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Abstract. Electronic voting has occupied a large part of the crypto-
graphic protocols literature. The recent reality of blockchains—in partic-
ular their need for online governance mechanisms—has put new parame-
ters and requirements to the problem. We identify the key requirements
of a blockchain governance mechanism, namely correctness (including
eliminative double votes), voter anonymity, and traceability, and inves-
tigate mechanisms that can achieve them with minimal interaction and
under assumptions that fit the blockchain setting.

First, we define a signature-like primitive, which we term sharp anony-
mous multisignatures (in short, AMS) that tightly meets the needs of
blockchain governance. In a nutshell, AMSs allow any set of parties to
generate a signature, e.g., on a proposal to be voted-upon, which if posted
on the blockchain hides the identities of the signers/voters, but reveals
their number. This can be seen as a (strict) generalization of threshold
ring signatures (TRS).

We next turn to constructing such fAMSs and using them in various
governance scenarios—e.g., single vs. multiple vote per voter. To this
direction, we observe that although the definition of TRS does not im-
ply $AMS; one can compile some of the existing TRS constructions into
AMS. This raises the question: What is the TRS structure that allows
such a compilation? To answer the above, we devise templates for TRSs.
Our templates encapsulate and abstract the structure that allows for
the above compilation—most of the TRS schemes that can be compiled
into fAMS are, in fact, instantiations of our template. This abstraction
makes our template generic for instantiating TRSs and §AMSs from dif-
ferent cryptographic assumptions (e.g., DDH, LWE, etc). One of our
templates is based on chameleon hashes and we explore a framework of
lossy chameleon hashes to fully understand its nature.

Finally, we turn to how §AMS schemes can be used in our applications.
We provide fast (in some cases non-interactive) fAMS-based blockchain
governance mechanisms for a wide spectrum of assumptions on the hon-
esty (semi-honest vs malicious) and availability of voters and proposers.

Keywords: blockchain, e-voting, threshold ring signature, threshold cryptog-
raphy



1 Introduction

Blockchain and Blockchain Governance. Since the emergence of Bitcoin [48]
in 2009, the world of cryptocurrencies and blockchain platforms has witnessed
a surge in popularity. One of the distinguishing features of these blockchain
platforms is their decentralized nature, wherein decision-making authority is
distributed among various actors within the ecosystem.

In the aftermath of the hard forks experienced by Bitcoin and Ethereum
[13], the notion of blockchain governance has arisen to establish communal con-
sensus in the management and distribution of decentralized ledgers, as well as
the evolution and growth of blockchain ecosystems. Blockchain governance en-
compasses a system wherein members of a blockchain network engage in decen-
tralized decision-making and consensus-building. This process is pivotal for the
advancement and prosperity of blockchains as it determines various aspects, in-
cluding blockchain mining and rewards, consensus algorithms, cryptoeconomics,
development direction, and more.

There are two basic governance mechanisms: off-chain governance, as seen
in Bitcoin and Ethereum, and on-chain governance, exemplified by projects like
Algorand [20], Tezos [34], and EOS. While off-chain governance allows core con-
tributors to work more seamlessly, it contradicts the philosophy of decentraliza-
tion. Conversely, on-chain governance faces technical challenges, and this area
of research is still relatively new and in its early stages.

Regardless of the governance mechanism employed, they share a common
vulnerability—the potential for community divisions, typically manifesting as
hard forks. A hard fork occurs when blockchain community stakeholders dis-
agree on a critical change, leading some to stick with the current chain while
others embrace the new one. Alternatively, multiple competing updates may be
proposed, further fragmenting the community. These divisions can erode com-
munity cohesion, reduce the platform’s overall value, and jeopardize its security.

The security aspect is particularly concerning because a reduced number of
resources supporting a fork can render it susceptible to attacks, such as 51%
attacks, where malicious actors gain control over the majority of the network’s
computing power. Consequently, it is imperative for blockchain platforms to
navigate governance challenges cautiously to uphold their stability and security
while fostering a sense of unity within their communities.

On-Chain Governance and Voting Systems for Improvement Proposals. On-
chain governance has arisen as a substitute for informal governance systems,
aiming to tackle the issues of centralization linked to blockchain technology. This
method incorporates all nodes within a blockchain network into the decision-
making procedure. It is, however, important for the blockchain community to
guarantee the decentralization of on-chain governance and prevent it from be-
ing unduly dominated by a limited faction of developers and miners who might
unilaterally enforce alterations. This vigilance is motivated by the potential for
conflicts and hard forks as blockchain networks evolve, potentially causing divi-
sions within the blockchain community.



Central to on-chain governance, the voting mechanism stands out as a vital
component. In a typical on-chain governance scenario, the process initiates with
an improvement proposal, which outlines potential developments for the entire
ecosystem and may involve substantial changes. Once such a proposal is put
forward, on-chain governance enables individuals, i.e. stakeholders, to participate
in voting to determine whether to endorse or reject the proposal.

Generally, there are three periods for an on-chain governance, the posting
period, the voting period, and the announcement period. In the posting period,
the developers submit their improvement proposals to the blockchain. Then in
the voting period, eligible voters participate in the voting protocol to vote for
their preferred proposals. And finally in the announcement period, the voting
result is announced and the most voted proposal is elected.

Voting System Requirements. There are several foundational requirements for a
robust voting system.

Correctness. The voting result’s accuracy is perhaps the more important prop-
erty. A key goal here is to prevent double-voting, wherein a voter casts more
than one vote on the same or different proposals. This act of multiple-voting
contradicts the standard single-vote setting, wherein each voter is restricted
to voting only once, irrespective of the proposal chosen. We emphasize that
the permissibility of multiple-voting is contingent upon the specific appli-
cation. In this context, double-voting includes instances where a malicious
voter attempts to cast more than one vote for a single proposal, and such
duplications are promptly nullified.

(Unconditional) anonymity of voters. A crucial factor to consider revolves
around blockchain systems is their immutability. Once signatures are up-
loaded, they remain permanently etched in the system. This implies that
over time, the authorship of a linkable or traceable ring signature [44, 28]
could potentially be unveiled due to inadequacies in the underlying com-
putational assumptions. Therefore, for optimal applicability in blockchain
governance, the assurance of unconditional anonymity is one of the impera-
tive features of a voting system in blockchain.

Traceability. If a malicious voter attempts to vote twice, we need to have an
efficient mechanism to trace its identity. Note that this traceability property
is a relaxation/fallback of the above strong correctness to allow for more
practical constructions. Indeed, traceability is irrelevant if double-voting is
infeasible.

Cryptographic Mechanisms for Blockchain Voting/Governance Systems. In pur-
suing our objective to design a voting system that ensures traceability and un-
conditional anonymity, we encounter inherent challenges when leveraging tradi-
tional cryptographic tools such as signature schemes or Multi-Party Computa-
tions (MPC).

Linkable Ring Signature (LRS). Utilizing linkable ring signatures (LRS) is
a prevalent tool in constructing e-voting systems. In linkable ring signatures



[44], a user can sign a message on behalf of a group/ring while maintaining
anonymity, as their identity remains concealed within the signature. More-
over, if a user signs two ring signatures for the same message and on behalf of
the same group, these signatures are “linked”, making it evident that they
originate from a single actual signer. This inherent linkability property of
LRS plays a vital role in preventing double-voting.

However, it’s important to note that the link algorithm in LRS does not
disclose the specific identity of the signer when two signatures are linked.
Consequently, LRS does not fulfill the traceability property, implying that a
malicious voter engaging in double-voting may go unpunished. This lack of
traceability can undermine the system’s balance and fairness, necessitating
additional measures to ensure accountability and uphold the integrity of the
voting process.

Traceable Ring Signature. An alternative approach is to employ traceable
ring signatures [28], where the link algorithm establishes the link between sig-
natures and discloses the signer’s identity. However, unconditional anonymity
is compromised in traceable ring signatures. Striking a balance between
traceability and unconditional anonymity in ring signatures appears chal-
lenging, presenting a fundamental trade-off within this cryptographic con-
text. Achieving both properties concurrently remains an open problem.

Multi-Party Computation. Multi-Party computation (MPC) [65, 33, 9, 17]
appears to be the ultimate solution to the above voting problem. MPC allows
n parties to compute any given function on their inputs in a secure manner,
so that no malicious party (or coallition) can learn the inputs of other parties
(privacy) and no party can affect the output any more than choosing their
own input. As such MPC can directly be used to realize our voting functional-
ity by having each voter submit their votes and output the appropriate tally.
MPC-privacy (which can be information-theoretic [9, 17, 53]) will ensure un-
conditional anonymity; MPC-correctness (for the appropriate function) can
ensure our above voting correctness property. Traceability is a more elusive
goal, but it can also be achieved by so-called identifiable MPC [37] (which
ensures that upon abort the identity of a cheater is revealed)?.
Unfortunately, despite its very general functionality, MPC is also not the
right solution to our problem: For starters, information-theoretic MPC needs
an honest majority of the parties [33], an assumption which is unrealistic in
our setting?. And even if one is willing to resort to security with (identifiable)
abort and no fairness®, we still need to implement byzantine broadcast—

! In fact, in our blockchain governance application we need a property which is stronger
than identifiability, namely public verifiability, which informally ensures that an
abort provides a cheating certificate that can be verified even by a non-MPC party
later on, e.g., [3].

2 Although there are solutions which replace the honest majority of parties assumption
with an assumption on the resource distribution, e.g., honest majority of hashing-
power or stake [29], they come at a high cost in terms of blockchain utilization—
multiple on-chain rounds—which renders them mainly of theoretical interest.

3 This is already a discount in security which should anyway be avoided.



which requires in the worst case a polylogarithmc in the party-setsize num-
ber of parties—or use again several on-chain rounds. In fact, even given
broadcast, turning an MPC protocol identifiable above into one with guar-
anteed output delivery (which is needed in our application) would require
restarting the computation whenever it aborts (and potentially removing the
identified cheater); this would again yield a larger number of rounds which
is undesirable.

Beyond Signature Schemes to An Interactive Structure. The above discussion
highlights the inherent challenge of satisfying all requirements simultaneously.
However, despite the seemingly conflicting nature, there is a way to address this.
Our paper provides a positive answer by proposing a structured approach during
the signature generation process.

We can overcome the seemingly inherent limitations by carefully defining an
interactive structure, a simple protocol, within the signature generation. This
structured approach is a key innovation that allows us to design a signature
scheme that meets the dual objectives of concealing individual identities while
revealing the number of signers involved—a critical advancement for a secure
and reliable e-voting system.

We call this new signature protocol Sharp Anonymous Multisignatures ($AMS).
Here, the term “sharp” is used consistently with complexity theory, as in P to
indicate that our signatures output the number of signers that validly signed,
rather than a bit (valid or not). On the other hand, the term “anonymous”,
is used to designate that signers’ identities are hidden. Equipped with these
properties, fAMS is the perfect match for e-voting systems in particular in the
context of blockchain governance. We discuss the details of our contributions
below.

Post-Quantum Security. The security of many e-voting systems, as seen in works
such as [44, 28, 60], is based on standard number theoretic assumptions like the
(hardness of) computing discrete logarithms and RSA. However, these assump-
tions may become vulnerable when faced with quantum computers, given the
efficiency of quantum algorithms like Shor’s algorithm for factoring and solving
discrete logarithm problems [56, 57], as well as Regev’s recent work [54].

Post-quantum cryptography has emerged as a focus of extensive research
and development over the past decades to mitigate this potential vulnerability.
Among various post-quantum cryptographic schemes, lattice-based approaches
have gained traction due to their attractive features, such as simplicity, efficiency,
and worst-case hardness. This is underscored by the fact that in the final round
of NIST’s post-quantum standards [49], three out of four candidates are based
on lattice problems.

1.1 Our Contributions

t Anonymus MultiSignatures. Our first and major contribution is proposing and
formalizing a new concept of signing protocol, dubbed fAMS that tightly meets



the needs of blockchain governance. The protocol allows any set of parties to
collaborate jointly and outputs unconditionally anonymous signatures. To com-
pare with threshold ring signatures (TRSs), fAMS does not need the threshold
and always generates a valid signature regardless of the number of parties, and
the verification algorithm reveals the number of parties. Regarding the number
of parties as a threshold, which varies every signing, this can be seen as a strict
generalization of TRS.

Generic Compiler from TRS with A Flexible Threshold. Despite the above sepa-
ration of TRS and §AMS, it turns out that several instantiations of TRS actually
possess a flexible threshold property, i.e., these TRSs can change the threshold
depending on the actual number of signers.

To characterize the class of TRSs that admit such a lifting to §AMSs, we
provide a generic template for TRSs that, (1) abstracts many such “liftable”
schemes, and (2) admits a generic compiler to transform to fAMS. Several ex-
isting TRS constructions can be seen as instantiations of our template, which
implies that those TRS schemes are more versatile than previously known.

tAMS Constructions from Chameleon Hashes. Using the above, we provide con-
crete AMS schemes from (lossy) chameleon hashes in a black-box model. In a
nutshell, we propose the following types of constructions:

C1. A basic construction with three communication rounds. This construction
achieves unconditional anonymity.

C2. A fault-tolerant variant of Cl—for an arbitrary number of corruptions—
without any overhead. This construction achieves unconditional anonymity
and public verifiability.

Voting Systems from $ AMS Constructions. Since anyone can verify the number
of signers from a §AMS signature, we can immediately turn the constructions into
voting systems. Furthermore, we develop a conditioned key generation paradigm
to enable the single-vote setting.

V1. A basic system implemented by C2. This allows multiple voting. This system
can tolerate malicious voters (the voters who claimed to vote but quit later).
Including the posting period and the announcement period, the voting can
be completed within two on-chain blocks.

V2. A round-optimal system implemented by C1 in the multiple-vote setting by
leveraging one-time key generation. This system satisfies the “vote-and-go”
property.

V3. A variant of V2 with the single-vote setting from the conditioned key gener-
ation paradigm. V3 requires one more on-chain round when there exist ma-
licious users. However, If the maximum number of proposals is pre-known,
the voting process still takes two on-chain blocks like V1 and V2.

A Framework of Lossy Chameleon Hashes. As a by-product, we explore a frame-
work of lossy chameleon hashes, including its relationship with existing cryp-
tographic primitives (e.g., lossy identification and lossy encryption) and more
concrete constructions from various assumptions. See Fig. 1 for details.
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Fig. 1. A Framework for Lossy Chameleon Hashes (solid arrows: shown in this work;
dashed line: shown in previous works).

1.2 Related Works

Beck et al. [4], Pelt et al. [52], and Kiayias and Lazos [39] discussed core proper-
ties for blockchain governance in multiple disciplines. Khan et al. [38], Venu-
gopalan and Homoliak et al. [61], and Gersbach et al. [32] also focused on
blockchain governance especially based on decision-making processes and vot-
ing in terms of game-theoretical analyses.

The concept of fAMS we proposed in this paper has close connection with
existing cryptographic primitives like multisignature, ring signature, threshold
signatures, etc. Here we review some related works on them.

Multisignatures. Multisignatures (MS) [11, 6] allow n different parties gen-
erate a single signature on a common message, and the size of the signature
is short. Multisignatures are massively applied in the blockchain to reduce the
storage of blockchain transcations. However, the privacy is not considered in
multisignatures, and the identities of signers/authors are totally exposed in the
signature.

Threshold signatures. A (t,n)-threshold signature scheme enables a group of
n parties to sign on a message if more than ¢ parties participate in the signing.
Besides, the threshold ¢ and the quorum of ¢ participants are hidden from the
signature. Most threshold signatures [11, 58, 59, 40] are based on the secret
sharing scheme, and they all face a shortcoming that the threshold ¢ needs to be
fixed before the generation of public/secret keys.

Ring signatures. In ring signatures (RS) [55] (a.k.a. spontaneous anonymous
group signatures [16]), a user can sign a message on behalf of a group without
revealing its identity. But different from group signatures [19] where there is
a group manager that is responsible for the key generation and traceability if



necessary, in ring signatures there is no group manager and anonymity holds
unconditionally.

We would like to discuss more about threshold ring signatures (TRS) [12],
which are highly related to fAMS in this paper. A (n,t)-TRS scheme allows
t or more members generate a ring signature together, and the actual signers
remain anonymous. The verification algorithm in TRS will output either 0 or
1, indicating the validity w.r.t. the threshold ¢. Differently, by defining fAMS,
we emphasize the property that the verification outputs exactly the credibility
of the signature, i.e., how many users have participated in the generation. And
this holds even against malicious users who behave wantonly when signing. For
example, a malicious user may quit at the middle, or contribute senseless results
in the singing process. Therefore, fAMS is stronger that TRS.

There are many threshold ring signature schemes [43, 16, 63, 21] whose
threshold ¢ is changeable every signing. By adding ¢ into the message to be
signed, a TRS scheme with flexible threshold can be tuned to a §AMS scheme.

1.3 Technical Overview

This subsection briefly overviews the techniques and concepts used in this paper.

Formalization of $AMS. We start from formalizing §Anonymous Multisignature
(AMS) and its security definitions. Suppose a group of t users {U; }ieq, want
to sign on a message msg together, and the signature o leaks only the number
of participants ¢t but nothing else. We refer ¢ as the credibility of the signature.

The first issue is the anonymity property, which means that the identities of
t actual signers are hidden in the total n (n > t) users. Besides, as a (group)
signature scheme, fAMS should have the unforgeability property, namely any
adversary controlling less than ¢ users cannot forge a valid signature on a new
message that shows a credibility of ¢.

As we discussed above, if every signer U; contributes its share using its own
secret key, and the signature is just a concatenation of different shares (as in
linkable/traceable ring signatures), then it seems impossible achieve both uncon-
ditional anonymity and traceability*. Therefore, we focus on interactive signing
processes, and introduce a moderator P in the signing protocol. To generate a
gAMS signature, every signer just communicates with P but not other signers,
and it is P’s responsibility to count the number of participants and finally out-
puts a fAMS signature. In this case, even the signer itself cannot de-anonymized
a AMS signature (i.e., it is unaware of other participants). P can be a member
of G or not, and it is assumed to be honest. We believe it is a simple but rea-
sonable assumption. Even a malicious P later leaks the quorum of signers, its
own identity will be revealed at the same time. And consenquently, P will face
a punishment from the system.

4 In the application of voting systems, if double-voting is feasible, then traceability is
necessary.



Generic Compiler from Threshold Ring Signatures. A $AMS scheme directly
implies a threshold ring signature (TRS) scheme, since the verification algorithm
Ver in §AMS returns the real number of participants in signing, while Ver in TRS
returns only one bit. Therefore, the definition of AMS is stronger than TRS.

Nevertheless, we surprisingly notice that, many TRS schemes (e.g., [43, 16,
15, 62, 35]) have a flexible threshold property. Namely, the threshold ¢ does not
need to be fixed when generating public/secret key pairs, and it is changeable
every signing. Then we design a generic compiler that tunes any TRS scheme
with flexible threshold to a fAMS scheme:

— A random participant P of the signers is selected as the moderator in fAMS.

— P knows the quorum of signers hence the number ¢. To generate a fAMS
signature on message msg, it starts the TRS signing protocol on message
(msg||t), and outputs the TRS signature & and ¢ as the final FAMS.

— In the verification of AMS, if  is valid in TRS, then the threshold ¢ will be
returned.

Thanks to the compiler and the full literature of TRS, we immediately obtain a
lots of AMS schemes, from the DL assumption [16], the RSA assumption [43],
the SIS assumption [15], the code assumption [23], etc.

C1: Construction from (Lossy) Chameleon Hashes. Chameleon hash (CH) func-
tion [41] is a special hash function indexed by a hash key hk, which is associated
with a trapdoor td. It has two parts of input, message m° and randomness 7.
On the one hand, given the hash key only, it is hard to find a collision. On the
other hand, one can easily find collisions with the help of the trapdoor.

Chameleon hashes can be converted into signature schemes via the well-
known Fiat-Shamir paradigm [26], where hk and ¢d servers as the public key and
the signing key, respectively. To sign a message msg, the signers first randomly
samples dummy m and 7, and then uses its trapdoor to find a randomness r for
m so that they collide with (7, 7), where m = H(msg, h) and h is the hash value
of (m, 7).

Now we extend it to the fAMS setting. Suppose there are n users, and each
user U; has its own hash key hk; and trapdoor td;. We borrow the idea of t-out-
of-n zero-knowledge proof from [22] by Cramer, Damgard, and Schoenmakers.
That is, given n random m;, the group of signers are able to find ¢ randomness
r; that makes the collisions happen. For the message msg, we design a fAMS
signature as in the form of o = (¢, my, ..., my,r1,...,7), Where mq,...,m, are
require to satisfy the following linear equations.

ai1mi +aiome + ... + a1 nMy = U,
az1Mm1 + az oMz + ... + a2 nMy = Uz, (1)

At 1M1 + Ap2M2 + ... + At My = Uy,

5 Note that the message m in chameleon hashes is different from the message msg to be
signed in signature schemes. Here we slightly abuse the notation to keep consistent
with previous works.



Here coefficients (a; ;) are public parameters, (u, ..., us) are the random outputs
of some hash function H(hy, ..., hy,, msg,t), and (hq, ..., h,) are the corresponding
hash values. Now, to satisfy the equation (1), at least ¢ trapdoors are necessary
to find out the corresponding randomness r;, which proves that at least ¢ users
have participated in the signing process.

Instead of using the above linear equations, we can also set a polynomial g
of degree at least n — t, and require that

9(0) = u, g(i) = m; for all i € [n], where u = H(hq, ..., hy, msg,t).  (2)

The security of the CH-based signature scheme, as well as our fAMS scheme,
is based on the collision resistance property of the underlying chameleon hash
scheme. However, the reduction in the security proof is not black-box, since it
relies on the forking lemma [6] to find a collision. Following the idea of lossy
trapdoor functions [51] and lossy encryption [5, 36], in this work we define lossy
chameleon hashes (LCH), to make a black-box reduction in the security proof.
An LCH scheme can be worked in two modes, the collision mode, which is as
a normal CH, and the lossy mode, where a lossy hash key is used instead of
a normal hash key, and the adversary (even it is computationally unbounded)
cannot find a randomness for a random message that hashes to a previous hash
value of its own choice.

We present an efficient instantiation of LCH from the learning with error
(LWE) assumption and the short integer solution (SIS) assumption. We also
explore the relationship between LCH and some other primitives, including lossy
identification schemes [1], re-randomizable encryption, and lossy encryption [5,
36], see Fig. 1.

C2: Fault-Tolerant Variant. For better application in blockchain governance, we
consider a variant of the above construction in the faulty-signer setting. A faulty
signer may quit in the middle of the protocol or return malicious results to the
moderator. We develop a fault-tolerant variant of our fAMS scheme. This is due
to the fact that our (L)CH-based fAMS scheme has “backward compatibility”.
Namely, even one voter quits at the middle, by exposing the identity of that
faulty voter, the developer can still outputs a signature with creditablity (¢t —1).
More precisely, let F' be the set of faulty signers. In the fault-tolerand $AMS
scheme, we tailor the signature in to the form of

o' = (t, F,{mi, riYicp\r> {hi}ier) -

If there exists a solution {m;};cp for the linear equation (1) or (2), then the
verification algorithm will output (¢ — | F|) instead of t. Consequently, the voters
in F' will lose their anonymity as a cost of their malfeasance.

V1: Blochchain Governance via fAMS Schemes. $AMS directly implies a voting

protocol since a fAMS signature leaks the number of the signers. The protocol
consists of the following four periods using scheme C2.
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1. The posting period, where each developer publishes its improvement pro-
posal on the blockchain.

2. The declaration period, where each voter (the signer in $AMS) claims its
willingness to the developer, by sending a hash value of dummy message and
randomness to the developer.

3. The signing period, where the developer performs the signature algorithm
based on the number of supporters. Specifically, developers calculates all
m; according to the received h; and equation (1) or (2), and then returns
m; to the supporters. Then the supporters use their own trapdoors to find
collisions r; and return them to the developers, helping the developer finally
finishing the generation of the fAMS signature.

4. The announcement period, where each developer uploads its fAMS signature
on the blockchain. Then the voting result is uploaded on the block and
published all over the network.

Our above protocol enables multiple improvement proposals to compete for
votes, and the one with the most votes is elected.

To generate a fAMS signature, the developer needs three rounds interaction
with its supports in the signing period. This makes the faulty attack by malicious
voters feasible. Namely, the voter first sends h; and claims the participation of
voting, but later after receiving the message m from the developer, it aborts
or sends a faulty randomness 7’. Thanks to our fault-tolerant $AMS scheme,
this attack would not threaten the whole voting system, since a (fault-tolerant)
#AMS signature always tells the real number of (honest) participants.

V2: Round Optimization. Notice that voters in the protocol above need to
wait for the message m; from the developers after declaring their supports. To
achieve “vote-and-go” property, we further consider optimizing the protocol to
one-round. Our idea is to use fAMS in a one-time paradigm. That is, we now
let the voters U; (no mater whether it wants to vote on the proposal), gener-
ates a new hash key and trapdoor pair (hkl(] ),tdgj )) for some proposal by the
develop Pj. And the supports of P; secretly send their trapdoors to P; using a
standard public-key encryption scheme. With the knowledge of all secret keys, P
now can generate a fAMS signature without the interaction with its supporters.
To prevent a malicious developer generating one-time hash keys by itself, we
additionally require that every hash key is attached with a signature, showing
the authority by its owners.

V3: Single-Vote Setting via the Conditioned Key Generation Paradigm. We fur-
ther extend the above protocol into the single-vote setting, where each user in
the voting system can vote on one proposal at most. Since there exist multi-
ple developers P; and each of them may have its own proposal, every voter U;
now needs to generate multiple key pairs {(hkgj ),tdgj ))} The superscript (j)
indicates that this key pair is used for the j-th proposal.

The protocol does not work in the single-vote setting, since a malicious voter
might vote on different proposals using different trapdoors. We use the same
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method in constructing §AMS to prevent multiple votes. Recall that to vote on
some proposal TP (i.e., to participate in the signing process for the proposal),
user U; must have the trapdoor tdl(] ) corresponding to the hash key hkgj ) that is
designed for IPY) particularly. Suppose there are p proposals (IPU?) ..., IPU»)),

then U, needs to generate p hash keys (hkgjl), e hk;h’)) first. Our idea is to take
a so-called conditioned key generation paradigm. Namely, we set a restriction
among totally p hash keys so that the voter can know at most one trapdoor.
Let HK be the space of hash key for (lossy) chameleon hashes, and B =
(bi;) € HKPD*P be a matrix of full rank. Let hk, = (k") ... hk")T.
Now we require
B - hk; = hk;,

where hk; € HKP~! is the output of some hash function H(IPGY), ... 1PUr) ;).

If H(-) is a random oracle, then to satisfy the abovementioned equation, every
user has at most one trapdoor of the total p hash keys. And the single-voting
property is achieved as a result.

1.4 Roadmap

This paper is organised as follows. In Section 2, we present basic notations and
introduce the definition of lossy chameleon hashes. The definition and security
properties of fAMS are formally described in Section 3. We provide a generic
transformation for most threshold ring signature (TRS) schemes in Section 4. In
Section 5, we propose an efficient construction of $AMS from (lossy) chameleon
hashes ((L)CH). In Section 6, we propose three voting systems and show their
application in blockchain governance.

2 Preliminaries

Let A € N denote the security parameter. For p € N, define [u] := {1,2, ..., u}.

Denote by = := y the operation of assigning y to x. Denote by x &S the
operation of sampling  uniformly at random from a set S. For a distribution D,
denote by x < D the operation of sampling x according to D. For an algorithm
A, denote by y + A(x;r), or simply y + A(x), the operation of running A
with input = and randomness r and assigning the output to y. For deterministic
algorithms A, we also write as y := A(x) or y := A(z;r). “PPT” is short for
probabilistic polynomial-time. We refer Appendix A for more primitives.

Statistical distances and min-entropy. Let X and Y be two random vari-
ables (distributions) defined over §. The min-entropy of X is defined as Hoo (X)) :=
—log(maxses Pr[X = s]). And the statistical distance between X and Y is de-
fined as Axy 1= 1/2) .5 |Pr[X = 5] = Pr[Y = s]|. If Axy = ¢, we also say
X and Y are e-close.

Now, we recall the definition of CH, and propose its lossy variant, i.e., lossy
chameleon hashes (LCH).
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2.1 Chameleon Hashes and Their Lossy Variants

Definition 1 (Chameleon Hashes [41]). A chameleon hash (CH) scheme
consists of the following three algorithms. Namely CH = (Gen, Hash, TdColl).

— (hk,td) < Gen(1*): The key generation algorithm takes as input the security
parameter 1*, and outputs a hash key hk and a trapdoor td. W.l.o.g., we
assume hk implicitly determines the message space M, the randomness space
R, and the hash space H.

— h < Hash(hk,m,r): The hash algorithm takes as input hk, a message m €
M and a randomness r € R, and outputs the hash value h := Hash(hk, m,r).

— '« TdColl(td, m,r,m’): The trapdoor collision algorithm takes as input the
trapdoor td, a message-randomness pair (m,r) and another message m’, and
outputs r' such that Hash(hk,m,r) = Hash(hk,m' ,r").

Definition 2 (Security of CH). A chameleon hash scheme CH is secure (resp.,
strongly secure) if it has uniformity, random trapdoor collision, and collision re-
sistance (resp., strong collision resistance).

k-uniformity. For any (hk,td) < Gen(1), if (m,r) is distributed uniformly
over M xR, then Ho, (Hash(hk,m,r)) > k. Specifically, if Hoo (Hash(hk, m,r))
= log(|H]), we say that CH has perfect uniformityS.

v-random trapdoor collision (RTC). For any (hk,td) < Gen(1*) and any
m,m’, if r is uniformly distributed over R, then 1’ < TdColl(td, m,r,m')
has a statistical distance v to the uniform distribution over R. If v =0, we
say that CH has perfect RTC.

Collision resistance (CR). For any PPT adversary A, the advantage

b () = [ (P )  CenCl0) | Hash (b 1) = Hash (k)
cH,a(A) = .

(m,r,m’,r") < A(hk) " Am#m

18 negligible in \.
Strong collision resistance (S-CR). For any PPT adversary A, the advan-
tage

(hk,td) + Gen(1*);  Hash(hk,m
(

sor . r) = Hash(hk, m/,r’)
Advia(A) = Pr {(m,r, m',r") «— A(hk)" A (m,r ’

m,r) # (m',r')
is negligible in .

Remark 1 (Random trapdoor collision in lattice-based constructions). For lattice-
based CH schemes (e.g., [14]), the randomness  is sampled according to a (non-
uniform) distribution R over R. In this case, we modify the definition to the case
over non-uniform distributions. Namely, for any m,m’, if r is sampled according
to R, then the output r’ + TdColl(td, m,r,m’) enjoys a distribution which is
y-close to R.
5 We relax the definition of uniformity by taking m’s randomness into the probability
space. A stronger definition guarantees the min-entropy for any (hk,td) and any

m. As we will see, the relaxed definition here is sufficient for the security proof in
Section 5.
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Now, we introduce lossy chameleon hashes (LCH) as follows.

Definition 3 (Lossy Chameleon Hashes). A lossy chameleon hash (LCH)
scheme consists of four algorithms, LCH = (Gen,LGen, Hash, TdColl), where
Gen, Hash, TdColl are defined as in Definition 1, and LGen is defined as follows.

— hk < LGen(1*): The lossy key generation algorithm takes as input the secu-
rity parameter 1%, and outputs a lossy hash key hk.

Definition 4 (Security of LCH). A lossy chameleon hash LCH is secure (resp.
strongly secure), if it has uniformity, random trapdoor collision (RTC), collision
resistance (resp., strong collision resistance), indistinguishability, and lossiness.
The first three properties are defined as in Definition 2 (note that uniformity and
RTC also hold for all hk < LGen(1*)), and the last two are defined as follows.

Indistinguishability. For any PPT adversary A, the distinguish advantage
AdV[Ey 4 = | Pr[(hk,td) + Gen(1*) : A(hk) = 1)—Pr[hk + LGen(1*) : A(hk) = 1]|

1s negligible in \.
e-Lossiness. For any (even information-theoretic) adversary A = (A1, As), it
holds that

hk < LGen(1*); (h, st) + A (hk);

r
m & M1 Az(m, st)

: Hash(hk,m,r) = h| <e.

Remark 2 (The difference between LCH and lossy identification scheme). Lossy
chameleon hashes have a very close relationship with lossy identification schemes
[1]. In Appendix C we formally prove that, under specific conditions, lossy
chameleon hashes and lossy identification schemes are equivalent. This result de-
rives from the equivalence between chameleon hashes and sigma protocols proved
by Bellare and Ristov [8]. We also show a framework for constructing LCH from
other primitives like re-randomizable encryption and lossy encryption, and show
direct constructions from several well-known hardness assumptions (e.g., LWE
& SIS, DDH), see Fig. 1.

For the proof of strong unforgeability in Section 5, we also need the uniqueness
property of (L)CH defined as follows.

Definition 5 (Uniqueness of (L)CH). We say CH or LCH is perfectly unique,
if for every hk generated from (hk,td) < Gen(1*) and hk <+ LGen(1*), every m,
there do not exist two district r # r' such that Hash(hk,m,r) = Hash(hk, m,r").

3 Definition and Security Notions of Sharp Anonymous
Multisignatures

In this section we formally define sharp anonymous multisignatures and their

security properties. Let n be the total number of signers, and G C [n] be a
group of signers that want to generate a AMS signature together. Let t = |G].

14



Definition 6 (Sharp Anonymous Multisignatures (fAMS)). A sharp anony-
mous multisignature (RAMS) scheme $AMS = (Gen, Sign, Ver) consists of the
following three algorithms/protocols:

— (vk,sky,...,sky,) < Gen(1*,n). The key generation algorithm Gen takes as
input the security parameter A and the number of signers m, and outputs
a verification key vk, and signing keys (ski,...,sky) for different signers.
W.l.o.g., we assume that vk is implicitly contained in every sk;.

— o + Sign(msg, P,G C [n],{ski}icc). The signing protocol takes place be-
tween a moderator P and a group of signers G C [n], where P takes as input
vk and the message msg, and each signer U; takes msg and its own secret
key sk; as input. The moderator P can be a member of [n] or not. Finally,
P outputs a signature o.

If we focus solely on the algorithmic properties of the signing process, we will
ignore the moderator P by denoting it as o < Sign(msg, G C [n], {ski}icq)-

— t «+ Ver(vk, msg, o). The verification algorithm Ver takes as input the ver-
ification key vk, a message msg and a signature o, and outputs a mumber
t € [n] U {0}, indicating the number of signers for this signature.

We say a signature o (w.r.t. a message msg) is t-valid (resp., invalid), if
Ver(vk, msg,o) =t (resp., Ver(vk, msg,o) =0).

Correctness. For any (vk,sky, ..., sky) + Gen(l)‘,n), any message msg, any
group G C [n] of honest signers, any honest moderator P, and o < Sign(msg, P,
G, {ski}icc), it holds that Ver(vk, msg,o) = |G].

Note that vk contains information of [n] so we omit [n] from the input of Ver,
which will be explicitly denoted for TRS schemes because of consistency from
previous works.

We require the unforgeability and anonymity for the security of fAMS.

— Unforgeability. The adversary that controls less than ¢ participants cannot
forge a signature that is ¢-valid.

— Anonymity. From a signature the adversary learns nothing about the quo-
rum of the signers G that contributed to the signature, except the size |G|.

We formalize the security definitions via the following security experiments.

Definition 7 (Unforgeability of fAMS). Consider the following unforgeabil-

ity experiment Expg:,\’:,’;ﬁ()\) between the challenger C and the adversary A.

1. A sets the maximum number of signers n.

2. C generates (vk, ski, ..., sk,) + Gen(1*,n) and passes vk to A.

3. A has access to two oracles O(-,-,-) and Ogopr(+). Here the signing oracle
O(msg, P,G) returns o < Sign(msg, P, G, {sk;}icc) (with P the moderator)
and adds (msg, o) into the set S. The corruption oracle Ocorr (1) returns sk;.

4. Finally A outputs (msg*,o*).

Let t* <+ Ver(vk, msg*,o*). Expﬂ,&gi()\) outputs 1 if
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(1) t* > t', where t' is the total number of queries to Ocorr(+); and
(2) A never asks O(msg*, P,G) such that |G| = t*.

Define by Advﬂ,&gj()\) the probability that Expﬁ,&%ﬁ()\) outputs 1. We say that

BAMS is unforgeable, if for all PPT adversary A, the advantage Advﬂ&%ﬁ()\) is
negligible in .

Remark 3 (On the formalization of unforgeability). One might wonder why we
require “A never asks O(msg*, P,G) s.t. |G| = t*” at the end of the experiment.
Intuitively, a more “reasonable” definition should allow A to win, if it asks
O(msg*, P,G) with |G| = t*, and later forges a t*-valid signature o* from a
different set G’ # G. However, since the identities are hidden from the signature,
the challenger cannot detect whether o* comes from a group G’ that is different
from G (i.e., whether A wins in a non-trivial way). Therefore, to prevent trivial
attacks, in Definition 7, A is forbidden to query O(msg*, P, G) with |G| = t*.

Definition 8 (Strong Unforgeability). Consider the strong unforgeability ex-
s-unforg un forg

periment Expyyus 47 (N), which is defined as Exp;ajys 4(A) in Definition 7, except
that condition (2) is replaced with

(27) (msg*,0") ¢ S.

Define by Advg;ﬁ\%’ﬁ'g()\) the probability that Expg;‘“,\gsfzg(/\) outputs 1. We say
that §AMS is strongly unforgeable, if for all PPT adversary A, the advantage
Advghuﬁéjg(/\) is negligible in \.

We also define the weak unforgeability and (strong/weak) unforgeability un-
der static corruptions, see Appendix B.
Now we formally define the strong anonymity of fAMS.

Definition 9 (Strong Anonymity of fAMS). Consider the following strong
anonymity experiment Expiaye s (A) between C and A.

1. A sets the mazimum number of signers n.
2. C generates (vk, sky, ..., sky,) < Gen(1*,n) and passes vk to A. Meanwhile,

C randomly samples a bit b & {0,1}.

O(msg, Py, Go, P1,G1) returns o + Sign(msg, Py, Gy, {ski}ica,) if |Go|l =
|G1| and L otherwise, and the corruption oracle QOeorr (i) returns sk;.
4. Finally A outputs b'.

Expiame 4 (A) outputs 1 if b =b. Let Adv;/;\aﬁgfi’()\) i= | Pr[Expame 4 (A) =
1] — 1/2|. We say that §AMS has strong anonymity (resp., unconditional and
strong anonymity) if for all PPT (resp., computationally unbounded) adversary
A, the advantage Adv;ams 4 (N) is negligible in A.
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The abovementioned definition requires that anonymity holds even if all secret
keys are leaked (that is why we formalize it as “strong” anonymity). In the above
definition, if we restrict that A cannot ask Q.o (7) with i € (Go—C1)U(G1—Gh)

might be easy to decide whether a signer 4 has participated in the generation of
a signature with the knowledge of sk;. This is somewhat similar to the so-called
culpability property in [44]. Le., one signer is able to claim the authorship of some
(ring) signature by revealing its secret key (and some other private information,
if necessary) to the public.

4 Generic Compiler of fAMS from TRS with a Flexible
Threshold

In this section, we provide a generic transformation for most threshold ring
signature (TRS) schemes, dubbed TRS with flexible threshold, which implies
that such TRS schemes are more versatile than their original definitions. First, we
will see issues of TRS schemes from the perspective of communication. Then we
give a generalized compiler of {AMS from TRS constructions that can represent
most TRS schemes in the literature.

4.1 Issues of Threshold Ring Signatures

We first recall the definition of threshold ring signatures (TRS) from [12] and
[43].

Definition 10 (TRS). A threshold ring signature (TRS) scheme consists of
three algorithms: TRS = (Gen, TSign, Ver).

— (pk, sk) < Gen(1*,t): The key generation algorithm takes as input the secu-
rity parameter 1* and a threshold t, and outputs a public key pk and a secret
key sk.

— o« TSign(msg, R, {pk;}icr,T,{ski}icT): The threshold signing algorithm /protocol
takes as input a message msg, a group of users R and their public keys
{pki}icr, a group of real signers T and their the secret key {sk;}icT, and
outputs a signature o.

— 1/0 « Ver(t, R, {pk;}icr, msg,o): The verification algorithm Ver takes as
input t, a group of users R and their public keys {pk;}icr, a message msg
and a signature o, and outputs a bit indicating the validity of o.

Correctness. For any T C R such that |T| > t, any msg and o < TSign(msg, R,
{pki}tier, T, {ski}icT), it holds that Ver(t, R,{pk;}icr, msg,o) = 1.

In many previous works [12, 43, 16, 21, 23], the threshold signing process TSign is

just regarded as an algorithm, but rather than an interactive protocol among at
least t signers. Under such definitions, the behavior of TRS becomes ambiguous:
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Does the signer know the threshold ¢? Does the anonymity hold among the signer
group T, i.e., whether a signer in T knows its cooperators’ identity?

To address this issue, when defining fAMS we introduce a moderator in the
signing process. We stress that the moderator perceives the quorum of the signers
(hence also t) during the signing process, and every signer only needs to com-
municate with the moderator. Moreover, even if the moderator gets corrupted
later and is willing to reveal the quorum of real signers, it either cannot convince
others about the disclosure in our construction C1, or will leak its identity as
well and consequently be penalized from the system in our construction C2.

4.2 Relationship between TRS and AMS

Our newly defined fAMS closely relates to TRS, though $AMS is a stronger
primitive than TRS.

1. By the definition of TRS, a group of t signers can get together to sign a
signature. And the threshold ¢ might be fixed (e.g., [42, 64]) or not (e.g.,
[43, 16, 10]) when generating the public/secret key pairs. But in fAMS, any
number of signers can cooperate and finally output a signature. That is, the
creditability ¢ is flexible in every signing.

2. The output of the verification algorithm in TRS is a single bit indicating
whether a signature w.r.t. a message and a threshold is valid or not. While
in §AMS, the output ¢ is an integer indicating the real number of signers
who have participated in the signing process, which offers more information
than that in TRS.

Owing to the security concerns in ad-hoc networks, TRS has attracted increas-
ingly widespread attention for the past decades. In fact, for most existing TRS
schemes [12, 43, 16, 45, 15, 10, 62, 35], the threshold ¢ is changeable every sign-
ing, though how to share information of ¢ is ambiguous from the definition. We
call this kind of scheme TRS with flexible threshold. Next, we show a generic
compiler to tune any TRS scheme with flexible threshold to our fAMS scheme.

Generic compiler from TRS with flexible threshold to tAMS. Here we
show the most generalized version of compilers without considering optimization.
We will take a deeper look at specific cases in the next section.

Let TRS = (Gen, TSign, Ver) be a TRS scheme with a flexible threshold. We
design §AMS scheme §AMS as follows.

— Gen(1*,n). For i = 1,...,n, invoke (pk;, sk;) < TRS.Gen(1%). Return vk :=
(pk1, ..., pkn) and {sk;}icpn)-

— Sign(msg, P,G C [n],{ski}icg). Every signer U; where i € G first sends
a HELLO message to the moderator P so that P will know the number
of signers ¢t := |G|. Then, the ¢ signers run the threshold signing protocol
TRS.TSign(msg|t, [n], vk, G, {sk;}icq) with P works as a moderator. Let
& be the output of TRS.TSign. Finally, P outputs o := (¢,5) as a AMS
signature”.

" If & itself already contains a threshold ¢ then P just outputs ¢ := &.
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— Ver(vk, msg, o). Parse o = (t,5). If TRS.Ver(t, [n], vk, msg,5) = 1 then out-
put t. Otherwise, output 0.

The security of fAMS constructed above inherits from the security of the un-
derlying TRS scheme, and we omit the detailed proof here due to the page
limitation.

Remark 4 (Why sign the threshold t together with the message msg?). A secure
signature should include all public information, e.g., a receiver’s address, side-
channel information, and the threshold ¢ in our case, into the message to be
signed. We show an unsafe counterexample of fAMS from linkable ring signatures
(LRS) [44] here. As introduced in the introduction, LRS allows a user to sign
a message on behalf of a ring, and its two signatures on the same message will
be linked. A natural idea for constructing fAMS from LRS is to let every signer
in the group contribute its own linkable ring signature, and the verification
algorithm just returns the count of unlinked and valid signatures. However, if
the creditability ¢ is not included in the message to be signed, then unforgeability
does not hold anymore. To see this, suppose the forger now corrupted a signer U;
and gets its secret key. Then after seeing a t-valid fAMS signature o generated by
a group excluding U;, the forger can easily output a (¢4 1)-valid #AMS signature
(o||oi), where o; is a linkable ring signature by U;. Another example of insecurity
is shown in [63].

5 Constructions of JAMS from Lossy Chameleon Hashes

In this section we propose efficient constructions of fAMS from lossy chameleon
hashes (LCH) in a black-box model.

5.1 Formalization of Constraint Functions

First we introduce the definition of constraint functions, an important tool in
constructing the t-out-of-n proofs [22].

Definition 11 (Constraint Functions). Let n,t be positive integers, n >t >
1, and M, U be two finite sets. We call Fg : (Zt x ZT x M™ xU) — {0,1} a
series of constraint functions indexed by 6, if it has the following properties.

— Fo(n,t,mq,....mp,u) is efficiently evaluated.

— There ezists an efficient and deterministic algorithm f(-), such that f(n,t,my,
ey My,) outputs the unique w (if it exists) satisfying Fo(n,t,mq, ..., my,u) =
1.

— For any G C [n] and |G| = t, there exists two efficient sample algorithms
Sfwd and Spack that both output (my,...,my,u), and the two distributions are
tdentical.

o Forward sample algorithm sfa(n,t, G) first randomly chooses {mi}ie[n],
and then computes/samples {m;}icc and u according to Fy.
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o Backward sample algorithm spack(n,t, G) first randomly chooses {m;}icmp\a

and u, and then computes {m;}ice according to Fy.
— Interdependency.

o IfFo(n,t,my,....,mp,u) = Fo(n,t,m},....,m.,u) =1, then either (my, ...,
my) = (mh,...,m'), or there are at least t different i € [n] such that
m; # mj.

e For randomly sampled uw and v/, if Fo(n,t,mq, ..., mp,u) = Fg(n,t,m], ...,
ml,u') =1, then with overwhelming probability there are at least t dif-
ferent i € [n] such that m; # m}.

— Randomness. Conditioned on Fo(n,t,my,...,my,,u) =1, if u distributes uni-
formly, then

o cither there exist at least t different i € [n] such that m; distribute uni-
formly, or

e for any i € [n], m; distributes uniformly.

We refer two instantiations of Fy from linear equations and polynomial in-
terpolation in Appendix F.

5.2 C1: Interactive fAMS

Now we describe our generic construction of $AMS from (lossy) chameleon hashes
((L)CH) as follows. We note that the underlying building blocks (LCH or CH)
affect just the way of security proofs, but not the construction itself.

Construction. Let LCH = (LCH.Gen, LCH.LGen, LCH.Hash, LCH.TdColl) be a
lossy chameleon hash scheme with message space M a field. Let Fy : (Z1 xZT x
M"™ xU) — {0,1} be a constraint function indexed by 6. H(-) : {0,1}* — U is
a hash function that is modeled as a random oracle.

— (vk, ski, ..., sk,) < Gen(1*,n). For i € [n], invoke (hk;,td;) +— LCH.Gen(1*).
Return vk := (hky, ..., hk,) and {sk;}icin) := {tdi}icin]-
- Sign(msg7 P7 G7 {Ski}iGG)'
e For every signer i € G, it samples m; <£ M, 7 ﬁ R, and sends h; <
Hash(hk;, m;, 7;) to the moderator P.
e The moderator counts ¢ := |G| from the received messages.
e For every user i € [n] \ G, P samples m; & M, r; & R and computes
h; <+ Hash(hk‘i, m;, ’I“i).
e P invokes u < H(vk, hy,..., hy, msg||t). Then it computes {m;};cc ac-
cording to the backward sample algorithm sp,cx(-) of Fy such that

Fo(n,t,my,....,mu,u) = 1.
Then for ¢ € G, P sends m; to signer .
e For every i € G, signer i computes r; + LCH.TdColl(¢td;, m;, 7;, m;) and

sends r; to P.
e Finally P outputs the signature o := (t, {m; }icn), {74 bie[n])-

20



— Ver(vk, msg, o). Parse 0 = (t, {m;}ic[n]; {i}ic[n))- Compute h; < Hash(hk;,
my, ;) for alli € [n]. Let u < H(vk, hq, ..., hy, msg||t). Return ¢t if Fg(n, ¢, my,
weyMp,u) = 1, and 0 otherwise.

Generality of the Construction. Our construction above exhibits strong gen-
erality. In Section 4, we have already shown a generic compiler from TRS with
flexible threshold to fAMS. In fact, many existing TRS constructions can be cat-
egorized within the above framework, due to the equivalence between chameleon
hashes and Sigma protocols (identification schemes) [7] and the result in this
work (Appendix C). For example, by instantiating with Fa and the DL-based
CH [41], we get the TRS scheme in [16], and by instantiating with F, and the
DL-based CH, we get the TRS scheme in [43]. Thanks to this generic construc-
tion, we immediately get more schemes of JAMS (also TRS) from lattices [31, 14],
isogeny [25], and etc.

Theorem 1. If LCH is strongly secure (i.e., it has k-uniformity, v-random trap-
door collision, strong collision resistance, indistinguishability, and e-lossiness)
and unique, and Fy is a constraint function, then tAMS constructed above has
strong unforgeability and unconditional strong anonymity under static corrup-
tions. More precisely, for any PPT adversary A, there exist PPT algorithms By
and Ba, such that max(Time(B), Time(Bs)) ~ Time(A), and

AV (N) < n(AdviE s, () + Advie s, (V) + 1 e

I Qsign+Qu
+W+%+Qsi9nn'7a

5 Qsignn
Adviams. i () < MQM 7,
where Qsign and Qu are the numbers of signing queries (in the strong unforge-
ability experiment or the strong anonymity experiment) and hash queries, respec-
tively.

We refer Appendix D for the proof due to the page limitation.

Similarly, we get the following theorem for (regular) unforgeability.

Theorem 2. If LCH is secure (i.e., it has k-uniformity, y-random trapdoor col-
lision, collision resistance, indistinguishability, and e-lossiness) and Fy is a con-
straint function, then §AMS constructed above has unforgeability and uncondi-
tional strong anonymity under static corruptions. More precisely, for any PPT
adversary A, there exist PPT algorithm B such that Time(B) = Time(A), and

) 1 )
Adv G T () < nAdVE s(A) e+ ™ - Q“g;‘%% + Qignn - 7,

where Qgign and Qu are the numbers of signing queries and hash queries, re-
spectively.
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Security under Adaptive Corruptions and the Tightness of Unforgeability. We
prove the security of unforgeability in the static corruption model (Definition
18 in Appendix B). The proof can also be extended to the adaptive model
(Definition 7 and 8), but if suffers from a large loss factor 2. We present the
security bound under adaptive corruptions in Appendix E. At a high level, to
make use of the lossiness property of LCH, the challenger has to make sure that
all hash keys of non-corrupted users are generated in the lossy mode. However,
there is no corresponding trapdoor for a lossy hash key, which means that to
deal with A’s adaptive corruptions, the challenger has to decide the way of key
generation very carefully, so that it can offer the trapdoor of a user when a
corruption happens on it.

We also give another proof based on normal chameleon hashes (Definition
1) in Appendix G, which has a quadratic loss but relies on the forking lemma
(Definition 1 in Appendix A). Note that the reduction is tight in the algebraic
group model (AGM) [27], if we instantiate JAMS with DL-based chameleon
hashes [41].

5.3 C2: The Fault-Tolerating Variant

In this subsection, we consider faulty signers, i.e., signers who quit in the middle
of signing or return faulty results to the moderator P. We propose a fault-
tolerant variant of the (L)CH-based fAMS construction. In this variant, even
if there exist faulty signers who behave maliciously, the moderator P can still
output a fAMS that is t-valid, where ¢ is the number of honest signers in the
generation of that signature. Besides, the identities of those faulty signers are
exposed, and anonymity holds only for the honest signers.

Faulty Attacks. We first introduce possible faulty attacks and then introduce a
variant of (L)CH-based AMS for tolerating faults while generating signatures in
the following. Note that our constructions need communication with a developer
within a fixed period to ensure the number of total singers. This leads to faulty
attacks in the presence of a faulty node that declares to join the signing process
but fails to generate a partial signature. In other words, the signing process
suffers from the following attack even if only one faulty node exists: In the
declaration period, the faulty node Uy faithfully follows the first two steps of the
interaction. And after receiving m; from P, it aborts or sends a faulty ry.

Since P cannot compute 7 without ¢dy, it cannot produce a signature. Fur-
thermore, since it computes m < H'(vk, hy, ..., hy, msg|[t) from h; and t = |G|,
P; cannot generate a signature of G \ {k} by simply discarding Uy.

Fault-Tolerant tAMS. We follow the same notion as the previous section. The
Gen algorithm and the Sign protocol are also essentially the same as the previous
one, but only the following treatment is included:

— In the signing protocol, if a signer U; does not response for P’s message m;,
or the signer U; returns a wrong r; such that Hash(hk;, m;,r;) # h;, then P
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include ¢ into the set F'. Here h; is the first message U; sens to P (if U; does
not send h;, then P would not include U; into the signer group G).
Finally, P outputs the fault-tolerated signature

7= (t’Fv {mz‘,ﬁ}z‘e[n]\F, {hi}ieF) .

— t < Ver(vk,msg,o). Pause o := (t, Fo{mi,ri}icim)\F {hl}zep) Compute
h; < Hash(hk;, m;,r;) for alli € [n]\F. Let u <= H(vk, hq, ..., hy, msg||t). Re-
turn (¢t—|F|) if there exist a solution {m; };cr such that Fg(n, t,mq, ..., My, u)
=1, and 0 otherwise.

We show that the fault-tolerant fAMS scheme has weak unforgeability (against
malicious signers) and unconditional strong anonymity (for honest signers).

Theorem 3. If LCH is secure (i.e., it has k-uniformity, y-random trapdoor col-
lision, strong collision resistance, indistinguishability, and e-lossiness) and Fy
is a constraint function, then the fault-tolerant §AMS scheme above has weak
unforgeability and strong anonymity under static corruptions. More precisely,
for any PPT adversary A, there exist PPT algorithms By and Bs, such that
max(Time(By), Time(Bs)) = Time(A),

AV (N) < n(AdviE s, () + AdvVe s, (V) + 1 e

1 sign T
+7+M

|M| 2Nk + QSignn s

and
Qsignn .
2
where Qsign and Qp are the numbers of signing queries (in the strong unforge-

ability experiment or the strong anonymity experiment) and hash queries, respec-
tively.

AdV Y () <

We refer Appendix H for the proof sketch.

6 Applications: Blockchain Governance and the Beyond

#AMS can be massively applied in the scenario of blockchain and privacy-preserving,
where the authenticity and the privacy are required simultaneously. The first
and the most significant application of fAMS is blockchain governance, espe-
cially about ranking improvement proposals which is one of the most uprising
topics in the blockchain era. Our main goal is to implement a ranking — in other
words, a voting — system on formal on-chain blockchain governance. (E-)Voting
systems need a signature scheme to prevent double-voting or any other possible
exploitations related to confidentiality.

In this section, we give a generic treatment to achieve blockchain gover-
nance by developing a voting system via JAMS. Our first agenda is to make
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solutions as simple as possible. While it might be possible to construct vot-
ing systems via complex compositions of signatures, zero-knowledge proofs, ho-
momorphic/functional encryptions, and/or other cryptography schemes, there
should be simpler ways, as we will see in this section.

6.1 V1: Blockchain Governance via §AMS

From the above observation, instead of using a pre-existing scheme in a black-
box manner, we first introduce the notion of fAMS. As introduced in Section 3,
the verification function of fAMS returns the number of the signers who partic-
ipated in the signature generation, which can turn into a voting protocol. This
protocol enables multiple improvement proposals to compete for votes, and the
one with the most votes is elected. A voting session begins with the community’s
consensus. Note that there should be a clear guideline that explicitly denotes the
criteria for voting eligibility and specifies the duration of the voting period. With
those things, a request for proposals (RFP) shall be published. After that, our
on-chain governance voting protocol processes as follows:

1. A wvoting session implies the whole process of this protocol. For each RFP,
the participants run a voting session to evaluate proposals. Each session
has four time periods: posting period, declaration period, signing period, and
announcement period. We denote [n] as the index set of voters while U;
implies an i-th voter for ¢ € [n]. Similarly, for p < n, [p] is the index set
of developers who propose an improvement proposal while P; stands for
j-th developer and TPU) stands for the proposal made by P;. Note that
P; = Uj for j € [p], which means P; is also eligible to vote and will lead the
quorum of JPU). P; serves a dual role as both the initiator of I PU) and the
representative of voters of that proposal, ensuring the concealment of their
identities during signature generation.

2. In the posting period, for all j € [p], P; submits IPU). This can be done via
the blockchain network using a smart contract.

3. In the declaration period, for each i € [n], U; expresses their will to vote on
IPU) by generating a random string pair (7, 7;) using their own random-
ness, which should be kept in secret, and sending h; = Hash(hk;, m;,7;) to
P;.

4. Iri the signing period, P; sends m; to U; and U; sends r; to P;, where m;
and r; are defined in the description of fAMS in Section 5.

5. In the announcement period, P; generates a signature o) from (m;,r;) pairs
for each voter and uploads it to the blockchain system. In the end, the most
voted proposal is elected.

See Fig. 2 for the pictorial explanation of our voting system.

6.2 V2: Round Optimization

Recall that in the voting scheme above, after publishing the improvement pro-
posal, each participant has to execute three rounds of interaction before upload-
ing the §AMS signature on the blockchain.
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Posting Declaration Signing Announcement

I ] ] ] ]
i T T T 1

To T 15 T3 Ty
P P9 5 chain Uilijsample (ﬁh;fz) Pj: compute m; Pj: compute o)
i compute h; U; 2 p. ' () .
n, s com uté . P; — On-chain
U, — Pj 2 p z
Ui -5 P;

Fig. 2. Timeline of V1. Here U, votes to P9,

— Round 1 (in the declaration period): P; receives h; as a voting-claim from
its supporter U;.

— Round 2 (in the signing period): P; computes m; according to the signing
algorithm of fAMS and sends m; to U;.

— Round 3 (in the signing period): U; returns r; such that Hash(hk;, m;,r;) =
hi.

After Round 3, P; can finish signing and upload the signature ¢ on the blockchain.
Now we come up with the following question:

Can we reduce the round complezxity? Namely, can we optimize the protocol
such that the developer Pj can generate the §AMS signature immediately after
recetving the voting-claims from its supporters?

A natural idea is to let the supporter, say U;, send its secret key (the trapdoor
of chameleon hash schemes) directly to the developer P;. With the knowledge of
all secret keys, P; now can generate a $AMS signature without the interaction
with its supporters. However, this will totally expose users’ secret keys to the
developers in one vote event, which is not the case users want.

Our idea is to use fAMS in a one-time paradigm. That is, for each proposal
IPU) proposed by the developer P;, the supporter U; generates a new hash key
and trapdoor pair (hk;gj ), tdgj )), and then sends the key pair to P;. For a user Uy,
who does not want to support TP, it also generates a key pair (hk,(j )7td,(f )),
but then sends only the hash key to P;. This hash key is used for P; to add Uy,
into the anonymous group to hide the identities of the real voters. Moreover, we
have the following two modifications.

1. To make sure that a hash key hkl(j ) is generated from voter U; but not from
developer P; (otherwise it can always make an n-valid fAMS signature with

n the total number of voters), U; will sign a signature on hkgj ) to show its
authority. (See Appendix A for the syntax of signatures.)
2. The message from U; to P; is encrypted using P;’s public key, so that no

eavesdropper except P; will know the corresponding trapdoor tdl(.j ) Mean-
while, the message, either hkgj) or (hkgj), tdEJ))7 is padded to the same length,
preventing the side-leakage of anonymity.
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Formally, the round-optimal protocol is described as follows. Let Sig = (Gen, Sign,
Ver) be a (regular) signature scheme with unforgeability, and PKE be a public
key encryption scheme with CPA security. At the beginning, we assume that
every user U, for ¢ € [n] has its own key pairs (vk;, sk;) of Sig and (pk;, sk;) of
PKE.

1. In the posting period, developers P, ..., P, submit their improvement pro-
posals TP ... TP®) to the blockchain network using a smart contract.
2. In the declaration & signing period, for all 7 € [n] and j € [p],

(a) U; invokes (hk:gj),tdgk)) + LCH.Gen(1*) and certgj) — Sign(;\l;i,hkl(j));
(b) If U; wants to vote I PY), U; computes ct;_,; < Enc(pk;, hkij) | |cert§j) | \tdgj));
(c) If U; does not want to vote IPU) | U; computes clisj Enc(pkj,hkgj)
Hcertz(-j)HO)7 where 0 is a zero-string of length \tdgj)|;

(d) U; sends ct;—; to P;.

3. In the announcement period, for each j € [p], After decrypting ct;_,; for all
i € [n], the developer P; obtains a series of hash keys {hkfj )}ie[n] as well
as their corresponding certificates {certz(»j )}ie[n]~ Meanwhile, P; also gets a

group of trapdoors {tdl(»] )} from users U; who are willing to support IPU).
P; can check the validity of certificates using long-term verification keys. If
the verification fails with respect to user U;, then P; discards U; from the
anonymous group. Finally, P; generates a §AMS signature o) for its pro-
posal TPU) and uploads the $AMS signature, all hash keys, and certificates
concerning the proposal 1P to the blockchain system.

Note that if U; does any Byzantine behavior, e.g., U; does not send ct;—,; to
P;, it will be easily detected after the end of the announcement period. If there
is any such behavior, all developers can re-run the announcement period again,
but with the participants set [n]\ {i}. It can be easily generalized to any number
of faulty users, and the cost of this toleration will be one more announcement
period.

6.3 V3: Single-Vote Setting via the Conditioned Key Generation
Paradigm

A voting system in the single-vote setting is attractive in many applications. For
example, if two proposals conflict, an unruly user voting on both will undoubt-
edly disrupt the normal voting process and outcomes. However, in the protocols
above, users can vote on several proposals. More precisely, suppose there are two
distinct proposals, P by P; and IP®*) by Py for j # k € [p]. User U; can
generate two key pairs (hk§1)7 tdlw) and (hkgk), tdl(k)), and then vote on both the
two proposals by sending two key pairs to P; and Py respectively. And due to
the anonymity of fAMS, the verifier cannot know who in the group has actually
voted twice.
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We introduce a new paradigm, dubbed the conditioned key generation paradigm,
to prevent double voting. Recall that to vote on a proposal IPU) (i.e., to par-
ticipate in the signing process for the proposal), user U; must have the trapdoor

tdz(»j ) corresponding to the hash key hkgj ) that is designed for TP particularly.

U; needs to generate p hash keys (hkgl), ...,hkl(p)) first. Our idea is to set a
restriction that among all p hash keys, the user can know at most one trapdoor.

The conditioned key generation paradigm is applying t-out-of-n proof strat-
egy during the subkey generation. Assume the hash key space HI is a field.
Let B = (b;) € HKP"V*P be a public matrix of full rank. Let hk] =

((hkgl), - hkz(p))—r. Now we require
B - hk; = hk;,

where hk; € HKP~! is the output of some hash function H(IPW) . IPU») i)

If the hash key generated via Gen(1*) is computationally indistinguishable
from a uniform hash key in HX, and H(-) is a random oracle, then to satisfy
the abovementioned equation, every user has at most one trapdoor of the p
hash keys. And single-voting property is achieved as a result. See Fig. 3 for
the pictorial explanation of our round-optimal voting system in multiple and
single-vote settings. See also Appendix J for further discussion.

Posting Declaration & Signing Announcement
1 | | |
i T T 1
To Ty T3 Ty
P; 1PY) o chain U;: generates (hk!”), td9)) P;: compute o)

, —_~ ; o)
U;: computes certij) <+ Sign(sks, hk:ij)) P; 2", On-chain
cti—j < Enc(pk;, hk£j>||ce7“t5j)\|td§j))

cti s
UZ‘ i—] PJ

Fig. 3. Timeline of V2 and V3. Here U; votes to IPY) . In V2, U; also needs to compute
and send ¢t = Enc(pk;ﬁhk,ﬁk)Hcert,Ek)thl(-k)) or ctip = Enc(pkk,hkz(k)HcertEk)HO)
to Py for all k € [p]. In V3, there should be a unique j € [p] for each i € [n] such that

U; uniquely upvotes to IPY Forall k € [p] such that k # j, U; should generate hkfk)
by following the rule described in the context.
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A  More Preliminaries

A.1 Public key encryption

Definition 12 (Public-Key Encryption). A public key encryption (PKE)
scheme consists of the following three algorithms. Namely, PKE = (Gen, Enc, Dec).

— (pk, sk) « Gen(1?). The key generation algorithm takes as input the security
parameter 1%, and outputs an encryption public key pk and a decryption
secret key sk.

— ct + Enc(pk, ). The encryption algorithm takes as input pk and a message
w, and outputs a ciphertext ct. If the randomness r is specific, then we also
denote it as ct + Enc(pk, p;r) or ct :== Enc(pk, u;r).

— 1’ < Dec(sk, ct). The decryption algorithm takes as input sk and a ciphertext
ct, and outputs the decryption result p'.

Correctness. For every (pk,sk) < Gen(1*) and every message y, it holds that
Dec(sk, Enc(pk, p)) = .

Definition 13 (CPA Security of PKE). A public key encryption scheme
PKE is secure, if for every PPT adversary A, its advantage

Advf’I;?E,A()‘) .= | Pr[(pk, sk) « Gen(1*) : ACo(pk. ) 1
— Pr[(pk, sk) < Gen(1*) : A1 (Pk) — 1]

is negligible in A, where oracle Oy(pk, po, pr1) returns ct <— Enc(pk, ).

Definition 14 (Min-Entropy of PKE). A PKE scheme PKE has k-min-
entropy, if for every (pk, sk) < Gen(1*), every p, it holds that Hu, (Enc(pk, ;7))

> Kk, where r &R and R is the randomness space of PKE.

A.2 Signatures

Definition 15 (Signatures). A signature (SIG) scheme consists of the follow-
ing three algorithms. Namely, Sig = (Gen, Sign, Ver).

— (pk, sk) + Gen(1*): The key generation algorithm takes as input the security
parameter 1%, and outputs a public key pk and a secret key sk.

— o + Sign(sk, msg): The signing algorithm takes as input sk and a message
msg, and outputs a signature o.

— 1/0 + Ver(pk, msg,o): The verification algorithm Ver takes as input pk, a
message msg and a signature o, and outputs a bit indicating the validity of
.

Correctness. For any (pk, sk) + Gen(1*), any msg and o < Sign(sk, msg), it
holds that Ver(pk, msg,o) = 1.
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Definition 16 (Unforgeability of Signatures). Let Sig be a Sig scheme.
un forg

Consider the following unforgeability experiment EXpS/g..A (N\) between the chal-
lenger C and the adversary A. l

1. C generates (pk, sk) < Gen(1*) and passes pk to A.
2. A has access to the signing oracle O(msg) that returns o < Sign(sk, msg).
3. Finally A outputs a forgery (msg*,o*).

Exngfjrg(A) outputs 1 if Ver(vk, msg*,0*) =1 and A never asks O(msg*).

Define by Advzgizrg (N\) the probability that Expgizﬁrg@) outputs 1. We say
that Sig is unforgeable, if for all PPT adversary A, the advantage Advgi’;fjw (N
1s megligible in .

A.3 Forking Lemma

In this subsection, we review the forking lemma proposed by Bellare and Never
[6], which is an important tool for the security proof of the CH-based construc-
tion.

Lemma 1 (Forking Lemma [6]). Fiz an integer Q and a set M. Let B be a
randomized algorithm that on input z,u™, ..., w9 returns a pair (j, o), where
the first element is an integer in [Q] and the second element is referred as a side
output. Let X be a distribution. We define acc, the accepting probability of B in
the experiment as follows.

i X, uW L u(@ EM

dv =P
- ' (j,0) « B(z,u®, ... u(@)

1<y <Q).

The forking algorithm Fp associated with B is a randomized algorithm that takes
mput x and proceeds as follows.

Set random coins p for B

uM, . u(@ E M

(ja o‘) — B(Iv u(1)7 ceey U(Q)7 P)

If 5 =0 then return (0, L, 1)

u@ @ E M

(', 0") = Bz, u®, . ul=D @) 4@ p)
If (j = 7 AuD) #£ u@)Y then return (j,0,0")
Otherwise return (0, L, 1)

Define
frk :=Prlz « X, (b,-,-) + Fp(z) : b#Q0].

Then
frk > acc- (acc/Q — 1/|M]).
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B More Security Notions of AMS

Definition 17 (Weak Unforgeability). Let fAMS be an § AMS scheme. Con-

sider the weak unforgeability experiment Exp;”;,\‘,,rgfjrg (X), which is defined as
un forg

Expyaiys 4(A) in Definition 7, except that condition (2) is replaced with
(27) A never asks O(msg*, P,G) such that |G| > t*.

Define by Advé‘}:,f,,gfjrg(/\) the probability that Expg’ﬁ%ﬁm()\) outputs 1. We say
that $AMS is weakly unforgeable, if for all PPT adversary A, the advantage
Adv;”ﬁ/g{j’"g()\) is negligible in \.

Remark 5 (On the meaning of weak unforgeability). Recall that the output ¢
of the verification algorithm is a metric to measure how “reliable” a signature
is, i.e., how many different signers agree on the message and participate in the
signing process. Therefore, in many applications (e.g., the blockchain governance
discussed in Section 6), the adversary’s goal is to forge a t-valid signature with
t as high as possible. To formalize this kind of security, we define the above-
mentioned weak unforgeability by strengthening the restriction of the adversary.

Adaptive corruption endows a powerful attack capability for the adversary,
which might be too strong to realize. The static corruption model is enough
for many applications such as applications: V2 and V3. We formally define the
(strong/weak) unforgeability under static corruptions.

Definition 18 ((Strong/Weak) Unforgeability under Static Corruptions).
Let $AMS be an §AMS scheme. Consider the following unforgeability experiment

un forg-sta-corr

EXpy ains 4 (N\) between the challenger C and the adversary A.

1. A sets the mazximum number of signers n and claims a group of signers
G’ C [n] to be corrupted.

2. C generates (vk,sky, ..., sky) < Gen(1*,n) and passes (vk,{sk;}iccr) to A.

3. A has access to the signing oracle O(,-,-), which inputs (msg, P,G) and
returns o < Sign(msg, G, {sk;}icc) and adds (msg, o) into the set S.

4. Finally A outputs (msg*,o*).

Let t* < Ver(vk, msg*,o*). Expé‘:,\f/,‘;ﬁ'sm'wrr()\) outputs 1 if

(1) t* > t', where t' is the total number of queries to Ocorr(+); and
(2) A never asks O(msg*, P,G) such that |G| = t*.

Define by Advﬂ&?ﬂ‘sm'corr(}\) the probability that Exp;f,\f/,‘;i'sm_ww (A) out-
puts 1. We say that §AMS is unforgeable under static corruptions, if for all PPT

un forg-sta-corr

adversary A, the advantage Advyyis 4 (M) is negligible in \.
If condition (2) is replaced with

(27) (msg*,0") ¢ S.
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then we define the strong unforgeability of $AMS, the corresponding experiment
and advantage are denoted by Advg;‘uﬁgfjg'sm'corr()\) and Adv?}ﬁ_g’jg_sm'corr(/\).

If condition (2) is replaced with
(27) A never asks O(msg*, P,G) such that |G| > t*.

then we define the weak unforgeability of $AMS, the corresponding experiment

and advantage are denoted by Adv;”AiAﬂ,ijrg'Sta_COTr(A) and Advé‘;{l,\‘/,rgjm_sm'w”()\).

C A Framework for Lossy Chameleon Hashes

In this section we show a framework of lossy chameleon hashes defined in Defini-
tion 3, including the equivalence with lossy identification schemes, some generic
constructions, and some concrete constructions from the DDH assumption and
the LWE & SIS assumptions.

C.1 Equivalence with Lossy Identification Schemes

Bellare and Ristov [7, 8] proved that chameleon hashes and 3-move Sigma proto-
cols are equivalent, where the hash value, the message, and the randomness of a
chameleon hash corresponds to the commitment, the challenge, and the response
of a Sigma protocol, respectively. In this subsection, we extend the equivalence to
the lossy mode, by showing that lossy chameleon hashes and lossy identification
schemes [1] are equivalent.

We first recall the definition and security properties of lossy identification
schemes. By default, the lossy identification scheme we consider here is a 3-
move protocol (as that in sigma protocols) which consists of a commitment, a
challenge, and a response as its transcript.

Definition 19 (Lossy Identification [1]). A lossy identification scheme con-
sists of the following four algorithms. Namely, LID = (Gen, LGen, Prove, Ver).

— (pk, sk) + Gen(1*). The normal key generation algorithm takes as input the
security parameter A and outputs a verifier’s public key pk and a prover’s
secret key sk.

— pk + LGen(1*). The lossy key generation algorithm takes as input the secu-
rity parameter X\ and outputs a lossy public key pk.

— Prove. The prover algorithm that as input the current conversation tran-
seripot and outputs the next message to be sent to the verifier.

— Ver. The (deterministic) verification algorithm Ver takes the transcript as
input and output a bit, where 1 indicates acceptence and 0 otherwise.

We assume by default, the commitment space, the challenge space CH, and
the response space R'P are defined by the public key pk (either generated via nor-
mal or lossy way). Moreover, for every (pk, sk) +— Gen(1), there is a transcript
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oracle that works as follows.

Ot ()

(cmt, st) « Prove(sk)
ch & cn

resp < Prove(sk, st, ch)
output (emt, ch, resp)

Definition 20. Let LID be an identification scheme. We say LID is secure if it
satisfies the follow properties.

p-completeness for normal keys. For every (pk, sk) « Gen(1*), Ver(pk, cmt,

ch,resp) = 1 holds with probability at least p, where (cmt,ch,resp) <
Otrans()
pk,sk \/*

Simulatability of transcripts (honest-verifier zero-knowledge). For ev-

ery (pk,sk) < Gen(1)), there exists a PPT simulator Sim that takes only

pk as input and outputs a simulated transcript (cmt, ch,resp) < Sim‘™%(),

pk
which distributes 1)-close to the output of O3 ().

k-min-entropy. For any (pk, sk) < Gen(1*), let (cmt, st) < Prove(sk) and [];
be a function that maps (cmt, st) to emt, then

H_, ([Prove(sk)]1) > &,

where the probability is taken over the randomness coin used in Prove.
Indistinguishability. For any PPT adversary A, the distinguish advantage

Advf_',’g’A()\) := | Pr[(pk, sk) < Gen()) : A(pk) = 1]—Pr[pk < LGen : A(pk) = 1]|

s negligible in \.

e-lossiness. For any (even all-powerful) adversary A = (A;, Az), it holds that
k  LGen(1%); (emt, st) — A0 (pky;

pr|P s ’ 1 PR)i Ver(pk, cmt, ch,resp) = 1| <,

ch < CH;r < Asz(ch, st)

where Simthems

ok () is the simulator described above.

Besides, we also need the following two properties for identification schemes
when constructing lossy chameleon hashes from them.

Definition 21 (Commitment recoverability of LID). LCH is commitment
recoverable if there exists a determistic algorithm Com that takes as inputs (pk, ch,
resp) and outputs a recovered commitment cmt’, and Ver(pk,cmt, ch,resp) = 1
if and only if cmt = Com(pk, ch, resp).

Moreover, there exists a special simulator Sim, which outputs a n-close simu-
lated transcrip by randomly sampling (ch, resp) and then outputting (Com(pk, ch,
resp), ch,resp), and (ch,resp) can be serverd as the inner state st for cmt =
Com(pk, ch,resp) in the Prove algorithm.
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Definition 22 (Strong special soundness of LID [8]). LCH has strong spe-
cial soundness, if for any PPT adversary, its advantage

SSS

AdVLID,A()\) = Pr

is negligible in \.

(ch,resp) # (ch’,resp’)
: A Ver(pk,cmt, ch,resp) = 1
A Ver(pk,cmt,ch’,resp’) = 1

(pk, sk) < Gen(1?)
(cmt, ch,resp, ch’,resp’) + A(pk)

From LCH to LID. Let LCH = (LCH.Gen, LCH.LGen, Hash, TdColl) be a secure

lossy identification
LCH as follows.

scheme. We construct a lossy identification scheme LID from

Gen(1*):
(hk,td) < LCH.Gen(1%)
Output (pk, sk) := (hk,td)

LGen(1*):
hk < LCH.LGen(1%)
Output pk := hk

Prove and Ver:
Prover Verifier
(hk,td) hk
mEMFER
h := Hash(hk, m, ) cmt:=h
ch:=m m (i M
r + TdColl(td, m, 7, m) — 2= If h = Hash(hk, m,r): output 1
Otherwise: output 0

Fig. 4. Construction of lossy identification schemes from lossy chameleon hashes.

Theorem 4. Let LCH be a strongly secure lossy chameleon hash scheme (i.e., it
has k-uniformity, v-random trapdoor collision, strong collision, indistinguisha-
bility anmd e-lossiness), then LID constructed in Fig. / is a secure lossy identi-
fication scheme with commitment recoverability.

Proof. We show that ID has completeness, simulatability of transcripts, min-
entropy, indistinguishability, lossiness, and commitment recoverability.

1-completeness.

This is directly implied by the correctness of LCH.TdColl.

v-simulatability of transcripts. We construct the PPT simulator Sim as fol-

lows.

Simpk() :
mé M;r ER

| h := Hash(hk,m,r)
output (h,m,r)

Olier ()

m, m & M;T ER

h := Hash(hk, m,r)

r < TdColl(td, m, 7, m)
output (h,m,r)

Since h is totally determined by pk, m, and r, the only difference between

the above two

distribution is the generation of r. Due to the ~-random

trapdoor collision property of LCH, we know that O}%7:7() and Sim, () have

a statistical dis

tance 7.
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k-min-entropy. Since the commitment cmt for Prove algorithm is just the hash
value for random m and 7, the x-min-entropy directly follows from the k-
uniformity of LCH.

Indistinguishability. This is directly implied by the indistinguishability of
LCH.

e-lossiness. This is directly implied by the e-lossiness of LCH.

Commitment recoverability. This is straightforward since the commitment
is the hash value of m = ch and r = resp.

From LID to LCH. Let LID = (LID.Gen,LID.LGen, Prove, Ver) be a secure
lossy identification scheme with commitment recoverability. We construct a lossy
chameleon hash scheme LCH from LID as follows.

Hash(pk, ch, resp):
Gen(1): cmt := Com(pk, ch, resp)
WH LID.Gen(1%) // Com is the determistic algorithm defined in

__ // commitment recoverability
Output (hk,td) := (pk, sk) Output h = emt

LGen(1*):
pk + LID.Gen(1%)
Output hk := pk

TdColl(sk, ch,resp, ch’):
cmt := Com(pk, ch, resp)
st := (ch,resp)

resp’ < Prove(sk, st,ch’)

Fig.5. Construction of lossy chameleon hashes schemes from lossy identification
schemes.

Theorem 5. Let LID be a secure lossy identification scheme (i.e., it has p-
completeness, n-imulatability, k-min-entropy, indistinguishability, e-lossiness) with
commitment recoverability and strong special soundness, then LCH constructed
in Fig. 5 is a secure lossy chameleon hash scheme.

Proof. We show that LCH constructed in Figure 5 has uniformity, random trap-
door collision, strong collision resistance, indistinguishability, and lossiness.

Correctness of trapdoor collision. This is guaranteed by the n-simulatability
and p-completeness of LID. We notice that the correctness of LCH might be
imperfect.

(k + log n)-uniformity. Due to the commitment recoverability and simulata-
bility of LID, the simulated distribution (emt = Com(pk, ch, resp), ch,resp)
(for random ch and resp) is n-close to the normal protocol transcript dis-
tribution (emt’, ch’/,resp’). Moreover, we know ¢mt’ has a min-entropy of k.
Therefore, emt := Com(pk, ch, resp) has a min-entropy at least (k + logn).

n-random trapdoor collision. According to the n-simulatability of LID, the
simulated transcript (emt, ch, resp) (for random ch and resp) has a statistical

40



distance 1 with the real transcript, which means that the distributions of
resp and resp’ are 7n-close. And the r-random trapdoor collision holds as a
result.

Strong collision resistance. This is implied by the commitment recoverabil-
ity and the strong special soundness of LID. Recall that Ver(pk, ecmt, ch, resp)
returns 1 if and only if emt = Com(pk, ch, resp), where Com is the determistic
algorithm defined in Definition 21. Therefore, a tuple (cmt, ch, resp, ch’, resp)
that breaks the strong special soundness directly leads to a collision of the
constructed LCH.

Indistinguishability. This is directly implied by the indistinguishability of
LID.

e-lossiness. This is directly implied by the e-lossiness of LID.

C.2 Construction from Re-Randomizable Encryption
We first recall the definition of re-randomizable encryption.

Definition 23. A re-randomizable encryption (RPKE) scheme consists of four
algorithms R-PKE = (Gen, Enc, Dec, ReRand), where the first three algorithms are
defined as normal PKE (Definition 12), and

— the re-randomize algorithm ReRand that takes as input the public key pk, a
ciphertext ct and a randomness r', and outputs a rerandomized ciphertext
ct’ < ReRand(pk, ct;r).

We require that for every (pk,sk) + Gen(1%), every message y and ¥, the fol-
lowing two distributions are identical,

{r ERr: Enc(pk, p;r)} and {r ERr. ReRand(pk, Enc(pk, u;7); )},
where R is the randomness space of R-PKE.
Besides the rerandomize algorithm ReRand, we additionally require an ef-

ficient collision algorithm to find our a randommness with which ReRand will
rerandomize a ciphertext to a specific one.

Definition 24 (Efficient collision of R-PKE). Let R-PKE = (Gen, Enc, Dec,
ReRand) be an R-PKE scheme. We say R-PKE has efficient collision, if there

exists an efficient collision algorithm Coll that, for any m, ro,r1,7] <£ R,
Coll(pk,m,ro,r1,7y) outputs ri such that

ReRand(pk, Enc(pk, m;rq); () = ReRand(pk, Enc(pk, m;r1);77).

Meanwhile, if r{ is sampled according to some distribution R, then 1} +
Coll(pk,m,ro,71,7() also satisfies the distribution R.
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Some examples of R-PKE include ElGamal, Paillier, Regev, etc.

Now we describe our construction from R-PKE. The idea mainly follows the
construction in [36], but we additionally require an efficient collision algorithm
so that the constructed LCH has correctness (i.e., there exists a trapdoor to find
collisions efficiently in the collision mode).

Construction of LCH from R-PKE. Let R-PKE be a secure R-PKE scheme
with efficient collision. Let R be the randomness space of R-PKE. The construc-
tion of LCH is shown as follows, where the message space is M = {0,1}*, and
the randomness space is RY.

— (hk,td) < Gen(1*). (pk, sk) < R-PKE.Gen(1%).
For i € [Z] 73,0571 (i R, Ci0 = Enc(pk:,O;ﬂ,oL Ciq = Enc(pk70;77i,1).
Return hk := (pk, c1,0,¢1,1, ..., o0, Ce,1) and td := (F1,0, 71,1, ..., Te,0, Te,1)-
— hk <+ LGen(1*). (pk, sk) + R-PKE.Gen(1%).
For 7 € [é] 71'7077:7;71 (i R, Ci0 = EI’]C(pk,O;’I‘_LO)7 Ci1 = Enc(pk:, 1;7:1‘,1).
Return hk := (pk,c1,0,¢1,15 -, Co,05Ce,1)-
— h < Hash(hk,m,7). Let m = (mq,...,m¢) € {0,1}¢ and r = (ry,...,7¢) € R’
For i € [€]: h; :== ReRand(pk, ¢; m,; ;).
Return h := (hq, ..., he).
— 7/ < TdColl(td, m,r,m’). Let m = (my, ...,m¢) € {0,1}, m' = (m},...,m}) €
{0,1}¢, and r = (rq, ...,7¢) € RE.
For i € [(]:
o If m; = m}, then r} :=r,.
o If m; 75 m;, then 7”; — CO”(p]{i,O,’Fi,(),fi’l,Ti).

Return r’ := (r{, ..., 7).

Theorem 6. If R-PKE is a secure R-PKE scheme with efficient collision and
k-min-entropy, then LCH constructed above is a secure lossy chameleon hash
scheme.

Proof. We prove the properties of LCH as follows.

Correctness and (perfect) random trapdoor collision. These two prop-
erties follow directly from the efficient collision of R-PKE.

({k)-uniformity. For every i € [{], any 7;, ReRand(pk, Enc(pk,0;7;);r;) has a
min-entropy  if 7; is uniformly distributed. And (¢x)-uniformity holds as a
result.

Indistinguishability. This follows from the CPA security of R-PKE. Namely,
there exists a PPT algorithm B such that

Adel-_Tgll—LA(/\) < Advg—)gKE,B()‘)'

Collision resistance. We first change the generation of hk from (hk,td) +
Gen(1*) to hk < LGen(1*), due to the IND property.
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If the adversary A find a collision (m,r,m’,r") under this lossy key hk, then
there exists at least one i s.t. m; # m} (w.l.o.g. we assume m; = 0), and

ReRand(pk, Enc(pk,0;7; 0); ;) = h; = ReRand(pk, Enc(pk, 1;7;.1);75).

Due to the correctness of R-PKE, h; can be decrypted to exactly either 0 or
1. Therefore collision resistance holds.

2~‘_lossiness. The analysis is the same as that in collision resistance. For any
fixed h = (hq, ..., hy), the message m encrypted in h is uniquely determined,
due to the correctness of R-PKE. Therefore, for a random m, as long as
m # mm (which happens with probability (1 —27)), there does not exist
randomness r such that Dec(sk, ReRand(pk, ¢; m,;7:)) = 7 for all 4.

C.3 Construction from Lossy PKE with Efficient Opening
We first recall the lossy encryption (L-PKE) as follows.

Definition 25. A lossy encryption (L-PKE) scheme consists of four algorithms
L-PKE = (Gen, Enc, Dec, LGen), where the first three algorithms are defined as
normal PKE (Definition 12), and

— the lossy key generation algorithm LGen takes as input the security parameter
A and outputs a lossy public key pk < LGen(1*).

We require that for every pk < LGen(1), every po, pi, the following two distri-
bution are vy-close,

{r < R : Enc(pk, po,r)} and {r + R : Enc(pk, p1,7)},
where R is the randomness space of L-PKE.

Definition 26 (Efficient Openability of L-PKE). An L-PKFE scheme L-PKE
has efficient openability, if for every pk < LGen(1*), there exists a trapdoor td
generated along with pk in LGen and an efficient algorithm Open, such that given
any p, i, r, Open(td, p,r, 1'), with overwhelming probability it outputs a random-
ness r' such that Enc(pk, p,r) = Enc(pk, ', r"). Namely, a lossy ciphertext can
be opened to any plaintext p'.

Moreover, we require that the output r < Open(td, p,r, ') satisfies the same
distribution as v except a negligible probability.

Now we construct a lossy chameleon hash scheme from any lossy PKE scheme.

Construction of LCH from L-PKE. Let L-PKE be a secure L-PKE scheme
with efficient openability, and M and R be the message space and randomness
space of R-PKE, respectively. At a high lever, the injective/lossy mode in L-PKE
corresponds to the lossy/collision mode in LCH.

— (hk,td) < Gen(1*). pk < L-PKE.LGen(1?*). Let td be the trapdoor used for
efficient openability (Definition 26).
Return hk := pk and td.
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— hk < LGen(1%). (pk, sk) + L-PKE.Gen(1%).
Return hk := pk.
— h < Hash(hk,m,r). Let hk = pk. ct + Enc(pk,m;r).
Return h := ct.
— 1’ « TdColl(td, m,r,m’). Let ct < Enc(pk,m;r). Returnr’ < Open(td, m,r,m’).

Theorem 7. If L-PKE is a secure L-PKE scheme with efficient openability and
k-min-entropy, then LCH constructed above is a secure lossy chameleon hash
scheme.

Proof. We prove the properties of LCH as follows.

Correctness. Recall that the collision hash key is actually a lossy public key
of L-PKE. Due to the efficient openability of L-PKE, the correctness of LCH
holds with overwhelming probability.

k~-uniformity. This is directly implied by the x-min-entropy of L-PKE.

Random trapdoor collision. This follows from the efficient openability of
L-PKE.

Indistinguishability. This follows directly from the indistinguishability of L-PKE.

Collision resistance. To prove the collision resistance of LCH, we first change
the generation of hk from (hk,td) < Gen(1*) to hk + LGen(1%), due to the
indistinguishability property.

If the adversary A find a collision (m,r,m’,r’) under this lossy key hk (i.e.,
under the injective public key pk), then m # m’ and

Enc(pk, m;r) = Enc(pk, m’;r’").

Obviously this cannot happen due to the correctness of L-PKE.

1/|M|-lossiness. In the lossy mode of LCH (i.e., the injective mode of L-PKE),
for any fixed h, the message m encrypted in h is uniquely determined due
to the correctness of L-PKE. Therefore, for a random m, as long as m # m
(which happens with probability (1 —1/|M])), there does not exist random-
ness r such that Enc(pk, m;r) = h.

C.4 Construction from LWE

In this subsection we show the LWHE-based construction of LWE, which was
presented as a dual-mode commitment scheme by Pan and Wagner [50]. Here
we provide the proof of collision resistance based on the SIS assumption.

Let n,m, g be positive integers. For a matrix A € Z;**™(m > n) and vector
u € Zy, define the n-dimensional lattice A(A) := {y € R"[y = Ax,x € Z™},
the orthogonal lattice Ay (A) := {x € Z™|Ax = 0" mod ¢} and shifted lattice
AE(A) = {x € Z"|Ax =u mod ¢}.

The Gaussian function with parameter s and center c is defined as p;c :
R" — R, psc(x) := exp(—||x — c||?/s?). For countable set S € R", the dis-
crete Gaussian distribution Dg s (x) parameterized with s and c is defined as
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Ds sc(X) = ps,c(X)/ D xes Ps,e(x) for x € S and Dssc(x) := 0 for x ¢ S.
Usually we omit ¢ if ¢ = 0.

We recall the following lemmas from [50], which are originally presented in
[2, 47, 30, 31].

Lemma 2. Let n,m,q be positive integers and m > 2nlogq. Consider any

w(v/logm) function and s > w(y/logm). Then for all but negligible (in n)
fraction of all A € Zy*™ the distribution {Aele < D, (a),} is statistical-
luy close to uniform distribution over Zy. Moreover, the conditional distribution
of € <= Dzm s given u = Ae mod q is exactly Dpx(a),s-

Lemma 3. Let n,m,q be positive integers and m > 2nlogq. Consider any

w(vlogm) function and s > w(y/logm). Then for all but at most ¢~™ frac-
tion of A € Zy*™ and any vector u € Z7, it holds that Pr[||x|| > s\/m|x <

q )
Dyr(ay,sl <27
Let G be the gadget matrix defined in [46]. Let A € Zy*™, n,m, q be positive
integers and m > n[log¢]. A matrix R € Z(m—nllegal)xnflogdl i 5 trapdoor for
A is A[—RT|In|'10gq"]T = G.

Lemma 4. There exist PPT algorithms GenTrap and SampleD and constants
Co > 0, C; < 3 such that for positive integers n,m,q, ¢ > 2, m > 3nloggq,
w = nflogq], and any w(v/logn) function the following holds with overwhelming
probability over all random choices:

1. For any s > w(logn), the algorithm GenTrap(n,m,s,q) outputs matrices
AeZy™ and R € Zim—w)Xw sych that A is statistically close to uniform
matriz over Zy*™, R is a trapdoor for A with entriex sampled from Dy s

and 51(R) < s-Co - (vVm —w + Vw).

2. For any matriz A € Zy*™ with trapdoor R, for any u € Zj and s >

Cy-+v/s1(R)? + 1lw(y/logn), the distribution {z|z <— SampleD(A,R,u, s)} is

statistically close to Dyy(a),s-
Next we present two hardness assumptions on lattices.

Definition 27 (The LWE assumption). Let n = n(\),m = poly(n),q be
positive integers and X be an error distribution over Z. The learning with errors
(LWE) assumption states that for any PPT adversary A, its advantage

AdJYe g 4(N) == |PrlA & 207 s & 70e o ™ D A(AsTA +eT) = 1]
—pPriAdzrmb &z AADT) =1
s negligible in .

Definition 28 (The SIS assumption). Let n = n(\), m, q be positive integers
and B be a positive real. The short integer solution (SIS) assumption states that
for any PPT adversary A, the advantage

Sis $ nxm n m
Adv[n7q7,37m]7A(/\) = Pr[A & qu ix— A(A): Ax=0" Ax# 0" Alx]| < f]
1s megligible in .
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p)
Geni(l) Hash(hk, m € {0, 1}1!, r)
(A, Ta) + TrapdoorGen()

0
Return (hk, td) := (A € Z{"T9"™ Tpa) |2 = Ar + hq/ﬂ m}

Return z

LGen(1*) TdColl(td, m, r, m’)

x S8 nxm

A&7 Z,::Ar+{ 0 /}
S & 72X E « Dy st lg/2] - (m — m’)

/ /
A=STA+ET r' < Resample(A,Ta,z’,s)
- If ||r'|| > sy/m: return L

Return hk := A = {2} S Zf{ﬁaxm Return r’

Fig. 6. LCH construction from the LWE and SIS assumptions.

Theorem 8 (Security of the Lattice-based Construction [50]). Under
the LWE assumption, the construction in Fig. 6 has completeness, simulatability,
min-entropy, indistinguishability, lossiness, and commitment recoverability.

Theorem 9. Under the LWE and SIS assumptions, LCH in Fig. 6 is a secure
lossy chameleon hash scheme.

Proof. Thanks to Theorem 5 and Theorem 8, it is sufficient to prove the collision
resistance.
Recall that in the generation of hash key, A is statistically close to a ran-

ZSITH_Z) xXm

. . A ..
dom matrix over . Under a random matrix A = { A}’ a collision

(m,r,m’,r’) such that

Art {Lq/;m} - A [ngﬁ)'m/}

directly implies a SIS solution (r —r’) to A € ZI*™.

C.5 Construction from DDH

In this subsection we present a construction of LCH from the DDH assumption,
which is the well-known DDH-based lossy identification scheme by Chaum et al
[18].

We first recall the background on the discrete logarithm assumption and the
DDH assumption.

Let GGen be a group generation algorithm that outputs (G, ¢, g), where G is
a cyclic group of prime order ¢ with generator g.

Definition 29 (The DL assumption). The discrete logarithm (DL) assump-
tion states that, for any PPT adversary A, its advantage

AGVE 4(N) = Prlx & Z, - A(G.q.9.9%) = 1]

1s megligible over \.
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Definition 30 (The DDH assumption). The decisional Diffie-Hellman (DDH)
assumption states that, for any PPT adversary A, its advantage

A (N) 1= Prla,y & Zg - A(G,q,9,9", 9", g™) = 1]
$ T z
_Pr[x7yaz <~ Z(] : A(Gaqvg7g agyvg ) = 1}
1s megligible over \.

Note that the DL assumption is implied by the DDH assmumption.

Construction. Let (G, ¢, g) + G(1*), and § is another random generator of G.
The DDH-based construction of LCH [18] is shown in Fig. .

Gen(1?)

o Zqg Hash(hk, m,r)

Return td := z, hk := (X, X) := (¢°,3") | Return h := (X"g"[|X™§")
LGen(1*) TdColl(td, m,r, m’)

@, @' Lg st x££ Return 7' :=z(m —m’') +r

Return hk := (XJZ) = (gzvSfI)

Fig. 7. LCH construction from the LWE and SIS assumptions.

Theorem 10 ([18, 24]). Under the DDH assumption, LCH above is a strongly
secure lossy chameleon hash scheme.

D Proof of Theorem 1

In this section we prove Theorem 1 (the strong unforgeability of fAMS).

Proof. For simplicity, we will model the signing process of fAMS as a algorithm
and ignore the moderator in the following proof.

First, we prove the strong unforgeability under static corruptions via hybrid
games Gy — G4. Before describing the hybrid games, we specify some notations
used in the proof. Let (msg*,c* = (¢',m7},...,m%, 75, ...,r’)) be A’s final forgery
and t* < Ver(vk, msg*,c*). For A to win, it must hold that ¢’ = ¢*. Therefore,
in the following proof we implicitly assume that ¢ = t*. Meanwhile, for i € [n],
let hY < Hash(hk;, m},r}), and let H(vk, h}, ..., hl, msg*|[t*) = u*.

R

Game Gg. This is just the original strong unforgeability experiment.

PI‘[GO = 1] = AdV;"Au'\;l'LS]c)lZ“g—Sta-corr(A)'

Game G;. If A never asks H(vk, hi, ..., h%, msg*||t*) before outputting the final
forgery, then G; outputs 0 directly.
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Since H works as a random oracle, if A never asks H(vk, hi, ..., h%, msg*|[t*)
before, then u* is randomly distributed over U. Recall that for every (n,t) and
(mq,...,my), there exists only one w such that F(n,t,m1,...,m,,u) = 1. There-

fore, the probability that A wins is at most 1/| M|, and we have

| Pr[Go = 1] — Pr[Gy = 1]| < 1/]u].

Game G;. In this game C changes the way of signing oracle’s simulation as
follows. Upon receiving a signing query O(msg, G) (|G| = t), C randomly sam-
ples m; and r; for all ¢ € [n], computes h; < Hash(hk;, m;,r;), and reprograms
the random oracle such that H(vk,hq, ..., by, msgl|t) = u, where u is computed
according to the forward sample algorithm sf,q(n,t, G) of Fy. If C fails to re-
program, i.e., H(vk,hq, ..., hy, msg||t) has already been defined before, then G
outputs | and aborts. At last C returns the signature o = (t, {m; }icpn), {74 fien])
to A.

First, we argue that Go and G; are statistically close if it does not abort.
Notice that the outputs (mi,...,my, u) of sfua(n,t,G) and speck(n, t, G) satisfy
the identical distribution, where u outputted by speck(n,t, G) enjoys a random
distribution. Meanwhile, the distribution of r; (i € G) is vy-close to the original
signing algorithm in Gy, due to the v-random trapdoor collision property of LCH.

Then, we bound the abort probability in G,. Recall that LCH has k-uniformity,
i.e., for all i € [n], Hoo(Hash(hk;, m;,7;)) > k for randomly sampled m; and r;.
Suppose A asks at most Qgign signing queries and @@y hash queries. By the
union bound, we have

‘ PI‘[Gl = 1] — PI‘[GQ = 1” S (Qsign + C?H)/QnN + Qsignn © Y.

Game G3. We add an extra abort rule in this game. Define by reuse the event
that, A has ever asked O(msg*, G) with some |G| = t* and gets o = (t*, m1, ..., My,
T1,...,Tn) back, and

1. Hash(hk;, m;,r;) = Hash(hk;,m?,r}) for all i € [n]; and

17"

2. There exists i such that (m},r?) # (m;,r;), and A never asks Ocopp (7).

If reuse happens, then Gz outputs 1 and aborts.

We can easily construct a reduction algorithm B; that breaks the strong
collision resistance of the underlying uncorrupted hk; if reuse happens. Via a
standard hybrid argument, we know that

| Pr[Gy = 1] — Pr[Gz = 1]| < n - Adv{§ 5, (A).

Game Gy. Let G’ C [n] be the corruption group by A and G := [n] — G’. In this
game, C generates hk; < LGen(1*) instead of (hk;, td;) « Gen(1*) for all i € G.
The simulations of H'(-) and O(msg, G) are the same as Gz. Note that C can
simulate a §AMS signature for group G that contains i € G without knowing a
trapdoor td;.

We can easily construct a reduction algorithm By to reduce the indistin-
guishability between Gz and G4 into the indistinguishability of LCH. Therefore,
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| Pr[Gs = 1] — Pr[Gy = 1]| < n- Adv{e 5, (V).

Now we argue that in G4, even an all-powerful adversary A cannot win with
a non-negligible probability due to the e-lossiness of LCH.
Let (msg*,0* = (t',m],...,m%,r},....,r%)) be A’s forgery and t* + Ver(vk,

msg*,0*). Let |G’| = t'. Obviously we have ¢’ < t* < n. Define by W, the event
that G4 outputs 1. We divide Wy into the following three subevents.

1. Event W}: H(vk,h},...,h}, msg*||t*) was defined when A asking a query
O(msg*, G) with |G| = t* and the response is 0 = (t*,m1, ..., My, 71, .., Th),
and m; = m; for all ¢ € [n].

2. Event W2: H(vk,hi,...,hY, msg*||[t*) was defined when A asking a query
O(msg*, G) with |G| = t* and the response is 0 = (t*, M1, ..., My, 71, .., Th),
and there exists at least one i s.t. m; # m}.

3. Event W3: H(vk, h?,...,h’ msg*||t*) was defined upon some hash query by
A.

We analyze W} first. Recall that we require A’s final forgery to be different
from all signatures obtained from the signing oracle. That is, there exists some
i such that m; = m}, r; # rf, and Hash(hk;, m;,r;) = Hash(hk;, m},r}). Due
to the uniqueness of LCH, it is impossible for ¢ € G’ (the corrupted group).
Moreover, W} cannot happen for i € G (the uncorrupted/lossy group) due to
the extra abort rule reuse in Gz. Therefore, we have Pr[Wj] = 0.

Then we analyze W2. According to the interdependency of constraint func-
tion Fy, if W2 happens, then there must exist at least one i € G such that
m; # m;. Together with the extra abort rule reuse in Gz, we get that Pr[W2] = 0.

Then we bound Pr[W}] according to the e-lossiness of LCH. Recall that if G5
does not abort, then all hash keys {hki}ieé:([n]fG’) are generated in the lossy
mode. Under the hash query H(vk, hi, ..., h}, msg|[t*), a random u* is returned.
According to the randomness property of Fy, either there exist at least ¢ different
i € [n] such that m, distribute uniformly, or for any i € [n], m; distributes
uniformly. From the analysis above we know, there exists at least one i s.t. hk;
is a lossy hash key. Then according to the e-lossiness, given h;, for a random m;,
the probability that A can find a randomness r; with Hash(hk;, m;,r;) = h; is
at most €. By the union bound, we have

Pr[Gs = 1] < (n—t* + 1)e < ne,
which finishes the proof of strong unforgeability.

It is still left to prove the unconditional strong anonymity. Recall that in
the signing, m; for ¢ ¢ G is randomly distributed, and m; for ¢ € G is com-
puted from {m;};c[n)\¢ and randomly sampled u according to Fy. Since the
two sample algorithms sf,,q and specr have identical distributions, m; for 7 € G
distributes the same as m; for i ¢ G. Therefore, to prove the strong anonymity,
it is sufficient to prove that for any m, m’ € M, the following two distributions
are indistinguishable:
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{(m”") ‘T & R} and {(m’r) 7« LCH.TdColl(td, m, 7, m)

(hk, td) < LCH.Gen(1 )fﬁn }

Thanks to the y-random trapdoor collision property, the above two distribu-
tions are y-close, and unconditional and strong anonymity holds as a result.

Taking the above all together, we obtain the desired result.

E Unforgeability under Adaptive Corruptions

In this section we analyze the (strong) unforgeability of LCH-based $AMS scheme
in the adaptive corruption model.

Theorem 11. If LCH is strongly secure (i.e., it has k-uniformity, v-random
trapdoor collision, strong collision resistance, indistinguishability, and e-lossiness)
and unique, and Fg is a constraint function, then the $AMS scheme $AMS con-
structed in Section 5 has strong unforgeability and strong anonymity under adap-
tive corruptions. More precisely, for any PPT adversary A, we have another PPT
algorithm B such that Time(B) ~ Time(A), and

Adve- -un forg-sta- corr(/\) < nQnAdvi—g’:(A) + nQnAdViLTEU,l_I B()‘) L 02" ¢

ﬁAMS A
1 Qsz n Q
g H

|M‘ onk + Qszgnn e

where Qsign and Qu are the numbers of signing queries (in the strong unforge-
ability experiment or the strong anonymity experiment) and hash queries, respec-
tively.

Proof. Similar to that in Appendix D, we prove the strong unforgeability via
hybrid games Gg, G1, G, G3, G3, G4. All hybrid games except Gs are defined the
same, and we safely omit the details here.

Game 63 In this game C randomly samples a subgroup GC [n] at the begin-
ning, and whenever A terminates and outputs its forgery, C checks whether A
asks Qo (1) for all i € ([n] — G) exactly, i.e., whether G is exactly the subgroup
of users that A does not corrupt. If not, G4 outputs 1 and aborts.

There are at most 2™ different subgroups for [n]. Via a standard complexity
argument, we have that

Pr[Gs = 1] < 2" - Pr[Gs = 1].

Game G,. In this game, C generates hk; < LGen(1%) instead of (hk;,td;) +
Gen(1*) for all i € G. And we have

| PGy = 1] — Pr[Gy = 1]| < n - Advie 5 (V).
Combined with hybrid games Gy, ..., G4, we finish the proof.
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Following the same proof steps in Theorem 1, we have the following theorem.

Theorem 12. If LCH is secure (i.e., it has k-uniformity, y-random trapdoor
collision, collision resistance, indistinguishability, and e-lossiness) and Fy is a
constraint function, then AMS constructed in Section 5 has unforgeability under
adaptive corruptions. More precisely, for any PPT adversary A, we have another

PPT algorithm B such that Time(B) ~ Time(A), and

; 1 sign
AV (N) < 2 AV, (V) +n2" - e o Deion T @

M| S T @signtt -,

where Qgign and Qp are the numbers of signing queries and hash queries, re-
spectively.

F Instantiations of Constraint Functions

Assume M be a finite field. We show two classical instantiations of constraint
functions.

Constraint Function F by Linear Equation Systems.

Let U := M'. Let A = (ai ;)@ je[n)) be an invertible matrix such that, for
every t € [n] and subset G' C [n] with |G| = t, elements (a; j)ic[),jeq) form an
invertible submatrix. For example, we can set A as a Vandermonde matrix.

Define Fa(n,t,my, ....my,u = (u1,...,u;)) = 1, if and only if the following
linear equation system holds.

a1,1M1 + a1 2meo + ... + a1 My = U1,
a2,1M1 + a2 2Mo + ... + a2 nMy = Ug, (3>

ap 1M1 + Ap2Mo + ... + Qg nMp = Ug.

— The forward sample algorithm s,,4(n,t,G) first randomly samples m; for
all i € [n], then computes (uy, ..., us) according to (3).

— The backward sample algorithm sp.x(n,t, G) first randomly samples m; for
all i € [n]\ G, and wu; for all i € [t], then computes {m; };ec according to (3).

Proof. Now we prove that Fa defined above is a family of constraint functions.

— Given n,t,my,...,my, and u = (uq,...,us), it is easy to evaluate Fa (n,t, my,
weey My, w) by checking the above linear equation system.

— Given n,t,my,...,my,, one can compute the unique u that satisfies the above
linear equation system.

— Since A is a full-rank matrix, the forward sample algorithm and the backward
sample algorithm have the identical distribution (mg, ..., my,, u).

— Interdependency.
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o Assume Fa(n,t,my,...,mu,u) = Fa(n,t,m},...,m,,u) = 1. Define Am =
(my—mf,....,my,—m!)T € M" and we have AAm = 0. Suppose Am has
less than ¢ non-zero elements. Then we can separate a vector Am € M?
and a full-rank submatrix A € M®*? such that AAm = AAm = 0.
Thus, Am = A~'0 = 0, which means that (my,...,m,) = (mj,...,m.,).

e Define Au := u — v’ and we have AAm = Au. Divide A into two
submatrices A € M'*t of full rank and A € M=) Similarly, di-
vide Am into two vectors Am € M? and Am € M™~t. Thus we have
AAm + AAm = Au. Since A has full rank, Am = A~ (Au — AAm)
is randomly distributed over M? if Au is randomly sampled. Therefore,
with overwhelming probability, Am contains no zero-elements, which
means that there are at least ¢ different ¢ € [n] such that m; # m..

— Randomness. Following the same argument above, we rewrite Fa (n,t, my,
.ymy) = 1 as Am + Am = u, where m € M, m € M"*, and u € M.
Then m = A~ (u — Arn) is randomly distributed over M? if u is randomly
sampled.

Constraint Function F, by Polynomial Interpolation.

Let H := M. Let (P, ..., Py) := ((0,u), (1,mq), ..., (n,my)) be n+ 1 points
of a polynomial.

Define Fy,(n,t,mq,...,mp,u) = 1, if and only if Py, ..., P, form a polynomial
of degree at least (n — t) by polynomial interpolation.

— The forward sample algorithm sy.,q(n,t, G) first randomly samples a poly-
nomial of degree n — ¢, then it computes u := ¢(0) and m; := g(¢) for i € [n].

— The backward sample algorithm sp.i(n,t, G) first randomly samples m; for
i € [n]\ G and u, then forms a polynomial g from the (n — ¢ + 1) points
((0,%), {(4,m4) }scm)\@) by polynomial interpolation. For i € G, it computes
m; = g(1).

Proof. Now we prove that F,, defined above is a family of constraint functions.

— Given n,t,mq,...,m, and u, we form an (n — t)-degree polynomial from
Py, ..., Po_y. And Fp(n,t,ms,...,my,u) = 1 if and only if P,_441, ..., P, are
points on the polynomial.

— Given n,t,mi, ..., my, if there exists u satisfying Fp(n,t,mq,...,mp,u) = 1,
then from (n —t+1) points P, ..., P,—¢+1, we can construct the polynomial
via interpolation and then obtain the constant coeflicient w.

— The (n — t)-degree polynomial from the backward sample algorithm is ran-
domly distributed as that in the forward sample algorithm.

— Interdependency.

o Suppose Fy(n,t,mq,...,my,u) = Fp(n,t,m,...,m),u) = 1. If there are
at least ¢ different ¢ such that m; # m/ (i.e., there are more than (n —t)
positions ¢ such that m; = m}), then more than (n — ¢) points of the
two polynomials g and ¢’ are the same. Along with Py = (0, u), we know
g = ¢, and consequently m; = m/, for all i € [n].
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e Let g and ¢’ be two (n — t)-degree polynomials w.r.t. (mq,...,my,u)
and (mf,...,m},u). If there are more than (n — t) different ¢ such that
m; = m}, then with these (n — ¢+ 1) points one can construct the same
polynomial g and ¢’, and consequently u = u'. Since u,u’ are sampled
randomly, this happens with negligible probability.

— Randomness. The equation F,(n,t,mq,...,my,u) = 1 indicates an (n — t)-
degree polynomial g(X) = u+a; X +asX?+ ...+ a,_ X" for some coeffi-
cients aq, ..., ap—¢. If u distributes uniformly over M, then for every i € [n],
m; = g(i) = u+ 3 ey @;i" " is a uniform distribution over M.

G Proof under (Normal) Chameleon Hashes

Theorem 13. If CH is strongly secure (i.e., it has k-uniformity, random trap-
door collision, and strong collision resistance) and unique, and Fy is a constraint
function, then the AMS scheme AMS constructed in Section 5 has strong un-
forgeability and strong anonymity under adaptive corruptions. More precisely,
for any PPT adversary A, there exist PPT algorithms By and Bs such that
Time(By) =~ Time(Bs) ~ Time(A), and

AdvSnd o9 (n) < \/n(QSign + Qu)AdVE s, (V) + €1 + nAdvETs, () + e,

where €1, €2 are some negligible functions in A, and Qsign, and Qg are the num-
bers of signing queries and hash queries, respective.

Proof. We mainly focus on the proof of strong unforgeability since proof of strong
anonymity is the same as that in Section 5.

The theorem is proved via four hybrid games Gy — Gz, which are the same as
those in Appendix D. And we will use the forking lemma to bound the probability
that A wins in Ggs.

Let (msg*,o* = (¢',m3,....m%,r5,...,75)) be A’s final forgery and t* <«
Ver(vk, msg*,c*). Obviously we have t' = ¢* if A wins. For i € [n], let h} +
Hash(hk;, m},ry), and let H(vk, hy,..., Y, msg*||t*) = u*.

17"

Game Gy. This is just the original unforgeability experiment. And we have

Pr[Go = 1] = Adv;aind %9 (V).

Game G;. If A never asks H' (vk,h,...,h%, msg*||t*) before outputting the
final forgery, then Gy outputs 0 directly. And we have

| Pr[Go = 1] — Pr[G; = 1]| < 1/|M]|.

Game G;. In this game C changes the way of signing oracle’s simulation as
follows. Upon receiving a signing query O(msg, G) (|G| = t), C randomly sam-
ples m; and r; for all i € [n], computes h; < Hash(hk;, m;,r;), and repro-
grams the random oracle such that H*(vk, hy, ..., h,, msg|[t) = u'), where u()
is computed according to the constraint function F. If C fails to reprogram, i.e.,
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H(vk, hq, ..., hyn, msg||t) has already been defined before, then Gy outputs L and
aborts. At last C returns the signature o := (¢, {m;}ic[n), {7i }iem)) to A.
We have

|Pr[Gy = 1] — Pr[Gy = 1]| < (Qsign + Qm)/2"".

Game G3. We add an extra abort rule in this game. Define by reuse the event
that, A has ever asked O(msg*, G) with some |G| = t* and gets o = (t*, m1, ..., My,
T1,...,Tn) back, and

1. Hash(hk;, m;,r;) = Hash(hk;, m?,rf) for all i € [n];
2. There exists ¢ such that (m},r}) # (m;,r;), and A never asks Ocopr ().

If reuse happens, then Gz outputs L and aborts.
We have

| Pr[Gy = 1] — Pr[G3 = 1]| < Prlreuse] < n - Advi¢; 5, (A).

Next, we use the forking lemma to bound the probability that A wins in
Gs. The high level idea is to construct an algorithm B that simulates Gg for the
forger A, and outputs (5*, (msg*, c*)) as long as A successfully outputs a forgery
(msg*, 0*), where j denotes that for the j-th query to the random oracle A asks
H(vk,h3, ..., h}, msg*|[t*). Then, we show the forking algorithm Fz associated to
B that finds a collision under some specific chameleon hash key, which completes
the proof.

Following the same argument of Wi and W2 in Gs in Appendix D, we
know that if Gz does not abort, then H(vk, hi, ..., hY, msg*||t*) is defined upon
some hash query by A. We construct algorithm B as follows. Let (hk’,td") +
CH.Gen(1?) and Q := Qsign +Qm, where Qgign and Qg are the numbers of sign-

ing queries and hash queries, respective. Given the initial input (hk’, u u(Q))

and the randomness coin p, B randomly samples ¢* & [n], and let hk;« := hk'.
For other i € [n]\i*, B invokes (hk;,td;) + CH.Gen(1*). Then it sets vk :=
(hky, ..., hk,) and sends vk to A.

B simulates Oop-(+) and O(-,-) for A as follows.

— Simulation of corruption queries Q.o (7). If i = i* then B aborts, otherwise
it returns td;.

— Simulation of the j-th query H*(-). Return 7nt) directly.

— Simulation of the j-th query O(msg, G). Let ¢ := |G|. B randomly samples m;
for i € [n]\G, and computes {m;}icc from {m;}icpn)\¢ and u) according
to the forward sample algorithm of the constraint function F. Obviously
the distribution of {m;};c[,) is the same as that in Gy due to. Then, it
randomly samples r; for all ¢ € [n], computes h; < Hash(hk;,m;,r;), and
reprograms the random oracle such that H®(vk, hy, ..., hy,, msgl||t) = u0).
Finally B returns the signature o := (¢, {m; }ic[n]; {7 }ic[n))-

Finally, A outputs its forgery (msg*,c*). If B does not abort in the simu-
lation, and A’s forgery is valid and related to the j-th query, then B outputs
(4, (msg*,0*)). In any other case B outputs (0, L).
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First, we know that, for A to win in Gs, at least one signer is not corrupted.
Since ¢* is randomly chosen from [n] and totally hidden from the adversary, B
does not abort with probability at least 1/n. Therefore, the probability that B
outputs (j, (msg*,c*)) is at least accg > Pr[Gs = 1]/n.

According to the forking lemma, there exists a forking algorithm Fg asso-
ciated to B that takes input hk’, and with probability frk > accs - (accg/Q —
1/IM|) it outputs ( (msg o] ) (msg*’,a*’)) (recall that j indexes the fork-
ing point, ) % mU)). Let o = (t*,m3,..,m*, v, ..,r*) and o =
', my’, ...,mn ,ri’,...,7%"). Upon to the point of the j-th hash query, the en-
vironment of A provided by B in the first and the second run are identical,
since B uses the same inputs, random tape and values m™,...,mU~1 to gen-
erate A’s inputs and oracle responses. Therefore, the two executions of A are
identical up to this point, and the arguments of both hash queries must be the
same, implying that msg*||t* = msg*'||[t*', and (h],...,h%) = (h}',..., %), where
H(vk, b3, ..., hE, msg*|[t*) and H(vk,h}’, ..., h:' msg*’||t*') are the j-th queries
in the first and the second run, respectively.

For the first running of Fp, we have H(vk, h}, ..., h%, msg*|[t*) = ). And
for the second running of F, we have H(vk, k%, ..., h%, msg*|[t*) = m@)". Ac-
cording to the 1nterdependency of F, there exist at least t* pairs (m}, m}") such
that m} # m}", h} < Hash(hk;, ml,rz) and h} < Hash(hk;,m}’, :") Slnce .A
can corrupt up to t* — 1 signers, with probablhty at least 1/(n —t* + 1), w
successfully find a collision under the specific chameleon hash key hk’.

Taking all together, we obtain the desired result.

H Proof Sketch of Theorem 3 (Fault-Tolerant §AMS)

Proof Sketch. In the proof of weak unforgeability, the hybrid games Gy — G4 are
defined similarly, except that Gz and events W, W4 in G4 are skipped since we do
not consider strong unforgeability. Let (msg*, o = (t*, F, {mj, 7} }pup\r> {1 }icF))
be A’s final forgery. Let G’ be the corruption group and |G'| =t'. For A to win
in Gy, it must hold that ¢ < (¢t* — |F|). Recall that in G4, all (n — ') non-
corrupted hash keys are generated in the lossy mode. Since ¢’ < (t* — |F|) and
t* > |F|, according to the randomness property of Fg, we know among G there
exists at least one ¢ s.t. hk; is a lossy hash key. Then according to the e-lossiness,
given h;, for a random m;, the probability that A can find a randomness r; with
Hash(hk;, m;,r;) = h; is at most €, and weak unforgeability holds as a result.
The proof of unconditional strong anonymity (for honest signers) follows
directly from the random trapdoor collision property of LCH, i.e., from the
statistical indistinguishability of the following distributions for all m,m’ € M:

{(m,r) ‘r & R} and {(m,r) (hk,td) < LCH.Gen(1*), 7 & R, } ’

r + LCH.TdColl(td, m, 7, m)

where the left distribution corresponds to users i € [n] \ G, and the right distri-
bution corresponds to honest users i € G\ F.
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Remark 6 (Why does fault-tolerant §AMS schemes achieve weak unforgeability
only?). Let F C I'. Tt is easy to see that if o = (t, F, {ms, i }icin)\Fs {hi}icr) is
a (t — |F|)-valid $AMS signature, then

o' = (t, F', {mi,ri}icpnprrs {Pitier)

is a (t —|F'|)-valid AMS signature. That says, a malicious leader can always de-
crease the “credibility” of a valid §AMS signature. Therefore, the fault-tolerant
#AMS scheme above can achieve weak unforgeability only. However, we em-
phasize that in the application of blockchain governance, a malicious devel-
oper/moderator P earns nothing meaningful from this kind of attacks. Further-
more, P will get punished due to a malicious disclosure in the voting systems
presented in the next section, since all transcript messages between P and the
signer are signed using their (regular) digital signatures.

I Other Applications

In this section we discuss some other applications of our §AMS schemes.

Linked whistle-blowing [44]. Suppose now a citizen wants to reveal a scandal
of the government. To avoid the risk of malicious retaliation, he/she may
resort to revealing it via anonymous ways, for example, via using a ring
signature. But unfortunately, media or journalists may not believe what the
whistleblower tells and think that he/she is telling lies. However, they may
choose to believe the disclosure if quite a number of citizens confirm it. In
this situation, the whistleblower can first gather some supporters and then
generate a fAMS signature to announce the scandal to the public.

Ad-hoc networks. Ad-hoc network is a decentralized type of wireless network,
which does not rely on any preset infrastructure, such as routers or wireless
access points. Instead, each node participates in the network by forwarding
data for other nodes. Our $AMS schemes constructed from chameleon hashes
and linkable ring signatures enjoy the advantage of spontaneity, and they
are perfectly applicable for the application where several spontaneous nodes
(users) want to communicate secretly. By attaching a §AMS signature with
the message sent out, the receiver is convinced of the authority of the message
and the anonymity of senders maintains.

J Further Discussion

We discuss more about our e-voting system / our blockchain governance system.

Infrastucture and authenticated transcription. We assume a (regular) sig-
nature scheme S that is unforgeable, and each node in the network has pub-
lished a public key of S. For each message to be sent out, the sender also signs
a signature using its own secret key to avoid the message being interpolated
in the transmission.
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On-chain. After generating a §AMS signature, the leader of the proposal will
upload it on the blockchain so that it cannot be altered further.

Vote-and-go. The (non-leader) voters are not involved in the announcement
period, and they can leave the system after completing their own part with-
out any interaction in the signing period. Our round-optimal voting systems
V2 and V3 achieve this property.

Unwareness-before-publishing. Voters remain unaware of the current vote
count (hence also other voters) until the results are announced. Our round-
optimal voting systems V2 and V3 achieve this property.

Receipt-freeness. Receipt-freeness means that a voter cannot claim the au-
thorship of some particular votes (i.e., some §AMS signatures). This prop-
erty helps prevent vote-buying behaviors. Our scheme has strong anonymity,
which means that except for the leader of the proposal, any other signers
cannot provide proof of having participated in the signing process.
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