
Selective Delegation of Attributes in Mercurial

Signature Credentials∗

C. Putman and K. M. Martin
Royal Holloway, University of London

Egham, Surrey, TW200EX, UK

Colin.Putman.2017@live.rhul.ac.uk,

Keith.Martin@rhul.ac.uk

Abstract

Anonymous credential schemes enable service providers to verify infor-
mation that a credential holder willingly discloses, without needing any
further personal data to corroborate that information, and without allow-
ing the user to be tracked from one interaction to the next. Mercurial
signatures are a novel class of anonymous credentials which show good
promise as a simple and efficient construction without heavy reliance on
zero-knowledge proofs. However, they still require significant development
in order to achieve the functionality that most existing anonymous cre-
dential schemes provide. Encoding multiple attributes of the credential
holder in such a way that they can be disclosed selectively with each use
of the credential is often seen as a vital feature of anonymous credentials,
and is one that mercurial signatures have not yet implemented. In this
paper, we show a simple way to encode attributes in a mercurial signa-
ture credential and to regulate which attributes a credential holder can
issue when delegating their credential to another user. We also extend the
security model associated with mercurial signatures to account for the in-
clusion of attributes, and prove the security of our extension with respect
to the original mercurial signature construction.

Keywords: Privacy · Anonymous credentials · Delegatable credentials · Mercurial
signatures · Selective disclosure.

∗First published in Cryptography and Coding, IMACC 2023 [11]. Reproduced with per-
mission from Springer Nature.

1

1 Introduction

Privacy in the digital world is an increasingly serious concern, with many efforts being
made to minimise the use, storage, and disclosure of personal information. However,
this goal is difficult to reconcile with the interests of service providers who often have
a need to know that their clients are engaging in good faith and are permitted to use
their services. These reasonable checks usually involve some form of identification,
which makes it easy for providers to build profiles on their users.

One powerful solution to these conflicting interests is the use of anonymous cre-
dentials, which are designed to allow service providers to verify information that the
credential holder willingly discloses, without needing any further personal data to
corroborate that information, and without allowing the user to be tracked from one
interaction to the next. Anonymous credentials have been fully realised since 2001 [2],
but their adoption has been extremely slow, due in large part to the cumbersome
nature of the zero-knowledge proofs they rely on.

A recently developed type of anonymous credential, known as mercurial signa-
tures [6], shows promise in overcoming this hurdle, as its malleable nature replaces
much of the need for traditional zero-knowledge proofs. Mercurial signatures also al-
low for credential holders to delegate their credentials anonymously to other users,
forming a chain of trust and enabling more private and versatile use of their systems.

However, the novelty of mercurial signatures means that they still lack much of the
functionality that more established types of anonymous credential offer. Most notably,
they do not yet offer the ability to encode detailed information about the credential
holder’s attributes and disclose only a subset of that information, a feature known as
selective disclosure which is often viewed as necessary for an anonymous credential
system.

Our contribution. This paper proposes an elegant extension to mercurial signa-
tures which allows the selective disclosure of attributes, in a way which also remains
compatible with the delegation of credentials. We also extend the security game asso-
ciated with the original mercurial signatures to take account of the additional require-
ments that accompany credential attributes, and we prove the security of our extension
with respect to the original CL19 mercurial signature construction. Although we use
the CL19 construction for simplicity in our demonstration, the extension is also com-
patible with other credentials based on FHS-type structure-preserving signatures and
set commitments, including the CL21, CLP22, and MSBM23 constructions [4, 7, 10].

Section 2 introduces the basic concepts that underpin this work. Section 3 gives an
overview of the previous development of mercurial signatures. In Section 4, we detail
our extension and give an overview of the associated proofs. We conclude in Section
5 with a brief look at the other areas in which this field can be progressed.

2 Preliminaries

A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that ε(k) <
1/kc for all k > k0. We use a ←R S to denote that a is chosen uniformly at random
from a set S. Given a probabilistic algorithm A(a1, ..., an), we use A(a1, ..., an; r) to
make the randomness r used by the algorithm explicit, and [A(a1, ..., an)] to denote
the set of points with positive probability of being output by A. We write groups

2

multiplicatively throughout this paper, and given a group G we use G∗ to denote
G\{1G}.

2.1 Bilinear maps

Given three cyclic groups G1, G2, and GT , all of prime order p, a bilinear map or
pairing is an efficiently computable function e : G1 × G2 → GT such that, given
generators P and P̂ of G1 and G2 respectively, e(P a, P̂ b) = e(P, P̂)ab. The pairing is
called non-degenerate if e(P, P̂) 6= 1GT , in which case e(P, P̂) generates GT .

All of the bilinear maps used in this paper will be non-degenerate and based on
cyclic groups of the same prime order. We define a bilinear-group generator to be
a polynomial-time algorithm that takes as input a security parameter 1κ and outputs
a tuple (p,G1,G2,GT , e, P, P̂) such that the groups G1 = 〈P 〉, G2 = 〈P̂ 〉, and GT
are cyclic groups of prime order p with dlog2 pe = κ, and e : G1 × G2 → GT is a
non-degenerate bilinear map.

2.2 Zero-knowledge proofs of knowledge

Let LR = {x|∃w : (x,w) ∈ R} ⊆ {0, 1}∗ be a formal language with a binary,
polynomial-time witness relation R ⊆ {0, 1}∗ × {0, 1}∗, so that the membership of
x ∈ LR can be decided in polynomial time when given a witness w of length polynomial
in |x| certifying (x,w) ∈ R. Consider an interactive protocol (P,V) between a poten-
tially unbounded prover P and a PPT verifier V with outcome (·, b) ← (P(·, ·),V(·))
where b = 0 indicates that V rejects and b = 1 indicates that V accepts the conversa-
tion with P. Such a protocol is a zero-knowledge proof of knowledge (ZKPoK)
if it satisfies the following three properties:

• Completeness: We call such a protocol (P,V) complete if, for all x ∈ LR and
w such that (x,w) ∈ R we have that (·, 1)← (P(x,w),V(x)) with probability 1.

• Zero knowledge: We say that the protocol (P,V) is zero-knowledge if for all
PPT algorithms V∗ there exists a PPT simulator S such that:

{SV
∗
(x)}x∈LR ≈ {〈P(x,w),V∗(x)〉}(x,w)∈R

where 〈P(·, ·),V∗(·)〉 denotes the transcript of the interaction between P and V,
and ”≈” denotes perfect indistinguishability.

• Knowledge soundness: We say that (P,V) is a proof of knowledge (PoK)
relative to an NP relation R if, for any (possibly unbounded) malicious prover
P∗ such that (·, 1)← (P∗(x),V(x)) with non-negligible probability, there exists
a PPT knowledge extractor K with rewinding black-box access to P∗ such that
KP
∗
(x) returns a value w satisfying (x,w) ∈ R.

Zero-knowledge proofs of knowledge are used by provers to convince verifiers that
they know a secret value w satisfying a specific statement x. For this work we are
particularly interested in protocols to prove knowledge of a discrete logarithm, which
can be efficiently instantiated using Σ-protocols as in Cramer et al. [5]. When using
zero-knowledge proofs of knowledge, we denote the composite of proofs of witnesses
w1, . . . , wn satisfying statements x1, . . . , xn by PoK{(w1, . . . , wn) | x1 ∧ · · · ∧ xn}.

3

2.3 Anonymous credentials

Anonymous credentials are a privacy-preserving system which allows a prover to ob-
tain, from a trusted issuer, a credential on one or more attributes representing access
rights or pieces of identifying information, which can then be used to prove their pos-
session of these attributes to a verifier in zero knowledge. An anonymous credential
system consists of the following PPT algorithms:

IssuerKeyGen(1κ, 1t): A probabilistic algorithm which takes as input a security pa-
rameter κ and an upper bound t on the size of attribute sets, and outputs a key pair
(osk, opk) for an issuer.

ProverKeyGen(opk): A probabilistic algorithm which takes as input an issuer’s public
key opk and outputs a key pair (usk, upk) for a prover.

(Obtain(usk, opk, A), Issue(upk, osk, A)): A pair of probabilistic algorithms run by
a prover and an issuer, respectively, which interact during execution. Obtain takes
as input the prover’s secret key usk, the issuer’s public key opk, and a non-empty
attribute set A of size |A| ≤ t, and Issue takes as input the prover’s public key upk,
the issuer’s secret key osk, and a non-empty attribute set A of size |A| ≤ t. At the end
of the protocol, Obtain outputs a credential cred for the user on the attribute set A,
or ⊥ if the execution failed.

(Show(opk, A, D, cred), Verify(opk, D)): A pair of algorithms run by a prover and
a verifier, respectively, which interact during execution. Show is a probabilistic algo-
rithm which takes as input an issuer’s public key opk, an attribute set A of size |A| ≤ t,
a non-empty set D ⊆ A, and a credential cred. Verify is a deterministic algorithm which
takes as input an issuer’s public key opk and a set D. At the end of the protocol, Verify
outputs either 1 or 0, indicating whether it accepts the credential showing or not.

Informally, the security properties that an anonymous credential must satisfy are
as follows:

• Correctness: A showing of a credential cred with respect to a non-empty set
of attributes D always verifies if cred was issued honestly for some attribute set
A such that D ⊆ A.

• Unforgeability: A prover cannot perform a valid showing of attributes for
which they do not possess a credential, and no coalition of provers can combine
their credentials to perform a valid showing of attributes for which no single
prover in the coalition has a credential. This must hold even after seeing arbi-
trary showings of valid credentials by honest users.

• Anonymity: During a showing, no verifier, issuer, or coalition of multiple
verifiers and/or issuers can learn anything about the prover except that they
possess a valid credential on an attribute set that includes D.

We say that an anonymous credential system offers selective disclosure if it
supports attribute sets of size greater than 1 (and therefore allows D to be a proper
subset of A). Such credentials are often called attribute-based credentials.

We say that a credential is multi-show if it can be used in multiple runs of the
Show algorithm and the verifier(s) to which it has been shown cannot distinguish them
from protocol runs using different credentials. We can identify two distinct families of

4

multi-show credentials: zero-knowledge credentials, which are not revealed to the
verifier during the Show algorithm, instead using zero-knowledge proofs to convince
the verifier of the valid credential’s existence, and self-blindable credentials, which
are partially or fully shown to the verifier during the Show algorithm, and subsequently
altered such that they remain valid but are unrecognisable in later showings.

2.4 Delegatable credentials

Delegatable credentials, first proposed in 2006 by Chase and Lysyanskaya [3], extend
the anonymous credential model by allowing the holder of a credential to (anony-
mously) issue new credentials to other users. This process is called delegation, and
allows credentials to form a chain of trust; each credential identifies the root authority
which issued the original credential, and how many steps removed from that original
credential it is, but does not uniquely identify the other delegators along the chain.

Crites and Lysyanskaya [6] provide a model for delegatable credentials, which dif-
fers from the basic anonymous credential model in a few key ways. First, they add
the following PPT algorithm:

NymGen(sk, L(pk0)): A probabilistic algorithm that takes as input a participant’s
secret key sk and a delegation level (i.e. number of steps removed from the root is-
suer) L(pk0) under the root issuer whose public key is pk0, and generates a pseudonym
and auxiliary information for that participant at that level.

The pseudonym and auxiliary information function as a fresh public key and secret
key, respectively, that other participants cannot link to the underlying long-term key
pair. The Issue/Obtain and Prove/Verify algorithms then become:

(Obtain(LI(pk0), pk0, skR, nymR, auxR, nymI), Issue(LI(pk0), pk0, skI , nymI , auxI ,
credI , nymR)): Obtain takes as input the issuer’s delegation level, the root authority’s
public key, the secret key and a pseudonym and auxiliary information belonging to the
recipient, and the issuer’s pseudonym (not the issuer’s long-term public key), and Issue
takes as input the issuer’s delegation level, the root authority’s public key, the secret
key, pseudonym, auxiliary information, and credential belonging to the issuer, and the
recipient’s pseudonym. The protocol outputs a new credential for the recipient, which
has a (potentially equal) subset of the attributes in credI and delegation level LI(pk0)
+ 1. By convention, a root authority runs Issue with LI(pk0) = 0, nymI = pk0, and
auxI = credI = ⊥.

(Prove(LP (pk0), pk0, skP , nymP , auxP , credP), Verify(pp, LP (pk0), pk0, nymP)):
Prove takes as input the prover’s delegation level, the root authority’s public key, the
prover’s secret key, the pseudonym by which the verifier knows the prover (which
should differ from the pseudonym to which the credential was issued) and its auxiliary
information, and the prover’s credential. Verify takes as input the system parameters
pp (which were assumed in the basic model to be part of the issuer’s public key), the
prover’s delegation level, the root authority’s public key, and the prover’s pseudonym.
The output is unchanged from the basic anonymous credential model.

Delegatable credentials also extend the basic security goals of anonymous creden-
tials. In particular, the Correctness and Unforgeability properties are extended such
that every credential along a chain must be generated correctly and honestly in or-

5

der for the credential shown at the end to be considered correct and honest. The
Anonymity property is also extended to apply to delegators; this can be to protect the
delegators’ privacy, but it is also necessary for providing anonymity to the prover, since
two credentials with the same root authority but different delegators would otherwise
become distinguishable, which would reduce the prover’s anonymity set.

Though there is no clear consensus on how delegatable credentials should use at-
tributes, Blömer and Bobolz [1] propose the requirement that a delegated credential
must encode a subset of the attributes in the delegator’s credential, conceptually en-
forcing that not only the credential but the attributes themselves are delegated from
one level to the next. We will refer to this as selective delegation (of attributes).
This model is ideal for scenarios in which the attributes of delegated credentials are
expected to represent strictly equal or lesser privileges than those of the credentials
higher up the chain. This includes the case in which the issuing process itself is dele-
gated, as the selective delegation model allows the root issuer to provide each sub-issuer
with a credential containing all of the attributes that sub-issuer is empowered to sign.

3 Previous work

3.1 SPS-EQ credentials

The precursor to mercurial signatures, SPS-EQ credentials are a form of self-blindable,
attribute-based credentials first proposed by Hanser and Slamanig in 2014 [9] and
refined by Fuchsbauer et al. in 2019 [8]. They are based on a novel primitive called
structure-preserving signatures on equivalence classes, usually abbreviated as SPS-EQ.

A structure-preserving signature scheme is one in which the message and the signa-
ture are both made up of group elements in the same bilinear pairing, as is the public
key. SPS-EQ schemes further define an equivalence relation on the message and sig-
nature spaces, and allow both messages and signatures to be randomised within the
resulting equivalence classes.

In addition to the usual Sign and Verify functions, SPS-EQ schemes include a
function ChgRepR(M,σ, µ, pk), parametrised by equivalence relation R, which takes
as input a message M, a signature σ, a randomising factor µ, and a public key pk,
and outputs a message M ′ in the same equivalence class as M and a signature σ′ such
that:

Verify(M ′, σ′, pk) = Verify(M,σ, pk).

The security requirements of SPS-EQ schemes include a class-hiding property,
which states that an adversary given a pair of messages should not be able to tell
whether they are in the same equivalence class, and an origin-hiding property, which
states that the output of the ChgRepR function should be indistinguishable from a
fresh message-signature pair.

Hanser and Slamanig’s construction defines its message space by generating a
bilinear pairing e : G1 × G2 → GT with DDH-hard groups, and creating a vector
space of elements in (G∗1)l with l greater than 1. The equivalence relation is then
defined such that two messages M and M ′ are equivalent if and only if M ′ is a scalar
power of M.

The secret key is a vector (xi)i∈l in (Z∗p)l and the public key is the corresponding

vector (X̂i)i∈l = (P̂ xi)i∈l where P̂ is a generator of G2 included in the public pa-

6

rameters; the public key is therefore a vector in (G∗2)l. A signature σ on a message
M ∈ (G∗1)l is a tuple (Z, Y , Ŷ) with Z, Y ∈ G1 and Ŷ ∈ G2 such that:

Z =
∏
i∈lM

xiy
i ,

Y = P
1
y ,

Ŷ = P̂
1
y ,

where P and P̂ are generators of G1 and G2, respectively, included in the public
parameters, and y is chosen randomly from Z∗p at the time of signing.

SPS-EQ schemes were specifically designed for use in anonymous credentials, using
their randomisation as the credential blinding mechanism, with SPS-EQ’s class-hiding
and origin-hiding properties providing unlinkability for the resulting credentials. In
order to encode attributes, they had to be combined with a commitment scheme that
could be randomised in a manner consistent with the SPS-EQ construction.

3.2 Randomisable set commitments

In order to support attributes with selective disclosure, Hanser and Slamanig also
constructed a set commitment scheme which can opened securely to a chosen subset
of the committed set, and can be randomised in a similar manner to the signature
scheme, allowing a set commitment to the desired attribute set A to be used as the
message in the signature scheme.

The scheme works by committing to a polynomial fS(X) whose roots are the mem-
bers of the committed set S ; that is, fS(X) =

∏
s∈S (X – s). S must be a subset of

Zp , but could encode other types of data using a hash function.
The commitment scheme is instantiated by a manager who selects the security

parameter 1κ and a maximum set cardinality 1t and generates a bilinear pairing e :
G1 × G2 → GT which is published along with generators P and P̂ for G1 and G2

respectively. The manager then chooses a random trapdoor a ∈ Zp and publishes

(P a
i

, P̂ a
i

)i∈[t]. This ensures that the trapdoor is not needed to compute P fS(a) =∏|S|
i=0 P

fia
i

, which is needed to generate and verify commitments, or P̂ fS(a), which is
needed to verify subsets.

In order to commit to a set, the prover chooses a random ρ ∈ Z∗p and computes

the commitment C = P ρfS(a) which is stored along with the opening information O
= (0, ρ). To open this commitment to the full set S, the prover sends S, C, and O to
the verifier, who is able to compute C from S and O and confirm the match.

If the prover wishes to open a subset T of the committed set S, they first generate
a witness W = P ρfS\T (a). This can be verified without revealing the full set S by
using the bilinear map to check whether e(W, P̂ fT (a)) = e(C, P̂).

If a commitment C is randomised using a blinding factor µ after a witness W
has been generated as above, applying the same blinding factor to W produces a
new witness W ′ which is consistent with the new commitment. This allows the set
commitments to be used as messages for SPS-EQ signatures, such that it is possible to
encode attributes in an SPS-EQ credential and selectively disclose them to a verifier
even after the credential has been randomised.

Subsequent work by Connolly et al. [4] extended this commitment scheme with a
function for opening on disjoint sets, allowing the commitment’s owner to prove that

7

certain values are not included in the committed set. They also add an optional proof
of exponentiation (PoE) technique to shift computation work from the verifier to the
prover during openings. These functions require no changes to the structure of the
commitment, and hence incur no additional cost, while significantly expanding the
expressiveness of the scheme.

3.3 Mercurial signatures

Mercurial signatures are an extension to SPS-EQ proposed by Crites and Lysyan-
skaya [6] with the intention of supporting delegatable credentials. To do this, they
add a set of functions to allow a key pair (pk, sk) to be randomised such that the re-
sulting (pk′, sk′) is still a valid key pair, and a signature under pk to be randomised to
produce a valid signature on the same message under pk′. Randomising the public key
allows delegators to be anonymised, and prevents the credential chain of a delegated
credential from becoming identifiable.

Given parameterised equivalence relations RM , Rpk, and Rsk, Crites and Lysyan-
skaya define mercurial signatures generally as consisting of the following PPT algo-
rithms:

PPGen(1k) → PP : A probabilistic algorithm which takes as input the security pa-
rameter 1k and outputs the public parameters PP , including parameters for RM ,
Rpk, and Rsk, and parameters for algorithms sampleρ and sampleµ, which are used to
generate converters for keys and for messages, respectively.

KeyGen(PP, l) → (pk, sk): A probabilistic algorithm which takes as input the public
parameters PP and a length parameter l and outputs a key pair (pk, sk). Following the
authors’ example, we also write (pk, sk) ∈ KeyGen(PP, l) to denote that there exists a
set of random choices KeyGen could make on input (PP, l) that would result in (pk, sk)
as the output. It is also noted that the message spaceM is well-defined from PP and l.

Sign(sk, M) → σ: A probabilistic algorithm which takes as input a signing key sk
and a message M ∈M and outputs a signature σ.

Verify(pk, M,σ): → 0/1: A deterministic algorithm which takes as input a public
key pk, a message M ∈M, and a purported signature σ, and outputs 0 or 1.

ConvertSK(sk,ρ) → s̄k: A deterministic algorithm which takes as input a signing key
sk and a key converter ρ ∈ sampleρ and outputs a new signing key s̄k ∈ [sk]Rsk

.

ConvertPK(pk,ρ) → p̄k: A deterministic algorithm which takes as input a public key
pk and a key converter ρ ∈ sampleρ and outputs a new public key p̄k ∈ [pk]Rpk

.

ConvertSig(pk,M,σ, ρ) → σ̄: A probabilistic algorithm which takes as input a pub-
lic key pk, a message M ∈ M, a signature σ, and a key converter ρ ∈ sampleρ, and
outputs a new signature σ̄.

ChangeRep(pk, M,σ, µ) → (M ′, σ′): A probabilistic algorithm which takes as input a
public key pk, a messages M ∈M, a signature σ, and a message converter µ ∈ sampleµ,
computes a new message M ′ ∈ [M]RM and a new signature σ′, and outputs (M ′, σ′).

8

In order to define a construction for mercurial signatures, Crites and Lysyanskaya
made a simple extension from Hanser and Slamanig’s structure-preserving signature
construction. Recalling that the secret key is a vector (xi)i∈l in (Z∗p)l and the public

key is the corresponding vector (X̂i)i∈l = (P̂ xi)i∈l in (G∗2)l, Crites and Lysyanskaya’s
construction randomises the keys by taking an input ρ ∈ Z∗p and setting sk′ = (ρxi)i∈l
and pk′ = (X̂ρ

i)i∈l. A signature σ = (Z, Y, Ŷ) can then be randomised by choosing a

random ψ ∈ Z∗p and setting σ′ = (Zψρ, Y
1
ψ , Ŷ

1
ψ). This is identical to the signature

randomisation in SPS-EQ, and ensures that if σ is a valid signature on a message M
under pk, σ′ is a valid signature on M under pk′.

One major limitation of the CL19 mercurial signature construction (and, indeed,
of the SPS-EQ construction before it) is that the length of the signer’s key serves
as an upper bound on the length of the message to be signed. This is especially
problematic in the context of delegatable credentials, where a typical message consists
of the prover’s public key plus a representation of at least one attribute. If the issuer
has a key of length l and signs a credential with k group elements representing its
attributes, the prover’s key length can only be at most l − k. Furthermore, if that
prover then wishes to delegate the credential with all of its attributes, the recipient’s
key length can only be up to l − 2k, and so on.

In a subsequent paper, Crites and Lysyanskaya proposed a method to overcome
this problem [7]. The message is assumed to be of the form (P,M1, ...,Mn), where
P is a generator of G1 and Mi = Pmi for all 1 ≤ i ≤ n, with the values mi being
encoded information such as private key elements and attributes. The approach taken
by Crites and Lysyanskaya is to transform each element of the message into its own
fixed-length message which can be signed separately using the original scheme.

Later work by Connolly et al. [4] used similar techniques to obtain issuer-hiding
SPS-EQ credentials which could easily be converted to mercurial signatures by adding
a protocol for delegation. They also made use of the FHS randomisable set commit-
ment scheme in Section 3.2 to encode attributes with selective disclosure; however,
their work does not achieve selective delegation, as we will see in the next section.

The only relative of mercurial signatures to directly combine delegation with se-
lective disclosure of attributes is the recent work by Mir et al. [10], which replaces the
SPS-EQ primitive with SPS-EQ on Updatable Commitments in order to achieve an
efficient construction with several desirable properties, including the ability to restrict
the number of times a credential can be delegated and to prevent a delegatee from
showing attributes from a higher delegation level. They also introduce a method to
batch subset openings of multiple commitments for efficient verification, called cross-
set commitment aggregation. However, their approach also does not consider selective
delegation of attributes; in contrast to Blömer and Bobolz’s model, there is no enforced
relationship between the attributes on different delegation levels. A relationship could
still be shown to a verifier, but only if every delegator provides the delegatee with the
opening of their commitment so that the delegatee can show the relevant attributes
on higher levels. Even if the delegator uses a subset witness to keep some attributes
hidden, this would sacrifice the information-theoretic privacy of the delegation proto-
col.

4 Providing selective disclosure

The CL19 credential construction does not include a way to encode any information
other than the holder’s public key, meaning it cannot be used to prove anything other

9

than that the holder is the genuine owner of the credential. While the mere fact of
possessing a credential can be taken to certify a single, binary attribute, most existing
credential schemes are built to be able to certify a multitude of attributes, along with
providing a way to disclose only those that are relevant during a particular transaction.

One approach to encoding these attributes is to use the same set commitment
scheme as SPS-EQ signatures. Since mercurial signatures directly extend SPS-EQ
and the credential schemes are derived in a similar way, when a mercurial signature is
first issued the set commitment can work identically to the commitments in SPS-EQ
credentials. This also has the benefit of allowing a credential’s size to be constant,
rather than linear in the number of attributes.

The CLP22 scheme [4] takes this approach, but their work does not consider cre-
dential delegation. The MSBM23 scheme [10] is similar but does allow credential
delegation; however, under their model the attributes in a delegated credential bear
no relation to the delegator’s attributes. In this paper, we are concerned with the
more restrictive model of selective delegation introduced by Blömer and Bobolz [1],
which adds a further challenge to overcome.

4.1 Selective delegation

The difficulty here arises because when one user, Alice, delegates a credential to an-
other user, Bob, Bob’s attribute commitment ĈB has not been signed by the root
issuer, and Alice’s identity is intentionally hidden from any party Bob discloses the
credential to, meaning that her signature cannot be trusted in the same way.

In order to ensure that no user has issued a credential more permissive than their
own, the verifier of Bob’s credential must have some way of confirming that Alice
was authorised to issue the attributes in Bob’s attribute set B. This means that the
verifier must be able to check whether or not B is a subset of Alice’s attribute set A.
In order to achieve this, we will design a special subset witness that can be included
on the delegation chain to connect Alice and Bob’s credentials, leading to a chain in
which each credential except for the first has an associated witness value linking it to
the one before. The difficulty in this approach lies in designing a witness value that
can be computed by Alice and Bob at the time of delegation and does not leak any
information about either attribute set.

In the case that A = B, the verifier can already confirm the relation with the
pairing equation e(Xρ1ρ2

1 , Ĉρ3B) = e(Cρ1ρ2A , Ŷ ρ31) which can be verified using only the

elements Xρ1ρ2
1 , Cρ1ρ2A , Ŷ ρ31 , Ĉρ3B within the blinded credB . Here X1 is the first element

of the public key in Alice’s credential, Ŷ1 is the first element of the public key in Bob’s
credential, CA and ĈB are Alice and Bob’s attribute commitments, respectively, as
formulated in the FHS19 credential scheme [8], and ρ1, ρ2, and ρ3 are the blinding
factors used by Alice and Bob to randomise their credentials, with Alice applying ρ1 to
her credential, and Bob applying ρ2 to Alice’s credential and ρ3 to his own credential.
Note that the assignment of G1 and G2 in this example is arbitrary and can be reversed
as needed depending on the delegation level.

To support the case where B is a proper subset of A, the verifier will need to

replace Xρ1ρ2
1 with X

ρ1ρ2fA\B(a)

1 , a subset witness that can only be generated by
Alice. Alice could in theory supply this witness to Bob during delegation, but if
Bob subsequently delegates the credential further, that witness will need to be passed
along again. Effectively, this is no different to storing the witness value as part of the
credential chain.

10

However, formulating the witness in this way leaks whether or not A = B, since

in that case fA\B(a) = 1, and so X
ρ1ρ2fA\B(a)

1 = Xρ1ρ2
1 . Indeed, this means any-

one could attempt to guess the full attribute set of a credential they have seen and
check their guess by creating a commitment ĈQ and testing whether e(Xρ1ρ2

1 , ĈQ) =
e(Cρ1ρ2A , Ŷ ρ31). This can be prevented by decoupling the commitment’s opening factor
from the owner’s key pair, making it instead a fresh, random exponent, ψ. The pairing
equation then correspondingly becomes:

e(P ρ1ρ2ψAfA\B(a), Ĉρ3B) = e(Cρ1ρ2A , P̂ψBρ3).

Because the element PψAfA\B(a) is in G1, it cannot be signed by Alice, and it can-
not be generated in advance to gain the issuer’s signature, since it requires knowledge
of Bob’s attribute set. With two unsigned elements in the equation, the values could
be adjusted to a trivial solution, and so the result cannot be trusted by a verifier.
However, Bob can include the exponent ρ−1

3 ψ−1
B and rearrange the pairing equation

to:

e(P ρ1ρ2ψAρ
−1
3 ψ−1

B
fA\B(a), Ĉρ3B) = e(Cρ1ρ2A , P̂).

Because P ρ1ρ2ψAρ
−1
3 ψ−1

B
fA\B(a) is a unique solution to this equation and is being

compared with two signed elements and a public parameter, an adversary cannot
modify it without rendering the credential useless, so it can safely be placed on the
credential chain as an unsigned witness tag connecting party A’s credential to party
B’s credential. Using this tag, any verifier can easily check that B ⊆ A, while the
random factors mask any further information.

4.2 Construction of mercurial signature credentials with
set commitments

Applying these modifications to CL19 credentials [6], we arrive at the following con-
struction.

Let λ be the maximum delegation level that should be permitted on a credential.
This has to be specified because the keys must get shorter at each delegation level to
allow signing attributes.

Define MSi = (PPGeni,KeyGeni,Signi,Verifyi,ConvertSKi,ConvertPKi,ConvertSigi,
ChangeRepi) for all 0 ≤ i ≤ λ as instantiations of mercurial signatures as constructed
by Crites and Lysyanskaya [6], such that for all i, j ∈ [λ], PPGeni = PPGenj , MSi is
parameterised with key and message length li = λ + 1 − i, and the roles of G1 and
G2 are reversed in all other algorithms of MSi if i is odd, so that for 0 ≤ i < λ,
(RM)i = (Rpk)i+1. Let Com0 = (Setup0,Commit0,Open0,OpenSubset0,VerifySubset0)
and Com1 = (Setup1,Commit1,Open1,OpenSubset1,VerifySubset1) be two instantia-
tions of FHS randomisable set commitments [8] with the roles of G1 and G2 in Com1

reversed.
The construction consists of the following algorithms and protocols. For simplicity,

the protocols are written as if the credential chain length L is even; if L is odd, the
roles of G1 and G2 must be reversed.

Setup(1k, 1t, 1λ)→ (params): Given k, t, λ > 0, compute PP ← PPGen0(1k); extract

(P, P̂) from PP , choose a ←R Zp, and compute (P a
i

, P̂ a
i

)i∈[t]; output params =

(PP, p, t, λ, (P a
i

, P̂ a
i

)i∈[t]).

11

KeyGen(params) → (pk, sk): There are two cases. For the root authority, com-
pute (pk0, sk0) ← KeyGen0(PP, l0) and output it. For others, compute (pki, ski) ←
KeyGeni(PP, li) for all i ∈ [λ] and output all of the key pairs (pki, ski)i∈[λ].

Issue(params,L, pk0, skI , pkI , OI , credI ,AI ,AR)↔ Receive(params,L, pk0,
skL+1, pkL+1,AR)→ (credR, ρ)

• If L = 0, define credI = ⊥ and AI = Zp.
• If L ≥ λ, return ⊥.

• Receiver calculates (CR, OR) ← Commit(params,AR), extracts ρR from OR =
(b, ρR), and calculates P ρR .

• Receiver sends CR, P
ρR , pkL+1.

• Receiver proves PoK{α1, ..., αl, β|(Pα1 , ..., Pαl) = pkL+1 ∧ P β = P ρR}.
• If AR 6⊆ AI or |AR| > t or the PoK fails, Issuer returns ⊥.

• If e(CR, P̂) 6= e(P ρR , P̂ fAR (a)) and ∀a′ ∈ AR : P a
′
6= P a, Issuer returns ⊥.

• If L = 0, Issuer computes σ1 ← Sign0(skI , (pkL+1, CR)) and sends credR =
(pkL+1, CR, σ1).

• If L > 0, Issuer computes (cred′I , sk
′
I , ψ) ← RandCred(credI , skI , pk0, L) and

σL+1 ← SignL(sk′I , (pkL+1, CR)).

• If L > 0 and ∀a′ ∈ AI : P a
′
6= P a, Issuer extracts ρI from OI and Ĉ′I from

cred′I , computes W̄R ← OpenSubset(params, Ĉ′I ,AI , (0, ρIψ),AR), and sends
σL+1, W̄R, and cred′I .

• If L > 0 and ∃a′ ∈ AI\AR : P a
′

= P a, Issuer calculates fAR(a′)−1, sets W̄R ←
(C′I)

fAR
(a′)−1

, and sends σL+1, W̄R, and cred′I .

• If L > 0 and ∃a′ ∈ AR : P a
′

= P a, Issuer sets C̄R = C′I , W̄R = P ρR , and
σL+1 ← SignL(sk′I , (pkL+1, C̄R)), and sends σL+1, C̄R, W̄R, and cred′I .

• If ∃a′ ∈ AR : P a
′

= P a, Receiver sets CR = C̄R.

• If ∀2 ≤ i ≤ L : Verifyi−1(pk′i−1, nym
′
i, σ
′
i) = 1 ∧ e(C′i,W ′i) = e(P,C′i−1) and

Verify0(pk0, nym
′
1, σ
′
1) = 1 and VerifyL(pk′I , nymR, σL+1) = 1 and e(CR, W̄R) =

e(P ρR , C′I), Receiver calculates WR = W̄
ρ−1
R

R , appends pkL+1, CR, σL+1, WR to
cred′I to form credR, and stores credR, OR, skR = skL+1, pkR = pkL+1.

RandCred(cred, sk, pk0, L)→ (cred′, sk′, ρ): If L > λ, return ⊥; otherwise, given cred of
the form (nym1, ..., nymL, σ1, ..., σL,W2, ...,WL), where nymi = (pki, Ci), choose ran-
dom (ρ1, ..., ρL)← (Z∗p)L; define nym′0 = pk0, σ̄1 = σ1; if L ≥ 2, for 2 ≤ i ≤ L, set σ̄i =

ConvertSigi−1(pki−1, nymi, σi, ρi−1) and W ′i = W
ρi−1ρ

−1
i

i ; for 1 ≤ i ≤ L, set (nym′i, σ
′
i)

= ChangeRepi(nym
′
i−1, nymi, σ̄i, ρi); set cred′ = (nym′1, ..., nym

′
L, σ

′
1, ..., σ

′
L,W

′
2, ...,W

′
L)

and sk′ = ρL(sk); output (cred′, sk′, ρL).

CredProve(params,LP , pk0, skP , pkP , OP , credP ,AP , S,D)↔ CredVerify(params,
pk0)→ {0, 1}

• Prover extracts CLP from credP and computes WLP ← OpenSubset(params,
CLP ,AP , OP , S), ŴLP ← OpenDisjoint(params,CLP .AP , OP ,D).

12

• If LP ≤ λ, Prover computes (cred′P , sk
′
P , ψ)← RandCred(credP , skP , pk0,

LP), W ′LP = Wψ
LP

, and Ŵ ′LP = Ŵψ
LP

.

• Prover sends cred′P ,W
′
LP
, Ŵ ′LP ,S,D.

• Prover proves PoK{α1, ..., αl|(Pα1 , ..., Pαl) = pk′LP }.
• Verifier extracts nym′LP = (pk′LP , C

′
LP

) from credP and infers LP from the length
of cred′P .

• If LP > λ or the PoK fails, Verifier returns 0.

• If ∀2 ≤ i ≤ LP : Verifyi−1(pk′i−1, nym
′
i, σ
′
i) = 1 ∧ e(C′i,W ′i) = e(P,C′i−1),

Verify0(pk0, nym
′
1, σ
′
1) = 1, VerifySubset(params,C′LP , S,W

′
LP

) = 1, and

VerifyDisjoint(params,C′LP ,D, Ŵ
′
LP

) = 1, Verifier outputs 1; otherwise, Verifier
outputs 0.

Similar adjustments can be made to add selective delegation to the variable-length
CL21 scheme [7] and to the issuer-hiding CLP22 scheme [4], since all three construc-
tions randomise message elements in the same way and are therefore compatible with
the same set commitments and witness values. The witness values in Section 4.1
are also compatible with the MSBM23 credential scheme [10], allowing its delegation
mechanism to be used with the more restrictive Blömer and Bobolz model.

In the next subsection, we give an overview of the security proofs for the above
construction, which can be found in full in the appendices. Similar proofs should be
obtainable for the variable-length Crites-Lysyanskaya scheme and the Connolly et al.
scheme with minimal changes to the proof strategy.

4.3 Security analysis

In order to assess the security of this scheme, we must first establish the security goals
of a delegatable, attribute-based credential (DABC): namely correctness, unforgeabil-
ity, and anonymity. In the context of this scheme, these can loosely be defined as
follows:

• Correctness: The scheme is correct if, whenever Setup and KeyGen are run
correctly and the Issue-Receive protocol is executed correctly on correctly gen-
erated inputs including an attribute set X , the receiver outputs a certification
chain that, when used as input to the prover in an honest execution of the
CredProve-CredVerify protocol with input sets S and D such that S ⊆ X and
D ∩ X = ∅, is accepted by the verifier with probability 1.

• Unforgeability: The scheme is unforgeable if:

– a (non-root) user without a correctly-issued credential cannot perform a
showing or issue a credential that would be accepted by a verifier with
non-negligible probability

– a user in possession of a credential for an attribute set X cannot with non-
negligible probability perform a valid showing for sets S and D such that
S 6⊆ X and D ∩ X 6= ∅, even if colluding with other users.

– a user in possession of a credential for an attribute set X cannot with non-
negligible probability issue a valid delegated credential for a set Y 6⊆ X ,
even if colluding with other users.

13

• Anonymity: The scheme is anonymous if, during a showing of a credential, no
verifier, issuer, or coalition of verifiers and issuers can identify the user, identify
past showings of the same credential, or learn anything about the user other
than that they possess a valid credential for the attributes being shown.

Note that the CL19 and CL21 schemes [6, 7] cannot satisfy anonymity in cases
where the credential chain includes a public key (other than the root issuer) whose
secret key is known by the adversary. Such cases are therefore eliminated in the
security game that provides the formal criteria.

In order to formalise the security definitions, we extend the security game from
Crites and Lysyanskaya’s DAC model [6] to account for the addition of attributes to
the credentials, and of subset and disjoint set openings to the showing protocol. The
resulting security game can be found in Appendix A.

Correctness: The correctness of the scheme in section 4.2 follows by inspection. In
particular, it can be seen that it matches Crites and Lysyanskaya’s original mercurial
signature scheme [6], expanded to make the contents of each credential explicit, and
with the addition of attribute sets, attribute witnesses, and verification checks on
attributes.

Unforgeability: The proof of unforgeability for the scheme in Section 4.2 works by
enumerating the ways in which an adversary could achieve a forgery in the attribute-
based security game, and shows how each reduces to either a forgery in the non-
attribute-based mercurial signature model or a breaking of one of the security prop-
erties of the set commitment scheme. The full proof can be found in Appendix B.

Anonymity: The proof of anonymity for the scheme in Section 4.2 is an exten-
sion of the hybrid argument in Crites and Lysyanskaya’s proof of anonymity for the
original mercurial signature construction, which shows that the adversary’s view when
attributes are included is indistinguishable from the case in which all honest parties
have identical attributes; therefore the inclusion of credential attributes and subset
witnesses does not enable the adversary to distinguish between credentials. The full
proof can be found in Appendix C.

5 Conclusion and future work

In this paper, we have introduced a method by which mercurial signatures can encode
and delegate multiple attributes of the credential holder, in keeping with the properties
of selective disclosure and restricted, selective delegation as described by Blömer and
Bobolz. This is an extremely important feature for an anonymous credential system,
providing far more versatility than a credential that does not encode any detailed
attribute information, and so it represents a significant step toward bringing mercurial
signature credentials into line with the functionality available from older credential
schemes.

There are still other major avenues for improving mercurial signature credentials,
however. Most notably, the CL19 mercurial signature scheme suffers from a severe
reduction in its anonymity property, resulting from the fact that an adversary that
has delegated a credential can subsequently recognise its own key in that credential’s
delegation chain. This weakness is addressed by the work of Connolly et al. [4], who

14

use a different key structure in their scheme, but this still only solves it in the honest
parameter model. In theory, a zero-knowledge proof of honest parameter generation
given at the time of delegation would close this weakness, but further work is needed
to accomplish this.

Mercurial signatures also have yet to be extended to a multi-authority model en-
abling their seamless use in systems with multiple issuing authorities, and there is
interest in finding other basic constructions from which mercurial signatures could be
developed, particularly any based on quantum-secure assumptions.

References

[1] Johannes Blömer and Jan Bobolz. Delegatable attribute-based anonymous cre-
dentials from dynamically malleable signatures. In Bart Preneel and Frederik
Vercauteren, editors, Applied Cryptography and Network Security, pages 221–239,
Cham, 2018. Springer International Publishing.

[2] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, Advances in Cryptology — EUROCRYPT 2001, pages 93–118, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[3] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, Advances in Cryptology - CRYPTO 2006, pages 78–96, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[4] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. Improved
constructions of anonymous credentials from structure-preserving signatures on
equivalence classes. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, edi-
tors, Public-Key Cryptography – PKC 2022, pages 409–438, Cham, 2022. Springer
International Publishing.

[5] Ronald Cramer, Ivan Damg̊ard, and Philip MacKenzie. Efficient zero-knowledge
proofs of knowledge without intractability assumptions. In Hideki Imai and Yu-
liang Zheng, editors, Public Key Cryptography, pages 354–372, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[6] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous credentials
from mercurial signatures. In Mitsuru Matsui, editor, Topics in Cryptology –
CT-RSA 2019, pages 535–555, Cham, 2019. Springer International Publishing.

[7] Elizabeth C Crites and Anna Lysyanskaya. Mercurial signatures for variable-
length messages. In Proceedings on Privacy Enhancing Technologies (PoPETs),
pages 441–463. de Gruyter, 2021.

[8] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving
signatures on equivalence classes and constant-size anonymous credentials. Jour-
nal of Cryptology, 32(2):498–546, 2019.

[9] Christian Hanser and Daniel Slamanig. Structure-preserving signatures on equiv-
alence classes and their application to anonymous credentials. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, pages
491–511, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[10] Omid Mir, Daniel Slamanig, Balthazar Bauer, and Rene Mayrhofer. Practical del-
egatable anonymous credentials from equivalence class signatures. In Proceedings
on Privacy Enhancing Technologies (PoPETs), pages 488–513. PETS, 2023.

15

[11] Colin Putman and Keith M. Martin. Selective delegation of attributes in mercurial
signature credentials. In Elizabeth A. Quaglia, editor, Cryptography and Coding,
pages 181–196, Cham, 2024. Springer Nature Switzerland.

16

A Security game for delegatable attribute-based
credentials

Unlike in Crites and Lysyanskaya’s scheme, it is necessary in this scheme’s setup to
specify a maximum length for credential chains. For the purposes of the security game,
this can be assumed to be large enough that it does not obstruct the adversary’s nor-
mal operations, while ignoring adversarial strategies that rely on absurd parameters,
as reducing the maximum credential length only imposes tighter restrictions on the ad-
versary. Similarly, setting the maximum cardinality for attribute sets to be arbitrarily
high maximises the information available to the adversary.

The intuition of this security game is that the adversary A interacts with a chal-
lenger C whose role is to simulate all of the participants in a single-authority delegatable
attribute-based credential system using the mercurial signature construction in sec-
tion 4.2. The challenger’s internal state includes a graph that models each participant
as a node, with directed edges corresponding to credentials that have been issued or
delegated.
A interacts with C by invoking a set of oracles which prompt C to simulate actions

on behalf of the nodes in its credential system, using inputs stored in its internal state
for honest nodes and inputs provided by A for adversarial nodes as appropriate. A
aims to achieve one of two objectives: either it must cause C to flag a forgery, or
it must choose two honest nodes in the system and successfully determine which is
which from their anonymised outputs. The scheme is considered broken if a PPT
adversary can achieve the first goal with non-negligible probability or the second goal
with non-negligible advantage.

The oracles available to A and their purposes are as follows:

• AddHonestParty: Invoked to add a new, honest node to the graph.

• SeeNym: Invoked to create a new pseudonym (i.e. randomised public key) for
an honest node and show it to A, who can later use it as an input to other
oracles.

• CertifyHonestParty: Invoked to have one honest node issue or delegate a creden-
tial to another. A can specify the attributes of this credential, as long as the
issuing node is permitted to certify them.

• VerifyCredFrom: Invoked to have an honest node show its credential to A using
the Prove/Verify protocol. A can specify the subset and disjoint set it wants the
honest node to prove.

• GetCredFrom: Invoked to create an adversarial node and have an honest node
issue or delegate a credential it. A receives the credential.

• GiveCredTo: Invoked to allow A, under the identity of a (potentially fresh)
adversarial node, to issue or delegate a credential to an honest node.

• DemoCred: Invoked to allow A, under the identity of a (potentially fresh) adver-
sarial node, to prove possession of a credential using the Prove/Verify protocol.

• SetAnonChallenge: Invoked to choose two honest nodes for A to attempt to
distinguish between. A random bit is set by C to determine the order in which
the nodes will act in future anonymised interactions, and A’s goal is to guess
the random bit.

• VerifyCredFromAnon: Invoked to have the chosen anonymity nodes both perform
showings of their credentials to A, using fresh pseudonyms unknown to A, in

17

the order determined by the random bit. The showings provide the maximum
amount of information about the intersection of the nodes’ attribute sets.

• GetCredFromAnon: Invoked to have the chosen anonymity nodes both delegate
credentials to A, using fresh pseudonyms unknown to A, in the order determined
by the random bit. A chooses the attribute set to be issued, with the requirement
that both anonymity nodes must be able to issue that set.

• GuessAnon: Invoked only once by A to guess the random anonymity bit set by
SetAnonChallenge.

C flags a forgery if A causes an adversarial node to successfully show or delegate a
credential whose credential chain does not correspond to a legitimate path in C’s graph,
or whose attributes are not a subset of the attributes of earlier honest credentials in the
chain. Note that, for the purposes of finding a path in the graph, edges can be added
from any adversarial node to any other, representing the fact that participants under
the adversary’s control can issue credentials to each other without operating within
the system’s constraints. This flag therefore corresponds either to a case where, at
some point in the credential chain, A produces an apparent credential from an honest
node that never issued such a credential, or to a case where A manages in some
way to subvert the subset witness introduced in section 4.1 and produce a credential
with unauthorised attributes; either of these represents a breach of the unforgeability
property.

The objective for which A attempts to distinguish between two anonymised nodes
corresponds to the anonymity property; after choosing nodes to distinguish between,
A has the opportunity to see credential showings and issuances from both under their
anonymised identities before guessing which is which. The choice of nodes is con-
strained to exclude those which would be trivial to distinguish, such as those on differ-
ent levels or those which have an adversarial key on their credential chain, as per the
weakened anonymity notion inherited from Crites and Lysyanskaya. Any advantage
therefore implies the ability to link the anonymised showings to any non-anonymised
interactions the adversary has seen from the chosen nodes.

The anonymity game has also been streamlined from Crites and Lysyanskaya’s
version of the game by moving the forfeit check to the moment when the challenge is
set, expecting that the adversary will choose the challenge nodes after setting up their
credentials, rather than before. This change is intended only to reduce the number
of oracles needed by the game. Any attack that could be made against Crites and
Lysyanskaya’s game by choosing nodes and then setting up their credentials anony-
mously can still be carried out by setting up those credentials first and then choosing
the nodes and anonymising them.

The full behaviour of the challenger C and its oracles now follows, with changes
from Crites and Lysyanskaya’s game coloured. The challenger has access to hard-
to-compute functions f, fcred, and fdemo, used to recover participant identities from
credentials and showings, and maintains the following state information:

1. A directed graph G(pk0) = (V (pk0), E(pk0)) consisting of a single tree and
singleton nodes. The root node of the tree is called root and has public key pk0.

2. For each node v ∈ V (pk0),

(a) v’s level L(v) (i.e. v’s distance from root).

(b) status(v), which is either honest or adversarial.

(c) If status(v) = honest,

18

i. (pk(v)i∈[λ]), the public keys associated with v for each possible level.

ii. (sk(v)i∈[λ]), the secret keys corresponding to (pk(v)i∈[λ]).

iii. All pseudonyms (randomised public keys) nym1(v), ..., nymn(v) asso-
ciated with v, and aux1(v), ..., auxn(v), their corresponding blinding
factors.

iv. The node’s credential credv, if it exists, along with its attribute set
Av and commitment opening information Ov.

v. An identifying value p̂kv determined using the function f , such that
p̂kv = f(pkv) = f(nymi(v)) for all i ∈ [n].

(d) If status(v) = adversarial, a value p̂kv such that p̂kv = f(nym(v)) for any
pseudonym nym(v) used by the adversary for the node v, and the attribute
set Av associated with the node’s credential if one exists.

3. A forgery flag.

4. An anonymity bit b ∈ {0, 1}, a pair of challenge nodes (u0, u1) and the set of
pseudonyms A has seen for them while interacting anonymously, and the status
of the anonymity attack (undefined, success, fail, or forfeit).

The game is initialised as follows. The parameters params are generated and given
to A. A then specifies whether status(root) is honest or adversarial. If it is honest,
C generates (pk0, sk0)← KeyGen(params); otherwise, A supplies pk0 to C. C sets the
forgery flag to false, picks a random value for the anonymity bit b, and sets the status
of the anonymity challenge to undefined. C stores G(pk0) = (V (pk0), E(pk0)) =
({root}, ∅), with status(root) set as specified by A, pk(root) = pk0, sk(root) = sk0 if
root is honest, and L(root) = 0.
A can then interact with C using the following oracles:

• AddHonestParty(u, l): A invokes this oracle to create a new, honest node u. C
generates (pk(u), sk(u)) ← KeyGenl(params), sets L(u) = l, and returns pk(u)
to A. A supplies the new node’s delegation level in advance for convenience,
since key length depends upon delegation level in this scheme; it would otherwise
be fixed when the node received a credential, and determined by A’s choice of
which node issues that credential.

• SeeNym(u): A invokes this oracle to see a fresh pseudonym for an honest node
u. C samples a random ρ← Zp, stores nym(u) = pk(u)ρ and aux(u) = ρ together
as a new pseudonym for u, and returns nym(u) to A.

• CertifyHonestParty(u, v, S): A invokes this oracle to have the honest node u
issue a credential to the honest node v on the attribute set S. If L(v) =
L(u) + 1, C runs [Issue(params, L(u), pk0, sk(u), pk(u), Ou, credu,Au,S) ↔ Re-
ceive(params,L(u), pk0, sk(v)L(u)+1, pk(v)L(u)+1, S)] → (credv, Ov). If the pro-
tocol succeeds, C adds the edge (u, v) to the graph, and sets Av = S.

• VerifyCredFrom(u, S,D): A invokes this oracle to have the honest node u prove
to A that it has a credential at level L(u) including the attributes in the set S
and not those in the set D. C runs CredProve(params, L(u), sk(u),
pk(u), Ou, credu,Au, S,D) ↔ A.

• GetCredFrom(u, nymR, S): A invokes this oracle to have the honest node u is-
sue a credential on the attribute set S to an adversarial pseudonym nymR. C
creates a new adversarial node v, sets its identity to be p̂k(v) = f(nymR),
and runs Issue(params,L(u), pk0, sk(u), pk(u), Ou, credu,Au, S) ↔ A, storing

19

the pseudonym generated for u by randomising u’s credential unless u is root.
If the protocol succeeds, C then adds the edge (u, v) to the graph and stores
L(v) = L(u) + 1.

• GiveCredTo(LI , nymI , v, S): A invokes this oracle to issue a credential on at-
tribute set S to an honest node v under the pseudonym nymI (which may be
pk0 if status(root) is adversarial). If L(v) 6= LI + 1, C aborts; otherwise C runs
[A ↔ Receive(params,LI , pk0, sk(v), pk(v),S)] → (credv, Ov). If credv 6= ⊥, C
computes fcred(credv) = (p̂k0, p̂k1, ..., p̂kLI) to reveal the identities of the nodes

on the credential chain. If according to C’s data structure there is some p̂ki in the
chain such that p̂ki = f(nym(u)) for an honest node u but ˆpki+1 6= f(nym(v′))
for any v′ that received a credential from u, then C sets the forgery flag to true.
If p̂kLI = f(nym(u)) for some honest node u (that is, the last credential in the
chain was issued honestly), and S 6⊆ ALI , C sets the forgery flag to true. Oth-
erwise, C identifies the nearest honest ancestor u′ of v in the chain, then finds
all adversarial nodes associated with the next identity after u′ on the chain. If
S 6⊆ S′ for every attribute set S′ associated with a credential one of these adver-
sarial nodes received from u′, C sets the forgery flag to true. If credv 6= ⊥ and
the forgery flag remains false, C fills in the graph as follows: starting from the
nearest honest ancestor of v in the chain (or root if there is no honest ancestor),
C creates a new node for each (adversarial) identity in the chain between that
node and v, setting each node’s identity to the appropriate p̂kj and each node’s
attribute set to S. C then adds edges between each new node and its immediate
neighbours in the chain.

• DemoCred(LP , nymP ,S,D): A invokes this oracle to prove possession of a cre-
dential at level LP with an attribute set including the set S and excluding the set
D. C runs [A ↔ CredVerify(pk0)] → output (0 or 1). If output = 1, C computes
fdemo(transcript) = (p̂k0, p̂k1, ..., p̂kLP) to reveal the identities on the demon-
strated credential chain, then determines whether a forgery has occurred by the
same process as in GiveCredTo; in the case that the credential being demon-
strated was issued by an honest node, C also checks whether D ∩ ALP = ∅,
where ALP is the attribute set issued with that credential, and sets the forgery
flag to true if the check fails. If output = 1 and the forgery flag remains false, C
creates a new adversarial node v for the identity nymP and sets L(v) = LP . C
then fills in the graph by the same process as in GiveCredTo.

• SetAnonChallenge(u0, u1): A invokes this oracle to choose two distinct, honest
nodes u0 and u1 which it will attempt to distinguish between for the anonymity
challenge. C checks that the chosen nodes are both honest with u0 6= u1, and
that both possess credentials such that L(u0) = L(u1) and neither credential
has an adversarial node on its chain other than root, which C can check using
fcred. If these checks all succeed, C sets these nodes as the anonymity challenge
pair.

• VerifyCredFromAnon(): A invokes this oracle to have the nodes u0 and u1 prove
possession of their credentials to A, provided that the anonymity challenge has
been set. C runs [CredProve(params,L(ub), sk(ub), pk(ub),
Oub , credub ,Aub , S,D) ↔ A], followed by the same protocol but for ub̄, where
S = Au0 ∩ Au1 and D = Āu0 ∩ Āu1 .

• GetCredFromAnon(b∗, nymR, S): A invokes this oracle to receive a credential
from the node ub∗ , where b∗ indicates either b or b̄, provided that the anonymity

20

challenge has been set. If S ⊆ Au0 ∩ Au1 , C creates a new adversarial node v
with identity p̂kv = f(nymR) and runs [Issue(params,L(ub∗), pk0,
sk(ub∗), pk(ub∗), Oub∗ , credub∗ ,Aub∗ , S) ↔ A]. C then adds the edge (ub∗ , v) to
the graph and sets L(v) = L(ub∗) + 1.

• GuessAnon(b′): If b′ = b, the status of the anonymity attack is set to success.
Otherwise, it is set to fail.

With this game in place, the unforgeability and anonymity security properties for
delegatable attribute-based credentials are formally stated as follows:

A delegatable attribute-based credential scheme is unforgeable if there exist func-
tions f, f cred, fdemo such that for all PPT A, there exists a negligible function υ such
that the probability that the forgery flag will be set to true in the single-authority game
is at most υ(k), where k is the security parameter.

A delegatable attribute-based credential scheme is anonymous if there exist func-
tions f, fcred, fdemo such that for all PPT A, there exists a negligible function υ such
that the probability that the status of the anonymity attack in the single-authority
game will be success is at most 1/2 + υ(k), where k is the security parameter.

21

B Unforgeability proof

Theorem 1. If the underlying mercurial signature scheme is unforgeable, the set
commitment scheme is secure, and the groups G1 and G2 are DDH-hard, the attribute-
based mercurial signature scheme is unforgeable.

Proof. The unforgeability of a DABC scheme could be broken in several ways, with
each case requiring its own proof. Specifically, the adversary could provide a credential
chain including a credential from an honest node that never issued such a credential
(case 1), a credential whose attribute commitment has been changed since it was issued
(case 2), or a credential chain that verifies successfully despite at least one credential
having an associated attribute set that is not a subset of a preceding credential in the
chain (case 3).

By considering each of these in turn, it can be shown that any PPT adversary
A capable of breaking the unforgeability of this scheme can be used in a reduction
B either to break the unforgeability of Crites-Lysyanskaya mercurial signatures or to
break the security properties of extended FHS19 set commitments.

In case 1, Crites and Lysyanskaya’s original proof of unforgeability [6] still holds;
the reduction is capable of performing all of the functions added by this scheme when
acting as the challenger for A, even without knowledge of the challenge secret key for
its own forgery game, since a node’s secret key is not directly needed to generate its
attributes, commitments, or witnesses.

In case 2, the adversary can be used by the same signature unforgeability reduction
B used in the proof against credential forgery. If B does not detect a credential forgery,
it identifies the nearest (honest) node to the end of the chain for which B knows the
secret key (taking advantage of the weakened anonymity notion to recognise known
keys on the chain).

If the node identified has issued a credential to u∗, the randomly-chosen honest
node to which B has assigned the challenge key it is attempting to learn, B assumes
with probability 1/2 that the next credential on the chain belongs to u∗; otherwise
B assumes the next credential is from an adversarial node. If B makes the wrong as-
sumption, A may learn that it is operating within the reduction, causing the reduction
to fail.
B then checks whether there has been an attribute forgery in the same way as

the challenger C would. If a forgery is detected and B has not assumed that u∗ is
on the chain, the reduction fails as this forgery is not associated with B’s challenge
key. If a forgery is detected with u∗ assumed to be the last honest node on the
chain, B outputs (pk∗,M∗, σ∗) = (nymu∗ , (nymR, CR), σR), where (nymR, CR) is the
pseudonym and commitment associated with the next credential in the chain after u∗,
and σR is the signature on that credential.

Assuming WLOG that there is an a priori upper bound qa on the number of calls
the adversary can make to the AddHonestParty oracle, and considering that the identity
of u∗ is independent of the adversary’s view, there is at least a 1/qa probability that
the last honest node in the credential chain is u∗ when a forgery occurs. In this case,
there is a further 1/2 probability that B will correctly assume u∗’s identity. If u∗ is
the last honest node on the chain, B correctly assumes its identity, and A achieves
a forgery using a change to the set commitment in a credential issued by an honest
node, B’s output will be a successful answer to the unforgeability game for mercurial
signatures.

For case 3, in which A achieves an attribute forgery without forging signed data,

22

consider A running within a different PPT simulation of the challenger, B′, which has
access to a valid set of params which it uses to set up the game, but does not know
the trapdoor a for those params. Unlike B, B′ knows all secret keys associated with
honest nodes; it can therefore be seen that B′ can simulate all of the functions of C
except for f , fcred, and fdemo, which are outside A’s view, and can identify each honest
node on a credential chain in O(qa) time using the weakened anonymity notion.

For A to achieve an attribute forgery without forging a signature, either the subset
S or disjoint set D that A is disclosing or issuing must not match the attribute set
A of the credential being used (case 3a), or there must be some adversarial node v
after the last honest node in the credential chain such that the preceding witness tag
WLv−1 verifies successfully but either A cannot open v’s commitment Cv to a subset
of the previous credential’s attributes or A knows multiple valid openings of Cv (case
3b).

In case 3a, we have that the final (adversarial) credential in the chain has a com-
mitment CA on some attribute set A, and the adversary either issues a credential on
an attribute set S 6⊆ A or performs a subset opening to S 6⊆ A and/or disjoint opening
to D ∩ A 6= ∅.

To issue a credential in this way, A first gets a commitment ĈR to S from the (hon-
est) receiver, along with an encoding P̂OR of the corresponding opening information,
and then must produce a partial witness tag W̄R such that e(ĈR, W̄R) = e(P̂OR , CA).
Since the receiver is honest, ĈR = (P̂OR)fS(a), and so this pairing equation is equiva-
lent to e(P̂ fS(a), W̄R) = e(P̂ , CA), and therefore VerifySubset(params, CA, S, W̄R) =
1. This implies that A could break the (subset) soundness property of set commit-
ments by submitting (CA, A, OA, S, W̄R), where OA is A’s opening information for
CA.

Similarly, to perform a subset opening or a disjoint opening, A must provide a
witness WA satisfying VerifySubset(params, CA, S, WA) = 1 or VerifyDisjoint
(params, CA, D, WA) = 1, respectively. If S 6⊆ A or D ∩ A 6= ∅, this likewise implies
that A could break the soundness property of set commitments.

These outcomes represent breaking the soundness property if and only if A does
not have access to the trapdoor a. This must be the case, as A cannot distinguish
whether or not it is running within the simulation B′, which itself does not know a
and so cannot leak it to A.

In case 3b, where A’s forgery is on the credential chain rather than in the final
witness value, there must be at least one adversarial credential with an attribute com-
mitment that A either cannot open to a subset of the previous credential’s attribute
set, or can open to multiple distinct sets, since if all commitments on the chain open
only to a subset of the previous committed set then no forgery has taken place.

Given that A does not know the trapdoor a, if A is able to open a commitment to
two different sets, it trivially has a solution to the computational binding game for set
commitments. If, on the other hand, there is an adversarial node v whose commitment
Cv A cannot open to a subset of the set committed to by the previous commitment ĈI ,
A must be able to construct a witness tag Ŵ that still satisfies e(Cv, Ŵ) = e(P, ĈI).

If A can find a solution when Cv commits to Av, ĈI commits to AI , and Av 6⊆ AI ,
then (ĈI , AI , OI , Av, Ŵ) is a solution to the soundness game for set commitments.
This implies that either A can break the soundness property or A does not know all
of these values and is therefore unable to open one or both commitments.

If there is any adversarial commitment that A is unable to open, there must be a
last such commitment, CA, from which A is able to show a valid subset witness WA

either for a declared subset S as part of DemoCred or for an openable commitment ĈS

23

in the next credential on the chain (which may also be adversarial).
For WA to be accepted, it must satisfy e(WA, ĈS) = e(CA, P̂) for the following

credential case, or e(WA, P̂
fS(a)) = e(CA, P̂) for the DemoCred case. This simplifies

to a requirement that CA = W
ψfS(a)
A , where ψ is the opening value for ĈS in the

following credential case, or 1 in the DemoCred case.
Note that if there is a following credential, its holder determines ψ; if the credential

is honest, the challenger will choose ψ uniformly randomly, so A cannot predict it with
non-negligible probability; we can therefore discount the honest credential case and
assume that A has control of ψ.

If the credential preceding CA also cannot be opened by the adversary, its wit-
ness must satisfy e(CA, ŴA−1) = e(P, ĈA−1). Substituting the relationship found

between CA and WA gives e(W
ψfS(a)
A , ŴA−1) = e(P, ĈA−1), which requires that ĈA−1

= Ŵ
wAψfS(a)
A−1 , where Pwa = WA. This relationship can be extended similarly over an

indefinite number of delegation levels.
While running GetCredFrom, A must prove the ability to open its commitment;

there must therefore be a last adversarial commitment, CA0 , before those the A
cannot open, which opens to a set A. Since an attribute forgery must occur, we
have S 6⊆ A. For the credential chain to verify, it must be the case that CA0 =
P ρfA(a) = Pwa0 ...wanψfS(a), where Pwa0 , ..., Pwan = WA0 , ...,WAn are the witness
tags attached to n unopenable credentials. This gives the relationship wa0 ...wan =
ρfA(a)ψ−1fS(a)−1.

Cancelling out any overlapping attributes in A and S, it must be the case that
one or more of the witness exponents wa0 , ..., wan and/or ρψ−1 include a term in
fS\(A∩S)(a)−i for some 0 < i ≤ 1, with A able to construct ρψ−1 and Pwa0 , ..., Pwan .
However, A cannot distinguish whether it is running within B′, which does not know

a or PF (a)−i for any polynomial F and positive i and so cannot give A what it needs
to construct these values.
A therefore cannot reliably construct a valid credential chain with unopenable

commitments unless the result is still that later attribute sets are subsets of earlier ones,
so any instance of a case 3 forgery corresponds to a solution to the soundness game or
the computational binding game for set commitments. Combined with the reductions
from cases 1 and 2 to breaking unforgeability of mercurial signatures, this completes the
proof of unforgeability for attribute-based mercurial signature credentials as presented
in section 4.2.

24

C Anonymity proof

Theorem 2. If the underlying mercurial signature scheme is anonymous, the set
commitment scheme is secure, and the groups G1 and G2 are DDH-hard, the attribute-
based mercurial signature scheme is unforgeable.

Proof. Let Γ(k) be a polynomial and λ be the a priori maximum number of delegation
levels for an instantiation of the scheme. For 0 ≤ i ≤ Γ(k), let Hi be the hybrid
experiment defined by the following modification to the single-authority security game.

Upon initialisation, the challenger generates λ fixed key pairs (sk1, pk1), ..., (skλ, pkλ),
such that each key pair (skl, pkl) can be used by a node u with L(u) = l. For an adver-
sary A’s jth query to AddHonestParty, j ≤ i, parametrised with level l ≤ λ, the chal-
lenger generates a new, honest node and generates its public key using ConvertPK(pkl).
For the jth query to AddHonestParty, j > i, the challenger creates a new, honest node
with its public key generated as in the unmodified security game.

Suppose that for (not necessarily easy-to-compute) functions f , fcred, and fdemo,
there exists a polynomial Γ and a PPT adversary A making at most Γ(k) queries
to the AddHonestParty oracle in the single-authority hybrid security game such that
there exists a non-negligible ε(k) such that for some i(k), A can distinguish Hi(k) from
Hi(k)+1 with advantage ε(k).

Using the same process as in the anonymity proof in the full version of Crites
and Lysyanskaya’s original mercurial signature paper [6], a PPT reduction B can be
constructed to break public-key class-hiding of mercurial signatures, running A as a
subroutine and acting as its challenger.
B receives as input the public parameters params and two public keys pk and

pk′, with the goal of determining whether or not these public keys are of the same
equivalence class. B chooses some l ≤ λ and sets its fixed public key pkl = pk, setting
the key lengths in its scheme parameters such that pk is of the appropriate length for
delegation level l.
B then operates as a normal challenger for the game Hi(k), using a zero-knowledge

simulator to convince A that it knows the secret key for pk as is standard. As Crites
and Lysyanskaya show, it is capable of performing all the challenger functions despite
not having access to f , fcred, and fdemo, as these functions are only used to maintain
the edges of the graph which remains independent of the adversary’s view unless the
adversary produces a forgery, which can only occur with negligible probability.

When A makes its (i + 1)th query to AddHonestParty, unless it requests the new
node’s level be l, B aborts. If the requested level is l, B sets the new node’s public
key as pk′, again using a zero-knowledge simulator to convince A that it knows the
corresponding secret key.

This reduction differs from the original only in that it must handle attribute com-
mitments, which it can do exactly as the challenger in the security game would, and
in that it succeeds only if A’s (i+ 1)th query to AddHonestParty is parametrised with
the delegation level corresponding to the length of the challenge public keys pk and
pk′ that B is attempting to distinguish.

Since the length of B’s challenge keys is independent of A’s view, this failure occurs
with probability λ−1

λ
. In the remaining case, the (i+ 1)th honest node has underlying

public key pkl if and only if pk and pk′ are of the same equivalence class, meaning
that B is running Hi+1 if they are equivalent and Hi otherwise.

Thus, B’s probability of determining whether pk and pk′ are in the same equivalence
class is proportional to A’s probability of distinguishing the hybrids, and B succeeds

25

with probability ε(k)
λ

, which is non-negligible if ε(k) is non-negligible. Therefore, as-
suming public-key class-hiding for mercurial signatures holds, none of the hybrids Hi
can be distinguished from H0, the unmodified security game.

Now consider a further hybrid experiment, HA, defined by the following security
game, the effect of which is to replace all attribute commitments with random group
elements and use knowledge of the trapdoor a to forge subset witnesses. The game
is initialised in the same way as HΓ(k), maintains the same state information plus an
additional value ρu for each honest node u, and provides the same oracles to A, but
behaves as follows when the oracles are called:

• AddHonestParty(u, l): If u ∈ V (pk0) or l > λ, abort. Otherwise, sample a
random ρ1, ρ2 ← Zp, add a new node u to the graph, set status(u) = honest,
ρu = ρ2, and (sk(u), pk(u)) = (ConvertSK(skl, ρ1),ConvertPK(pkl, ρ1)), and re-
turn pk(u) to A.

• SeeNym(u): If u /∈ V (pk0) or status(u) 6= honest, abort. Otherwise, sample
a random ρ ← Zp, generate (nym(u), nym(u)) ← (ConvertPK(u, ρ), ρ), store
nym(u) and aux(u) at u, and return nym(u) to A.

• CertifyHonestParty(u, v, S): If u /∈ V (pk0), v /∈ V (pk0), status(u) 6= honest,
status(v) 6= honest, credu = ⊥ ∧ L(u) 6= 0, credv 6= ⊥, or L(v) 6= L(u) + 1,
abort. Otherwise, if L(u) = 0, compute σ ← Sign0(sk0, (pk(v),
P ρv)) and set credv = (pk(v), P̂ ρv , σ). If L(u) > 0, compute (cred′u, sk′(u),
ψ) ← RandCred(credu, sk(u), pk0, L(u)) and σ ← Sign(sk′(u), (pk(v), P ρv)),

and set credv = (cred′u, P
ψρuρ

−1
v , pk(v), P̂ ρv , σ). Add (u, v) to E(pk0) and set

Av = S.

• VerifyCredFrom(u, S, D): If u /∈ V (pk0), status(u) 6= honest, credu = ⊥, S 6⊆ Au,
or D ∩ S 6= ∅, abort. Otherwise, run CredProve(params, L(u), sk(u), pk(u), (0,
ρufS(a)−1), credu, S, S, D) ↔ A.

• GetCredFrom(u, nymR, S): If u /∈ V (pk0), status(u) 6= honest, credu = ⊥,
S 6⊆ Au, or the length of nymR is not suitable for L(u)+1, abort. Otherwise, add
a new node v to V (pk0) and set status(v) = adversarial, p̂k(v) = f(nymR), and
L(v) = L(u)+1, then run Issue(params, L(u), pk0, sk(u), pk(u), (0, ρufS(a)−1),
credu, S, S) ↔ A, storing the pseudonym generated for u by randomising u’s
credential unless u is root. If the protocol succeeds, add the edge (u, v) to E(pk0)
and store Av = S.

• GiveCredTo(LI , nymI , v, S): If v /∈ V (pk0), status(v) 6= honest, credv 6= ⊥, or the
length of nymI is not suitable for level LI , abort. Otherwise, run a variation on
[A ↔ Receive(params,LI , pk0, sk(v), pk(v), S)] → (credv, Ov) in which (CR, OR)
is not generated from Commit(params, AR), but is set to (P ρv , (0, ρvfS(a)−1)).
If credv 6= ⊥, update the graph in the same way as in HΓ(k), and store credv.

• DemoCred(LP , nymP , S, D): Run [A ↔ CredVerify(pk0)] → output (0 or 1). If
output = 1, update the graph as in HΓ(k).

• SetAnonChallenge(u0, u1): If the anonymity game’s status is undefined, u0, u1 ∈
V (pk0), status(u0) = status(u1) = honest, credu0 6= ⊥, credu1 6= ⊥, and
L(u0) = L(u1), use fcred to identify all nodes on the credential chains of u0

and u1. If all of these nodes (except potentially root) are honest, set u0 and u1

as the anonymity challenge nodes and choose a random b ∈ {0, 1} to store.

• VerifyCredFromAnon(): If the anonymity game’s status is not undefined or u0

and u1 have not been set, abort. Otherwise, set S = Au0∩Au1 and D = Āu0∩Āu1 ,

26

and run [CredProve(params, L(ub), sk(ub), pk(ub), (0, ρubfS(a)−1), credub , S, S,
D) ↔ A], followed by the same protocol but for ub̄.

• GetCredFromAnon(b∗, nymR, S): If the anonymity game’s status is not undefined,
u0 and u1 have not been set, S 6⊆ Au0 ∩ Au1 , or the length of nymR is not suit-
able for L(ub) + 1, abort. Otherwise, create a new adversarial node v with
identity p̂kv = f(nymR) and L(v) = L(ub) + 1, and run [Issue(params, L(ub∗),
pk0, sk(ub∗), pk(ub∗), (0, ρub∗ fS(a)−1), credub∗ , S, S)↔ A], then if the protocol
succeeds add the edge (ub∗ , v) to the graph.

• GuessAnon(b′): If the status of the anonymity attack is not undefined, abort.
If b′ = b, the status of the anonymity attack is set to success; otherwise, it is
set to fail.

This experiment omits forgery checks, as well as the special handling case for
when the trapdoor a appears in an attribute set, for brevity. These changes can only
be distinguished by A if A achieves a forgery that HΓ(k) would recognise, or if a
appears in an attribute set, in which case A would learn a if operating in HΓ(k), and
could use that knowledge to achieve an attribute forgery. Since forgeries cannot be
achieved with non-negligible probability in the unmodified security game, and HΓ(k)

is indistinguishable from the unmodified game, neither of these outcomes can occur
with non-negligible probability.

With the exception of those cases, the adversary’s view in HA is identical to that in
HΓ(k), since for each honest node u, ρu in HA is distributed identically to ψfAu(a) in
HΓ(k), and the honest commitments and witness values are therefore indistinguishable
between the two games.

For 0 ≤ i ≤ Γ(k), let Ĥi be the hybrid experiment defined by the following
modifications to HA. When initialising the game, for i ∈ [λ], C samples and stores
zi ←R Zp. For an adversaryA’s jth valid query to AddHonestParty, j ≤ i, parametrised
with level l ≤ λ, C chooses ρ2 = ρ1zl. For the jth query to AddHonestParty, j > i, C
samples ρ2 randomly as in HA. By definition, Ĥ0 is identical to HA.

It can be seen by inspection that A’s view in ĤΓ(k) is independent of the anonymity
bit, since if u0 and u1 are chosen such that SetAnonChallenge succeeds, then L(u0) =
L(u1), sk(u1) ∈ [sk(u0)]Rsk, pk(u1) ∈ [pk(u0)]Rpk, and credu1 ∈ [credu0]RM , so the
output of RandCred (and by extension every value shown to A during the Issue and
CredProve protocols) is distributed identically regardless of whether it is run on u0’s
or u1’s credential.

Now suppose that for the functions f , fcred, and fdemo, there exists a polynomial Γ
and a PPT adversary A making at most Γ(k) queries to the AddHonestParty oracle in
the single-authority hybrid security game such that there exists a non-negligible ε(k)
such that for some i(k), A can distinguish Ĥi(k) from Ĥi(k)+1 with advantage ε(k).

Let B1 be a PPT reduction running A as a subroutine and acting as its challenger,
attempting to win the following game for some level l ≤ λ and with G1 and G2 swapped
if l is even:

Pr[PP ← PPGenl(1
k); (pk, sk)← KeyGenl(PP); r0, r1, ρ← Z∗p;

(pk′, sk′)← (ConvertPK(pk, ρ),ConvertSK(sk, ρ)); b← {0, 1};
b′ ← ASign(sk, ·), Sign(sk′, ·)(pk, P r0 , pk′, P rbρ) : b = b′] ≤ 1

2
+ υ(k)

B1 can win this game as follows. When initialising the game for A, B1 sets pkl =
pk and skl = (1)λ+1−l. Whenever B1 needs to produce a signature on a message
M using pk∗ ∈ [pkl]Rpk , it forwards M to the signing oracle for pk to obtain σ,

27

extracts the blinding factor ρ from the stored sk∗ corresponding to pk∗, and produces
ConvertSigl(pk, M , σ, ρ). B1 also stores P r0 in place of zl; using knowledge of P r0

and the trapdoor a, along with a zero-knowledge simulator, it is possible for B1 to
construct all outputs in A’s view as if zl = r0, even without knowing r0.

When A calls AddHonestParty(u, l′) for the jth time, j ≤ i, B1 randomly samples
ρ1 and sets ρ2 = ρ1zl′ . If l′ = l, P ρ1zl is stored in place of ρ2, since B1 does not directly
know zl. If u is later issued a credential, P ρ1zl will become its attribute commitment.
When A calls AddHonestParty(u, l′) for the jth time, j > i+ 1, B1 samples ρ1 and ρ2

randomly, as in HA.
When A calls AddHonestParty(u, l′) for the jth time, j = i+ 1, B1 checks whether

l′ = l. If not, B1 aborts the game. If so, B1 sets pk(u) = pk′ and sk(u) = (1)λ+1−l,
and stores P rbρ in place of ρ2. Whenever B1 needs to produce a signature using pk(u),
it uses the signing oracle for pk′, and when B1 needs to use ρu, it can produce all
the necessary outputs in A’s view using P rbρ, the trapdoor a, and a zero-knowledge
simulator, in the same way as for zl.

When B1 handles the (i+1)th node u created in this way, the result is that if b = 0
in B1’s game, there is some ρ such that pk(u) = ConvertPK(pkl, ρ) and u’s commitment
P ρu = P zlρ, and so B1 emulates Ĥi, whereas if b = 1, P ρu = P r1ρ which is distributed
identically to a randomly sampled P ρ2 , and so B1 emulates Ĥi+1.

The reduction succeeds only if l′ = l for the (i+ 1)th call to AddHonestParty(u, l′);
since a version of this reduction exists for any l ≤ λ, let B1 be the one with the highest
chance of success, which succeeds with probability at least 1

λ
. Since A can distinguish

between Ĥi(k) and Ĥi(k)+1 with advantage ε(k), B1 can win its game with advantage
ε(k)
λ

, which is non-negligible if ε(k) is non-negligible.
Next, consider the following game, defined for the same l as B1’s game:

Pr[PP ← PPGenl(1
k); (pk, sk), (pk′1, sk

′
1)← KeyGenl(PP); r0, r1, ρ← Z∗p;

(pk′0, sk
′
0)← (ConvertPK(pk, ρ),ConvertSK(sk, ρ)); b← {0, 1};

b′ ← ASign(sk, ·), Sign(sk′b, ·)(pk, P r0 , pk′b, P
rbρ) : b = b′] ≤ 1

2
+ υ(k)

This game is the same as B1’s game with the exception that if b = 1, the adversary
is given a fresh public key instead of a randomised copy of pk. Assume there exists a
PPT adversary A∗ capable of distinguishing these two games; then a reduction B2 can
be constructed to break public key class-hiding for mercurial signatures by running
A∗ as a subroutine as follows.

Given (pk1, pk
β
2) by the class-hiding challenger, B2 extracts the first element,

X1 = pk1[1], X2 = pkβ2 [1], from each key. B2 then sets b = 1, samples r0 and r1

randomly, and passes (pk1, Xr0
1 , pkβ2 , Xr1

2) to A∗. The two games are identical when
b = 0, so setting b = 1 can only increase the probability of A∗ successfully distinguish-
ing them, and Xr0

1 and Xr1
2 are distributed identically to P r0 and P r1ρ. If β = 0,

pkβ2 = ConvertPK(pk1, ρ), so B2 simulates B1’s game. If β = 1, pkβ2 is independently
generated, so B2 simulates the new game. Therefore, if A∗ can distinguish the two
games with non-negligible probability, B2 can break public key class-hiding.

Because the two games are indistinguishable, if B1 can win its original game with
non-negligible advantage, it can also win the modified game with non-negligible advan-
tage. However, B1 can therefore also be used by B2, as the challenge of distinguishing
the two games when b = 1 is the same as the challenge of solving the second game
when b is random.

Therefore, if public key class-hiding holds for Crites-Lysyanskaya mercurial signa-
tures, B1 cannot win either game with non-negligible advantage. A therefore cannot

28

have a non-negligible advantage to distinguish Ĥi from Ĥi+1, and so ĤΓ(k) is indis-

tinguishable from Ĥ0, and by extension from HA, HΓ(k), and finally H0, which is
the unmodified single-authority security game in section 5.1. Finally, because the
adversary’s view in ĤΓ(k) is independent of the anonymity bit, and ĤΓ(k) is indistin-
guishable from the unmodified game, the adversary’s view must be independent of the
anonymity bit in the unmodified game.

29

