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Abstract

After the Kotov-Ushakov attack on the tropical implementation of Stickel protocol, various
attempts have been made to create a secure variant of such implementation. Some of these
attempts used a special class of commuting matrices resembling tropical circulants, and they
have been proposed with claims of resilience against the Kotov-Ushakov attack, and even being
potential post-quantum candidates. This paper, however, reveals that a form of the Kotov-
Ushakov attack remains applicable and, moreover, there are heuristic implementations of that
attack which have a polynomial time complexity and show an overwhelmingly good success
rate.

Keywords: public-key cryptography; key exchange protocol; cryptographic attack; tropical
cryptography

Classification: 94A60, 15A80

1 Introduction

Tropical cryptography, a relatively new and promising area in cryptography, is aiming to use var-
ious structures of tropical mathematics to redefine the classical public key exchange protocols in
cryptography, such as those put forward by Diffie and Hellman, and Stickel. Grigoriev and Shpil-
rain were pioneers in introducing the tropical algebra as an alternative framework for cryptographic
protocols [7]. Their work involved developing a tropical implementation of the Stickel key exchange
protocol, replacing the initial classical version suggested by Stickel since it was shown to be suscepti-
ble to the conventional linear algebraic attacks. This was motivated by the generally non-invertible
nature of matrices in tropical algebra providing resistance against any obvious analogue of the linear
algebraic attack on the original Stickel protocol.

Kotov and Ushakov later suggested an attack on Grigoriev and Shpilrain’s tropical implementa-
tion of the Stickel protocol [11]. They managed to transform the underlying mathematical problem
into the problem of solving a tropical linear equation of the form A⊗ x = b where x should have a
special structure. This enabled them to employ the tropical linear system solvability theory (see,
e.g., Theorem 3.1.1 and Corollary 3.1.2 [4]).

Subsequently [14] proposed several modifications to the original Stickel protocol in an attempt to
make it resistant against the Kotov-Ushakov attack, where different classes of commuting matrices
were suggested instead of tropical polynomials. For example, a modification was suggested where
the commutative property of tropical matrix roots was utilized, along with some other variations, in
the hope of enhancing the resistance of the key exchange protocols compared to the original Stickel
protocol. Unfortunately, it was also observed that all these modifications appeared to exhibit

1



vulnerability to a form of Kotov-Ushakov attack. Specifically, a generalized version of the Kotov-
Ushakov attack was proposed, and it was proved that it applied to all proposed modifications of
Stickel protocol.

Grigoriev and Shpilrain [8] also proposed two tropical implementations of the Diffie-Hellman
protocols based on the semi-direct product, but one of them was shown to be invalid by Isaac and
Kahrobaei [10] and the other successfully attacked by the same authors as well as in [15]. See also
a recent survey of Ahmed et al. [1] for a number of other interesting protocols based on tropical
matrix algebra and the cryptanalysis of such protocols.

The main idea of this paper is to present an attack on variants of the Stickel protocol that
are based on modified tropical circulants. We attack the proposed protocols using the generalized
Kotov-Ushakov attack similar to the one described in [14], and we also make an observation that
there is a heuristic implementation of this attack which is much faster and shows an overwhelming
success rate. More specifically, the paper is organized as follows. In Section 2 we start with some
preliminaries and basic definitions of tropical matrix algebra. In Section 3 we define the tropical
circulants and the different forms of modified tropical circulants and present the previously pro-
posed key exchange protocols based on them. In Section 4 we cryptanalyze the proposed protocols
using the generalized Kotov-Ushakov attack, and present some numerical experiments showing the
attack’s efficiency and performance. In Section 5 we construct a heuristic efficient implementation
of the generalized Kotov-Ushakov attack, employing it to attack the protocols based on modified
circulants as well as the tropical Stickel protocol of [7] and present some numerical experiments
showing that this heuristic implementation is indeed much faster and has a very good (and, in the
case of modified circulants, excellent) success rate. Throughout this paper, we denote the ”modi-
fied tropical circulant matrices” as simply ”modified circulants”. Our codes have been uploaded to
GitHub 1.

While revising this paper we learned of an IACR preprint by Buchinskiy, Kotov and Treier [3]
where an attack very similar to our Attack 4.1 on Stickel protocols based on circulants and modified
circulants was suggested. Interestingly, in [3] this attack is also applied to the TrES protocol of
Durcheva [5]. In turn, the present paper suggests much more efficient heuristic implementations
of this attack (see Section 5), which avoid the hard problem of enumerating all minimal covers
and makes an observation that these heuristic implementations have an overwhelming success rate
(100%) for the protocols based on modified circulants. We also observe a much easier way to attack
the protocol based on the anti-s-p circulants described in [2]. Then, yet another related publication
by Mach [13] was brought to our attention during the revision process. Part of publication [13]
has a similar goal of trying to efficiently attack Stickel protocol (although not the implementation
based on circulants which is considered in the present paper), and one of our proposed heuristic
forms of Kotov-Ushakov attack (namely, Algorithm 2 in Section 5) shares certain idea with [13],
Algorithm 9. The similarities and differences will be discussed in Section 5 in more detail.

2 Preliminaries

In this section, we present fundamental definitions in tropical algebra that will be utilized in the
subsequent sections.

Definition 2.1. (Tropical Semiring). We define the tropical/max-plus semiring as Rmax = (R ∪
1https://github.com/suliman1n/Generalized-KotovUshakov-Attack-on-Tropical-Stickel-Protocol-Based-on-

Modified-Circulants
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{−∞},⊕,⊗), where traditional addition + and multiplication × are replaced by tropical addition
⊕ and tropical multiplication ⊗ respectively. These new arithmetical operations are defined by
x⊕ y = max{x, y} and x⊗ y = x+ y for all x, y ∈ Rmax

The tropical operations can also be extended to include matrices and vectors. In particular, the
operation A⊗ α = α⊗A, where α ∈ Rmax, A ∈ Rm×n

max and (A)ij = aij is defined by

(A⊗ α)ij = (α⊗A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n],

where [m] and [n] denote {1, . . . ,m} and {1, . . . , n} respectively.

The tropical addition A ⊕ B of two matrices A ∈ Rm×n
max and B ∈ Rm×n

max , where (A)ij = aij
and (B)ij = bij is defined by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The multiplication of two matrices is also similar to the “traditional” algebra. Namely, we define
A⊗B for two matrices, where A ∈ Rm×p

max and B ∈ Rp×n
max , as follows:

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj = (ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ ain ⊗ bnj) ∀i ∈ [m] and ∀j ∈ [n].

Definition 2.2. (Matrix Power). For M ∈ Rn×n
max , the n-th tropical power of M is denoted by

M⊗n, and expressed as,
M⊗n = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸

n times

By definition, any tropical square matrix to the power 0 is the tropical identity.

Definition 2.3. (Tropical Identity). The tropical identity matrix I ∈ Rn×n
max is of the form (I)ij = δij

where

δij =

{
0 if i = j

−∞ otherwise

Subsequently, we define the tropical matrix polynomials.

Definition 2.4. (Tropical Matrix Polynomials). Tropical matrix polynomial is a function of the
form

A 7→ p(A) =

d⊕
k=0

ak ⊗A⊗k.

where ak ∈ Rmax for k = 0, 1, . . . , d. Here A is a square matrix of any dimension.

Notice that any two tropical matrix polynomials of the same matrix commute as in the classical
algebra, and this fact was utilized by Grigoriev and Shpilrain [7] to construct the following tropical
implementation of the Stickel protocol.

Protocol 1. Original Tropical Stickel Protocol

1. Alice and Bob agree on public matrices A,B,W ∈ Rn×n
max .
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2. Alice chooses two random tropical polynomials p1(x) and p2(x) and sends U = p1(A)⊗W ⊗
p2(B) to Bob.

3. Bob chooses two random tropical polynomials q1(x) and q2(x) and sends V = q1(A) ⊗W ⊗
q2(B) to Alice.

4. Alice computes her secret key using a public key V obtained from Bob, which is Ka =
p1(A)⊗ V ⊗ p2(B).

5. Bob also computes his secret key using Alice’s public key U , which is Kb = q1(A)⊗U⊗q2(B).

We notice that the protocol utilizes the commutativity of tropical polynomials of the same
matrix, and this is why the two parties end up with an identical key.

3 Public-Key Cryptography Using Modified Tropical Circu-
lant Matrices

In this section, we introduce the definition of tropical circulant matrices and their various modified
forms. We also present the key exchange protocols based on these modified circulants.

3.1 Modified Tropical Circulant Matrices

Modified tropical circulants, as suggested by their name, are modifications of circulant matrices,
which are well known in “traditional” algebra over fields as well as in tropical algebra, where some
of their properties were studied in [6], [16] and [17]. Here is a formal definition of tropical circulants.

Definition 3.1. (Tropical Circulants). Let C ∈ Rn×n
max . We say that C is a circulant matrix with

entries c0, c1, . . . , cn−1 if it is of the form
c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 · · · c3
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1 ∈ Rmax.

We now present the modified forms of tropical circulants introduced in [9],[2] and [18].

Definition 3.2. (Upper s-Circulants [9]). Let T ∈ Rn×n
max . We say that T is an upper-s-circulant if

it is of the form 
c0 cn−1 ⊗ s cn−2 ⊗ s · · · c1 ⊗ s
c1 c0 cn−1 ⊗ s · · · c2 ⊗ s
c2 c1 c0 · · · c3 ⊗ s
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1, s ∈ Rmax.
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Definition 3.3. (Lower s-Circulants [2]). Let T ∈ Rn×n
max . We say that T is a lower s-circulant if it

is of the form 
c0 cn−1 cn−2 · · · c1

c1 ⊗ s c0 cn−1 · · · c2
c2 ⊗ s c1 ⊗ s c0 · · · c3

...
...

...
. . . · · ·

cn−1 ⊗ s cn−2 ⊗ s cn−3 ⊗ s · · · c0


where c0, c1, c2 . . . , cn−1, s ∈ Rmax.

Definition 3.4. Denote the set of all tropical upper or lower s-circulant matrices of dimension
(n× n) as Cs

n. Thus C
s
n = {A ∈ Rn×n

max | A is an upper s-circulant matrix} or Cs
n = {A ∈ Rn×n

max | A
is a lower s-circulant matrix}. We will use the same notation for both matrix classes, distinguishing
between them based on the context when necessary.

Proposition 3.1. ([2]) The set of all tropical upper or lower s-circulant matrices Cs
n of Rn×n

max is a
commutative tropical subsemiring of Rn×n

max.

Proposition 3.1 was proved in [2] only for lower s-circulant matrices, but the same claim for
upper s-circulnat matrices easily follows by transposition.

Definition 3.5. (Anti-s-Circulants [2]). Let T ∈ Rn×n
max . We say that T is an anti-s-circulant if it

is of the form 

c0 ⊗ s cn−1 ⊗ s · · · c2 ⊗ s c1
c1 ⊗ s c0 ⊗ s · · · c3 c2 ⊗ s
c2 ⊗ s c1 ⊗ s · · · c4 ⊗ s c3 ⊗ s

...
...

...
. . .

...
cn−2 ⊗ s cn−3 · · · c0 ⊗ s cn−1 ⊗ s
cn−1 cn−2 ⊗ s · · · c1 ⊗ s c0 ⊗ s


where c0, c1, c2 . . . , cn−1, s ∈ Rmax.

Note that anti-s-circulants do not generally commute and hence they can not be directly used
to construct a variant of tropical Stickel protocol. They, however, commute in a special case which
will be described soon. Example 3.1 shows that anti-s-circulants do not generally commute.

Example 3.1. let A be an anti-2-circulant with parameters c0 = 1, c1 = 2, c2 = 3 and s = 2:

A =

 1⊗ 2 3⊗ 2 2
2⊗ 2 1 3⊗ 2
3 2⊗ 2 1⊗ 2

 =

 3 5 2
4 1 5
3 4 3

 .

Let B be an anti-2-circulant with parameters c0 = 5, c1 = 7, c2 = 4 and s = 2:

B =

 5⊗ 2 4⊗ 2 7
7⊗ 2 5 4⊗ 2
4 7⊗ 2 5⊗ 2

 =

 7 6 7
9 5 6
4 9 7

 .

Then

A⊗B =

 14 11 11
11 14 12
13 12 10

 ̸= B ⊗A =

 10 12 11
12 14 11
13 11 14

 .
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We note that anti-s-circulants can not be generally used to construct a variant of Stickel protocol.

We now recall the definitions of upper triangular and lower triangular Toeplitz matrices which
were used for the Stickel protocol in [18].

Definition 3.6. (Upper Triangular Toeplitz Matrices [18]). Let T ∈ Rn×n
max . We say that T is an

upper triangular Toeplitz matrix if the matrix is of the form
c0 cn−1 cn−2 · · · c1
−∞ c0 cn−1 · · · c2
−∞ −∞ c0 · · · c3
...

...
...

. . . · · ·
−∞ −∞ −∞ · · · c0


where c0, c1, c2 . . . , cn−1 ∈ Rmax.

Definition 3.7. (Lower Triangular Toeplitz Matrices [18]). Let T ∈ Rn×n
max . We say that T is a

lower triangular Toeplitz matrix if the matrix is of the form
c0 −∞ −∞ · · · −∞
c1 c0 −∞ · · · −∞
c2 c1 c0 · · · −∞
...

...
...

. . . · · ·
cn−1 cn−2 cn−3 · · · c0


where c0, c1, c2 . . . , cn−1 ∈ Rmax.

Note that the Toeplitz matrices also already appeared in the tropical context before, see, e.g.,
[6] and [12]. For our purpose, it is sufficient to observe, however, that lower triangular Toeplitz
matrices and, respectively, upper triangular Toeplitz matrices are upper s-circulants and, respec-
tively, lower s-circulants with s = −∞. This also implies, in view of Proposition 3.1, that any two
lower triangular Toeplitz matrices as well as any two upper triangular Toeplitz matrices commute.
One could also prove this by representing lower and upper triangular Toeplitz matrices as matrix
polynomials.

Example 3.2 illustrates the commutativity properties of the modified tropical circulants.

Example 3.2. Let A1 ∈ C3
3 be an upper 3-circulant matrix with parameters c0 = 1, c1 = −1, c2 = 2

and s = 3:

A1 =

 1 2⊗ 3 −1⊗ 3
−1 1 2⊗ 3
2 −1 1

 =

 1 5 2
−1 1 5
2 −1 1

 .

Let B1 be an upper 3-circulant matrix with parameters c0 = 5, c1 = 6, c2 = 0 and s = 3:

B1 =

 5 0⊗ 3 6⊗ 3
6 5 0⊗ 3
0 6 5

 =

 5 3 9
6 5 3
0 6 5


We have

A1 ⊗B1 =

 11 10 10
7 11 10
7 7 11

 = B1 ⊗A1.
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Similarly, let A2 ∈ C3
3 be a lower 3-circulant matrix with parameters c0 = 1, c1 = −1, c2 = 2 and

s = 3:

A2 =

 1 2 −1
−1⊗ 3 1 2
2⊗ 3 −1⊗ 3 1

 =

 1 2 −1
2 1 2
5 2 1

 .

Let B2 be a lower 3-circulant matrix with parameters c0 = 5, c1 = 6, c2 = 0 and s = 3:

B2 =

 5 0 6
6⊗ 3 5 0
0⊗ 3 6⊗ 3 5

 =

 5 0 6
9 5 0
3 9 5

 .

We have

A2 ⊗B2 =

 11 8 7
10 11 8
11 10 11

 = B2 ⊗A2.

We see that upper or lower s-circulant matrices and upper or lower triangular Toeplitz matrices
can be used in cryptographic protocols in order to compute shared keys.

3.2 Stickel Protocols Based on Modified Tropical Circulants

We now recall the tropical cryptographic Stickel protocols based on the different forms of modified
tropical circulants introduced in the previous section. The commutativity property of these modi-
fied circulants ensures the success of the protocols.

Protocol 2. Stickel Protocol Based on Tropical Upper or Lower s-Circulant Matrices

1. Alice and Bob agree on s, t ∈ Rmax and a publicly known matrix M ∈ Rn×n
max \ (Cs

n ∪ Ct
n).

2. Alice generates two matrices A1 ∈ Cs
n and A2 ∈ Ct

n.

3. Bob generates two matrices B1 ∈ Cs
n and B2 ∈ Ct

n.

4. Alice calculates U = A1 ⊗M ⊗A2 and sends it to Bob.

5. Bob calculates V = B1 ⊗M ⊗B2 and sends it to Alice.

6. Alice calculates Ka = A1 ⊗ V ⊗A2.

7. Bob calculates Kb = B1 ⊗ U ⊗B2.

8. They both have the same key, Ka = K = Kb.

We notice that the keys are identical due to the property of A1 ⊗B1 = B1 ⊗A1 and B2 ⊗A2 =
A2 ⊗B2 from Proposition 3.1:

Ka = A1 ⊗ V ⊗A2 = A1 ⊗B1 ⊗M ⊗B2 ⊗A2

= B1 ⊗A1 ⊗M ⊗A2 ⊗B2 = B1 ⊗ U ⊗B2 = Kb.
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In [2], the authors proposed a key exchange protocol based on a specific class of matrices
known as anti-s-p-circulant matrices. These matrices are anti-s-circulants with the property that
ci − ci−1 = p ∀i ∈ {1, 2, · · ·n − 1} where p ∈ N and c0, c1, c2 . . . , cn−1 are the parameters of the
underlying circulant matrix. It is proved in [2] that any two anti-s-p-circulant matrices commute,
and therefore one can consider a Stickel protocol based on such matrices.

However, such protocol is easy to attack as it essentially reduces to the two parties choosing a
single random integer for each generated matrix. More precisely, the matrices generated by Alice
or Bob are of the form

c0 ⊗ s c0 + (n− 1)p⊗ s · · · c0 + 2p⊗ s c0 + p
c0 + p⊗ s c0 ⊗ s · · · c0 + 3p c0 + 2p⊗ s
c0 + 2p⊗ s c0 + p⊗ s · · · c0 + 4p⊗ s c0 + 3p⊗ s

...
...

...
. . .

...
c0 + (n− 2)p⊗ s c0 + (n− 3)p · · · c0 ⊗ s c0 + (n− 1)p⊗ s
c0 + (n− 1)p c0 + (n− 2)p⊗ s · · · c0 + p⊗ s c0 ⊗ s


This implies that Alice and Bob each choose only one secret integer c0 for their respective matrices,
as s and p must be publicly known or sent by a transmission that can be intercepted (since both
Alice and Bob have to use these parameters). The attacker can then easily find the sum of the
two integers used by Alice by intercepting Alice’s message U , and use it to reconstruct the secret
shared key. Hence, there is no need to apply any form of Kotov-Ushakov attack or other advanced
methods, and we will not discuss the Stickel protocol based on tropical anti-s-p-circulants in what
follows.

Let us also present the following protocol from [18], although it can be seen as a special case of
the previous protocol.

Protocol 3. Stickel Protocol Based on Tropical Upper and Lower Triangular Toeplitz Matrices

1. Alice and Bob agree on a publicly known matrix M ∈ Rn×n
max .

2. Alice generates an upper triangular Toeplitz matrix A1 and a lower triangular Toeplitz matrix
A2.

3. Bob generates an upper triangular Toeplitz matrix B1 and a lower triangular Toeplitz matrix
B2.

4. Alice calculates U = A1 ⊗M ⊗A2 and sends it to Bob.

5. Bob calculates V = B1 ⊗M ⊗B2 and sends it to Alice.

6. Alice calculates Ka = A1 ⊗ V ⊗A2.

7. Bob calculates Kb = B1 ⊗ U ⊗B2.

8. They both have the same key, Ka = K = Kb.

Alice and Bob end up with the same shared key due to the commutativity properties of the
upper and lower triangular Toeplitz matrices. Note that the authors of this protocol [18] proposed
it using the max-times semiring, while we present it here using the max-plus semiring. The two
approaches are equivalent due to the following remark.
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Remark 3.1. Both the max-times and min-plus semirings are isomorphic to the max-plus semiring
(see, e.g., [4] Section 1.4), and therefore the claim that the max-times semiring is not a tropical
semiring is false.

4 Cryptanalysis of The Proposed Protocols Using The Gen-
eralized Kotov-Ushakov Attack

In this section, we present our attacks on the protocols introduced in the previous section. Subse-
quently, we implement the attacks showing their efficiency and performance.

4.1 Generalized Kotov-Ushakov Attack on Modified Tropical Circulant
Stickel Protocols

It is claimed in [9],[2] and [18] that these protocols are resistant to the Kotov-Ushakov attack
since the modified tropical circulants cannot be represented as tropical polynomials of any matrix.
However we aim to show that, while this claim is true, we can in fact represent these matrices in
a nice algebraic manner as seen in the upcoming example, and therefore (similarly to how it is
done in [14]) we can implement a form of the generalized Kotov-Ushakov attack to cryptanalyze all
existing Stickel protocols based on modified tropical circulants.

Example 4.1. Consider the set of upper s-circulant matrices of size 3, in particular Cs
3 . Let A ∈ Cs

3

with parameters c0, c1, c2 and s. We can express A as

A =

 c0 c2 ⊗ s c1 ⊗ s
c1 c0 c2 ⊗ s
c2 c1 c0

 = c0 ⊗

 0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⊕

c1 ⊗

−∞ −∞ s
0 −∞ −∞

−∞ 0 −∞

⊕ c2 ⊗

−∞ s −∞
−∞ −∞ s
0 −∞ −∞

 .

Proposition 4.1. We can express any modified tropical circulant matrix of dimension n× n with
entries c0, c1, . . . , cn−1 as

A =

n−1⊕
α=0

(cα ⊗ Γs
α) ,

where we have the following definition for the upper circulant case

(Γs
α)ij =


0 if α ≡ (i− j)(modn) and i ≥ j

s if α ≡ (i− j)(modn) and i < j

−∞ otherwise

(1)

and the following definition for the lower circulant case

(Γs
α)ij =


0 if α ≡ (i− j)(modn) and i ≤ j

s if α ≡ (i− j)(modn) and i > j

−∞ otherwise

(2)
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We are going to use these formulas to generate a form of Kotov-Ushakov attack on the proposed
protocols. We begin by providing a theoretical description of the attack. Recall from Protocol 2 or
Protocol 3 that M,U, V, s, t are public values known to the attacker while A1, A2, B1, B2 are secrets.
The attacker aims to find two unknown matrices X and Y such that X ⊗M ⊗Y = U where X is a
modified s-circulant and Y is a modified t-circulant. We know that X commutes with B1 since they
are both modified s-circulants, and similarly Y commutes with B2 since they are both modified
t-circulants. Thus, the attacker can compute Kattack = X ⊗ V ⊗ Y = X ⊗ B1 ⊗ M ⊗ B2 ⊗ Y =
B1⊗X⊗M⊗Y ⊗B2 = B1⊗U⊗B2 = Kb = Ka. To find suchX and Y , the equationX⊗M⊗Y = U
can be expressed as a tropical linear system of equation of the shape A⊗ x = b after representing
X and Y as in Proposition 4.1. Then, utilizing the theory of solving such a system, the attacker
can find the entries of X and Y , and hence recover the shared key. The details of these processes
are described below.

Let Ds and Dt be arbitrary modified tropical circulants, assuming different forms of the modified
circulants depending on the specific protocol targeted by the attack. Similarly to the original
Kotov-Ushakov attack [11], we are aiming to find modified tropical circulants X and Y that solve

X ⊗Ds = Ds ⊗X

Y ⊗Dt = Dt ⊗ Y

X ⊗M ⊗ Y = U

(3)

Using Proposition 4.1 we can express X and Y as

X =

n−1⊕
α=0

(xα ⊗ Γs
α) , Y =

n−1⊕
β=0

(
yβ ⊗ Γt

β

)
.

We now substitute these into the third equation of (3) to obtain

U =

n−1⊕
α=0

(xα ⊗ Γs
α)⊗M ⊗

n−1⊕
β=0

(
yβ ⊗ Γt

β

)
.

Combining the tropical summations, we obtain

U =

n−1⊕
α,β=0

(xα ⊗ Γs
α)⊗M ⊗

(
yβ ⊗ Γt

β

)
.

Rearranging those using the distributivity law will give

n−1⊕
α,β=0

xα ⊗ yβ ⊗
(
Γs
α ⊗M ⊗ Γt

β − U
)
= E,

where E is a matrix of the correct dimension with zeros in all entries. We denote Tαβ = Γs
α ⊗M ⊗

Γt
β − U and therefore we can write

n−1⊕
α,β=0

xα ⊗ yβ ⊗
(
Tαβ

)
γδ

= 0 ∀γ, δ ∈ [n].
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If we additionally denote zαβ = xα ⊗ yβ , we have

n−1⊕
α,β=0

zαβ ⊗
(
Tαβ

)
γδ

= 0 ∀γ, δ ∈ [n]. (4)

We have arrived at a system of tropical linear one-sided equations with coefficients
(
Tαβ

)
γδ

and

unknowns zαβ .
Now we describe a generalized form of the Kotov-Ushakov attack similar to [14]. Here and below,

argminγ,δ∈[n]

(
−Tαβ

γδ

)
denotes the set of pairs (γ, δ) at which the minimum of −Tαβ

γδ is attained.

Attack 4.1. Generalized Kotov-Ushakov attack against the tropical Stickel protocol based on
modified circulants.

1. Compute

cαβ = min
γ,δ∈[n]

(
−Tαβ

γδ

)
Sαβ = arg min

γ,δ∈[n]

(
−Tαβ

γδ

)
.

2. Among all minimal covers of [n] × [n] by Sαβ , that is, all minimal subsets C ⊆ {0, . . . , n −
1} × {0, . . . , n− 1} such that ⋃

(α,β)∈C

Sαβ = [n]× [n],

find a cover for which the system

xα + yβ = cαβ , if (α, β) ∈ C,
xα + yβ ⩽ cαβ , if otherwise.

(5)

is solvable.

We now prove that this attack works, due to it producing X and Y that satisfy equations (3).
(The proof is quite similar to the proof of [14], Theorem 5.1, but we include it here for reader’s
convenience.)

Proposition 4.2. Let U be the message that Alice sent to Bob in Protocol 2 or Protocol 4. Then
Attack 4.1 yields

X =

n−1⊕
α=0

(xα ⊗ Γs
α) , Y =

n−1⊕
β=0

(
yβ ⊗ Γt

β

)
,

where Γs
α and Γt

β are the generators of X and Y defined in (1) or (2) depending on which modified
circulants are used in the protocol, such that X and Y satisfy X ⊗M ⊗ Y = U .

Proof. Since U = X ⊗ M ⊗ Y where X and Y are modified circulants, it is clear that Equa-
tion (4) is solvable with zαβ = xα ⊗ yβ and xα and yβ such that X =

⊕n−1
α=0 (xα ⊗ Γs

α) and

Y =
⊕n−1

β=0

(
yβ ⊗ Γt

β

)
. We are now left to show that the method described in Attack 4.1 does find
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a solution.

We utilize the following results from the theory of tropical linear equation of the shape A⊗ x = b
(see [4] Theorem 3.1.1 and Corollary 3.1.2):

1. We have that cαβ = min
(
−Tαβ

γδ

)
= −max

(
Tαβ
γδ

)
is the greatest solution.

2. We recall that Sαβ = argminαβ

(
−Tαβ

γδ

)
= argmax

(
Tαβ
γβ

)
. Therefore, Z = (zαβ) is a

solution if and only if there exists a set C ⊆ {0, . . . , n− 1} × {0, . . . , n− 1} such that⋃
(α,β)∈C

Sαβ = [n]× [n]

and also
zαβ = cαβ for all (α, β) ∈ C and zαβ ≤ cαβ for all (α, β) /∈ C,
zαβ = xα ⊗ yβ ∀α, β.

If there is a solution (x, y) that satisfies these set of equalities and inequalities, then there is a
minimal cover C ′ ⊆ C of [n] × [n] for which it is of this form with C being replaced with C ′.
Therefore, the solvability is checked by finding at least one linear system (5) that is solvable with
C being a minimal cover (i.e a set satisfying

⋃
(α,β)∈C Sαβ = [n]× [n] that is minimal with respect

to inclusion). As Attack 4.1 performs this procedure, it will break the proposed protocol, provided
that a solution exists (which in the case that the protocol has been applied is true).

4.2 Implementation of The Attack With a Comparison Between The
Modified Circulant Protocols And The Original Stickel Protocol

We implemented Attack 4.1 and applied it to the Stickel protocols based on modified circulants
and performed the experiments for a matrix size ranging from 2 to 50 and the entries of the matrix
in the interval [-1000,1000]. We have computed the time taken for the attack to recover the secret
shared key for each matrix size. We also computed the time taken to generate the key between the
two authorized parties (Alice and Bob) in order to compare it with the attacker’s time. Each point
in the figures corresponds to attacking or generating a single instance by the protocols. The code
was executed on GAP-V4.12.2 running on Windows 11 64-bit, equipped with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz and 16.0 GB RAM.

Firstly, we performed the attack on Protocol 2 and compared its time with the key generation
time as seen in Figure 1.

As expected, the attacker takes more time to recover the shared secret as the dimension of the
matrix increases. This is due to a high number of generators (i.e., Γ matrices) in the generalized
Kotov-Ushakov attack, leading to a big number of minimal covers to be checked. Note that all
of these minimal covers are generated by the attack, as it also was in the case of the original
implementation by Kotov and Ushakov [11].

Thus, on the one hand, generating these covers and then sorting them and looking for an
appropriate cover can be very time-consuming. On the other hand, generating the shared key
between the authorized parties is obviously very fast, since it only requires generating random
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Figure 1: Attacking vs. performing Protocol 2

matrices and multiplying them. For example, it only takes Alice and Bob 1.6 sec to exchange a
shared key for a matrix size of 100.

We also applied the same attack to Protocol 3 and compared its time with the generation of
the shared key, and we obtained very similar results in the performance of the triangular Toeplitz
protocol against the attack when compared with the s-circulants protocol, with the Toeplitz protocol
requiring less time to attack (23 minutes for 50× 50 Toeplitz matrices compared to 40 minutes for
s-circulant matrices of the same dimension).
Since both the modified circulants protocols and the original Stickel protocol are susceptible to a
form of Kotov-Ushakov attack, it makes sense to compare their resilience and performance against
their attacks. Figure 2 shows the performance of the tropical Stickel protocol of [7] against the
Kotov-Ushakov attack and the time required for the generation of the shared key. Similarly, the
matrix entries and polynomial coefficients are from the interval [−1000, 1000] and each point in the
figures corresponds to attacking or generating a single instance of the protocol.

Figure 2: Attacking vs. performing Protocol 1

We observe that both the modified circulant protocols and the original Stickel protocol exhibit
comparable resistance to the Kotov-Ushakov attacks, with an advantage of the original Stickel
protocol. For example, original Stickel protocol required the Kotov-Ushakov attack 44.188 minutes
to successfully recover the shared key for a 50-sized polynomial, whereas the generalized Kotov-
Ushakov attack on the s-circulant and the triangular Toeplitz protocols took 40.203 and 25.83
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minutes respectively for a 50-dimensional matrix. Notably, enhancing the security of original Stickel
protocol is achievable by employing larger matrices, as we employed only a 10-dimensional matrix
in this experiment, as suggested by the authors of the protocol [7].
Note that the process of key generation between authorized parties proves to be more efficient in
the modified circulant protocols, as they do not require the evaluation of polynomials and matrix
powers. However, the difference in efficiency is relatively subtle and might not be noticeable to users.
Consequently, the proposed modified circulant protocols do not provide any significant additional
advantages over the original Stickel protocol.

5 A More Efficient Implementation of the Kotov-Ushakov
Attack

In this section, we present an alternative implementation of the Kotov-Ushakov attack that requires
less time to attack the proposed modified circulant protocols as well as the tropical Stickel protocol
of [7].

5.1 Details of The Attack

The number of enumerated covers in Kotov-Ushakov attack appears to grow exponentially with
the polynomial degree in the original Stickel protocol and similarly with the matrix size in the
modified circulant protocols. This makes the attack highly time-consuming for large values of these
parameters, as illustrated in the preceding figures. Consequently, there is a compelling need to seek
a more efficient implementation of the attack. In their work [11], Kotov and Ushakov observed
that smaller-sized covers are more likely to be appropriate and lead to a consistent solvable linear
system. In their experiment they only had to test for at most 2 covers after sorting all covers by size
and then another criteria. This inspired us to implement an efficient version of the attack where
we only try to find the smallest cover instead of enumerating all possible covers using a greedy
algorithm where we iteratively select the largest set Sα,β containing the pair (γ, δ).
In particular, we firstly compute cαβ and Sαβ as in the original Kotov-Ushakov attack. Then, for
every pair (γ, δ) in [n] × [n], we have (γ, δ) ∈ Sαβ for some (α, β) pairs. We identify the largest
sized set among them and add the associated (α, β) to our cover. We then repeat the process for
all possible uncovered (γ, δ) pairs in [n] × [n]. In practice, this procedure quite often yields the
smallest sized cover. The process is described in Algorithm 1.

Remark 5.1. Algorithm 1 has polynomial complexity. Indeed, the initialization in line 2 takes
O(n4) operations. It can be also seen that the loops in lines 3-10 take at most O(n6) operations.
Lastly, the system in line 11 can be formulated as a linear programming problem, which is known
to be polynomially solvable.

5.2 Implementation of The Attack With Success Rate and Efficiency
Analysis

We expect this attack to have a high success rate against Protocol 1 since the smallest cover almost
always succeeds in the original implementation of the Kotov-Ushakov attack. We will firstly apply
it on a special case of Protocol 2 where M is the tropical identity matrix I, Figure 3 shows the
success rate of the attack. The code was executed on MATLAB R2023b running on Windows 11
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Algorithm 1 Heuristic Implementation of Kotov-Ushakov Attack Using a Cover

1: Initialize Final Cover = [ ]

2: Compute cαβ = min
γ,δ∈[n]

(
−Tαβ

γδ

)
and Sαβ = arg min

γ,δ∈[n]

(
−Tαβ

γδ

)
3: for (γ, δ) ∈ [n]× [n] and (γ, δ) /∈

⋃
Sαβ ∀α, β ∈ Final Cover : do

4: Initialize Possible Covers = [ ]
5: for (α, β) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1} do
6: if (γ, δ) ∈ Sαβ then
7: Append (α, β) to Possible Covers

8: for (α, β) ∈ Possible Covers do
9: find largest sized Sαβ and assign (α′, β′)=(α, β)

10: Append (α′, β′) to Final Cover

11: Solve the system
xα + yβ = cαβ , if (α, β) ∈ Final Cover,

xα + yβ ⩽ cαβ , if otherwise.

64-bit, equipped with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz and 16.0 GB RAM. The
parameters used in the experiment are:
- The matrix entries are chosen randomly from -10000 to 10000 in every trail.
- The protocol parameters s and t are chosen randomly from -10000 to 10000 in every trail.
- 1000 trails are performed for every matrix dimension.

Figure 3: Algorithm 1 attacking Protocol 2 when M = I: success rate and efficiency

We observe that the algorithm maintains a perfect success rate even for higher dimensions,
which are the most important cases since the original implementation is not efficient for them.
Figure 3 illustrates the average time for the attack to recover the secret key as a function of matrix
dimension. Comparing this with Figure 1, this attack implementation is over 500 times faster for
the matrices of dimension 50 × 50 than the original implementation. We also applied the attack
on the triangular Toeplitz matrices protocol, and similarly the attack achieved a perfect success
rate and a much faster execution time compared to the original implementation of the generalized
Kotov-Ushakov attack.

However, when M is included in the circulant protocols with sufficiently high entries, the
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algorithm occasionally fails. Thus, we need an alternative method to carefully select a mini-
mal cover that breaks the protocol. One way is to add an extra step to Algorithm 1. Af-
ter extracting the minimal cover using Algorithm 1, we check if there are any pairs (α′, β′) ∈
{0, 1, . . . , n − 1} × {0, 1, . . . , n − 1} such that Sα′β′ = Sαβ for some (α, β) ∈ Final Cover. We
then examine all possible minimal covers formed by the components of Final Cover and these new
(α′, β′) pairs. We observed that this approach achieved a perfect success rate but still involves
enumerating and testing multiple minimal covers, which adds substantial complexity, especially in
high dimensions. This enumeration and testing are precisely the issues we aim to avoid.

We then considered that using a complete minimal cover might not be necessary; a partial cover
could suffice to recover the key. Therefore, we will relax our goal from strictly extracting a complete
minimal cover to identifying any successful sub-cover. One way is that, after extracting the minimal
cover by Algorithm 1, we simply delete those components (α, β) ∈ Final Cover where Sαβ = Sα′β′

for some (α′, β′) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1}. This approach achieves a very high success
rate with only a slight increase in execution time compared to Algorithm 1.

Following this route of using a sub-cover, yet another approach is to select a sub-cover that
is guaranteed to be part of every possible minimal cover (Algorithm 2). Specifically, we pick the
pairs (α, β) such that for some (γ, δ) ∈ [n] × [n] we have (γ, δ) ∈ Sαβ and (γ, δ) /∈ Sα′β′ for
any other (α′, β′) ∈ {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}. This approach achieves a perfect suc-
cess rate and preserves the same order of computational time as Algorithm 1, which is O(n6) +
the computational complexity of solving the linear program. The success rate and time consump-
tion of Algorithm 2 are shown in Figure 4.

Algorithm 2 Heuristic Implementation of Kotov-Ushakov Attack Using a Sub-cover

1: Initialize Sub Cover = [ ]

2: Compute cαβ = min
γ,δ∈[n]

(
−Tαβ

γδ

)
and Sαβ = arg min

γ,δ∈[n]

(
−Tαβ

γδ

)
3: for (γ, δ) ∈ [n]× [n]: do
4: for (α, β) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1} do
5: if (γ, δ) ∈ Sαβ and (γ, δ) /∈ Sα′β′ ∀(α′, β′) ̸= (α, β) then
6: Append (α, β) to Sub Cover

7: Solve the system
xα + yβ = cαβ , if (α, β) ∈ Sub Cover,

xα + yβ ⩽ cαβ , if otherwise.

Let us compare Algorithm 2 to [13], Algorithm 9. Both algorithms use a similar idea of picking
(α, β) that need to be in any cover of [n]× [n]. Also, similarly to the initial Kotov-Ushakov attack,
they aim to correctly formulate system (5) to break the targeted protocols. The primary difference
is that Algorithm 2 uses only a specially formed sub-cover to formulate and solve the linear pro-
gram, while Algorithm 9 in [13] forms a complete minimal cover of [n] × [n] before using it to set
up and solve the linear program.

16



Figure 4: Algorithm 2 attacking Protocol 2: success rate and efficiency

We also applied some of these proposed heuristics on the original tropical Stickel protocol.
Specifically, we applied Algorithm 1 but with replacing (α, β) ∈ {0, 1, . . . , n− 1}× {0, 1, . . . , n− 1}
in the 5th line of the algorithm by (α, β) ∈ {0, 1, . . . , D} × {0, 1, . . . , D} where D is the maximum
polynomial degree that can be used by Alice and Bob. Figure 5 illustrates the success rate and
the time consumption of this attack on the original Stickel protocol, in which we similarly notice
a high success rate with a faster computation compared to the original implementation by Kotov
and Ushakov.
The parameters used in the experiment are:
- The matrix dimension is 10 for all trails.
- The matrix entries are chosen randomly from -10000 to 10000 in every trail.
- The polynomial coefficients are chosen randomly from -10000 to 10000 in every trail.
- 1000 trails are performed for every polynomial degree.

Figure 5: Algorithm 1 attacking Protocol 1 : success rate and efficiency

We note that this heuristic implementation achieved a high success rate and much less computa-
tional time when applied to the original Stickel protocol. Thus it is outperforming the computational
efficiency of the original attack implementation by Kotov and Ushakov, but losing a bit in terms of
success rate.
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6 Conclusions

In this paper, we analyzed some versions of the tropical Stickel protocol that are based on the
modified tropical circulant matrices. We showed that a form of Kotov-Ushakov attack applies
to these protocols and is able to successfully recover the shared secret key. Since the matrix
dimension in these protocols is equivalent to the polynomial degree in the original Stickel protocol,
Kotov-Ushakov attack becomes less efficient as the matrix dimension increases. To address this,
we implemented several heuristic forms of the attack, demonstrating both exceptional speed and a
remarkably high success rate. These implementations achieved a supreme success rate when applied
to the Stickel protocols based on modified circulants, and Algorithm 1 achieved an extremely high
success rate when applied to the tropical Stickel protocol of [7].

Therefore, our findings lead to the conclusion that the proposed protocols do not confer any
advantage over the original version of tropical Stickel protocol. All protocols are vulnerable to a
form of Kotov-Ushakov attack. The original tropical Stickel protocol, however, enjoys the advantage
of having two user-controllable parameters (matrix dimension and polynomial degree), enhancing
its resistance. In contrast, the proposed protocols feature only one parameter (matrix dimension),
implying that the Kotov-Ushakov attack would require less time to compromise it under extreme
parameter values.
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