.00, 25.76) 15 4 15 0.800
(273.95, 24.95) 14 4 −14 0.750

(*) (274.89, 23.48) 9 3 −9 0.975

m6960

(*) (265.00, 67.37) 59 12 19 1.000
(*) (265.96, 58.38) 48 10 −48 1.000
(*) (267.00, 48.29) 39 8 29 0.975
(*) (267.91, 39.00) 30 6 −30 0.975

(268.92, 37.41) 29 6 −29 0.925
(*) (270.00, 29.93) 20 4 20 1.000

(270.85, 28.83) 19 4 −19 0.950
(271.96, 27.77) 17 4 −17 0.900
(272.87, 26.75) 16 4 −16 0.850
(273.80, 25.80) 15 4 −15 0.800
(274.74, 24.98) 14 4 −14 0.750

(*) (275.87, 23.45) 8 3 −8 1.000

m8192

(*) (300.00, 77.99) 68 14 16 1.000
(*) (300.96, 68.96) 58 12 -58 1.000
(*) (301.90, 58.55) 50 10 −50 0.975
(*) (302.90, 49.38) 40 8 −40 0.975
(*) (303.96, 39.88) 31 6 −31 0.975

(305.00, 38.26) 30 6 −30 0.925
(305.95, 37.44) 28 6 −28 0.900

(*) (306.92, 29.99) 19 4 −19 0.975
(307.80, 28.89) 18 4 −18 0.925
(308.72, 27.81) 17 4 −17 0.875
(309.66, 26.79) 16 4 −16 0.825
(310.96, 25.85) 14 4 −14 0.775

(*) (311.85, 23.79) 10 3 −10 1.000

(a) Constant memory access cost.

(log2 Tma, log2 M) ` p λ δ

m6688

(*) (270.96, 57.91) 49 10 −49 1.000
(*) (271.99, 39.55) 31 6 −31 1.000

(272.96, 37.98) 29 6 −29 0.950
(273.99, 36.41) 28 6 −28 0.900

(*) (274.97, 28.72) 19 4 −19 0.950
(275.97, 27.68) 17 4 −17 0.900
(276.83, 26.67) 16 4 −16 0.850
(278.00, 25.75) 14 4 −7 0.800
(278.88, 24.95) 13 4 −13 0.750

(*) (279.86, 23.45) 8 3 −8 0.950

m6960

(*) (271.00, 75.99) 68 14 −4 1.000
(*) (272.00, 49.33) 40 8 32 1.000
(*) (272.94, 39.79) 30 6 −30 1.000

(274.00, 37.45) 30 6 13 0.925
(*) (274.93, 29.91) 20 4 −20 1.000

(275.91, 28.83) 18 4 −18 0.950
(276.75, 27.77) 17 4 −17 0.900
(277.97, 26.75) 15 4 −15 0.850
(278.84, 25.80) 14 4 −14 0.800

(*) (279.89, 23.45) 10 3 −10 1.000

m8192

(*) (306.00, 86.78) 77 16 46 1.000
(*) (307.00, 59.88) 52 10 −9 1.000
(*) (307.93, 50.43) 41 8 −41 1.000
(*) (309.00, 40.70) 31 6 −31 1.000

(309.97, 39.88) 29 6 −29 0.975
(310.90, 37.45) 29 6 −29 0.900

(*) (311.82, 29.99) 19 4 −19 0.975
(312.95, 28.35) 18 4 −18 0.900
(313.90, 27.81) 16 4 −16 0.875
(314.77, 26.78) 15 4 −15 0.825
(315.90, 25.44) 14 4 −14 0.750

(*) (316.84, 23.78) 9 3 −9 0.975

(b) Logarithmic memory access cost.

Table 3: TMTO points and the corresponding values of the parameters achieved by Algorithm 1
for m6688, m6960 and m8192. Stern’s algorithm provides equivalent TMTO points for only the
rows marked with (*).

name [2]
(log2 T1, log2 M1)

[4]
log2 T2

Algo 1
(log2 T, log2 M)

Algo 1
(log2 Tma, log2 M)

m3488 (152.51,34.68) 156.96 (147.93,44.55) (154.00,34.69)
m4608 (194.36,35.66) 198.93 (189.98,46.22) (195.94,36.70)
m6688 (270.46,37.48) 275.41 (265.00,57.97) (270.96,57.91)
m6960 (271.18,47.58) - (265.00,67.37) (271.00,75.99)
m8192 (306.63,67.64) 311.44 (300.00,77.99) (306.00,86.78)

Table 4: Previous estimates of the expected number of bit operations and the corresponding mem-
ory for Stern’s/Dumer’s algorithm. The minimum time estimates required by Algorithm 1 are also
provided.



MMT Algo 1
(log2 T3, log2 M3) (log2 T4, log2 M4) (log2 T, log2 M) (log2 Tma, log2 M)

m3488 (145.47,≤ 60) (151.06,≤ 60) (147.93,44.55) (154.00,34.69)
m4608 (188.16,≤ 60) (193.59,≤ 60) (189.98,46.22) (195.94,36.70)
m6688 (263.16,≤ 60) (268.66,≤ 60) (265.00,57.97) (270.96,57.91)
m6960 (263.64,≤ 60) (269.17,≤ 60) (265.96,58.38) (272.00,49.33)
m8192 (298.65,≤ 60) (304.19,≤ 60) (301.90,58.55) (307.00,59.88)

Table 5: Comparison of time estimates from [12] achieved by the MMT algorithm [18] with the
time estimates for Algorithm 1. In both cases, memory is restricted to at most 260 bits. T3 and M3
respectively denote the time and memory estimates from [12] for the MMT algorithm in the case
where the memory access cost is taken to be constant; T4 and M4 respectively denote the time
and memory estimates from [12] for the MMT algorithm in the case where logarithmic memory
access cost is considered.

required for achieving the corresponding time estimates, we provide these values in Ta-
ble 5. The time estimates for the MMT algorithm are lower than the time estimates for
Algorithm 1, which confirms the well known fact that the MMT algorithm is faster than
Stern’s algorithm. Note, on the other hand, that the actual gain in speed by the MMT
algorithm over Stern’s algorithm is by a factor which is less than 8 in all the cases. This
small loss of speed by Stern’s algorithm is to be contrasted with the relative simplicity
of Stern’s algorithm in comparison with the MMT algorithm. We note, however, that a
direct comparison between the estimates in [12] and the estimates obtained here may
be misleading; [12] does not describe the details of the methodology used to obtain the
estimates and it is possible that techniques such as early abort were not incorporated
in obtaining the estimates in [12]. Incorporating such techniques may lower the esti-
mates in [12] making the gap between the time estimates of the MMT algorithm and
(generalised) Stern’s algorithm wider than what is suggested by the values in Table 5.

6 Conclusion

We have proposed a generalised version of Stern’s ISD algorithm. By appropriately se-
lecting the values of the parameters of the new algorithm, it is possible to obtain Stern’s,
Dumer’s, and Bernstein and Chou’s algorithms as special cases. We also introduced the
notion of a set of effective TMTO points and showed how to compute such a set for
any ISD algorithm. The sets of effective TMTO points for the new ISD algorithm cor-
responding to the variants of the Classic McEliece cryptosystems have been obtained
and their significance discussed in details.

The present work has focussed on obtaining concrete estimates using the gener-
alised Stern’s algorithm. From a more theoretical point of view, it would be of interest
to perform a comprehensive asymptotic analysis of the generalised Stern’s algorithm
following the methodology used in [7]. A more compact asymptotic analysis along the
lines of [18,3] or the more recent [12] would also be of interest. We leave this as a
possible future work.
Acknowledgement. We thank the reviewers for their kind comments which have helped
in improving the discussion at several points in the paper.
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A SAGE code

import sys
ZZ=IntegerRing()
RR=RealField(100)
def getTuple(n,k,w,l,p,lam,delta):

L1 = RR(binomial(floor((k+lam)/2),floor(p/2))); Lsz = RR(ceil(L1^delta))
L2 = RR(binomial(ceil((k+lam)/2),ceil(p/2)))
PS = (Lsz * L2 * RR(binomial(n-k-l,w-p))) / RR(binomial(n,w))
TLA = RR(k^2*(n-k)*(n-k-1)*(3*n-k)) / RR((4*n^2))
TSR = (Lsz+L2)*(2*l+4*(w-p+1)) + L2*(Lsz/RR(2^l))*(2*(w-p+1))
Mmat = (n-k)*(n+1)
Mlst = Lsz*(l+2*(w-p+1)+RR(floor(p/2))*log(RR(floor((k+lam)/2)),2));
M = Mmat + Mlst; logM = log(M,2)
Titer = (TLA+TSR)*log(RR(M),2) # Titer = TLA + TSR
logT = log(Titer,2) - log(PS,2)
tuple = [ceil(logT),ceil(logM),l,p,lam,delta,logT,logM]
return tuple

def FilterTime(resLst): # first filtering
tresLst = []; tresLst.append(resLst[0]); val = resLst[0][0]
for tuple in resLst:

if (tuple[0] != val):
tresLst.append(tuple)
val = tuple[0]

return tresLst
def FilterMemory(resLst): # second filtering and pruning

tresLst = []; tresLst.append(resLst[0]); val = resLst[0][1]
for tuple in resLst:

if (tuple[1] > val):
return tresLst

if (tuple[1] != val):
tresLst.append(tuple)
val = tuple[1]

return tresLst
# start of main routine: takes three command line parameters: n,k,w
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n=int(sys.argv[1]); k=int(sys.argv[2]); w=int(sys.argv[3])
lmax = 100; pmin = 2; pmax = 30
resLst = []
for i in range(0,13):

delta = 1.0-RR(i)*0.025
for l in range(1,lmax+1):

for lam in range(-l,l+1):
for p in range(pmin,pmax):

tuple = getTuple(n,k,w,l,p,lam,delta); resLst.append(tuple)
resLst.sort(); tresLst = FilterTime(resLst); tresLst = FilterMemory(tresLst)
for tuple in tresLst:

print tuple

A.1 Complexity of Prange’s, Lee-Brickell’s and Leon’s algorithms. Let C1,C2
and C3 be the expected number of bit operations required required by Prange’s, Lee and
Brickell’s and Leon’s algorithms respectively. We have

C1 =

(n
w

)(n−k
w

) · (TLA +2(w+1)), (24)

C2 =

(n
w

)(k
p

)(n−k
w−p

) ·(TLA +

(
k
p

)
· (4(w− p+1))

)
, (25)

C3 =

(n
w

)(k
p

)(n−k−`
w−p

) ·(TLA +

(
k
p

)
·
(

2`+
2p(w− p+1)

2`

))
. (26)

All the three algorithms store only H0 and s0 and hence the number of bits required to
be stored is Mmat.
Justifications for the estimates in (24), (25) and (26). A generalisation of Algo-
rithm 1 has been outlined in Section 3.1 which provides Prange’s, Lee-Brickell’s and
Leon’s algorithms as special cases. The analysis of time and memory complexities of
Algorithm 1 can also be easily generalised to obtain expressions for the time and mem-
ory complexities of the unified algorithm sketched in Section 3.1. The expressions for
C1, C2 and C3 can then be obtained as special cases. Instead of adopting this approach,
we briefly sketch the arguments required to directly obtain the required expressions.

As in the case of Algorithm 1, applying (12), the expected number of bit operations
is given by the product of the expected number of bit operations in each iteration and the
inverse of the success probability. The success probabilities of the three algorithms can
be obtained using standard arguments and we refer to [2] for the details. Each iteration
consists of the linear algebra step and the search step. The number of bit operations in
the linear algebra step is the same as that in Stern’s algorithm which we take to be TLA.
It only remains to consider the expected number of bit operations in the search step.
The difference with the analysis in [2] arises from our use of Chase’s sequence and the
early abort technique.

In Prange’s algorithm, the search step is simply to check that the weight of s is w.
Using the early abort technique, this requires about 2(w+1) bit operations in almost all
cases.

In the Lee-Brickell algorithm, the search step computes all possible p-column com-
binations of A (which in this case is an r× k matrix) and checks whether the sum of s
and any such p-column combination x is equal to w− p. Using Chase’s sequence, the



next p-column combination from the previous one can be generated using two vector
additions. Further, using the early abort technique, it is sufficient to compute only the
first 2(w− p+1) bits s+x in almost all cases. So the expected number of bit operations
is 4(w− p+1).

In Leon’s algorithm, the search step computes all possible p-column combinations
of A (which in this case is an `× k matrix) and checks whether any such x is equal to
u. Using Chase’s sequence, the number of bit operations required to generate the next
p-column combination from the previous one is 2`. If some x is equal to u, then the
corresponding p-column combination y of B is computed and it is checked whether
the weight of y+v is equal to w− p. We make the usual heuristic assumption that the
x’s generated by all the p-column combinations of A are independent and uniformly
distributed. Under this assumption, any particular x is equal to u with probability 1/2`

and so the number of x’s which are equal to u follows the binomial distribution with
parameters 1/2` and

(k
p

)
. So the expected number of times x is equal to u is equal to(k

p

)
/2`. For each such match, the sum y+ v is to be computed. Using the early abort

technique, it is sufficient to compute the first 2(w− p+1) bits of this sum in almost all
cases. This gives us the required expression.
Concrete estimates of time complexity of Leon’s algorithm for Classic McEliece.
Table 6 provides the minimum value of C3, the expected number of bit operations re-
quired by Leon’s algorithm, where the minimum is taken over the appropriate ranges
of ` and p. The column headed by log2(C3 · log2 Mmat) reports the time estimates of
Leon’s algorithm adjusted for logarithmic memory access cost. We used a SAGE code
to compute the minimum values of C3 and log2(C3 · log2 Mmat). Since Leon’s algorithm
requires Mmat bits of memory for all parameter choices, the code is simpler than the
code given in Appendix A. The entries in the column headed by A are the binary log-
arithms of the minimum time estimates of Lee-Brickell or Leon’s algorithm from [4];
the work does not specify the particular algorithm corresponding to a particular time
estimate. While [4] captures a wide range of optimisations as well as costs, including
memory access costs, it may be noted that the values in column A are in-between our es-
timates of Leon’s algorithm with constant and logarithmic memory access costs, which
are quite close.

log2 C3 log2(C3 · log2 Mmat) A [4]
m3488 157.91 162.33 159.93
m4608 200.71 205.20 202.30
m6688 278.28 282.82 279.88
m6960 279.33 283.87 -
m8192 316.05 320.62 317.66

Table 6: Concrete time estimates of Leon’s algorithm. The entries in Column-A are estimates of
either Leon’s or Lee-Brickell’s algorithms.
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