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Abstract—In 2022, NIST selected Kyber and Dilithium as
post-quantum cryptographic standard algorithms. The Number
Theoretic Transformation (NTT) algorithm, which facilitates
polynomial multiplication, has become a primary target for side-
channel attacks. In this work, we embed the NTT transformation
matrix in Dilithium and Kyber into the SIS search problem,
and further, we propose a divide and conquer strategy for
dimensionality reduction of the SIS problem by utilizing the
properties of NTT, and discuss the effectiveness of the BKZ
algorithm for solving the problem by using the LLL and
with different blocksize, respectively. When using BKZ-60, the
time required to recover private keys s1 for Dilithium2 after
using the dimensionality reduction strategy is reduced from 82
hours to 1 minute, which is a 4,900× improvement, and the
minimum number of coefficients required is reduced from 65
to 32, which is close to the theoretical lower limit value of 28.
Furthermore, we propose a parameter-adjustable CPA scheme
to expedite the recovery of a single coefficient in NTT domain.
Combining this CPA scheme with the SIS-assisted approach,
we executed practical attacks on both unprotected and masked
implementations of Dilithium and Kyber on an ARM Cortex-
M4. The results demonstrate that, using 5,000 power traces, we
can recover complete s1 of Dilithium2 in 2.4 minutes, which
achieve a 400× speedup compared to the best-known attacks.
And Kyber512 takes only 0.5 minutes, a 7.5× improvement over
what’s already working. Moreover, we successfully break the
first-order masked implementations and explore the potential
applicable to higher-order implementations.

Index Terms—Lattice-based Cryptography, Number Theoretic
Transformation, Side-channel Attacks, Short Integer Solution,
Dilithium, Kyber.

I. INTRODUCTION

TRADITIONAL public key cryptography relies on the
computational intractability of problems such as integer

factorization and discrete logarithms. However, the emergence
of quantum computing has raised concerns, as it promises
polynomial-time solutions to these problems, thereby compro-
mising the security of our existing cryptographic algorithms
[1]. Recognizing this threat, the National Institute of Standards
and Technology (NIST) initiated a Post-Quantum Cryptogra-
phy (PQC) standardization process in 2016, aiming to identify
quantum-resistant cryptographic algorithms. By July 2022,
NIST published its first set of post-quantum cryptographic
standard algorithms [2], comprising three signature algorithms:
Dilithium, FALCON, and SPHINCS+; and one key encapsu-
lation mechanism (KEM) algorithm, Kyber. In August 2023,
NIST released three draft standards except for FALCON. This
paper mainly focuses on Dilithium and Kyber.

While the fundamental security of these algorithms has
been widely recognized in the cryptographic community, Side-
channel Attacks (SCAs) emerged as formidable adversaries,

underscoring the imperative of securing cryptographic imple-
mentations against these non-traditional threats [3]. This was
not a nuance lost on NIST, which duly emphasized side-
channel security during its PQC evaluations [2].

Preliminary SCAs targeting Dilithium and Kyber have
emerged. For the Kyber, a significant type of key recov-
ery attack combines Chosen Ciphertext Attacks (CCA) with
SCAs [4]–[7], in which adversaries constructed the Plaintext-
Checking oracle with the help of SCAs to determine whether
the message is successfully recovered, then extracted the
information of private key. Recently, Shen et al. [8] developed
a method that adapts to imperfect PC oracles constructed via
SCAs and is still capable of recovering private keys. For
the Dilithium, a typical class of attack is the randomness
leakage attack, initially addressed by Liu et al. [9], [10]. They
demonstrated that even a single-bit leakage of random poly-
nomial per signature can be devastating for lattice-based Fiat-
Shamir signatures. Later, SCAs based on similar mathematical
tools were proposed by Marzougui et al. [11] and Berzati et
al. [12]. These attacks require an in-depth understanding of
Kyber and Dilithium. However, simpler methods are typically
desirable, such as classical SCAs targeting operations in which
the private key is directly involved.

Both Dilithium and Kyber operate over the cyclotomic ring
Zq[x]/(x

n+1), leveraging the Number Theoretic Transforma-
tion (NTT) to accelerate the polynomial multiplication. As a
fundamental module of operation, the private key will almost
certainly perform NTT polynomial multiplication, thereby
making it vulnerable to SCAs. These algorithms primarily
employ two categories of operations: NTT and Inverse NTT
(INTT) operations, large number multiplication and reduction
(Montgomery or Barrett) operations. For the former, existing
work mainly exploited profiled side-channel methods. In 2017,
Primas et al. [13] pioneered a single-trace attack targeting the
NTT operation using the Template Attacks (TAs) and belief
propagation algorithms. Building on this foundational work,
Hamburg et al. [14] successfully recovered the private key
of masked Kyber. In a related vein, Xu et al. [5] introduced
a Simple Power Analysis (SPA) method targeting the INTT
operation during Kyber’s decapsulation phase. Correspond-
ingly, Han et al. [15] executed the first practical attack using
machine learning-based TA aimed at the NTT operation within
Dilithium’s signing procedure. While potent, such attacks
typically usually require additional control privileges over the
target system. In addition, Tosun et al. [16] proposed zero-
value filtering to accelerate the SCA on incomplete NTT-based
implementations of Dilithium and Kyber.

In contrast to the aforementioned operations, research on
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attacks against multiplication and reduction operations has
predominantly utilized Correlation Power Analysis (CPA)
methods. Regarding Kyber, Karlov et al. [17] conducted
practical attacks on Kyber’s pqm4 open-source implementation
[18]. Enhancing this approach, Yang et al. [19] optimized
the attack by filtering ciphertexts, thereby diminishing the
enumeration space and enhancing the Signal-to-Noise (SNR).
In the context of Dilithium, Fournaris et al. [20] demonstrated
the potential of CPA on its NTT polynomial multiplication
procedure. Further refining this method, Chen et al. [21]
optimized this method by employing the divide and conquer
strategy, successfully reducing the time required to recover a
single NTT domain coefficient from 6,357 to 818 seconds.
While these attacks are conceptually simpler, they entail a
substantial computational overhead.

The private keys for Kyber and Dilithium are represented as
high-dimensional polynomials with independent coefficients.
The ultimate objective of attacks is to deduce the entire
private key, which entails significant computational costs. An
emerging strategy is to recover partial coefficients via SCAs
instead and recover the remaining ones using other methods,
such as enumeration and lattice reduction. This strategy has
paid off, for example, the combination of lattice reduction and
misuse attacks reduces the cost of attacking Kyber512 by 34%
[22]. Krahmer et al. [23] and Albrecht et al. [24] focused on
and used the BKZ algorithm to recover the full private key
of Dilithium and Kyber under a known partial NTT domain
private key. However the coefficients required to complete
the attack for the above work are far from the theoretical
lower bound, and the time required is large for Dilithium.
For example, Krahmer et al. [23] demonstrate that when 128
coefficients are known for Dilithium2, executing BKZ-30 takes
about 90 minutes. This number of coefficients is significantly
higher than the theoretical lower bound of 26 coefficients for
Dilithium2. Most importantly, executing the above algorithm
requires verification that the recovered coefficients are correct.

Both the Dilithium and Kyber algorithms are constructed
based on the MSIS problem to ensure their security. However,
through analysis of the private key NTT process, we have
found that this process can be converted into an SIS search
problem for resolution, and the difficulty can be further
reduced through a dimension reduction strategy. Addition-
ally, we have proposed a rapid CPA scheme that enhances
attack efficiency and allows us to determine the success of
SCAs in open-source, unprotected implementations. Lastly, we
conducted practical attacks on both unprotected and masked
protective implementations.

Our contributions are as follows:
• We demonstrated how to transform the challenge of

recovering full coefficients from known partial private
key NTT domain coefficients in Dilithium and Kyber
into an SIS search problem. Furthermore, by leveraging
the characteristics of NTT, we proposed a dimension
reduction strategy that significantly enhanced the solving
efficiency of the LLL and BKZ algorithms, bringing the
number of required NTT domain coefficients close to
the theoretical lower bound. Through theoretical analysis
and practical experiments, we proved that the dimension

reduction strategy enables faster solving speeds and re-
quires fewer coefficients for solving the SIS problems
extracted from Dilithium and Kyber.

• Drawing inspiration from Tunstall et al. [25], we have de-
veloped a parameter-adjustable CPA-based SCA scheme
that targets the numerous multiplications fundamental
to Dilithium. Utilizing this scheme, a coefficient of
Dilithium’s NTT domain private key can be recovered
in under a second—achieving a speed that is 40 times
faster than the methods presented by Chen et al. [21].

• We combined SCA with the dimensionality reduction
strategy for solving SIS problems and successfully per-
formed practical attacks on unprotected Dilithium and
Kyber on the ARM Cortex-M4 platform. Using 5000
power traces, the time required to recover the complete
private key s1 for Dilithium2, 3, and 5 was only 2.4,
3.0, and 4.1 minutes, respectively, which is more than
260 times faster than previous works. For Kyber512,
768, and 1024, the time required to recover the complete
private key sk was 0.5, 0.8, and 1.1 minutes, respectively,
achieving a speed improvement of approximately 7 times.

• We conducted practical attacks on first-order masked
Dilithium with key refreshment and first-order masked
Kyber without key refreshment to demonstrate the ap-
plication of our scheme in different scenarios. Using
5,000 traces, for masked Dilithium2, 3, and 5, combining
higher-order CPA with SIS problem dimension reduction
strategies, the time taken to recover the complete s1 was
89.9, 112.3, and 157.3 hours, respectively. To our knowl-
edge, this is also the first instance of a non-template-based
higher-order SCA on masked NTT domain multiplication
operations. For masked Kyber512, 768, and 1024, since
the private keys were not refreshed, it is possible to solve
for each mask separately and combine them to recover
the private keys. Using 500 traces, the time required to
recover the complete private key sk was 3.7, 5.7, and 7.6
minutes, respectively.

II. PRELIMINARIES

A. Dilithium

Dilithium, a digital signature scheme based on the Module
Learning with Errors (MLWE) and Module Short Integer
Solution (MSIS) problems, offers different security levels
through its adjustable specific parameters, thus accommodat-
ing a variety of application scenarios and device constraints.
Information about these parameters is presented in Tab.I.

TABLE I: Parameters of Dilithium

NIST Security Level 2 3 4
d [dropped bits from t] 13

α [# of non-zero coefficients in c] 39 49 60
γ1 [cofficient range of y] 131072 524288

γ2 [low-order rounding range] 95232 261888
(k × l) [dimensions of A] (4,4) (6,5) (8,7)

η [private key range] 2 4 2

The computations involved in the Dilithium algorithm are
carried out within the cyclotomic ring Rn

q , wherein all co-



3

efficients are elements of the finite field Zq . The values of
q = 8380417 and n = 256 are invariant at all security levels.
Dilithium comprises three procedures: key generation, signing,
and verification. Our study specifically focuses on the signing
process, as shown in Alg.1.

Algorithm 1 Dilithium Sign(sk,M)

Input: sk = (ρ,K, tr, s1, s2, t0),M
Output: signature

1: A ∈ Rm×n
q := ExpandA(ρ)

2: µ ∈ {0, 1}384 := CRH(tr||M)
3: κ := 0, (z,h) := ⊥
4: ρ′ ∈ {0, 1}384 := CRH(K||µ) (or ρ′ ← {0, 1}384)
5: Â = NTT(A), ŝ1 = NTT(s1)
6: y ∈ Sn

γ1−1 := ExpandMask(ρ′, κ)
7: w := NTT−1(Â ◦ NTT(y))
8: w1 := HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}256 := H(µ||w1)

10: ĉ := NTT(SampleInBall(c̃))
11: z := y + NTT−1(ĉ ◦ ŝ1)
12: r0 := LowBitsq(w − cs2, 2γ2)
13: if ||z||∞ ⩾ γ1 − β or ||r0||∞ ⩾ γ2 − β

then κ := κ+ l, goto 6
14: else
15: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
16: if ||ct0||∞ ⩾ γ2 or the # of 1

′
s in h is greater than ω

then κ := κ+ l, goto 6
17: return signature = (z,h, c̃)

During the signing phase, the algorithm takes the private
key and a message as inputs. Following this, the Expand
function generates a matrix, denoted as A, and a masking
vector of polynomials, y, whose coefficients are less than γ1.
To expedite the computations, NTT operations are applied to
the matrix A and the private keys s1. The signer then computes
Ay and designates the higher-order bits of the coefficients of
this vector to w1. Using the message M and w1, the challenge
c is constructed, which subsequently aids in the generation of
the signature z. The algorithm also incorporates a rejection
sampling loop that checks if the generated challenge c and
signature z meet the prescribed output conditions. If these con-
ditions, as detailed in lines 13-16, are satisfied, the algorithm
outputs the result and the signature process is completed. If
not, the algorithm revisits line 6 to regenerate the signature
until a valid one is obtained.

B. Kyber

Kyber is a KEM that achieves IND-CCA security. Its secu-
rity depends on the complexity of the MLWE problem. Kyber
offers three distinct security levels: Kyber512, Kyber768, and
Kyber1024, each affording different tiers of cryptographic
strength. The parameter choices for each of these security
levels are outlined in Tab.II. The values of q = 3329 and
n = 256 remain unchanged at all security levels.

Kyber offers a construction known as Kyber.CCAKEM,
which is derived from Kyber.CPAPKE (this CPA stands for
Chosen Plaintext Attack) through a variation of the FO

TABLE II: Parameters of Kyber

NIST Security Level 1 3 5
k [dimension of polynomial ring] 2 3 4
η1 [noise of s,e in KeyGen()] 3 2 2

η2 [noise of e1 and e2 in Enc() ] 2
(du, dv) [compression parameters] (10,4) (10,4) (11,5)

(Fujisaki–Okamoto) transform. The Kyber.CCAKEM includes
three key phases: key generation, encapsulation, and decapsu-
lation. Both secret keys and error vectors are sampled from a
centered binomial distribution Bη , expressed as

∑η
i=1(ai−bi),

where each ai and bi are independently and randomly sam-
pled from the set {0, 1}. This paper primarily explores the
decapsulation process, illustrated in Alg.2.

Algorithm 2 Kyber.CCAKEM.Dec(c,sk)

Input: c = (c1, c2), sk
Output: shared key K

1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32
3: z := sk + 24 · k · n/8 + 64
4: u := Decompressq(Decodedu

(c1), du)
5: v := Decompressq(Decodedv (c2), dv)
6: ŝk := Decode12(sk)
7: m′ := Encode1(Compressq(v−NTT−1(ŝTk ◦NTT(u)), 1))
8: (K̄ ′, r′) := G(m′||h)
9: c′ := Kyber.CPAPKE.Enc(pk,m′, r′)

10: if c = c′ then
return K := KDF(K̄ ′||H(c))

11: else
return K := KDF(z||H(c))

12: end if
13: return K

This algorithm takes the ciphertext and private key as
input for decapsulation. The message is computed following
decompression, and re-encryption is employed to verify the
ciphertext’s validity and deliver the final result. The algo-
rithm’s implementation also necessitates a significant number
of polynomial multiplications over a finite field, with the NTT
utilized to enhance the efficiency of the implementation.

C. Number Theoretic Transformations

Number Theoretic Transform (NTT), as the finite field coun-
terpart to the Fast Fourier Transform, is instrumental in opti-
mizing polynomial multiplication. To elaborate, consider poly-
nomials x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1).
The multiplication process of these polynomials can be
broadly divided into three stages:

1) Transforming x and y into NTT domain, i.e., x̂ =
NTT(x) and ŷ = NTT(y).

2) Perform point-wise multiplication, i.e., ẑ = x̂ ◦ ŷ.
3) Apply INTT to normal domain, i.e., z = INTT(ẑ).
Applying NTT reduces the computational complexity of

polynomial multiplication from O(n2) to O(n log n) when
compared to the schoolbook method. Different polynomial
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rings, such as Zq[x]/(x
n−1) and Zq[x]/(x

n+1), necessitate
positive and negative convolutions respectively to accomplish
NTT operations [26]. For the Dilithium and Kyber, a negative
convolution is employed. The NIST reference implementation
of Dilithium applies 2n-th primitive root of unity in Zq ,
ϕ = 1753 and ω = ϕ2 = 3073009 for all security levels.
The detailed calculation process is provided below and all
calculations are done under mod q.

Φ =

ϕ0 · · · 0
...

. . .
...

0 · · · ϕn−1

 Ω =


1 1 · · · 1
1 ω1 · · · ωn−1

...
...

. . .
...

1 ωn−1 · · · ω(n−1)2



x̂ = NTT(x) = ΩΦx ŷ = NTT(y) = ΩΦy

ẑ = x̂ ◦ ŷ z = INTT(ẑ) (1)

Kyber also employs the NTT algorithm, however, its finite
field q = 3329 contains merely a 256-th primitive root,
denoted as ζ. Consequently, this necessitates distinct compu-
tational nuances in its implementation. The polynomial can be
represented as

X256 + 1 =

127∏
i=0

(X2 − ζ2i+1) =

127∏
i=0

(X2 − ζ2br7(i)+1) (2)

where br7(i) represents the bit-reversed order of the 7-bit
unsigned integer i. The transformation process is detailed in
[27]. In practice, Kyber performs seven butterfly operations on
256 coefficients in the polynomial, resulting in the final NTT
domain polynomial as follows:

x̂2i =

127∑
j=0

x2jζ
(2br7(i)+1)j

x̂2i+1 =

127∑
j=0

x2j+1ζ
(2br7(i)+1)j (3)

Z =



(ζ1)0 0 · · · (ζ1)127 0
0 (ζ1)0 · · · 0 (ζ1)127

(ζ129)0 0 · · · (ζ129)127 0
0 (ζ129)0 · · · 0 (ζ129)127

...
...

. . .
...

...
(ζ255)0 0 · · · (ζ255)127 0

0 (ζ255)0 · · · 0 (ζ255)127


NTT(x) = Zx (4)

It is also possible to split the Equation (4) into odd and
even positions according to the coefficient subscript number
and calculate the value of the NTT domain separately. Let
x(e) = (x0, x2, · · · , xn−2) and x(o) = (x1, x3, · · · , xn−1),
which can be obtained:

Z\{0} =


(ζ1)0 (ζ1)1 · · · (ζ1)127

(ζ129)0 (ζ129)1 · · · (ζ129)127

...
...

. . .
...

(ζ255)0 (ζ255)1 · · · (ζ255)127


NTT(x(e)) = Z\{0}x

(e) NTT(x(o)) = Z\{0}x
(o) (5)

In the NIST reference implementation, Kyber maintains ζ =
17 at all security levels. In summary, NTT offers an efficient
framework for polynomial multiplication, a process integral to
the performance of lattice-based cryptographic algorithms like
Dilithium and Kyber. While both algorithms utilize NTT, it
is important to acknowledge that their implementation details
and parameters differ, with each being meticulously tailored
to accommodate their unique algebraic structures.

D. Correlation Power Analysis

Correlation Power Analysis (CPA), introduced by Brier et
al. [28], stands as a potent and refined SCA method. Since its
inception, it has been adeptly leveraged to break the security of
cryptographic algorithms, including DES [29] and AES [30].
The canonical procedure of CPA entails an adversary deter-
mining the Pearson Correlation Coefficient (PCC) between the
observed side-channel leakage and the estimated intermediate
values. Let f(x1, . . . , xp, k

∗) represent a deterministic func-
tion indicative of the intermediate value of interest, where xi

symbolize known fluctuating parameters (such as plaintext or
ciphertext), and k∗ is the concealed secret key. Accumulating
n traces, denoted by L, the adversary elects a pertinent leakage
model M (e.g., Identity or Hamming Weight) to ascertain the
hypothetical intermediate values Hkj = M(f(x1, . . . , xp, kj))
for every conceivable key kj within the set K. The PCC,
symbolized as ρ(L,Hkj

), is subsequently computed for each
key hypothesis. The formula for PCC is given by:

ρ(L,Hkj
) =

∑n
i=1(li − l̄)(hi − h̄)√∑n

i=1(li − l̄)2
√∑n

i=1(hi − h̄)2
(6)

The candidate key kcpa that provides the highest correlation
is chosen as the recovered key. The attack is considered
successful if kcpa matches the secret key k∗.

III. INCOMPLETE NTT DOMAIN RECOVERY METHODS

For Dilithium, even recover 99% of the 256 NTT domain
coefficients, the search space required to recover the private
key is still approximately 83804172.56 ≈ 259. To address this
challenge, we introduce two methods: one approach is trans-
form the problem into overdetermined systems of equations,
while the other is construct it as a SIS search problem.

A. Overdetermined system-based method

The NTT domain of Dilithium and Kyber’s private key
extends the range of each coefficient from 2η + 1 to q,
with a static transformation matrix that makes the process a
injective transformation, and maintains the private key space
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at (2η + 1)256. Intuitively, when there are m coefficients of
NTT domain private key unknown, the search space should
be (2η + 1)m instead of qm. This goal is achievable by
establishing and resolving overdetermined equations. Consider
a vector s and take the NTT in Dilithium as an example. If
the unknown NTT domain coefficients are the first m (this
analysis applies to unknown coefficients in other positions),
the specific analysis process unfolds as follows:

ΩΦ



s0
s1
s2
s3
...

sn−1


≡



0
...
0

ŝkm

...
ŝkn−1


+



ŝun0

...
ŝunm−1

0
...
0


(7)

Where ŝk is a vector consisting of known coefficients with
unknown position 0, while ŝun is a vector of unknown coeffi-
cients with known position 0. Equation (7) can be considered
as an overdetermined system with m unknown coefficients and
n equation relations regarding ŝun over a finite field q. Despite
its complexity in solving the overdetermined system within
the finite field, the constraints that Dilithium’s private key
within the integer range of [−η, η] and the system must have a
solution, allow us to propose a comparatively straightforward
method. Firstly, select m fixed positions within s and propose
a candidate value. Then, use Gaussian elimination to solve for
the corresponding ŝun. After substituting ŝun into Equation (7)
to obtain s, verify whether each coefficient of s lies within the
[−η, η]. If all coefficients satisfy this condition, it is presumed
that the correct private key has been acquired.

Although the Overdetermined system-based method is not
as good as the subsequent lattice-based method, its biggest
advantage is that it does not require the attacker to use
sufficient cryptographic knowledge, and the enumeration space
can be narrowed down from qm to (2η + 1)m by a simple
transformation, which proves to be efficient when the number
of unknown coefficients, denoted as m, is relatively small.

B. SIS-assisted method

The Small Integer Solution (SIS) problem was proposed by
Ajtai in 1996 [31]. It aims to find a sufficiently short integer
vector that when multiplied by a randomly selected integer
matrix under an upper bound, results in a zero vector. The
specific definitions are as follows:

SISn,q,β,m problem: Given m uniformly random vectors
ai ∈ Zn

q , forming the rows of a matrix A ∈ Zm×n
q , find a

nonzero integer vector z ∈ Zn of norm ∥z∥ ≤ β such that
Az = 0.

When the elements of vector z are sampled from the
uniform distribution over [−η, η] and η ≪ q(m/n), there is a
high probability that a unique vector z exists such that Az = 0
[32]. For the Inhomogeneous SIS (ISIS) problem As = t, we
define A′ = A|t and solve the SIS problem A′z = 0. If
the solution z satisfies the form (s,−1), then we obtain the
solution s to the ISIS problem.

We observe that the incomplete NTT domain recovery in
Dilithium and Kyber can be viewed as an ISIS problem.

Assume that the first m coefficients in NTT domain are known.
Then A is the m × n matrix obtained from the transform
matrix (ΩΦ in Equation (1) for Dilithium, Z or Z\{0} in
Equation (4,5) for Kyber) by removing the first m rows, s
is the private key which is exactly a short integer vector, and
t is the recovered NTT domain coefficients. Taking Dilithium2
as an example, when d = 2, m > 128 satisfies the condition
d ≪ q(m/n), which means that the attacker only needs to
recover half of the NTT domain coefficients and the remaining
one can be recovered using the SIS-assisted method.

The entire solution set of an SIS problem instance consti-
tutes a q-ary lattice Λ⊥(A) = {x ∈ Zn : Ax = 0 (mod q)}.
Therefore, solving an SIS problem instance is equivalent to
solving the corresponding SVP problem on the lattice Λ⊥(A)
with volume qm. The LLL and BKZ algorithm are commonly
used to solve the SIS problem.

The LLL algorithm can be viewed as a special case of the
BKZ algorithm with block size b = 2. The BKZ algorithm
requires calling the LLL algorithm and a subroutine that solves
the SVP problem on a lower dimensional lattice.

The key parameter for evaluating the BKZ algorithm is
the block size b. As b increases, the quality of the reduced
basis and the length of the shortest vector output by BKZ
improve, but the running time also increases. In 2011, Chen
and Nguyen proposed the BKZ 2.0 algorithm [33], which
significantly improved the efficiency of the basis reduction
algorithm in practice. Currently, in the core-SVP evaluation
model, the complexity of the BKZ algorithm with block size b
is approximately O(20.292b) in the classical computing model,
and the approximate factor for the shortest vector output is

lim
n→∞

δ ≈
(

b

2πe
(πb)

1
b

) 1
2(b−1)

(8)

Assume that the reduced basis obtained from running BKZ-
b on n-dimensional lattice basis B ∈ Zn×n satisfies the
Geometry Series Assumption (GSA) when b ≥ 50 [34], then
we have ∥b̂∗

i ∥ = δn−2i−1 · det(Λ)1/n. Specifically, [35] show
that when the norm of the projection of the unique shortest
vector z into the space spanned by the last b orthogonal vectors
is less than ∥b̂∗

n−b∥, then the BKZ-b basis reduction algorithm
recovers v. The norm of v’s projection into the space spanned
by b orthogonal vectors approximately equals σ

√
b, where σ is

the standard deviation of the secret / error coefficients. In this
case, the computational cost is mainly decided by the minimal
value of b that satisfies the constraint

σ
√
b ≤ δ2b−n−1 · qm/n. (9)

Note that the specific values of m,n and q are crucial in
determining the computational cost. It is straightforward to
verify that the SIS problem becomes easier as either m or q
increases. Conversely, it becomes harder as n increases.

For the specific SIS search problem instance corresponding
to Dilithium and Kyber, we can use the .LLL and .BKZ
functions in the fpylll library in the Sage software to solve
the transformed SVP problem.
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C. The dimensionality reduction strategy in SIS-assisted
method

Directly for Dilithium and Kyber using the BKZ algorithm
to solve for partial NTT domain private keys is theoretically
feasible, but in the practical analysis, it is found that there
is a large gap between the required NTT domain coeffi-
cients and the theoretical lower bound, and suffers from large
time overhead in Dilithium. While the above problems are
alleviated when the dimensionality is low, as demonstrated
by Albrecht et al. [24], when Kyber768/1024 acquires 32
coefficients there is a high probability of recovering half of
the private key. We note that the negative convolutions NTT,
utilized by both Dilithium and Kyber, can be rewritten from
a n-dimensional to n/2-dimensional NTT [24] using a divide
and conquer strategy. To facilitate the subsequent formulation,
let s(e) = (s0, s2, · · · , sn−2) and s(o) = (s1, s3, · · · , sn−1).
In Dilithium, the transformation process is shown as follows:

2NTTn/2(s
(e))i = NTTn(s)i + NTTn(s)i+n/2

2ϕωiNTTn/2(s
(o))i = NTTn(s)i − NTTn(s)i+n/2

which i ∈ {0, 1, . . . , n/2−1}. Let W256 be the ΩΦ in Equation
(1) for example, the transformation results are shown below:

W
(+)
256 =


2 0 2ϕ2 0 · · · 2ϕ254 0
2 0 2ϕ6 0 · · · 2ϕ250 0
...

...
...

...
. . .

...
...

2 0 −2ϕ254 0 · · · −2ϕ2 0



W128 =


1 ϕ2 · · · ϕ254

1 ϕ6 · · · ϕ250

...
...

. . .
...

1 −ϕ254 · · · −ϕ2


W128 is derived by dividing the matrix into two parts, front

and back, each consisting of 128 rows. These parts are then
added, all-zero columns are removed, and divide the remaining
elements by 2.

Since the q used in Kyber exists only as a 256-th root of
unity ζ, its conversion process is slightly different from that
of Dilithium, analyzing the odd or even positions of Kyber’s
NTT domain private key coefficients, specifically:

2NTTn/2(s
(e))i = NTTn(s)2i + NTTn(s)2i+1

2ζ2br7(2i)+1NTTn/2(s
(o))i = NTTn(s)2i − NTTn(s)2i+1

which i ∈ {0, 1, . . . , n/2−1}. Taking the NTT matrix of Z\{0}
in Equation (5) as an example, the result is shown below:

W
(+)
128 =


2 0 2ζ2 0 · · · 2ζ126 0
2 0 −2ζ2 0 · · · −2ζ126 0
...

...
...

...
. . .

...
...

2 0 −2ζ126 0 · · · −2ζ2 0



W64 =


1 ζ2 · · · ζ126

1 −ζ2 · · · −ζ126
...

...
. . .

...
1 −ζ126 · · · −ζ2



W64 is derived by splitting the matrix into two parts based
on the parity of the rows. After adding these parts, all-zero
columns are removed, and divide the elements by 2.

(a) Dilithium.

(b) Kyber.

Fig. 1: Transform process of the values under NTT domain.

With the help of this transformation, the original NTT
process can be split and converts into low-dimensional NTT.
In order to understand more intuitively, Fig.1 shows the
transformation process of the values under NTT domain,
when the value of a specific position under NTT domain is
obtained, the value corresponding to a specific position of
the low-dimensional matrix can be calculated. At this time,
the dimension of the SIS search problem that the attacker
needs to solve is reduced to n/4. According to the analysis in
SecIII-B, using LLL or BKZ algorithm to solve it at this time
will achieve better performance. If the minimum coefficients
required to solve the SIS search problem corresponding to
NTTn/4 is k, then the normal domain private key can be
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recovered after obtaining 4k NTT domain coefficients that
satisfy the specific coefficients.

TABLE III: Theoretical minimum coefficients required for
each dimension of Dilithium

NTT256 NTT128 NTT64 NTT32

Dilithium2,5 26 13 7 4
Dilithium3 36 18 9 5
Kyber512 - 31 16 8
Kyber768,1024 - 26 13 7

For any dimensional NTTi computation process, it is the-
oretically necessary to ensure that the known NTT domain
coefficients m satisfy the condition qm > (2η+1)i in order to
perform the inverse transformation correctly. Tab.III gives the
theoretical minimum coefficients required for each dimension
to be able to perform the inverse transformation correctly
under different partitioning strategies of Dilithium and Kyber.
We wish to solve the problem using the number of coefficients
in the NTT domain as close as possible to the theoretical limit.

The results shown in Sec.V-C also indicate that, for solving
the original SIS problems extracted from Dilithium and Kyber,
the minimum required number of coefficients m and the time
overhead t are significantly greater than those for the reduced-
dimension SIS problems using the same algorithm. The intro-
duction of the dimension reduction strategy allows an attacker
to quickly recover the complete private key with only a
small number of NTT domain private key coefficients, greatly
expanding practical application scenarios. Furthermore, under
more stringent conditions—where NTT domain coefficients
are obtained with a success rate of p but cannot be verified for
correctness—we can use an enumeration method to randomly
select known NTT coefficients for solving. The probability
of obtaining the correct result is pm, and the average time
required to obtain the complete coefficients is t/pm.

IV. RECOVERING NTT DOMAIN PRIVATE KEYS USING
SCAS

Attackers may extract sensitive information from a crypto-
graphic system during the execution through various means,
including SCAs, cache attacks, and cold-boot attacks. In this
section, we will discuss the application of SCAs to swiftly
recover the NTT domain private keys for Dilithium and Kyber.

A. CPA for Dilithium and Kyber

Dilithium and Kyber employ point-wise operations using
NTT domain private keys, as illustrated in Alg.1 line 11
and Alg.2 line 7, respectively. The reference implementation
of ĉ ◦ ŝ1 for Dilithium, submitted to NIST, is depicted
in Fig.2, Kyber’s implementation is fundamentally identical.
Conducting SCAs on these operations using CPA is theo-
retically possible. In fact, Yang et al. [19], working with
Kyber where ||K|| = 3329, successfully recovered the private
key in a matter of minutes using CPA. However, the task
becomes computationally very difficult for Dilithium, where
||K|| = 8380417, as this renders exhaustive enumeration of
the entire key space impractical.

1 int32_t montgomery_reduce(int64_t a) {
2 int32_t t;
3 t = (int32_t)a*qinv;
4 t = (a - (int64_t)t*q) >> 32;
5 return t;}
6 void poly_point-wise_montgomery(poly *c, const poly

*a, const poly *b) {
7 unsigned int i;
8 for(i = 0; i < N; ++i)
9 c->coeffs[i] = montgomery_reduce((int64_t)a->

coeffs[i] * b->coeffs[i]);}

Fig. 2: Dilithium ĉ ◦ ŝ1 reference implementation.

Tunstall et al. [25] outlined the use of CPA to attack large
word sizes, successfully extracting the DES key implemented
on a 32-bit platform. The approach involves segmenting large
byte intermediate values, and then using CPA to recover
each segment independently. Given an intermediate value
f(x1, . . . , xp, k), where k is the l-bit unknown fixed value
and xi is a known change value, we divide k into consecutive
blocks bn−1, . . . , b0 from the most significant the least sig-
nificant bit, with each block being lbi bits. Consequently, the
PCC for each block can be computed as follows:

ρ(L,Hk∗/bi) = ρ(L,Hk∗)

√
lbi
l

(10)

The practical attack procedure is as follows:
(1) Compute the PCCs for all possible values of b0, rank them

in descending order, and select the top h0 as candidates.
(2) Merge the h0 candidate values with b1 to generate a

new set of candidates, and then calculate the PCCs and
sort them in descending order. Finally, pick the top h1

candidate values.
(3) Recursively perform step (2) for the remaining bi (2 ≤

i < n− 2).
(4) Combine the hn−2 candidate values with bn−1, calculate

all possible PCCs, and choose the candidate that corre-
sponds to the highest value as the result.

This strategy reduces the enumeration requirement from 2l

values to 2b0 + h0 · 2b1 + · · · + hn−2 · 2bn−1 . For instance,
with l = 32, hi = 8, and each bi being 8-bit, the enumeration
space is trimmed from 232 to under 213. This approach can
also be employed for analyzing large number multiplication
operations. The private key can be recovered from low to high
blocks in turn, while the carry operation within the multiplica-
tion makes it easier to distinguish the correct candidate value
of the high block. While choosing smaller blocks might seem
to expedite the attack, Equation (10) indicates that this also
results in a smaller PCC calculated in step (1).

Chen et al. [21] noted that the output from the Montgomery
reduction (as seen in Fig.2, line 5) constitutes a distinct leak-
age. Utilizing CPA with this leakage, dubbed the Conservative
scheme, they achieved a 100% success rate using 157 power
traces. Since this calculation process involves a shift operation,
it precludes the direct application of Tunstall et al.’s method.
Consequently, Chen et al. opted to divide the NTT domain
into high and low two blocks. They employed CPA on the
Montgomery reduction input (Fig.2, line 9) to recover the
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lower block, then used the output to recover the NTT domain
private key. When the results are not accurate, the Conservative
scheme is enacted to guarantee 100% accuracy in the NTT
domain results, leading to the naming of this approach as
the Hybrid scheme. The work of Chen et al. still uses the
traditional scheme in order to achieve 100%, which leads to a
huge time overhead.

B. Efficient SCA scheme for NTT domain private keys

The introduction of an incomplete NTT domain recovery
method allows us to relax the requirement for correctness
in exchange for efficient attacks. We design efficient SCA
schemes against Dilithium and Kyber. Our scheme selects lin-
ear operations as the target, giving lower-order bits candidates
with the help of Tunstall et al. [25]’s method, and later selects
nonlinear operations with more significant leakage in order to
recover the complete private key.

Algorithm 3 CPA in NIST Reference Implementations of
Dilithium and Kyber

Require: thsel, thfin, mcn, numblocks,Lm

1: Initialize CS to an empty set ▷ Candidate Set
2: for i← 0 to numblocks − 1 do
3: CS ← combine(CS, [2i·m, 2(i+1)·m]))

▷ Combine lower-order bits
4: temp← sort(CPA(Hmiddle(CS)), Lm)

▷ Sort by CPA of middle part
5: CS ← temp ≥ thsel ·max(temp)
6: CZS ← combine(CS, 0) ▷ Candidate with Zero Set
7: end for
8: for each k in (CS,CZS) do
9: if CPA(Hfinal(k), Lm) > thfin then

10: return k and break
11: end if
12: end for
13: return -1 ▷ Indicate failure in key recovery

Alg.3 gives the attack process. Designed for practical at-
tack scenarios, this algorithm introduces selection thresholds
(thsel), a maximum candidate number (mcn) for the Can-
didate Set (CS) size, and specifies the number of lower-
order bit blocks (numblocks), each block containing m bits.
We establish a (CS) for the key by applying CPA to these
values. The candidate key is iteratively computed by selecting
the intermediate value of the linear transformation in the
Montgomery reduction, though false positives can occur in
this process. For instance, when the lowest block is zero
(b0 = 0), as in 0x23450, the result would erroneously be
b3∼0 = 0x2345. This issue is addressed by zero-padding
the existing candidate values during low-order bit attacks and
storing the data in a Candidate with Zero Set (CZS). For
the higher-order bits, the CS and CZS are merged, and the
most distinct leakage is identified through CPA to accurately
reconstruct the entire key.

Practical situations may necessitate a balance between suc-
cess rate and attack speed, adjustable through mcn and thsel.
If traces are limited, increasing mcn or decreasing thsel

enhances the success rate. Alternatively, abundant traces allow
for attack speed optimization by reducing mcn or increasing
thsel. During practical attacks, we noticed that the Mont-
gomery reduction’s shift and storage operations made the PCC
of the correct key substantially higher than that of incorrect
candidates (see line 5 in Fig.2). This characteristic enables the
setting of a threshold, thfin, to expedite computation.

It should be noted that when using overdetermined system-
based and SIS-assisted methods, both of them need to know
which NTT domain private key coefficients are correct, while
our method can easily determine the current coefficients to
attack successfully by setting a threshold. At this point, the
attacker only needs to quickly recover the number of correct
coefficients that satisfy the condition and then call the above
mathematical method to complete the attack.

V. EXPERIMENTS AND RESULTS

A. Masked implementation of Dilithium and Kyber

There has been some work proposing protected implemen-
tations of Dilithium and Kyber. For Dilithium, Azouaoui et
al. [36] proposed a protection strategy for intermediate com-
putations, which considers the physical security requirements
and classifies intermediate values into three categories: resist
Differential Power Analysis (DPA), resist SPA, and publicly
known. Fig.3 depicts a first-order masking scheme of poly-
nomial multiplication, where each coefficient of the s is split
into two arithmetic shares, s0 and s1, during the key generation
procedure. The NTT operation is then independently applied to
s0 and s1. This is followed by point-wise multiplication with
the signature c in the NTT domain. Coron et al. [37] proposed
some gadgets to improve the efficiency of the algorithm based
on [36] and gave open source code, which is used in this
experiment for the implementation.

Fig. 3: Procedure for masked protection implementation of
polynomial multiplication in cs. Red: DPA protection is

required. Blue: No side-channel protection is needed.

For Kyber, since the scheme proposed by Bos et al. [38]
is not open-source yet, this experiment utilizes the imple-
mentation by Heinz et al. [39]. They provided a mask-
protected complete implementation based on the unprotected
Cortex-M4 optimized implementation in the PQM4 project
[18]. For the polynomial multiplication of the private key sk
with the ciphertext c during the decapsulation process, the
implementation follows the same structure as shown in Fig.3.

It is important to note that the private key should be
refreshed each time it is called. However, the open-source
implementation in [39] does not include this operation. We
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did not modify the implementation, and our subsequent results
highlight the necessity of the refreshing operation.

B. Set up

The experiments conducted on unprotected algorithms em-
ployed the open-source, C-based implementation that was
submitted to NIST. Notably, the open-source implementation
of Kyber, optimized for the ARM Cortex-M4 platform us-
ing assembly language, does not have separate experimental
results presented herein due to its polynomial multiplication
process being nearly identical to that of masked Kyber [39].

Our experimental setup includes a WR610Zi oscilloscope
connected to a BLP1.9+ low-pass filter and a PA303 preampli-
fier, enabling the capture of power traces at a sampling rate of
100 MSa/s. The compiled code was executed on a ChipWhis-
perer UFO development board fitted with an STM32F405GTx
microcontroller. For data analysis, we used servers equipped
with Intel(R) Xeon(R) Platinum 8268 CPUs. Analytical tools
were implemented using Python 3.9 and SageMath 9.7. Each
experiment was repeated 100 times, and the average value of
these repetitions was taken as the result.

The high-dimensional characteristics of the lattice allow
many attacks to be executed in parallel to improve efficiency.
However, to provide a more straightforward comparison, our
practical attacks were conducted without parallelism.

C. Results of incomplete NTT domain recovery methods

While the time overhead for the overdetermined equation-
based method is exponential, it is efficient when there are few
unknown coefficients. For schemes with a normal domain η =
2 (e.g., Dilithium2, 5, and Kyber768, 1024), the recovery of
the private key takes under 10 minutes when there are no more
than 10 unknown coefficients and less than 1 second when
the number is below 6. For schemes with a normal domain
η = 3 (e.g., Dilithium3 and Kyber512), the time overhead
ranges between 2 to 5 minutes for 7 unknown coefficients,
escalating exponentially as the number increases.

For the SIS-assisted method, we experimented on
Dilithium2, 3, 5 using LLL and BKZ algorithms with different
block sizes under various dimensionality reduction strategies.
Fig.4 and 5 show the SR of correctly solving the SIS problem
extracted from the NTT process in Dilithium. The results
indicate that, BKZ requires fewer NTT domain coefficients
than LLL with a 100% SR. Moreover, the required coefficients
decrease as the block size increases. For recovering a set of
normal domain private keys of Dilithium2 and 5, LLL requires
118 NTT domain coefficients, whereas BKZ-40 and BKZ-
60 require only 75 and 66 coefficients, reducing the number
by 36% and 44%, respectively. Using the same algorithm,
the required coefficients are also significantly reduced after
applying the dimensionality reduction strategy. For example,
with BKZ-60, compared to needing 77 coefficients for NTT256

to recover a set of normal domain private keys of Dilithium3,
the NTT128 and NTT64 schemes require only 25 and 10
known coefficients, corresponding to 50 and 40 NTT domain
coefficients, reducing by 29% and 48%, respectively. Overall,
after using the dimensionality reduction strategy, the number

of known NTT domain coefficients required for solving is
significantly reduced. For NTT64, the number of coefficients
required by BKZ-60 is already very close to the theoretical
lower bound listed in Tab.III. The number of NTT domain
private keys required to recover the complete private keys of
Dilithium2 and 5 is less than that for Dilithium3, consistent
with our analysis in Sec.III-B.

(a) Result of NTT256.

(b) Result of NTT128.

(c) Result of NTT64.

Fig. 4: SR of solving the SIS problem in Dilithium2,5 NTT.

Fig.6 illustrates the time costs for solving the SIS search
problem of Dilithium2, 5 using the LLL and BKZ, without
employing the dimensionality reduction strategy. The time
overhead is generally higher with fewer known coefficients
for both algorithms. As the number of known coefficients
increases beyond 190, the time overhead decreases. LLL
consistently requires less time than BKZ, whose execution
time escalates with increasing block size. Fig.6 only displays
scenarios solvable within 20 hours; however, the time overhead
for BKZ-60 can extend up to 82 hours. Although larger block
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(a) Result of NTT256.

(b) Result of NTT128.

(c) Result of NTT64.

Fig. 5: SR of solving the SIS problem in Dilithium3 NTT.

TABLE IV: Time required for SIS-assisted method in
Dilithium (s)

SIS-assist NTT256 NTT128 NTT64

Dilithium2,5
LLL 1,073.5 8.1 3.4
BKZ-40 9,936.4 13.8 3.5
BKZ-60 295,451.7 662.6 62.2

Dilithium3
LLL 1,167.2 8.4 3.0
BKZ-40 11,006.7 14.3 3.5
BKZ-60 280,130.7 677.7 64.2

sizes reduce the number of required known coefficients, they
may result in prohibitively high time costs.

Tab.IV illustrates the time required to achieve a 100% SR
in fully recovering the s1 for Dilithium2, 3, and 5 using
LLL, BKZ-40, and BKZ-60 under various dimensionality
reduction strategies, with the minimal number of coefficients
needed. The results for NTT128 and NTT64 include the cu-
mulative overhead of executing the solving algorithm twice

Fig. 6: Time cost of Dilithium2,5 with LLL and BKZ.

and four times, respectively. Notably, the time required for
all three algorithms significantly decreases. For example,
under the NTT128 and NTT64 configurations, BKZ-40 only
requires 13.8 and 3.5 seconds, respectively, to complete the
attack—compared to about 2.7 hours for the original NTT256

scheme. These reductions represent speed improvements of
approximately 720 and 2,800 times, respectively, significantly
enhancing attack efficiency.

We also conducted similar experiments on Kyber. Sec.II-C
describes how Kyber can be divided into lower 128-
dimensional SIS problems. We applied the LLL and BKZ al-
gorithms on NTT128 and NTT64 configurations for Kyber512,
768, and 1024, with results shown in Fig.7 and 8. As with
Dilithium, BKZ outperforms LLL. Particularly with BKZ-60,
for NTT128, Kyber512 and Kyber768/1024 require only 38
and 34 coefficients to recover the half private key, which
represents a reduction of 41% and 45% compared to the
64 and 62 coefficients required by LLL. The dimensionality
reduction strategy further enhanced results: for Kyber512 and
Kyber768/1024 using BKZ-60 under the NTT64 strategy, only
28 and 24 coefficients are needed to recover half of the
private key, marking a decrease of 26% and 29% compared to
NTT128. Remarkably, the results for NTT64 are already below
the qm > 5i case. This may due to the fact that Kyber’s private
key distribution follows a centered binomial distribution.

Due to the smaller dimension of the SIS problem, Kyber’s
time overhead is significantly lower than Dilithium’s. Fig.9
presents the time required to execute the LLL and BKZ algo-
rithms at different block sizes for Kyber768/1024. As the block
size of BKZ increases, so does the time overhead. However,
once the number of known coefficients surpasses 105, the time
overhead for any algorithm begins to decrease. The maximum
time overhead for BKZ-60 is approximately 6 minutes. When
the block size was further increased, under NTT128, BKZ-
70 required only 31 known coefficients to recover half of
the private key set for Kyber768/1024, but the required time
extended to 1.5 hours. Tab.V displays the time overhead
needed to achieve a 100% SR in recovering sk of Kyber
with the minimum number of coefficients. The application
of the dimensionality reduction strategy significantly reduces
the required time. For instance, BKZ-60 under the NTT64

configuration for Kyber512 necessitates only 64.6 seconds,
compared to about 664.7 seconds for NTT128, marking a
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(a) Result of NTT128.

(b) Result of NTT64.

Fig. 7: SR of solving the SIS problem in Kyber512 NTT.

tenfold increase in speed.

TABLE V: Time cost for SIS-assisted method in Kyber (s)

SIS method NTT128 NTT64

Kyber512
LLL 8.6 4.3
BKZ-40 14.3 3.6
BKZ-60 664.7 64.6

Kyber768,1024
LLL 7.5 4.1
BKZ-40 14.3 3.4
BKZ-60 641.1 61.8

Overall, using BKZ yields better results compared to LLL,
and the advantage of BKZ becomes more pronounced as
the block size increases. However, the corresponding time
overhead also significantly increases. Even using BKZ-60,
Kyber can be attacked in just a few minutes. In contrast, for the
higher-dimensional Dilithium, executing BKZ-60 takes over
80 hours, and the minimum number of NTT domain coeffi-
cients required is far greater than the theoretical minimum. The
dimensionality reduction strategy can significantly reduce time
overhead and the required number of coefficients, approaching
theoretical limits, thereby proving the effectiveness of the
dimensionality reduction strategy.

D. SCAs of unprotected Dilithium and Kyber

In this experiment, we perform practical SCAs on unpro-
tected implementations of Dilithium and Kyber. Both algo-
rithms employ the Montgomery reduction operation, which is
executed in a similar manner in their respective C reference
implementations for consistency. For clarity, Fig.10 illustrates
the specific process used in Dilithium, serving as an example.

(a) Result of NTT128.

(b) Result of NTT64.

Fig. 8: SR of solving the SIS problem in Kyber768,1024
NTT.

Fig. 9: Time cost of Kyber768,1024 with LLL and BKZ.

Using the HW model, we analyze the Pearson correlation
coefficients (PCCs) between intermediate values and power
traces, as shown in Fig.11. With a dataset of 5,000 traces,
both temp1 and temp2 exhibit PCC peaks at sample index
300, attributed to their shared lower 12 bits. However, temp1’s
leakage peak appears slightly earlier and is less pronounced.
Since the last 32 bits of temp3 are identical of temp1, they are
omitted in Fig.10. The highest PCC value for temp4, nearing
1, is observed at sample index 380, likely resulting from the
nonlinear shift operation followed by an STR operation that
stores the result in memory. In our methodology, outlined in
Alg.3, temp2 is used to calculate the last 20 bits, while temp4
is utilized to recover the final result. In this setup, we allocate 4
bits per block, set a final threshold (thfin) of 0.8, and identify



12

1 temp1 = int64(NTT(c)*NTT(s1))
2 temp2 = int32(temp1*qinv)
3 temp3 = int64(temp2*q)
4 temp4 = (temp1-temp3)>>32

Fig. 10: Intermediate values of Montgomery reduction
operation in Dilithium.

Fig. 11: PCCs of the temp1 and temp2 in Dilithium2.

20 points near the highest PCC as points of interest (PoI).

Fig. 12: ŝ1 coefficients recovered.

Following the CPA scheme detailed in Sec.IV-B, we set
thsel = 0.8 or 0.9, and mcn = 20 or + ∞. Additionally,
we replicate the optimal Hyper e scheme by Chen et al.
[21] for comparison. Fig.12 displays the number of recovered
ŝ1 coefficients using varying trace counts. At thsel = 0.9,
different mcn values have a marginal effect on the number of
coefficients recovered; around 180 coefficients are retrieved
with 1,000 traces, increasing to approximately 250 with 4,000
traces. For thsel = 0.8 with mcn = 20, the trend is similar to
thsel = 0.9 for fewer traces, but it facilitates the recovery of
more coefficients when using over 2,000 traces, stabilizing at
253 coefficients with 4,000 traces. When mcn = +∞, recov-
ery is notably more efficient with smaller trace counts—about
190 coefficients with 500 traces and over 250 with 2,000
traces. In comparison, Chen et al.’s method recovers approx-
imately 170 coefficients with 500 traces, increasing to 251
with 5,000 traces. The SR of all schemes increases sharply
with fewer than 2,000 traces and stabilizes beyond 4,000.

Tab.VI shows the SCAs result for Dilithium2 using different
CPA parameters, compared with the optimized Enumeration

TABLE VI: SCAs result of Dilithium2

Method #Traces SCA SR Time1(s) Time2(h)
tsel = 0.8 mcn = 20

5,000

99.1 1.7 1.7
tsel = 0.8 mcn = ∞ 99.2 4.1 2.2
tsel = 0.9 mcn = 20 97.4 0.7 3.5
tsel = 0.9 mcn = ∞ 97.7 0.8 3.3
[21] Hyper e 98.1 28.3 10.6
[21] Enumerate 200 100 463.7 131.9
1 The time overhead to recover a single NTT domain coefficient.
2 The time overhead to recover the complete s1 of Dilithium.

and Hyper e strategies by Chen et al. [21], including the SR
and time for recovering a single coefficient. Additionally, it
provides the time overhead for recovering the complete s1
using only SCA. In this process, the attacker first uses the
optimized scheme to attack all coefficients and then performs
the enumeration scheme for incorrectly recovered coefficients.
Using 5,000 traces, our SCA SR is comparable to or even
better than Chen et al.’s [21] Hyper e method. Importantly,
our method significantly reduces the time overhead, with the
speed of attacking a single coefficient improved by 7 to 40
times. With a minimum of just 1.7 hours, we can recover
the complete s1, whereas the Hyper e strategy requires 11.3
hours. Although the Enumeration method can ensure a 100%
SR with only 200 traces, its time cost is prohibitively high,
taking about 6 days.

TABLE VII: Time to recover Dilithium s1 (min)

Security level SIS method NTT256 NTT128 NTT64

Dilithium2 LLL 12.6 4.9 3.4
BKZ-40 80.7 4.2 2.4

Dilithium3 LLL 16.2 7.3 4.3
BKZ-40 84.5 5.3 3.0

Dilithium5 LLL 23.2 8.3 5.9
BKZ-40 134.2 7.2 4.1

Tab.VII shows the minimum time required to recover the
complete private key s1 of Dilithium using SCAs combined
with the SIS-assisted method. The attacker first performs SCAs
with parameters tsel = 0.9 and mcn = 20 to recover partial
coefficients. Then, different SIS-assisted methods such as LLL
and BKZ-40, along with various dimensionality reduction
strategies, are used to recover s1. It is important to note that
the number of coefficients recovered via SCA varies depending
on the algorithm and strategy to achieve the minimum time.

For Dilithium2, with a s1 subset of 256 coefficients, us-
ing the LLL algorithm without the dimensionality reduction
strategy, 220 coefficients need to be recovered via SCA,
it takes 12.6 minutes to get s1. With the dimensionality
reduction strategy, NTT128 and NTT64 require only 80 and
60 coefficients, respectively, reducing the time for a complete
attack to4.9 and 3.4 minutes. Compared to Chen et al.’s [21]
11.3 hours using only SCA, these methods are 53.8, 138.4,
and 199 times faster.

The time overhead of solving the high-dimensional SIS
problem using BKZ is high, and the no-dimensionality re-
duction strategy requires obtaining as many coefficients as
possible in the SCA phase in order to achieve the minimum
total attack time.. However, with NTT128 and NTT64 dimen-
sionality reduction strategies, SCA needs to recover only 60
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and 40 coefficients, respectively, with total times of 4.2 and
2.4 minutes. Similar results are seen for Dilithium3 and 5.
Using LLL or BKZ algorithms improves attack efficiency,
and incorporating the dimensionality reduction strategy further
enhances this advantage.

1 void basemul(int16_t r[2], const int16_t a[2], const
int16_t b[2], int16_t zeta){

2 r[0] = fqmul(a[1], b[1]);
3 r[0] = fqmul(r[0], zeta);
4 r[0] += fqmul(a[0], b[0]);
5 r[1] = fqmul(a[0], b[1]);
6 r[1] += fqmul(a[1], b[0]);}

Fig. 13: Kyber ĉ ◦ ŝk reference implementation.

Kyber undergoes seven rounds of butterfly transformations,
resulting in five Montgomery reductions for each coefficient
pair, as depicted in Fig.13. Xu et al. [5] analyzed the impact
of selecting different operations for attack. For consistency in
evaluating the efficiency of the attack under the same experi-
mental setup, we opted to target the operation corresponding
to coefficient multiplication for SCAs, specifically, lines 2 and
4 in Fig.13. The parameter choices for the CPA scheme are
identical to those used for Dilithium, with the modification of
determining the lower 8 bits.

TABLE VIII: SCAs result of Kyber512

Method #Traces SCA SR Time1(s) Time1(s)
tsel = 0.8 mcn = 20

5,000

98.4 0.2 145.3
tsel = 0.8 mcn = ∞ 99.2 0.3 164.1
tsel = 0.9 mcn = 20 95.3 0.2 95.6
tsel = 0.9 mcn = ∞ 95.7 0.2 89.8
[5] Random ciphertext 200 100 0.4 213.2
1 The time overhead to recover a single NTT domain coefficient .
2 The time overhead to recover the complete sk of Kyber.

Tab.VIII shows the results of recovering a single coefficient
and the complete private key of Kyber512 using only SCAs.
With parameters thsel = 0.9 or 0.8, about 175 and 210
coefficients were recovered using 500 traces, respectively. The
number of recovered coefficients increased with the number
of traces and stabilized around 4000 traces. Under the same
conditions, we replicated the random ciphertext attack of
[5] and included the results in Tab.VIII. Although Xu et
al.’s [5] method is highly efficient, recovering coefficients in
0.4 seconds, our method doubled the recovery speed while
maintaining a high SR.

We also conducted practical attacks to recover the complete
sk of different Kyber schemes, including SCAs and solving
SIS problems. Tab.IX shows the results using LLL and BKZ-
40 algorithms without the dimensionality reduction strategy
and with NTT64. Due to the lower dimension of the SIS
problem, the time overhead for LLL and BKZ-40 is relatively
small, with the SCA time being the main factor affecting
the total time overhead. After applying the dimensionality
reduction strategy, the attack time for both algorithms was
significantly reduced. For example, for Kyber512, compared
to Xu et al. [5], our method reduced the time overhead from
213.2 seconds to 28.7 seconds.

TABLE IX: Time to recover Kyber s1 (s)

Security level SIS method NTT128 NTT64

Kbyer512 LLL 67.6 43.4
BKZ-40 75.7 28.7

Kbyer768 LLL 88.8 66.9
BKZ-40 88.7 47.6

Kbyer1024 LLL 118.3 89.3
BKZ-40 116.3 63.5

Our practical attacks on Dilithium and Kyber show that
while Kyber can be feasibly attacked using only side-channel
analysis, the time overhead for Dilithium is enormous. More-
over, this process requires obtaining all NTT domain coef-
ficients, which may be challenging in attacks such as fault
or cache attacks. The introduction of SIS-assisted methods
and the dimensionality reduction strategy not only reduces
the SCA requirements for the adversary but also significantly
enhances the attack speed. In our implementation, the s1 of any
security level of Dilithium can be recovered within 6 minutes.

E. SCAs of masked Dilithium and Kyber

Fig. 14: PCCs for the captured and combined traces of
masked Dilithium2.

For the implementation of first-order masked Dilithium
with key refreshing [36], we conducted practical attacks using
higher-order CPA. By combining the leaks L0 and L1 corre-
sponding to the two shares s0 and s1, we obtained the higher-
order leakage L∗ = (L0 + L1)

2 for the attack. Fig.14 shows
the PCC between the original traces, the combined leakage L∗,
and the sensitive intermediate value temp4 using 5,000 traces.
The original traces did not show significant correlation, while
the combined L∗ had a max correlation coefficient of 0.13,
indicating that this combination method is effective and can
be used for SCA. We also attempted to detect the combined
traces for temp1-3 but did not find significant leakage, so we
had to use the enumeration method.

Tab.X shows the SR, Guess Entropy (GE), and time over-
head for recovering a single coefficient of the Dilithium NTT
domain s1 with different numbers of traces. As the number
of traces increases, the SR of the SCA gradually improves,
reaching 100% at 5,000 traces. However, the time overhead
also reaches its maximum at this point, with approximately
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TABLE X: Time to recover one NTT domain coefficient of
masked Dilithium (min)

Traces 1,000 2,000 3,000 4,000 5,000
SR (%) 9.7% 41.2% 90.3% 99.2% 100%
GE 39,964.1 2,577.9 1.5 1.0 1.0
Time (min) 19.7 27.6 33.7 39.7 47.8

47.8 minutes required to recover a single coefficient. It was
observed that using 3,000 traces, the SR exceeds 90%, and the
GE is 1.5, indicating that most coefficients can be correctly
recovered, and the rankings of unrecovered coefficients are
high. For each coefficient, we first use 3,000 traces to obtain a
set of candidates (50 candidates in this experiment), and then
use 5,000 traces to determine the final value. Despite this,
the time cost is still unacceptable. For masked Dilithium2,
recovering the complete s1 using only SCAs would take
approximately 600 hours.

TABLE XI: Time to recover masked Dilithium s1 (h)

Security level SIS method NTT256 NTT128 NTT64

masked Dilithium2 LLL 270.6 179.7 123.6
BKZ-40 191.4 134.8 89.9

masked Dilithium3 LLL 366.6 280.8 168.5
BKZ-40 240.9 168.5 112.3

masked Dilithium5 LLL 513.2 314.5 235.9
BKZ-40 335.0 216.3 157.3

Tab.XI shows the time overhead for recovering the complete
s1 of masked Dilithium using SCAs and different dimen-
sionality reduction strategies combined with LLL and BKZ-
40. For attacks on masked implementations, the main time
overhead is concentrated in the SCAs. Thus, after applying
the SIS-assisted methods, the time overhead is significantly
reduced. BKZ-40, which can solve the corresponding SIS
problem with fewer coefficients, outperforms the LLL algo-
rithm. Furthermore, the time for each algorithm is signifi-
cantly reduced under the dimensionality reduction strategy. For
masked Dilithium2, the time is reduced to 90 hours, improving
efficiency by 6 times.

Fig. 15: Number of ŝk coefficients recovered of Masked
Kyber512.

For Kyber, we chose the implementation without key re-
freshing to more comprehensively demonstrate our attack.

TABLE XII: Time to recover masked Kyber s1 (s)

Security level SIS method NTT128 NTT64

Kbyer512 LLL 489.5 359.3
BKZ-40 430.1 220.9

Kbyer768 LLL 708.6 542.8
BKZ-40 504.5 340.7

Kbyer1024 LLL 945.5 723.9
BKZ-40 672.7 457.2

When the private key is not refreshed, as shown in Fig.15,
the attacker only needs to recover two fixed mask values and
then combine them to complete the attack. The implementation
of Masked Kyber in [39] optimized polynomial multiplication
and Montgomery reduction in assembly. A pair of coefficients
now requires 3 Montgomery reductions instead of 5, making it
necessary for the attacker to recover the correct even-position
coefficients before the odd-position coefficients. Additionally,
the optimized Montgomery reduction requires only two as-
sembly instructions. Previous schemes that could recover all
intermediate values of the lower bits are difficult to utilize.
Therefore, our CPA scheme cannot be used to determine
whether the coefficients are correctly recovered.

In the practical attack of first-order masked Kyber512, the
entire attack process is systematically divided into four stages.
1) Employing SCAs to recover both ŝ0kodd

and ŝ1kodd
; 2)

Calculating skodd
; 3) Utilizing SCAs to recover both ŝ0keven

and
ŝ1keven

; 4) Computing to determine skeven
. Fig.15 showcases

the results of the SCA corresponding to stages 2) and 4).
Overall, attacking coefficients in odd positions works better,
requiring only 200 traces to recover all coefficients accurately.
However, only 123 coefficients can be retrieved for the even
positions at this juncture. For this attack, it is possible to keep
increasing the number of traces until all coefficients can be
recovered correctly, and this experiment achieves that goal at
500 traces in 3 minutes.

Regardless of whether key refreshing is used, side-channel
analysis can recover the complete private keys of masked
Dilithium and Kyber. The introduction of SIS-assisted meth-
ods significantly enhances the attack speed. Additionally, in
practical attacks, it may not be possible to achieve a 100%
success rate for side-channel attacks due to low signal-to-
noise ratio or a limited number of signals collected. However,
as long as there are only a few errors, as analyzed in III-C,
the complete private key can be recovered by using the LLL
and BKZ algorithms with repeated random selection of NTT
domain coefficients.

VI. CONCLUSION AND FUTURE WORK

In this work, we conducted a detailed analysis of the private
key NTT process in the post-quantum algorithms Dilithium
and Kyber, clarifying how to convert the problem of recov-
ering the full private key from known partial NTT domain
coefficients into an SIS problem. By further utilizing the
properties of NTT for dimension reduction, we significantly
decreased the difficulty of solving the problem and greatly
increased the solving speed. With the newly proposed CPA
scheme, we also conducted practical attacks, confirming that
the dimension reduction strategy is more efficient and requires
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fewer NTT domain coefficients, allowing us to recover the
complete s1 of any security level of Dilithium within 6
minutes. We also successfully attacked first-order masking
implementations, significantly reducing the required time with
the help of the dimension reduction strategy.

Theoretically, the multi-dimensional nature of the lattice
ensures the security of the lattice-based cryptosystem. With
current computing power, it is almost impossible to brute
force a private key through an exhaustive search. However,
each coefficient is calculated independently when the algo-
rithm is executed on a cryptographic platform. From an SCA
perspective, this independence means that as the dimension-
ality increases, attackers will only face repeated challenges.
A significant difficulty in performing SCA on lattice-based
algorithms such as Dilithium is the requirement of recovering
all the coefficients correctly, which is difficult to guarantee.
However, due to the introduction of NTT operations to im-
prove efficiency, the requirement on the SCA success rate can
be greatly relaxed using SIS-assisted method.

In terms of protective strategies, the experimental results
from masked Kyber have already highlighted the importance
of key refreshment. Additionally, we suggest adopting a shuffle
strategy for polynomial multiplication to counter our attacks;
without being able to determine the correct positions of NTT
domain coefficients, constructing the SIS problem becomes
impossible. In the future, we will also explore how to solve
the aforementioned problem when the correct positions of the
coefficients are unknown.
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