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Abstract—Privacy-preserving machine learning (PPML) tech-
niques have gained significant popularity in the past years.
Those protocols have been widely adopted in many real-world
security-sensitive machine learning scenarios, e.g., medical care
and finance. In this work, we introduce Aegis – a high-
performance PPML platform built on top of a maliciously se-
cure 3-PC framework over ring Z2` . In particular, we propose
a novel 2-round secure comparison (a.k.a., sign bit extraction)
protocol in the preprocessing model. The communication of its
semi-honest version is only 25% of the state-of-the-art (SOTA)
constant-round semi-honest comparison protocol by Zhou et
al. (S&P 2023); communication and round complexity of its
malicious version are approximately 25% and 50% of the
SOTA (BLAZE) by Patra and Suresh (NDSS 2020), for ` = 64.
Moreover, the overall communication of our maliciously secure
inner product protocol is merely 3` bits, reducing 50% from
the SOTA (Swift) by Koti et al. (USENIX 2021). Finally, the
resulting ReLU and MaxPool PPML protocols outperform the
SOTA constructions by 4× in the semi-honest setting and 100×
in the malicious setting, respectively.

1. Introduction

In the era of big data, privacy protection, and compliance
continues to be a matter of paramount concern among
individuals and organizations alike. With the rise of various
privacy regulations, such as GDPR, the need for privacy-
preserving mechanisms has intensified. Privacy-preserving
machine learning (PPML) is an emerging privacy-enhancing
technique that enables secure data mining and machine
learning while maintaining the privacy and confidentiality
of the underlying data.

Secure multi-party computation (MPC) [2], [20], [41]
allows n parties to jointly evaluate certain functions without
revealing their private inputs, and it is a typical crypto-
graphic tool to realize PPML [8], [29], [30], [33], [36],
[38] in the multi-server setting. (This work focuses on 3-
party MPC, denoted as 3-PC.) Most of these protocols [10],
[37] are designed for the semi-honest setting; whereas, the
state-of-the-art (SOTA) maliciously secure PPML protocols
suffer a significant performance overhead. For instance, the
maliciously secure multiplication protocol [16], [27] is at
least 2× slower than its semi-honest version.

PPML-friendly MPC protocols usually operate over a
finite ring Z2` to facilitate the fixed point arithmetics.
However, it is more difficult to design maliciously secure
MPC over Z2` than MPC over a prime-order finite field
Zp. Recently, there has been a series of works [19], [22],
[31], implementing efficient maliciously secure protocols
over Zp. Certain techniques used in MPC over Zp to achieve
malicious security cannot be directly adopted to the MPC
over Z2` as elements in Z2` may not have an inverse. Some
attempts [14], [18], [24] have been made to transform those
techniques to MPC over Z2` , but the resulting maliciously
secure protocols come with a 2× communication overhead.
Alternatively, another line of work [16], [27], [33] tries
to design maliciously secure MPC over Z2` from scratch.
However, their solutions are still significantly slower than
the corresponding semi-honest protocols.

Another challenge of PPML is that machine learning al-
gorithms often utilize many non-arithmetic functions, which
cannot be efficiently evaluated by MPC. For instance, the
activation functions used in machine learning, such as Rec-
tified Linear Unit (ReLU), and MaxPool, extensively use
secure comparisons. One approach [11], [25], [30], [34] is
to mix arithmetic circuits and boolean circuits, evaluating
multiplication and addition on the arithmetic circuits and the
non-arithmetic functions, e.g., comparison and shift, on the
boolean circuits. However, this method needs costly share
conversion between arithmetic and boolean fields, which
typically requires logarithmic communication rounds w.r.t.
the share length. Recently, many SOTA PPML protocols
[5], [28], [37], [38], [43] propose tailor-made protocols
to evaluate certain non-arithmetic functions, e.g., compar-
ison and ReLU, eliminating the need for share conversion.
However, Falcon [38] still needs logarithmic communication
rounds; SecureNN [37] and CrypTFlow [28] require more
than 8 rounds of communication, and in most cases, it is
even more than logarithmic rounds (` > 32, ABY3 [30]).
Boyle et al. [5] introduce the function secret sharing (FSS)
scheme to perform comparison. It only requires one round
of communication in the online phase, as a sacrifice, it
introduces massive computation and offline communication,
which is O(κ`) where the security parameter κ = 128. Our
experiments (Cf. Sec. 6) show that the performance of FSS
in most practical scenarios is far worse than other schemes
in terms of overall running time. Recently, Zhou et al. [43]



proposes a novel 2-round comparison protocol based on
probabilistic truncation, and it costs O(`2) communication.
Nevertheless, when encountering a large ring size `, it per-
forms even worse than FSS. To the best of our knowledge,
there is no efficient constant-round 3-PC protocol with low
communication for non-linear function evaluations.

Our results. In this work, we propose Aegis – a maliciously
secure PPML platform that is based on 3-party MPC in
the honest majority setting. The underlying share of our
3-PC protocol originates from a variant of the replicated
secure sharing (RSS) [10]; that is, to share x ∈ Z2` , P0

holds (r1, r2), P1 holds (m = x − r, r1), and P2 holds
(m = x− r, r2) where r = r1 + r2.

As one of our main results, we propose a 2-round secure
comparison protocol ΠSignBit in the semi-honest setting.
Note that in PPML over Z2` , the secure comparison problem
is equivalent to the sign bit extraction problem, i.e. checking
if sign(x) = 0 where sign(x) denotes the sign bit (a.k.a., the
left-most bit) of x. Intuitively, our protocol works as follows.
For a ∈ Z2` , let â := a − 2`−1 · sign(a) denote the value
a after removing its sign bit. Hence, m := sign(m)‖m̂ and
r := sign(r)‖r̂. Observe that since x = m + r mod 2`, the
sign bit of x equals to sign(r)⊕ sign(m)⊕ (m̂ ?

≥ 2`−1 − r̂),
where the boolean check (m̂ ?

≥ 2`−1− r̂) represents the carry
bit from m̂ + r̂. Therefore, our main task is to obliviously
evaluate (m̂ ?

≥ 2`−1− r̂), where 2`−1− r̂ held by P0 and m̂
held by both P1 and P2. For this comparison, we can locate
and check the highest different bit of 2`−1 − r̂ and m̂ in
binary. Let s := m̂⊕ (2`−1− r̂). Notice that the position of
the highest different bit between 2`−1−r̂ and m̂ is equivalent
to the position of the first non-zero bit of s. Denote such a
position as ζ, and denote the ζ-th bit of m̂ as m̂ζ . It is easy
to see that m̂ζ = (m̂ ?

≥ 2`−1 − r̂).
Without considering security, m̂ζ can be determined

through the following steps. (i) Compute s′ as the prefix-
sum of s, i.e., s′i :=

∑i
k=0 sk for i ∈ Z`. (ii) Compute

s′′i := s′i − 2si + 1. We argue that s′′ will only contain one
zero at the position of the first non-zero bit of s. Indeed,
it converts all the prefix zero bits of s′ to 1 (namely, if
s′i = 0 ∧ si = 0 then s′′i = 1); it converts the first non-zero
bit of s′ to 0 (namely, if s′i = 1 ∧ si = 1 then s′′i = 0); it
converts the suffix bits to non-zero values (namely, in case
si = 0, s′i ≥ 1, we have s′′i = s′i − 2si + 1 ≥ 2; in case
si = 1, s′′i ≥ 2, we have s′′i = s′i − 2si + 1 ≥ 1). (iii)
P1 and P2 sends m̂ and s′′ to P0; P0 then locates ζ as the
position of the only zero bit in s′′, and outputs m̂ζ as the
comparison result.

Achieving malicious security in the one-bit leakage
model [23], [26]. To minimize the overhead while convert-
ing the above semi-honest protocol to withstand a malicious
adversary, we introduce the batch verification technique.
More specifically, we design a verification protocol ΠVSignBit

to check the correctness of multiple semi-honest secure com-
parison protocols at the same time. Our main observation
is that if we introduce an IT-secure MAC (Cf. TABLE. 2,
below) to the share of s′′ on top of the semi-honest version,
P0 can verify the correctness of s′′ through the MAC check,
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Figure 1: The roadmap of Aegis

which prevents malicious P1 or P2 from tampering with
s′′. Next, since there is at most one malicious adversary
among the 3 parties under static corruption, we can adopt the
dual execution paradigm [26] and perform the verification
protocol twice, but switch the role of the players, i.e., we
nominate a different party to play the role of the P0 and let
him generate an IT-secure MAC and check the execution
correctness. The comparison result shall be accepted if and
only if both verifications pass (Cf. Sec. 4.2 for details).

Analogously, for the malicious multiplication, the parties
first invoke the semi-honest multiplication protocol, and
perform a batch verification at the end. Goyal et al. [22]
proposes a technique that can transfer the verification of N
dimension inner product triple to the verification of N/2
dimension inner product with constant overhead. However,
Goyal et al. [22] works on Shamir’s secret sharing, which is
performed over a prime-order field, naively converting their
protocol to the ring setting could cause the soundness issue.
Also as mentioned above, the techniques [14], [18], [24] to
adopt the multiplication verification over the field to the ring
is not suitable for the protocol proposed in [22]. To resolve
the soundness issue, we extend the shared elements over Z2`

to the quotient ring of polynomials Z2` [x]/f(x) [4], [6], [7],
where f(x) is a degree-d irreducible polynomial over Z2` in
order to apply the Lagrange interpolating based dimension
reduction technique [22] (Cf. Sec. 4.1). Consequently, the
overall communication of our batch multiplication verifica-
tion protocol is logarithmic to the number of multiplication
gates.

Performance. Table 1 depicts the comparison between our
protocols in Aegis and SOTA 3PC-based PPML solutions.
As we can see, Aegis achieves a significant performance
improvement for both multiplication and non-arithmetic
functions, e.g. ReLU and MaxPool. (Cf. Table 6 in the
appendix for more details of the communication cost of our
protocols.)

Two-round sign bit extraction. Secure comparison
(a.k.a. sign bit extraction) is essential for PPML. We design
a 2-round comparison protocol that can be further used



TABLE 1: Comparison of 3-PC based PPML. (` is the ring size, `∗ is the security parameter for truncation error 21−`∗ , n
is the size of the inner product, κ = 128 is the computational security parameter of GC, and λ = 6 is the statistical security
parameter.)

Operation Protocol Offline Online Malicious
Communication (bits) Rounds Communication (bits)

Mult

ABY3 [30] 12` 1 9` X
BLAZE [33] 3` 1 3` X
SWIFT [27] 3` 1 3` X
Ours 1` 1 2` X

Inner Product

ABY3 [30] 12n` 1 9n` X
BLAZE [33] 3n` 1 3` X
SWIFT [27] 3` 1 3` X
Ours 1` 1 2` X

Inner Product
with
Trunction

ABY3 [30] 12n`+ 84` 1 9n`+ 3` X
BLAZE [33] 3n`+ 2` 1 3` X
SWIFT [27] 15` 1 3` X
Ours 7` 1 2` X

DReLU

ABY3 [30] 60` 3 + log ` 45` X
BLAZE [33] 5κ`+ 6`+ κ 4 κ`+ 6` X
SWIFT [27] 21` 3 + log ` 16` X
Falcon [38] − 5 + log ` 32` X
Bicoptor [43] 0 2 (`∗ + `)(2 + `) ×
Ours (Semi-honest) (`− 1) log `+ 2` 2 4`(log `+ 1) + 2` ×
Ours (Malicious) (`− 1) log `+ 2` 2 2((λ + 1)(` −

1) log `+6` log `+`)
X

to construct the ReLU and MaxPool protocols. Compared
with CrypTFlow [28] (8-round with 6`log` + 14` bits
communication) and Bicoptor [43] (2-round with the
(`∗ + `)(2 + `) bits communication, with error probability
21−`∗), our protocol demonstrates significant improvements
(2-round with 4` log ` + 2` communication). Specifically,
our protocol reduces the communication cost by 75%
for the semi-honest setting. Furthermore, in real-world
benchmark tests, our protocol exhibits 4× speedup over
SOTA.

Sign bit verification with Malicious Security. To
achieve maliciously secure sign bit extraction, we adopt
SPDZ style IT-secure MAC [17] and dual execution
technique [26]. The resulting protocol only requires
a 2-round with 2((λ + 1)(` − 1) log ` + 6` log `) bits
communication while λ is the statistical security parameter
and the soundness error is 2−(λ log `+λ+log `). To the
best of our knowledge, our maliciously secure protocol
significantly reduces communication of SOTA constant
round solutions. Compared with BLAZE [33] (5-rounds
with 5κ`+ 6`+ κ bits communication in the offline phase
and 4-round and κ` + 6` bits communication in the online
phase), our protocol reduces the round complexity by 50%
and the communication by 75%, when ` = 64, κ = 128
and λ = 6 (with statistical soundness error 2−48). In
addition, our protocol requires much less computation than
BLAZE which is based on Garbled Circuit. In real-world
benchmark tests, our protocol exhibits 100× speedup over
the Garbled Circuit solution [33] and 6× speedup over the
logarithmic rounds solution [30].

Batch verification for multiplication over the ring.
Compared with the prime-order finite field, constructing an
MPC over ring Z2` against malicious adversaries typically

incurs a higher overhead. In this work, we propose a new
maliciously secure 3PC multiplication protocol over ring
Z2` with a logarithmic communication overhead during
batch verification. We conduct benchmarks on the overhead
ratio of the verification step. By employing this technique,
the amortized communication cost of our maliciously
secure multiplication is merely 2 ring elements in the
online phase and 1 ring element in the offline phase per
operation.

Compared with SOTA maliciously secure MPC multi-
plication over ring proposed by Dalskov et al. [16], our
protocol reduces the overall communication by 40%. Note
that Dalskov et al. [16] achieves full security in the Q3

active adversary setting (t < n/3), while our protocol
achieves security with abort in the Q2 active adversary
setting (t < n/2), where t is the number of corrupted
parties and n is the total number of participants. Compared
with SOTA 3PC multiplication over ring [27], our protocol
reduces the communication by 33% in the online phase
and 67% in the offline phase, respectively. Similarly, the
communication of our inner product protocols is also 50%
of that in SWIFT [27].
Paper Organization. As shown in Fig. 1, we first propose
semi-honest secure sign-bit extraction protocol ΠSignBit in
Sec. 3. In Sec. 4, we propose our maliciously secure pro-
tocols. In Sec. 4.1, we design a maliciously secure inner
product verification protocol ΠInnerVerify that can check the
correctness of an inner product gate. We then adapt the
maliciously secure dimension reduction protocol ΠReduce to
the ring setting. Combining ΠInnerVerify and ΠReduce, we ob-
tain the batch multiplication verification protocol ΠMultVerify,
which can verify multiple multiplication triples at once. In
Sec. 4.2, we propose a maliciously secure positive assertion



protocol ΠPos that can assert a shared value is positive,
i.e., the sign bit is 0. Combining ΠPos with ΠMultVerify, we
construct the batch sign bit verification protocol ΠVSignBit,
which can verify multiple sign bit extraction pairs in at
once. In Sec. 5, we build the ReLU protocol ΠReLU and the
MaxPool protocol by integrating the above basic protocols.
In Appendix. B, we construct other components for machine
learning, such as convolution and truncation. In Sec. 6, we
benchmark the performance of our protocols.

2. Preliminaries

Notation. Let P := {P0, P1, P2} be the three MPC parties.
During the PPML execution, we encode the float numbers
as fixed-point structure [30], [33]: for a fixed point value
x with k-bit precision, if x ≥ 0, we encode it as bx · 2kc;
if x < 0, we encode it as 2` + bx · 2kc. This encoding
method utilizes the most significant bit as the sign bit. We
use subscripts xi to represent elements in a vector. When
we process each bit of the ring element x, we abuse the
representation of subscripts xi to denote the ith bit from
big-endian. We denote γ(x) = α ·x as the MAC of x where
α is the MAC key. We take λ numbers of MAC keys for
soundness. We denote sign(x) as the sign bit of x. We take κ
as the security parameter. We use ηj,k to denote the common
seed held by Pj and Pk. Our protocol contains four types
of secret sharing as shown in Table 2:

- [·]-sharing: We define [·]-sharing over ring Z2` as [x] :=
([x]1 ∈ Z2` , [x]2 ∈ Z2`) where x = [x]1 + [x]2. Pj for
j ∈ {1, 2} hold share [x]j .

- 〈·〉-sharing: We define 〈·〉-sharing over ring Z2` as
〈x〉 := ([rx],mx) where rx is a fresh random value
and mx = rx + x. Pj for j ∈ {1, 2} hold (mx ∈
Z2` , [rx]j ∈ Z2`) and P0 holds ([rx]1, [rx]2).

- J·Kp,k-sharing: We define J·Kp,k over finite field Zp as
JxKp := (JxKk+1 ∈ Zp, JxKk−1 ∈ Zp) where x =
JxKk+1 + JxKk−1 (mod p). Pj for j ∈ {k + 1, k − 1}
hold share JxKj .

- ‖·‖p,λ,k-sharing: We define ‖·‖p,λ,k-sharing over finite
field Zp as ‖x‖p,λ,k := (JxKp, {JαjKp, Jγ(x)jKp}j∈Zλ).
In our sign-bit verification protocol, one party Pk
holds {αj}j∈Zλ which are the plaintext of MAC keys,
and the other parties Pk−1 and Pk+1 hold the share
(JxKi, {JαjKi, Jγ(x)jKi}j∈Zλ) for i ∈ {k − 1, k + 1}.

We use [·]`[x] and 〈·〉`[x] to denote the share in the
polynomial ring Z2` [x]/f(x) where f(x) is a degree-d
irreducible polynomial over Z2. For ‖ · ‖p,λ,k we utilize
superscript k to denote that the MAC keys are held by Pk.
Note that we let any two shared values ‖x‖p,λ,k and ‖y‖p,λ,k
for the same key’s holder Pk use the same MAC key. For
simplicity, we use ‖ · ‖, J·K when semantics are clear.

All the aforementioned secret-sharing forms have the lin-
ear homomorphic property, i.e., [x]+[y] = ([x]1+[y]1, [x]2+
[y]2) and c·[x] = (c·[x]1, c·[x]2) and [x]+c = ([x]1+c, [x]2),
where c is a public value. The same linear operation
holds for 〈·〉, J·K, and [·]Z2`

[x], 〈·〉Z2`
[x]. For ‖ · ‖, we have

‖x‖ + ‖y‖ = (JxK + JyK, {JαjK, Jγ(x)jK + Jγ(y)jK}j∈Zλ),
c · ‖x‖ = (c · JxK, {JαjK, c · Jγ(x)jK}j∈Zλ) and c + ‖x‖ =
(c+ JxK, {JαjK, c · JαjK + Jγ(x)jK}j∈Zλ).
Secret sharing. Let Π[·], ΠJ·K, Π〈·〉, and Π‖·‖ to denote the
corresponding secret sharing protocols. By Π[·](x), we mean
that x is shared by P0; by Π[·], we mean the parties jointly
generate a shared random value. We utilize pseudo-random
generators (PRG) to reduce the communication [42]. In our
protocol description, when we let parties Pj and Pk pick
random values together, we mean that these parties invoke
PRG with seed ηj,k. The brief sketch of secret sharing
schemes is as follows.
• [x]← Π`

[·](x): (Generate shares of x.)
- P0 and P1 pick random value [x]1 ∈ Z2` with seed

η0,1;
- P0 sends x2 = x− [x]1 (mod 2`) to P2.

• [x]← Π`
[·]: (Generate shares of a random value.)

- P0 and P1 pick random value [x]1 ∈ Z2` with seed
η0,1;

- P0 and P2 pick random value [x]2 ∈ Z2` with seed
η0,2;

- P0 calculates x = [x]1 + [x]2.
• JxK← Πp,k

J·K (x): (Generate shares of x.)
- Pk and Pk+1 pick random value JxKk+1 ∈ Zp with

seed ηk,k+1;
- Pk sends JxKk−1 = x− JxKk+1 (mod p) to Pk−1.

• JxK← Πp,k
J·K : (Generate shares of a random value.)

- Pk and Pk+1 pick random value JxKk+1 ∈ Fp with
seed ηk,k+1;

- Pk and Pk−1 pick random value JxKk−1 ∈ Fp with
seed ηk−1,k;

- Pk calculates x = JxKk+1 + JxKpk−1.
• 〈x〉 ← Π`,k

〈·〉 (x): (Generate shares of x.)
- All parties perform [rx]← Π[·] in the offline phase,

and Pk holds both seeds of [rx]1 and [rx]2 generation;
- Pi send mx = x+ [rx]1 + [rx]2 to P1 and P2.

• 〈x〉 ← Π`
〈·〉: (Generate shares of a random value.)

- All parties perform [rx]← Π[·] in the offline phase;
- P1 and P2 pick random value mx with seed η1,2.

• ‖x‖ ← Πp,λ,k
‖·‖ (x): (Generate shares of x.)

- All parties invoke JαjK← Πp,k
J·K for j ∈ Zλ;

- Pk calculates γ(x)j = x · αj for j ∈ Zλ;
- All parties invoke Jγ(x)jK← Πp,k

J·K (γ(x)j) for j ∈
Zλ and JxK← Πp,k

J·K (x).

Π[·] and Π〈·〉 also work for the share [·]`[x], 〈·〉`[x] over the
polynomial ring Z2` [x]/f(x), which are denoted as Π

`[x]
[·] ,

Π
`[x]
〈·〉 .

Verifiability of share reconstruction. We note that the
shared form 〈·〉 has the verifiable reconstruction property
against a single malicious party. To be precise, for shared
value, 〈x〉, a single active adversary cannot deceive the hon-
est parties into accepting an incorrect reconstruction result
x+e with a non-zero error e. This is because any two honest
parties can collaboratively reconstruct the secret, and invalid



TABLE 2: The share structure of Aegis. (For J·Kp,k and ‖ · ‖p,λ,k, the example in the table depicts the case of J·Kp,0 and
‖ · ‖p,λ,0)

JxKp,0 ‖x‖p,λ,0 [x] 〈x〉

P0 − {αj}j∈Zλ − ([rx]1, [rx]2 ∈ Z2` )

P1 JxKp1 ∈ Zp (JxKp1, {JαjK
p
1, Jγ(x)jK

p
1}j∈Zλ ) [x]1 ∈ Z2` ([rx]1,mx = rx + x)

P2 JxKp2 ∈ Zp (JxKp2, {JαjK
p
1, Jγ(x)jK

p
2}j∈Zλ ) [x]2 ∈ Z2` ([rx]2,mx = rx + x)

shares will be detected by the honest parties. In addition,
the shared form ‖ · ‖p,k also maintains the verifiability
when one of the Pk−1, Pk+1 is malicious. Because Pk can
assert the correctness of share through the MAC check. We
apply the hash function H to reduce the communication
of ‖x‖ reconstruction [15], where the duplicated messages
will be packaged into the single hash message. Formally, the
verifiable reconstruct protocol ΠRec is described as follows:
• x← ΠRec(〈x〉):

- P0 sends [rx]1 to P2 and [rx]2 to P1;
- P1 sends mx to P0 and H([rx]1) to P2;
- P2 sends H(mx) to P0 and H([rx]2) to P1;

If the received messages from the other parties are
inconsistent, Pi output abort. Otherwise Pi output
x = mx − [rx]1 − [rx]2.

• x ← Π`,k
Rec(〈x〉): All parties send their shares (or the

hash value) to Pk. If the received messages from the
other parties are inconsistent, Pk output abort. Other-
wise Pk output x = mx − [rx]1 − [rx]2.

• x← Πp,k
Rec(‖x‖):

- Each party Pi for i 6= k sends its shares
JxKi, {Jγ(x)jKi}j∈Zλ to Pk;

- Pk reconstructs x and {γ(x)j}j∈Zλ , aborts if any
γ(x)j 6= αj · x for j ∈ Zλ.

For the share 〈·〉`[x] in polynomial ring, Π
`[x]
Rec works analo-

gously as the above.

Preprocessing and postprocessing. We follow the “pre-
processing” paradigm [3] which splits the protocol into two
phases: the preprocessing/offline phase is data-independent
and can be executed without data input, and the online
phase is data-dependent and is executed after data input.
Specifically, all the items rx of share 〈x〉 of our protocols
can be generated in the circuit-depend offline phase. What
the parties need to do in the online phase is to collaborate in
computing mx for P1 and P2. To achieve malicious security,
we further introduce the postprocessing phase [24] where
batch verification is performed.

Multiplication gate. We adopt the multiplication protocol
of ASTRA [10]. For multiplication z = x ·y with input 〈x〉,
〈y〉 and output 〈z〉, all parties first generate [rz]← Π[·](rz)
for the output wire in the offline phase. To calculate mz for
P1 and P2 in the online phase, it can be written as

mz = xy + rz = (mx − rx)(my − ry) + rz

= mxmy −mxry −myrx + rxry + rz .

[Γ′] = mxmy −mx[ry] −my[rx] can be calculated by P1

and P2 locally and [Γ] = [rx ·ry]− [rz] can be secret shared

by P0 to P1 and P2 in the preprocessing phase. In the online
phase, P1 and P2 calculate and reconstruct [mz] = [Γ′]+[Γ].

Multivariate polynomial evaluation. Given a d-degree n-
variate polynomial function F d(x1, . . . , xn) = y, we design
a evaluation protocol 〈y〉 = ΠPolyEvl(F

d, 〈x1〉, . . . , 〈xn〉)
following the design of multiplication gate. In particular,
plugin the underlying shares, we have

my = F d(mx1
− rx1

, . . . ,mxn − rxn) + ry (1)

Let Ik be the kth term of F d(x1, . . . , xn) =
∑m

k=0 ck ·
Π

xsj∈Ik
xsj . After expanding Eq. 1, we let P0 locally com-

putes all the cross-items Π
xsj∈Ik

rxsj and share them to the

other parties in the offline phase. The offline phase requires
`m bits communication depending on the number of cross-
items, i.e. m, whereas the online communication is still
2` to reconstruct my. Let Π

`[x]
PolyEvl denote the polynomial

evaluation protocol w.r.t. a polynomial ring Z2` [x]/f(x).
Analogously, it costs 2`d of communication in the online
phase and at most ` · d · m in the offline phase, for the
degree d of f(x).

Security up to additive attacks. As proven in [12], a
replicated secret sharing protocol, such as ΠPolyEvl, is secure
up to additive attacks against malicious adversaries, i.e.,
the adversary’s cheating ability is limited to introducing an
additive error to the output.

Security Model. We analyze the security of our pro-
tocols in the well-known Universal Composibility (UC)
framework [9], which follows the simulation-based security
paradigm. The adversary A is allowed to partially control
the communication tapes of all uncorrupted machines, that
is, it sees all the messages sent from and to the uncorrupted
machines and controls the sequence in which they are
delivered. Then, a protocol Π is a secure realization of the
functionality F , if it satisfies that for every PPT adversary A
attacking an execution of Π, there is another PPT adversary
S (simulator) attacking the ideal process that uses F where
the executions of Π with A and that of F with S makes no
difference to any PPT environment Z .

The idea world execution. In the ideal world, the parties
P := {P0, P1, P2} only communicate with the ideal func-
tionality F with the excuted function f . All parties send
their share to F , F calculate and output the result depending
on the adversary S.

The real world execution. In the real world, the parties
P := {P0, P1, P2} communicate with each other via secure
channel functionality Fsc for the protocol execution Π. Our



protocols work in the pre-processing model, but, for sim-
plicity, we analyze the offline and online protocols together
as a whole.

Definition 1. We say protocol Π UC-secure realizes func-
tionality F if for all PPT adversaries A there exists a PPT
simulator S such that for all PPT environment Z it holds:

RealΠ,A,Z(1κ) ≈ IdealF,S,Z(1κ)

3. Secure Sign Bit Extraction

In this section, we propose a novel sign bit extraction
protocol ΠSignBit. For sign bit extraction function z =
sign(x), protocol ΠSignBit can output 〈z〉 from input 〈x〉.
In Sec. 4, we apply it to the malicious setting.

3.1. Intuition

We aim to design a two-round sign bit extraction pro-
tocol. Intuitively, we want the protocol to look like this:
Firstly, P1 and P2 perform some local transform to produce
some shared material for a predicate which implies the sign
bit extraction result. In the first communication round, P1

and P2 reveal the material to P0, in the second round,
P0 performs the predicate check and reshares the result
to P1 and P2. In what follows, we specifically analyze
how to construct such a predicate without losing privacy.
Considering 〈x〉 := {mx, [rx]} and x = mx + (−rx),
the sign bit of x can be obtained by two parts of XOR
operations. One part is the XOR of the sign bits of mx and
−rx, and the other part is the carry from the sum of the
low bits (excluding the sign bit) of mx and −rx. Namely,
sign(x) := (m̂x+ r̂x

?
≥ 2`−1)⊕sign(−rx)⊕sign(mx), where

we denote mx := sign(mx)||m̂x and −rx := sign(−rx)||r̂x.
Among them, sign(−rx) and sign(mx) can be evaluted
locally. For the remaining part m̂x + r̂x

?
≥ 2`−1, we observe

that it is equivalent to the boolean check of m̂x
?
≥ 2`−1− r̂x

(It works due to 2`−1 ≥ r̂x), which is millionaire problem
while P1 and P2 hold m̂x, P0 holds 2`−1 − r̂x. For the
convenience of presentation, we will use a and b to denote
m̂x and 2`−1− r̂x below. We solve this millionaire problem
as follows.
First non-zero bit position detection problem. We first
convert the millionaire problem a ?

≥ b to the first non-zero
position detection problem: a ?

≥ b equal to aζ for the ζ ∈ Z`
which is the first non-zero position of list L1 := {mi}i∈Z` .
We explain how the conversion works as follows. When
we view a and b as XOR shares, namely, m = a ⊕ b, the
first non-zero bit of m (denoted its index as ζ) represents
the highest different bit of a and b whose corresponding
position ζ can be used to determine the comparison result,
that is, aζ = a ?

≥ b. (Note that if a = b, there is no non-zero
bit in m; therefore, we append 1 to a and 0 to b, ensuring
a 6= b.) Next, we apply a transform to convert finding the
first non-zero bit problem to finding the position of the only
zero element in a list.

First non-zero bit extraction transform. Let L1 :=
{mi}i∈Z` be the list of the individual bits of the value

Pj and Pk hold the common seed ηj,k ∈ {0, 1}λ.
Input : 〈·〉-shared value of x.
Output : 〈·〉-shared value of z = sign(x).
Preprocessing:
- All parties perform [r′], [rz ]← Π[·];
- Pi, for i ∈ {1, 2} generates the same random value

∆ ∈ {0, 1} via PRF with seed η1,2 and reveals
[Γ] = ∆ + [r′]− 2∆ · [r′] + [rz ] to each other.

- P0 does:
1) calculate r̂x = −rx − sign(−rx) · 2`−1 ∈ Z2`−1

2) extract 2`−1 − r̂x as {rx,0, . . . , rx,`−2}
3) perform Jrx,iKp ← ΠpJ·K(rx,i) for i ∈ Z`−1, taking the

biggest prime of p ∈ (`, 2log `+1];

Online:
- Pj , for j ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as
{m̂x,i ∈ {0, 1}}i∈Z`−1

while∑`−2
i=0 2`−2−im̂x,i = m̂x;

2) set m̂x,`−1 = 1 and Jrx,`−1K = J0K;
3) set JmiKp = m̂x,i + Jrx,iKp − 2m̂x,i · Jrx,iKp for

i ∈ Z`.
4) pick same random values {wi, w′i}i∈Z` ∈ (Z∗p)2` via

PRF with seed η1,2;
5) calculate Jm′iK

p =
∑i
t=1JmtKp − 2 · JmiKp + 1 and

JuiKp = wi · Jm′iKp + (sign(mx)⊕ m̂x,i ⊕∆) and
Ju′iK

p = w′i(wi · Jm′iKp + 1) for i ∈ Z`;
6) pick a random permutation π via PRF with seed η1,2 and

permute the list {JûiKp}i∈Z` = π({JuiKp}i∈Z` ) and
{Jû′iKp}i∈Z` = π({Ju′iKp}i∈Z` );

7) reveal {JûiKp}i∈Z` and {Jû′iKp}i∈Z` to P0;

- P0 sends m′ = sign(−rx)− r′ if ∃ûi = 0 ∧ û′i 6= 0 for
i ∈ Z` else m′ = (1⊕ sign(−rx))− r′ to Pj , for
j ∈ {1, 2};

- Pj , for j ∈ {1, 2} sets mz = m′ − 2∆ ·m′ + Γ;
- All parties output 〈z〉 = ([rz ],mz).

Protocol ΠSignBit(〈x〉)

Figure 2: The Sign Bit Extraction Protocol.

m = a⊕b. If we calculate its prefix sum m′i =
∑i

t=0mt, it
is easy to see that all prefixes are zero until the first non-zero
bit. Then we calculate m′′i = m′i− 2mi + 1, which converts
all the prefix zero bits to 1 (that is, if mi = 0,m′i = 0 then
m′′i = 1), converts the first non-zero bit to zero (that is, if
mi = 1,m′i = 1 then m′′i = 0) and converts the suffix bits
to non-zero value (that is, in case mi = 0, m′i ≥ 1, we
have m′′i = m′i − 2mi + 1 ≥ 2; in case mi = 1, m′′i ≥ 2,
we have m′′i = m′i − 2mi + 1 ≥ 1). Therefore, m′′ will
only contain one zero at the position of the first non-zero
bit of m. In addition, considering m′i − 2mi + 1 ≤ ` + 1,
in order to avoid unexpected zero triggered by wrapping
round, all the calculations should be performed on Zp where
prime p > ` + 1. Formally, we define this transform as
L2 = φ(L1) := {

∑i
t=0mt−2·mi+1 mod p}i∈Z` . We have

Theorem 1, and its proof can be found in Appendix. A.1.

Theorem 1. Let L := (L0, . . . , L`−1) ∈ {0, 1}` be a binary
vector. There exists a linear transformation φ such that



FSignBit interacts with the parties in P and the adversary S.
Input:
• Upon receiving (Input, sid, (r1, r2)) from P0, send

(Input, sid, P0) to S and record (r1, r2) ∈ (Z2` )
2;

• Upon receiving (Input, sid, (mj , r
′
j)) from Pj , j ∈ Z2, send

(Input, sid, Pj) to S and record (mj , r
′
j) ∈ (Z2` )

2;
Execution:
• If m1 = m2, compute z := sign(m1 − r1 − r2);
• If m1 6= m2, send (Error, sid) to S; upon receiving

(Compute, sid,Alg) from S, compute z := Alg(r,m1,m2);
• Pick random u1, u2 ← Z2` , set u := u1 + u2 and
w := z + u;

• Upon receiving (Modify, sid, {δi}i∈Z6
), send

(Output, sid, (u1 + δ0, u2 + δ1)) to P0,
(Output, sid, (w + δ2, u1 + δ3)) to P1,
(Output, sid, (w + δ4, u2 + δ5)) to P2.

Functionality FSignBit[Z2` ]

Figure 3: The ideal functionality FSignBit.

φ(L) = (L′0, . . . , L
′
`−1) satisfies:

• Let i∗ ∈ Z` be the index of the first non-zero bit in L,
that is, Li∗ = 1 ∧ ∀i < i∗ : Li = 0.

• L′i∗ = 0 and L′j 6= 0 for all j 6= i∗.

Thanks to the replicated share structure, we can easily
convert each XOR shared bit mi (that is, mi = ai ⊕ bi) to
JmiKp. We let P0 secret shares JbiKp to P1 and P2 so that
P1 and P2 can calculate JmiKp = ai + JbiKp − 2 · a · JbiKp
locally.
Oblivious bit detection. So far, we still cannot directly
reveal the list L2 := {si ∈ Zp}i∈Z` and a to P0 for
checking aζ with the zero value position ζ ∈ Z`, due to
the privacy concerns. We make P0 detect aζ obliviously
as follows. Since the element L2 is over field Zp, we can
scale each element with random value wi ∈ Z∗p which
masks each value except zero. Subsequently, we store each
ai in the si by adding ai to the masked value, namely,
ui = ai+wi·si (mod p). This storage ensures the following
property: the 0 value of list {ui}i∈Z` is obtained by one of
(i) aζ = 0 ∧ sζ = 0, (ii) ai = 1 ∧ wi · si = p − 1. When
we exclude all of the cases of (ii), we can obtain aζ though
checking the existence of zero elements in list {ui}i∈Z` . To
exclude the second case, we introduce the second random
mask value w′i ∈ Z∗p, and calculate u′i = w′i · (wi · si + 1)
for i ∈ Z`. The zero item of list {u′i}i∈Z` implicit that
whether wi · si = p − 1. Put all together, we get the new
predicate: there exists i ∈ Z` such that ui = 0 ∧ u′i 6= 0 for
the list {ui}i∈Z` and {u′i}i∈Z` . To further protect privacy,
we employ same random permutation π on {ui}i∈Z` and
{u′i}i∈Z` which does not affect the predicate relationship.
Protect aζ with mask. Directly reveal {ui}i∈Z` and
{u′i}i∈Z` to P0 will leak the comparison result to P0. We
introduce ∆ ∈ {0, 1} which is known to P1 and P2 to
avoid this leakage. When calculate {ui}i∈Z` , P1 and P2

input ∆⊕ ai instead of ai. Finally, revealing {ui}i∈Z` and

Input : N triples of 〈·〉-shared multiplication.
Output : One triple of N -dimension 〈·〉`[x]-shared inner
product.
Preprocessing:

- All parties invoke 〈r〉`[x] ← Π
`[x]
〈·〉 locally;

Online:
- All parties reconstruct r with ΠRec and calculate ri for all
i ∈ ZN ;

- All parties transfer 〈·〉 to 〈·〉`[x] locally by setting the
constant term of 〈·〉`[x] to 〈·〉;

- All parties set 〈z〉`[x] :=
∑N−1
i=0 ri · 〈z(i)〉`[x], and

〈x′(i)〉`[x] := ri · 〈x(i)〉`[x] for all i ∈ ZN ;
- All parties output {〈x′(i)〉`[x], 〈y(i)〉`[x]}i∈ZN ; 〈z〉`[x].

Protocol ΠTrans({〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN )

Figure 4: Compression of Multiplication Triples.

{u′i}i∈Z` to P0, P0 can calculate aζ ⊕∆ through verifying
the predicate (∃ui = 0 ∧ u′i 6= 0,∀{ui}i∈Z` ,∀{u′i}i∈Z`).
The second round: reshre 〈aζ〉. Considering the result of
the first round, P0 holds the predicate check result aζ ⊕∆,
P1 and P2 hold the mask value ∆. We observe that it can
be transferred to 〈aζ〉 in a single round with 2` bits com-
munication. We asume that z = aζ and 〈z〉 := {mz, [rz]}.
We first let all parties locally generate random share [r′] and
[rz], where P0 holds r′, P1 and P2 hold two-party share [r′].
Then P1 and P2 calculate [Γ] = ∆ + [r′]− 2∆ · [r′] + [rz]
and reveal to each other in the offline phase. After getting
z ⊕∆, P0 send z ⊕∆− r′ ∈ Z2` to both P1 and P2. It is
easy to see that (1− 2∆)(z ⊕∆− r′) + Γ = rz + z = mz ,
where P1 and P2 hold ∆ and Γ so that they can calculate
mz locally.

3.2. Concrete Construction

By filling in some detailed descriptions, we complete our
protocol, which is depicted in Fig. 2. Next, we will explain
our protocol step by step as follows.
• In the offline phase, P1 and P2 generate ∆ to mask

the sign bit and Γ for the second round resharing. P0

split the sign bit of −rx and the remain part r̂x. As
mentioned before, the sign bit sign(x) equal to (m̂x +
r̂x ≥ 2`−1) ⊕ sign(−rx) ⊕ sign(mx). P0 bit-extract
2`−1 − r̂x for the comparison m̂x + r̂x ≥ 2`−1, and
share each bit in the field Zp.

• In steps 1-3, P1 and P2 set JmiKp, where mi represents
the i-th bit of m̂x ⊕ (2`−1 − r̂x). The transformation
can be locally performed. Moreover, we set m̂x,` = 1
and Jrx,`K = J0K to ensure that protocol output equals
to 1 when m̂x + r̂x = 2`−1.

• In step 5, P1, P2 transfer JmiKp to Jm′iKp via the
transformation φ and generate the aforementioned lists
{ui}i∈Z` and {u′i}i∈Z` . Considering (m̂x + r̂x ≥
2`−1)⊕sign(−rx)⊕sign(mx), we let P1 and P2 further
XOR the sign bit of mx, such that P0 will output
sign(mx)⊕ m̂x,ζ ⊕∆ rather than m̂x,ζ ⊕∆.



Input : N -dimension 〈·〉`[x]-shared inner product.
Output : N/2-dimension 〈·〉`[x]-shared inner product.
Execution:
- For i ∈ ZN/2, all parties set

– 〈fi(0)〉`[x] = 〈x(2·i)〉`[x];〈fi(1)〉`[x] = 〈x(2·i+1)〉;
〈fi(2)〉`[x] = 2 · 〈fi(1)〉`[x] − 〈fi(0)〉`[x];

– 〈gi(0)〉`[x] = 〈y(2·i)〉`[x];〈gi(1)〉`[x] = 〈y(2·i+1)〉`[x];
〈gi(2)〉`[x] = 2 · 〈gi(1)〉`[x] − 〈gi(0)〉`[x];

– 〈h(0)〉`[x] =
∑
〈fi(0)〉`[x] · 〈gi(0)〉`[x];〈h(1)〉`[x] =

〈z〉`[x] − 〈h(0)〉`[x];
〈h(2)〉`[x] =

∑
〈fi(2)〉`[x] · 〈gi(2)〉`[x];

- All parties invoke 〈ζ〉`[x] ← Π
`[x]
〈·〉 and reveal 〈2 · ζ〉`[x];

- All parties calculate
– 〈h(ζ)〉`[x] =

∑2
i=0((Π2

j=1,j 6=i
ζ−j
i−j ) · 〈h(i)〉`[x]);

– 〈fi(ζ)〉`[x] = ζ · 〈fi(1)〉`[x] − (ζ − 1)〈fi(0)〉`[x];
– 〈gi(ζ)〉`[x] = ζ · 〈gi(1)〉`[x] − (ζ − 1)〈gi(0)〉`[x];

- All parties output
{〈fi(ζ)〉`[x], 〈gi(ζ)〉`[x]}i∈ZN/2 ; 〈h(ζ)〉`[x].

Protocol ΠReduce({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x])

Figure 5: The Inner Product Dimension Reduction Protocol

• In step 6, P1, P2 random shuffle the list {ui}i∈Z` and
{u′i}i∈Z` with the same permutation π.

• In step 7, P1, P2 open {ui}i∈Z` and {u′i}i∈Z` to P0.
P0 can draw the conclusion based on observations of
{ui}i∈Z` and {u′i}i∈Z` : if there exist i that ui = 0 ∧
u′i 6= 0, then sign(mx) ⊕ m̂x,ζ ⊕ ∆ = 0, otherwise
sign(mx)⊕ m̂x,ζ ⊕∆ = 1.

• For the second round of online phase, P0 further XOR
sign(−rx) to get sign(−rx) ⊕ sign(mx) ⊕ m̂x,ζ ⊕ ∆
which is the masked value of sign bit, stemming
from sign(x) = sign(−rx) ⊕ sign(mx) ⊕ m̂x,ζ . Now,
P1 and P2 hold ∆. We use the aforementioned re-
share technique to transfer the XOR shared value
{sign(x) ⊕∆,∆} to 〈·〉-shared value, with one round
and 2` communication.

Our sign bit Extract protocol ΠSignBit costs 1 round with
communication of (`−1) log `+ 2` bits in the offline phase
and requires 2 rounds with communication of 4` log `+ 2`
bits in the online phase.
Security. We analyze the security of our sign-bit extraction
protocol in the UC framework. We define the functionality
FSignBit for our sign-bit extraction in Fig. 3. We show that
our protocol can ensure privacy against malicious adver-
saries, and ensure both correctness and privacy against semi-
honest adversaries. For the malicious adversary, our func-
tionality FSignBit allows the corrupted P0 to select arbitrary
replicated secret shares r1 and r2, even inconsistent with
other parties’ input. For the corrupted P1 or P2, FSignBit

allows the adversary to select the algorithm to calculate out-
put. For the honest adversary, FSignBit allows the simulator
to input Alg(r1, r2,m1,m2) := sign(m1 − r1 − r2) which
evaluation sign bit extraction correctly.

Theorem 2. Let PRF(Zp)p ,PRFZp and PRFZ
2` be the secure

pseudo-random functions. The protocol ΠSignBit as depicted
in Fig. 2 UC realizes FSignBit against malicious PPT adver-
saries who can statically corrupt up to one party.

Proof. See Appendix A.2.

4. Achieving Malicious Security

Aegis uses the postprocessing verification procedure to
detect any potential malicious behavior. We utilize the batch
verification paradigm which performs all verification in a
single message. We emphasize the need for verification
within a single message, which can resist the selective fail-
ure attack. We first present our batch verification protocol for
multiplication and then introduce batch verification protocol
for sign bit extraction.

4.1. Batch Multiplication Verification

Intuitively, to batch verify N multiplication
{〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN , we can turn to verify that
the inner product ∆ =

∑N
i=0〈ri · x(i)〉 · 〈y(i)〉 − 〈ri · z(i)〉

equals to 0. The first issue is that the adversary is aware
of the additive error in 〈z(i)〉, allowing her to cancel out
the error when computing ∆ to fabricate ∆ = 0. The
second issue arises from the irreversible multiplication over
the ring, where the adversary can intentionally introduce
a specific error e in zi, leading to a high probability of
e ·ri = 0 to pass the verification. For instance, the adversary
can introduce an error e = 2`−1 in such a way that the
equation ri · (z(i) + e) = ri · z(i) holds with a probability
of 1/2 in the case where r is an even number.

To address the first issue, we let all parties evaluate
∆ = 〈α〉 · (

∑N
i=0〈ri · x(i)〉 · 〈y(i)〉 − 〈ri · z(i)〉) (using

ΠPolyEvl) with random share 〈α〉. Since ΠPolyEvl is secure
up to additive attack [12], the adversary can only introduce
an input-independent additive error e′ of ∆. Therefore, the
adversary has to guess e′ = e · α to make ∆ = 0 with the
probability 2−`. To resolve the latter issue, we perform ∆
over the extension ring Z2` [x]/f(x), where f(x) is a degree-
d irreducible polynomial over Z2 [4]. (This can be done by
putting the original share over Z2` to be the free coefficient
and adding random d elements to the other coefficients.) The
probability that a N-degree non-zero polynomial ∆(r) = 0

with a randomly chosen r is at most 2(`−1)dN+1
2`d

≈ N
2d

by the
Schwartz-Zippel Lemma. Considering the cost of ΠPolyEvl,
the above solution still requires Θ(N) communication for
the offline phase. However, we observe that the conversion
to the ring extension does not introduce any extra commu-
nication. Furthermore, we find that the dimension reduc-
tion technique of [22] is compitable with ring extension
which can be used to reduce the Θ(N) communication to
Θ(logN).

Our batch multiplication verification protocol is as fol-
lows.



Input : A N -dimension 〈·〉`[x]-shared inner product pair.
Output : z

?
=

∑N
i=1 x

(i) · y(i).
Execution:
- All parties invoke 〈α〉`[x] ← Π

`[x]
〈·〉 ;

- All parties calculate
〈∆〉`[x] = 〈α〉`[x] · (

∑N
i=1〈x(i)〉`[x] · 〈y(i)〉`[x] − 〈z〉`[x])

with Π
`[x]
PolyEvl;

- All parties call ∆ = Π
`[x]
Rec (〈∆〉`[x]);

- All parties output 1 if ∆ = 0, otherwise 0.

Protocol ΠInnerVerify({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x])

Figure 6: The Inner Product Verification Protocol

Input : N pairs of 〈·〉-shared multiplication.
Output : z(i)

?
= x(i) · y(i) for all i ∈ ZN .

Execution:
- All parties invoke ΠTrans({〈x(i)〉, 〈y(i)〉; 〈z(i)〉}i∈ZN ) to

get {〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN ; 〈z〉`[x];
- For k = 1, . . . , R, all parties perform:

– {{〈x(i)〉`[x], 〈y(i)〉`[x]}i∈Z
N/2k

; 〈z〉`[x]} ←
ΠReduce({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈Z

N/2k−1
; 〈z〉`[x]);

- All parties invoke
b = ΠInnerVerify({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈Z

N/2R
; 〈z〉`[x]);

- All parties output b.

Protocol ΠR
MultVerify({〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN )

Figure 7: The Batch Multiplication Verification Protocol

Compression of multiplication triples. We first design a
subprotocol ΠTrans (Fig. 4) which can convert N multiplica-
tion triples over Z2` to be verified to an N -dimension inner
product over polynomial ring Z2` [x]/f(x). We first trans-
form the multiplication triples {〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN to
{〈x(i)〉`[x], 〈y(i)〉`[x], 〈z(i)〉`[x]}i∈ZN locally, which is over
the polynomial ring. In this transformation, the free coef-
ficient of the shares over Z`[x]/f(x) is set to the orig-
inal shares and other coefficients are padded with zero
shares. Then, all parties generate a random challenge r ∈
Z2` [x]/f(x) by invoking 〈r〉`[x] ← Π

`[x]
〈·〉 and reconstruct-

ing it via ΠRec. All parties locally calculate 〈z〉`[x] =∑N−1
i=0 ri · 〈z(i)〉`[x], and 〈x′(i)〉`[x] = ri · 〈x(i)〉`[x] for all

i ∈ ZN and return the N -dimension inner product tuple as
({〈x′(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x]).

Lemma 1. Suppose protocol ΠTrans take
{〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN as input, and it outputs
{〈x′(i)〉`[x], 〈y(i)〉`[x]}i∈ZN ; 〈z〉`[x]. The probability that the
following two conditions hold is at most N

2d
, where d is the

degree of f(x) w.r.t. Z2` [x]/f(x):

• z =
∑N

i=0 x
′
i · yi

• ∃i ∈ ZN s.t. zi 6= xi · yi

Proof. See Appendix A.3.

Dimension reduction. We extend the dimension reduction
technique of Goyal et al. [22] to our 3PC over ring setting.
As shown in Fig. 5, protocol ΠReduce takes a shared triple
({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x]) as input and outputs
({〈x′(i)〉`[x], 〈y′(i)〉`[x]}i∈ZN/2 , 〈z′〉`[x]). ΠReduce ensures that∑N

i=0 x
(i) · y(i) = z if and only if

∑N/2
i=0 x

′(i) · y′(i) = z′

except for a negligible probability. At a high level, for
the inner product input {x(i)}i∈ZN and {y(i)}i∈ZN , we can
utilize x(2i) and x(2i−1) to interpolate N/2 linear functions
{fi(·)}i∈ZN/2 at the point 0 and 1, and similarly interpolate
{gi(·)}i∈ZN/2 by {y(i)}i∈ZN . Considering the correct output
z, we have z =

∑N/2
i=0 fi(0) · gi(0) + fi(1) · gi(1). Denote

h(·) =
∑N/2

i=0 fi(·) ·gi(·). The above equation can be written
as h(1) = z − h(0). ΠReduce evaluates h(0) =

∑N/2
i=0 fi(0) ·

gi(0) and h(2) =
∑N/2

i=0 fi(2) · gi(2); in addition, h(1) =
z−h(0). Subsequently, ΠReduce utilizes h(0), h(1) and h(2)
to interpolate the resulting polynomial h(x). Finally, we let
all parties select a random point ζ, and output the new shared
triple ({〈fi(ζ)〉`[x], 〈gi(ζ)〉`[x]}i∈ZN/2 , 〈h(ζ)〉`[x]) which in-
heres the inner product relationship if and only if z =∑N/2

i=1 fi(0) · gi(0) + fi(1) · gi(1).
Note that points 0, 1, 2 refer to the ring elements with

free coefficient of 0, 1, and 2 in Z2` [x]/f(x). It is easy to see
that ΠReduce requires one round communication of 5` ·d bits
in the online phase and one round communication of `·d bits
in the offline phase. We perform R times ΠReduce to reduce
the inner product to dimension N/2R, and the resulting
vectors are verified as

∑N/2R

i=0 〈fi(ζ)〉`[x] · 〈gi(ζ)〉`[x] =
〈h(ζ)〉`[x]. We prove the soundness error of the ΠReduce is

1
2d−1 in Lemma 2.

Lemma 2. Suppose ΠReduce take
({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x]) as input, and it
outputs the new list ({〈x′(i)〉`[x], 〈y′(i)〉`[x]}i∈ZN/2 , 〈z′〉`[x]).
The probability that the following two conditions hold is at
most 1

2d−1 , where d is the degree of f(x) w.r.t. Z2` [x]/f(x):

• z′ =
∑N/2

i=0 x
′(i) · y′(i)

• z 6=
∑N

i=0 x
(i) · y(i)

Proof. See Appendix A.4.

Inner product verification. Our inner product verification
ΠInnerVerify (Fig. 6) verifies the inner product relationship of
shared values over polynomial ring Z2` [x]/f(x). For verifi-
cation of

∑N/2R

i=0 〈x(i)〉`[x] · 〈y(i)〉`[x] = 〈z〉`[x], ΠInnerVerify

turns to verify 〈α〉`[x] · (
∑N/2R

i=0 ·〈x(i)〉`[x] · 〈y(i)〉`[x] −
〈z(i)〉`[x]) equal to zero, which requires (3N/2R+1)` ·d bit
(3N/2R+1 cross-items) communication in the offline phase
and 5`d bits (2`d for revealing mz , 3`d for zero check). We
prove soundness error of the ΠInnerVerify is 1

2d
in Lemma 3.

Lemma 3. Let ({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x]) be the
input of protocol ΠInnerVerify depicted in Fig. 6. The proba-
bility that ΠInnerVerify outputs 1 and z 6=

∑N−1
i=0 x(i) · y(i) is

at most 1
2d

, where d is the degree of f(x) w.r.t. Z2` [x]/f(x).

Proof. See Appendix A.5.



Pj and Pk hold the common seed ηj,k ∈ {0, 1}λ.
Input : 〈·〉-shared value of x.
Output : Pj for j ∈ Z3 output vj . v0 = v1 = v2, if the sign
bit of x is 0.
Execution:
- Parse 〈x〉 := {mx, [rx]1, [rx]2} as {x0,−x2,−x1} where
Pj for j ∈ Z3 holds xj−1 and xj+1;

- The verifier Pk calculates
r = xk−1 + xk+1 − sign(xk−1 + xk+1) · 2`−1. Then Pk
chops 2`−1 − r as {r0, . . . , r`−2};

- All parties performs ‖ri‖ ← Πp,k‖·‖(ri) for i ∈ Z`−1, taking
the biggest prime of p ∈ (`, 2log `+1];

- Pk−1 and Pk+1 do:
1) set ‖r`−1‖ = ‖0‖;
2) pick a random value ∆ ∈ {0, 1} with seed ηk−1,k+1.
3) pick a random list {wi, w′i}i∈Z` ∈ (Z∗p)2` with seed

ηk−1,k+1;
4) pick a random permutation π with seed ηk−1,k+1;
5) set s = xk − sign(xk) · 2`−1, bit-exact it as {si}i∈Z`−1

and set s`−1 = 0;
6) calculate ‖mi‖ = si + ‖ri‖ − 2si · ‖ri‖ and
‖m′i‖ =

∑i
t=0 ‖mt‖ − 2 · ‖mi‖+ 1 for i ∈ Z`;

7) calculate ‖ui‖ = π(wi · ‖m′i‖+mσ,i ⊕ sign(xi)⊕∆)

and ‖u′i‖ = π(w′i(wi · ‖m′i‖ − (p− 1))) for i ∈ Z`;
8) output vk−1 = ∆ or vk+1 = ∆.

- All parties invoke ui = Πp,kRec(‖ui‖) and
u′i = Πp,kRec(‖u′i‖, Pi) for i ∈ Z`. Consequently, Pk holds
{ui, u′i}i∈Z` .

- Pk output vk = sign(xk−1 + xk+1) if ∃ui = 0 ∧ u′i 6= 0

for i ∈ Z`+1, otherwise Pk output
vk = 1⊕ sign(xk−1 + xk+1).

Protocol Πλ,k
Pos(〈x〉)

Figure 8: Positive Verification Protocol Verified by Pk.

Our batch multiplication verification protocol ΠMultVerify

in Fig. 7 integrates the above three subroutines, which
requires one round communication of (R+ 3N/2R + 1)` ·d
bits in the offline phase and R+ 2-round communication of
(5R + 5)` · d bits in the online phase for N multiplication
triples. We prove soundness error of ΠMultVerify is N

2d−R−2

in Thm. 3.

Theorem 3. Let {〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN be the input
of protocol ΠR

MultVerify depicted in Fig. 7. The probability
ΠR

MultVerify outputs 1 and ∃i ∈ ZN s.t. z(i) 6= x(i) · y(i)

is at most N
2d−R−2 , where d is the degree of f(x) w.r.t.

Z2` [x]/f(x).

Proof. See Appendix A.6.

4.2. Sign Bit Extraction Batch Verification

In this section, we upgrade the sign bit extraction
ΠSignBit to the malicious setting throughout the verifica-
tion protocol. For a sign bit extraction pair {〈x〉, 〈z〉} s.t.
z = sign(x), the malicious adversary can introduce arbitrary
errors to make sign(x) 6= z. As shown in Fig. 10, we design

Input : N numbers of ‖ · ‖-shared value.
Output : P0 receive {x(i)}i∈ZN .
Execution:
- P1 and P2 reveal {x(i)}i∈ZN to P0;
- P0 picks λ random value {wk ∈ Z∗p}k∈Zλ and send them to
P1 and P2.

- P1 and P2 do
– calculate Jtk,k′K =

∑N−1
i=0 wik · Jγ(x(i))k′K for

k ∈ Zλ, k′ ∈ Zλ.
– reveal {tk,k′}j∈Zλ,k∈Zλ to P0.

- P0 caclualte t̂k,k′ = αk′ ·
∑N−1
i=0 wik · x

(i) and abort if
exist t̂k,k′ 6= tk,k′ for any k′ ∈ Zλ, k ∈ Zλ.

Protocol ΠRec({‖x(i)‖}i∈ZN )

Figure 9: The Batch Verifiable Reconstruction Protocol

the verification protocol ΠVSignBit to verify the correctness
of the sign bit extraction pair.
One-bit leakage model. Notice that a malicious adversary
can introduce a probabilistic error based on the input. For
instance, the corrupted P0 can introduce an error to the input
x when P0 generates Jrx,iK in step (3) of the preprocessing
phase of Fig. 2. Therefore, during the verification procedure,
P0 is able to launch a selective failure attack. That is, P0

introduces an error e to the input x. Depending on the
verification result, the adversary can judge whether x + e
changes the sign bit. Similarly, the corrupted P1 or P2 can
also introduce errors on mx while calculating list ui and u′i.
To mitigate such a leakage, we design a batch verification
protocol that combines all verification into a single check,
which reduces the overall leakage of large batch size N to
one bit. At the end of this section, we formalize this leakage
in functionality FVSignBit and prove the security of ΠVSignBit.

Specifically, our sign bit extraction verification consists
of two steps: (i) z is validated to be either 0 or 1, (ii) x−
2`−1 · z is positive. The former check can be realized by
employing a maliciously secure multiplication protocol to
confirm that its square matches itself, i.e., z · z = z on the
ring Z2` , as z2−z = 0 only has the roots of 0 and 1 over ring
Z2` . For this check, we directly utilize the aforementioned
protocol ΠMultVerify(〈z〉, 〈z〉, 〈z〉).

For the latter check, we first design the positive assertion
protocol ΠPos which nominates a verifier Pk to verify the
positive of a shared value. ΠPos has the property that the
honest verifier outputs the correct verification result against
one malicious adversary corrupting one of the other two
parties. Our protocol is designed for static corruption. To
resolve the case where the nominated verifier is malicious,
we adopt the dual-execution paradigm [23], [26] to invoke
ΠPos twice with two distinct parties to play the role of
the verifier. As the malicious adversary can only statically
corrupt one party, we can ensure that the shared value is
positive if both two verifications pass.

Positive assertion protocol ΠPos. As depicted in Fig. 8,
the positive assertion protocol ΠPos let verifier Pk (any i ∈



Input : 〈·〉-shared value.
Output : 〈·〉-shared value of z = sign(x).
Execution:
- All parties perform 〈z〉 ← ΠSignBit(〈x〉);
Postprocessing:
All parties do:
- Calculate 〈x′(i)〉 = 〈x(i)〉 − 2`〈z(i)〉
- Call {v(i)0 , v

(i)
1 , v

(i)
2 }i∈ZN = ΠPos({〈x′(i)〉}i∈ZN , P1) and

{v(i+N)
0 , v

(i+N)
1 , v

(i+N)
2 }i∈ZN =

ΠPos({〈x′(i)〉}i∈ZN , P2);
- Pj for j ∈ Z3 generate tj = H(v

(1)
j ||v

(2)
j || . . . ||v

(2N)
j ) and

share it as 〈tj〉; where H : {0, 1}∗ 7→ {0, 1}` is a collision
resistant hash function.

- All parties invoke 〈αj〉 ← Π`〈·〉 for j ∈ Z3.
- All parties call ΠRMultVerify with {〈z(i)〉, 〈z(i)〉; 〈z(i)〉}i∈ZN

and {〈αj〉, 〈tj−1 − tj+1〉; 〈0〉}j∈Z3
;

- If no party aborts, all parties output 1.

Protocol ΠVSignBit(〈x〉)

Figure 10: The Sign Bit Extraction Verification Protocol.

{0, 1, 2}) take input as shared value 〈x〉, and the verifier
outputs a bit indicating whether 2`−1 ?

≥ x. Specifically, we
introduce the IT-secure MAC to detect malicious behavior
of Pk−1 and Pk+1. We observe that the chopped shared
bit Jrx,iK in ΠSignBit can be replaced by ‖rx,i‖. We let the
presumably honest verifier Pk locally calculate the λ MACs
of rx,i and secret share it to the other two parties Pk−1 and
Pk+1. Later, when Pk−1 and Pk+1 send back the opened
vector {‖ui‖p,λ,k}i∈Z` and {‖u′i‖p,λ,k}i∈Z` , Pk can check
the correctness of them by the corresponding MAC. For the
batch verification, we let Pk not reshare the aforementioned
z⊕∆. Considering the positive sign bit (z = 0), we have z⊕
∆ = ∆, where Pk holds vk = z⊕∆, Pk+1 holds vk+1 = ∆
and Pk−1 holds vk−1 = ∆. The positive assertion protocol
is converted to verify v0 = v1 = v2. We introduce the batch
equality test to address this problem. The soundness error
of the verifier P0 in Πp,λ

Pos is 1
2λ log `+λ+log ` .

Theorem 4. Let 〈x〉` be the input of the protocol Πp,λ
Pos

depicted Fig. 8. The probability that output of Πp,λ
Pos for each

party is not equal and sign(x) = 1 is at most 1
2λ log `+λ+log ` .

Proof. See Appendix A.7.

Dual execution. To support the dual execution of ΠPos with
different parties playing the role of the verifier, we need
to convert the underlying shares accordingly. That is, we
express the 〈·〉 shared value in the form of replicated secret
sharing, which is {x0 = mx, x1 = −[rx]1, x2 = −[rx]2}.
Following that all parties perform same operation in ΠSignBit

which replace r̂x = −rx − sign(−rx) · 2`−1 with r =
xk−1 +xk+1− sign(xk−1 +xk+1) to generate the the vector
{‖ui‖}i∈Z` and {‖u′i‖}i∈Z` . With dual execution ΠPos with
N pairs sign bit, each party Pj hold v(i)

j for i ∈ Z2N .
Batch equality test. To mitigate one-bit leakage, we need
to combine all verification output in a single check. The

verification protocol requires to satisfy two properties: (1)
Overall revealed information is only v

(i)
0 = v

(i)
1 = v

(i)
2

without any intermediate information such as v(i)
0 = v

(i)
1 .

Any intermediate information will allow the adversary to
get another 1-bit information leakage; (2) The corrupted
party Pj can not affect the verification of v(i)

j−1 = v
(i)
j+1.

This property is designed for soundness, which ensures
that the other two parties detect the correctness of the
result through their shares. Fig. 10 depicts the procedure
of the batch equality test. H : {0, 1}∗ 7→ {0, 1}` is a
collision resistant hash function. For 2N numbers of output
{v(i)

0 , v
(i)
1 , v

(i)
2 } for i ∈ Z2N , if the output is correct,

let tj = H(v
(1)
j ||v

(2)
j || . . . ||v

(2N)
j ) for j ∈ Z3, we have

t0 = t1 = t2. To verify t0 = t1 = t2, we let all parties gen-
erate 〈αj〉 and invoke ΠR

MultVerify(〈αj〉, 〈tj−1 − tj+1〉; 〈0〉).
We analyze the security as follows: (1) If P1 (or P2) is
corrupted, the error introduced by P1 when performing ΠPos

with verifier P2 will be captured by MAC check. Therefore,
the output of ΠPos with verifier P2 held by P0 and P2

(corresponding to v(i)
0 and v(i)

2 ) is correctly calculated. For
this part, ΠR

MultVerify can verify the parts of v(i)
0 = v

(i)
2

which corresponding to ΠPos with verifier P2. (2) If P0 is
corrupted, ΠPos with verifier P1 or P2 can both calculate the
positive of x−2`−1·z correctly, cause the error introduced by
P0 in ΠPos will be captured by MAC check and the result
of ΠPos can be calculated using ΠR

MultVerify with verifying
v

(i)
1 = v

(i)
2 . We observe that the ΠMultVerify(〈z〉, 〈z〉, 〈z〉)

will leak another 1-bit leakage, causing the adversary can
introduce error −1 or 1 on the output z and infer the value
of z depending on the verification result. We combine this
verification with ΠR

MultVerify(〈αj〉, 〈tj−1− tj+1〉; 〈0〉), which
pack the overall leak information as

∧2N
i (v

(i)
0 = v

(i)
1 =

v
(i)
2 ) ∧

∧N
i zi ∈ {0, 1}.

Batch MAC Verification. We observe that the batch MAC
verification can be used to reduce the reconstruction com-
munication further. For N pairs of ‖ · ‖-shared value
‖x(0)‖, . . . , ‖x(N−1)‖, P1 and P2 partially open secret value
x(i) (without the MACs) to P0. We let P0 generate a public
λ-dimension random list {wk ∈ Zp}k∈Zλ and send the list to
P1 and P2. With the random list, the N pairs of MACs can
be combined to λ pairs, that is, ‖tk‖ =

∑N−1
i=0 wik · ‖x(i)‖

for k ∈ Zλ. Instead of verifying n pairs of share, P0 only
needs to verify α · tk = γ(tk) for k ∈ Zλ, where n � λ.
Note that, the batch MAC verification requires an additional
round for the MAC opening. Combining with batch MAC
verification, our positive assertion protocol ΠPos requires 2-
round communication of (λ+ 1)(`− 1) log `+ 4` log ` bits,
where λ is MAC key number of ‖ · ‖.
Security. We define the functionality FVSignBit for sign bit
extraction in the 1-bit leakage model in Fig. 11. Before
outputting the result, it receives a boolean function f from
the adversary and reveals the function evaluation result to
the adversary, which leaks 1-bit information.

Theorem 5. Let PRFZp and PRFZ
2` be the secure pseudo-

random functions. The protocol ΠVSignBit as depicted in



FSignBit interacts with the parties in P and the adversary S. Let
Ccor denote the set of corrupted parties.
Input:

• Upon receiving (Input, sid,
{

(r
(i)
1 , r

(i)
2 )

}
i∈ZN

) from P0,

send (Input, sid, P0) to S and record
{

(r
(i)
1 , r

(i)
2 )

}
i∈ZN

;

• Upon receiving (Input, sid,
{

(m
(i)
j , r

′(i)
j )

}
i∈ZN

) from Pj ,

j ∈ Z2, send (Input, sid, Pj) to S and record{
(m

(i)
j , r

′(i)
j )

}
i∈ZN

;

Execution:
• If ∃i ∈ ZN ,∃j ∈ {1, 2} : r

(i)
j 6= r

′(i)
j , send

(Output, sid,⊥) to P0, P1 and P2; halt;
• Let j∗ ∈ {1, 2} be an index s.t. Pj∗ ∈ P \ Ccor. It computes
z(i) := sign(m

(i)
j∗ − r

(i)
1 − r

(i)
2 ), for i ∈ ZN ;

• Upon receiving (Compute, sid,Alg, f) from S, compute
(z′(0), . . . z′(N−1))←
Alg(

{
(r

(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 )

}
i∈ZN

) and

b← f(
{

(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 )

}
i∈ZN

);

• If b ∈ {0, 1}, send (Leak, sid, b) to S;
• If ∃i ∈ ZN : z(i) 6= z′(i), send (Output, sid,⊥) to P0, P1

and P2; halt;
• For i ∈ ZN , pick random u

(i)
1 , u

(i)
2 ← Z2` , set

u(i) := u
(i)
1 + u

(i)
2 and w(i) := z′(i) + u(i);

• Send (Output, sid, {(u(i)1 , u
(i)
2 )}i∈ZN ) to P0,

(Output, sid, {(w(i), u
(i)
1 )}i∈ZN ) to P1,

(Output, sid, {(w(i), u
(i)
2 )}i∈ZN ) to P2.

Functionality FNVSignBit[Z2` ]

Figure 11: The ideal functionality FNVSignBit[Z2` ].

Fig. 10 UC realizes FVSignBit against malicious PPT ad-
versaries who can statically corrupt up to one party.

Proof. See Appendix A.8.

Our Sign bit extraction protocol ΠVSignBit requires amor-
tized 2-round communication of 2((λ + 1)(` − 1) log ` +
6` log `+ `) bits, where λ is MAC key number of ‖ · ‖.

5. The Aegis PPML Platform

Through the above arithmetic/non-arithmetic compo-
nents, we can construct our privacy-preserving machine
learning platform Aegis. We give a brief introduction to
facilitate the reader’s understanding of the working mech-
anism of our PPML components. For the protocol details,
we refer the reader to further read Appendix. B.
Arithmatic protocol. Our maliciously secure multiplication
protocol is shown in Fig. 12. ΠMult ensures the correctness
of multiplication by invoking batch verification protocol
ΠMultVerify in the post-processing phase. When handling a
substantial volume of data, our protocol exhibits an amor-
tized communication of ` bits in the preprocessing phase and
2` bits in the online phase for each multiplication operation.
The multiplication protocol can be expanded to the inner

Input : 〈·〉-shared value x, y.
Output : 〈·〉-shared value z where z = x · y.
Preprocessing:
- All parties prepare [rz ]← Π[·] locally;
- P0 calculates Γ = rx · ry + rz and shares it with Π[·](Γ);

Online:
- Pj for j ∈ {1, 2} calculates

[mz ]j = (j − 1)mx ·my −mx[ry ]j −myi [rx]j + [Γ] and
mutually exchange their shares to reconstruct mz .

Postprocessing:
- For all multiple gate wire value {〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN ,

all parties call ΠRMultVerify({〈x
(i)〉, 〈y(i)〉; 〈z(i)〉}i∈ZN ) to

verify correctness.

Protocol ΠMult(〈x〉, 〈y〉)

Figure 12: The Multiplication Protocol

product protocol (Cf. Appendix. B.1). At the high level, all
parties combine multiple inner product triples to single inner
product triples and perform similar dimension reduction,
which also reduces to the sublinear communication cost. For
the matrix multiplication and convolution, we view them as
multiple separate inner products.
Non-Arithmatic protocol. We propose a maliciously se-
cure probabilistic trucation protocol (Cf. Appendix. B.2),
which is used to reduce the 2k scaler caused by fixed-point
multiplication. Our idea is derived from SWIFT [27] which
generates correct truncation pair via maliciously secure inner
product protocol.
Secure ReLU Protocol. The ReLU of x is calculated by
w = x · (1 − sign(x)) = x − x · sign(x), which can be
implemented by combining ΠMult with ΠSignBit. However, it
requires an additional round for multiplication. We observe
that the additional round can be eliminated by executing
multiplication at the same round of sending back m′ in
ΠSignBit. We construct the semi-honest ReLU protocol ΠReLU

(Cf. Appendix. B.3, Fig. 22) from ΠSignBit. Considering
〈z〉 = ΠSignBit(〈x〉) and 〈w〉 = ΠMult(〈x〉 · 〈z〉), we have:

mw = mxmz +mxrz +mzrx + rxrz − rw
= mxmz +mxrz + (m′ − 2∆m′ + Γ)rx + rxrz − rw
= mxmz +mxrz + (1− 2∆)(m′rx + r′′) + Γ′

m′, ∆, Γ are the fresh random values mentioned in ΠSignBit

and it hold mz = m′ − 2∆m′ + Γ in ΠSignBit. We denote
Γ′ = Γ · rx − (1 − 2∆)r′′ + rx · rz − rw, where r′′ is a
fresh random introduced to protect the privacy of rw. We
let P1 and P2 calculate [Γ′] = Γ · [rx] − (1 − 2∆)[r′′] +
[rx · rz] − [rw] locally in the offline phase. P1 and P2

reveal [Γ′′] = mx · [rz] + [Γ′] to each other in the first
round of ΠSignBit. For item (1− 2∆)(m′rx + r′′), P0 send
m′′ = m′rx+r′′ to P1 and P2. Then P1, P2 locally calculate
mw = mx ·mz + Γ′′ + (1 − 2∆)m′′. Note that reveal m′′
and Γ′′ will not leak any information, since the P1 and P2

cannot extract additional information of rx, rz , rw besides
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Figure 13: Overall running time of multiplication (over the
GPU setting). Compared with ABY3 [30], SWIFT [27] of
ΠMult over MAN and WAN setting.

(a) 32 Depth (b) 128 Depth

Figure 14: Evaluate the multiplication (over the GPU set-
ting) with circuit depth 32 and 128 under the MAN setting.

of mw, with the fresh random value r′′. Our ReLU protocol
requires 1 rounds and communication of (` − 1) log ` + 2`
bits in the preprocessing phase and requires 2 rounds and
communication of 4` log `+4` bits in the online phase. The
malicious version of ReLU can be achieved through verify-
ing 〈z〉 = sign(〈x〉) and 〈w〉 = ΠMult(〈x〉, 〈z〉) respectively.
Secure Maxpool protocol. Our Maxpool scheme is con-
structed by comparison great(x, y) = x ?

≥ y and maximum
max(x1, . . . , xn). In the case of signed numbers x and y,
great(x, y) can be implemented by invoking the ΠVSignBit

three times. That is, great(x, y) = (sign(x) ⊕ sign(y)) ·
sign(y−x) + (1⊕ sign(x)⊕ sign(y)) · sign(y). For unsigned
number x and y which sign(x) = 0 and sign(y) = 0, we
have great(x, y) = sign(y−x). We have observed that after
applying Maxpool in the ReLU layer, the sign bit of the data
becomes 0. Therefore, we only need to calculate sign(y−x).

There are two approaches to evaluate max(x1, . . . , xn).
One is to evaluate max(x1, . . . , xn) by max(x1, . . . , xn) =∑n

i=1(Πn
j=1,j 6=igreat(xi, xj) · xi), which perform Θ(n2)

comparisons in the constant round. The other is to search
for the maximum value through the binary tree, i.e. re-
duce n-dimension maximum to 2-dimension by expending
max(x1, . . . , xn) = max(max(x1, x2), . . . , v(xn−1, xn)).
This method requires Θ(log n) rounds to perform a to-
tal of n − 1 times 2-dimension maximum. We observe
that the Maxpool procedure may re-use some compari-
son outcomes more than once while performing the afore-
mentioned maximum operation, depending on the kernel
shape and stride. For instance, we assume zi,j is the re-
sult element of performing (2, 2)-kernel shape and 1-stride
Maxpool over an a × b-dimension matrix requires where

(a) MAN (b) WAN

Figure 15: The running time of verification phase (over the
GPU setting), with the different dimension reduction number
R, multiplication triple size 218 and 220, over MAN and
WAN setting.

zi,j = max(xi,j , xi,j+1, xi+1,j , xi+1,j+1) and zi,j+1 =
max(xi,j+1, xi,j+2, xi+1,j+1, xi+1,j+2). Both zi,j and zi,j+1

needs the outcome of great(xi,j+1, xi+1,j+1). We adopt the
binary tree solution for its property to eliminate the repeated
comparison due to storing the temporary comparison result.
The 2-dimension maximum max(xi, xj) can be calculated as
(xi−xj)·great(xi, xj)+xj , i.e. (xi−xj)·sign(xj−xi)+xj .
In the previous chapter, we implemented f(x) = x · sign(x)
in two rounds by introducing 2` bits of communication over-
head in the online phase. We use it to evaluate max(xi, xj)
by max(xi, xj) = xj − f(xj − xi). We apply this approach
to evaluate Maxpool, which requires (n− 1)((`− 1) log `+
2`) bits of communication cost in the setup phase and
(n− 1)(4` log `+ 4`) bits in the online phase. Analogously,
the malicious version of Maxpool can be achieved through
verifying sign bit-exact and multiplication respectively.
Security. Assume our Aegis platform accepts inputs from
Pi for i ∈ Z3 and invokes multiple times of semi-honest
secure protocols (which can also ensure the privacy against
malicious adversaries) and perform an overall maliciously
secure verification of multiplication and sign bit extraction.
We analyze the overall leakage of Aegis as follows. (i)For
the execution phase, our protocol will leak no information,
cause it can ensure privacy against malicious adversaries. (ii)
For the verification phase, the potential leakage is caused by
the times of verification. As mentioned before, our sign-bit
verification protocol (Cf. Fig. 10) is reduced to ΠR

MultVerify.
Considering that multiplication verification protocol (Cf.
Fig. 10) is also reduced to ΠR

MultVerify, Aegis combine all the
invoking of ΠR

MultVerify to single invoking, while the overall
reveal message is one bit.

6. Implementation and Benchmarks

In this section, we evaluate our multiplication and non-
arithmetic protocols in both the semi-honest and malicious
settings. For the maliciously secure multiplication protocols,
we compare the communication and runtime with SWIFT
[27] and ABY [30]. For the non-arithmetic protocols,
we compare the runtime performance with Bicoptor [43],
BLAZE [33], SWIFT, FSS [5], Falcon [38] respectively.



(a) LAN (b) MAN

Figure 16: The overall running time (over the CPU setting)
of DReLU(ΠSignBit). Compared with Falcon [38], FSS [5],
Bicoptor [43], over LAN and MAN settings.

Benchmark setting. We perform our arithmetic protocols
on the GPU setting. To support GPU, our code is based on
the Piranha [39] source code [40] which is a GPU platform
for MPC protocols. For the non-arithmetic protocols, we
implement both CPU and GPU versions to support bench-
marking with FSS [5] and garble circuit-based protocol
BLAZE [33] on CPU setting. In our benchmark setting, we
take the size of the ring ` = 64 and the polynomial ring
degree d = 64. For the fixed-point value, we utilize 16 bits
truncation. Our experiments are performed in a local area
network, using software to simulate three network settings:
local-area network (LAN, RTT: 0.2ms, bandwidth: 1Gbps),
metropolitan-area network (MAN, RTT: 12ms, bandwidth:
100Mbps), and wide-area network (WAN, RTT: 80ms, band-
width: 40Mbps) and executed on a desktop with AMD
Ryzen 7 5700X CPU @ 3.4 GHz running Ubuntu 18.04.2
LTS; with 8 CPUs, 32 GB Memory, 4× Nvidia 2080 Ti
with 11 GB RAM and 1TB SSD.
Multiplication. We compare our maliciously secure mul-
tiplication protocol with SOTA. We benchmark the com-
munication of ΠMult and ΠInner in the Appendix C.2 and
the running time in Fig. 13. For the running time, we
execute the protocol at multiple R values, choosing the
best performance. Influenced by an additional verification
round which is the dominant overhead in the case of a
small volume of data, our protocol is worse than SWIFT
and ABY. Considering saturated data, our protocol achieves
2× the performance improvement compared to SWIFT and
ABY under both MAN and WAN settings. Considering the
multiplication depth, Fig. 14 shows the performance changes
under different multiplication depths. We benchmark proto-
cols on multiplication circuits with depths of 32 and 128.
Since our protocol and ABY can ensure round advantages
based on batch verification, the performance is better than
the SWIFT protocol when the multiplication depth is large.

Trade-off of the repetition parameter R. While selecting a
larger value for the repetition parameter R for dimension
reduction can minimize the communication volume in batch
verification, it is also essential to consider the impact of ad-
ditional communication rounds in the postprocessing phase
for overall performance. We conduct a practical experi-
mental benchmark to determine the optimal value of R in

different bandwidth and delay scenarios. Fig. 15 depicts
the verification time with the different dimension reduction
number R. It points out the optimal R value (R = 7 in
MAN, with data size 218; R = 9 in MAN, with data size
220; R = 8 in WAN, with data size 218;R = 10 in WAN,
with data size 220;). Our benchmark indicates that the larger
R needs to be chosen for smaller bandwidths and larger data
dimensions.
Non-arithmetic functions. The benchmark data in Fig.16
and Fig.17 demonstrates the high efficiency of our nonlinear
protocol. Fig.16 depicts the overall running time comparison
of the semi-honest secure ReLU protocol (over the CPU
setting) with SOTA [5], [38], [43] in LAN, and MAN set-
tings (For Bicoptor, we take the truncation error parameter
`∗ = 32). Fig.17 depicts the overall running time compari-
son of the maliciously secure ReLU protocol (over the CPU
setting) with SOTA [27], [30], [33] in LAN, MAN and
WAN settings. There are little differences in performance
between our ReLU protocol and our Maxpool protocol.
Owing to page limits, we omit comparative benchmarks of
Maxpool against other works in terms of performance. The
input size of evaluation is from 22 to 218. We perform the
protocol 10 times and prepare all random values at once, and
finally calculate the amortized run-time. We benchmark our
maliciously secure ReLU protocol with different security
parameters (λ = 4 for soundness error 2−34 and λ = 6
for soundness error 2−48). Under the semi-honest threat
model and WAN setting, as anticipated, our semi-honest
protocol demonstrates a performance improvement of 4×
compared to the constant round protocol Bicoptor (theoreti-
cally, communication volume has been reduced by 4× on a
64-bit ring). Under the malicious threat model, compared to
the constant round protocol BLAZE, our maliciously secure
version achieves over 100× performance improvement with
a reasonable ReLU size. Since the delay dominates the
execution overhead considering the small amount of data,
our 2-round protocol is much lower than the logarithmic
rounds protocol ABY in terms of time cost. In the above
cases, the performance of our protocol is more than 4× that
ABY, no matter in LAN, MAN, or WAN settings. For the
WAN setting, the performance of our protocol is more than
6× that ABY considering the small batches of input. The
performance of our protocols under a semi-honest setting
is provided in Appendix C.3. We also compare our semi-
honest protocol with Piranha [39] over the GPU setting((Cf.
Appendix. C.4)), where our protocol achieves more than 3×
performance improvement compared to Piranha.
The inference of neural network. We benchmark the
inference of the neural network based on Piranha (Cf.
Appendix. C.1). For more benchmark results, we refer the
reader to Appendix. C.

7. Conclusion

We propose Aegis, an efficient PPML framework that
achieves malicious security in an honest majority. We apply
the batch multiplication verification protocol on the 3PC
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Figure 17: Overall run-time of ReLU in LAN/MAN/WAN setting. Here, “ours” refers to our maliciously secure protocols
(Soundness error 2−48 for λ = 6 and 2−34 for λ = 4 ); BLAZE refers to [33]; ABY refers to [30].

over the ring. We innovate novel semi-honest and mali-
ciously secure sign-bit extraction protocols. We then ex-
pand the sign-bit extraction protocol to applications such as
ReLU, and MaxPool. The experiments show that our various
protocols have significant performance improvements over
the state-of-the-art works, i.e., [27], [30], [33], [43].
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Appendix A.
Security Proofs

A.1. The proof of Theorem 1.

Theorem 1. Let L := (L0, . . . , L`−1) ∈ {0, 1}` be a binary
vector. There exists a linear transformation φ such that
φ(L) = (L′0, . . . , L

′
`−1) satisfies:

• Let i∗ ∈ Z` be the index of the first non-zero bit in L,
that is, Li∗ = 1 ∧ ∀i < i∗ : Li = 0.

• L′i∗ = 0 and L′j 6= 0 for all i 6= i∗.

Proof. Consider the transformation φ(L) := (L′0, . . . , L
′
`−1)

such that L′i =
∑i

t=0 Lt − 2 · Li + 1 for i ∈ Z`. Let si :=∑i
t=0 Lt be the prefix-sum of L and L′ = φ(L) = si − 2 ·

Li + 1. We argue that L′ will only contain one zero at the
position i∗, where L′i 6= 0 for all i 6= i∗. Indeed, it converts
all the prefix zero bits of L to 1 (namely, if si = 0∧Li = 0
then L′i = 1); it converts the first non-zero bit of L to 0

(namely, if si∗ = 1 ∧ Li∗ = 1 then L′i∗ = 0); it converts
the suffix bits to non-zero values (namely, in case Li = 0,
si ≥ si∗ +Li = 1, we have L′i = si − 2Li + 1 ≥ 2; in case
Li = 1, si ≥ si∗+Li = 2, we have L′i = si−2Li+1 ≥ 1).

This concludes our proof.

A.2. The proof of Theorem 2.

Theorem 2. Let PRF(Zp)p ,PRFZp and PRFZ
2` be the secure

pesudo-random functions. The protocol ΠSignBit as depicted
in Fig. 2 UC realizes FSignBit against malicious PPT adver-
saries who can statically corrupt up to one party.

Proof. To prove Thm. 5, we construct a PPT simulator
S, such that no non-uniform PPT environment Z can dis-
tinguish between the ideal world and the real world. We
consider the following cases:

Case 1: P0 is corrupted.
Simulator: The simulator S internally runs A, forward-

ing messages to/from Z and simulates the interface of
honest P1, P2. S simulates the following interactions with
A.
• Upon receiving {Jrx,iKp1}i∈Z`−1

, [r′]1 form corrupted
P0 to P1, and {Jrx,iKp2}i∈Z`−1

, [r′]2 form corrupted P0

to P2, S extracts r̂x = 2`−1 −
∑`−2

i=0 2`−2−i(Jrx,iK
p
1 +

Jrx,iK
p
2) and r′ = [r′]1 + [r′]2;

• S picks random list {û′i}i∈Z` where û′i ∈ Zp and sets
another list {ûi}i∈Z` as following steps:
– For each i where û′i = 0, set ûi ← {p− 1, 0}.
– For each i where û′i 6= 0, set ûi ← Z∗p.
– Let I := {i | û′i 6= 0}. Pick random α ← I to set
ûα ← Z2.

– Send {û′i}i∈Z` and {û′i}i∈Z` to P0.
• Upon receiving m′1 from corrupted P0 to P1 and m′2

from corrupted P0 to P2, S does:
– generate [rx]1 and [rx]2 with η0,1 and η0,2.
– calculate rx = [rx]1 + [rx]2.
– For j ∈ {1, 2}, if ∃ûi = 0∧ û′i 6= 0, set δj = (m′j +
r′)−sign(rx), else set δj = (m′j+r

′)−(1⊕sign(rx)).
– Calculate r′x = −r̂x − sign(−rx) · 2`−1.
– Send (Input, sid, r′x − [rx]2, [rx]2) to FSignBit.
– Send (Modify, sid, 0, 0, δ1, 0, δ2, 0) to FSignBit.

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H0,H1.

Hybrid H0: It is the real protocol execution
RealΠSignBit,A,Z(1κ).

HybridH1: It is the idea world execution IdealF,S,Z(1κ)
which is same as H0 except that in H1, list ûi and û′i reveal
to P0 are picked uniformly random instead of calculating
from wi ·m′i + (sign(mx)⊕ m̂x,i⊕∆) and w′i(wi ·m′i + 1).

Claim 1. If PRFZp and PRF(Zp)p are the secure pseudoran-
dom functions with adversarial advantage AdvPRFZp (1κ,A)
and advantage AdvPRF(Zp)p (1κ, A), then H1 and H0 are in-
distinguishable with advantage ε < 2 ·` ·AdvPRFZp (1κ,A)+
AdvPRF(Zp)p (1κ,A).



Proof. Considering the list û′i, we change it derived from
PRF to uniform random witch takes the advantage ` ·
AdvPRFZp (1κ,A). Considering the list ûi, if û′i = 0, the
real execution ui = sign(mx) ⊕ m̂x,i ⊕ ∆ − 1 is random
(with PRFZ2) from {p − 1, 0} due to the random value
m̂x,i ∈ Z2; if û′i 6= 0, the distribution of real execution
ui = wi ·m′i + sign(mx) ⊕ m̂x,i ⊕∆ is that ”one element
random (with PRFZ2) from {0, 1}, and others random (with
PRFZ∗p) from Z∗p”. Because there only exists one position
i that m′i = 0. Considering the permutation π derived
from PRFZpp in real execution witch substituted by uniform
random, the overall advantage is ε < 2·`·AdvPRFZp (1κ,A)+
Adv

PRFZpp (1κ,A).

Case 2: P1(or P2) is corrupted.
Simulator: The simulator S internally runs A, forward-

ing messages to/from Z and simulates the interface of
honest P0, P2. S simulates the following interactions with
A.
• S generate [r′]1 using PRF with seed η0,1.
• S picks [Γ]2 ← Z2` and acts as P2 to send it to P1.
• Upon receiving [Γ]1 from P1, S does

– Generate [rz]1 using PRF with the seed η0,1.
– Calculate δ = [Γ]1 − [r′]1 + 2∆ · [r′]1 − [rz]1,
– Calculate Γ = [Γ]1 + [Γ]2.

• S picks Jrx,iK1 ← Zp for i ∈ Z` and acts as P0 to send
it to P1.

• Upon receiving {JûjK1}j∈Z∗`+1
and {Jû′jK1}j∈Z∗`+1

from
corrupted P1 to P0, S does.
– Invoke PRF with η1,2 to generate permutation π,
{wi, w′i}i∈Z` ∈ (Z∗p)2`, ∆ ∈ Z2.

– Calculate {JuiK1}i∈Z` = π−({JûiK1}i∈Z`).
– Calculate {Ju′iK1}i∈Z` = π−({Jû′iK1}i∈Z`).
– Calculate m̂′x,i via {Ju′iK1}i∈Z`+1

, wi, w′i and Jrx,iK1

– Calculate si ⊕ m̂′x,i via ∆ and{JuiK1}i∈Z` .
– Set mx = s1||m̂′x,1|| . . . ||m̂′x,`−1.
– Act as the corrupted P1 (P2) to send (Input, sid,mx)

to the external FSignBit.
• S sets Alg(r1, r2,m1,m2) as

– calculate r = r1 + r2;
– calculate and bit-extract −r − sign(−r) · 2`−1 as
{r0, . . . , r`−1};

– perform JriKp ← Πp
J·K(ri);

– follow ΠSignBit steps (1)-(5) to calculate JuiK2 and
Ju′iK2 with m2.

– follow ΠSignBit steps (1),(3),(4) with m1 and (i)
for ΠSignBit step (2), set m̂x,` = m̂′x,` with ex-
tracted value m̂′x,`; (ii) for ΠSignBit step (5), calculate
JuiK

p
1 = wi · Jm′iKp + (si⊕ m̂x,i⊕∆) with extracted

value si.
– output z = ∆⊕ sign(−r) if ∃(JûiKp1 + JûiK

p
2 = 0) ∧

(Jû′iK
p
1 + Jû′iK

p
2 6= 0), else z = ∆⊕ sign(−r)⊕ 1.

• S sends (Compute, sid,Alg) to FSignBit.
• S sends (Modify, sid, {0, 0, δ, 0, δ, 0}) to FSignBit.
• Upon receiving (Output, mz , [rz]1) from FSignBit, S

acts as P0 to send m′ = (mz − Γ)/(1− 2∆) to P1.

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H0,H1.

Hybrid H0: It is the real protocol execution
RealΠSignBit,A,Z(1κ).

Hybrid H1: It is same as H0 except that in H1, Jrx,iK1

and [Γ]1 are picked uniformly random instead of calculating
from rx,j , ∆ + [r′]2 − 2∆ · [r′]2 + [rz]2.

HybridH2: It is the idea world execution IdealF,S,Z(1κ)
which is same as H1 except that in H1, m′ send to P1 is
calculated by (mz−Γ)/(1−2∆) instead of sign(−rx)−r′.

Claim 2. If PRFZp and PRFZ
2` are the secure pseudoran-

dom functions with adversarial advantage AdvPRFZp (1κ,A)
and advantage Adv

PRF
Z
2`

(1κ,A), then H1 and H0 are
indistinguishable with advantage ε = ` ·AdvPRFZp (1κ,A) +
2Adv

PRF
Z
2`

(1κ,A).

Proof. We replace the ` PRFZp outputs and 2 PRFZ
2`

outputs to uniformly random number; therefore,the overall
advantage is ε = ` · AdvPRFZp (1κ, A) + 2Adv

PRF
Z
2`

(1κ,A)
by hybrid argument via reduction.

This concludes the proof.

A.3. The proof of Lemma 1.

Lemma 1. Suppose protocol ΠTrans take
{〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN as input, and it outputs
{〈x′(i)〉`[x], 〈y(i)〉`[x]}i∈ZN ; 〈z〉`[x]. The probability that the
following two conditions hold is at most N

2d
, where d is the

degree of f(x) w.r.t. Z2` [x]/f(x):
• z =

∑N
i=0 x

′(i) · y(i)

• ∃i ∈ ZN s.t. zi 6= x(i) · y(i)

Proof. It is sufficient to show that r is uniformly random if
ΠRec is not abort. The adversary tries to make

∑N
i=0 r

i−1 ·
z(i) =

∑N
i=0 r

i−1 · x(i) · y(i) where z(i) = x(i) · y(i) + e(i)

for i ∈ ZN with an error list {ei}i∈ZN . It can be written as∑N
i=0 r

i−1 · x(i) · y(i) =
∑N

i=0 r
i−1 · (x(i) · y(i) + e(i)). The

condition that makes the equation hold is the random value
r is the root of f(x) =

∑N
i=0 x

i−1 · e(i). Since the size of
roots of N−1-degree f(x) over Z2` [x] is 2(`−1)dN+1, the
probablity that uniformly random value r match the root is
2(`−1)dN+1

2`d
≈ N

2d
.

A.4. The proof of Lemma 2.

Lemma 2. Suppose ΠReduce take
({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x]) as input, and it
outputs the new list ({〈x′(i)〉`[x], 〈y′(i)〉`[x]}i∈ZN/2 , 〈z′〉`[x]).
The probability that the following two conditions hold is at
most 1

2d−1 , where d is the degree of f(x) w.r.t. Z2` [x]/f(x):

• z′ =
∑N/2

i=0 x
′(i) · y′(i)

• z 6=
∑N

i=0 x
(i) · y(i)

Proof. For the convenience of description, we denote
h′(k) =

∑N/2
i=0 fi(k) · gi(k). The adversary tries to make

h(ζ) = h′(ζ) when h(0) + h(1) = h′(0) + h′(1) + e



(we denote e the error introduced in z). At the same time,
the adversary can introduce new errors e1, e2 when calcu-
lating h(0) and h(2) so that h(0) = h′(0) + e1, h(1) =
h′(1) + e − e1, h(2) = h′(2) + e2. Considering h(ζ) =∑2

i=0((Π2
j=1,j 6=i

ζ−j
i−j ) · h(i)) = (ζ−1)·(ζ−2)

2 · h(0) + ζ · (2−
ζ) · h(1) + (ζ−1)∗ζ

2 · h(2), to make it equal to h′(ζ) =
(ζ−1)·(ζ−2)

2 ·h′(0) + ζ · (2− ζ) ·h′(1) + (ζ−1)∗ζ
2 ·h′(2), is to

make (ζ−1)·(ζ−2)
2 ·e1 +ζ ·(2−ζ)·(e−e1)+ (ζ−1)·ζ

2 ·(e2) = 0
for random picked ζ ∈ Z2` [x]. The probability that the
adversary deliberately chooses e, e1, e2 to make the equation
hold is to make ζ be the root of 2-degree polynomial
f(x) = (x−1)·(x−2)

2 ·e1 +x · (2−x) · (e−e1)+ (x−1)·x
2 · (e2)

over Z2` [x], which is at most 22(`−1)d + 1. So we have the
soundness error 2(`−1)d+1+1

2`d
≈ 1

2d−1

A.5. The proof of Lemma 3.

Lemma 3. Let ({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN , 〈z〉`[x]) be the
input of protocol ΠInnerVerify depicted in Fig. 6. The proba-
bility that ΠInnerVerify outputs 1 and z 6=

∑N
i=0 x

(i) ·y(i) is at
most 1

2d
, where d is the degree of f(x) w.r.t. Z2` [x]/f(x).

Proof. Since α is uniformly random and unknown to the
adversary, for z =

∑N
i=0 x

(i) · y(i) + e, we have ∆ = α · e+
e1 where e1 is introduced when evaluating ΠPolyEvl. Since
ΠPolyEvl is secure up to additive attack, e1 is independent
of α, so that polynomial f(x) = e · x+ e1 over Z2` [x] has
2(`−1)d+1 roots. The probability the adversary deliberately
chooses e, e1 to make ∆ = 0 is 2(`−1)d+1

2`d
≈ 1

2d
.

A.6. The proof of Theorem 3.

Theorem 3. Let {〈x(i)〉, 〈y(i)〉, 〈z(i)〉}i∈ZN be the input
of protocol ΠR

MultVerify depicted in Fig. 7. The probability
ΠR

MultVerify outputs 1 and ∃i ∈ ZN s.t. z(i) 6= x(i) · y(i)

is at most N
2d−R−2 , where d is the degree of f(x) w.r.t.

Z2` [x]/f(x).

Proof. From Lemma. 1, Lemma. 2 and Lemma. 3, we
know that the adversary has R chances with probability

1
2d−1 and one chance with probability N

2d
and one chance

with probability 1
2d

to pass the verification. Therefore the
probability that the adversary success is 1 − (1 − 1

2d−1 )R ·
(1− N

2d
) · (1− 1

2d
) ≈ N

2d−R−2 .

A.7. The proof of Theorem 4.

Theorem 4. Let 〈x〉` be the input of the protocol Πλ
Pos

depicted Fig. 8. The probability that Πλ
Pos outputs 1 and

sign(x) = 1 is at most 1
2λ log `+λ+log ` .

Proof. For each illegel uj in Πλ
Pos, the probability that

malicious Pi for i ∈ {1, 2} make it pass the MAC check
is 1

2(log `+1)λ w.r.t. the MAC key space Zλp (taking p ≈
2(log `+1)). To persuade the verifier to accept the result,
the adversary also needs to guess the position of the first
non-zero bit and flip the coin with probability 1

` . So the
soundness error is 1

2(log `+1)λ`
= 1

2λ log `+λ+log ` .

A.8. The proof of Theorem 5.

Theorem 4. Let PRFZp and PRFZ
2` be the secure pseudo-

random functions. The protocol ΠVSignBit as depicted in
Fig. 10 UC realizes FVSignBit against malicious PPT ad-
versaries who can statically corrupt up to one party.

Proof. To prove Thm. 5, we construct a PPT simulator
S, such that no non-uniform PPT environment Z can dis-
tinguish between the ideal world and the real world. We
consider the following cases:

Case 1: P0 is corrupted.
Simulator: The simulator S internally runs A, forward-

ing messages to/from Z and simulates the interface of
honest P1, P2. S simulates the following interactions with
A.
• S extracts r′(i)x ,δ(i)

1 ,δ(i)
2 as like Proof. A.2;

• For the invoking ΠPos with verifier P1:
– S generate ∆(i) with seed η0,2;
– S generate x(i)

1 := [r
(i)
x ]2 with seed η0,2;

– S generate random ‖r(i)
k ‖ for k ∈ Z` with random

MAC key α and acts as verifier P1 to share ‖r(i)
k ‖

and α to P0.
– Upon receiving ‖u(i)

k ‖0 for k ∈ Z` form P0, S
reconstructs x′(i)1 and its MACs share γ(x

′(i)
1 ).

– If x′(i)1 · α 6= γ(x
′(i)
1 ) or x′(i)1 6= x

(i)
1 , S abort.

• Similarly, for the invoking ΠPos with verifier P2, S
generates ∆′(i) with seed η0,1, generates x

(i)
2 from

[r
(i)
x ]1, reconstructs x′(i)2 and its MACs share γ(x

′(i)
2 ).

S aborts if x′(i)2 · α 6= γ(x
′(i)
2 ) or x′(i)2 6= x

(i)
2 .

• S sends (Input, sid, (x
(i)
1 , x

(i)
2 )) to FVSignBit;

• S calculates δ(i) = r
′(i)
x − x(i)

1 − x
(i)
2 ;

• For the invoking ΠMultVerify,
– S picks t1 and t2 and share them to P0.
– If δ(i)

1 6= δ
(i)
2 , S reveal β 6= 0 to P0 as result of

ΠMultVerify.
– S extract t′0 = t1−t0, t′1 = t2−t0 from the execution

of ΠMultVerify.
– If t1 − t′0 6= t2 − t′1, S reveal β 6= 0 to P0 as result

of ΠMultVerify.
– if t0 6= H(∆(0)|| . . . ||∆(N−1)||∆′(0)|| . . . ||∆′(N−1)),
S reveal β 6= 0 to P0 as result of ΠMultVerify.

– S sets Alg(
{

(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 )

}
i∈ZN

) :=

{sign(m
(i)
1 − r

(i)
1 − r

(i)
2 − δ(i))}i∈ZN ;

– S sets f(
{

(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 )

}
i∈ZN

) :=∧i=N−1
i=0 (sign(m

(i)
1 − r

(i)
1 − r

(i)
2 − δ(i)) +

δ
(i)
1

?
= sign(m

(i)
1 − r

(i)
1 − r

(i)
2 ));

– S sends (Compute, sid,Alg, f) to FVSignBit;
– Upon receiving (Leak, sid, b) from FVSignBit, reveals

random value β 6= 0 to P0 if b = 0, else reveals
β = 0 to the corrupted P0.

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H0,H1.



Hybrid H0: It is the real protocol execution
RealΠVSignBit,A,Z(1κ).

Hybrid H1: It is same as H0 except that in H1, list
‖r(i)
k ‖ of ΠPos is picked uniformly random.
Hybrid H2: It is the idea world execution

IdealFVSignBit,S,Z(1κ) which is same as H1 except that
in H2, t1, t2 and β is picked random.

Claim 3. If PRFZp and PRFZ
2` are the secure pseudoran-

dom functions with adversarial advantage AdvPRFZp (1κ,A)
and advantage Adv

PRF
Z
2`

(1κ,A), then H1 and H0 are
indistinguishable with advantage 2 · ` · AdvPRFZp (1κ,A) +
3Adv

PRFZ` (1
κ,A).

Proof. For ‖r(i)
k ‖ of H0 and H1, we replace 2` PRFZp

outputs to uniformaly random. For t1 and t2 of H1 and H2,
we replace 2 PRFZ` outputs to uniformaly random. For β,
we replace PRF2` outputs to uniformaly random.Therefor,
the overall advantage is ε = 2 · ` · AdvPRFZp (1κ,A) +
3Adv

PRFZ2` (1κ,A)

Case 2: P1(or P2) is corrupted.
Simulator: The simulator S internally runs A, for-

warding messages to/from Z and simulates the interface
of honest P1, P2. S simulates random oracle RO and the
following interactions with A.

• S generates [r
(i)
x ]1 with seed η0,1.

• S extracts m′(i)x and δ(i)as like Proof. A.2
• S sends (input, sid,m

′(i)
x , [r

(i)
x ]1) to FVSignBit.

• For the invoking ΠPos with verifier P2:
– S generate ∆(i) with seed η1,2.
– S generate random ‖r(i)

k ‖ for k ∈ Z` with random
MAC key α and acts as verifier P2 to share ‖r(i)

k ‖
and α to P1.

– Upon receiving ‖u(i)
k ‖0 for k ∈ Z∗`+1 form P1, S

reconstructs x′(i)2 and its MACs share γ(x
′(i)
2 ).

– If x′(i)2 · α 6= γ(x
(i)
2 ) or [r

(i)
x ]1 6= x

′(i)
2 , S abort.

• For the invoking ΠPos with verifier P1.
– extracts r(i) from the message received from P1.
– simulates the list (uk,u′k) like Proof. A.2.
– calculates v′(i)1 form sign(r) and the list (uk,u′k);
– calculates m′′(i)x = r(i) − [r

(i)
x ]1 .

• For the invoking ΠMultVerify,
– S picks t0 and t2 and share them to P0.
– S extracts t′0 = t2 − t1, t′1 = t1 − t0 from the

execution of ΠMultVerify.
– If t2 − t′0 6= t1 − t′1, S reveal β 6= 0 to P0 as result

of ΠMultVerify.
– S sets t1 = t2 − t′0.
– S sets Alg(

{
(r

(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 )

}
i∈ZN

) :=

{Alg(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 ) + δ(i)}i∈ZN , where Alg is

same construnction in Proof. A.2;
– S sets f(

{
(r

(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 )

}
i∈ZN

) as

∗ return 0 if exists Alg(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 ) +

δ(i) /∈ {0, 1}.
∗ f0 := ΠN−1

i=0 (Alg(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 ) +

δ(i) ?
= sign(m

(i)
2 − r

(i)
1 − r

(i)
2 ));

∗ v′′(i)1 = v
′(i)
1 if Alg(r

(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 ) +

δ(i) ?
= sign(m

′′(i)
x − r(i)

1 − r
(i)
2 ). v′′(i)1 = v

′(i)
1 ⊕ 1

if Alg(r
(i)
1 , r

(i)
2 ,m

(i)
1 ,m

(i)
2 ) + δ(i) ?

6= sign(m
′′(i)
x −

r
(i)
1 − r

(i)
2 ) for i ∈ ZN .

∗ f := f0·(H(∆(0)|| . . . ||∆(N−1)||v′′(0)
1 || . . . ||v′′(N−1)

1 ) ?
= t1);

– S sends (Compute, sid,Alg′, f) to FVSignBit;
– Upon receiving (Leak, sid, b) from FVSignBit, reveals

random value β 6= 0 to P0 if b = 0, else reveals
β = 0 to the corrupted P0.

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H0,H1.

Hybrid H0: It is the real protocol execution
RealΠVSignBit,A,Z(1κ).

Hybrid H1: It is same as H0 except that in H1, list t0
and t1 are picked random instead of calculated with H .

Hybrid H2: It is the idea world execution
IdealFVSignBit,S,Z(1κ) which is same as H1 except that
in H2, β is picked random instead of calculated with
ΠMultVerify.

Claim 4. If PRFZp and PRFZ
2` are the secure pseudoran-

dom functions with adversarial advantage AdvPRFZp (1κ,A)
and Adv

PRF
Z
2`

(1κ,A), then H2 and H0 are indistin-
guishable with advantage ε = ` · AdvPRFZp (1κ,A) +
3Adv

PRF
Z
2`

(1κ,A).

Appendix B.
Other Aegis component

B.1. Inner product and convolution.

Our maliciously secure inner product protocol ΠInner is
shown in Fig. 19. Its semi-honest version is the special case
of ΠPolyEvl for 2-degree n-variate polynomial which requires
one round communication of ` bits in the preprocessing
phase and one round communication of 2` bits in the online
phase. To extend it to the malicious setting, we employ
batch verification protocol ΠR

InnerVerify (Fig. 18) to ensure
the correctness of the inner products with a similar manner
of multiplication. Analogously, in ΠR

InnerVerify, all parties
transform the verification of inner product triples over ring
Z2` to the verification of a single inner product triple over
the polynomial ring Z2` [x]/f(x). Following that, all parties
invoke ΠReduce to reduce the dimension of the vector that
needs to be verified. When handling a substantial volume
of data, on average, our protocol exhibits an amortized
communication of ` bits in the preprocessing phase and 2`
bits in the online phase for each inner product operation.
In the application of machine learning, we view the m-
dimensional output convolution and matrix multiplication as



Input : N pairs of inner product.
Output : Output if z(j) =

∑n
i=1 x

(j)
i · y(j)i held for all j ∈

ZN .
Execution:
- All parties transfer all shares 〈·〉 to 〈·〉`[x] locally;
- All parties invoke 〈r〉`[x] ← Π

`[x]
〈·〉 an call ΠRec to

reconstruct r ∈ Z2` [x];
- All parties set 〈z〉`[x] :=

∑
rj · 〈z(j)〉`[x] and

〈x(j)i 〉
`[x] := rj · 〈x(j)i 〉

`[x] for each i ∈ Znj , j ∈ ZN ;
- All parties consolidate the original pairs into a single pair
{〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN ; 〈z〉`[x] where
N =

∑N−1
j=0 nj ;

- For k = 1, . . . , R, all parties do:
– {〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN/2k , 〈z〉

`[x] ←
ΠReduce({〈xi〉`[x], 〈y(i)〉`[x]}i∈ZN/2k−1

, 〈z〉`[x]);

- All parties call
b = ΠInnerVerify({〈x(i)〉`[x], 〈y(i)〉`[x]}i∈ZN/2R , 〈z〉

`[x]);
- All parties output b.

Protocol ΠR
BIVerify({{〈x

(j)
i 〉, 〈y

(j)
i 〉}i∈Znj , 〈z

(j)〉}j∈ZN )

Figure 18: The Batch Inner Product Verification Protocol

Input : 〈·〉-shared value list of xi and yi.
Output : 〈·〉-shared value of z where z =

∑n
i=1 xi · yi.

Preprocessing:
- All parties prepare [rz ]← Π[·] locally;
- P0 calculates Γ =

∑n
i=1 rxi · ryi + rz and shares it with

Π[·](Γ);

Online:
- Pj for j ∈ {1, 2} calculates [mz ]j =∑n

i=1(j − 1)mxi ·myi −mxi [ryi ]j −myi [rxi ]j + [Γ]j
and mutually exchange their shares to reconstruct mz .

Postprocessing:
- For N pairs inner product result
{{〈x(j)i 〉, 〈y

(j)
i 〉}i∈Znj ; 〈z(j)〉}j∈ZN , all parties call

ΠRInnerVerify({{〈x
(j)
i 〉, 〈y

(j)
i 〉}i∈Znj ; 〈z(j)〉}j∈ZN ) to verify

correctness.

Protocol ΠInner(〈x1〉, . . . , 〈xn〉, 〈y1〉, . . . , 〈yn〉)

Figure 19: The Inner Product Protocol

m separate inner products. We implement these two types
of operations by invoking ΠInner a total of m times.

B.2. Truncation

The multiplication of two fixed-point values with our
encoding will lead to a double scale of 2k for the frac-
tional precision k. An array of protocols [27], [30], [33]
using the probabilistic truncation protocol to reduce the
additional 2k scaler. Their protocols introduce a one-bit
error which is caused by the carry bit of truncated data.
In addition, the probabilistic truncation protocol makes an
error with a certain probability (assuming that the valid

Let rshift(x, y) denote right shift x with y bits. Input : 〈·〉-
shared value.
Output : 〈·〉-shared value of z = rshift(x, t).
Preprocessing:
- P0 and Pi pick random bit list {bi,j}j∈Z` ← Z`2 together,

for i ∈ {1, 2};
- All parties set

- 〈b1,j〉 := (mb1,j , [rb1,j ]1, [rb1,j ]2) := (0, b1,j , 0);
- 〈b2,j〉 := (mb2,j , [rb2,j ]1, [rb2,j ]2) := (0, 0, b2,j) for
j ∈ Z`;

- All parties invoke ΠInner to calculate
– 〈rx〉 =

∑`−1
j=0 2j(〈b1,j〉+ 〈b2,j〉 − 2〈b1,j〉 · 〈b2,j〉);

– 〈rz〉 =
∑`−t−1
j=0 2j(〈b1,j+t〉+ 〈b2,j+t〉 − 2〈b1,j+t〉 ·

〈b2,j+t〉) +
∑`−1
j=`−t−1 2j(〈b1,`−1〉+ 〈b2,`−1〉 −

2〈b1,`−1〉 · 〈b2,`−1〉);

- P0 set rx =
∑`−1
j=0 2j · (b1,j ⊕ b2,j), rz =∑`−t−1

j=0 2j ·(b1,j⊕b2,j)+
∑`−1
j=`−t−1 2j ·(b1,`−1⊕b2,`−1);

- Pi for i ∈ {1, 2} set [rx] = mrx − [rrx ],
[rz ] = mrz − [rrz ];

Online:
- Pi for i ∈ {1, 2} set mz = rshift(mx, t);
- All parties output 〈z〉 := ([rz ],mz).

Protocol Πt
Trunc(〈x〉)

Figure 20: The maliciously secure truncation protocol

range of data is `x and the error probability is 2`x−`+1).
As shown in Fig. 20, we also design a maliciously secure
probabilistic truncation protocol Πt

Trunc for the truncation bit
size t. Our idea is similar to SWIFT [27] which generates
correct truncation pair via maliciously secure inner product
protocol. However, in contrast to SWIFT [27], we directly
generate rz = rshift(rx, d), which allows the parties locally
truncate mz = rshift(mx, d) in the online phase without
communication. Although SWIFT [27] eliminates commu-
nication by combining truncation with multiplication, they
still need 2` online communication in the online phase of
the standalone truncation protocol. Specifically, we let P0

and P1 pick random bit list {b1,j}j∈Z` together; P0 and P2

pick random bit list {b2,j}j∈Z` together. We utilize these
lists to calculate that rx =

∑`−1
j=0 2j · (b1,j ⊕ b2,j) and rz =∑`−t−1

j=0 2j · (b1,j ⊕ b2,j) +
∑`−1

j=`−t−1 2j · (b1,`−1 ⊕ b2,`−1)
which keeps the relationship rz = shift(rx, t). We can
evaluate rx and rz under 〈·〉-sharing to realize malicious
security. To transform b1,j and b2,j to the 〈·〉-sharing locally,
we let 〈b1,j〉 = (0, b1,j , 0) and 〈b2,j〉 = (0, 0, b2,j) which
set the other secret share to be 0. For the result 〈rx〉 and
〈rz〉, since rx and rz is known by P0, P1 and P2 can be
locally calculate [rx] = mrx − [rrx ] and [rz] = mrz − [rrz ].
Note that ΠTrunc requires assigning rx of the input wire,
we let it be executed preferentially to provide rx for the
other gate. Our maliciously secure protocol ΠTrunc requires
1 rounds and communication of 6` bits in the offline phase
and requires no communication in the online phase. The
semi-honest version of truncation is provided in Fig. 21,



Input: 〈·〉-shared value.
Output: 〈·〉-shared value of z = rshift(x, t).
Preprocessing:
- P0 pick random value rx which satisfy
rshift(rx, t) = rshift([rx]1, t) + rshift([rx]2, t).

- All parties perform [rx]← Π[·](rx).
- All parties set [rz ]i = rshift([rx]i, t) for i ∈ {1, 2}

Online:
- Pi for i ∈ {1, 2} set mz = rshift(mx, t)
- All parties output 〈rz〉 = ([rz ],mz)

Protocol Πt
semi-trunc(〈x〉)

Figure 21: The semi-honest truncation protocol

TABLE 3: Run-time and communication cost of NN in-
ference, under LAN setting with batch size 30. (Com: the
communication which is given in MB. Time: the run-time
which is given in ms)

Model Stage Offline Online

Com Time Com Round Time

S-NN Execution 0.05 6.07 0.17 2 13.19

Verification - - 1.75 3 23.52

LeNet Execution 0.65 7.40 2.46 42 104.9

Verification - - 26.1 10 118.2

VGG Execution 10.2 207 39.2 127 8341

Verification - - 414 18 12157

which only requires one round and communication of ` bits
in the offline phase.

B.3. ReLU

Our 2-round ReLU protocol is depicted in Fig. 22.

Appendix C.
Benchmarks

C.1. The inference of neural network.

We further construct the convolutional neural network
(CNN) inference. We implement three types of models as
follows:
• Shallow neural network(S-NN). Our shallow neural

network accepts 28×28 image and involves a convolu-
tion layer(5 kernels with 5×5 shape, the stride of (2,2)),
a ReLU layer, and a fully connected layer(connects the
incoming 5× 13× 13 nodes to the output 10 nodes).

• LeNet. We benchmark the LeNet model which replaces
the sigmoid activation layer with the ReLU layer. The
model accepts 32 × 32 image and contains 2-layer
convolution, 2-layer Maxpool, 4-layer ReLU and 3-
layer full connection.

Input : 〈·〉-shared value of x.
Output : 〈·〉-shared values of z = sign(x) and w = ReLU(x).
Preprocessing:
- All parties perform [r′′], [r′], [rz ], [rw]← Π[·];
- Pi, for i ∈ {1, 2} pick ∆ ∈ {0, 1} and reveal

[Γ] = ∆ + [r′]− 2∆ · [r′] + [rz ] to each other;
- Pi, for i ∈ {1, 2} calculate

[Γ′] = Γ · [rx]− (1− 2∆)[r′′] + [rx · rz ]− [rw];
- P0 does:

1) calculate r̂x = −rx − sign(−rx) · 2`−1 ∈ Z2` ;
2) extract 2`−1 − 1− r̂x as {rx,0, . . . , rx,`−2};
3) perform Jrx,iKp ← ΠpJ·K(rx,i) for i ∈ Z`−1, taking the

biggest prime of p ∈ (`, 2log `+1];
4) perform [rx · rz ]← Π[·](rx · rz);

Online:
- Pj , for j ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as
{m̂x,i ∈ {0, 1}}i∈Z` while

∑`−1
i=0 2`−1−im̂x,i = m̂x;

2) set m̂x|` = 0 and Jrx,`K = J1K;
3) set JmiKp = m̂x,i + Jrx,jKp − 2m̂x,i · Jrx,iKp for

i ∈ Z`.
4) pick same random values {wi, w′i ∈ Z∗p}i∈Z` via PRF

with seed η1,2;
5) calculate Jm′iK

p =
∑i
t=1JmtKp − 2 · JmiKp + 1 and

JuiKp = wi · Jm′iKp + (sign(mx)⊕ m̂x,i ⊕∆) and
Ju′iK

p = w′i(wi · Jm′iKp + 1) for i ∈ Z`;
6) pick a random permutation π via PRF with seed η1,2 and

permute the list {JûiKp}i∈Z` = π({JuiKp}i∈Z` ) and
{Jû′iKp}i∈Z` = π({Ju′iKp}i∈Z` );

7) reveal {JûiKp}i∈Z` and {Jû′iKp}i∈Z` to P0 and reveal
Γ′′ = mx · [rz ] + [Γ′] to each other simultaneously;

- P0 sets m′ = sign(−rx)− r′ if ∃ûi = 0 ∧ û′i 6= 0 for
i ∈ Z` else m′ = (1⊕ sign(−rx))− r′;

- P0 sets m′′ = m′ · rx + r′′;
- P0 sends m′ and m′′ to Pj , for j ∈ {1, 2};
- Pj , for j ∈ {1, 2} sets mz = m′ − 2∆ ·m′ + Γ and
mw = mxmz + (1− 2∆)m′′ + Γ′′;

- All parties output 〈z〉 := ([rz ],mz) and 〈w〉 := ([rw],mw).

Protocol ΠReLU(〈x〉)

Figure 22: The 2-round ReLU Protocol.

• VGG-16. We benchmark the VGG-16 model which
takes 64 × 64 image as input and contains 13-layer
convolution, 5-layer maxpool, 13-layer ReLU and 8-
layer full connection.

TABLE 3 depicts the run-time and communication of our
protocol under the LAN setting. Our benchmark contains
the communication cost and the running time of each stage.
In the execution stage, all parties perform offline/online
procedures of the semi-honest protocols. In the verification
stage, all parties perform a postprocessing procedure to
verify the correctness of the shared result. Our platform can
execute CNNs-like LeNet in hundreds of milliseconds. For
the deeper CNNs such as VGG, our platform can complete
the execution within tens of seconds.



(a) Online com. of MUL (b) Total com. of MUL

(c) Online communication of
Inner Product with Trunction

(d) Overall communication of
Inner Product with Trunction

Figure 23: Communication overhead comparison with
ABY3 [30], BLAZE [33], SWIFT [27] of muliplication and
inner product.

C.2. Multiplication communication comparison

Fig. 23 shows our communication overhead compared
with ABY, BLAZE, and SWIFT. We take the vector di-
mension 1024 when evaluating the inner product. Since our
protocol requires logarithmic additional communication of
(6R + 5)` · d (take R = logN ), it requires more commu-
nication than SWIFT given the small N . When N is large
enough, the logarithmic scaler R makes the additional term
ignorable. With a considerable amount of input size, the
increase in communication volume of our protocol is 2×
of SWIFT and 7× of ABY for multiplication and 2× of
SWIFT and 7168× of ABY for the 1024-dimension inner
product with truncation.

C.3. Non-arithmetic protocol benchmark in semi-
honest setting

Our non-arithmetic protocol benchmark in the semi-
honest setting is illustrated in TABLE 4.

C.4. Performance comparisons of P-Falcon [38]
and our ReLU protocols

TABLE 5 shows the performance comparison between
our semi-honest ReLU protocol and Falcon under piranha
code [40]. Our protocol achieves a performance improve-
ment of more than 3× compared to Falcon [38].

C.5. The communication of our protocols

We summarize the overhead of our protocols of Mul-
tiplication, Inner Product, Truncation, Sign-bit Extraction,
ReLU, and MaxPool which is depicted in TABLE 6.

Appendix D.
Related work

In the honest-majority setting, several works such as
[13], [16], [18], [19], [21], [42] have designed protocols
for efficient secure multi-party computation against the ma-
licious adversary. However, compared to the semi-honest
case, previous work requires significantly higher additional
overhead. For instance, [42] presents two sets of schemes
that require a communication overhead of either 42 · n or
5(n2 − n) ring elements for each multiplication, where n
represents the number of parties. [13] reduces the commu-
nication overhead to 42·n. [21] introduces batch verification
and a series of other optimization techniques. These proto-
cols by [21] require a two-round communication overhead of
2n field elements or a one-round communication overhead
of 3n field elements. However, it should be noted that
[21]’s protocol can only run on the field. In contrast, [19]
achieves a constant online phase communication overhead
of 12 field elements by utilizing packed secret sharing
technology. Lastly, the work by [16] refocuses on secure
multi-party computation in a ring setting. It achieves a
communication overhead of 1 1

3 ring elements with two
rounds of communication or 1 2

3 ring elements with one
round of communication. With the advancement of the
maliciously secure multiplication protocol, practical mali-
ciously secure privacy-preserving machine learning becomes
attainable. [8], [10], [10], [11], [27], [30], [33], [34], [38]
realize privacy-preserving machine learning protocols under
the malicious threat model in an honest majority. In the
semi-honest setting, protocols such as [10], [30], [32], [33]
are all based on three parties replicated secret sharing,
which only request 3 ring elements communication each
multiplication. The online phase communication overhead
of 2 ring elements can be achieved by handing over part
of the communication to a circuit-dependent offline phase
[10]. In the malicious setting, different from the overhead
of 21 ring elements (12 in the offline phase) [30], a series
of optimizations [10], [27], [33] reduced the multiplication
overhead to 6 ring elements (3 in the offline phase) in the
three-party setting. To evaluate non-linear functions such as
ReLU and Maxpool, protocols like [27], [30], [32] employ a
conversion process that transforms arithmetic secret sharing
into boolean secret sharing. Subsequently, they utilize this
boolean secret-sharing scheme to evaluate corresponding
non-linear functions. The disadvantage of this approach
is the need to introduce log ` rounds of communication.
Furthermore, in protocols such as [10], [30], [33], garbled
circuits are employed for evaluating non-linear functions.
While these protocols exhibit a constant number of com-
munication rounds, the use of garbled circuits introduces a
significant amount of additional communication overhead,
particularly in the presence of a malicious threat model. In
contrast, the protocols described in [28], [37] tackle the sign-
bit extraction problem with a constant round communication
overhead. They achieve this by converting the highest bit
problem into the least significant bit problem. However,



TABLE 4: Runtime and communication cost of each non-arithmetic protocol evaluation in semi-honest, MAN setting.(ops)
for operations per second.

Operation Input
Size

Communication Time.(ms) Throughput.
(ops/s)

Offline Online Offline Online

Sign
24 1.1 KB 4.2 KB 11.52 19.41 516

28 16.6 KB 66.4KB 11.96 19.99 8050

216 4.2MB 17.0MB 77.59 249.58 200415

ReLU
24 1.3KB 5.2KB 11.67 19.47 513

28 20.7KB 83.1KB 11.96 20.01 8007

216 5.3MB 21.2MB 77.71 262.12 192849

MaxPool
24 1.1KB 5.1KB 11.75 36.38 333

28 20.6KB 82.8KB 11.86 73.28 3006

216 5.3MB 21.2MB 76.04 564.42 102326

TABLE 5: Performance comparisons of P-Falcon [38], [40] and our ReLU protocols on the different networks and batch
sizes. (ops) for operations per second.

Batch Protocol
LAN MAN

Time Thr. (ops) Time Thr. (ops)

210
P-Falcon [38], [40] 9914.1µs 93541.87 313616µs 3188.61
Ours 4160.3µs 240367.28 93391.5µs 10707.61

214
P-Falcon [38], [40] 22128.5µs 451905.91 452435µs 22102.62
Ours 8313.8µs 1202819.4 99684.4µs 100316.59

218
P-Falcon [38], [40] 152434µs 656021.62 2171200µs 46057.48
Ours 47193.1µs 2118953.83 397612.3µs 251501.27

TABLE 6: The communication cost of our protocols. (Offline.Com./Online.Com./Com.: the communication cost of of-
fline/online/verification phase. Rounds: the communication rounds of the online phase. ` is the ring size. λ:the statistical
security parameter. n:the MaxPool size. R:the dimension reduction times. N :the data size. M :the inner product dimension.)

Operation
Execution(Semi-honest) Verification

Offline.Com.(bit) Rounds Online.Com.(bit) Rounds Com.(bit)

Multiplication ` 1 2` R+ 1 (6R+ 3N/2R + 6)` · d

Inner Product ` 1 2` R+ 1 (6R+ 3N ·M/2R + 6)` · d

Truncation ` 0 0 R+ 1 (6R+ 6N/2R + 6)` · d

Sign-bit Extraction (`− 1) log `) + 2` 2 4` log `+ 2` 2 2((λ+ 1)(`− 1) log `+ 6` log `+ `)

ReLU (`− 1) log `) + 4` 2 4` log `+ 4` 2 2((λ+ 1)(`− 1) log `+ 6` log `+ 2`)

MaxPool (n− 1)(4`+ ` log `) logn (n− 1)4`(log `+ 2) 2 logn 2(n− 1)((λ+ 1)(`− 1) log `+ 6` log `+ `)

when evaluating protocols such as ReLU, they require a
substantial communication overhead of 10 rounds, which
can be even larger than log ` rounds when ` is small. On
the other hand, [43] implements comparison through a trun-
cation protocol. Their approach performs local truncation `
times, followed by involving a third party to verify if the
result contains zero items. This scheme realizes two rounds
of `2 bits communication. However, this approach has not
been applied to malicious threat models.


