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Abstract. We extend the middle product to skew polynomials, which
we use to define a skew middle-product Learning with Errors (LWE) vari-
ant. We also define a skew polynomial LWE problem, which we connect
to Cyclic LWE (CLWE), a variant of LWE in cyclic division algebras.
We then reduce a family of skew polynomial LWE problems to skew
middle-product LWE, for a family which includes the structures found
in CLWE. Finally, we give an encryption scheme and demonstrate its
IND-CPA security, assuming the hardness of skew middle-product LWE.
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1 Introduction

The development of efficient quantum algorithms for cryptographic problems
(e.g. [21]) has lead to the development of post-quantum cryptography, which
relies on computationally intractable problems for both classical and quantum
computers. A prime candidate for a family of such computationally intractable
problems are lattice problems, following the pioneering work of Ajtai [1]. In par-
ticular, much post-quantum cryptographic functionality is based on the Learning
with Errors (LWE) problem, introduced by Regev [18].

LWE-style problems consist of solving systems of noisy linear equations. Over
the integers, LWE loosely asks a challenger to find s ∈ Znq from a number of
samples of the form (ai, 〈ai, s〉+ ei mod q), where ai ∈ Znq and ei is some noise.
However, cryptosystems based on LWE have sub-optimal storage requirements
and computation with LWE samples is often inefficient, due to the relative in-
efficiency of high-dimensional matrix multiplication. For this reason, structured
variants of LWE have been introduced.

These include Ring LWE (RLWE) [15], which uses multiplication in the ring
of integers of a number field to create multiple correlated LWE samples. For
instance, if R is the ring of integers of the 2nth cyclotomic field for power-of-two
n, then R = Z[x]/(xn + 1) and multiplication on a fixed basis by a polynomial
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a ∈ R can be represented by a matrix
a0 −an−1 · · · −a1
a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

 .

Other structured forms of LWE have been studied, such as PLWE [22], which
considers R = Z[x]/(f(x)) for a broader range of f(x), and CLWE [9], which
developed LWE from orders in cyclic division algebras (CDAs). These variants
both use algebraic objects which permit matrix representations over Z to rewrite
multiplication by an element a as multiplication by an integral matrix.

Another variant, middle-product LWE (MPLWE) [19], replaced ring multipli-
cation with the middle product, denoted �. This product takes two polynomials
a, b and outputs a polynomial whose coefficients are the ‘middle’ coefficients of
the product a · b, discarding higher and lower order terms. In particular, given
a =

∑da−1
i=0 xiai, b =

∑db−1
i=0 xibi with da+db−1 = d+ 2k for some d, k, we have

a�d b =

⌊
(a · b) mod xk+d

xk

⌋
.

The discarding of coefficients allows for fast algorithms to compute middle prod-
ucts [10], [8] and this product has a matrix presentation such that samples of
shape (a, a � r + e) form structured instances of LWE. In particular, one can
write

a�d r =


a0 a1 a2 ... ada−1 0 ... 0
0 a0 a1 ... ada−2 ada−1 ... 0
...

. . .
. . .

. . .
. . .

. . . ...
...

0 ... ... ... 0 a0 ... ada−1

 ·

rdr−1

...
r1
r0


In [19] a reduction from a family of PLWE problems to MPLWE was given,
guaranteeing that MPLWE is at least as hard as the hardest PLWE problem
in the family. Notably the chosen family includes RLWE instances. They also
gave a public key encryption scheme and proved its IND-CPA security, assuming
hardness of MPLWE.

Our Contribution We develop a novel form of MPLWE for skew polyno-
mial rings, which are a noncommutative form of polynomial ring, named ‘Skew
MPLWE’ (SMPLWE). We define the middle product for such rings and also a
novel structured form of LWE for skew polynomial rings, named ‘skew polyno-
mial LWE’ (SPLWE). We show that this LWE variant includes CLWE instances,
reduce a family of SPLWE problems to SMPLWE, and give a PKE scheme.

We state four motivations for this work:

1. We define and make use of (to our knowledge) the first structured LWE-
variant from skew polynomials. This was implicit in [9], but the connection
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was never utilised other than for multiplication algorithms. This appears
a promising avenue of future research, given the well-studied properties of
skew polynomial rings and their profitable application by coding theorists.

2. We continue the study of LWE in CDAs. Defining SMPLWE and SPLWE and
relating them to CLWE provides further indications of the precise security
level of CLWE, which is believed to lie somewhere between that of RLWE and
MLWE, but more precise understanding is lacking. Our reduction provides
new quantitative information on CLWE.

3. SMPLWE enjoys a reduction from a family of SPLWE problems (includ-
ing CLWE-style problems). This provides SMPLWE with a strong security
guarantee and may be preferable in some contexts to CLWE, for this reason.

4. SMPLWE, like MPLWE, enjoys fast multiplication algorithms. Fast algo-
rithms for skew polynomials exist [7], and it seems likely that these could be
used to efficiently compute the skew middle product. This yields a crypto-
graphic scheme which is both efficient and, as explained above, secure.

Our reduction holds for a restricted parameter set relative to [19], since it appears
the noncommutative structure of our rings means that for only some parameters
is SMPLWE structured LWE (in the notation of [19], when n = m = d). In more
detail, we consider quotients of skew polynomial rings of the form OL[u, θ]/(ud−
γ), where L is a number field with ring of integers OL, K is an index d subfield of
L such that Gal(L/K) is generated by an automorphism θ, u satisfies ux = θ(x)u
for any x ∈ OL, and γ ∈ OK , and prove our results for middle product samples
(a, a�d r + e), where deg(a) = d− 1 and deg(r) = 2(d− 1). In this setting, we

set a�d r =
⌊
(a·r) mod u2d−1

ud−1

⌋
and can write

a�d r =


ad−1 θ(ad−2) . . . θd−1(a0) 0 . . . 0

0 θ(ad−1) . . . θd−1(a1) θd(a0) . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 . . . θd−1(ad−1) . . . θd−3(a1) θd−2(a0)




r0
r1
...

rdr−1


We then define two problems: SPLWEq,s,f,χ is the problem of distinguishing
samples of the form (ai, ais+ ei mod q) from samples uniform over the domain,
and SMPLWEq,s,d,d,χ′ is the challenge of distinguishing samples of the form
(ai, ai �d s+ ei) from those uniform over the domain, where ai and s are skew
polynomials of bounded degree and ei is added noise. We then prove

Main Reduction (Theorem 1). Let d > 0, q ≥ 2, and χ an error distribution.
Then there exists a ppt. reduction from SPLWEq,s,f,χ for any polynomial f(u) =
ud − γ ∈ OL[u, θ] with γ ∈ OK \ {0} coprime with q, to SMPLWEq,s,d,d,χ′ .

This result reduces a family of SPLWE problems to SMPLWE - a family which
includes CLWE-style instances. To achieve this, new families of linear transfor-
mations on coefficients of skew polynomials are introduced. We then give a PKE
scheme and demonstrate its IND-CPA security, if SMPLWE is hard.

We note here that we consider a family of SPLWE problems under the coeffi-
cient embedding. These SPLWE problems include the ones considered in CLWE,
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but in that setting the canonical embedding was used. It is not currently clear
what the relationship between CLWE in the coefficient and in the canonical em-
bedding is, but it seems likely that, in a similar way as holds for RLWE, CLWE
under the coefficient embedding is still a ‘hard’ problem, although we stress that
we do not have any formal proofs of the security of CLWE under the coefficient
embedding. However, we note the work of [20] and consider it reasonable to
suggest that CLWE in the canonical and coefficient embeddings can be related
via a linear transformation with limited loss in parameter quality. We provide
evidence toward this end in Appendix B.

Prior Work and Paper Organisation MPLWE was introduced in [19] and
CLWE in [9]. More on middle product-based cryptography can be found in [14],
[4], [5], [23]. In [17], MPLWE was related to a number of LWE variants, such as
RLWE. We note the extensive use of skew polynomials in coding theory [3].

Preliminaries are in Section 2, we recollect LWE in Section 3, skew polynomi-
als in Section 4, and CDAs in Section 5. We introduce the skew middle product
in Section 6, give a reduction from SPLWE to SMPLWE in Section 7, provide a
PKE scheme in Section 8, and then conclude.

2 Preliminaries

If v is an n-dimensional vector, we denote by v̄ the n-dimensional vector whose
entries are those of v in reverse order; i.e. if v = (v1, ..., vn)T , then v̄ = (vn, ..., v1)T .
We prove IND-CPA security of our cryptosystem below. Recall:

Definition 1. ( [12]) Let Π = (Gen, Enc, Dec) be a PKE scheme, and A be an
adversary. We sayΠ is indistinguishable under chosen-plaintext attack if any ppt.
adversary in the following experiment PubKA,Π(n) has negligible advantage:

1. Gen is run to obtain keys (pk, sk).
2. Adversary A is given pk, and outputs a pair of equal-length messages m0,m1

in the message space.
3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext c← Encpk (mb) is

computed and given to A. We call c the challenge ciphertext.
4. A outputs a bit b′. The output of the experiment is 1 if b′ = b, and 0

otherwise. If b′ = b we say that A succeeds.

That is, Pr [PubKA,Π(n) = 1] ≤ 1
2 + neg(n).

To complete the proof, we will rely on properties of hash functions:

Definition 2. A family H of hash functions h : X → Y of finite cardinality is
called universal if Prh←U(H) [h (x1) = h (x2)] = 1/|Y |, ∀ x1 6= x2 ∈ X.

The statistical distance between two distributions D,D′ over a discrete set S
is defined ∆(D,D′) = 1

2

∑
x∈S |D(x) −D′(x)|. The uniform distribution over a

finite set S′ is denoted U(S′).
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Lemma 1. [19, Lemma 2.1] Let X,Y, Z be finite sets. Let H be a universal
hash function family h : X → Y and f : X → Z be arbitrary. Then for any
random variable T taking values in X, and γ(T ) = maxt∈X Pr[T = t], we have:

∆((h, h(T ), f(T )), (h, U(Y ), f(T ))) ≤ 1

2
·
√
γ(T ) · |Y | · |Z|

3 Learning with Errors and Middle Products

The Middle Product The middle product can be thought of as the multiplica-
tion rule which takes two polynomials, multiplies them together, then discards
the lower and higher coefficients, forming a polynomial whose coefficients are
the ‘middle’ part of the product. Formally, if R is an arbitrary ring and R<d[x]
denote the polynomials over R of degree at most d− 1:

Definition 3. Let da, db, d, k ∈ N such that da + db − 1 = d+ 2k. The middle-
product of a ∈ R<da [x] and b ∈ R<db [x] is defined

�d :R<da [x]×R<db [x]→ R<d[x],

(a, b) 7→ a�d b =

⌊
(a · b) mod xk+d

xk

⌋
.

We can now define middle product learning with errors, following [19]:

Definition 4. (MPLWE distribution) Let n, d > 0, q ≥ 2, and χ be a distribu-
tion over R<d[x]. For s ∈ Z<n+d−1q [x], define the distribution MPq,n,d,χ(s) over

Z<nq [x]×R<dq [x] as the distribution obtained by sampling a← U
(
Z<nq [x]

)
, e← χ

and outputting (a, b = a�d s+ e).

Definition 5. (decision MPLWE) Let n, d > 0, q ≥ 2, and χ be a distribution
over R<d[x]. Then the decision MPLWE problem, MPLWEn,d,q,χ, consists in
distinguishing between arbitrarily many samples from MPq,n,d,χ(s) and the same
number of samples from U

(
Z<nq [x]× R<dq [x]

)
, with non-negligible probability

over s← U
(
Z<n+d−1q [x]

)
.

4 Skew Polynomials

A skew polynomial ring over a field is defined as follows:

Definition 6. Let F be a field and θ be an automorphism of F. Then F[u, θ] :=
{
∑n
i=0 u

ixi : xi ∈ F}, the set of polynomials in u with coefficients in F equipped
with standard polynomial addition and having polynomial multiplication subject
to the condition xu = uθ(x) for all x ∈ F, is called a skew polynomial ring.

The multiplication rule means that for non-trivial choice of θ, F[u, θ] is a non-
commutative ring. If Fθ is the fixed field of θ, Fθ = {x ∈ F : θ(x) = x}, and θ has
order d, then Fθ[ud] is the largest commutative subring of F[u, θ]. The elements
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of this subring are called central and generate two-sided ideals of F[u, θ]. For
more on skew polynomials, see [16], [11, Chapter 8] or Appendix A.

One may restrict the coefficients to be taken from some subring of a field,
and for MPLWE in skew polynomial rings we will indeed restrict the coefficients
to the ring of integers of a number field. An important construction of skew
polynomial rings (other examples can be found in Appendix A) is the following:

Example 1. Let L/Q be a finite Galois extension, and θ ∈ Gal(L/Q) with fixed
field K, such that [L : K] = d and Gal(L/K) is cyclic. Then OL[u, θ] is a skew
polynomial ring with center OK [ud].

Skew Polynomial Learning with Errors In this section we define a Learning
with Errors distribution sampling skew polynomials, and state search and deci-
sion problems for that distribution. Below, Rq := R/qR and Rq,f := R/(q, f)R
for a ring R.

Definition 7. Let q ≥ 2 and d ≥ 1. Let θ be an automorphism of L of degree d,
R := OL[u, θ], LR := L⊗R, f ∈ R be a monic central skew polynomial of degree
n, and s ∈ Rq,f . To obtain a sample from the Skew Polynomial Learning with

Errors distribution (SPLWE) SPq,s,f,χ, sample a← U (Rq,f ), e
χ←− LR[u, θ]/fR,

and output (a, as+ e mod q) ∈ Rq,f × LR[u, θ]/(q, f)R.

The decision problem is then defined as follows:

Definition 8. (decision SPLWE) Let Υ be a distribution on a family of error
distributions over LR[u, θ], and U(·) be the uniform distribution. The decision
SPLWE problem SPLWEq,s,f,χ is on input a number of independent samples
from either SPq,s,f,χ for random (s, χ)← U (Rq,f )×Υ or U(Rq,f × LR[u, θ]/(q, f)R),
to decide which is the case with non-negligible advantage.

Useful Matrices for Manipulating Skew Polynomials In this section we
will define and prove basic properties of a number of linear transformations on the
coefficients of skew polynomials, which we later use in establishing the hardness
of SMPLWE and a cryptosystem based off it. We define these as matrices, and
specialise to the skew polynomial rings of Example 1. We begin with:

Definition 9. Let f ∈ OL[u, θ] be a monic central skew polynomial of degree
m. Let a ∈ OL[u, θ]. Define Rotdf (a) as the d×m matrix with ith row given by

the coefficients of a · ui−1 mod f , for i = 1, ..., d.

It is immediate that if a ≡ a′ mod f , then Rotdf (a) = Rotdf (a′). Moreover,

Rotdf (ab) = Rotdf (b) Rotdf (a). When m = d, we will write Rotf (a) for Rotdf (a).

Definition 10. Let f ∈ OL[u, θ] be a monic central skew polynomial of degree
m. Define Mf,θ as the m×m matrix with entries such that Mf,θ ·a has ith entry m∑

j=1

ui+j−2θi−1(aj−1)

 mod f

 mod u.
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We introduce this matrix for the following reason: m∑
j=1

ui+j−2θi−1(aj−1) mod f

 mod u =

 m∑
j=1

uj−1aj−1u
i−1 mod f

 mod u

=

 m∑
j=1

uj−1aj−1u
i−1 mod f

 mod u

=
(
aui−1 mod f

)
mod u,

which is the constant coefficient of aui−1 mod f , and hence

Mf,θ · a = Rotf (a) · (1, 0, ..., 0)T .

Example: Suppose f(u) = ud − γ for some γ ∈ OK and deg(a) = d− 1. Then

Rotf (a) =


a0 a1 ... ad−1

γθ(ad−1) θ(a0) ... θ(ad−2)
...

...
. . .

...
γθd−1(a1) γθd−1(a2) ... θd−1(a0)

 , Mf,θ =


1 0 ... 0 0
0 0 ... 0 γθ
0 0 ... γθ2 0
...

... ...
...

...
0 γθd−1 ... 0 0


We introduce a kind of generalised Toeplitz matrix which we will later require:

Definition 11. Let d, k > 0. Let r ∈ O<k+1
L [u, θ]. Set GToepd,k+1(r) to be the

d× (k + d) matrix whose i, jth entry is given by θj−1(rk−j+i).

This definition is important for writing the middle product in matrix form, as
we shall see later. It also has the following property: if f(u) = ud − γ for some
γ ∈ K and a ∈ OL[u, θ]<d is a skew polynomial, there exists a 2d− 1× d matrix
Nf and skew polynomial ã such that GToepd,d(a) ·Nf = Rotf (ã). Formally:

Proposition 1. Let a ∈ OL[u, θ]<d, f(u) = ud − γ, and θ have order d. Then
there exists a 2d−1×d matrix Nf and a skew polynomial ã such that GToepd,d(a)·
Nf = Rotf (ã). Moreover, if a = a0 + ua1 + ...+ ud−1ad−1, we have ã = ad−1 +
uθ(ad−2) + ...+ ud−1θd−1(a0).

Proof. Write a = a0 +ua1 + ...+ud−1ad−1 ∈ OL[u, θ]. GToepd,d(a) has the form

GToepd,d(a) =


ad−1 θ(ad−2) . . . θd−1(a0) 0 . . . 0

0 θ(ad−1) . . . θd−1(a1) θd(a0) . . . 0
. . .

. . .
. . .

0 0 . . . θd−1(ad−1) . . . θd−3(a1) θd−2(a0)


Note that the entries of each column of GToepd,d(·) all feature the same power
of θ. Since GToepd,d has size d× 2d− 1 and Rotf size d× d, any matrix N such
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that GToepd,d ·N = Rotf must have size 2d−1×d. Setting Nf to be the matrix

Nf =


Id

γ 0 0 ... 0
0 γ 0 ... 0

... ...
. . . ... ...

0 0 ... γ 0

 ,

where Id is the d× d identity matrix, one finds

GToepd,d(a) ·Nf =


ad−1 θ(ad−2) ... θd−1(a0)
γθd(a0) θ(ad−1) ... θd−1(a1)

...
... ...

...
γθd(ad−2) γθ(ad−3) ... θd−1(ad−1)

 ,

which is Rotf (ã), where ã = ad−1 + uθ(ad−2) + ...+ ud−1θd−1(a0).

5 Cyclic Division Algebras and CLWE

In this section we review Cyclic LWE. Suppose L/K is a finite Galois extension
of number fields of degree d and 〈θ〉 = Gal(L/K). Consider

A := L+ uL+ ...+ ud−1L,

where u is such that 1
)
ud = γ for some γ ∈ K and 2

)
ux = θ(x)u for all x ∈ L.

Then we call A a cyclic algebra over K, and write (L/K, θ, γ). When γ ∈ OK ,
A contains a discrete subring

Λ := OL + uOL + ...+ ud−1OL.

An important property of cyclic algebras is the division property; we say a
cyclic algebra A is division if every element has a multiplicative inverse. Division
algebras are noncommutative equivalents of fields (and sometimes known as skew
fields). The following provides a useful criterion for a cyclic algebra to be division:

Definition 12. An element α of K is non-norm if there does not exist an
element x ∈ L such that αi = NL/K(x), for 0 < i < [L : K].

Proposition 2. [2] The cyclic algebra A is a division algebra if and only if γ
is a non-norm element.

We connect CDAs with skew polynomial rings via the following:

Lemma 2. Let [L : K] = d and 〈θ〉 = Gal(L/K). Then Λ ∼= OL[u, θ]/(ud − γ).
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Proof. We define a map ϕ : OL[u, θ]→ Λ via

g(u) 7→ g′(u) := g(u) mod (ud − γ) 7→ g′,

where g(u) = g0 + ug1 + ... + uk−1gk−1 is a skew polynomial in OL[u, θ] and
g′ ∈ Λ has coefficients g′i, i = 0, ..., d − 1. This map is surjective, since any
element of Λ can be written g = g0 + ug1 + ... + ud−1gd−1 with coefficients in
OL, so ϕ(g0 + ug1 + ... + ud−1gd−1) = g trivially. Let x ∈ ker(ϕ), so ϕ(x) = 0.
This means g′(u) = 0, since the second map sends the ui-coefficients of the skew
polynomial to the ui-coefficients of the element of Λ, so an element of the kernel
is in the ideal generated by ud−γ in OL[u, θ]. This ideal is two-sided, as ud−γ is
central, so OL[u, θ]/(ud−γ) is a ring, and we obtain an isomorphism of rings.

When K = Q(ζm) is the mth cyclotomic field, L/K is such that Gal(L/K) is
cyclic, and γ ∈ O×K with γ 6∈ NL/K(L×), then Λ is a maximal order in a CDA [9].
This enables us to connect SPLWE, CLWE and SMPLWE (defined below).

CLWE In [9], an LWE problem was defined in Λ via the CLWE distribution.
We state a version in which a and s are sampled from Λ. Below LR := L⊗ R.

Definition 13. Let L/K be a Galois extension of number fields with [L : K] = d
and Gal(L/K) cyclic, generated by θ. Let A := (L/K, θ, γ) be the resulting cyclic
K-algebra with element u such that ud = γ ∈ OK and γ satisfying the non-norm
condition. Let Λ be the natural order of A. For an error distribution ψ over⊕d−1

i=0 u
iLR, q ≥ 2, and secret s ∈ Λq, a sample from the CLWE distribution

Πq,s,ψ is obtained by sampling a ← Λq uniformly at random, e ← ψ, and

outputting (a, b) = (a, a · s+ e mod qΛ) ∈
(
Λq,
⊕d−1

i=0 u
iLR/qΛ

)
.

Definition 14. Let Υ be a family of error distributions and let UΛ be the

uniform distribution on
(
Λq,
(⊕d−1

i=0 u
iLR

)
/qΛ

)
. The decision CLWE problem

DCLWEq,s,ψ is, given a number of independent samples from Πq,s,ψ for a ran-
dom pair (s, ψ) ← U (Λq) × Υ or from UΛ, to decide which with non-negligible
advantage.

The hardness of DCLWE was proven in [9] under the canonical embedding1.
Unlike in that work, here we consider CLWE under the coefficient embedding.
This currently lacks a formal security proof, but as explained in the introduction,
there is good reason to consider DCLWE a ‘hard’ problem.

6 The Middle Product for Skew Polynomials

We now define a middle product for skew polynomials. This middle product
again takes two (skew) polynomials, multiplies them together, then discards the
lower and higher coefficients, forming a (skew) polynomial whose coefficients are
the ‘middle’ part of the product. Below, R is a ring.

1 We note here that the reduction required a restriction of the secret space.
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Definition 15. Let da, db, d, k ∈ Z≥0 such that da + db − 1 = d + 2k. The
middle-product of a ∈ R<da [u, θ] and b ∈ R<db [u, θ] is defined

�d :R<da [u, θ]×R<db [u, θ]→ R<d[u, θ],

(a, b) 7→ a�d b =

⌊
(a · b) mod uk+d

uk

⌋
.

We now define skew middle product learning with errors, over OL:

Definition 16. (SMPLWE distribution) Let n, d > 0, q ≥ 2, and χ be a distri-
bution over L<dR [u, θ]. For s ∈ O<n+d−1Lq

[u, θ], define the distribution SMPq,s,n,d,χ

over O<nLq [u, θ] × L<dRq [u, θ] as the distribution obtained from sampling a ←

U
(
O<nLq [u, θ]

)
, e← χ and outputting (a, b = a�d s+ e).

Definition 17. (decision SMPLWE) Let n, d > 0, q ≥ 2, and χ be a distribu-
tion over L<dR [u, θ]. Then decision SMPLWE, SMPLWEq,s,n,d,χ, consists in dis-
tinguishing between arbitrarily many samples from SMPq,s,n,d,χ and the same

number of samples from U
(
O<nLq [u, θ]× L<dRq [u, θ]

)
, with non-negligible proba-

bility over s← U
(
O<n+d−1Lq

[u, θ]
)

.

We now prove two lemmas:

Lemma 3. Let d, k > 0, r ∈ O<k+1
L [u, θ], a ∈ O<k+dL [u, θ], and b = r �d a. Let

θ be an L-automorphism of order d. We have b = GToepd,k+1(r) · a.

Proof. We can write r �d a =
∑d−1
i=0 u

i(
∑
j+l=i+k θ

l(rj)al). Thus

b =
(
θk(r0)ak + θk−1(r1)ak−1 + ...+ rka0,

θk+1(r0)ak+1 + θk(r1)ak + ...+ θ(rk)a1,

..., θk+d−1(r0)ak+d−1 + θk+d−2(r1)ak+d−2 + ...+ θd−1(rk)ad−1
)
.

and this is precisely GToepd,k+1(r) · a. and the result follows.

Lemma 4. (associativity) Let d, k, n > 0. For r ∈ O<k+1
L [u, θ], a ∈ O<nL [u, θ],

and s ∈ O<n+d+k−1L [u, θ], we have θn−1(r)�d (a�d+k s) = (r · a)�d s.

Proof. First, observe that the left hand side and right hand side have the same
degree. Let the vector of (r ·a)�ds be denoted by u, that of θn−1(r)�d(a�d+k s)
by v, and that of a�d+k s by w.

For d, k > 0, and r ∈ O<k+1
L [u, θ], set HToepd,k+1(r) to be the d × (k + d)

matrix whose i, jth entry is given by θk+d−j((ui−1r)j−1), where for polynomial
f , (f)l denotes the lth coefficient of f , indexed from 0. This is the matrix such
that b = HToepd,k+1(r)a for b = r �d a. We then have

v = HToepd,k+1(θn−1(r)) ·w = HToepd,k+1(θn−1(r))
(

HToepd+k,n(a) · s
)
.

Moreover, u = HToepd,k+n(r · a) · s. The result follows from the property
HToepd,k+1(θn−1(r)) HToepd+k,n(a) = HToepd,k+n(r · a).
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We can view decision SMPLWEq,d,d,χ as a structured RLWE variant as fol-

lows: given polynomially many samples (GToepd,d (ai),bi) ∈ Od×(2d−1)Lq
× LdRq

for uniform ai ← U
(
O<dLq [u, θ]

)
, decide if the bi were sampled uniformly over

the domain or have the form bi = GToepd,d (ai) s + ei for some uniform s ←
U
(
O<2d−1
Lq

[u, θ]
)

and ei ← χ. Note the samples are correlated.

7 Reduction from SPLWE to SMPLWE

We adapt the reduction for standard MPLWE, under the coefficient embedding.

Theorem 1. Let d > 0, q ≥ 2, and χ a distribution over L<dR [u, θ]. Then there
exists a ppt. reduction from SPLWEq,s,f,χ for any polynomial of the form f(u) =
ud − γ ∈ OL[u, θ] with γ ∈ OK \ {0} coprime with q, to SMPLWEq,s,d,d,χ′ .

Proof. Like in [19], we use an efficiently computable transformation φ that maps
(ai, bi) ∈ OLq [u, θ]/f × LRq [u, θ]/f to (a′i, b

′
i) ∈ O<dLq [u, θ] × L<dRq [u, θ], send-

ing U
(
OLq [u, θ]/f × LRq [u, θ]/f

)
to U(O<dLq [u, θ]× L<dRq [u, θ]) and SPq,s,f,χ to

SMPq,s′,d,d,χ′ , for a new s′ that is a function of s and a new distribution χ′ that
depends on χ and f . Given such a φ, the steps of the reduction are:

1. Sample a uniform t← U
(
O<2d−1
Lq

[u, θ]
)

.

2. For each SPLWE sample (ai, bi), compute (ai, b
′
i) = φ (ai, bi). Give (ai, b

′
i) +

(0, ãi �d t) to the SMPLWE oracle.
3. Return the output of the oracle.

For such a transformation φ, the reduction preserves the uniformity of uniform
samples, and maps SPq,s,f,χ samples to SMPq,s′+t,d,d,Mf,θ·χ samples. When s is
uniform, the SMPq,s′+t,d,d,Mf,θ·χ samples have a uniform s′ + t.

To construct φ, let (ai, bi) ∈ OLq [u, θ]/f × LRq [u, θ]/f be a SPLWE sample.
Let deg(f) = d. Set φ (ai, bi) = (ai, b

′
i) where b′i is defined

b′i = Mf,θ · bi ∈ L<dRq [u, θ].

Plainly ai is uniform, by definition. Observe that if bi is uniformly distributed,
then so is its vector of coefficients bi. Moreover, since the matrix Mf,θ is invert-
ible modulo q we find Mf,θ · bi is also uniform.

Now write bi = ai · s+ ei, for s ∈ OLq [u, θ]/f and ei ← χ. Since Rotf (bi) =
Rotf (ai) · Rotf (s)+ Rotf (ei), we have

Mf,θ · bi = Rotf (bi) · (1, 0, .., 0)T

= (Rotf (ai) · Rotf (s) + Rotf (ei)) · (1, 0, ..., 0)T

= Rotf (ai) · Rotf (s) · (1, 0, ..., 0)T + Rotf (ei) · (1, 0, ..., 0)T

= Rotf (ai) ·Mf,θ · s +Mf,θ · ei
= GToepd,d (ãi) ·Nf ·Mf,θ · s +Mf,θ · ei
= GToepd,d (ãi) · s′ +Mf,θ · ei,
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where s′ = Nf ·Mf,θ · s. Since b′i = Mf,θ · bi = GToepd,d (ãi) · s′+ Mf,θ · ei, the
new error is e′i = Mf,θ · ei, as required

In order to remove dependence on the choice of γ, one can consider a family of
polynomials Fβ := {f(u) = ud − γ : |γ| ≤ β}. If χ = Dαq, then χ′ = Mf,θ ·Dαq.
Expanding Mf,θ over Z, since Mf,θ is invertible, we have χ′ = DMf,θ·(αqI[L:Q]).

Since the the square of the largest singular value ‖Mf,θ‖2 = |γ|2, then restricting
to f ∈ Fβ , adding an error e′i ← DΣ for a positive definite Σ such that Mf,θ ·
ei + e′i ∼ Dαqβ removes any dependence of the error on the choice of f ∈ Fβ .

8 Public Key Encryption Scheme

In this section we give an encryption scheme and prove its IND-CPA security.
Let L/K be a cyclic Galois extension of degree d, Gal(L/K) = 〈θ〉, [K : Q] = n,
and q unramified in OL. The scheme uses the following error distribution: let
χ = bDαqe be a discretised Gaussian over O<d+kL [u, θ], where coefficients are
sampled from Dαq, rounded to the nearest integer, and set as the Z-coefficients
of a skew polynomial in O<d+kL [u, θ]. Plaintexts are taken from B<d[u, θ], where
B = {a(x) ∈ OL : ai ∈ {0, 1} for all i}. We denote B× := B mod qOL ∩ O×Lq .
Ciphertexts will be elements of O<d+2k

Lq
[u, θ]×O<dLq [u, θ].

Key Generation To generate a key pair (pk, sk), begin by sampling s ←
U
(
O<2(d+k)−1
Lq

[u, θ]
)

. Then for all i ≤ t, sample uniform ai ← U
(
O<d+kLq

[u, θ]
)

and errors ei ← χ, and set bi = ai �d+k s+ 2 · ei ∈ O<d+kLq
[u, θ], i = 1, ..., t. The

public key is pk := (ai, bi)i≤t, and the secret key is sk := s.

Encryption Given public key pk = (ai, bi)i≤t we encrypt a message µ ∈
B<d[u, θ] as follows. We sample ri ← U

(
B<k+1[u, θ]

)
, i = 1, ..., t, replace the

smallest non-zero OL-coefficient of each ri with an element sampled uniformly
from B×, and output a ciphertext c = (c1, c2) ∈ O<d+2k

Lq
[u, θ]×O<dLq [u, θ], where

c1 =
∑
i≤t

ri · ai, and c2 = µ+
∑
i≤t

θd+k−1(ri)�d bi

Decryption Given sk = s, to decrypt a ciphertext c = (c1, c2), compute

µ′ := (c2 − c1 �d s mod q) mod 2

We now show correctness.

Lemma 5. Let α < 1/(16
√
ndt(k + 1)) and q ≥ 16ndt(k+1).With probability at

least 1−nd2 ·2−Ω(n) over valid key pairs (pk, sk), for all plaintexts µ ∈ B<d[u, θ]
and with probability 1 over the encryption randomness, decryption is correct.
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Proof. Suppose that c = (c1, c2) is a ciphertext encrypting a message µ under a
public key pk = (ai, bi)i≤t. Then to decrypt c we compute

c2 − c1 �d s = µ+
∑
i≤t

θd+k−1(ri)�d bi −

∑
i≤t

ri · ai

�d s
= µ+

∑
i≤t

(
θd+k−1(ri)�d (ai �d+k s+ 2 · ei)− (ri · ai)�d s

)
= µ+

∑
i≤t

θd+k−1(ri)�d (ai �d+k s)− (ri · ai)�d s+ 2θd+k−1(ri)�d ei

= µ+ 2
∑
i≤t

θd+k−1(ri)�d ei mod q

where the final equality holds by Lemma 4. Note that if

‖µ+ 2 ·
∑
i≤t

θd+k−1(ri)�d ei‖∞ < q/2,

then c2−c1�d s mod q = µ+2 ·
∑
i≤t θ

d+k−1(ri)�d ei, so c2−c1�d s mod q mod

2 = µ. Similarly to [19, Lemma 4.1], the coefficients of
∑
i≤t θ

d+k−1(ri)�d ei can
be written as an inner product between a binary [OL : Z]t(k + 1)-dimensional
vector and a vector distributed according to bDαqe[OL:Z]t(k+1), so applying a
(Gaussian) tail bound and the triangle inequality, the coefficients each have
magnitude at most αq

√
[OL : Z]t(k + 1) + [OL : Z]t(k + 1) with probability at

least 1−2−Ω(n). Thus ‖µ+2·
∑
i≤t θ

d+k−1(ri)�dei‖∞ < 2αq
√

[OL : Z]t(k + 1)+

2t[OL : Z](k + 1) + 1 with probability at least 1− d[OL : Z]2−Ω(n).

To show security of the above scheme, we demonstrate its IND-CPA security, as-
suming the hardness of SMPLWE, following [19]. We denote the set of ri obtain-

able during the encryption procedure by B<k+1
[u, θ], and write ri ← B

<k+1
[u, θ].

Lemma 6. Let q, k, d ≥ 2. For bi ∈ O<d+kLq
[u, θ], let hbi denote the map that

sends ri ← B
<k+1

[u, θ] to ri �d bi ∈ O<dLq [u, θ]. Then the hash function family

H = (hbi)bi is universal.

Proof. Identical to [19, Lemma 4.2], included for completeness. It suffices to
prove that for all y ∈ O<dLq [u, θ]

Prb1 [r1 �d b1 = y] = |OLq |−d.

Let j be the smallest integer such that the uj-coefficient of r1 is non-zero and let
r1 have ith coefficient r1,i. Then r1�db1 = y restricted to entries j, ..., j+d−1 can
be written as a triangular linear map with entries in {r1,j , ..., r1,j+d−1} and r1,j
along the diagonal, applied to the vector of d coefficients of b1, up to application
of θ. Since r1,j is invertible by construction, restricting the map b1 7→ r1 �d b1
to these d coefficients of b1 is a bijection, which implies the result.
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By linearity the hash function family (h(bi)i)(bi)i with (bi)i ∈
(
O<d+kLq

[u, θ]
)t

and hbi mapping (ri)i≤t ←
(
B<k+1

[u, θ]
)t

to
∑
i ri �d bi is also universal.

Theorem 2. Let t ≥ 2+2(k+d) log(q)
k . Then the SMPLWE PKE scheme is IND-

CPA secure, assuming the hardness of SMPLWEq,d+k,d+k,Dαq .

Proof. We perform two hops from the IND-CPA experiment for SMPLWE to
an experiment which we show to be of negligible statistical distance from our
starting point. We first consider a variant of the IND-CPA experiment in which
pk = (ai, bi)i is sampled uniformly. Assuming the hardness of decision SMPLWE,
the probabilities that A outputs b′ = b in the IND-CPA experiment and in the
variant experiment are negligibly close.

Now consider a second experiment. Suppose pk = (ai, bi)i is a valid public
key, but instead of computing a valid ciphertext c encrypting µb under pk for
b ∈ {0, 1}, c = (c1, c2) is computed by the following process: sample uniform

ri ← B
<k+1

[u, θ], i = 1, ..., t, sample a uniform v ← U
(
O<dLq [u, θ]

)
, and set

(c1, c2) :=

(
t∑
i=1

ri · ai, v

)
Since v is independent of b, the probability that A outputs b′ = b is precisely
1/2. We now show that the distributions of ((ai, bi)i , c1, c2) in the two variant
experiments are of negligible statistical distance from one another; that is, that

∆

(ai, bi)i ,
∑
i≤t

ri · ai,
∑
i≤t

ri �d bi

 ,

(ai, bi)i ,
∑
i≤t

ri · ai, v

 ≤ neg(n)

where ai, bi, ri, and v are sampled uniformly from O<d+kLq
[u, θ], O<d+kLq

[u, θ],

B<k+1
[u, θ] and O<dLq [u, θ] respectively, for i = 1, ..., t. Applying Lemma 1, since

Lemma 6 showed the hash function family (hbi)bi is universal, and noting that∑
i≤t ri · ai ∈ O

<d+2k
Lq

[u, θ] which is of cardinality |OLq |d+2k, we find that the

statistical distance above is upper bounded by 1
2

√
γ(T ) · |Y | · |Z|, where X =

(B<k+1
[u, θ])t, γ(T ) = maxw∈X Pr[T = w] ≤ |B|−tk, |Y | = |OLq |d, and |Z| =

|OLq |d+2k; so the upper bound is

1

2

(
|B|−tk · |OLq |2(d+k)

)1/2
=

1

2

(
2−ndtk · q2nd(d+k)

)1/2
If t ≥ 2+2(k+d) log(q)

k this becomes negligible in n.

9 Conclusion

We have introduced SMPLWE and SPLWE and reduced a family of problems
based on the latter to the former. We have connected SPLWE and CLWE. We
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also gave a PKE scheme and proved its security under a reasonable assumption.
Future work might include removing restrictions on the degrees of the polyno-
mials involved, and obtaining greater functionality from the SMPLWE problem.
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A Skew Polynomial Rings

In this appendix we give a fuller explanation of the theory of skew polynomials.

Definition 18. Let R be a commutative ring. A polynomial in the indeterminate
x with coefficients in R is an expression of the form

a0 + a1x+ ...+ anx
n,

where x commutes with elements of R, ai ∈ R for i = 0, ..., n, and n <∞.

We call n the degree of the polynomial, and if we label f(x) = a0+a1x+...+anx
n,

then we write deg(f) = n. The set of polynomials with coefficients inR is denoted
R[x]. This set has a ring structure, where addition is performed coefficient-wise
(e.g. a0 + a1x+ b0 + b1x = a0 + b0 + (a1 + b1)x) and multiplication is defined

(a0 + a1x+ ...+ anx
n) · (b0 + b1x+ ...+ bmx

m) =

n+m∑
k=0

k∑
l=0

albk−lx
k

Definition 19. If R and S are two rings, we let Hom(R,S) denote the set of
homomorphisms from R to S and Iso(R,S) the set of isomorphisms from R to
S. If R = S, then we write End(R) = Hom(R,R) for the endomorphisms of R
and Aut(R) = Iso(R,R) for the automorphisms of R.

Let F′ be an algebraic field extension of F. Then any F-endomorphism of F′ is
an F-automorphism of F′.

The order of an endomorphism θ is the smallest integer d such that θd = id.

http://www.jstor.org/stable/1968173
https://doi.org/10.1007/978-3-030-36030-6_1
https://doi.org/10.1145/1568318
https://doi.org/10.1007/s10623-019-00654-5
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Examples 1. Let C denote the complex numbers and · complex conjugation,
that is, the map sending a + ib 7→ a − ib =: a+ ib. Then · is an automorphism
of C, and has order 2.
2. Let Fq be a finite extension of Fp, the finite field of p elements. Then the map
a 7→ ap is an automorphism of Fq, called the Frobenius map, denoted Frobp. If
q = pr, Frobp has order r.

3. Let Q(
√
d) be a real quadratic extension of Q with defining polynomial f(x) =

x2 − d for some d ∈ N. Then the map τ sending d 7→ −d and fixing Q is an
automorphism of Q(

√
d) of order 2.

Definition 20. Let R be a ring and θ an endomorphism of R. Then expressions
in the indeterminate x of the form

a0 + a1x+ ...+ anx
n

where xr = θ(r)x for all r ∈ R, ai ∈ R for i = 0, ..., n, and n < ∞ are called
skew polynomials.

The degree of a skew polynomial f(x) = a0+a1x+ ...+anx
n is n. We denote the

set of skew polynomials with coefficients in R and indeterminate x defined by
some endomorphism θ by R[x, θ]. If θ is the identity map id, then R[x, id] = R[x].

Proposition 3. Let R be a ring and θ ∈ End(R). Then R[x, θ] is a ring.

Proof. Addition is coefficient-wise (e.g. a0+a1x+b0+b1x = a0+b0+(a1+b1)x).
Multiplication is defined

(a0 + a1x+ ...+ anx
n) · (b0 + b1x+ ...+ bmx

m) =

n+m∑
k=0

k∑
l=0

alθ
l (bk−l)x

k

The result follows from axiom checking.

Let R be an integral domain and θ be injective. Then anθ
n(bm) 6= 0 if an, bm 6= 0,

so the leading term of the product of a0+a1x+...+anx
n and b0+b1x+...+bmx

m

is non-zero. This allows us to generalise the notion of degree to skew polynomials.
Thus when R is a domain and θ injective the degree of the above product is n+m
and the degree of the product of two skew polynomials is the sum of the degrees.

Examples 1. C[x, ·]. Write ι(·) = · for convenience. We have

(a0 + ...+ anx
n) · (b0 + ...+ bmx

m) =

n+m∑
k=0

k∑
l=0

alι
l(bk−l)x

k

=

n+m∑
k=0

(∑
l even

albk−l +
∑
l odd

albk−l

)
xk
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2. Fpr [x,Frobp]. Then (a0+ ...+anx
n) ·(b0+ ...+bmx

m) =
∑n+m
k=0

∑k
l=0 alb

pl

k−lx
k.

3. Q(
√
d)[x, τ ]. Then

(a0 + ...+ anx
n) · (b0 + ...+ bmx

m) =

n+m∑
k=0

k∑
l=0

alτ
l(bk−l)x

k

=

n+m∑
k=0

(∑
l even

albk−l +
∑
l odd

alτ(bk−l)

)
xk

A left ideal I of a ring R is an additively closed subgroup which is closed under
multipliction on the left from R, that is, RI ⊂ I. Right ideals are defined
analogously. An ideal is principal if it is generated by a single element. We have

Proposition 4. If R is an integral domain and θ is injective, then R[x, θ] is an
integral domain. If K is a field and σ an endomorphism of K, then every left
ideal of K[x, σ] is principally generated.

The above gives an analogous statement to the fact that a polynomial ring K[x]
over a (commutative) field K is a PID. A similar statement holds for right ideals.

Definition 21. Let R be a ring and θ ∈ End(R). Then we call

Rθ := {y ∈ R : θ(y) = y}

the fixed ring of θ.

Note the above is a ring: 0, 1 ∈ Rθ, Rθ inherits associativity and distributivity
from R, and is additively and multiplicatively closed by the properties of θ. If
K is a field and σ ∈ Aut(K), Kσ is a subfield of K called the fixed field of σ.

Definition 22. The center Z(R) of a (noncommutative) ring R is the set of
elements of R which commute with all other elements of R; that is,

Z(R) := {y ∈ R : yz = zy for all z ∈ R}

It is clear that Z(R) is a commutative subring of R. The following describes the
center of a skew polynomial ring:

Proposition 5. Let R be a ring and θ ∈ End(R) have finite order d. Then the
center of R[x, θ] is given by Z(R[x, θ]) = Z(R)[xd]. If θ has infinite order, then
Z(R[x, θ]) = Z(R).

A central element z generates a two-sided ideal, since Rz = zR by definition.

Examples 1. Z(C[x, ·]). The fixed field of · is R, since a+ i · 0 = a = a. Since ·
has order two, we find Z(C[x, ·]) = R[x2].
2. Z(Fpr [x,Frobp]). The fixed field of Frobp is Fp and Frobp has order r, so we
find Z(Fpr [x,Frobp]) = Fp[xr].
3. Z(Q(

√
d)[x, τ ]). Since Q(

√
d)τ = Q and τ2 = id, Z(Q(

√
d)[x, τ ]) = Q[x2].

We briefly consider some further properties of skew polynomial rings. We first
note that Hilbert’s basis theorem holds:
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Theorem 3. Let R be a Noetherian ring, θ an automorphism of R, and S =
R[x, θ]. Then S is Noetherian.

Let K be an algebraic number field Galois over Q and OK the ring of integers
of K. The Q-automorphisms of K restrict to endomorphisms of OK , so we can
consider the skew polynomial ring OK [x, θ] where θ ∈ Gal(K/Q). Since OK is
Noetherian, by the theorem so is OK [x, θ].

Let f, g ∈ R[x, θ]. We say g is a left divisor of f if f = gh for some h ∈ R[x, θ].
A skew polynomial f is irreducible if all its left divisors are either units or skew
polynomials of the same degree as f . Then

Theorem 4. [16] Let f1, ..., fn, g1, ..., gm be irreducible skew polynomials such
that f1 · ... · fn = g1 · ... · gm. Then n = m and deg(fi) = deg(gπ(i)) for some
permutation π and i = 1, ..., n.

We can consider quotients of skew polynomial rings. If I is a left ideal of R[x, θ],
then R[x, θ]/I is a left R[x, θ]-module, since if f(x), g(x) ∈ R[x, θ]

f(x)(g(x) + I) = f(x)g(x) + f(x)I ⊂ f(x)g(x) + I

If I is a two-sided ideal, then R[x, θ]/I is a ring:

(f(x) + I)(g(x) + I) = f(x)g(x) + Ig(x) + f(x)I + I2 ⊂ f(x)g(x) + I

When K is a field, every ideal is principally generated, and so if z ∈ Z(K[x, σ]),
then K[x, σ]/zK[x, σ] is a ring.

Examples 1. Note that x2 + π ∈ Z(C[x, ·]), so C[x, ·]/(x2 + π)C[x, ·] is a ring.

2. Since xr
2

+1 ∈ Z(Fpr [x,Frobp]), Fpr [x,Frobp]/(x
r2 +1)Fpr [x,Frobp] is a ring.

3. Note that x8+1 ∈ Z(Q(
√
d)[x, τ ]), so Q(

√
d)[x, τ ]/(x8+1)Q(

√
d)[x, τ ] is a ring.

B On the Equivalence of Embeddings for CLWE

In [20], [6] instances of number fields were given for which the distortion induced
by mapping between the canonical and the coefficient embedding was polynomi-
ally bounded, impyling a polynomial-time equivalence between solving RLWE in
those fields and solving the corresponding PLWE instances. They achieved this
by bounding Frobenius norm of the map Vf which sends the canonical embedding
of an element x to a coefficient representation of x, that is

σL(x) = Vf · coeff(x),

where coeff(·) is the vector of coefficients of x ∈ Z[x]/f(x) and σL is the canonical
embedding. In this appendix, we give examples of CDAs for which the coefficient
representation of an algebra element is only polynomially distorted by mapping
it into canonical space. These instances were studied in [13].
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In particular, we consider CDAs obtained from quadratic extensions of power-
of-two conductor cyclotomic fields K = Q(ζ2r ), obtained by adjoining

√
` to

K, where ` > 2 is prime and satisfies ` ≡ 1 mod 2r, ` 6≡ 1 mod 2r+1. Then
A = (L/K, θ, ζn) is a CDA and Λ is a maximal order in A, with L = Q(ζ2r ,

√
`).

Write m = 2r and n = 2r−1. We then define the powerful basis of OL:

−→p := (1, ζm, ..., ζ
n−1
m ,

1 +
√
`

2
, ζm

1 +
√
`

2
, ..., ζn−1m

1 +
√
`

2
)

From this we obtain a matrix in Rn×n by applying the canonical embedding to
the entries of −→p :

σL(−→p ) =

(
σL(1), ..., σL(ζn−1m ), σL

(
1 +
√
`

2

)
, ..., σL

(
ζn−1m

1 +
√
`

2

))

It can be checked that σL(x) = σL(−→p ) · coeff(x). This implies that ‖σL(x)‖ ≤
s1(σL(−→p )) · ‖x‖−→p , where ‖ · ‖−→p denotes taking the `2-norm of the coefficient
vector of an element expressed in the basis −→p , and s1(σL(−→p )) is the largest
singular value of σL(−→p ). Labelling the smallest singular value by s2n(·), we have

Proposition 6. [13, Proposition 1] Let n = 2r−1, ` ≡ 1 mod 2r a prime, and
L = Q(ζ2r ,

√
`). Then, using the powerful basis of OL, we have

s1(−→p ) =

√
n

2

√
`+ 5 +

√
`2 − 6`+ 25,

s2n(−→p ) =

√
n

2

√
`+ 5−

√
`2 − 6`+ 25.

Therefore for bounded values of `, say ` = poly(n), the singular values are also
polynomial in n. Bounding the si(σL(−→p )) allows us to bound Vf .

The above can be extended to Λ: considering an element x = x0 + ux1 with
xi ∈ OL, i = 0, 1, we let the canonical embedding extend coefficient-wise for
σA(x) := (σL(x0), σL(x1)) and find that

VΛ =

(
σL(−→p ) 0

0 σL(−→p )

)
sends coeff(x) = (coeff(x0), coeff(x1)) to σA(x). The singular values of this ma-
trix are simply the singular values of σL(−→p ) multiplied by

√
2. As before, if

` = poly(n), we find that the singular values of the above are polynomial in n,
and similarly for V −1Λ .
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