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Chapter 1

Introduction

This report covers our work on the submissions to the KpqC competition.
We analyzed all submitted KEMs and signature systems. For those that
withstood cryptanalysis, we checked the security proofs to the extent that
any were given and checked for obstacles to efficient implementation.
We found attacks against IPCC, Layered ROLLO-I, REDOG, AIMer, and
MQ-Sign. The attack on IPCC was the first attack posted to the KpqC
forum, we also broke the updated version, IPCC7, submitted in July. For
Layered ROLLO-I we broke the second, third, and fourth version of the
submission. For REDOG we found three different issues with the submission
but also proposed ways to fix it. For AIMer we showed a weakness in the
underlying block cipher AIM. For MQ-Sign we were the first to announce
an attack on the sparse versions; another group then announced a follow-
up attack. This report includes the first mention of an attack on the third
version which we will announce soon.
For Enhanced pqsigRM and Peregrine other teams were first to announce
attacks but did not post any writeup; we reconstructed and confirmed these
attacks from the available information. Shortly before we delivered this re-
port, a preprint detailing the attack on Peregrine became available. For
GCKsign two serious concerns were pointed out by two other teams that the
designers had not taken into account and ended up not fixinng.
For the other schemes we analyzed the complexity of generic attacks and
identified gaps in the security proofs (if provided).
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Chapter 2

Background on lattices

Multiple schemes submitted to the Korean Post Quantum competition are
based on some form of the Learning with Errors (LWE) problem or some
of its variants, including Ring (RLWE), Module (MLWE), Learning with
Rounding (LWR or M/RLWR) and NTRU. Specifically we have SMAUG
(MLWE), TiGER (RLWE, RLWR), HAETAE (MLWE), NCC-sign (RLWE),
NTRU+ (NTRU) and SOLMAE (NTRU). Also the broken schemes GCKsign
and Peregrine are based on lattices.
In this chapter we first cover generic lattice attacks and then intrduce the
most common problems and tools in security proofs. For systems not based
on lattices ths is given as part of the chapter introducing the system and short
intros are given also for the lattice schemes to keep the chapters concise.

2.1 Generic lattice attacks

Each of these schemes have their own intricacies, but to each the generic
lattice attacks do apply. Specifically we will be looking here at the BKZ
lattice reduction algorithm [SE91]. There are quite a few differing opinions
on how to properly estimate the costs of this attack, which can result in
differing security categories. This all depends on the cost model used, i.e.,
the cost of solving the Shortest Vector Problem (SVP) in dimension β (by
using sieving or enumeration) and the number of SVP oracle calls needed for
the BKZ.
All the schemes, no matter the form of the problem, will be reduced to an
LWE instantiation. On this LWE instantiation the estimation is then run.
Note that this is indeed an estimation, and should be seen as a lower bound.
The o(1) terms that appear are assumed to be positive.
Albrecht, Curtis, Deo, Davidson, Player, Postlethwaite, Virdia and Wun-
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derer have tested all lattice-based schemes from the NIST competition in
[ACD+18]. Their open-source code is available to simply test other schemes.
We have used their code to estimate the BKZ attack on all schemes men-
tioned above, except HAETAE. For each of the schemes tested, the results
can be found in their specific chapters. For HAETAE it was not possible to
use the code discussed here due to the designers’ choice of error distribution.
The code included in the HAETAE submission package is incomplete and
even after linking in the estimator from CRYSTALS and decompiling the
entropy estimator, the code did not finish successfully after more than two
days and we terminated the run.
Note that for fairness sake for each of the schemes we have used the pa-
rameters found in their original submission to the competition. We skipped
running the estimator for GCKsign and Peregrine.
Table 2.1 shows the names used in this report, with the model associated to
it with β as the size of the block, d is a way of measuring the size of the
length of the vector.

Name Model
Q-Core-Sieve 0.256 β
Q-Core-Sieve + O(1) 0.265β + 16.4
Q-Core-Sieve (min space) 0.2975β
Q-β -Sieve 0.265β + log(β)
Q-8d-Sieve + O(1) 0.265 β + 16.4 + log(8d)
Core-Sieve 0.292 β
Core-Sieve + O(1) 0.292 β + 16.4
Core-Sieve (min space) 0.386 β
β-Sieve 0.292 β + log(β)
8d-Sieve + O(1) 0.292 β + 16.4 + log(8d)
Q-Core-Enum + O(1) 1/2(0.187β log(β)− 1.019β + 16.1)
Lotus 0.125β log(β)− 0.755β + 2.25
Core-Enum + O(1) 0.187 β log(β)− 1.019β + 16.1
8d-Enum (quadratic fit) + O(1) 0.000784β2 + 0.366β − 0.9 + log(8d)

Table 2.1: The names used with their corresponding models.

2.2 Security assumptions

LWE-like security assumptions generally have the advantage that they can
be related to classical assumptions in lattices via a worst-case to average-
case reduction. This means that breaking the lattice-based assumption on



average is as hard as breaking a classical lattice-based assumption in the
worst-case. The classical assumption is usually an approximate short vector
problem. Often the classical lattices that the assumption is reduced to is
more general but the reduction usually only works if the lattices in both
assumptions share some key properties. As an example the corresponding
reduction for the variant Ring LWE reduces to a worst-case assumption in
ideal lattices only.

2.2.1 Classical lattice problems are not reflected in
state-of-the-art cryptosystems

The average-to worst-case reduction is a major factor of the attractiveness
of lattice-based assumptions. It guarantees that, ultimately, a lattice based
scheme that relies on an LWE-like assumption can be based on a classical
lattice assumption with worst-case guarantees. However, it is important to
note that this implication is not reflected in modern cryptosystems. In par-
ticular, the reduction to classical assumptions has a large security loss (that
quantifies efficiency of the reduction to break the LWE-like assumption rel-
ative to the efficiency of the attacker against the cryptosystem). This has
far-reaching consequences. Instantiating the parameter sizes for Regev-like
schemes in a theoretically-sound way when relying on the underlying clas-
sical assumption can increase the dimension n of the lattices by a factor of
(at least) ten as compared to what is used in practice [Gär23]. This means
that for the currently used parameters, to the best of our knowledge, all
lattice-based encryption systems do not reduce to some underlying classical
worst-case assumption in a theoretically-sound way. Put differently, when
applying the existing security reductions to the parameter sizes used in prac-
tice they would merely imply that a classical lattice problem can be solved
that has very small parameters. However, such a scheme could be practically
solved efficiently anyways what makes the guarantees from the security proof
vacuous.

2.2.2 Assumptions used in cryptography for encryp-
tion systems

An LWE-like assumption states that the distributions A, b = A·s+e and A, b′

are computationally indistinguishable where A is a suitable uniformly drawn
(quadratic) matrix of dimension n (a lattice), s is a secret vector, e is a small
error vector, and b′ is a random vector. All values are integers. We observe
that essentially s 7→ A ·s is a linear operation that is perturbed by some error



term. Moreover, A spans a lattice. The closeness to purely linear operations
gives these schemes its efficiency. In the literature, we can find several vari-
ants where the entries in A, s, e, b, b′ range over different algebraic structures
(and accordingly the operations ·,+ are defined differently). However, each
of these assumptions requires that the mapping s 7→ A · s + e is injective,
giving important conditions on the size of the parameters. In classical LWE,
the vector and matrix entries are elements of some field Zq while · represents
matrix multiplication modulo q. After the original Regev-system that uses
the classical plain LWE assumption, several variants have been proposed.
One of the most prominent is Ring LWE (RLWE) which works with polyno-
mials in the ring Z[x]/f(x) for some polynomial f(x), typically f(x) = xn+1
and additionally reduces modulo some number q. The equation A · s turns
into the multiplication of the polynomials a and s modulo f(x). This can also
be written in matrix form where rows of A are a · xi followed by reduction
modulo f(x) and modulo q. Module LWE (MLWE) can be interpreted as
a generalization to a spectrum that has LWE and RLWE as its endpoints,
parameterizing the additional polynomial structure introduced [AD17]. In
general these variants require more algebraic structure, with RLWE intro-
ducing stronger requirements on the algebraic structure than general MLWE.
Peikert and Pepin in [PP19] presented a general treatment of the Learning
with Errors (LWE) assumption and its variants. Roughly, their framework
gives a tight reduction from Ring-LWE (RLWE) to other algebraic LWE
variants, including Module-LWE (MLWE), Order-LWE, and Middle-Product
LWE. Their work shows that it is possible to use the hardness of Ring-LWE
as a foundation for the hardness of all prior algebraic LWE problems. When
focusing on LWE, MLWE, and RLWE, this is natural as RLWE places the
strongest conditions on the additional structure. However, so far there are
no attacks that can specifically exploit the additional structure induced by
RLWE (or MLWE). A benefit is that the efficiency of the cryptosystem that
are based on LWE-variants can be higher than in plain LWE, both in terms of
size as well as in speed of computation. The overall result when using RLWE
and MLWE is that in Regev-like encryption systems, we can have higher ef-
ficiency with these variants. Roughly in Regev’s original crypto system, an
encryption of a single message bit would require n values (field elements of
Zq) in the ciphertext and public key. Using RLWE in Regev-like crypto
systems, decreases this to a single value. Whereas the definition of RLWE
relies on a single polynomial, MLWE considers vectors of polynomials. When
comparing this to RLWE, this can be used to balance the number of com-
ponents of the vector with the length of its entries. Intuitively, at the same
level of security, RLWE has to compensate for considering less polynomials
by having longer polynomials [AD17].



In general, the community seems to prefer the usage of MLWE over RLWE
for fixed public key and ciphertext sizes, since MLWE is a weaker assump-
tion. The RLWE assumption seems only acceptable if it leads to efficiency
improvements over MLWE. However, in general the flexibility of the MLWE
assumption for different parameter sizes allows to choose one that synergizes
particularly well with the remaining system parameters. So although the
assumption is weaker it can even lead to more efficient schemes than when
based on RLWE.

2.2.3 Computational vs. decisional LWE-variants

The computational version of plain LWE and its variants requires us to com-
pute the secret s from a A, b with b = A · s + e instead of distinguishing it
from random (A, b′). The computational and decisional version of LWE and
its variants are polynomial-time equivalent. In the following we will usually
be concerned with decisional variants since we deal with encryption systems
that intrinsically capture that ciphertexts do not reveal a single bit to the
attacker by requiring that ciphertexts are indistinguishable from encryptions
of random values. We note that there is still a security loss when reducing
the computational variant to the decisional [STHY23].

2.2.4 LWE vs. LWR

Whereas the LWE problem adds a small random error e to an otherwise linear
equation, the learning with rounding (LWR) assumption introduces a deter-
ministic error that intuitively cuts-off some of the least significant bits (LSBs)
of the linear equation. Essentially, instead of blinding the least significant
bits with a discrete Gaussian error (the most common error distribution),
they are simply deleted. This in general accounts for better bandwidth. It
can be formally shown that LWR and LWE are related via this argument.
Intuitively, a reduction from LWR to LWE says that in case the blinded
LSBs do not give enough information to distinguish an LWE distribution
of A, b = As + e from a random distribution (A, b′) with random b′, then
the LSBs can surely not help in case they are missing entirely A, b= Asep,q
where bxep,q denotes bx(p/q)e for integers 2 < p ≤ q [BBD+19]. This maps
values in Zq to the smaller set Zq and thus looses information. The result-
ing elements are smaller and improve bandwidth. The disadvantage of LWR
is that when performing (homomorphic) operations on the underlying lin-
ear equation (which are used for encryption and decryption), the error can
accumulate faster than with a Gaussian error in plain LWE. In general this
accounts for larger correctness errors. Applying error correcting codes (ECC)



can weaken these effect. However, ECC can in turn increase the susceptibility
to side-channel attacks [RRCB20]. However, it is important to note that for
PKE and KEMs, the classical security definitions do not take side-channel
attacks into account.

2.2.5 Partially-correct encryption system

Due to the introduction of errors (that can in rare cases accumulate quickly),
most cryptosystems based on lattices feature non-perfect correctness. This
means that in rare cases the decryption of a ciphertext may fail. The prob-
ability for this to happen is called decryption failure probability (DFP). For
practical parameters, the DFP is usually very small, so that decryption fail-
ures will virtually not happen in most usage scenarios. However, an attacker
that can find decryption failures learns valuable information on the secret
key [DRV20]. Thus attackers might use strategies that specifically search
for decryption failures. Such attacks are often called reactive attacks. Re-
cent improvements on reactive attacks improve the success probability to
find more decryption failures once a single one has been found for a given
key pair [DB22]. So the probabilities of a lattice-based cryptosystem need
to be chosen such that finding any decryption failure is hard in the first
place. However, recent analysis reveals that the DFP of most schemes used
in practice are low enough when fixing the maximum number of decryption
queries in total to some practical values [DRV20]. It is important to note
that when proving security against quantum attackers as opposed to classical
attackers, Grover’s search algorithm can be utilized by any attacker and in
particular attackers that aim at finding decryption failures. We note again
that the DFP can naturally be decreased using error-correcting codes. How-
ever as mentioned before, this can increases the susceptibility to side-channel
attacks (and costs to have implementations that mitigate them).

2.2.6 Security loss

The security proof should have a low security loss that theoretically supports
practical parameter choices. This however, highly depends on the security
assumption that the security of the scheme is reduced to. As stated before,
reductions to the worst-case hardness of classical lattice-based assumptions
are very likely to not cover practical parameters since they have considerably
high security losses. However, even if the reduction reduces to some decisional
LWE-like assumption, the reduction is typically not tight, in particular, if it
assumes quantum attackers in the so-called quantum random oracle model
(QROM). This is mainly due to the application of the popular Fujisaki-



Okamoto transform (and its variants) that generically turns an IND-CPA
secure PKE into a IND-CCA2 secure KEM [HHM22, BHH+19]. Recent
results show that under certain conditions this loss is unavoidable [JZM21]
(for measurement-based, black-box reductions).

2.2.7 Security assumptions

All schemes are essentially following the same template. For integers p, q
with 2 < p ≤ q, if w ∈ Zq, let bwep,q denote bw · p/qe, where bve repre-
sents rounding to the integer that is nearest to v. If p = q, no rounding is
performed whatsoever. If w ∈ Rq for some polynomial ring Rq with coef-
ficients over Zq, bwep,q applies the rounding operation to each coefficient of
w. Likewise, rounding a vector of elements will apply the rounding to each
component of the vector. By convention we will understand that having an
(error) distribution χx = {0} that always maps to zero implies that we will
not draw an error at all. In the following we will, for simplicity, focus on
atomic formulations of LWE-like assumptions that do not consider matrices
A but rather a single row vector a. All these assumptions can be generalized
naturally by stacking rows over each other for fixed secret, i.e. by considering
matrices as vectors of rows.

Definition 2.2.1 (LWE). Let n, q be positive integers and let χLWE be a prob-
ability distribution on Zn

q . Implicitly set p = q. Choosing a matrix A ∈ Zn×n
q

uniformly at random and choosing e ∈ Zn
q according to χLWE, define As,χLWE

as the probability distribution on Zn×n
q × Zn

q that outputs (A, b = A · s + e)
for given secret s ∈ Zn

q . Define ULWE = (A,w) where w is uniform in Zn
q .

Definition 2.2.2 (LWR). Let n, q, p be positive integers with p < q.Choosing
a matrix A ∈ Zn×n

q uniformly at random, define χLWR = {0}n to be a distri-
bution that always maps to zero and As,χLWR

as the distribution on Zn×n
q ×Zn

q

that outputs (A, b = bA ·s+eep,q) for given secret s ∈ Zn
q . Define ULWR as the

uniform distribution on Zn
q × Zq. Define ULWR = (A,w) where w is uniform

in Zn
q .

Definition 2.2.3 (RLWE). Let n be a power of two, let q be a prime integer.
Define Rq = Zq[x]/(xn+1) and let χRLWE be a probability distribution on Rn

q .
Implicitly set p = q. Choosing a vector of polynomials A ∈ Rn

q uniformly at
random, drawing e at according to χRLWE, define As,χRLWE

as the probability
distribution on Rn

q ×Rn
q that outputs (A, b = A ·s+e) for given secret s ∈ Rq.

Define URLWE = (A,w) where w is uniform in Rq.

Definition 2.2.4 (RLWR). Let n be a power of two, let q be a prime integer,
and let p be an integer with p < q. Define Rq = Zq[x]/(xn + 1). Define



χRLWR = {0}n to be a distribution that always maps to zero. Choosing a vector
of polynomials A ∈ Rn

q uniformly at random define χRLWR = p and As,χRLWR

as the probability distribution on Rn
q ×Rn

q that outputs (A, b = b(A ·s)cp,q) for
given secret s ∈ Rq. Define URLWR = (A,w) where w is a vector of uniforms
polynomial in Rn

q .

Definition 2.2.5 (MLWE). Let n′ be an integer dimension, let n be a power of
two, let q be a prime integer. Define R = Z[x]/(xn + 1) and Rq = (R/qR)n

′

and let χMLWE be a probability distribution on Rn
q . Implicitly set p = q.

Choosing a matrix A ∈ Rn
q uniformly at random and an error e according to

χMLWE, define the probability distribution As,χMLWE
on Rn

q × Rn
q that outputs

(A, b = A · s+ e) for given secret s ∈ Rq. Define UMLWE = (A,w) where w is
uniform in Rn

q .

Definition 2.2.6 (MLWR). Let n′ be an integer dimension, let n be a power
of two, let q be a prime integer, and let p be an integer with p < q. Define
R = Z[x]/(xn + 1) and Rq = (R/qR)n

′
. Define χMLWR = {0}n to be a

distribution that always maps to zero. Choosing a matrix A ∈ Rn
q uniformly

at random define χMLWR = p and As,χMLWR
as the probability distribution on

Rn
q × Rq that outputs (A, b = b(A · s)cp,q) for given secret s ∈ Rq. Define

UMLWR = (A,w) where w is uniform in Rn
q .

Definition 2.2.7 (Alternative Version). Consider the x-assumption for x ∈
{LWE,RLWE,MLWE, LWR,RLWR,MLWR}. Using the same parameters, we
say that x′ is the alternative version of x if in the computation of the output
distribution we compute sT · A instead of A · s.

We refer to LWE, MLWE, RLWE (and to any of the corresponding alternative
versions) generally as LWE-like and more specifically to LWR, MLWR, RLWR
(and to any of the corresponding alternative versions) as LWR-like.

Definition 2.2.8 (Computational LWE-like Problems). Assume we draw s
according to some distribution χx,s. Given an arbitrary number of indepen-
dent samples from As,χx, with x ∈ {LWE,RLWE,MLWE, LWR,RLWR,MLWR}
(or a corresponding alternative version) the computational x problem asks to
find s.

Definition 2.2.9 ((Decisional) LWE-like Problems). Assume we draw s ac-
cording to some distribution χx,s. Given uniformly distributed s, the decision
x ∈ {LWE,RLWE,MLWE, LWR,RLWR,MLWR} problem asks to distinguish
between samples from As,χx and samples from the uniform distribution Ux.

When in the following we speak of any LWE-like assumption we specifically
refer to its decisional variant. In classical formulations of the assumptions



we typically have that χx,s is the uniform distribution. We say that LWE and
LWR have the same algebraic structure if they have the same parameters n, q
and they share A. Likewise, we say that RLWE and RLWR have the same
algebraic structure if they share the same parameters d, q and they share A.
Finally we say that MLWE and MLWR have the same algebraic structure if
they share the same parameters n, n′, q and they share random A.
The results in [ACPS09] show that for LWE-like schemes the secret keys can
come from the same (Gaussian) distribution as the error. This accounts for
virtually no security loss. This justifies using small secret keys in the first
place.

2.2.8 The basic Regev cryptosystem

Description

We now describe a general form of the Regev system. The Regev system can
be based on the x ∈ {LWE,RLWE,MLWE, LWR,RLWR,MLWR} assumption
for key generation and the y assumption for ciphertext generation where x
and y have the same algebraic structure but possibly distinct p, p′. Observe
that these assumptions implicitly define all ambient spaces.
The PKE scheme consists of a collection of three algorithms PKE =
(KeyGen,Encrypt,Decrypt):

� KeyGen(1κ): The key generator chooses uniformly random A. Next it
samples b = bA·s+eep,q where s is chosen according to some distribution
χx,s and e ← χx. The public key is pk = (A, b) while the secret key is
sk = s.

� Encrypt(pk,m): To encrypt message m, we compute an ephemeral key
b′ = bs′T ·A+ e′ep′,q for some s′ that has been drawn from distribution
χy,s′ and e′ ← χy. Next we use the public key of the receiver pk = (A, b)
to compute (c1, c2) where c1 = b′ and c2 = bs′T · b + e′′ep′,q + bmp′/2e
where e′′ is drawn according to χy.

� Decrypt(sk, c): To decrypt ciphertext (c1, c2) using sk = s, we compute
mq/2 ≈ c2(q/p

′)− c1(q/p′) · s from which we can easily compute m.

In this case we consider a message space M = {0, 1}n.

Correctness

We say PKE has correctness δ if it holds that the probability
Pr[m = Decrypt(sk,Encrypt(pk,m))|(pk, sk) ← KeyGen(1κ)] = δ. We define
the decryption failure probability DFP as DFP = 1− δ.



Security

Consider the following game played between attacker A and challenger C.

� The challenger draws a random key pair using (pk, sk) ← KeyGen(1κ).
Next it computes uniformly random bitm∗ and sends pk to the attacker.

� The attacker outputs a message m∗.

� The challenger draws random bit b and random message m′ ∈ M. It
sets m0 := m∗ and m1 := m′. Next it computes c∗ ← Encrypt(pk,mb)
and sends it to A.

� The attacker outputs a bit b′ indicating its guess for m∗.

The attacker wins if b′ = b. The advantage of the attacker to win is defined
as Adv = |Pr[0 ← A(pk, c∗)] − Pr[1 ← A(pk, c∗)]| where the probability is
over the random choices of A and C.

Security proof of generic Regev scheme

The security proof for this scheme is very simple. In the first game hop,
we exchange the public key element b with a truly random value b′. Any
attacker that can observe this change can immediately be used to break the
x assumption. Next we change c1 to random b′′ and bs′T · b+e′′ep′,q to a truly
random value b′′′. Again, any attacker that can observe this change can be
used to break the y assumption. Now we are in a game where the ciphertext
is entirely independent of the public key and the message. Thus the attacker
can only guess with probability 1/2.

Security loss

The security of the basic Regev scheme reduces tightly to that of the x or y
assumption.

2.2.9 The Fujisaki-Okamoto transform (with implicit
rejection)

The Fujisaki-Okamoto (FO) transform turns a weakly secure PKE to an
IND-CCA secure one [FO99, FO13]. The FO transform has been originally
described for PKE. Dent transferred it to construction of KEMs [Den03].
However, the transforms only cover schemes with perfect correctness. The
application to partially-correct schemes got much attention in the last years



starting with [HHK17]. A good overview on the classical reductions is given
in [FO13]. Some of the key insights are that:

� When using quantum reductions, there is a tight proof from deter-
ministic PKEs with an additional strong property called disjoint sim-
ulatability to IND-CCA secure KEMs in the quantum random oracle
model (QROM) [SXY18]. Disjoint simulatability is implied by sparse
pseudo-randomness.

� When using classical reductions, there is a tight proof from a subclass
of probabilistic PKEs to IND-CCA secure KEMs in the random oracle
model [FO13].

� When using classical reductions, there is a tight proof from de-
terministic PKEs to IND-CCA secure KEMs in the random oracle
model [FO13].

� When using quantum reductions, there is a non-tight proof from deter-
ministic and probabilistic PKEs to IND-CCA security in the quantum
random oracle model (QROM). To avoid high security losses, it is useful
to require implicit rejection, where the decryption oracle outputs ran-
dom responses in case of a decryption failure. All black-box reductions
have a square loss of security. Given current knowledge, it seems hard
to avoid this non-tight security loss [JZM21] for measurement-based
reductions (that measure the output of the QROM). Under certain as-
sumptions on the reversibility of the attacker a non-black box reduction
presented at EC’20 in has a linear loss.

� To improve the tightness loss over the standard hybrid argu-
ment [BBM00] when analyzing in the more realistic multi-user setting,
the public key of the receiver is usually used to derive the shared key.
Essentially this works as a mechanism for domain separation of the
random oracle used. However, as [DHK+21] show using the full pk is
wasteful, a prefix suffices. This results in a considerable increase of the
running time of Kyber.

We note that even though the results of [DHK+21] present a much more re-
alistic setting it still does not provide corruption capabilities to the attacker.
Strictly speaking, their result only holds if no party is ever corrupted. It is
unclear if their improvements over the naive hybrid argument transfer to the
setting with adaptive user corruptions as well.
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Chapter 3

IPCC – Improved Perfect Code
Cryptosystems

IPCC [RKY+22] is a system based on graphs. The submission cites the
perfect-code cryptosystems from Fellows and Koblitz [FK93] which is a sys-
tem designed as a teaching tool rather than as as a secure cryptosystem; the
paper is called “Kid Krypto” and this system has featured as an introductory
example in Lange’s masters course on cryptology at TU/e. The submission
changes the system in various ways but still announces the system as based
on graphs.

3.1 Security

We (Daniel J. Bernstein, Jolijn Cottaar, and Tanja Lange) have found two
efficient attacks breaking IPCC. We have demonstrated both attacks exper-
imentally, and the submitters have acknowledged both attacks.

First attack

As announced in [BCL22], we are able to efficiently compute the plaintext
from the ciphertext. The system encrypts a message (some integer) by split-
ting m into summands mi where each graph position gets a share of the
message and encryption works by using the graph properties to obfuscate
these shares, leading to the coefficients c1j and c2j of the ciphertext poly-
nomials. The following states the core parts (mechanisms and costs) of the
attack as we announced in December 2022, using the notation from the sub-
mission package.
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Details of the first attack

The main problem that this attack exploits is that the ciphertext polynomials
are very sparse. At best there are

|I| · k · 4 · 4

variables involved and hence very little mixing happens. This expression
comes from

� |I| sets being used in the computation of fkGi ,

� k variables coming from each choice of Si,

� 4, from each of these variable having 3 neighbors, and

� 4, from there being at most 4 polynomials in the given examples of F
(2 for f1, 3 for f3, and 4 for f4)

This means that in the given example systems there are at most

3 · 3 · 4 · 4 = 144

out of 400 variables and for most monomials no extra addition happens.
This means that the shares of the messages mi appear as coefficients of the
monomials. E.g. in the case of f1 − f4 there are typically only 15 different
coefficients: 9 from the cross products of the 3 c1j shares of m1 with the 3c2j
shares of m2, and 3 more from the new shares of the polynomial for graph 1,
and 3 more from the polynomial for graph 2 giving

m1 ·m2 +m3 +m4

where m3 = m1,m4 = m2 for f1 and independently chosen for f4.
The core of the attack is that the sum of those 15 coefficients taken modulo
p gives the plaintext.

Concrete example

Note that the KAT file as provided in the implementation package contains
the hashes of the ciphertext which makes it of course good enough for
verifying that the implementation matches but makes it hard to see that the
ciphertexts are very sparse and that many coefficients repeat. To see the
behavior as described in the following, modify the code to omit hashing the
ciphertexts when producing the KATs, no other modification is needed.



As an example, consider the first example in the KAT for the
case of f1. This is given a message m = 18790. The cipher-
text produced by the reference implementation contains the fol-
lowing list of coefficients (here stated without their multiplicities):
[35, 9087, 14460, 16002, 16620, 21637, 22560, 24760, 33530, 36038, 36868, 38564,
39587, 39792, 62376]. Summing these up gives us 411916 = 18790 mod 65521,
which indeed is the plaintext.
We ran this attack on ciphertexts produced by the KAT. There are some few
cases (2 out of 100 for f1, 0 out of 100 for f3, 8 out of 100 for f4) where
this simple attack does not give the plaintext: in these cases, there are more
than 15 coefficients, because variables repeated, leading to combinations.
However, the attack is very fast and succeeded with probability of more than
90% which means that the system is typically broken.
After the authors acknowledged the attack, we did not look further into
solving these last few cases. Combinatorics arguments should be enough to
determine which of the coefficients we need to skip in summing up. We think
that counting the frequency of occurrence will give us information.

Larger parameters

We understand that the implementation is for smaller parameters than the
authors suggest and that knowing F helps the attacker. However, there are
only k + 1 different monomials of total degree k split over the two graphs
(terms in F) and

∑k
i−1(i + 1) polynomials of absolute degree ≤ k, which

means that the resulting polynomials are still likely to be sparse. Hence,
even if only the general choices of |I| and k are known the attacker knows
how many distinct coefficients to expect and the problem seems to persist
unless there are many more terms.

Second attack

In July 2023, a new version of IPCC, called IPCC7, was announced. This
version uses larger polynomials as ciphertexts: monomials are of degree as
large as 7, and there are tens of thousands of monomials in ciphertexts.
The coefficients are integers modulo 231. The number of distinct coefficients
appearing in a ciphertext is much larger than in the original IPCC.
The IPCC7 documentation, like the documentation for the original version
of IPCC, says that key recovery requires finding a perfect dominating set in
a 3-regular graph, and reports a conjecture that this problem is NP-hard.
The second attack recovers the secret key from the public key. We have
demonstrated key recovery experimentally.



Details of the second attack

Key generation partitions {0, 1, . . . , 255} into four secret subsets A,B,C,D,
each of cardinality 64. It then builds an undirected 3-regular graph by con-
necting each element of A to a random element of B; same for A and C;
same for A and D; same for B and C; same for B and D; same for C and D.
The public key communicates this graph. The secret key is A.
It is helpful to think of the secret key as specifying 256 secret variables
v0, v1, . . . , v255, where vj = 1 for j ∈ A and vj = 0 for j /∈ A. These variables
satisfy public equations: specifically, for each i ∈ {0, 1, . . . , 255}, one has
vi + vj + vk + v` = 1 where j, k, ` are the neighbors of i in the graph, since
by construction exactly one of i, j, k, ` is in A.
The attack applies linear algebra to reduce these equations to echelon form.
This produces equations expressing each vi as a linear combination of inde-
pendent variables. In experiments with 10 public keys, 7 of the keys used
just four linear combinations (for example, classifying each i as vi = v253 or
vi = v254 or vi = v255 or vi = 1 − v253 − v254 − v255), partitioning the 256
variables into the secrets A,B,C,D in some order; decryption works with
any of the equivalent secret keys A,B,C,D.
For the remaining 3 public keys, the same process partitioned {0, 1, . . . , 255}
into six sets of cardinality 1, 1, 63, 63, 64, 64. In other words, the public equa-
tions left two possibilities for the partition. The attacker can simply take
either of the two cardinality-64 sets.
Presumably there are further cases where linear algebra leaves additional
ambiguities, but it is clear that the system is broken with high probability.

3.2 Implementation considerations

The IPCC system has very large ciphertexts and is rather slow.
The original reference implementation works well enough to run through
some selected examples of key generation, encryption, and decryption, but
for smaller parameters than the authors recommend. For IPCC7, the refer-
ence implementation appears to use the full recommended ciphertext degree,
but encrypts only 31-bit messages. Both implementations would need to be
extended to handle larger messages and to add CCA protection.
The test programs included with the reference implementations do not
run known-answer tests for 100 pseudorandom messages, but only one
single message for one single key pair. Adjusting the implementations
to try more messages sometimes triggers buffer overflows caught by gcc

-fsanitize=address, in part because of missing parentheses in macro defi-



nitions in IPCC’s params.h. The reference implementation of IPCC7 some-
times does not decrypt correctly, possibly because of the following ambiguity
in the data structure for representing monomials: monomials of degree below
7 are padded with byte 0, but byte 0 also represents a valid variable.
In the reference implementation of IPCC7, public keys include A-B edges,
then A-C edges, etc., allowing a very simple attack that intersects the A-
B edges with the A-C edges to find A. Sorting the list of edges before
releasing a public key (along with sorting the two vertices in each edge, as
the implementation already does) would stop this simple attack and would
ensure that the public key does not leak any information beyond the public
graph. This would not affect the second attack described above.



Chapter 4

Layered ROLLO-I: Faster
rank-metric code-based KEM
using ideal LRPC codes

Layered-ROLLO-I is a blockwise interleaved ideal low-rank parity-check (BII-
LRPC) code-based KEM, which was proposed in [KKN23d] and submitted to
the KpqC Competition under the name Layered ROLLO-I [KKN22]. Layered
ROLLO-I is a modified version of ROLLO [ABD+19] (including ROLLO-
I), which was deselected from the NIST competition after round 2 because
of attacks on rank-metric codes decreasing the security below the required
levels.
This chapter follows an upcoming preprint by Chee, Jeong, Lange, Lee, Pelle-
grini, and Ryu resulting from the attack announcements on the KpqC forum.
Notation In the specifications of this chapter, we will make use of the fol-
lowing objects. Denote by Snw(Fqm) the set of vectors of length n and rank
weight w over Fqm :

Snw(Fqm) := {x ∈ Fnqm | wtR(x) = w}.

The Rank Support Recovery (RSR(F, s, r)) algorithm is used as a decoder
in the decapsulation procedures of ROLLO-I and the follow-up designs. It
recovers the support of (the Fq-linear subspace of Fqm generated by) the
error vector given the support E of the secret key and the rank of the error.
This corresponds to actually finding the error coordinates, by solving a linear
system of equations (see p. 13 of the ROLLO specification [ABD+19]).
Let P (x) ∈ Fq[x] be a polynomial of degree n. We can identify the vector
space Fnqm with the ring Fqm [x]/(P (x)), where (P (x)) is the ideal of Fqm [x]
generated by P (x). Given u ∈ Fnqm , denote by u(x) ∈ Fqm [x] the polynomial
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u(x) =
∑n−1

i=0 uix
i. Given u,v ∈ Fnqm , we define their product uv as the

unique vector w ∈ Fnqm such that w(x) = u(x)v(x) mod P (x). Similarly,
we define Qu = Q(x)u(x) mod P (x) for Q(x) ∈ Fqm [x] and u−1 for u(x)
invertible modulo P (x).

4.1 ROLLO-I, Layered-ROLLO-I and reduc-

tion attacks

In this chapter we will introduce ROLLO-I and two versions Layered-
ROLLO-I, namely Layered-ROLLO-I and Modified-Layered-ROLLO-I. For
each of the versions we give a reduction that efficiently transforms any in-
stance of such version of Layered-ROLLO-I to an instance of ROLLO-I. Since
the BII-LRPC code-based KEM in [KKN23d] is a modified algorithm of
ROLLO-I, we introduce ROLLO-I first.

4.1.1 ROLLO-I

The values (q, n,m, r, d, P ) are the system parameters, where q, n,m, r, d are
integers and P (x) ∈ Fqm [x] is a primitive polynomial of degree n.

� KeyGen:

– Pick random x,y ∈ Snd (Fqm).

– Set h(x) = x(x)−1y(x) mod P (x).

– Return pk = h and sk = (x,y).

� Encap(pk):

– Pick random e1, e2 ∈ Snr (Fqm).

– Set E = 〈e1, e2〉.
– Return K = hash(E) and c(x) = e1(x) + e2(x)h(x) mod P (x).

� Decap(c, sk):

– Set s(x) = x(x)c(x) mod P (x), F = 〈x,y〉 and E = RSR(F, s, r),
where 〈x,y〉 denotes the Fq-vector space spanned by the columns
of x and y (interpreted as vectors in Fmq ).

– Return K = hash(E).

Note that s = e1(x)x(x)+e2(x)y(x) mod P (x) is in F apart from the rank-r
error E which is thus returned by RSR(F, s, r).



4.1.2 Layered-ROLLO-I

This description follows [KKN23d] apart from skipping the explicit maps
between coefficient vectors and polynomials. The values (q, n,m, r, d, b, P )
are the system parameters, where q, n,m, r, d, b are integers, with n a mul-
tiple of b, and P (x) ∈ Fqm [x] is a primitive polynomial of degree n/b.
For all given parameter sets b = 2 and in any case b < n/b. The map
Ψ : Fqm [x]/(P (x)) → Fqm [x]/(P (x)b) casts polynomials of the first quotient
into the second quotient by mapping the input to the unique polynomial
of degree < n/b that is congruent to it modulo P (x)b. Similarly, the map
Ω : Fqm [x]/(P (x)b) → Fqm [x]/(P (x)) reduces the input modulo P (x). Since
P (x)b is a multiple of P (x) this map is well-defined.

� KeyGen:

– Pick random x,y ∈ Sn/bd (Fqm).

– Pick random irreducible PI(x) ∈ Fqm [x]/(P (x)) of degree (b− 1).

– Pick random PO(x), PN(x) ∈ Fqm [x]/(P (x)b), with PO(x) invert-
ible (this last restriction is not stated but is required for function-
ality).

– Set z(x) = PI(x)x(x)−1y(x) mod P (x).

– Set PP (x) = PO(x)Ψ(PI(x)) mod P (x)b and PH(x) =
PO(x)Ψ(z(x)) + PN(x)P (x) mod P (x)b.

– Return pk = (PP , PH) and sk = (x,y, PO, PI).

� Encap(pk):

– Pick random E = 〈e1, e2〉 ∈ S
n/b
r (Fqm), with e1, e2 each corre-

sponding to a polynomial of degree < n/b− b.
– Set PE1(x) = Ψ(e1(x)) and PE2(x) = Ψ(e2(x)).

– Compute c(x) = PP (x)PE1(x) + PH(x)PE2(x) mod P (x)b.

– Return K = hash(E) and c.

� Decap(c, sk):

– Compute PC(x) = PO(x)−1c(x) mod P (x)b.

– Compute c′(x) = PI(x)−1Ω(PC(x)) mod P (x).

– Decode E = RSR(〈x,y〉,xc′, r).

– Return K = hash(E).



4.1.3 Reduction of Layered-ROLLO-I to ROLLO-I

In [CJLR23] the authors propose a reduction of Layered-ROLLO-I to
ROLLO-I by using exclusively the public key of the former. To start with,
notice that PO must have an inverse modulo P b. This has not been declared
in the specification but the decapsulation process requires P−1O . If not, de-
capsulation fails. Also, PI is irreducible of degree (b−1) < n/b = degP , so it
has an inverse modulo P and thus Ψ(PI) is invertible modulo P b. Therefore,
we can invert PP modulo P b and compute PP (x)−1PH(x) as

Ψ(PI(x))−1Ψ(z(x)) + PP (x)−1PN(x)P (x) + k(x)P (x)b (4.1)

for some k(x) ∈ Fqm [x]. Since P divides P b we can reduce the equation
modulo P , obtaining

PP (x)−1PH(x) ≡ Ψ(PI(x))−1PI(x)x(x)−1y(x) mod P (x),

which is equal to x(x)−1y(x) mod P (x), where we use the fact
that Ψ(PI(x)) mod P (x) = PI(x) mod P (x) and Ψ(z(x)) mod P (x) =
PI(x)x(x)−1y(x).
This shows that the public key of (q, n,m, r, d, b)-Layered-ROLLO-I can be
reduced to the public key of (q, n/b,m, r, d)-ROLLO-I. The same can be
done for ciphertexts by computing PP (x)−1c(x) mod P (x) which gives a
ROLLO-I ciphertext. Therefore, it is possible to reduce an entire instance
of (q, n,m, r, d, b, P )-Layered-ROLLO-I to an instance of (q, n/b,m, r, d, P )-
ROLLO-I.
Attack costs before and after reduction The authors of [KKN23d] sug-
gested a possible attack scenario using the structure of BII-LRPC codes,
which can be applied to the instance of (q, n/b,m, r, d)-ROLLO-I. The struc-
tural attack costs also reveal the proposed parameters do not satisfy the
required security levels. Notice that the structural attack complexity in
[KKN23d] needs to be corrected to

S ′S =
(n
b

)3
m3q(b−1)m+ddm

2
e−m−n

b . (4.2)

After the attacks but before being deselected by NIST, the ROLLO team
presented new parameters to defend against the then three best-known at-
tacks; combinatorial, structural, and algebraic attacks [ABD+20]. Note
that Layered ROLLO-I partially applied the combinatorial and structural
attacks for its parameter selection. That is, it suggests finding the cor-
rect PI by searching the keyspace with the complexity O(q(b−1)m) to obtain
x(x)−1y(x) mod P (x), then applying the combinatorial or the structural at-
tack.



We recompute the costs of rank decoding attacks, finding out that the pro-
posed parameters are not suitable for the requested security levels. In this
report we consider the breakthrough algebraic attack [BBB+20] and fol-
lowup modifications [BBC+20a, BBB+23]. We computed complexities of
these attacks using the script available at https://gitlab.tue.nl/tlange/
kpqc-public/-/tree/master/lrollo, adapted from [LPR23]. The Sage
script performs puncturing of the public code to find the optimal complexity.
For more details on these attacks see Chapter 7 on REDOG.
Table 4.1 reports the best complexities among the attacks considered in
the original paper and these new attacks, where we discard the options
in [BBC+20a] that have been proved too optimistic in [BBB+23].

Security (q, n,m, r, d, b) Cost [KKN23d] Cost [BBC+20a] Cost red. [BBC+20a]

128 (2, 74, 67, 3, 2, 2) 130.83 48.76 40.65
192 (2, 86, 79, 4, 3, 2) 199.19 66.21 55.16
256 (2, 106, 97, 5, 3, 2) 274.98 85.68 72.05

Table 4.1: Suggested parameters, values of the log2 of attack costs for
Layered-ROLLO-I’s considered in the original paper, values of the costs con-
sidering also the new attacks and values of the costs after our reduction to
ROLLO-I.

As per the table, the most efficient attack comes from [BBC+20a], for both
the original Layered-ROLLO-I and the reduced version after our attack.
These costs also show that the suggested parameters of Layered-ROLLO-
I cannot provide the claimed security.

4.1.4 Modified Layered-ROLLO-I

This section extracts the description of the modified system from [KKN23a].
The values (q, n1, n2, dI ,m, r, d, b), where dI < n1 < n2 are the system pa-
rameters. The two polynomials P1 and P2 are primitive of degrees n1 and
n2 respectively. These are not stated among the system parameters but are
needed for the functioning of the system. In the following, we assume that
P1 and P2 are part of the system parameters.

� KeyGen:

– Pick random x,y ∈ Sn1
d (Fqm).

– Pick random irreducible PI(x) ∈ Fqm [x]/(P1(x)) of degree dI .

– Pick random PO(x) ∈ Fqm [x]/(P2(x)).

https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/lrollo
https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/lrollo


– Set z(x) = PI(x)x(x)−1y(x) mod P1(x).

– Set PP (x) = PO(x)Ψ(PI(x)) mod P2(x) and PH(x) =
PO(x)Ψ(z(x)) mod P2(x).

– Return pk = (PP , PH) and sk = (x,y, PO, PI).

The proposed parameters for the Modified-Layered-ROLLO-I along with the
attack costs are displayed the third column in Table 4.2. The table shows
that the security is still lower for these parameters than the targeted security
levels, even though the designers were now aware of the attacks in [BBC+20a].
The modified version of Layered-ROLLO-I overcomes the reduction in sec-
tion 4.1.3 by replacing the two moduli P and P b by two primitive polynomials
P1 and P2 of degree n1 and n2, respectively. In this setting, one cannot simply
reduce equation (4.1) modulo P1 as the term k(x)P2(x) would not vanish.

4.1.5 Reduction of Modified-Layered-ROLLO-I to
ROLLO-I

In this section, we will describe a reduction of the Modified-Layered-ROLLO-
I to ROLLO-I, which we (Tanja Lange and Alex Pellegrini) found and an-
nounced on the KpqC Bulletin [LP23]. Along the way we compute PI and
PO which are part of the secret key, meaning that the system leaks private
information. The authors of Layered ROLLO-I reacted by modifying the
scheme, see the next section, thereby acknowledging the attack.
The idea of the reduction remains the same, observing that PH(x)/PP (x)
cancels the PO. However, because of the coprimality of the moduli,
we cannot proceed directly from there to reducing modulo P1. Never-
theless, we know that the polynomials involved have very low degrees.
Let R(x) = PH(x)/PP (x) mod P2(x) then deg(R) < n2 and R(x) =
Ψ(z(x))/Ψ(PI(x)) mod P2(x) with deg(z) < n1 and dI small. Note that
the division might cancel common factors of PI and z, however, given the
degrees this is unlikely.

Remark 4.1.1. When viewing a polynomial v(x) ∈ Fqm [x] of degree at most
n as an element of v ∈ Fn+1

qm corresponding to its coefficient vector, we con-
sider the entries of v to be ordered in a way such that v(x) =

∑n
i=0 vix

i.

Let MR be the (dI + 1)× n2 matrix over Fqm representing multiplication of



a polynomial of degree up to dI by R modulo P2, i.e.

MR =


R(x) mod P2(x)
R(x)x mod P2(x)

...
R(x)xdI mod P2(x)

 , (4.3)

where each row consists of the coefficient vector of R(x)xi mod P2 for i =
0, . . . , dI .

Remark 4.1.2. Let A be any n × m matrix, with n,m ∈ N. We denote
A[a : b, c : d], with a < b ∈ [1, n] and c < d ∈ [1,m], the submatrix of A
consisting of the rows in the range [a, b] and columns in the range [c, d]. We
omit a and b, i.e. A[:, c : d] to denote the submatrix consisting of all the
rows and taking columns in [c, d]. Similarly, for all the columns. With this
notation A = A[:, :]. If S1 ⊂ [1, n] and S2 ⊂ [1,m] we denote A[S1, S2] the
submatrix of A consisting of rows indexed by S1 and columns indexed by S2.

Note that multiplication by R defines an automorphism of the field
Fqm [x]/(P2(x)), thus the associated matrix M has rank n2. Therefore, since
MR = M [1 : dI + 1, :], it has rank dI + 1. Let π : Fn2

qm → FdI+1
qm be the

projection of an element of Fn2
qm onto its first dI + 1 coordinates. Consider

π(Ψ(PI(x)))MR = Ψ(z(x)) (4.4)

as a linear system of equations in the coefficients of Ψ(PI) and Ψ(z), where
in this case we view Ψ(z) as an element of Fn2

qm consisting of the unknown
coefficients of Ψ(z) and n2 − n1 trailing zeroes. Note that π does not induce
any loss of information due to the degree of Ψ(PI). Since deg(Ψ(PI)) +n1 =
dI + n1 < n2, the system has a solution corresponding to the representatives
of PI and z modulo P1 (here we remove the Ψ notation as the solutions will
have degree lower than n1).
We can actually compute PI from a subset of the equations defined by (4.4).
Indeed, π(Ψ(PI)) lies in the left kernel of the submatrix of MR that consists
of the last n2 − n1 columns, meaning that such submatrix has rank at most
dI , and typically exactly dI as this system is defined over Fqm . Hence, let
J ⊂ {n1 + 1, . . . , n2} having cardinality #J = dI . We only require MR[:, J ]
to have rank dI , which holds for most choices of J , so typically we take the
last dI columns. This makes explicit that the system is underdetermined,
and in case MR[:, J ] has rank lower than dI , we can include further columns.
From (4.4) we can compute PI by solving

π(Ψ(PI(x)))MR[:, J ] = 0 (4.5)



Since also λπ(Ψ(PI(x)))MR[:, J ] = 0 for any constant λ ∈ Fqm we can recover
PI only up to such a constant factor. We will now show that this is not a prob-
lem. Let P ′I(x) = λPI(x). We can recover P ′O(x) = PP (x)/P ′I(x) = PO(x)/λ,
then z′(x) = PH(x)/P ′O(x) = P ′I(x)x(x)−1y(x) = λPI(x)x(x)−1y(x), and
finally x(x)−1y(x) = z′(x)/P ′I(x) which corresponds to a ROLLO-I public
key.
Similarly, for the ciphertext, we can recover λc′′(x) = (P ′O(x))−1c(x) =
λΨ(PI(x))PE1(x) + λΨ(z(x))PE2(x) mod P2(x). Since λ is constant, the de-
gree of the right-hand side is below n2 and we can reduce modulo P1 and
divide by P ′I(x) = λPI(x) to get PE1(x) + λx(x)−1y(x)PE2(x), matching
the ROLLO-I ciphertexts. Note that the degree constraint on deg(PEi) <
n2 − n1 − dI for all proposed parameters implies that deg(PEi) < n1, hence,
this is a valid ROLLO-I ciphertext. While this is not pointed out in the
slides, this is also required for the Modified-Layered ROLLO-I decoder to
work as RSR(〈x,y〉,xc′, r) in the regular decapsulation procedure.
The reduction in code length and dimension from using n2 to using n1 reduces
the security further by more than 10 bits for each security level, see the fourth
column in Table 4.2.
We implemented our reduction in SageMath. The time in seconds to compute
the public key transformation described in this section, on a Linux Mint
virtual machine, is stated in Table 4.2 (Time).
Note that here we use PI with degPI = dI as stated on the slides. The
parameters file in the implementation package instead uses degPI = 4 for all
security levels.

Security (q, n1, n2,m, r, d) Cost Cost red. Time (s)

128 (2, 37, 61, 67, 6, 2) 103.83 [BBB+23] 96.95 [BBB+23] 1.85
192 (2, 43, 71, 79, 7, 3) 185.52 [BBB+20] 156.16 [BBB+23] 2.42
256 (2, 53, 103, 97, 7, 3) 187.91 [BBB+23] 151.11 [BBB+23] 4.211

Table 4.2: Values of the log2 of attack costs for Modified-Layered-ROLLO-I’s
suggested parameters, before and after our reduction, and time consumed by
the reduction.

4.2 Message Recovery Attacks

We are going to introduce another two versions of Layered-ROLLO-
I, namely the New-Modified-Layered-ROLLO-I [KKN23b] and Layered-
ROLLO-I-20231020 [KKN23c], that were posted by the authors of Layered



ROLLO-I after the announcement of the last reduction attack. First we
describe the New-Modified-Layered-ROLLO-I, we then give an efficient mes-
sage recovery attack on this version and all the previous versions of Layered-
ROLLO-I. Thereafter, we describe Layered-ROLLO-I-20231020 and give an
efficient message recovery attack for security levels 128 and 192.

4.2.1 New-Modified Layered-ROLLO-I

In this section, we describe the system from [KKN23b]. The new version of
Layered-ROLLO-I uses polynomial masking techniques in order to avoid the
reduction to ROLLO-I described in section 4.1.5. To this end, the new system
patch introduces an auxiliary polynomial PN of small degree and modifies
the PP -part of the public key.
The values (q, n1, n2, nI ,m, r, d), where nI < n1 < n2 are the system param-
eters. There is also a primitive polynomial P2 of degree n2 which is a system
parameter. We will report here only the key generation procedure, as the rest
is the same as for Modified Layered-ROLLO-I except for the degree of the
error polynomials. The key generation procedure of the new system works
as follows.

� KeyGen:

– Pick random x,y ∈ Sn1
d (Fqm).

– Pick random primitive P1(x) ∈ Fqm [x] of degree n1.

– Pick random PI(x) ∈ Fqm [x]/(P1(x)) of degree nI .

– Pick random PO(x), PN(x) ∈ Fqm [x]/(P2(x)), with degPN = nN .

– Set z(x) = PI(x)x(x)−1y(x) mod P1(x).

– Set PP (x) = PO(x)(Ψ(PI(x)) + PN(x)P1(x)) mod P2(x) and
PH(x) = PO(x)Ψ(z(x)) mod P2(x).

– Return pk = (PP , PH) and sk = (x,y, PO, PI , P1).

The encapsulation mechanism with updated error-weights is equivalent to
that of Modified Layered-ROLLO-I except that the random vectors e1, e2

should correspond to a polynomial of degree nE < n2 − n1 − nI − nN − 2.

4.2.2 Message recovery attack on Layered-ROLLO-I

We describe a message recovery attacks that we mounted against all the
versions of the Layered-ROLLO-I cryptosystem described so far. The idea
is to reduce the modular equation in the encapsulation to a system of linear



equations and exploit the knowledge of zero positions of the error vectors to
solve the system.
Recall that encapsulation computes the ciphertext

c(x) = PE1(x)PP (x) + PE2(x)PH(x) mod P2(x).

We can multiply the ciphertext polynomial by PH(x)−1 mod P2(x) and obtain

c̄(x) = c(x)PH(x)−1 = PE1(x)R(x) + PE2(x) mod P2(x) (4.6)

where R(x) := PP (x)PH(x)−1 mod P2(x). View equation (4.6) in terms of
Fqm vectors corresponding to the coefficient vectors of the polynomials in-
volved. As in section 4.1.5, we can regard R as the (nE + 1) × n2 full rank
matrix MR over Fqm representing the multiplication of a polynomial of degree
up to nE by R modulo P2, defined as in (4.3). In other words, MR generates
a linear [n2, nE + 1]-code over Fqm .
With this in mind we can rewrite (4.6) as

c̄ = e1MR + e2, (4.7)

which corresponds to a McEliece-like encryption of the message e1. In the
settings of all the versions of Layered-ROLLO-I, we can exploit the low degree
of the polynomial PE2 . Indeed, we can find an invertible submatrix of MR

that consists of a subset of columns corresponding to error-free positions in
the ciphertext. By remark 4.1.1 the error vector e2 has non-zero entries only
in the first nE + 1 coordinates. Therefore, we can search for an invertible
submatrix of MR[:, nE + 2 : n2]. Picking nE + 1 random columns of a rank
nE+1 matrix over Fqm , where q and m are given by the suggested parameters,
will constitute an invertible matrix with overwhelming probability. We can
also just take the last nE + 1 columns.
Let MRinv be such a matrix. The last step is to compute e1 = c̄′M−1

Rinv, where
c̄′ consists of the coordinates of c̄ corresponding to the columns of MRinv.
Finally, compute e2 = c̄[1 : nE + 1]− e1MR[:, 1 : nE + 1].
We implemented this attack in SageMath. An average of the time required,
on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters of the version described in section 4.2.1 is given in table 4.3.

Security nE Time (s)

128 17 2.21
192 19 3.18
256 39 6.65

Table 4.3: Average time in seconds (on 50 samples for each security level)
needed to recover a plaintext.



Remark 4.2.1. We would like to remark that this message recovery attack
works for all the versions of layered-ROLLO-I. Even for the November 2022
submission, the degrees of e1 and e2 were smaller than half of n2, which is
relevant for the positions in MRinv not to overlap with the positions in e2.
The attack was prompted by the version the authors announced on 22 Sep
(New Modified Layered ROLLO-I) and Alex Pellegrini posted his attack on 3
Oct as [Pel23a].

4.2.3 Layered-ROLLO-I-20231020

In this section, we describe the system from [KKN23c]. The new version
of Layered-ROLLO-I uses polynomial masking in the ciphertext in order
to overcome the message recovery attack described in section 4.2. We will
only display the parts in the specification of KeyGen and Encap that differ
from that of New-Modified Layered-ROLLO-I (see Section 4.2.1). The values
(q, n1, n2, nI , nA,m, r, d), where nI = n1 < n2 and nA = 4 are the system
parameters. The updates to key generation procedure of the new system are
as follows.

� KeyGen:

– Pick random PN,A(x), PN,B(x) ∈ Fqm [x]/(P2(x)) of degree nA

– Set PP (x) = PO(x)(Ψ(PI(x)) + PN,A(x)P1(x)) mod P2(x),
PH(x) = PO(x)Ψ(z(x)) mod P2(x) and
PB(x) = PO(x)PN,B(x)P1(x) mod P2(x).

– Return pk = (PP , PH , PB) and sk = (x,y, PO, PI , P1).

The updates to the encapsulation mechanism with updated error-weights are
as follows.

� Encap(pk):

– Compute c(x) = PP (x)PE1(x)+PH(x)PE2(x)+PB(x)PN,C(x) mod
P2(x).

where PE1 , PE2 and PN,C have degree nE < n2 − n1 − nA − 1. Let ` =
n2 − n1 − nA − 1. The decapsulation procedure has not been updated.
Finally, the suggested parameters for the 20231020 version are

Security parameter (q,m, nI , n1, n2, nA)

128 (2, 67, 37, 37, 61, 4)
192 (2, 79, 43, 43, 71, 4)
256 (2, 97, 53, 53, 103, 4)



4.2.4 Message recovery attack on Layered-ROLLO-I-
20231020

We describe a fast message recovery attack on the security levels 128 and
192 of Layered-ROLLO-I-20231020, that uses only linear algebra.
Compute the polynomials

A1(x) = PP (x)P−1B (x),

B1(x) = PH(x)P−1B (x),

A2(x) = PP (x)P−1H (x),

C2(x) = PB(x)P−1H (x),

B3(x) = PH(x)P−1P (x),

C3(x) = PB(x)P−1P (x)

and let MA1 ,MB1 ,MA2 ,MC2 ,MB3 and MC3 be the corresponding matrices as
in (4.3). Set

c1(x) = c(x)P−1B (x),

c2(x) = c(x)P−1H (x) and

c3(x) = c(x)P−1P (x).

From these values we derive the following equations

c1 = e1MA1 +MB1e2 + p

c2 = e1MA2 + e2 + pMC2

c3 = e1 + e2MB3 + pMC3

(4.8)

where we denote the coefficient vector of PN,C with p. A first key observation
is that, if we restrict to the last n2−` columns of each matrix, corresponding
to the terms of degree ≥ `, we can remove the terms p, e2 and e1 from
the first, second and third equation in (4.8), respectively. A second key
observation is that, thanks to the size of n2 (and because essentially any
random matrix over Fqm has full rank), we can find three sets S1, S2, S3 ⊂ [`+
1, n2] of cardinality ` such that MA1 = MA1 [:, S1],MB1 = MB1 [:, S1],MA2 =
MA2 [:, S2],MC2 = MC2 [:, S2],MB3 = MB3 [:, S3],MC3 = MC3 [:, S3] are all
invertible `× ` matrices. Denote by c1, c2 and c3 the subvectors of c1, c2 and
c3 of consisting of entries indexed by S1, S2 and S3, respectively.

c1 = e1MA1 + e2MB1

c2 = e1MA2 + pMC2

c3 = e2MB3 + pMC3

(4.9)



Setting Mp := MC2M
−1
A2
MA1M

−1
B1

+ MC3M
−1
B3

and cp = c2M
−1
A2
MA1M

−1
B1
−

c1M
−1
B1

+ c3M
−1
B3

, one can solve

pMp = cp

for p. Substituting p into (4.9) we recover e1 and e2.
We implemented this attack in SageMath. An average of the time required,
on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters is given in table 4.4.

Security nE Time (s)

128 17 11.66
192 21 16.32

Table 4.4: Average time in seconds (on 50 samples for each security level)
needed to recover a plaintext.

Alex Pellegrini announced this attack on 22 Oct in [Pel23b] breaking two
out of three security levels of the 20231020-version of Layered ROLLO-I,
announced two days prior.

Remark 4.2.2. This attack does not apply to the 256-bit parameters. For
the parameters of any security level we always have that 3(n2−`) > n2 where
there exist at most n2 linearly independent equations in the system (4.8)
because there are only n2 variables. For level 128 and 192 we have 3` < n2

ensuring unique solution of the system, which is not the case for security
level 256.



Chapter 5

NTRU+: Compact
Construction of NTRU Using
Simple Encoding Method

NTRU+ [KP22] is a lattice-based submission to the KpqC competition. It
builds on the NTRU system introduced by Hoffstein, Pipher and Silverman in
1998 [HPS98] and many of the improvements since, in particular the NTTRU
system introduced by Lyubashevsky and Seiler in 2019 [LS19]. We have
analyzed this system in detail (see below for a summary), for a more in
detail analysis see the bachelor thesis of Luc Steenbakkers [Ste23].

5.1 System description

NTRU+ works with three rings

R = Z[x]/(xn − xn/2 + 1)

Rq = (Z/qZ)[x]/(xn − xn/2 + 1)

R3 = (Z/3Z)[x]/(xn − xn/2 + 1),

where n and q are integers with gcd(q, 3) = 1 and n = 2i3j, with i, j > 0
to ensure n is even. This is a large deviation from the original NTRU, and
follows the NTTRU paper by choosing a ring and an n and q such that the
Number Theoretic Transform (NTT) can be computed efficiently, but avoid
some of the concerns with subfield attacks.
The key generation goes as follows. The sparse polynomials f ′ and g are
generated using the Centered Binomial Distribution, which means the prob-
ability for a coefficient to be −1 or 1 is 1/4 for both, and the probability for
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a 0 is 1/2. Using this distribution approximates a narrow discrete Gaussian
distribution.
The secret key is then created as f = 3f ′ + 1 and g. This shape of f
goes back to a paper by Hoffstein and Silverman [HS01] and is also used
in NTTRU. It gives the benefit of saving one division by f mod 3 in the
decryption/decapsulation process. This does mean q needs to be somewhat
larger to avoid decryption failures since the coefficients of f are larger.
The public key then is computed as h = 3g/(3f ′ + 1) mod q.
In encapsulation a random message m+ ∈ {0, 1}n is sampled. The shared
symmetric key K and the randomness r are then generated by hashing
m+. Then m is created as an element of {−1, 0, 1}n using the Semi-
generalized One-Time pad (SOTP) introduced by the authors. So m =
SOTP(m+, hash(r)), which basically splits up the hash of r into u1||u2 and
then finds m = (m+ ⊕ u1) − u2. Afterwards the encryption of the message
m is similar as in NTRU:

c = r · h+m ∈ Rq.

Decapsulation starts with the following calculation:

m′ = (f · c mod ±q) mod ±3,

where mod± indicates that the set of representatives of the residue classes is
taken centered around 0, e.g., mod ±3 means a result in {−1, 0, 1}. Note that
the mixing of moduli can lead to decryption errors here. Then r′ is obtained
by r′ = (c −m′) · h−1. If m = m′ and r = r′, then using m′ and r′ as input
to the inverse function of the SOTP, named Inv, will return the message
m+ (by splitting up the hash of r′ again into u′1 and u′2 and computing
m′+ = (m′ + u′2) ⊕ u′1). Given m′+ the user can compute hash(m′+) and
compare this to r′. If encapsulation was done correctly and no decryption
error appeared, m′+ = m+ and thus r′ = hash(m′+). If this matches, the
user can compute K.

5.2 Security considerations

We analyzed this system to check applicability of known attacks.

Key-search attacks

Odlyzko’s meet-in-the-middle attack for approximate collisions [HGSW03]
and the low-memory adaptation to golden-collision searches by van Vreden-
daal [van16] are generic attacks on NTRU-style systems that exploit the spar-
sity of the involved polynomials. These attacks apply directly to NTRU+.



The more recent faster version by May [May21] is described for RLWE but
also applies to NTRU. The choice of parameters by the authors seem suffi-
cient to be secure from these three attacks.
The choice of polynomial of NTRU+ also influences the security. Since the
coefficients that overflow to higher powers of the polynomial than n are sent
to two places in the polynomial reduction, there is mixing of coefficients.
Where normal NTRU has 2n equivalent keys, coming from (±xif,±xig), for
NTRU+ only some of these have the correct sparsity to work. The exact
number of equivalent keys depends on the degrees of f and g and on the
smallest power of x that has a non-zero coefficient in one of these polynomials
as well as the required sparsity of the private polynomials to avoid decryption
failures. It is safe to bound the number of equivalent keys by 2n.

Structural attacks

We have also looked at some of the structural attacks, mostly on the lattice
structure.

Evaluate-at-one attack

This attack exploits that the polynomial xn − 1 used in original NTRU has
x − 1 as factor. The ring polynomial in NTRU+ is chosen to not have any
polynomial factor over the integers and thus avoids this attack by design.

Generic lattice attacks

Table 5.1 contains the results of the estimator for the BKZ lattice attacks
from Albrecht, Curtis, Deo, Davidson, Player, Postlethwaite, Virdia and
Wunderer found in [ACD+18]. For more information see Section 2.1. The
input of the code is given in Table 5.2.
Key search and lattice attacks combine into hybrid attacks as described by
Howgrave-Graham [How07]. This is an interesting field of ongoing research
and we have not found a faster attack.

5.2.1 Reaction attacks

The NTRU+ scheme uses a CCA-II conversion to avoid reaction attacks.
As noted below, the scheme uses a non-standard transformation that has
recently been shown to be insecure by Lee [Lee23a].
In principle this conversion should protect against reaction attacks, a type
of attack going back to 1999 by Hall, Goldberg, and Schneier [HGS99] that



Parameter n 576 768 864 1152
Type primal primal primal primal
Q-Core-Sieve 104 149 171 273
Q-Core-Sieve + O(1) 120 165 187 289
Q-Core-Sieve (min space) 117 167 192 306
Q-β -Sieve 113 158 180 283
Q-8d-Sieve + O(1) 134 178 201 303
Core-Sieve 115 164 189 300
Core-Sieve + O(1) 131 180 205 316
Core-Sieve (min space) 144 206 237 378
β-Sieve 123 173 198 310
8d-Sieve + O(1) 144 194 219 331
Q-Core-Enum + O(1) 124 200 242 447
Lotus 127 216 264 508
Core-Enum + O(1) 248 399 482 887
8d-Enum (quadratic fit) + O(1) 276 460 564 1071

Table 5.1: Estimations for security level found with code by [ACD+18]

n 576 768 864 1152

Standard deviation
√

288/576
√

384/768
√

432/864
√

576/1152

q 3457 3457 3457 1152

Secret distribution (−1, 1), 288 (−1, 1), 384 (−1, 1), 432 (−1, 1), 576

m 576 768 864 443

Norm f
√

288 · 32
√

384 · 32
√

432 · 32
√

576 · 32

Norm g
√

288
√

384
√

432
√

576

Claimed security 115 164 188 264

Category 1 1 3 5

Ring xn − xn/2 + 1 xn − xn/2 + 1 xn − xn/2 + 1 xn − xn/2 + 1

Table 5.2: Input for the code by [ACD+18]



recovers private keys from information about failed decryptions of maliciously
modified ciphertexts.
In the thesis of Steenbakkers [Ste23] we have worked out details on how one
could modify ciphertexts to recover the key if the CCA transform as not
deployed. We also worked out solutions if the message space is restricted to
{0, 1} (omitting −1). None of these are applicable to NTRU+ in its current
form though, since the transform indeed protects against these.
Lee [Lee23a] however has shown that the IND-CCA property is violated.
As a reminder the IND-CCA game goes as follows. The attacker creates
two messages m0 and m1 which he sends to the challenger. The challenger
randomly chooses one of the messages, encrypts it and sends the ciphertext
c to the attacker. Then the IND-CCA game is broken if the attacker has a
more than 1/2 chance of choosing the encrypted message from m0 and m1,
while having access to a decryption oracle and not being allowed to decrypt
c.
Lee’s attack basically exploits the fact that when looking at the Inv map of
the SOTP that m + u2 need not be binary if you tamper with the cipher-
text. But in the implementation m+ u2 is reduced modulo 2, so a tampered
ciphertext can be decrypted properly.
The important part here is that there are options to tamper with the ci-
phertext, specifically adding 2 to a certain term, by changing both it and its
corresponding message. Then

r′ = (c′ −m′) · h−1

= (c+ 2− (m+ 2) · h−1

= (c−m) · h−1
(5.1)

So since we can now add 2 to a certain ciphertext and its message we can
input c′ = c+2 and m′ = m+2 into the Inv, with the correct r′ for both m, c
and m′, c′. If the first coefficient of m is equal to −1 and of u2 is equal to 1,
adding 2 will get us the same m+, but we can put c′ in our decryption oracle.
Thus in about 1/8 of the cases for one coefficient we can create a ciphertext
unequal to c, but will decrypt to the original m0 or m1. There are of course
many coefficients to play with, so statistically speaking this is broken.
The authors of NTRU+ changed their Inv function to fight this attack, by
putting in a check that m+ u2 must be binary or it will output a decryption
error. Note that this check does present new options for reaction attacks,
but we haven’t been able to exploit this yet.



5.3 Implementation considerations

On Linux systems the reference implementation failed, but a small tweak
(adding return 0 to the crypto kem enc functions) made the code compile
and the outputs match the KAT files.
Like its relatives, NTRU+ has the relatively small ciphertexts and public
keys of lattice-based systems. Decapsulation is faster because of the choice
of f = 3f ′+ 1. Key generation is slower than for other lattice-based systems
due to the NTRU quotient (rather than product NTRU) structure in the
public key h/3g/f .

5.4 Provable security

The authors of NTRU+ [KP22] chose to use a two-stage CCA-II transforma-
tion instead of deploying existing adaptations [DHK+21, SXY18, HHK17] of
the Fujisaki–Okamoto transform [FO99]. A first step checks that the plain-
text is in {0, 1} and then a (relatively standard) transformation is used.
The attack by Lee [Lee23a], explained in the section on reaction attacks,
shows that, at least in the reference implementation, this step leads to a
practical attack. Following an initial misunderstanding the NTRU+ sub-
mitters have now acknowledged the attack and that it also applies on the
specification.
One of the more puzzling parts is the fact that somewhere in the proof
for IND-CCA security there needs to be a flaw, since this attack exists. We
expect the flaw to be in the fact that for the proof they use a flawed definition
of rigidity, which only holds for valid ciphertexts as input. They miss the fact
that any element outside of the co-domain of the encryption function should
not be decryptable. This is something that definitely needs the attention
of the authors. We also note that the injectivity definition seems to be
flawed since it all-quantifies over all involved variables, thus eradicating the
probability space.
Another potential point of attention is that attackers can gather some in-
formation about the involved secret key by crafting ciphertexts that fail to
decrypt [BS20, DRV20]. To mitigate such attacks, NTRU+ involves an ad-
ditional step that aims to push the chance of crafting such ciphertexts out of
reach. We were not able, however, to verify that the additional step indeed
realizes this goal since we found an – albeit very artificial – counterexample
to the claim by linking worst-case decryption failures with some specially
crafted G(r). This did not translate into an attack, but the step needs re-
consideration.



Chapter 6

PALOMA: Binary Separable
Goppa-based KEM

PALOMA [KJKK22] is a code-based KEM, based on binary Goppa codes.
While PALOMA is close to the NIST submission Classic McEliece [ABC+22]
and references it frequently, there are several differences.
The Goppa polynomial g is chosen to split completely over F2m while it is
chosen to be irreducible in Classic McEliece. This means that the support
and the t roots of g need to share F2m and the parameters are chosen so that
n+ t < 2m and for the given parameters this is a strict inequality. There are
also some other differences in how the system achieves CCA security.
Below, we first discuss cryptanalysis results regarding PALOMA. Afterwards,
we discuss the provable security claims made in the PALOMA specification
and implementation considerations. Finally, we give our general assessment.

6.1 System description

Let q = 2m. A binary Goppa code is defined by

� a list L = (α1, . . . , αn) of n distinct elements in Fq,
called the support.

� a square-free polynomial g(x) ∈ Fq[x] of degree t such that g(αi) 6= 0
for all 1 ≤ i ≤ n. This g(x) is called the Goppa polynomial.

The corresponding binary Goppa code Γ(L, g) is{
c ∈ Fn

2

∣∣∣∣S(c) =
c1

x− α1

+
c2

x− α2

+ · · ·+ cn
x− αn

≡ 0 mod g(x)

}
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� This code Γ(L, g) has length n, dimension k ≥ n −mt and minimum
distance d ≥ 2t+ 1.

The parity-check matrix of this code is

H =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2
1 α2

2 α2
3 · · · α2

n
...

...
...

. . .
...

αt−11 αt−12 αt−13 · · · αt−1n

 ·


1
g(α1)

0 0 . . . 0

0 1
g(α2)

0 . . . 0

0 0 1
g(α3)

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
g(αn)


PALOMA chooses g(x) =

∏
α∈T (x − α) for T ⊆ Fq \ {α1, α2, . . . , αn} with

|T | = t. Hence, g(x) splits completely over Fq. Classic McEliece chooses g
irreducible over Fq. This difference impacts what decoding algorithms are
readily available and the submission puts significant effort into extending
Patterson’s decoding algorithm to deal with reducible g.
All secrets in the PALOMA KeyGen are derived from the main secret, a
string r:

1. (α1, α2, . . . , αq) = shuffler(Fq)

2. L = (α1, α2, . . . , αn), T = (αn+1, αn+2, . . . , αn+t).

3. Compute g =
∏

α∈T (x− α) and corresponding parity-check matrix H.

4. Try to bring H to systematic form, GOTO 1 if this fails.

H can be put in systematic form with 29% probability (no change compared
to Classic McEliece). For PALOMA, any choice of T leads to valid g; Classic
McEliece has a procedure to construct an irreducible g that succeeds almost
always.
Binary Goppa codes are alternant codes and can be decoded efficiently using
the Patterson decoder [Pat75], however, this decoder requires computing
the inverse of the syndrome polynomial modulo g and there is no reason
a-priory that 4his polynomial should be co-prime to g in the case considered
in PALOMA. The submission thus develops a version of Patterson decoding
that is suitable for this choice of g. We first describe the regular version and
then point out where changes were needed.
To decode the received vector x = c + e to c ∈ Γ(L, g), first compute the
syndrome polynomial

s(x) =
n∑
i=1

(ci + ei)/(x− αi) ≡

(
n∑
i=1

ei
∏
j 6=i

(x− αj)

)
/

n∏
i=1

(x− αi) mod g(x).



If e 6= 0 this polynomial s(x) 6= 0 by definition of the code.
Put f(x) =

∏n
i=1(x − αi)

ei with ei ∈ {0, 1}. Then, using the chain and
product rules on derivatives, f ′(x) =

∑n
i=1 ei

∏
j 6=i(x − αj)ej . Thus s(x) ≡

f ′(x)/f(x) mod g(x).
Split f(x) into odd and even terms: f(x) = A2(x)+xB2(x) and observe that
over binary fields f ′(x) = B2(x) as all even powers of x have derivative 0.
Thus B2(x) ≡ f(x)s(x) ≡ (A2(x) + xB2(x))s(x) mod g(x) which Patterson
normally transforms by dividing by s(x) mod g(x). However, as mentioned
above, s(x) need not be co-prime to g(x) if g is reducible. If g(x) is ir-
reducible it is possible to compute B2(x)(x + 1/s(x)) ≡ A2(x) mod g(x)
and to recover A and B from a half-gcd computation on the polynomials
v(x) ≡

√
x+ 1/s(x) and g(x). At every step A(x) = B(x)v(x) + h(x)g(x)

and the half-gcd computation stops when the degrees of A and B are bal-
anced: deg(A) ≤ bt/2c, deg(B) ≤ b(t− 1)/2c.
PALOMA designs a new version of Patterson’s decoder for reducible g, deal-
ing with gcd(g, s) 6= 1.
Let s∗ = 1 + xs and g1 = gcd(g, s), g2 = gcd(g, s∗). By construction, s
and s∗ are co-prime. They then define polynomials g1, g2 with g = g1g2, do
the computation modulo g1 and g2 separately and eventually combine the
congruences using the Chinese Remainder Theorem. This makes it possible
to use a Patterson-style decoder for reducible g at the expense of splitting
the computation.
To hide timing information on secret g they would need to use s and s∗ of
maximum-possible degree t and thus require more work and extra effort to
hide the actual degrees.
So far, protection against timing attacks is not implemented but decoding is
already very slow (see later section).
Classic McEliece uses a Berlekamp-Massey decoder instead of the Patterson
decoder. This decoder does not require g to be irreducible and could thus be
used for the g in PALOMA.
The main observation for using this decoder is that c ∈ Γ(L, g) implies
c ∈ Γ(L, g2). This fact is normally shown when proving that the minimum
distance is at least 2t+ 1.
Let c ∈ Γ(L, g), then

s(x) =
n∑
i=1

ci/(x− αi) =

(
n∑
i=1

ci
∏
j 6=i

(x− αj)

)
/

n∏
i=1

(x− αi) ≡ 0 mod g(x).

over F2m :

(f2i+1x
2i+1)′ = f2i+1x

2i, (f2ix
2i)′ = 0 · f2ix2i−1 = 0,



thus

f ′(x) =

(w−1)/2∑
i=0

f2i+1x
2i =

(w−1)/2∑
i=0

√
f2i+1x

i

2

= F 2(x).

Having s(x) ≡ F 2(x)/f(x) ≡ 0 mod g(x) for squarefree g means g|F , thus
g2|F 2.
Let c ∈ Γ(L, g2), then s ≡ 0 mod g2 ⇒ s ≡ 0 mod g holds obviously.

The Berlekamp–Massey decoder can be used for any generalized Reed-
Solomon code and is used here for Γ(L, g2). This algorithm goes back to
computing the feedback polynomial for an LFSR given twice as many out-
put bits as the state length.

1. Let v = c + e. Then

B(x) =
n∑
i=1

vi
g2(αi)

∏
j 6=i

(x− αj).

Then B(αi) = vi

(∏
j 6=i(αi − αj)

)
/g2(αi).

2. Put A(x) =
∏

i(x− αi).

3. Use Berlekamp-Massey to compute approximant b/a to B/A such that
gcd(a, b) = 1, deg(a) ≤ t, deg(b) < t, and deg(aB − bA) < deg(A)− t.

4. If a divides A, compute f = B−bA/a and v = (B(α1)−f(α1), B(α2)−
f(α2), . . . , B(αn)− f(αn))

Classic McEliece chooses the Berlekamp-Massey decoder for ease of safe im-
plementation (correctness and constant timeness). The same approach could
work for PALOMA and would probably be faster than their adaptation of
Patterson.
See https://cr.yp.to/papers.html#goppadecoding for a full explanation of
the Berlekamp–Massey decoder for coding Goppa codes.

6.2 Security considerations

For most purposes, the choice of g between PALOMA and Classic McEliece to
does not matter. While limiting g to polynomials that split completely over
F2m limits the key space, this number is so large that it is not even close to the

https://cr.yp.to/papers.html#goppadecoding


fastest known attacks to recover messages. Within the keyspace covered by
PALOMA there are several equivalent codes and an ongoing research project
is to see whether there are proportionally larger equivalence classes. This
work is currently under development by Lorenz Panny, a former TU/e PhD
student.
A concern expressed in [For18] in comparing choices for NTS-KEM and Clas-
sic McEliece is that not irreducible choices of g can bring structural or alge-
braic attacks into reach. Fur algebraic attacks we checked [FOPT10, COT14,
EM22, CMT23] and several more. Note, again, that the public key is a hid-
den parity-check matrix SH of Γ(L, g) for

H =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2
1 α2

2 α2
3 · · · α2

n
...

...
...

. . .
...

αt−11 αt−12 αt−13 · · · αt−1n

 ·


1
g(α1)

0 0 . . . 0

0 1
g(α2)

0 . . . 0

0 0 1
g(α3)

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
g(αn)


Let M = (mij) be the generator matrix of the same code, then SHMT = 0,
hence

n∑
j=1

mijα
u
j /g(αj) = 0, 1 ≤ i ≤ k, 0 ≤ u ≤ t− 1.

Use variablesXj for the unknown αj ∈ F2m and Yj for the unknown 1/g(αj) ∈
F2m for 1 ≤ j ≤ n. Using Gröbner basis computations to solve the system∑n

j=1mijX
u
j Yj = 0 requires high rate (dimension divided by length of the

code) and does not make use of g (Y is general). This means, that the
difference of PALOMA and Classic McEliece is ignored in the modeling. None
of the attacks we considered gave an improvement over message-recovery
attacks and we have not yet found a modeling that makes use of the structure
of g.
See Table 6.1 for our estimates of the security levels of PALOMA-128,
PALOMA-192, and PALOMA-256.

6.3 Implementation considerations

The reference implementation works and produces the correct KAT files.
PALOMA shares with Classic McEliece the large public keys and small ci-
phertexts. The PALOMA private key includes a matrix even through decod-
ing algorithms for binary Goppa codes do not require this.



doc isd0 isd1 isd2
PALOMA-128 166.21 162.84 159.76 153.74
PALOMA-192 267.77 245.67 241.94 229.63
PALOMA-256 289.66 277.20 272.80 255.45

Table 6.1: PALOMA attack costs in log2(bit operations). The “isd0” col-
umn is the 0-level ISD (Prange + Lee–Brickell + Leon) cost predicted by
CryptAttackTester. The “isd1” column is the 1-level ISD (Stern + Dumer)
cost predicted by CryptAttackTester. The “isd2” column is the 2-level ISD
(MMT + BJMM) cost predicted by CryptAttackTester. CryptAttackTester
does not account for the costs of long-distance communication; the real-world
speedup from isd1 to isd2 is smaller than the bit-operation speedup in the
table. Computing this table took about a day on a dual AMD EPYC 7742:
e.g., CryptAttackTester used 2800 core-hours searching many attack param-
eters for PALOMA-256. For comparison, the “doc” column is BJMM-ISD
bit operations estimated on page 39 of the PALOMA documentation.

A benefit in key generation is that g can be sampled by sampling t random
elements in F2m and defining them as roots of g. However, operations re-
quiring arithmetic in F2m are more expensive as this field is relatively larger
than for Classic McEliece.
While PALOMA advertises better speeds than Classic McEliece, the available
implementation is much slower in our benchmarks.
See Table 6.2 for our benchmarks of the PALOMA software.
The implementation of decapsulation chose to use a new adaptation of Pat-
terson’s algorithm which seems slower than a direct reuse of the Berlekamp–
Massey implementation in Classic McEliece. That system chose not to use
Patterson as a constant-time implementation it would likely be less efficient
than Berlekamp—Massey and PALOMA’s adaptation of Patterson in parts
doubles the work. While this makes the benchmarks look very slow this
choice can be modified and the faster code from Classic McEliece could be
used.
The implementation is additionally slower than necessary in the form of
plaintext confirmation chosen to involve generating a matrix from a seed and
doing a matrix multiplication. A simpler hash function call should suffice
and would also safe space in addition to time.
While we understand the rationale for choosing split g and have not been
able to show any security degradation from this choice, we do not think the
other choices (Patterson, use of S, e, e′) are beneficial for speed (they look
detrimental to it) nor do they achieve better security compared to alterna-
tives.



cycles ms doc
PALOMA-128 init 10342016 5.011
PALOMA-128 keypair 154491948 74.851 64.00
libmceliece 348864f keypair 71569974 34.675
PALOMA-128 enc 406522 0.197 0.03
libmceliece 348864f enc 19178 0.009
PALOMA-128 dec 19770110 9.579 9.00
libmceliece 348864f dec 235124 0.114
PALOMA-192 init 10329976 5.005
PALOMA-192 keypair 646889506 313.415 261.00
libmceliece 460896f keypair 218800512 106.008
PALOMA-192 enc 819752 0.397 0.04
libmceliece 460896f enc 40764 0.020
PALOMA-192 dec 122390384 59.298 59.00
libmceliece 460896f dec 651966 0.316
PALOMA-256 init 10331352 5.005
PALOMA-256 keypair 630017080 305.241 323.00
libmceliece 6960119f keypair 368109154 178.347
PALOMA-256 enc 1000180 0.485 0.04
libmceliece 6960119f enc 76454 0.037
PALOMA-256 dec 123652778 59.909 60.00
libmceliece 6960119f dec 682152 0.331

Table 6.2: Measurements of PALOMA vs. libmceliece speed, Apple M1, Ices-
torm core, gcc 13.2.0. The “cycles” column is the median of 31 measurements
of the PALOMA software and of libmceliece. The “ms” column is millisec-
onds calculated from cycles and 2.064GHz clock speed. For comparison, the
“doc” column is milliseconds reported on page 30 of the PALOMA documen-
tation. The PALOMA documentation does not specify 3.2GHz Firestorm
cores vs. 2.064GHz Icestorm cores, but the Icestorm dec measurements are
a good match. The PALOMA documentation also reports milliseconds for
an Intel Core i5; libmceliece uses 256-bit vectors on Intel and uses portable
code on the M1, so the speed gap will be larger on Intel.



Slowdowns due to their generalization of Patterson’s decoder can be elim-
inated using the same Berlekamp-Massey decoder as for Classic McEliece.
However, there are some other quirks in PALOMA that make it slower than
explained:

� KeyGen shuffles the columns of H even though the order in L was
random already.

� The secret key includes S with Ĥ = SH in systematic form. They
comment that key size could be saved as S depends on r, but miss that
S is not necessary at all in decoding. Note that syndrome s ∈ Fn−tm

2

expands to noisy codeword v = s00 . . . 0 for Ĥ in systematic form.

It would thus be easy to decrease the size of the private key by skipping
S. We understand that, just like for Classic McEliece, PALOMA does not
use only the seed as private key but keep some parts expanded. This makes
KeyGen and decap a lot faster than if the full expansion was needed.
Further unexplained slowdowns are the use of extra permutations in encap-
sulation and decapsulation.

6.4 Provable security claims

The PALOMA specification provides a provable security result: to con-
struct an IND-CCA secure Key Encapsulation Mechanism, PALOMA uses its
own modified version of the Fujisaki-Okamoto (FO) design paradigm [FO99,
HHK17], the paradigm that was also used by most of the NIST proposals
(including the winner Kyber).
The core idea of the FO paradigm is to use a given public-key encryption
scheme to encrypt a randomly chosen message, from which a key can be
derived by feeding the message (and sometimes some auxiliary information)
into a hash function. Intuitively, this makes the key unpredictable unless
the attacker can break the encryption algorithm. To make chosen-ciphertext
attacks unfeasible, the encryption algorithm is modified in a certain way.
This modification prevents that attackers can build dishonest ciphertexts
that will be accepted by the decapsulation algorithm.

6.4.1 Security proof of PALOMA

At a first glance, PALOMA-KEM is constructed from PALOMA-PKE by
applying a variant of the FO design paradigm. To argue IND-CCA security
of PALOMA-KEM, the specification relatively briefly recalls the security
reasoning for FO that was given in [HHK17].



There are, however, several gaps in the proof: PALOMA-KEM deviates from
the established FO paradigm in several different ways (detailed below). The
submission does not address at all that/why it introduces these modifications
and if/why they do not decrease security.
While it is not straightforward to assess whether/how these deviations lead
to an attack, each one on its own makes it impossible to apply the established
security proof.
Undesirable dependencies in the decapsulation algorithm. To deal
with chosen-ciphertext attacks, FO-KEMs react to dishonest ciphertexts by
returning a pseudorandom value. This pseudorandom value is derived from
a secret random seed which is part of the secret key (besides the secret key
needed for decrypting). The FO paradigm picks this seed independently
from the secret key used for decrypting ciphertexts, unlike PALOMA-KEM,
which reuses a seed that was already used to generate the secret decryption
key. This leads to undesirable leakage on the secret decryption key during
decapsulations of dishonest ciphertexts, and leaves a gap in the security proof.
Plaintext permuting not covered by FO paradigm. Following the FO
paradigm, one would expect that security of PALOMA-KEM is based on
security of the encryption algorithm introduced as algorithm 6. Instead, it is
based on a modification of algorithm 6, called algorithm 18, which introduces
a permutation step. This leaves a gap in the security proof – to close this
gap, it would have been necessary to show that security of algorithm 18 can
be based on security of algorithm 6.
One possible explanation for this modification might be that the full FO de-
sign can only be applied to probabilistic schemes: it could be that the random
sampling of the permutation matrix was introduced to make the encryption
algorithm probabilistic. In this case, the submission could consider switching
to FO-alternatives for deterministic schemes (e.g., [BHH+19]) instead.
Treatment of dishonest ciphertexts not covered by FO paradigm.
As described above, dishonest ciphertexts are treated by FO-KEMs in a
specific way to mitigate chosen-ciphertext attacks. To identify such dishonest
ciphertexts, PALOMA-KEM deviates from the standard check imposed by
the FO paradigm. This leaves a gap in the security proof – to close this gap,
it would have been necessary to show that the alternative check performed by
PALOMA-KEM is equivalent to the one that is imposed by the FO paradigm.
Additional gap - sampling of messages not covered by FO paradigm.
FO-KEMs sample messages uniformly at random. This is needed to be able
to base security of the KEM on security of the involved encryption algorithm
– the security definition for the encryption algorithm assumes uniform mes-
sages. PALOMA-KEM instead samples messages using algorithm 13. This
leaves a gap in the security proof – to close this gap, it would be necessary to



analyze whether algorithm 13 yields the required uniform distribution. (See
section 5.5.4 of [ABC+22] as an example for such a discussion.)

6.4.2 Interpretation of provable security results

The formal security arguments discussed in subsection 6.4.1 do not seem
sound, and have an additional significant shortcoming: the arguments only
consider classical adversaries. This also means that the bounds do not apply
against quantum adversaries that at least can gain a polynomial advantage
using Grover.
A result might be obtained by switching to the design paradigm underpin-
ning McEliece, and then using recent work on this design paradigm [BP18,
BHH+19], but this would require a redesign of PALOMA.

6.5 General assessment

While several shortcomings with regard to the cryptanalytic security as well
as the provable security were raised above, no vulnerabilities have been found.



Chapter 7

REDOG

This chapter analyzes the security of the REinforced modified Dual-
Ouroboros based on Gabidulin codes, REDOG [KHL+22a], a public-key
encryption system submitted to KpqC, the Korean competition on post-
quantum cryptography. REDOG is a code-based cryptosystem using rank-
metric codes, aiming at providing a rank-metric alternative to Hamming-
metric code-based cryptosystems.
Rank-metric codes were introduced by Delsarte [Del78] and independently
rediscovered by Gabidulin [Gab85] in 1985, who focused on those that are
linear over a field extension. Gabidulin, Paramonov, and Tretjakov [GPT91]
proposed their use for cryptography in 1991. The GPT system was attacked
by Overbeck [Ove05, Ove08] who showed structural attacks, permitting re-
covery of the private key from the public key.
During the mid 2010s new cryptosystems using rank-metric codes were devel-
oped such as Ouroboros [DGZ17] and the first round of the NIST competition
on post-quantum cryptography saw 5 systems based on rank-metric codes:
LAKE [ABD+17a], LOCKER [ABD+17b], McNie [GKK+17], Ouroboros-
R [AAB+17a], and RQC [AAB+17b]. For all these systems see NIST’s
Round-1 Submissions page. Gaborit announced an attack weakening Mc-
Nie and the McNie authors adjusted their parameters. A further attack was
published in [LT18] and NIST did not advance McNie into the second round
of the competition.
ROLLO, a merger of LAKE, LOCKER and Ouroboros-R, and RQC made
it into the the second round but got broken near the end of it by signifi-
cant advances in the cryptanalysis of rank-metric codes and the MinRank
problem in general, see [BBB+20] and [BBC+20a]. In their report at the
end of round 2 [AASA+20], NIST wrote an encouraging note on rank-metric
codes: “Despite the development of algebraic attacks, NIST believes rank-
based cryptography should continue to be researched. The rank metric cryp-
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tosystems offer a nice alternative to traditional hamming metric codes with
comparable bandwidth.” (capitalization as in the original).
Kim, Kim, Galvez, and Kim [KKGK21] proposed a rank-metric system in
2021 which was then analyzed by Lau, Tan, and Prabowo in [LTP21] who also
proposed some modifications to the issues they found. REDOG resembles
the system in [LTP21]. We will show that some of the issues

7.1 Preliminaries and background notions

This section gives the necessary background on rank-metric codes for the rest
of the chapter.
Let {α1, . . . , αm} be a basis of Fqm over Fq. Write x ∈ Fqm uniquely as
x =

∑m
i=1Xiαi, Xi ∈ Fq for all i. So x can be represented as (X1, . . . , Xm) ∈

Fmq . We will call this the vector representation of x. Extend this process to
v = (v1, . . . , vn) ∈ Fnqm defining a map Mat : Fnqm → Fm×nq by:

v 7→


V11 V21 . . . Vn1
V12 V22 . . . Vn2
...

...
. . .

...
V1m V2m . . . Vnm

 .
Definition 7.1.1. The rank weight of v ∈ Fnqm is defined as wtR(v) :=
rkq(Mat(v)) and the rank distance between v,w ∈ Fnqm is dR(v,w) := wtR(v−
w).

Remark 7.1.2. It can be shown that the rank distance does not depend on
the choice of the basis of Fqm over Fq. In particular, the choice of the basis
is irrelevant for the results in this document.

When talking about the space spanned by v ∈ Fnqm , denoted as 〈v〉, we mean
the Fq-subspace of Fmq spanned by the columns of Mat(v).
For completeness, we introduce the Hamming weight and the Hamming dis-
tance. These notions will be used in our message recovery attack against
REDOG’s implementation.
The Hamming weight of a vector v ∈ Fnqm is defined as wtH(v) := #{i ∈
{1, . . . , n} | vi 6= 0} and the Hamming distance between vectors v,w ∈ Fnqm
is defined as dH(v,w) := wtH(v −w).
Let D = dR or D = dH . Then an [n, k, d]-code C with respect to D over Fqm
is a k-dimensional Fqm-linear subspace of Fnqm with minimum distance

d := min
a,b∈C,a6=b

D(a,b)



and correction capability b(d − 1)/2c. If D = dR (resp. D = dH) then the
code C is also called a rank-metric (resp. Hamming-metric) code. All codes
in this document are linear over the field extension Fqm .
We say that G is a generator matrix of C if its rows span C. We say that H
is a parity check matrix of C if C is the right-kernel of H.
A very well-known family of rank metric codes are Gabidulin codes [Gab85],
which have d = n− k + 1.
In this analysis we can mostly use these codes as a black box, knowing that
there is an efficient decoding algorithm using the parity-check matrix of the
code and decoding vectors with errors of rank up to b(d− 1)/2c.
We will, however, use that the parity-check matrix of a Gabidulin code over
Fq, is a Moore matrix.

Definition 7.1.3. Let Fqm be a finite field. A matrix M ∈ Fk×nqm is a Moore
matrix if each row is the q-th power of the previous one.

This structural property was used in the structural attacks by Over-
beck [Ove08] to find the secret Gabidulin code hidden in the GPT sys-
tem [GPT91]. This structure is also used in the analysis of [KKGK21]
in [LTP21]. For a more general definition and further details on Moore
matrices in this cryptographic context, see [HTMR15].
A final definition necessary to understand REDOG is that of isometries.

Definition 7.1.4. Consider vectors in Fnqm. An isometry with respect to the
rank metric is a matrix P ∈ GLn(Fqm) satisfying that wtR(vP ) = wtR(v) for
any v ∈ Fnqm.

Obviously matrices P ∈ GLn(Fq) are isometries as Fq-linear combinations of
the coordinates of v do not increase the rank and the rank does not decrease
as P is invertible. The rank does also not change under scalar multiplication
by some α ∈ F∗qm : wtR(αv) = wtR(v). Note that the latter corresponds to
multiplication by P = αIn.
Berger [Ber03] showed that any isometry is obtained by composing these two
options.

Theorem 7.1.5. [Ber03, Theorem 1] The isometry group of Fnqm for the
rank metric is generated by scalar multiplications by elements in F∗qm and el-

ements of GLn(Fq). This group is isomorphic to the product group
(
F∗qm/F∗q

)
×

GLn(Fq).

7.2 System specification

This section introduces the specification of REDOG. We follow the notation
of [LTP21], with minor changes.



The system parameters are positive integers (n, k, `, q,m, r, λ, t), with ` < n
and λt ≤ r ≤ b(n− k)/2c, as well as a hash function hash : F2n−k

qm → F`qm .

KeyGen:

1. Select H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of
a [2n− k, n] Gabidulin code, with syndrome decoder Φ correcting
r errors.

2. Select a full rank matrix M ∈ F`×nqm and isometry P ∈ Fn×nqm (w.r.t.
the rank metric).

3. Select a λ-dimensional subspace Λ ⊂ Fqm , seen as Fq-linear space,
containing 1 and select S−1 ∈ GLn−k(Λ); see Section 7.3 for the
definition.

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key

pk = (M,F ). Store the secret key sk = (P,H, S,Φ).

Encrypt (m ∈ F`qm , pk)

1. Generate uniformly random e = (e1, e2) ∈ F2n−k
qm with wtR(e) = t,

e1 ∈ Fnqm and e2 ∈ Fn−kqm .

2. Compute m′ = m + hash(e).

3. Compute c1 = m′M + e1 and c2 = m′F + e2 and send (c1, c2).

Decrypt ((c1, c2), sk)

1. Compute c′ = c1P
−1HT

1 − c2S
−1HT

2 = e′HT where the vector
e′ := (e1P

−1,−e2S
−1).

2. Decode c′ using Φ to obtain e′, recover e = (e1, e2) using P and S.

3. Solve m′M = c1 − e1. Output m = m′ − hash(e).

Suggested parameters

We list the suggested parameters of REDOG for 128,192 and 256 bits of
security, following [KHL+22a] submitted to KpqC.



Security parameter (n, k, `, q,m, r, λ, t)

128 (44, 8, 37, 2, 83, 18, 3, 6)
192 (58, 10, 49, 2, 109, 24, 3, 8)
256 (72, 12, 61, 2, 135, 30, 3, 10)

Table 7.1: Suggested parameters; see [KHL+22a].

7.3 Incorrectness of decryption

This section shows that decryption typically fails for the version of REDOG
specified in [KHL+22a, LTP21]. The novelty of this specification, compared
to that introduced in [KKGK21], lies in the selection of the invertible ma-
trix S−1 in Step 3, which is selected with the property that S−1 ∈ GLn−k(Λ),
where Λ is a λ-dimensional Fq-subspace of Fqm . This method has been first
proposed by Loidreau in [Loi17], but it appears to be incorrectly applied in
REDOG. Before providing more details about this claim and proving the in-
correctness of REDOG’s decryption process, we will shed some light on the
object GLn−k(Λ). Unlike the notation suggests, this is not a group, but a
potentially unstructured subset of GLn−k(Fqm) defined as follows:
Let {1, α2, . . . , αλ} ⊂ Fqm be a set of elements that are Fq-linearly indepen-
dent. Let Λ ⊂ Fqm be the set of Fq-linear combinations of these αi’s. This
set forms an Fq-linear vectorspace. Now, S−1 ∈ GLn−k(Λ) is defined to mean
that S is an invertible (n − k) × (n − k) matrix with the property that the
entries of S−1 are elements of Λ. Note that such an S exists because λ ≥ 1
by assumption. The REDOG documentation [KHL+22a] points out that this
does not imply that S ∈ GLn−k(Λ), hence, despite what the notation may
suggest, GLn−k(Λ) is not a group in general.
We continue by giving a proof, and an easy generalization for any q, of [Loi17,
Proposition 1].

Proposition 1. Let λ, t, n be positive integers such that λt ≤ n, A ∈ GLn(Λ)
where Λ ⊂ Fqm is a λ-dimensional subspace of Fqm, and x ∈ Fnqm with
wtR(x) = t. Then

wtR(xA) ≤ λt.

Proof. Let Γ be the subspace of Fqm generated by the entries of x =
(x1, . . . , xn). Since Γ has dimension t, we can write Γ = 〈y1, . . . , yt〉 with
yi ∈ Fqm . Similarly for Λ, we can write Λ = 〈α1, . . . , αλ〉 with αi ∈ Fqm .



Express xA as

xA =

(
n∑
i=1

xiAi,1, . . . ,

n∑
i=1

xiAi,n

)
.

Fix j ∈ {1, . . . , n}. Then

(xA)j =
n∑
i=1

xiAi,j =
n∑
i=1

((
t∑

h=1

xi,hyh

)(
λ∑
k=1

Ai,j,kαk

))
,

with xi,h, Ai,j,k ∈ Fq. By rearranging the terms we obtain

(xA)j =
t∑

h=1

λ∑
k=1

(
n∑
i=1

xi,hAi,j,k

)
yhαk. (7.1)

Therefore each entry of xA can be expressed as an Fq-linear combination of
the λt elements of the form yhαk.

We will now show that REDOG typically does not decrypt correctly. In
order to do so, we need some preliminary results and tools. The proof of the
next lemma uses some tools from combinatorics. It computes the probability
of containing a basis of a vector space of dimension t over Fq by randomly
selecting a t-tuple of its elements.

Lemma 7.3.1. Let V be a t-dimensional subspace V ⊆ Fmq and let S ∈ V s be
a uniformly random s-tuple of elements of V . The probability p(q, s, t) that
〈Si | i ∈ {1, . . . , s}〉 = V is

p(q, s, t) =

{
0 if 0 ≤ s < t;∑t

i=0

[
t
i

]
q

(−1)t−iqs(i−t)+(t−i2 ) otherwise,
(7.2)

where
[
t
i

]
q

is the q-binomial coefficient, counting the number of subspaces of
dimension i of Ftq, and

(
a
b

)
= 0 for a < b. In particular, this probability does

not depend on m or on the choice of V , but only on its dimension.

Proof. Let (P ,⊆) be the poset (partially ordered set) of subspaces of Fmq
ordered by inclusion. Recall that the Möbius function of P , and of any finite
poset, is defined, for A,B ∈ P , as

µ(B,A) =


1 if B = A,

−
∑

C|B⊆C⊂A µ(B,C) if B ⊂ A,

0 otherwise.



This is computed e.g. in [Sta11, Example 3.10.2] as

µ(B,A) =

{
(−1)kq(

k
2) if B ⊆ A and dim(A)− dim(B) = k,

0 otherwise.
(7.3)

We want to compute the function f : P → N defined as

f(A) = #
{
S ∈

(
Fmq
)s | 〈S〉 = A

}
.

Clearly, if s < dimA, there does not exist any s-tuple S spanning A, hence
f(A) = 0, which gives the first case of (7.2). We can therefore restrict
ourselves to the case s ≥ dimA. Define the auxiliary function g : P → N as

g(A) =
∑
B⊆A

f(B)

= #
{
S ∈

(
Fmq
)s | 〈S〉 ⊆ A

}
= |A|s = qsdimA.

Then by Möbius inversion we can compute:

f(A) =
∑
B⊆A

g(B)µ(B,A). (7.4)

Splitting the sum over the dimensions, and substituting the values in Equa-
tion 7.3, we can obtain

f(V ) =
t∑
i=0

∑
U⊆V, dimU=i

g(U)µ(U, V )

=
t∑
i=0

qsi(−1)t−iq(
t−i
2 )

∑
U⊆V, dimU=i

1

=
t∑
i=0

[
t

i

]
q

(−1)t−iqsi+(t−i2 ).

The probability can be computed by dividing f(V ) by the number of s-tuples
of elements of V , that is, qst.

Remark 7.3.2. The probability given in Lemma 7.3.1 can be interpreted as
the ratio of the number of surjective linear maps from Fsq onto Ftq over the
total number of linear maps.



We next compute the probability that by truncating a rank t vector, the rank
stays the same.

Theorem 7.3.3. Let e = (e1, e2) ∈ F2n−k
qm , with e1 ∈ Fnqm and e2 ∈ Fn−kqm , be

a uniformly random error with wtR(e) = t. Then wtR(e1) = t and wtR(e2) =
t with probability p(q, n, t)/p(q, 2n − k, t) and p(q, n − k, t)/p(q, 2n − k, t)
respectively.

Proof. By definition, the probability that wtR(e1) = t is the ratio

π =
#{e ∈ F2n−k

qm | wtR(e) = t and wtR(e1) = t}
#{e ∈ F2n−k

qm | wtR(e) = t}
. (7.5)

We can split the cardinalities above over all the subspaces of Fmq of dimen-
sion t as follows:

π =

∑
V⊂Fmq , dimV=t #{e ∈ F2n−k

qm | 〈e〉 = 〈e1〉 = V }∑
V⊂Fmq , dimV=t #{e ∈ F2n−k

qm | 〈e〉 = V }
. (7.6)

It is not hard to prove that the summands in (7.3) are independent of the
space V . Therefore

π =
#{e ∈ F2n−k

qm | 〈e〉 = 〈e1〉 = V }
#{e ∈ F2n−k

qm | 〈e〉 = V }
=

#{e1 ∈ Fnqm | 〈e1〉 = V } qt(n−k)

#{e ∈ F2n−k
qm | 〈e〉 = V }

,

where V is any subspace of Fmq of dimension t. By applying Lemma 7.3.1 we
then get

π =
p(q, n, t) qntqt(n−k)

p(q, 2n− k, t) q(2n−k)t
=

p(q, n, t)

p(q, 2n− k, t)
,

as claimed. The probability for e2 can be computed with the same arguments
as for e1.

Remark 7.3.4. In the context of a REDOG instance, the data q, n and t
is fixed, hence, for the sake of reading simplicity, we denote the probability
given in Theorem 7.3.3 by

p̄(r, t) =
p(q, r, t)

p(q, 2n− k, t)
.

Example 7.3.5. Consider the suggested parameters of REDOG for 128 bits
of security from Table 7.1. Using SageMath [S+21] we computed the proba-
bility that wtR(e1) = t, that is

p̄(44, 6) = 0.999999999996419,

and the probability that wtR(e2) = t, that is

p̄(36, 6) = 0.999999999083229.



We are ready to state the following theorem, which directly implies that
REDOG’s decryption process fails with extremely high probability.

Theorem 7.3.6. Let (n, k, q,m, λ, t) be integers with k < n < m and λt ≤
m. Let Λ ⊂ Fqm be a λ-dimensional subspace of Fqm and e = (e1, e2) as in
Theorem 7.3.3. Let P ∈ Fn×nqm be a random isometry matrix (w.r.t. the rank
metric) and S−1 ∈ GLn−k(Λ). Then e′ := (e1P

−1,−e2S
−1) has rank weight

wtR(e′) ≥ λt+ 1 with probability bounded from below by

pfail(n, k, q,m, λ, t) := p̄(n, t) p̄(n− k, λt) p̄(n− k, t)

(
1−

[
λt
t

]
q[

m
t

]
q

)
.

Proof. By Theorem 7.1.5, the isometry P is of the form αP̄ for α ∈ F∗qm
and P̄ ∈ GLn(Fq), where qm � q and thus typically α 6∈ Fq. Because of the
multiplication by α−1, we can assume that the linear transformation induced
by P−1 takes a t-dimensional subvectorspace of Fmq to a random t-dimensional
subspace. Similarly we assume that S−1 sends a t-dimensional subspace of
Fmq to a random subspace of dimension at most λt, by Proposition 1. We get
the lower bound on the failure probability by showing the following:

1. wtR(e1P
−1) = t with probability p̄(n, t);

2. wtR(−e2S
−1) = λt with probability p̄(n− k, t)p̄(n− k, λt);

3. under the conditions in (1) and (2), 〈e1P
−1〉 6⊂ 〈−e2S

−1〉 with proba-
bility

1−

[
λt
t

]
q[

m
t

]
q

.

Note that (1) follows directly from Theorem 7.3.3 and the fact that P is an
isometry of the space w.r.t the rank metric.
Likewise, wtR(−e2) = t with probability p̄(n − k, t). The proof of Proposi-
tion 1 shows that for e2 with wtR(−e2) = t we have that −e2S

−1 is contained
in a λt-dimensional subspace of Fmq . Again by Theorem 7.3.3 we obtain that
〈−e2S

−1〉 spans the entire space with probability p̄(n− k, λt), proving (2).
To prove (3) we will compute the opposite, i.e. the probability that 〈e1P

−1〉
is a subspace of 〈−e2S

−1〉. As mentioned at the beginning of the proof,
we treat 〈e1P

−1〉 as a random t-dimensional subspace of Fqm . Thus we can
compute this probability as the ratio between the number of t-dimensional
subspaces of 〈−e2S

−1〉 and of Fmq , that is,[
λt
t

]
q[

m
t

]
q

.



Combining the probabilities and observing that (1 – 3) imply wtR(e′) ≥ λt+1
gives the result.

Remark 7.3.7. There are more ways to get wtR(e′) ≥ λt + 1 by relaxing
the first two requirements in the proof of Theorem 7.3.6 and studying the
dimension of the union in the third, but pfail is large enough for the parameters
in REDOG to prove the point.

Remark 7.3.8. The proof of property (3) relies on e1P
−1 being a random

subspace of dimension t. We note that for α ∈ Fq we have 〈e1〉 = 〈e1P
−1〉 ⊂

〈e2S
−1〉 for S−1 ∈ GLn−k(Λ) and 1 ∈ Λ. The latter constraint is stated

in [KHL+22a] and [LTP21] and it is possible that the authors were not aware
of the full generality of isometries. See also [LPR23, Appendix B] for further
observations on [LTP21] which are consistent with this misconception.

Corollary 7.3.9. Let (n, k, `, q,m, r, λ, t) be the parameters of a instance of
REDOG with r = λt. Then REDOG will produce decryption failures with
probability at least pfail(n, k, q,m, λ, t).

Proof. Recall that the decoder Φ can only correct errors up to rank weight
r = λt. By Theorem 7.3.6 we have that e′ has rank weight ≥ λt + 1, hence
producing decoding failure, with probability at least pfail(n, k, q,m, λ, t).

Note that a [2n− k, n] Gabidulin code has minimum distance dR = 2n− k−
n+ 1 = n− k + 1 and can thus correct at most b(n− k)/2c errors and that
all instances of REDOG in Table 7.1 satisfy b(n− k)/2c = r = λt.

Example 7.3.10. As in Example 7.3.5, consider the suggested parameters
for 128 bits of security. Then Theorem 7.3.6 states that wtR(e′) ≥ 19 with
probability at least

pfail(44, 8, 2, 83, 3, 6) = p̄(44, 8)p̄(36, 6)p̄(36, 18)

(
1−

[
18
6

]
2[

83
6

]
2

)
= 0.999996184401789.

Table 7.2 reports the value of pfail for each set of security parameters given in
Table 7.1. This shows that REDOG’s decryption process fails almost always.

Security parameter pfail

128 0.999996184401789
192 0.999999940394453
256 0.999999999068677

Table 7.2: Value of decryption failure probability pfail per suggested param-
eters.



7.4 Message recovery attack on REDOG’s

implementation

Theorem 7.3.6 and the numerical examples show that, with probability al-
most 1, REDOG will fail decrypting. However, it is not exactly 1 and there
exist some choices of e for which decryption still succeeds. One extreme
way to avoid decryption failures, chosen in the reference implementation of
REDOG, is to build errors as follows:

Algorithm 1. (REDOG’s error generator)

1. Pick β1, . . . , βt ∈ Fqm being Fq-linearly independent.

2. Pick random permutation π on 2n− k symbols.

3. Set einit = (β1, . . . , βt, 0, . . . , 0) ∈ F2n−k
qm . Output e = π(einit).

Error vectors in REDOG’s reference implementation1, whose performance is
analyzed in [KHL+22b], are generated in an equivalent way to Algorithm 1.
Indeed, e′ has rank weight

wtR(e′) = (e1P
−1,−e2S

−1) ≤ λt

and can therefore be decoded using Φ.

Remark 7.4.1. Algorithm 1 produces an error vector e such that wtH(e) =
wtR(e) = t as only t coordinates of e are nonzero.

We are ready to give the description of an efficient message recovery algo-
rithm.

Algorithm 2. (Message recovery attack)
Input: REDOG’s public key pk and a REDOG’s ciphertext c = (c1, c2) =
Encrypt(m, pk) generated by the reference implementation.
Output: m

1. Let C ′ be the linear [2n − k, `]-code in the Hamming metric generated
by G = (pk1 | pk2).

2. Put f = 0.

3. While f = 0:

1https://www.kpqc.or.kr/images/zip/REDOG.zip

https://www.kpqc.or.kr/images/zip/REDOG.zip


(a) Randomly select ` columns of G to form the matrix A. Let cA be
the matching positions in c.

(b) If A is invertible

i. Compute B = A−1 and m̄ = cAB.

ii. Compute c̄1 = m̄pk1.

iii. If wtH(c1 − c̄1) = t1 ≤ t

A. Compute c̄2 = m̄pk2.

B. If wtH(c2 − c̄2) = t− t1
Put m′ = m̄, e = (c1, c2)− (c̄1, c̄2) and f = 1.

4. Compute m = m′ − hash(e).

The inner loop is Prange’s information-set decoding algorithm [Pra62] in the
generator-matrix form with early aborts. If the chosen ` positions are not all
error free then m̄ equals m with one or more rows of B added to it. Then
m̄pk1 will be random vector and thus differ from c1 in more than t positions.
If the initial check succeeds there is a high chance of the second condition
succeeding as well leading to e with wtH(e) = t.
We now analyze the success probability of each iteration of the inner loop
of Algorithm 2. The field Fqm is large, hence A very likely to be invertible.
The algorithm succeeds if the ` positions forming A are chosen outside the
positions where e has non-zero entries. This happens with probability(

2n−k−t
`

)(
2n−k
`

) .
Each trial costs the inversion of an `×` matrix and up to three matrix-vector
products, where the vector has length ` and the matrices have `, n, and n−k
columns respectively, in addition to minor costs of two vector differences and
two weight computations.
We implemented the attack in Algorithm 2 in SageMath 9.5; see section 7.8
for the code. We perform faster early aborts, testing m̄ on only t+3 columns
of pk1. The probability that a coordinate matches between c1 and c̄1 for
m̄ 6= m is q−m and thus negligible for large m. Hence, most candidate
vectors m̄ are discarded after (t + 3)`2 multiplications in Fqm . Running
the attack on a Linux Mint virtual machine we broke the KAT ciphertexts
included in the submission package for all the proposed parameters. We also
generated a bunch of ciphertexts corresponding to randomly chosen public
keys and messages and measured the average running time of our algorithm.



As can be seen from Table 7.3, the attack on outputs of the reference imple-
mentation succeeds in few steps and is very fast to execute for all parameter
sets.

Security parameter log2(Prob) TimeKAT (sec.) Time100(sec.)

128 -5.62325179726894 ∼ 8.01 ∼ 9.17
192 -7.51182199577027 ∼ 108.13 ∼ 112
256 -9.40052710879827 ∼ 167.91 ∼ 133.43

Table 7.3: Prob is the probability of success of one iteration of the inner loop
of Algorithm 2. TimeKAT is the average timing of message recovery attack
over entries in the KAT file (30 for 128 bits, 15 for 192 bits, 13 for 256 bits).
Time100 is the average timing of message recovery attack over 100 ciphertext
generated by REDOG’s encryption.

7.5 Recomputing attacks costs

In this section we deal with the computation of complexities of general attacks
against cryptosystems relying on the rank decoding problem. We noticed
that the official REDOG submission [KHL+22a], as well as [LTP21] do not
consider attack algorithms proposed in [BBC+20a] and [BBB+23]
Our computations are reported in Tables 7.4, 7.5 and 7.6. The tables show
that parameters suggested for REDOG provide significantly less security than
expected. The tables also confirm that the parameters do provide the claimed
security under attacks prior to [BBC+20a] when using a realistic exponent
for matrix multiplication. Note that the computations in these tables ignore
all constants and lower-order terms in the big-O complexities. This is in line
with how the authors of the attack algorithms use their results to determine
the security of other systems, but typically constants are positive and large.
We apply the same to [BBB+23] although their magma code makes different
choices.

7.5.1 Overview of rank decoding attacks

Recall that the public code is generated by the ` × 2n − k matrix (M | F )
over Fqm . The error vector added to the ciphertext is chosen to have rank t.
In the description of the attacks we will give formulas for the costs using the
notation of this chapter, i.e., the dimension is ` and the error has rank t; we
denote the length by N for reasons that will become clear later. The com-
plexity of algorithms also depends on the matrix multiplication exponent ω.

https://github.com/mbardet/Rank-Decoding-tools


The GRS [GRS16] algorithm is a combinatorial attack on the rank decoding
problem. The idea behind this algorithm is to guess a vectorspace containing
the space spanned by the error vector. In this way the received vector can be
expressed in terms of the basis of the guessed space. The last step is to solve
the linear system associated to the syndrome equations. This has complexity

O
(
(N − `)ωmωqmin{tb`m/Nc,(t−1)b(`+1)m/Nc}) . (7.7)

Note that we use ω here while the result originally was stated with exponent
3. These matrices are not expected to be particularly sparse but should be
large enough for fast matrix multiplication algorithms to apply. The same
applies to the next formulas.
The second attack, introduced in [GRS16], which we denote GRS-alg, is an
algebraic attack. Under the condition that ` > d((t + 1)(` + 1)−N − 1)/te
the decoding problem can be solved in

O
(
tω`ωqt(d((t+1)(`+1)−N−1)/te)) . (7.8)

The attack AGHT [AGHT18] is an improvement over the GRS combinatorial
attack. The underlying idea is to guess the space containing the error in a
specific way that provides higher chance of guessing a suitable space. It has
complexity

O
(
(N − `)ωmωqt(`+1)m/N−m) . (7.9)

The BBB+ attack [BBB+20] translates the rank metric decoding problem
into a system of multivariate equations and then uses Gröbner-basis methods
to find solutions. Much of the analysis is spent on determining the degree
of regularity, depending on the length, dimension, and rank of the code and
error. If m

(
N−`−1

t

)
+ 1 ≥

(
N
t

)
then the problem can be solved in

O
((

((m+N)t)t

t!

)ω)
. (7.10)

If the condition is not satisfied then the complexity of solving the decoding
problem becomes

O
((

((m+N)t)t+1

(t+ 1)!

)ω)
(7.11)

or the same for t + 2 in place of t + 1. The authors of [BBB+20] use (7.11)
in their calculations and thus we include that as well.
The BBC+-Overdetermined,BBC+-Hybrid and BBC+-SupportMinors im-
provements that will follow are all introduced in [BBC+20a]. They make
explicit the use of extended linearization as a technique to compute Gröbner



bases. For solving the rank-decoding problem it is not necessary to determine
the full Gröbner basis but to find a solution to this system of equations. Ex-
tended linearization introduces new variables to turn a multivariate quadratic
system into a linear system. The algorithms and complexity estimates differ
in how large the resulting systems are and whether they are overdetermined
or not, dependent on the system parameters.
BBC+-Overdetermined applies to the overdetermined case, which matches
m
(
N−`−1

t

)
+ 1 ≥

(
N
t

)
, and permits to solve the system in

O

(
m

(
N − `− 1

t

)(
N

t

)ω−1)
. (7.12)

These costs match matrix computations on a matrix with m
(
N−`−1

t

)
rows

and
(
N
t

)
columns.

In case of an undetermined system, BBC+-Hybrid fixes some of the un-
knowns in a brute-force manner to produce to an overdetermined sys-
tem in the remaining variables. The costs are testing all possible val-
ues for j positions, where j is the smallest non-negative integer such that
m
(
N−`−1

t

)
+ 1 ≥

(
N−j
t

)
, and for each performing the same matrix computa-

tions as in BBC on j columns less. This leads to a total complexity of

O

(
qjtm

(
N − `− 1

t

)(
N − j
t

)ω−1)
. (7.13)

The brute-force part in BBC+-Hybrid quickly becomes the dominating fac-
tor. The BBC+-SupportMinors algorithm introduces terms of larger degrees
first and then linearizes the system. This consists in multiplying the equa-
tions by some homogeneous monomials of degree b so as to obtain a system of
homogeneous equations. However, for the special case of q = 2 the equations
in the system might not be homogeneous. In this case, homogeneous equa-
tions coming from smaller values of b are considered. To state the conditions
for this algorithm we first introduce some notation from [BBC+20a].

Ab :=
b∑

j=1

(
N

t

)(
m`+ 1

j

)
, and

Cb :=
b∑

j=1

j∑
s=1

(
(−1)s+1

(
N

t+ s

)(
m+ s− 1

s

)(
m`+ 1

j − s

))
.



The degree of the equations formed in BBC+-SupportMinors depends on b,
where 0 < b < 2 + t is minimal such that Ab − 1 ≤ Cb if such a b exists. In
this case the problem can be solved with complexity

O
(
(m`+ 1)(t+ 1)A2

b

)
. (7.14)

Remark 7.5.1. We do not report the last two attacks presented
in [BBC+20a] as the underlying approach has been pointed out to be incor-
rect in [BBB+23]. More precisely, [BBB+23] show that the independence
assumptions made in [BBC+20a] are incorrect.

SupportMinors in [BBC+20a] are not independent, [BBB+23] introduces a
new approach that combines them while keeping independence, at least con-
jecturally and matched by experiments. They again multiply by monomials
of degree up to b − 1 but a relevant difference is that the equations from
the SupportMinors system are kept over Fqm . They introduce the following
notation:

N Fq
b = N Fqm

b −N Fq
b,syz,

N Fqm
b =

∑̀
s=1

(
N − s
t

)(
`+ b− 1− s

b− 1

)
−
(
N − `− 1

t

)(
`− b− 1

b

)
,

N Fq
b,syz = (m− 1)

b∑
s=1

(−1)(s+1)

(
`+ b− s− 1

b− s

)(
N − `− 1

t+ s

)
, and

MFq
b =

(
`+ b− 1

b

)((
N

t

)
−m

(
N − `− 1

t

))
.

The problem can then be solved by linearization whenever N Fq
b ≥M

Fq
b − 1.

The complexity of solving the system is

T (m,N, `, t) = O
(
m2N Fq

b

(
MFq

b

)ω−1)
.

Moreover, [BBB+23] introduce a hybrid strategy. Compared to BBC+-
Hybrid it randomly picks matrices from GLN(Fq) to randomly compute Fq-
linear combinations of the entries of the error vector and applies the same
transformation to the generator matrix, hoping to achieve that the last a po-
sitions of the error vector are all 0 and then shortening the code while also
reducing the dimension.
This technique has complexity

min
a≥0

(
qta · T (m,N − a, `− a, t)

)
. (7.15)
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Figure 7.1: Plots showing the log2 of the costs for AGHT and BBB+ for the
parameters at the 128–bit security level for different choices of code length.

7.5.2 Lowering the attack costs beyond the formulas
stated

The combinatorial attacks GRS and AGHT perform best for longer codes,
however, algebraic attacks that turn each column into a new variable perform
best with fewer variables. For each attack strategy we search for the best
number of columns that we should consider in order to obtain the cheapest
cost of a successful break of REDOG. This is why we presented the above
formulas using N rather than the full code length 2n − k. The conditions
given above determine the minimum length required relative to dimension
and rank of the error.
We then evaluate the costs for each algorithm for each choice of length N =
`+ t+ i, for every value of i = 0, 1, . . . , 2n−k−`− t satisfying the conditions
of the attacks.
Figure 7.1 shows the different behavior of the algorithms for fixed ` and t
and increasing i. The jump in the BBB+ plot is at the transition between
the two formulas.
We point out that [BBC+20a] also considered decreasing the length of the
code for the case of overdetermined systems, see [BBC+20a, Section 4.2]
on puncturing the code in the case of “super”-overdetermined systems. We
perform a systematic scan for all algorithms as an attacker will use the best
possible attack.

7.5.3 The recomputed values

We computed complexity costs for all the attacks introduced in the previous
subsection, taking into consideration two values of matrix multiplication ex-
ponent, namely ω = 2.807 and ω = 2.37. For each possible length N + i for



N = `+t and i = 0, 1, . . . , 2n−k−`−t we computed the costs for each attack
strategy, keeping the lowest value per strategy. For the two cases of BBB+
and the three strategies described for the BBC+-* algorithms, we selected
the best complexity among them. For the sake of completeness, we report
the value of i in Tables 7.4–7.6 as well and the value of a for [BBB+23]. All
the values are stated as the log2 of the costs resulting from the complexity
formulas. The lowest costs of the best algorithm are stated in blue. Note the
above-mentioned caveats regarding evaluating big-O estimates for concrete
parameters.

Algorithm Complexity log2 of cost i
formula ω = 2.807 ω = 2.37

GRS [GRS16] 7.7 228.03 - 36
GRS-alg [GRS16] 7.8 207.88 - 36
AGHT [AGHT18] 7.9 186.68 - 37
BBB+ [BBB+20] 7.10 140.06 118.25 33
BBC+ [BBC+20a] 7.12,7.13,7.14 77.83 65.73 33

Mixed-attack [BBB+23] 7.15 94.69 82.36 32

Table 7.4: Values of the log2 of attack costs for REDOG’s suggested param-
eters for 128-bit security (see Table 7.1).

Algorithm Complexity log2 of cost i
formula ω = 2.807 ω = 2.37

GRS [GRS16] 7.7 392.30 - 48
GRS-alg [GRS16] 7.8 368.18 - 48
AGHT [AGHT18] 7.9 337.69 - 49
BBB+ [BBB+20] 7.10 and 7.11 210.26 150 0
BBC+ [BBC+20a] 7.12,7.13,7.14 177.52 159.57 48

Mixed-attack [BBB+23] 7.15 181.21 164.03 49

Table 7.5: Values of the log2 of attack costs for REDOG’s suggested param-
eters for 192-bit security (see Table 7.1).



Algorithm Complexity log2 of cost i
formula ω = 2.807 ω = 2.37

GRS [GRS16] 7.7 604.07 - 60
GRS-alg [GRS16] 7.8 595.97 - 60
AGHT [AGHT18] 7.9 536.22 - 61
BBB+ [BBB+20] 7.10 and 7.11 269.03 227.15 0
BBC+ [BBC+20a] 7.12,7.13,7.14 337.92 318.01 61

Mixed-attack [BBB+23] 7.15 347.38 326.92 61

Table 7.6: Values of the log2 of attack costs for REDOG’s suggested param-
eters for 256-bit security (see Table 7.1).

As shown in the table, suggested parameters of REDOG for 128 and 192
levels of security do not resist BBC+ attack and Mixed-attack for any choice
of ω, and BBB+ for ω = 2.37. Suggested parameters for level 256 resist all
attacks except BBB+ for ω = 2.37. In [LPR23] solutions to the decryption
failure that also boost the security are proposed. of the suggested parameters
of REDOG.

7.6 Revisiting results in [LTP21] on attacking

REDOG

In this section we consider the key-recovery attack, as stated in [LTP21,
Section 4] and show that it does not apply in the full generality as claimed but
only works for P ∈ GLn(Fq) while [LTP21] states it for P being an isometry.
This is another indication that the authors may not have understood the full
generality of isometries, see also Remark 7.3.8.
The key-recovery attack is described for S ∈ GLn−k(Fq) and is the main
reason for choosing S from a larger set. The attack computes an alternative
parity-check matrix for the secret Gabidulin code by solving a system of
equations. This matrix can be used in place of the secret key to decrypt any
ciphertext The attack relies on the fact that, given M , the second part of

the public key, i.e. F = MP−1HT
1

(
HT

2

)−1
S, can be written as a system of

linear equations over Fq in terms of the coordinates of H ′1 = H1(P
−1)T and

H ′2 = H2(S
−1)T . If H ′1 and H ′2 are Moore matrices the number of unknowns

is reduced so that the system becomes overdetermined and [LTP21] states
that they are Moore matrices without giving a proof. The same claim is used
in the plaintext-recovery attack in [LTP21, Section 5, Proposition 1] to show
that the public code is a subcode of a Gabidulin code.



We show that H1(P
−1)T is a Moore matrix if P ∈ GLn(Fq) but not in the

general case where P is an isometry. The first part also shows that H2(S
−1)T

is a Moore matrix for S ∈ GLn(Fq)
The following lemma shows that the product of a k×n Moore matrix A and
an isometry P is an Fqm-multiple of a Moore matrix.

Lemma 7.6.1. Let A be a k × n Moore matrix over Fqm and let P be an
isometry. Then AP = γB for γ ∈ F∗qm such that P = γQ for Q ∈ GLn(Fq)
and B a k× n Moore matrix. This representation is unique up to F∗q factors
in γ and Q.

Proof. Theorem 7.1.5 states that P is of the form P = γQ for some γ ∈ F∗qm
and Q ∈ GLn(Fq). Any other factorization P = γ′Q′ satisfies (γ/γ′)In =
Q′Q−1 which implies γ/γ′ ∈ F∗q.
For this choice of γ write AP = γAQ. It is then enough to prove that AQ is a
Moore matrix. Write Q = (Qi,j) for i, j = 1, . . . , n. Let A` be the `-th row of

A and write A1 = (a1, . . . , an). Then A` =
(
aq

`−1

1 , . . . , aq
`−1

n

)
for ` = 1, . . . , k.

We can write the entry (AQ)i,j as

(AQ)i,j =
n∑
h=1

aq
i−1

h Qh,j =
n∑
h=1

(ahQh,j)
qi−1

=

(
n∑
h=1

ahQh,j

)qi−1

= (AQ)q
i−1

1,j

for i = 1, . . . , k and j = 1, . . . , n using that Qh,j ∈ Fq and that q-th powers
are linear over Fqm . This proves that AQ is a Moore matrix. Setting B = AQ
we obtain the result in the statement.

For γ = 1 we get the following corollary.

Corollary 7.6.2. If P = GLn(Fq) and A is a k × n Moore matrix then AP
is a Moore matrix.

The attack proposed in [LTP21, Section 4.1] claims that given a k×n Moore
matrix A over Fqm and an isometry P , there exists a Moore matrix A′ such
that A′ = AP . However, this statement is false except for the special case in
Corollary 7.6.2.

Lemma 7.6.3. Under the conditions of Lemma 7.6.1, AP is not a Moore
matrix unless P ∈ GLn(Fq), or A = 0, or k = 1.

Proof. By Lemma 7.6.1 AP = γB for P = γQ with Q ∈ GLn(Fq), γ ∈ F∗qm ,
and B a k × n Moore matrix. If A = 0 then B = 0 and the result holds
trivially. Similarly, if k = 1 then AP has only a single row so that there is
no constraint.



As P is invertible, A 6= 0 implies B 6= 0. Let B` denote the `-th row
of B. As B is a Moore matrix, we have for B1 = (b1, . . . , bn) that B` =(
bq
`−1

1 , . . . , bq
`−1

n

)
for ` = 1, 2, . . . , k. Because B 6= 0 there is at least one bi

that is nonzero.
The matrix γB for γ ∈ F∗qm has rows γB1 = (γb1, . . . , γbn) and γB` =(
γbq

`−1

1 , . . . , γbq
`−1

n

)
for ` = 1, 2, . . . , k. Hence, γB is a Moore matrix if and

only if γbq
`−1

i = (γbi)
q`−1

for i = 1, 2, . . . , n and ` = 1, 2, . . . , k. For k > 1 and
bi 6= 0 this holds if and only if γ = γq, which is equivalent to γ ∈ Fq. Hence,
γ ∈ F∗q and thus P = γQ ∈ GLn(Fq).

The key recovery attack in [LTP21] builds a system of linear equations from

the public key (M | F ) with F = MP−1HT
1

(
HT

2

)−1
S rewriting it as

F
(
H2(S

−1)T
)T

= M
(
H1

(
P−1

)T)T
, (7.16)

where the entries of (H ′1, H
′
2) =

(
H1 (P−1)

T | H2 (S−1)
T
)

are considered as

unknowns and M and F are known. At first sight this is a system of `(n−k)
equations in (n− k)(2n− k) variables and ` is much less than 2n− k, hence,
the system is severely underdetermined. Considering the system over Fq
instead of over Fqm just multiplies the number of equations and the number
of variables by m. This is where [LTP21] uses that H ′1 and H ′2 are Moore
matrices. From the above considerations this holds for H ′2 but not for H ′1.
The next proposition shows that the Fq-linear system of equations obtained
by the public key of REDOG is underdetermined if P 6∈ GLn(Fq), even if
S ∈ GLn−k(Fq).

Proposition 2. Let M be a full-rank `×n matrix over Fqm, (H1 | H2) a (n−
k)× (2n− k) Moore matrix over Fqm, P a rank-metric isometry of the space
Fnqm, and S ∈ GLn−k(Fq). Consider the linear system of equations defined

by FS−1HT
2 = MP−1HT

1 , where the entries of
(
H1 (P−1)

T | H2 (S−1)
T
)

are

considered as unknowns. Use an explicit basis of Fqm over Fq to turn this
into a system of linear equations over Fq. For P 6∈ GLn(Fq) this system has
m`(n− k) equations and m2n+m(n− k) variables.

Proof. By Lemma 7.6.1, H1 (P−1)
T

is an Fqm-multiple of a (n−k)×n Moore
matrix, say γB, with γ ∈ F∗qm \ F∗q unless P ∈ GLn(Fq). Moreover, H2(S

−1)T

is an (n− k)× (n− k) Moore matrix by Corollary 7.6.2.
Consider the right-hand side of (7.16). Fix a normal basis {α, αq, . . . , αqm−1}
of Fqm over Fq. Write γ =

∑m
i=1 γiα

qi−1
with γi ∈ Fq. Let (b1, . . . , bn) be



the first row of B, and write its h-th coordinate as bh =
∑m

i=1 bh,iα
qi−1

with
bh,i ∈ Fq. Then

γbh =

(
m∑
i=1

γiα
qi−1

)(
m∑
j=1

bh,jα
qj−1

)
=

m∑
i,j=1

γibh,jα
qi−1+qj−1

.

The h-th entry of the `-th row of γB becomes

γ (bh)
q`−1

=
m∑

i,j=1

γibh,jα
qi−1+qj+`−2

.

By setting the variables as xi,h,j = γibh,j, we obtain m2n variables from the

M
(
H1 (P−1)

T
)T

part of the system. If γ ∈ Fq then γ1 = γ2 = · · · = γm and

the m2 term collapses to m. For a general isometry P no such assumptions
can be made.
Consider now the left hand side of (7.16). By following the same steps as

above, but now using that H2 (S−1)
T

is a Moore matrix, there are m(n − k)

unknowns for the equations corresponding to the first row of F
(
H2(S

−1)T
)T

part, and all the other equations will share the same unknowns.

For the parameters used in REDOG, m > 2n−k and n > `. By Proposition 2
there are u = m(mn− (`− 1)(n− k)) > mn more variables than equations.
Solving such an underdetermined system of equations requires trying all qu >
(qm)n possibilities which makes the attack complexity exponential.

Remark 7.6.4. Note also that since REDOG considers S ∈ GLn−k(Fqm) (via
S−1 ∈ GLn−k(Λ)), these attacks could not be automatically applied even if P
were limited to GLn(Fq). This can be shown by slightly tweaking the proof of
Proposition 2 to having the left side of (7.16) require more variables. Note
that in general the λ-dimensional space Λ is not invariant under the q-power
Frobenius map, leading to the full m2(n − k) variables instead of m(n − k)
in Proposition 2. However, if Fqm has m divisible by λ then it is possible to
choose Λ ∼= Fqλ which would lead to only λm(n − k) variables for that part.
The 128- and 192-bit parameters for REDOG chose prime m but the 256-bit
parameters have m = 135 = 33 · 5 and λ = 3, permitting this choice. While
it is unlikely that a random choice of Λ picks this case and P being a general
isometry also avoids having too few variables, we recommend choosing prime
values of m to completely rule out this concern.

Remark 7.6.5. Despite Proposition 2 showing that the mentioned attacks
do not apply to the case where P is an isometry of Fnqm and S−1 ∈ GLn−k(Fq),
we do not advise to choose this combination to instantiate REDOG.



7.7 Further work on REDOG

Lange, Pellegrini and Ravagnani [LPR23, Section 7,8] provide two ways to
make REDOG’s decryption correct. The first is a minimal change to fix the
system by changing the space from which some matrix P−1 is chosen in a way
that differs from the choice in REDOG and avoids the issue mentioned above.
However, this still requires choosing much larger parameters to deal with our
third contribution. The second way makes a different change to REDOG
which improves the resistance to attacks while also fixing the decryption
issue. It is shown that, using this strategy, not only REDOG parameters
are sufficient to reach any claimed security level, but they provide security
abundantly beyond each level, allowing room for an eventual optimization.

7.8 SageMath code

The following Sage script can be used for breaking the reference implemen-
tation for the 128-bit-security parameters. The file reads from the KAT file
rsp 128.rsp. See also https://gitlab.tue.nl/tlange/kpqc-public/-/

tree/master/redog for the code.

from sage.doctest.util import Timer

 

(n, k, l, q, m, r, t) = (44, 8, 37, 2, 83, 18, 6)

 

Fqm = GF(q^m)

ran_len = 30

 

def Hash_function(error_vec, length_n, length_k, length_l , seed_num = 0) : # copied from REDOG’s implementation

    import random

    random.seed(seed_num)

    index_list = range(2*length_n - length_k)

    index = random.sample(index_list, length_l)

    Field = error_vec.base_ring()

    Hash_error = zero_matrix(Field, 1, length_l)

    for i in range(length_l):

        Hash_error[0,i] = error_vec[0, index[i]]

    return matrix(Hash_error)

 

def pis(G,y):

  M = copy(G)

  k,n = M.dimensions()

  p = list(Permutations(n).random_element())

  indexes = p[:k]

  indexes.sort()

  colsG = [M.columns()[i-1] for i in indexes]

  colsy = [y.columns()[i-1] for i in indexes]

  pisG = matrix(Fqm, colsG)

  pisy = matrix(Fqm, colsy)

  return pisG.transpose(), pisy.transpose()

 

 

https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/redog
https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/redog


def Prange(pubKey, y, t):

  M = pubKey[0].augment(pubKey[1])

  kpr,npr = M.dimensions()

  yleft = y[0][:n]

  yright = y[0][n:]

  while True:

    M1,y1 = pis(M,y)

    while not M1.is_invertible():

      M1,y1 = pis(M,y)

    U = M1.inverse()

    msg =y1*U

    y1left = msg*pubKey[0].matrix_from_columns(list(range(t+3)))

    wtleft = len([i for i in range(t+3) if y1left[0][i]!=yleft[i]])

    if wtleft <= t:

      x = msg*M

      wt = len([i for i in range(2*n-k) if x[0][i]!=y[0][i]])

      if wt <= t:

        e = y -x

        return msg, e

 

def string_to_mat(s,nrows,ncols):

  sbin = [list(reversed(Integer(ch,base=16).digits(base=2,padto=4))) for ch in s]

  sbin = flatten(sbin)

  meta = []

  for i in range(0,len(sbin),m):

    meta.append(Fqm(sbin[i:i+m]))

  return matrix(Fqm,nrows,ncols,meta[:ncols*nrows])

 

def el_to_string(polynomial): #copied from original submission

    p_coeff = matrix(ZZ(polynomial.integer_representation() ).digits(base=q, padto=m))

    p_bin = p_coeff[0]

    return p_bin

 

with open(’rsp_128.rsp’, ’r’) as f:

  pk, cipher, pk0, pk1 = ’’, ’’, ’’, ’’

  start = False # used to read pk which is on 2 different lines

  time = 0

  timer = Timer()

  for line in f:

    line = line.split()

    if line[:2] == [’msg’, ’=’]:

      msg = string_to_mat(line[2],1,37)

    if line[:2] == [’pk’, ’=’]:

      start = True

      pk = line[2]

      tmp = pk

      pk0 = string_to_mat(pk,37,44)

    elif start and line[0] == ’,’:

      pk= line[1]

      pk1 = string_to_mat(pk,37,36)

      start = False

    else: start=False

    if line[:2] == [’c’,’=’]:

      cipher = line[2]

      cipher = string_to_mat(cipher,1,80)

      end=True

      timer.start()

      m_prange,e= Prange([pk0,pk1], cipher, 6)

      timer.stop()

      time += timer.walltime

      print(m_prange - Hash_function(e,44,8,37)==msg)

  print(time/ran_len)



The KAT files for the 192- and 256-bit-security parameters use a different
encoding of the public key. This file is for rsp 192.rsp and can be used for
rsp 256.rsp as well.

from sage.doctest.util import Timer

 

level = 192

(n, k, l, q, m, r, t) = (58, 10, 49, 2, 109, 24, 8)

ran_len = 15

Fqm.<z> = GF(q^m)

 

def Hash_function(error_vec, length_n, length_k, length_l , seed_num = 0) : # copied from REDOG’s implementation

    import random

    random.seed(seed_num)

    index_list = range(2*length_n - length_k)

    index = random.sample(index_list, length_l)

    Field = error_vec.base_ring()

    Hash_error = zero_matrix(Field, 1, length_l)

    for i in range(length_l):

        Hash_error[0,i] = error_vec[0, index[i]]

    return matrix(Hash_error)

 

def pis(G,y):

  M = copy(G)

  k,n = M.dimensions()

  p = list(Permutations(n).random_element())

  indexes = p[:k]

  indexes.sort()

  colsG = [M.columns()[i-1] for i in indexes]

  colsy = [y.columns()[i-1] for i in indexes]

  pisG = matrix(Fqm, colsG)

  pisy = matrix(Fqm, colsy)

  return pisG.transpose(), pisy.transpose()

 

 

def Prange(pubKey, y, t):

  M = pubKey[0].augment(pubKey[1])

  kpr,npr = M.dimensions()

  yleft = y[0][:n]

  yright = y[0][n:]

  while True:

    M1,y1 = pis(M,y)

    while not M1.is_invertible():

      M1,y1 = pis(M,y)

    U = M1.inverse()

    msg =y1*U

    y1left = msg*pubKey[0].matrix_from_columns(list(range(t+3)))

    wtleft = len([i for i in range(t+3) if y1left[0][i]!=yleft[i]])

    if wtleft <= t:

      x = msg*M

      wt = len([i for i in range(2*n-k) if x[0][i]!=y[0][i]])

      if wt <= t:

        e = y -x

        return msg, e

 

def string_to_mat(s,nrows,ncols):

  sbin = [list(reversed(Integer(ch,base=16).digits(base=2,padto=4))) for ch in s]

  sbin = flatten(sbin)

  meta = []

  for i in range(0,len(sbin),m):

    meta.append(Fqm(sbin[i:i+m]))



  return matrix(Fqm,nrows,ncols,meta[:ncols*nrows])

 

def el_to_string(polynomial): #copied from original submission

    p_coeff = matrix(ZZ(polynomial.integer_representation() ).digits(base=q, padto=m))

    p_bin = p_coeff[0]

    return p_bin

 

def string_to_Fqm_tuple(s):

  s = s.split()

  tup = []

  el = ’’

  j=1

  while j<len(s):

    if s[j]!=’+’:

      el += s[j-1]

      tup.append(Fqm(el))

      el = ’’

      j +=1

    else :

      el += s[j-1]+s[j]

      j+=2

  if j ==len(s):tup.append(Fqm(el+s[j-1]))

  if j ==len(s)+1 : tup.append(Fqm(el+s[j-1]))

  return tup

 

with open(f’rsp_{level}.rsp’, ’r’) as f:

  cipher, pk0, pk1 = None, [], []

  startM = False # used to read pk which is on different lines

  startF = False

  i = 1 # used to read the public key 0 <= i < l

  time = 0

  timer = Timer()

  for line in f:

    if startM and i<l:

      i = i+1

      pkl = line[1:-2]

      pk0.append(string_to_Fqm_tuple(pkl))

 

    if startF and i < l:

      i += 1

      pkl = line[1:-2]

      pk1.append(string_to_Fqm_tuple(pkl))

 

    if line[:5] == ’msg =’:

      msg = string_to_mat(line[6:-1],1,l)

    if line[:4] == ’pk =’:

      startM = True

      pkl = line[6:-2]

      pk0.append(string_to_Fqm_tuple(pkl))

    if startM and line[0] == ’,’:

      pkl = line[3:-2]

      pk1.append(string_to_Fqm_tuple(pkl))

      startM = False

      startF = True

      i = 1

    if startF and i==l:

      startF=False

      i=1

    if line[:3] == ’c =’:

      pk0 = matrix(Fqm,l,n,pk0)

      pk1 = matrix(Fqm,l,n-k,pk1)

      cipher = line[4:-1]



      cipher = string_to_mat(cipher,1,2*n-k)

      timer.start()

      m_prange,e= Prange([pk0,pk1], cipher, t)

      timer.stop()

      time += timer.walltime

      print(m_prange - Hash_function(e,n,k,l)==msg)

      pk0,pk1=[],[]

      i=1

      startM=False

      startF=False

  print(time/ran_len)



Chapter 8

SMAUG and TIGER

SMAUG [CCH+22] and TiGER [PJP+22] are lattice-based key encapsulation
algorithms (KEMs). Because they share several design elements we treat
them jointly in this chapter. For more information on relating SMAUG to
Kyber [SAB+22] see the thesis [Mer23] by Jorge Correa-Merlino. A thesis on
TiGER is still in preparation.
In the following we will provide a description and discussion of key features
of TiGER and SMAUG. It is instructive to compare both with the winner
of NIST’s PQC competition, Kyber. Naturally, the improvements employed
in SMAUG and TiGER can be based on a more mature field of knowledge,
incorporating more recent research results as compared to Kyber and thus
we expect to see improvements. We then consider the security analysis under
generic lattice attacks as well as combinatorial attacks. Finally we consider
distinctive performance features of both submissions.

8.1 System description

Conceptually and on a high level, SMAUG and TiGER both closely follow
the well-known template for building lattice-based KEMs as initiated by
Regev [Reg05]. See Section 2.2 for more background on the Regev template.
Regev-like cryptosystems mimic the well-known ElGamal cryptosystem,
where each ciphertext consists of an ephemeral public key and a part in-
volving the message. Decryption of the message is possible with a shared
secret which is derived from the long-term key of the receiver (pk, sk) and
the fresh ephemeral key (epk, esk) of the sender (so either from (pk, esk) by
the sender or (epk, sk) by the receiver). All Regev-like encryption systems
have comparatively simple security proofs linking them to some LWE-like as-
sumption. These underlying security assumptions mainly differ in i) the type
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of underlying lattice structure they are defined in, ii) the distribution that the
secret key is chosen from, and iii) the error distribution that is used to bias
(destroy) otherwise linear dependencies between public and secret variables.
Applying these assumptions in constructions is simple. They guarantee that
the long-term public key and the ephemeral public key of the ciphertext are
indistinguishable from random to passive attackers. For random public keys,
the decrypted message is essentially also random value to the attacker. In
the security proof, this is enough to show that the scheme guarantees the rel-
atively weak notion of IND-CPA security (indistinguishability under chosen
plaintext attacks). Thus, even though there is a wide variety of LWE-like
assumptions, each Regev-like cryptosystem chooses its algebraic setting and
security assumption while following the same template.
In terms of provable security, the concrete choices influence the concrete cor-
rectness error and the achieved security level. Some schemes employ further
mechanisms like error correcting codes to improve these key characteristics
while others point to them as a source of implementation difficulties and
issues with side-channel attacks. Essentially, each Regev-like cryptosystem
proposes a new, unique trade-off between the key characteristics and effi-
ciency.

8.1.1 Concrete parameters

TiGER and SMAUG both updated their parameters, here we comment on
the most recent versions for both and also mention choices for Kyber.
Parameters should make the scheme i) have low bandwidth and high through-
put, ii) have high concrete security supported by a proof to some security
assumption, and iii) have adequate DFP.
Kyber uses MLWE with base ring Rq = Zq[x]/(Xd + 1). The values of q and
d are fixed to q = 3329 and d = 256 for all security levels; note that 256
divides q−1 which permits using the NTT in Rq. The smallest security level
uses two blocks of size 256 and the number increases with the security level,
so n ∈ {2, 3, 4}.
SMAUG also uses MLWE and combines it with MLWR with power-of-2
cyclotomics for the ring at d = 256. Compared to Kyber it uses one more
block for the highest security level, so n ∈ {2, 3, 5}. Like Saber [DKR+20] it
wooks with a power-of-2 modulus q ∈ {1024, 2048} and uses rounding.
TiGER uses uses RLWE and RLWR with Rq = Zq[x]/(Xd + 1) with power-
of-2-cyclotomic rings for d = 512 or 1024. The value of q is fixed to q = 256
for all security levels, so also using a power-of-2 modulus.



8.2 Security analysis

We first analyze the security against generic lattice attacks and then comment
on key-search attacks and other issues.

8.2.1 Generic lattice attacks

Table 8.1 for SMAUG and Table 8.2 for TiGER contains the results of the
estimator for the BKZ lattice attacks from Albrecht, Curtis, Deo, Davidson,
Player, Postlethwaite, Virdia and Wunderer found in [ACD+18]. For more
information see Section 2.1. The input of the code is given in Table 8.3 for
SMAUG and Table 8.4 for TiGER.

Parameter n 512 768 1280
Type primal dual primal dual primal dual
Q-Core-Sieve 109 134 155 179 259 297
Q-Core-Sieve + O(1) 125 146 171 192 275 292
Q-Core-Sieve (min space) 122 145 174 195 283 311
Q-β -Sieve 118 141 164 189 269 288
Q-8d-Sieve + O(1) 138 156 185 201 289 311
Core-Sieve 120 145 171 193 279 307
Core-Sieve + O(1) 136 156 187 208 295 315
Core-Sieve (min space) 151 170 215 231 326 336
β-Sieve 129 150 180 199 289 302
8d-Sieve + O(1) 149 166 200 216 309 323
Q-Core-Enum + O(1) 133 159 203 232 315 382
Lotus 137 164 209 241 321 353
Core-Enum + O(1) 240 243 308 340 420 514
8d-Enum (quadratic fit) + O(1) 260 266 328 378 440 431

Table 8.1: Estimations for security level for SMAUG found with code by
[ACD+18]

8.2.2 Key search – the May attack on sparse secrets

As announced early in the competition by Bernstein [Ber22] and acknowl-
edged by both submission teams, the combinatorial attack by May [May21]
applies to the sparse distributions of the secret polynomials chosen (or ob-
tained from rounding) in TiGER and SMAUG. Neither team had taken it
into account.



Parameter n 512 1024 1024
Type primal dual primal dual primal dual
Q-Core-Sieve 132 167 212 261 271 321
Q-Core-Sieve + O(1) 148 177 228 284 287 331
Q-Core-Sieve (min space) 149 180 227 244 305 354
Q-β -Sieve 141 173 221 246 281 327
Q-8d-Sieve + O(1) 162 188 241 277 301 349
Core-Sieve 146 178 225 286 299 349
Core-Sieve + O(1) 162 190 241 265 315 358
Core-Sieve (min space) 184 210 254 262 373 418
β-Sieve 155 185 233 262 309 355
8d-Sieve + O(1) 175 201 254 270 329 367
Q-Core-Enum + O(1) 173 211 231 252 395 472
Lotus 183 218 229 260 416 496
Core-Enum + O(1) 311 315 296 313 575 658
8d-Enum (quadratic fit) + O(1) 333 336 315 326 604 616

Table 8.2: Estimations for security level for TiGER found with code by
[ACD+18]

For TiGER, Lee, Lee, and Kim [LLK23] showed that the 192-bit parameters
in version 2.0 do not resist this attack and TiGER updated their parameters.
In particular, TiGER changed the number of non-zero entries in the secret
key from (160, 84, 198) to (142, 132, 196). SMAUG could not successfully be
attacked by this attack, however, the SMAUG team changed the parameters
as well to allow for a larger security margin.

8.2.3 Decryption failures

After v2.1 of TiGER was announced, Lee [Lee23b] showed that the DFP was
calculated incorrectly and that it was larger by a factor of 28. The TiGER
team acknowledged the issue and provided a new version (v3.0) in which they
changed the parameters for the highest security level.

Both schemes seem to have adequate DFP now.

For TiGER we analyzed how one could mount a reaction attack if the
CCA transform was not used. The challenge was to combine the basic at-
tack [HGS99, Flu16] with the error correction algorithms in TiGER and
we analyzed optimal choices of how to modify pairs of ciphertext entries in
order to minimize the number of queries. This approach follows a similar
analysis [BBLP18] on the NIST candidate HILA5 [BBLP18, Saa17], but in



n 256 · 2 256 · 3 256 · 5
Standard deviation 1.0652 1.0652 1.0652

q 1024 2048 2048

k 2 3 5

Secret distribution (−1, 1), 140 (−1, 1), 140 (−1, 1), 140

m 672 1024 1472

Claimed security 120 180 247

Category 1 3 5

Ring xn/k + 1 xn/k + 1 xn/k + 1

Table 8.3: Input for SMAUG in the code by [ACD+18]

n 512 1024 1024

Standard deviation 0.86 0.86 0.86

q 256 256 256

Secret distribution (−1, 1), 160 (−1, 1), 84 (−1, 1), 198

Claimed security 120 192 246

Category 1 3 5

Ring xn + 1 xn + 1 xn + 1

Table 8.4: Input for TiGER in the code by [ACD+18]



contrast to HILA5, TiGER is proposed with a CCA transform so this attack
does not apply on the proposed scheme. We tried but did not succeed to
use it to attack the TiGER version with the larger DFP, different techniques
would be needed to find a first decryption failure and then follow [GJY19].
These results will be included in the upcoming thesis by Casper von Berg.

8.3 Distinctive efficiency considerations

The original trade-off TiGER proposed focused on minimizing sizes to fit
ciphertexts into the maximal transmission unit (MTU) of the highly impor-
tant practical protocol IPsec which is 1244 bytes. The idea is that IPsec has
a relatively small MTU and requires that the first message of each party, in
the so-called IKA SA INIT phase, must not be fragmented. The mechanism
IPsec employs requires fragmented messages to be protected by symmetric
authenticated encryption under the current session key. However, since at
the point of the first message there is no symmetric key available, the first
message cannot be protected in this way. This is a pragmatic approach to
ensure that the IPsec infrastructure does not have to change too much and
in particular, stay competitive in terms of efficiency. However, the advantage
will only materialize if future IPsec standardization a) does not change the
MTU and b) maintains that ciphertexts and public keys should not be frag-
mented. Changing the MTU is theoretically possible within the limits set for
Ethernet frames (minus headers) or by changing to jumbo frames, however
the latter would break compatibility with older network infrastructure. Al-
lowing for fragmentation of ciphertexts and public keys has the downside that
efficiency (during connection establishment) is reduced. However, IPsec has
a design that does not focus on reducing round complexity during startup.
The handshake phase requires at least four protocol moves. While the de-
sign has several advantages like important privacy properties [SSL20], other
designs of key exchange protocols like [Kra05, JKRS21] require fewer moves,
which is important in particular on high-latency connections. In protocols
designed for fewer moves, ephemeral keys and values designed for achiev-
ing authentication will be sent together in a single move, which makes even
TiGER’s parameters too large anyways.
Furthermore, due to a change in parameters in the most recent version v3.0
the goal of fitting into the IPsec MTU could not be upheld. Instead the
TiGER team now focuses on meeting the MTU for Ethernet (1500 bytes
minus headers). Meeting the MTU for Ethernet has the advantage that
packets need not be fragmented on lower network levels. Both SMAUG
and TiGER achieve that ciphertexts (and therefore also the shorter public



keys) fit into 1500 bytes for all security levels. However, if TCP/IP is used
as a network protocol on top of Ethernet and thus headers are included,
the remaining space is sufficient for all levels of TiGER but not for the
highest level of SMAUG. We note that modern hardware equipment typically
supports larger packets, so-called jumbo frames. These have a size of about
9000 bytes and Kyber, SMAUG, and TiGER all trivially meet this MTU and
post-quantum versions of Internet protocols could move to requiring jumbo
frames.
As a positive design feature, due to the modulus q = 256 having 8 bits only,
TiGER is very SIMD friendly and operations on coefficients can easily be
computed using native CPU commands. This is visible in the higher speeds
achieved for TiGER.
SMAUG choose a trade-off that focuses on overall good efficiency but par-
ticularly small secret key sizes. This has the advantage that secret keys can
more cheaply be stored in physically protected memory locations (trusted
memory). Many server applications use such memory locations in the form
of hardware security modules (HSMs). Trusted memory tends to be more
expensive but features additional security guarantees that are typically not
reflected in common security definitions but may matter in practice. Impor-
tantly, keys stored in trusted memory locations offer better protection against
physical attacks like power analysis or fault injections. Trusted memory lo-
cations usually make sure that the secret key cannot leave the safe memory
location in an unprotected form. Instead, the interface to the trusted mem-
ory only allows to apply the secret key to decrypt (or generate signatures on)
input values sent into the HSM. At the same time, while security is higher,
efficiency is often lower than computations on general CPUs that access the
secret key from RAM. However, this is compensated by the fact that the
trusted location computes on the secret keys in parallel to what the general
CPU computes.
The main technique to obtain small secret keys is by using a sparse distribu-
tion, where most entries of the secret key vector are zero, and only storing
the non-zero entries, together with the index of their component. However,
drawing sparse secret keys has the downside of increasing the attack surface,
particularly allowing combinatorial attacks, see section 8.2.2.
We note that the most recent variant of TiGER also proposes to draw secret
keys from a sparse distribution and store them efficiently.
Both reference implementations compiled and produced the expected KAT
vectors.



8.4 Considerations on provable security

SMAUG and TiGER provide security proofs in their documentation. Kyber,
the NIST winner designed in 2017, uses the FO transform with implicit
rejection and ciphertext contribution relying on [HHK17].
SMAUG uses the FO transform with implicit rejection and no ciphertext
contribution relying on [BHH+19]. While relying on the additional non-
standard assumption that the deterministic version of the PKE is sparse
pseudo-random in the QROM, the SMAUG team uses [HHK17] to provide a
tight reduction in the QROM.
TiGER uses the FO transform with implicit rejection and ciphertext contri-
bution relying on [JZC+17] that seems to offer better security losses in the

QROM (reducing security bounds of q
√
q2δ + q

√
ε to q

√
δ + q

√
ε).

We remark that we cannot see obstacles for SMAUG to incorporate ci-
phertext contribution. This could improve the security bounds by relying
on [JZC+17]. Likewise we cannot see immediate obstacles to why the deter-
ministic version of TiGER’s IND-CPA scheme is not sparse pseudo-random.
It is unclear whether the application of ECC violates the sparse pseudo-
randomness property as required by [JZC+17].

8.5 General assessment

Both schemes TiGER and SMAUG seem solid and closely follow the Regev-
template that has been very successful in the past. Both schemes try to
improve on Kyber, the winner of the NIST competition and in general achieve
higher efficiency. They achieve this mainly by incorporating recent research
advances like more better FO transforms and exploiting sparse secret keys.
Similar to Kyber, the security proofs are non-tight in the quantum setting and
incur a quadratic loss (unless relying on non-standard assumptions). This loss
is not compensated for by the practical parameter choices. When proving
security in more realistic multi-user models the loss is even larger. Using
prefix hashing [DHK+21] the schemes could theoretically improve efficiency
and avoid the naive loss in the number of users that comes from a hybrid
argument. However, it is unclear if this still holds in the more realistic multi-
user models with corruptions. Moreover it is unclear if the improvements in
[DHK+21] synergize with those used in [JZC+18]. When trying to reduce
to classical lattice assumptions, the loss is even greater. All in all, there is
no indication of why the concrete choices are helpful to support that their
instantiations are theoretically sound.



In terms of security, an important difference is that TiGER uses ECC to
decrease the DFP, a feature that SMAUG avoids; the SMAUG designers
point to side-channel attacks that could be facilitated with ECC.
The two schemes provide unique trade-offs between a subset of their param-
eter sizes. Both give convincing reasons for their choices. However, it is
unclear whether in practice the reasons will indeed be of much importance.
Small secret keys can be useful since they can be protected better physically.
However, it is unclear what the additional costs are and how much weight
this use case should have overall. Likewise, meeting the MTU of Ethernet is
an interesting property even if it distinguishes SMAUG and TiGER only on
the highest security level (NIST level V) from Kyber.
In terms of efficiency, SMAUG and TiGER have comparable numbers but
TiGER seems to outperform SMAUG in virtually all categories. SMAUG
has larger ciphertext size compared to TiGER on NIST level I (672 vs 640),
smaller ciphertext on level III (1024 vs 1280 bytes) and larger ciphertext size
on level V (1472 vs 1408 bytes). The public key sizes of TiGER on levels I,III,
and V (480, 928, 928 bytes) are always smaller than those of SMAUG (672,
1088, 1792). Similarly, TiGER seems to outperform SMAUG in terms of
computational efficiency on all levels, where the gap gets larger with higher
levels up to a factor of two for key generation at level V. As for the size
of the secret keys, TiGER has sizes of (134, 178, 263 bytes) on the three
security levels whereas SMAUG offers (176, 236, 218 bytes). We note that
the parameters for TiGER have been adapted considerably over the span of
the competition.
For comparison the numbers for Kyber are: secret key (1632, 2400, 3168
bytes), public key (800, 1184, 1568), and ciphertext size (768, 1088, 1568).
Both SMAUG and TiGER outperform Kyber computationally up to a factor
of roughly 3.
We note that the recent results suggest that NTT can be applied to unfriendly
moduli q [CHK+20]. This could be applied to improve the computational
complexity of SMAUG and TiGER further.

8.5.1 Open questions

It would be interesting to hear the authors opinions on the following ques-
tions.

� It is interesting to know how large the parameters need to be in SMAUG
and TiGER for a theoretically-sound instantiation in a strong security
model (multi-user, corruptions).



� Moreover, can prefix hashing of pk be used to improve tightness and
efficiency in the schemes?

� Can TiGER be proven tightly secure under the assumption of disjoint
simulatability? Is this assumption plausible when using ECC?

� What are the computational costs for ciphertext contribution in the FO
transform? -– Following the prefix hashing technique it seems consid-
erable speedups can be made if the hash function is performed on less
and smaller values (pk prefixes only). TiGER uses ciphertext contribu-
tion to apply the FO transform in contrast to SMAUG and so hashes
the ciphertext as well. Nevertheless, it is still more efficient. How can
this be best explained?

� Can the SMAUG team use ciphertext contribution to apply the
[JZC+18] result and obtain better tightness. What would the disad-
vantage be in terms of efficiency?



Part II

Digital Signature Algorithms
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Chapter 9

AIMer

AIMer [KHS+22a] is a signature scheme designed using the MPC-IN-THE-
HEAD [IKOS09] paradigm to design an identification scheme which is then
transformed into a signature scheme using the Fiat-Shamir transform.
The core idea of the MPC-IN-THE-HEAD paradigm in the context of signa-
tures is to create an identification scheme that proves knowledge of a preim-
age for a one-way function in zero-knowledge. For this, the prover simulates
a multi-party computation (MPC) that evaluates the one-way function on
input of the secret-shared preimage. For this, every simulated party obtains
a secret-share of the preimage. Then the MPC computation is simulated,
the prover commits to all the internal state of each party, and sends the
commitments together with all the communication between the parties to
the verifier. The verifier then challenges the prover to open the full state of
all but one party, which allows the verifier to probabilistically check that the
prover did not cheat in the MPC simulation. At the same time, the secu-
rity of the MPC protocol guarantees that even colluding parties cannot learn
anything about the input of another party except what can be derived from
the computation outcome. Thereby, it is guaranteed that the verifier does
not learn anything about one of the secret shares and thereby the preimage
remains hidden.
This identification scheme is then made non-interactive using the Fiat-Shamir
transform. For this, the verifier gets replaced by the application of a hash
function that takes all previous communications sent by the prover as well
as the message to be signed, and the output is used as the challenge.
A famous example that followed this design is the Picnic [CDG+17] signa-
ture scheme which made it into the third round of the NIST competition.
This design also has shown quite popular among submissions to the NIST
signature on-ramp. The security of the resulting scheme is (provably) based
on the security of several hash functions, use as pseudorandom generators,
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Figure 9.1: X ,Y ∈ F2n , S-box (non-linear) layer is Mersenne numbers power
maps. affine layer is n×mn binary matrix and a binary vector randomized
using IV

commitment scheme, and message hash, as well as the security of the one-
way function for which knowledge of the preimage is proven. An important
aspect is that while the hash functions used for the former applications can
simply be instantiated with standardized hash functions / XOFs like SHA2,
SHA3 or SHAKE, this does not hold for the one-way function. Given that
the latter is evaluated in an MPC, its performance in this setting determines
the performance of the signature scheme. Hence, proposals following the
MPCitH design make use of special one-way functions that are optimized
for the use in MPC1. For example, Picnic makes use of the third version
of LowMC which was first proposed in [ARS+15] as its underlying one-way
function. In the case of AIMer, the underlying one-way function is a new
design called AIM [KHS+22b].
Below, we first discuss cryptanalysis results regarding AIM. Afterwards, we
comment on the provable security claims made in the AIMer specification.
Finally, we conclude.

9.1 Cryptanalysis results for AIM

The one-way function used in AIMer is AIM [KHS+22b] which is depicted in
Figure 9.1.

1Specifically, these designs try to minimize the use of multiplication as it is the by far
most costly operation in common MPC protocols.



Scheme λ Field m e1 e2 e3 e∗
AIM-I 128 F2128 2 3 27 5

AIM-III 192 F2192 2 5 29 7
AIM-V 256 F2256 3 3 53 7 5

Table 9.1: Parameters for different instances of AIM.

The parameters for different versions of AIM are described in Table 9.1. Let
X ,Y be input and output of AIM respectively. Let Zi be the output of the
ith S-box, S be the output of the affine layer, and Bi(x) =

∑λ−1
j=0 ai,jx

2j +ai,λ
represent the affine layer applied to the state after the ith Sbox. AIM can be
described as:

Zi = X 2ei−1 for 1 ≤ i ≤ m,

S =
m∑
i=1

Bi(Zi),

Y = S2e∗−1 + X .

The security of AIM is analyzed against three categories of standard attacks,
namely algebraic attacks, statistical attacks, and generic quantum attacks.
In all the category of attacks, the security model of AIM restricts the attacker
to the data complexity of O(1), and the claim is that breaking any instance
of AIM with λ bits of security requires > 2λ complexity.

9.1.1 Algebraic attacks

Algebraic attacks aim to exploit algebraic structures of the design to discover
secret information. One approach in algebraic attacks is to model the design
as a system of multivariate polynomials such that the set of solutions reveals
secret information. The state of the art techniques for solving a system of
multivariate polynomial includes:

� Fast exhaustive search that requires d · 2n bit operations [BCC+10].

� Lokshtanov et al. probabilistic method [LPT+17] with asymptotic com-
plexity of 20.8765n.

� BooleanSolve algorithm [BFSS13] with complexity Õ(20.792n).

� Multiple Parity-Counting [Din21] with worst case complexity
O(20.6943n).



� SAT solvers.

� Normal form methods.

� Hybrid approaches.

In the rest of this section, we study of the security claims of the designers of
AIM against popular algebraic attacks.

Gröbner basis attacks

The idea behind the Gröbner basis attacks is to model the primitive as a
system of multivariate polynomials with secrets as variables and solve the
system to reveal the secret. The complexity of Gröbner basis attacks can be
summarized as follow:

� Compute Gröbner basis in degree reverse lexicographic order:

O

((
V +D

D

)ω)
,

where V is the number of variables in the system and D is the solving
degree of the system.

� Transform the basis into lexicographic order:

O
(√
VD2+V−1

V

)
,

where V is the number of variables and D is the degree of the corre-
sponding ideal.

� Compute elimination ideals and expand partial solutions:

O (d log(d) log(q) log(log(d)))) ,

where d is the degree of the univariate polynomial in the Gröbner basis
and q is the order of the field.

To analyze the security of AIM against Gröbner basis attacks, two possible
approaches can be considered to model it as a system of polynomials. First
approach is to model it as system of polynomials in F2n [x1, . . . , xm] where
the entire state is a variable and each operation defines a single polynomial.
However, because of the design of the linear layer, which is an affine lin-
earized polynomial in F2n , the polynomial representation has large degree



and high density which makes the solving of the system computationally in-
feasible. Second approach is to consider each bit of the input as a variable in
F2[x1, . . . , xm], and model each bit of the output as a polynomial in the input
bits. In the case of AIM, the linear layer can be modeled as linear equations,
and the S-box y = x2

e−1 can be modeled as a system of quadratic equations
by writing the Sbox relation as xy = x2

e
.

1. basic: n variables and n quadratic equations for each S-box.

2. full: n variables and 3n quadratic equations for each S-box which
results in an over-defined system.

In [KHS+22b, Appendix B.], different polynomial modelings are presented
with their corresponding attack complexities. The results are summarized
in Table 9.2. The complexity of computing the Gröbner basis is analyzed

scheme n #variables #equations degree of system dreg complexity
AIM-I 128 2n 6n 4 22 214.9

AIM-III 192 2n 6n 6 31 310.6
AIM-V 256 2n 6n 8 40 406.2

Table 9.2: Complexity of finding the Gröbner basis.

using the Hilbert degree of regularity and the number of variables derived
from different polynomial modelings.

XL

To Solve a system of multivariate polynomials using the XL family of algo-
rithms, the system is extended to some degree D. Extending a quadratic
system with n variables and m polynomials results in a system that has a
Macualay matrix with C =

∑D
i=1

(
n
i

)
columns and R = m

(
n

D−2

)
rows. As

a result, techniques from linear algebra can be applied to solve the system
if R > C. The complexity of XL attacks against AIM is summarized in
Table 9.3

Scheme n #variables #equations degree of system D time
AIM-I 128 3n 9n 2 12 148

AIM-III 192 3n 9n 2 15 194.1
AIM-V 256 3n 9n 4 20 260.6

Table 9.3: Complexity of XL.



Multiple parity-counting

Multiple Parity-Counting approach is an effective approach to solve a system
of polynomials over F2. The attack complexity against AIM is summarized
in Table 9.4.

Scheme n #variables #equations degree of system time
AIM-I 128 n 3n 10 137.3

AIM-III 192 n 3n 14 202.1
AIM-V 256 n 3n 12 264.1

Table 9.4: Complexity of [Din21].

9.1.2 Statistical attacks

The security model restricts the attacker to O(1) data complexity.

Differential cryptanalysis

Having the data restriction of O(1) makes the differential cryptanalysis irrel-
evant. However, the lower bounds on the probability of the best differential
characteristics are summarized in Table 9.5.

n 128 192 256
log2 γ -118.4 -178.0 -245.9

Table 9.5: Lower bounds of γ

Linear cryptanalysis

The security of AIM against linear cryptanalysis is ensured if:

min
1≤i≤l

(2ei − 2)2 (2e∗ − 2)2 < 2n

9.1.3 Quantum attacks

The authors analyzed the security of AIM against generic quantum attacks.
The results of analysis against Grover’s algorithm is summarized in Table 9.6.



Scheme Offered Security Level
AIM-I ≥ 157

AIM-III ≥ 221
AIM-IV ≥ 285

Table 9.6: Lower bounds of γ
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Figure 9.2: The variables used to model AIM are denoted with X , Zi for
1 ≤ i ≤ m, S.

9.1.4 Attacks on AIM

The design of AIM is published at ACM CCS 2023 and before that on
ePrint [KHS+22b] and since then, it was the subject of cryptanalytic works.
Two of the attacks that break the security claims of AIM are described in
this chapter.

Fast exhaustive search

In [LMØM23], Fukang et al. used fast exhaustive search [BCC+10] to break
AIM. The versions with 128/192/256-bit security are shown to be broken
with complexity 2115/2178/2241. The attack exploits the low degree of the
non-linear operations of AIM. Similar observation was made by Markku-
Juhani O. Saarinen 2 which shows that AIM does not reach the claimed
security level.
As shown in Figure 9.2, one can write:

X = S2e∗−1 + Y
2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0


Scheme λ Field m+ 1 Algebraic Degree Time Memory Complexity
AIM-I 128 F2128 3 10 2136.2 261.7 2115

AIM-III 192 F2192 3 14 2200.7 284.3 2178

AIM-V 256 F2256 4 15 2265.0 295.1 2241

Table 9.7: Complexity of breaking instances of AIM using fast exhaustive
search.

And for each variable Zi, one can write:

Zi =
(
S2e∗−1 + Y

)2ei−1 ⇒ Zi =
2ei−1∑
j=0

YjS2e∗−1(2ej−1−j)

Then, Zm can be written in two different ways as:

Zm = B−1m

(
c+ S +

m−1∑
i=0

Bi

((
S2e∗−1

+ Y
)2ei−1))

, (9.1)

Zm =
(
S2e∗−1 + Y

)2em−1
, (9.2)

which gives an equation in S, which can be solved using fast exhaustive
search technique and the complexity is summarized in Table 9.7.

Linearization attack

It was shown in [ZWY+23] that the linearization method breaks AIM. The
attack targets the design flaw in the first non-linear operation of AIM where
all three Mersenne powers have the same input. Each S-box can be written
as:

x2
ei−1 =

(
xd
)si · x2ti ,

and by guessing the value of xd, one will have a linear system to solve. The
summary of the attacks and their complexities are summarized in Table 9.8.

9.1.5 Mitigation of the proposed attacks

The designers of AIM, proposed AIM2 [KHSL23], which mitigates the attacks
described earlier. In AIM2, the non-linear layers have larger exponents, and
each input to a non-linear function is guaranteed to be different from other
inputs in the same step. The design of AIM2 is depicted in Figure 9.3.



Scheme λ Field m+ 1 d t1 t2 degree of freedom Complexity
AIM-I 128 F2128 3 5 1 1 4 2125.7

AIM-III 192 F2192 3 45 8 8 12 2186.5

AIM-V 256 F2256 4 3 0 0 2 2254.4

Table 9.8: Complexity of breaking instances of AIM using linearization
method.
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Figure 9.3: Design of AIM2



9.2 Provable security claims

The AIMer specification provides two provable security results. On the one
hand, the authors present an analysis of the AIM design assuming that the
S-boxes are random permutations. On the other hand, the authors present
an analysis of the final signature scheme.

9.2.1 Security proof of AIM

The authors provide a security proof of one-wayness of the AIM construction
assuming that the S-boxes are (public) random permutations. This is a
common approach in arguing security of hash function designs. However,
there is an important aspect which at least questions the meaningfulness of
the presented result.
The security proof for AIM seems reasonable (although the argumentation is
in parts too short to follow every detail). However, if we are willing to make
the assumption that the S-boxes are public random permutations, then the
construction is far more convoluted than necessary: Already the first layer is
the “sum of permutations” construction which gives indifferentiability from
a random oracle at least up to 22n/3 queries (and previously conjectured to
even reach full n-bit security, c.f. [GBJ+23], and thereby the same preimage
bound. Indeed, for preimage finding, their argument for case one already
demonstrates this, even with a better bound. This brings up two competing
points. If the public permutation assumption is meaningful, it is unclear
what benefit the additional S-box S3 and the feed-forward add. If they are
necessary from a cryptanalysis perspective, this clearly demonstrates that
the proof is meaningless as that invalidates the assumption that the S-boxes
behave like public permutations.
As a minor note, we note that the used model is not the standard one and it
is imprecise. If A is allowed to pick ct, it can simply pick ct = AIM(pt) for
arbitrary pt. Hence, it is important to highlight that here the adversary is
assumed to not have access to the permutations or AIM before committing
to ct. However, this does not challenge the validity of the proof.

9.2.2 Security proof of signature

AIMer can be described as using AIM within a specific MPCitH based identi-
fication scheme called BN++ [KZ22] which generically describes how to turn
the arithmetic circuit of a one-way function into an efficient identification
scheme. The security proof of BN++ applies (and the proof in the AIMer



paper is a direct copy of the BN++ security proof with the one-way function
being spelled out as AIM).

9.2.3 Interpretation of provable security results

While the formal security arguments seem sound, they have a significant
shortcoming in common. Both proofs (security of AIM as well as security of
the signature scheme) only consider classical adversaries. This also means
that the bounds do not apply against quantum adversaries that at least
can gain a polynomial advantage using Grover or the BHT-collision search
algorithm on all the individual search bounds that make up the full bound.
For the signature scheme, a result can likely be obtained using a recent work
on a related scheme that used a different one-way function [AMHJ+23] but
also follows the BN++ design on a high level. For the AIM bound, it will be
significantly more complicated to extend the result to the setting of quantum
adversaries as it is not yet known how to translate many arguments in the
random permutation model to the quantum setting.

9.3 Overall assessment

There are several shortcomings with regard to the cryptanalytic security as
well as the provable security that are described in this report. Some of them
already led to attacks that break the underlying one-way function AIM. In
general, the use of new dedicated symmetric primitives like LowMC [ARS+15]
(used in Picnic), or Haraka[KLMR16] (used in one instance of SPHINCS+)
has a troubled history (c.f., [LSW+22, Jea16] for the latest attacks). The se-
curity of both has been severely challenged, leading to refinement over refine-
ment (LowMC is by now at version 3 and Haraka at version 2). The reason is
that these designs are usually very aggressive to achieve performance, leaving
only a minimal security margin. The same seemingly happened for AIMer.
All the attacks are mitigated in the new design called AIM2. However, if the
design of AIM2 is secure, it will be a revolutionary design in symmetric-key
cryptography.
From a provable security point of view, it is not clear if the parameters
actually achieve the necessary security against quantum adversaries or not.
This needs further clarification.
As a minor remark, it would be good to also treat the instantiations of further
symmetric primitives and their sizes as parameters of the scheme and mention
them in the performance section.



Chapter 10

Enhanced pqsigRM:
Code-Based Digital Signature
Scheme with Short Signature
and Fast Verification for
Post-Quantum Cryptography

Enhanced pqsigRM is a code-based signature scheme submitted to the KpqC
competition. In this report we describe the system in Enhanced pqsigRM
support-doc. The scheme follows the structure introduced in [CFS01]. While
the latter is a Goppa-code based signature scheme, pqsigRM and Enhanced
pqsigRM are based on binary Reed-Muller codes or twists of those.
An earlier version of Enhanced pqsigRM has been submitted to the NIST
PQC-competition under the name pqsigRM, and can be downloaded from
pqsigRM NIST-submission. The scheme pqsigRM has been successfully at-
tacked since its first submission to NIST PQC-competition and got modified
to overcome the proposed attacks. The attacks and modifications to the
original scheme can be found, in order of appearance, at pqsigRM NIST-
comments. In this report we will describe the system and point out some
inconsistencies between the specification and the supporting implementation.
We then proceed to give some possible attack strategies.
Note that an updated version of Enhanced pqsigRM has been submitted to
the NIST call for digital signature schemes. During the revision process two
potential attacks (BBPS and DLV) have been pointed out. In this report
we describe the DLV attack, which is at least supported by some SageMath
code.
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https://www.kpqc.or.kr/images/pdf/Enhanced%20pqsigRM.pdf
https://www.kpqc.or.kr/images/pdf/Enhanced%20pqsigRM.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqsigRM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/pqsigRM-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/pqsigRM-official-comment.pdf
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4_nUCDvDqqs/m/yTLkjSqDAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/yQ1CKOLbGng/m/RTKoo-PsBQAJ


10.1 Enhanced pqsigRM

The main reason behind substituting Goppa codes with Reed-Muller codes
[MS77, Chapter 13] in CFS is the efficient error correction provided by the
closest coset decoding [Hem89], which is a modification of the soft decision
decoding.

Remark 10.1.1. All the codes involved are linear over F2.

The supporting documentation describes a signature system that does not
coincide with the C implementation provided in the KpqC submission.
We now describe the construction as in the specification. The signature
system starts from the generator matrix Reed-Muller code. These codes
have a (U,U + V ) structure [MS77, Chapter 2, Section 9], and can therefore
be built in a recursive fashion.
Consider for example the Reed-Muller code RM(6, 13), the visualization of
the last two steps of the recursive construction of its generator matrix G is

G =


RM(6, 11) RM(6, 11) RM(6, 11) RM(6, 11)

0 RM(5, 11) 0 RM(5, 11)
0 0 RM(5, 11) RM(5, 11)
0 0 0 RM(4, 11)

 . (10.1)

The CFS signature system using plain RM codes is subject to structural
attacks like Minder-Shokrollahi’s attack [MS07], the Chizov-Borodin’s attack
[CB13] and the Square-code attack [OK15].
The authors propose therefore a set of modifications to G that allow the
modified code to avoid these attacks. Here we list such theoretical modifica-
tions.

1. Code replacement

Unwrapping the recursive construction of the code RM(r,m) one has 2m−r

copies of the code RM(r, r) = Fr2 which forces the dual code to have only
codewords of even Hamming weight. Each of these copies of RM(r, r) is
replaced with a randomly chosen [2r, krep]-code Crep that allows efficient
minimum-distance decoding and satisfies that its dual has at least one code-
word of odd weight. Clearly, if krep < 2r, the rank of the modified generator
matrix drops.

2. Appending rows

In order to achieve the binomial distribution of the weights in the code a set
of kapp random vectors of odd weight are appended to the matrix.



3. Appending a row of the dual to the hull

The hull of RM(r,m) contains codewords of weight a multiple of four, while
a random code’s hull contains codewords of arbitrary even Hamming weight.
In order to achieve the same in the considered code a random codeword cdual
from the dual code is appended to the generator matrix. If the the hull has
still only codewords of weight a multiple of four, another codeword is chosen.
This check is not implemented.

4. Partial permutation of the generator matrix

Submatrices of the matrix G in (10.1) are permuted in order to randomize
the hull of the code and also prevent attacks like [MS07, CB13, OK15].
Two permutations σ, ρ of 1, . . . , 2m−2 having support of size |supp(σ)| =
|supp(ρ)| < 2m−2 are chosen. Then the partial permutation of G happens as
follows

G′ =


RM(6, 11)σ RM(6, 11)σ RM(6, 11)σ RM(6, 11)σ

0 RM(5, 11) 0 RM(5, 11)
0 0 RM(5, 11) RM(5, 11)
0 0 0 RM(4, 11)ρ

 . (10.2)

where RM(6, 11)σ corresponds to the code RM(6, 11) whose columns are
permuted according to σ, similarly for RM(4, 11)ρ.
The signature system described in the supporting documentation works as
follows.

� key generation

1. Apply modifications 1,2,3,4 to G to obtain G′.

2. Compute parity check matrix H ′ and put in systematic form Hsys.

3. Permute the columns of the non-identity part of Hsys by permu-
tation Q obtaining T .

4. Public key: T and correction capability w of the code generated
by G′.

5. Secret key: Q,Crep, σ, ρ, cdual and kapp rows.

� sign

1. Hash message M and random 32-bit integer i into s = hash(M |i)

2. Find error e′ = Decode(s′, H ′).



3. Set e = Q−1e′.

4. Signature (M, e, i).

� open
If wt(e) ≤ w and (IT )eT = hash(M, i) accept the signature as valid,
else reject.

Decode(·) and hash(·) are the decoding algorithm of the code and SHAKE-
128/256, respectively.

Remark 10.1.2. The documentation does not specify completely how the
different modifications are involved in the decoding process. The recursiveness
of an RM decoder is maintained and the decoder of Crep is employed when the
decoding indexes reach positions corresponding to codes in the first 2r rows.
Inverses of partial permutations σ and ρ are applied when this happens for
the codes corresponding to Crep or RM(4, 11). Nevertheless, it is not clear
how the appended rows are treated during decoding.

10.2 Implementation

In this section we will show where things go wrong in the implementation.
The following code snippet implements (at least it should) modifications 1,3,
and 4.



Figure 10.1: Excerpt of keypair.c - Modification (1),(3) and (4)

The memcpy reverts completely the work done to replace the copies of
RM(6, 6) with a random [2r, krep]-code. The correct way to perform these
operations would be to use GM instead of Gpub in line 71.

Figure 10.2: Another excerpt of keypair.c - Modification (2)

The modification by appending random odd-weight rows never happens as
lines 96 – 104 are commented out.

Remark 10.2.1. In the implementation provided in the KpqC submission
of Enhanced pqsigRM only modifications 3 and 4 are correctly implemented.
Indeed, the resulting code that is actually used in Enhanced-pqsigRM is gen-
erated by

G′′ =

(
G′

v

)Q
where v is the appended random code word from the dual of the code generated
by G′′ and Q is the permutation matrix.

Furthermore, we noticed that Enhanced pqsigRM had KAT mismatches.



10.2.1 Indistinguishability issues

Note that the Reed-Muller code RM(r,m) contains only even weight code
words and σ1 and σ2 don’t affect this. So G′ and v have even weights only
and thus G′′ has even weight distribution.

Remark 10.2.2. The weights of a random binary linear code are binomially
distributed.

The proportion of [213, 212]-codes over F2 having only even weights is given
by the ratio of Gaussian coefficients[

213 − 1

212

]
2

/

[
213

212

]
2

∼ 10−1234.

Thus, betting on the code having even weight distribution will win the dis-
tinguishing game.
This invalidates the EUF-CMA proof given in an earlier version of the spec-
ification [LLKN19, Theorem 10].

10.3 Other analysis directions

Let us start with a lemma giving the shape of a parity check matrix of the
code generated by G′.

Lemma 10.3.1. A parity check matrix of the code spanned by G′ is

H ′ =


RM(6, 11)σ2 RM(6, 11)σ2 RM(6, 11)σ2 RM(6, 11)σ2

RM(5, 11) 0 RM(5, 11) 0
RM(5, 11) RM(5, 11) 0 0
RM(4, 11)σ1 0 0 0


Proof. Recall that RM(r,m)⊥ = RM(m− r − 1,m), so

RM(6, 11)⊥ = RM(4, 11) and RM(5, 11)⊥ = RM(5, 11).

Also, (RM(r,m)σ)⊥ =
(
RM(r,m)⊥

)σ
. Finally, H ′G′T = 0 and rank(H ′) =

n− rank(G′).

10.3.1 The strategy

The idea given in this paragraph could lay the foundations for a possible
structural attack. This assumes one can spot the appended vector v. Let



H ′′ be a parity check matrix of the code span(G′′) and define the hull of the
code span(H ′′) as hull′′ = span(G′′) ∩ span(H ′′). Similarly do for hull′.
Let C0 be the code obtained from RM(6, 13)Q by puncturing on supp(σ1)
and supp(σ2) and inserting 0’s in those positions.

Remark 10.3.2. C0 is invariant under permutations σ1, σ2. Also, C0 ⊆
hull′′.

Therefore hull′′ contains as a subcode a punctured RM(6, 13)Q. There exist
attacks 1 that can recover (at least partially) Q from such a code. Once Q is
found, apply plain Minder-Shokrollahi [MS07] on the first 2m−2 columns of
G′Q

−1
to recover σ1. Similarly do with the last 2m−2 cols of H ′Q

−1
to find σ2.

Moreover dim hull′ ∩RM(6, 13) is almost as big as dim hull′. This gives hope
to an attacker.

10.4 Unreal scenario - recovering Q, σ and ρ

from H ′

In the ideal case where the Gaussian elimination in step (2) of the key gen-
eration never happens and that we can revert modification 3, it is easy to
check that that the following matrix

H ′′ = Q


RM(6, 11)ρ RM(6, 11)ρ RM(6, 11)ρ RM(6, 11)ρ

RM(5, 11) 0 RM(5, 11) 0
RM(5, 11) RM(5, 11) 0 0
RM(4, 11)σ 0 0 0

 (10.3)

has full rank and annihilates G′Q. Therefore it is a valid parity check ma-
trix of G′ so we can assume that H ′ = H ′′. Knowing the exact structure of
G when RM(r,m) is constructed recursively allows to devise an algorithm
that recovers the permutations Q, σ and ρ at a computational cost in O(252).
The SageMath code provided in Appendix 10.8 could be used for the com-
putations in attack the parity check matrix H ′ for the proposed parameters
RM(6, 13).

1https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/official-comments/pqsigRM-official-comment.pdf

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/pqsigRM-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/pqsigRM-official-comment.pdf


10.5 Some statistical analysis of the signa-

tures

In this section we report the plots of the distributions of 1 bits over a set
of 1000 signatures. The first plot shows the probability of each bit to be
set. Except for slight outliers, where we can see that some bits have double

probabilities of being set than some other, this analysis didn’t lead me to
any conclusion about the signature or key structure.
We tried to plot the distribution of the bytes of a batch of hundreds of
signatures. we represent the bytes as integers in {0, . . . , 256}. The result is
as in Figure 10.5.

After some discussions we agree that the behavior depicted in 10.5 is a natural
consequence of the fact that, for example, different sequences of 8 bits with



just one set bit occur equally likely. With less probability a sequence of 8
bits will contain two 1 bits and so on. Moreover the number of different 8
bits sequences having two set bits are more than the sequences with one set
bit (

(
8
2

)
> 8).

10.6 The Debris-Loisel-Vasseur attack

An updated version of Enhanced pqsigRM has been submitted to NIST’s
Round 1 call for signature schemes on 17-07-2023. On the 29-07-2023 an
heuristic method to recover the (U | U + V ) structure of the code has been
announced on the pqc-forum by Thomas Debris-Alazard, Pierre Loisel and
Valentin Vasseur. In this section we will describe the attack, which, in short,
we will call DLV-attack.

Remark 10.6.1. Due to the absence of a write up of the attack, the de-
scription in this section has been extracted from the announcement text and
the attack implementation. This means that it might not coincide with the
description that the authors of the attack would give.

10.6.1 Correlation analysis of signatures

As a starting point, the DLV-attack collects statistical data from a bunch
of signatures of Enhanced pqsigRM generated under the same key. The
correlation analysis consists in finding the highest similarity between the
bits of the error part of the signatures. Let S ⊂ Fn2 be a set of signatures
of Enhanced pqsigRM of cardinality N := #S. Consider the map count :
{1, . . . , n} × {1, . . . , n} → N defined as

countS(i, j) = #{s ∈ S | s[i] = s[j]}.

Define a matched pair as the pair of (i, j)S ∈ {1, . . . , n}×{1, . . . , n} to be the
couple of integers i, j where i and j is such that countS(i, j) ≥ countS(i, j′)
for any j′ ∈ {1, . . . , n}. The authors of the attack noticed that matched pairs
very likely correspond to couples of coordinates in the signatures that were
placed n/2 = 4096 indices apart before permutation Q−1 is applied during
the sign process.

Remark 10.6.2. In other words if (i, j)S is a matched pair, then either
Q(j) = Q(i) + 4096 or Q(i) = Q(j) + 4096 with high probability.

Choosing S such that N ∼ 50000 it is possible to maximize the probability
of this event and experimentally determine all the matched pairs correctly.

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/yQ1CKOLbGng
https://github.com/vvasseur/pqsigRM


10.6.2 Exploiting correlations

Recall that the secret matrix G′, i.e. the generator matrix RM(6, 13) code
after modifications 1,2,3, and 4 generates a code of the form:

C =

C1 C2

U U
0 V

 , (10.4)

where (C1, C2) is the code of dimension kapp spanned by the appended rows.
The columns of G are finally permuted by Q, the dual matrix of GQ in
systematic form, i.e. H = (Ik, T ) is computed and T is published. The DLV
attack takes advantage of the precomputed correlations in order to reveal the
(U | U + V ) structure of the secret code, neutralizing the presence of C1 and
C2, whose aim is to randomize the parity of the public code.

Remark 10.6.3. Let M be any nM ×mM matrix, we denote M [a : b, c : d]
the submatrix of M consisting of coordinates in {c, . . . , d} of the rows from
a, . . . , b. More in general, if A ⊂ {1, . . . , nM} and B ⊂ {1, . . . ,mM} then
we denote M [A,B] the submatrix of M consisting of rows indexed by A and
columns indexed by B. In the case A = {a} (resp. B = {B}) then we will
simply write M [a,B] (resp. M [A, b]).

Let MPS be the set of all the 4096 matched pairs extracted from S. Recon-
struct the entire public matrix by prepending the identity chunk to T , i.e.
H = (IdimT | T ). Construct two k×n/2 matrices Ĥl and Ĥr by collecting in
Ĥl all the columns of H indexed by i and in Ĥr all the columns of H indexed

by j, where (i, j)S ∈ MPS. Finally construct Ĥ =
(
Ĥl | Ĥr

)
. Notice that

due to the 4096 offset of the column indexed by a matched pair, Ĥ generates
a code of the form  C ′1 C ′2

π(U) π(U)
π(V ′) π(V ′′)


where the union of the columns of V ′ and those of V ′′ gives V . The reduced

row echelon form of the product H̄ := rref

(
Ĥ

(
I4096 I4096
I4096 0

))
generates a

code of the form  C ′′1 C ′′2
π(V ) π(V ′)

0 π(U)

 .

The presence of V ′ is due to the fact that matched pairs can be of the form
described in Remark 10.6.2. And the goal is now to find a permutation that



solves the issue introduced by the remark and therefore place columns of Ĥ
in the correct half of the matrix (i.e. a permutation that swaps columns
between Ĥl and Ĥr). The problem is modeled as k′ := k − dimU number of
equation systems corresponding to k′ number of (k−dimU)× (n/2−dimU)
matrices M1, . . . ,Mk′ .
Let (i, j)S ∈ MPS, recall that the columns of of H indexed by i and j are
placed in Ĥ with an offset of 4096 positions, i.e. Ĥ[1 : k, h] = H[1 : k, i] and
Ĥ[1 : k, h+4096] = H[1 : k, j]. The swap of the columns of Ĥ corresponding
to a matched pair is equivalent to swapping Ĥ[1 : k, h] and Ĥ[1 : k, h+ 4096]
for each h = 1, . . . , 4096. This can be done by working on the matrix H̄
where the DLV attack simulates this swap by temporarily adding H̄[1 : k, h]
to H̄[1 : k, h+ 4096] instead of actually swapping. Denote by H̄h the matrix
obtained from H̄ by adding the h-th column to the (h + 4096)-th column,
for h = 1, . . . , n. Let B be the set of pivots of H̄[1 : k, n/2 : n]. The
idea is to consider the effect of each column swap on the submatrix H̄[1 :
k′, B]. Compute the difference of submatrices

(
H̄ − rref(H̄h)

)
[1 : k′, B] and

set Mr[h, 1 : (n/2 − dimU)] =
(
H̄ − rref(H̄h)

)
[r, B] for r = 1, . . . , k′ and

h = 1, . . . , 4096.

Remark 10.6.4. Note that all the pivot elements in B appear in the π(U)
submatrix of H̄, the submatrix π(V ′) has zero entries in the columns indexed
by B. Moreover the sum of columns and the rref transformation do not affect
columns of H̄ indexed by B. Also #B = n/2− dimU .

Recall that the goal is to find a permutation of the columns that makes π(V ′)
disappear in H̄. The equation system xMr = H̄[r, B] has a solution a linear
combination of swaps annihilates the right hand side. We also need to handle
the presence of the first kapp rows in each Mr which correspond to the code
C ′′. Indeed, if a solution has a nonzero among the first kapp coordinates
then H̄[r, B] gets appended to Mr hoping that it is a basis element of C ′′.
Otherwise, if xh 6= 0 then H̄[1 : k, h] will be added to H̄[1 : k, h+ 4096] and
the swap is recorded. This process of solving equation systems is performed
and the recorded swaps are adjusted until the rank of H̄[1 : k′, B] = kapp
meaning that we reduced the rank of π(V ′) to 0. This means that we have a
combination of swaps, i.e. a permutation Q′ that put all the columns indexed
by each matched pair in MPS in the right half of H̄ and thus also of Ĥ. Thus
ĤQ′ has the shape  C ′1 C ′2

π(U) π(U)
0 π(V )


. Now, due to the fact that U and V are also permuted (U ′ | U ′+V )-codes the
aim is to apply the same heuristic method to π(U)to reorder columns on the



right halves in a recursive way until the original secret code is recovered. It is
worth noticing that appended rows are not present up in the next iterations,
improving on the complexity of the attack.

10.7 Overall assessment

We pointed out inconsistencies between the documentation and the imple-
mented version. Moreover as per Remark 10.1.2, it is not clear as the decoder
for the modified code should deal with the kapp rows and and cdual. The im-
plementation issues were fixed in the subsequent submission to NIST, but
an attack (DLV attack) exploiting correlations in signature bits has been
devised. The attack recursively recovers the secret key by reconstructing the
(U | U + V ) structure of the code. We gave an interpretation of the DLV
attack. Furthermore, another attack has been announced by the NIST team
but the details are unclear.

10.8 SageMath code

The SageMath code that follows implements the content of section 5.

reset()

r=6

m=13

dims = [

[1,1,1,1,1,1,1,1,1,1,1,1,1],

[0,2,3,4,5,6,7,8,9,10,11,12,13],

[0,0,4,7,11,16,22,29,37,46,56,67,79],

[0,0,0,8,15,26,42,64,93,130,176,232,299],

[0,0,0,0,16,31,57,99,163,256,386,562,794],

[0,0,0,0,0,32,63,120,219,382,638,1024,1586],

[0,0,0,0,0,0,64,127,247,466,848,1486,2510]

]

Q = Permutations(2^m).random_element()

#G = zero_matrix(dims[r][m], 2^m)

def genRM(Gen,r1,m1, rowf, rowl, colf, coll):



if r1 == 0:

for i in range(2^m1):

Gen[rowf][colf+i] = 1

elif r1 == m1:

for i in range(2^m1):

Gen[rowf+i][colf+i] = 1

else:

colm = int((colf+coll)/2)

genRM(Gen,r1,m1-1, rowf, rowf + dims[r1][m1-1], colf, colm)

genRM(Gen,r1,m1-1, rowf, rowf + dims[r1][m1-1], colm, coll)

genRM(Gen,r1-1,m1-1, rowf + dims[r1][m1-1], rowl, colm, coll)

def find_permutation(G,r,m):

origtmp = [[0 for i in range(2^m)] for j in range(dims[r][m])]

genRM(origtmp,r,m,0,2^(m-1),0, 2^m)

orig = matrix(GF(2),origtmp)

p = []

permcols = G.columns()

origcols = orig.columns()

for col in permcols:

p.append(origcols.index(col)+1)

return Permutations(2^m)(p)

def find_Q(G,r,m):

# reorder the columns of G depending on the zeroes

G1,G2,G3,G4 = [],[],[],[]

ind1,ind2,ind3,ind4 = [],[],[],[]

i=1

cols = G.columns()

zero1 = zero_vector(4096-dims[r][m-2])

zero2 = zero_vector(4096-dims[r][m-2]-dims[r-1][m-2])

zero3 = zero_vector(dims[r-2][m-2])

for col in cols:

if col[dims[r][m-2]:]==zero1:

G1.append(col)

ind1.append(i)

elif col[dims[r][m-2]+dims[r-1][m-2]:]==zero2:

G2.append(col)

ind2.append(i)

elif col[-dims[r-2][m-2]:]==zero3:

G3.append(col)



ind3.append(i)

else:

G4.append(col)

ind4.append(i)

i += 1

print(len(G1))

print(len(G2))

print(len(G3))

print(len(G4))

# extract permuted RM(5,11) code from G4

G4 = matrix(G4).transpose()

rhoC = G4[dims[r][m-2]:dims[r][m-2]+dims[r-1][m-2],0:2^(m-2)]

rho4 = find_permutation(rhoC,r-1,m-2)

G4.permute_columns(rho4.inverse())

rho4 = rho4.inverse()

ind4 = [ind4[rho4(i+1)-1] for i in range(2^(m-2))]

G2 = matrix(G2).transpose()

rhoC = G2[dims[r][m-2]:dims[r][m-2]+dims[r-1][m-2],0:2^(m-2)]

rho2 = find_permutation(rhoC,r-1,m-2)

G2.permute_columns(rho2.inverse())

rho2 = rho2.inverse()

ind2 = [ind2[rho2(i+1)-1] for i in range(2^(m-2))]

G3 = matrix(G3).transpose()

rowf = dims[r][m-2] + dims[r-1][m-2]

rowl = rowf + dims[r-1][m-2]

rhoC = G3[rowf:rowl,0:2^(m-2)]

rho3 = find_permutation(rhoC,r-1,m-2)

G3.permute_columns(rho3.inverse())

rho3 = rho3.inverse()

ind3 = [ind3[rho3(i+1)-1] for i in range(2^(m-2))]

G1 = matrix(G1).transpose()

rhoC = G1[0:dims[r][m-2],0:2^(m-2)]

rho1 = find_permutation(rhoC,r,m-2)

G1.permute_columns(rho1.inverse())

rho1 = rho1.inverse()

ind1 = [ind1[rho1(i+1)-1] for i in range(2^(m-2))]

return Permutations(32)(ind1+ind2+ind3+ind4)



Gtmp = [[0 for i in range(2^m)] for j in range(4096)]

genRM(Gtmp,r,m,0,2^(m-1),0, 2^m)

G = matrix(GF(2),Gtmp)

G.permute_columns(Q)



Chapter 11

FIBS: Fast Isogeny Based
Digital Signature

FIBS [KLY22] is an isogeny-based signature scheme. It is constructed by
instantiating the NIST selected standard SPHINCS+ [HBD+22] using an
isogeny-based hash function based on the Charles-Goren–Lauter (CGL) hash
function [CLG09] instead of SHA2 or SHAKE. Given that SPHINCS+ is a
framework that can take any secure cryptographic hash function to instanti-
ate the different functions used by SPHINCS+ this creates a secure scheme
if CGL fulfills the security properties required by the SPHINCS+ security
proof.
The sizes of keys and signatures of SPHINCS+ only depend on the hash func-
tion output length which remains the same for SPHINCS+, independent of
the used hash function. However, the performance of SPHINCS+ is deter-
mined by the performance of the used hash function. Given that signing
requires in the order of a few million evaluations of the hash function, al-
ready a slightly worse performance of the hash function results in a massive
performance penalty. At the same security level, FIBS takes a more than
60 000-fold penalty in speed. With a signing time of 2 837 seconds for FIBS
compared to 46 milliseconds for SPHINCS+ this reaches a runtime that is
simply not practical for any relevant use-case.
For a more extensive discussion of how SPHINCS+ and the CGL hash func-
tion work and a comparison between FIBS and SPHINCS+ see the bachelor
thesis of Arend Verbeek [Ver23].
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11.1 System description

We start with a very, very brief introduction on isogenies and then introduce
the CGL hash function that the authors have used to replace SHA2.

Isogenies

First we introduce elliptic curves which are smooth projective curves of genus
one over a field k with a specified point ∞. The points on a specific curve
over a finite field Fp form a group. A curve is supersingular over Fp, for
p > 3 if the number of points on the curve is equal to p + 1. Over Fp2 , a
supersingular curve has (p−1)2, p2+1, or (p+1)2 points. Most elliptic curves
can be written in the short Weierstrass form E : y2 = x3 + ax + b, for some
a, b ∈ k for some field k.
Isogenies then are rational maps between these curves, which are group ho-
momorphisms. Usually isogenies are denoted ϕ : E → E ′ with E,E ′ elliptic
curves. We will be looking at separable isogenies, which means the degree of
the isogeny is the size of its kernel (where the kernel is defined as the points
that are mapped to ∞ on E ′). We denote an isogeny with a kernel of size
` as an `-isogeny. Isogenies are uniquely defined by their kernel. Given a
kernel we can use the Vélu formulas to find the codomain of the isogeny and
find the images of specific points. For each isogeny ϕ : E1 → E2 there exists
a dual isogeny ϕ̂ : E2 → E1 which has the same degree ` and for which it
holds that the composition ϕ̂◦ϕ = [`]E1 is the multiplication-by-` map on E1

and likewise ϕ ◦ ϕ̂ = [`]E2 . Isogenies from a curve to itself, say ϕ : E → E,
are called endomorphisms. All the endomorphisms of a certain curve form a
ring, called the endomorphism ring.
Curves are isomorphic to each other over the algebraic closure of the field,
i.e, there exists a 1-isogeny between them, if and only if they have the same
j-invariant, which is defined as j(E) = 1728 4a3

4a3+27b2
. Thankfully, any super-

singular elliptic curve in the algebraic closure F̄p is isomorphic to a curve in
Fp2 , so we do not have to look at larger extension fields. Using this j-invariant
we can easily find isomorphism classes, and define them in Fp2 . Another im-
portant result is that for a prime ` there exist exactly ` + 1 isomorphism
classes of curves that are `-isogeneous to E. This can be used to create the
“`-isogeny graph”, where each node is an isomorphism class of elliptic curves,
and the edges connect the nodes that are `-isogeneous to each other.
This `-isogeny graph has some really nice properties since it is almost `-
regular and it is very connected. Dual isogenies also make sure it is an
undirected graph. Figure 11.1 shows the 2-isogeny graph created over F4192 .



Figure 11.1: Nodes: Supersingular elliptic curves F4192 , edges are 2 isogenies.
Image credit: Lorenz Panny.
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Figure 11.2: An example of a hashing of the message 101, the output is E ′.

CGL hash function

The CGL hash function was introduced by Charles, Goren and
Lauter [CLG09]. The original idea of the CGL hash function uses a 2-isogeny
graph. This thus is an almost-3-regular graph. Given a starting point E on
the graph, there are always 3 outgoing edges. But as soon as the first step
is made, there are only 2 since we disregard the edge through which we en-
tered the node. Simply denoting one of the paths as 0 and the other as 1,
we can hash a message by walking on the graph. The output of the hash is
then the node E ′ where we end up after taking a step for each of the bits of
the message to be hashed. Note that for each step, a 2-isogeny needs to be
computed, which is not very expensive, but still is not as fast as hashing by
SHA2, for example. In Figure 11.2 we give an example of the hashing of the
message 101.
An important thing to note here is that this hash function is only secure if



the starting curve E has an unknown endomorphism ring. The idea is that if
we can find a collision in our hash function, then there are two distinct paths
of length n between starting point E and output E ′. These paths correspond
to two isogenies of degree 2n, and combining the dual of one with the other
we create an endomorphism of degree 22n. So if the endomorphism ring is
known, the Lauter-Petit attack [PL17] can easily find a cycle. Thus we need
a trusted setup to create a curve E with unknown endomorphism ring, since
finding an endomorphism is still considered a hard problem (though a new
attack by Page and Wesolowski [PW23] has reduced the complexity from
O(p) to O(p1/2)).
Panny [Pan19] has introduced a change to the original version of the CGL
hash function which leaves the prime ` to be variable and only uses a fraction
r of the available edges at each step. This version fixes the problem sketched
above and this version of the CGL hash function is what is used in FIBS.
This ensures collision resistance.

11.2 Security and implementation considera-

tions

The security of the CGL hash function is not too well understood and, as
noted below, the specific properties that would be required for usage in a
SPHINCS+ construction are not studied. However, the main concern with
FIBS is efficiency. Table 11.1 shows the differences in runtime between FIBS
and SPHINCS+.

Key generation Signature generation Verification
FIBS-128 121 660 ms 2 837 040 ms 172,370 ms
SPHINCS+-128f (SHA2) 1.86 ms 46.20 ms 2.59 ms

Table 11.1: Comparisons of runtime between FIBS-128 and SPHINCS+-128f
(SHA2)

Furthermore, we noticed that FIBS had KAT mismatches.

11.3 Provable security

The FIBS authors simply repeat the proof stated in the first-round submis-
sion of SPHINCS+ [HBD+17]. This proof was later found to be flawed and
withdrawn in the round 2 documents [HBD+19].



A fixed proof appeared at Asiacrypt 2022 [HK22] and is referenced in the lat-
est SPHINCS+ documentation. This proof has some additional requirements
on the used hash functions (among others undetectability and decisional-
second-preimage-resistance). Further research is needed to understand if the
used isogeny-based hash function CGL guarantees these properties.
The version of the CGL function used in FIBS has not been proven to be
either. There is a newer version of the CGL hash function by Doliskani,
Pereira and Barreto [DPB17] which gives a better runtime and is proven to
be preimage resistant. Even if FIBS adopts the use of this hash function, we
expect it still can not compete with SPHINCS+ on speed.

11.4 Overall assessment

FIBS replaces the well established assumption that SHA2 or SHAKE256
behave like random functions with far less analyzed hardness assumptions
regarding isogenies. By this, the authors create an isogeny-based signature
scheme for which key generation, signing and verification can all be run
within a day – something not necessarily the case for all isogeny-based sig-
nature schemes. However, it is questionable if there is any security benefit to
this change given the amount of cryptanalysis spent on SHA2 and SHAKE
compared to the amount spent on isogenies. In addition, the current submis-
sion still would have to fill the gap of arguing the exact security of the CGL
hash function for undetectability and decisional-second preimage resistance.
Even if all these aspects were handled with a positive outcome, it remains to
note that the speed of FIBS is entirely impractical.



Chapter 12

GCKSign: Simple and Efficient
Signatures from GCK

12.1 Introduction

GCKSign [WLP22] is a lattice-based signature scheme based on the Gen-
eralized Compact Knapsack problem, following Lyubashensky [Lyu09], with
a Fiat-Shamir transformation leading to Schnorr-type signature scheme, in
particular also based on Dilithium [LDK+22], a NIST PQCrypto selected
algorithm. It is different from both in that it replaces the underlying hard
problem of GCK one-wayness by a newly designed hardness assumption, Tar-
get Modified One-wayness (TMO). It is also simpler that Dilithium in that
it does not rely on shortened public keys with hints. Its design rationale is
mainly a performance improvement on Dilithium, both in key and signature
sizes and in algorithm speed.

12.2 GCK vs. TMO one-wayness

Let Rq = Zq[X]/(Xn + 1), and R[−β,β] its subset of elements with coefficients
in the interval [−β, β]. Choose a subset S ⊂ R[−β,β]. A knapsack function
for a randomly chosen a = (a1, a2, . . . , am) ∈ Rm

q is a function Fa : Sm → Rq

given by Fa(x) =
∑
i

aixi, where x = (x1, x2, . . . , xm).

GCK one-wayness is the problem of, given a pair a ∈ Rm
q , t ∈ Rq, to find

x ∈ Sm such that Fa(x) = t. Micciancio showed that this problem is as
hard as SIVP. A relaxation of this hard problem is TMO one-wayness: given
α, β ∈ R and a ∈ Rm

q , t ∈ Rq, it is hard to find x ∈ Rm
q and c ∈ Rq such that

‖c‖∞ ≤ α and ‖x‖∞ ≤ β and Fa(x) = ct. It is trivial that GCK one-wayness
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is at least as hard as TMO one-wayness for α ≥ 1.
The submission claims that the parameters α, β can be chosen such that
the TMO one-wayness problem is at least as hard as the GCK one-wayness
problem, while at the same time these parameters allow for smaller key and
signature sizes. Part of the argument is also that a worst-case analysis is
replaced by a different analysis leading to a more tight bound.

12.3 System description

For completeness we provide an overview of the key generation and signa-
ture generation and verification methods, to show that the scheme indeed
resembles Schnorr signatures.
Parameters: η,B, h, L.
Key generation: sample a ∈ Rm

q from a seed, and s ∈ Rm
[−η,η], then the public

key consists of t = Fa(s) and the seed, and the private key is s and the seed.
Signature generation: recover a from the seed, sample y ∈ Rm

[−B,B] and com-

pute v = Fa(y), for the message m compute ĉ = H(v,m) ∈ {0, 1}256 where
H is a hash function, compute c = encode(ĉ) ∈ Rq for an encoding function
leading to h coefficients ±1 and all others 0, compute z = y+ cs and reject if
it is not in Rm

[−B+L,B−L], in that case restart with fresh y, then the signature

is (z, ĉ).
Signature verification: recover a from the seed, compute c = encode(ĉ),
compute w = Fa(z) − tc, and verify if z ∈ Rm

[−B+L,B−L] and ĉ = H(w,m).

Verification makes use of the linearity of Fa(z) = Fa(y) + cFa(s)− tc = v.

12.4 Problems

The first problem with GCKSign was noted by Kim, Ryu and Lee [KRL23]
who point out a mistake in the cost of a key recovery attack. The mistake is
that the (Module) SIS-problem to which the one-wayness can be reduced to is
not a low-density problem but a high-density problem. The claimed hardness
of GCKSign in the code SVP-model in the submission and as computed in
[KRL23] are as follows:

NIST security level II III IV
claimed in [WLP22] 125 183 268
claimed in [KRL23] 65.12 55.77 120.60

Thus it is clear that the submission does not deliver the security levels it
promises. The submitters (see their reply in [KRL23]) acknowledged this



mistake, and promised to update their parameters. To our best knowledge
they have not yet announced their update.
The second problem was noted by Kim [Kim23], who points out a mistake
in the analysis of the hardness of the TMO problem. This is about the
probability of c being invertible, which is claimed by the original submission
to be ‘overwhelming’, while Kim asserts it is, in security level 2, only 2−46,
which is too low. The submitters acknowledge the issue and promise an
update, indicating the computational efficiency problems this issue will lead
to, but again they have not yet announced their update, to the best of our
knowledge.

12.5 Overall assessment

TMO one-wayness is a new security assumption that has not received a lot
of scrutiny from the cryptanalytic community yet.
The submission reasonably argues side channel resistance.
In the KpqC benchmark GCKSign scores among the best for key generation,
and in the middle for signature generation and verification. Regarding key
and signature sizes it promises a decent improvement compared to Dilithium.
However, it remains to be seen what the effect of any forthcoming fixes and
parameter updates will be.



Chapter 13

HAETAE Hyperball bimodAl
modulE rejecTion signAture
schemE

HAETAE [CCD+22] is a module lattice-based signature scheme based on
the Fiat-Shamir with Aborts paradigm [Lyu09, Lyu12]. In that sense, it re-
sembles NIST finalist Dilithium [LDK+22]. The main difference is that the
design of HAETAE is aimed at improving the sizes of keys and signatures –
the proposal claims 40% shorter signatures when comparing with Dilithium
– and 20% smaller public keys. The main changes are using a bimodal dis-
tribution as in BLISS [DDLL13] and a new sampler using hyperballs, where
Dilithium uses uniform distribution and BLISS used discrete Gaussians.
Below, we discuss the provable security claims made in the HAETAE spec-
ification. There are two versions of HAETAE, the October-2022 submis-
sion [CCD+22], retroactively labeled v0.9, and a May-2023 version, labeled
v1.0.

13.1 System description

Please see Chapter 15 for the general description of Dilithium-like signatures.
These systems use rejecting sampling on the signatures to ensure that their
distribution is independent of the secret key.
Concretely, HAETAE works in R = Z[x]/(xn + 1) for n = 2r (here n = 256),
and also in Rq = (Z/q)[x]/(xn+1) for q a prime with 2n|(q−1). All HAETAE
parameters use q = 64513. Unlike NCC-Sign but like Dilithium, HAETAE
uses module lattices in which the lattice elements are vectors of elements from
R. The public key is an k × (` + k) matrix over R. The maximum-security
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Figure 13.1: The HAETAE eyes, picture taken from [CCD+22].

version has k = 4, ` = 7. This matrix can be interpreted as a kn× (` + k)n
lattice system and the generic attacks use this interpretation. So far no better
attacks are known for module structure than generic lattices.
The benefits of a bimodal distribution are that the signatures are distributed
over two different centers, one linked to the secret v and one to −v. Rejection
sampling samples from the overlay of these two distributions and can stay
in a narrower region around the middle, meaning that fewer rejections are
encountered and that parameters can be chosen smaller for the same security
level as the narrower size makes forgeries less likely.
In HAETAE the authors choose a hyperball distribution around the secrets
and do rejection sampling to a hyperball around 0. In Figure 13.1, taken
from the HAETAE submission [CCD+22] the secrets are the pupils of the
eyes of the Haetae; the originally sampled signatures are the blue circles
and the signatures that pass rejection are in the pink circle. The checkered
region would be sampled twice as frequently and is thus rejected with 50%
probability.
The May 2023 version of HAETAE computes bounds on how many times
retry is needed which is ≤ 6.



13.2 Security

All changes from BLISS and Dilithium are covered in the security proofs
(for issues see the next section). However, we were unable to evaluate
their code HAETAE.zip, advertised for checking parameters. The code
included required downloading the estimators for Dilithium and Kyber
for module lattices, which are readily found on github, https://github.

com/pq-crystals/security-estimates/tree/master but also needed
a file /home/julien/Documents/bliss-security/security-estimates/

entropy\_coordinate\_hyperball.py The directory pycache includes
compiled versions and we managed to decompile to the missing files from exe-
cutibles, however, running the code never terminated. The script does many
searches to find best parameters for estimated attacks. In principle this uses
https://estimate-all-the-lwe-ntru-schemes.github.io/docs/ which
we used in all other chapters to evaluate the parameters, however for this
one the matches were not clear.

13.3 Implementation considerations

The motivation stated for moving to the hyperball distribution, away from
discrete Gaussians used in BLISS, is that sampling discrete Gaussians in
constant time is hard. Indeed, implementations of BLISS have been at-
tacked [BHLY16, PBY17, EFGT17] with cache-timing attacks. The imple-
mentation submitted in October 2023 does not avoid conditional branches
and does not seem to be concerned with timing attacks, the May-2023 version
has a new implementation with fewer obvious issues.
The original version shows how to sample in hyperballs using continuous
Gaussians. No mention is made how that would be done but [HLS18] showed
an easy and fast way to sample continuous Gaussians if the CPU supports
floating-point arithmetic. Surprisingly, the May-2023 version changes the
description and implementation to sampling discrete Gaussians to approxi-
mate continuous Gaussians to sample from the hyperball distribution. They
now use the discrete Gaussian sampler from [BBE+19], which is advertised
as running in constant time, but this raises the question of why they do not
use this sampler as the main sampler, avoiding the detour via continuous
Gaussians and hyperballs.
HAETAE advertises short signatures, where part comes from the bimodal
distribution and part comes from a space-efficient encoding. This rANS
encoding is missing in the implementation of the KpqC submission (v0.9)
but was added in May (v1.0). However, the tables for the rANS encoding

https://github.com/pq-crystals/security-estimates/tree/master
https://github.com/pq-crystals/security-estimates/tree/master
https://estimate-all-the-lwe-ntru-schemes.github.io/docs/


are very large. The designers announced that they would be able to work
with smaller tables.
We noticed that HAETAE had KAT mismatches. Several implementation
issues were pointed out in a NIST PQC Forum post by Markku Saarinen.
There were many changes between v0.9 and v1.0 incl. in security estimates
and sizes and not all were explained. There are still lots of typos (Fig ??,
missing increment of counter, . . . ) even in the v1.0 version.

13.4 Provable security claims

On a high level, HAETAE shares with Dilithium that it first builds a lattice-
based identification scheme Σ, and then turns Σ into a signature scheme
using the Fiat-Shamir paradigm. Consequently, the security reasoning for
HAETAE is similar to the security reasoning for Dilithium, with appropri-
ately adapted assumptions.
The core idea of the Fiat-Shamir paradigm is as follows: signatures consist
of a prover commitment, together with a prover response. To tie the prover
response to the to-be-signed-message, it is built by using as its challenge the
hash value of the message and the prover commitment. The Fiat-Shamir with
aborts paradigm additionally introduces rejection sampling. This is done
to render the distribution of signatures sufficiently independent of sensitive
information (the secret key), so that observing exchanged signatures will not
help an attacker with forging a signature.

13.4.1 Security proof of HAETAE

Rejection sampling slightly complicates security proofs, in particular when
concerning quantum attackers: two recent papers [BBD+23, DFPS23]
pointed out a flaw in the security proof of Dilithium that was directly tied
to how the proof addressed rejection sampling. HAETAE v1.0 took this into
account by adapting the proof to the fix provided in [DFPS23].
To argue Strong Unforgeability under Chosen Message Attacks (sUF-CMA) of
(deterministic) HAETAE, the submission follows the approach of Dilithium:
it goes through an “implication chain” that relates computational hardness
of (appropriately adapted) problems to security properties. We summarize
the chain in the figure below.
Gap in UF-NMA reasoning. The specification claims that hardness of the
Bimodal Self-Target MSIS problem (BimodSTMSIS) directly translates into
the fact that HAETAE satisfies the intermediate security notion UF-NMA,
which is then used to argue the aimed-at security property (sUF-CMA). The

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ImcSqGLFdoo/m/fnL4HxZ6BQAJ
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definitions of BimodSTMSIS and UF-NMA, however, are only equivalent for
the uncompressed version of HAETAE. The specification does not address
whether/how compression affects UF-NMA security, and it is not obvious that
compression does not decrease security.
Gap in HVZK reasoning. The specification aims to argue HVZK without
presenting the underlying identification scheme Σ, thus forcing the reader to
essentially re-do the proof. The proof sketch for HVZK also seems to intro-
duce a LWR-like assumption that differs from more well-studied variants in
the distribution of matrix and secret: it is assumed that w = Abye is indistin-
guishable from a uniform element (both modulo q), where A is a public key
(a randomly chosen compressed matrix). The specification does not make
explicit how y is defined in this assumption. The likeliest interpretation is
that y is computed like in the deterministic signing algorithm (Figure 7 in the
specification), i.e., by using a – not further specified – expansion algorithm
expandYbb.
Reading through the implementation package for v0,9, expandYbb is men-
tioned only in a comment but the steps match what is described in the main
part of the specification, except for that b is not made dependent on the
seed but sampled uniformly random, so this should fail for recomputing the
KATs. In the specification the Gaussian sampler is assumed to be continu-
ous. Looking at the code for sampler gaussian, this uses a big table and is
sure not safe against cache timing attacks (nor did it claim to be).
In v1.0 the code changed from calling polydblveclk uniform hyperball to
calling a new function polyfixveclk sample hyperball using fixed-point
arithmetic and the discrete Gaussian sampler. The latter is implemented
with a very small CDT which might be small enough to fit in cache and to
avoid cache-timing attacks. In general, there are far fewer branches in the
code, but there might still be timing dependencies on the secret.
Asymptotic reasoning not necessarily applicable to parameter
choices. The specification does not specify how closely the security no-
tions are related to one another as it is missing concrete security bounds
that quantify the relation. This leaves the reader with asymptotic reasoning,



meaning it is only shown that the implication chain will begin to be satisfied
at the point where appropriately large parameters are chosen. This makes it
hard to verify security for the concrete parameter choices made in the spec-
ification. Depending on how close (or distant) the relations are, the proof
might not apply.

13.4.2 Interpretation of provable security results

The overall security reasoning looks sound up to the missing details in the
security proof, which need to be added. Due to the asymptotic reasoning, it is
hard to verify security for the concrete parameter choices in the specification.
If a vulnerability were to be found, it would likely stem from

� a cryptanalytical break of one of the underlying computational prob-
lems (MSIS, MLWE, BimodSTMSIS and the unnamed LWR-like as-
sumption needed for HVZK), or

� parameter choices that do not match the intended level of security.

13.5 General assessment

HAETAE is built from known good ingredients, starting from Dilithium and
BLISS. It is also submitted to NIST in the current new call for signatures.
The recent changes seem all like improvements but more explanations would
be good to have, in particular on the use of discrete Gaussians in the sampler.



Chapter 14

MQ-Sign: A New
Post-Quantum Signature
Scheme based on Multivariate
Quadratic Equations: Shorter
and Faster

The digital signature scheme MQ-Sign [KASA22] is based on the trapdoor
paradigm. In this setting, the secret key is composed of a central map

F : (x1, . . . , xn) ∈ Fnq →
(
F (1)(x1, . . . , xn), . . . ,F (m)(x1, . . . , xn)

)
∈ Fmq ,

for which it is computationally easy to find a solution, aka a tuple x =
(x1, . . . , xn) such that F(x) = 0, and two bijective affine mappings S ∈
AGLn(q)(Fq), T ∈ AGLm(q)(Fq). These mappings are used to hide the spe-
cial structure of F that allows us to compute solutions easily. The pub-
lic key is obtained by mapping F to another quadratic map P , such that
P = T ◦ F ◦ S. This results in a multivariate system that is hard to solve
and indistinguishable from a randomly generated multivariate quadratic sys-
tem unless the some structure of F can be retrieved from P ,
Define a hash function to map to Fmq and let y = hash(M), then a signature
on M is a preimage x of y under the public map. To verify the signature,
compute y and accept if this matches P(x). To find such an x, the signer
uses the knowledge of the affine maps and the ability to compute preimages
of the central map to compute y′ = T −1(y),x′ = F−1(y′), and x = S−1(x′),
where F−1(y′) means the computation of a (typically not unique) preimage
of y′. For a secure scheme it should be hard to find x given y and the public
key.
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14.1 Unbalanced Oil and Vinegar

One of the oldest trapdoor constructions is the Unbalanced Oil and Vinegar
signature scheme, proposed by Kipnis, Patarin, and Goubin [KPG99] as a
modification of the oil and vinegar scheme of Patarin [Pat97] that was broken
by Kipnis and Shamir in 1998 [KS98].
In the oil and vinegar construction, the variables in the central map are
divided in two distinct sets, called vinegar variables and oil variables. The
vinegar variables are combined quadratically with all of the variables, while
the oil variables are only combined quadratically with vinegar variables and
not with other oil variables. This special structure serves as a trapdoor that
allows to find preimages of the central map. Formally, the central map is
defined as F : Fnq → Fmq , with polynomials

F (k)(x1, . . . , xn) =
∑

i∈V,j∈V

γ
(k)
ij xixj +

∑
i∈V,j∈O

γ
(k)
ij xixj +

n∑
i=1

β
(k)
i xi+α(k) (14.1)

where n = v + m, and V = {1, . . . , v} and O = {v + 1, . . . , n} denote the
index sets of the vinegar and oil variables, respectively.
The affine mapping T is omitted, as it can be shown that if an oil and
vinegar central map is used in the standard MQ construction, T does not
add to the security of the scheme. Hence the secret key consists of a linear
transformation S and central map F , while the public key is defined as
P = F ◦ S. As with any trapdoor-based multivariate signature scheme, to
sign a message, we need to find a preimage of F . This can be done by
simply fixing the vinegar variables to some random values. The resulting
system is a linear system of m equations in m variables, and thus, it has a
solution with probability around 1 − 1/q. If the obtained system does not
have a solution, we repeat the procedure with different values for the vinegar
variables, otherwise we apply the inverse affine transformation and obtain a
signature.

14.2 MQ-Sign description

UOV signature schemes are attractive because they have very small signa-
tures and fast verification. On the downside, they have large public and
secret keys. As a result, variations of the traditional UOV scheme are usu-
ally developed with the goal to reduce the size of the public key. These
variations have additional structure that might compromise the security of
the scheme. A notable example of such a scheme is Rainbow [DS05], which



was a finalist in the NIST PQC standardization process as [DCP+20], before
Beullens showed that it does not meet the security requirements [Beu22]. It
is a great challenge to develop UOV variations with additional structure that
does not compromise the security of the scheme or where the trade-off results
in smaller key sizes.
MQ-Sign is a UOV-based signature scheme, where the main focus is to reduce
the size of the secret key compared to traditional UOV. This is achieved by
using sparse polynomials for the quadratic part of the central map. The
scheme uses inhomogenous polynomials and each polynomial of the central
map can be written as

F (k) = F (k)
V + F (k)

OV + F (k)
L,C

where F (k)
V =

∑
i∈V,j∈V γ

(k)
ij xixj and F (k)

OV =
∑

i∈V,j∈O γ
(k)
ij xixj. These can

alternatively be referred to as the vinegar-vinegar quadratic part and the
vinegar-oil quadratic part. Finally, F (k)

L,C refers to the linear and constant
part of the polynomials. In the following, we ignore the linear and constant
parts, since our attack does not use them. The quadratic homogenous part
of the sparse polynomials is defined as F (k)

V + F (k)
OV such that

F (k)
V =

v∑
i=1

α
(k)
i xix(i+k−1( mod v))+1

F (k)
OV =

v∑
i=1

β
(k)
i xix(i+k−2( mod m))+v+1.

(14.2)

The size of the secret key is thus reduced to 2vm field elements.
The MQ-Sign proposal provides a parameter selection for four variations of
the scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-Sign-SR and MQ-Sign-RR. The
first S/R in the suffix specifies whether FV is defined with sparse or random
polynomials. The second S/R refers to the same property, but for FOV . Note
that the variation MQ-Sign-RR corresponds to the standard UOV scheme
defined with inhomogenous polynomials.
Discussions about UOV systems typically present the maps F (k) as
n × n matrices F (k) giving the coefficients of the polynomials so that
(x1, x2, . . . , xn)>F (x1, x2, . . . , xn) = F (k) and F (k) is an upper triangular ma-
trix so that the coefficient of xixj for i ≤ j appears at position (i, j) and not
at position (j, i). Given that there are no terms involving two oil variables
the matrix has the form

F (k) =

(
F

(k)
1 F

(k)
2

0 0

)



where F1 is an upper triangular matrix. In this representation, the map S
is given as an n × n matrix S and the k-th polynomial in the public key
becomes P (k) = S>F (k)S.

14.3 First algebraic attack

In March 2023, a first algebraic attack on MQ-Sign was proposed by Aulbach,
Samardjiska, and Trimoska [AST23] that exploits the sparseness of the
vinegar-oil part of the secret key. The attack also relies on the fact that
the map S is chosen to be given by a matrix of the following form

S =

(
Iv×v S1

0m×v Im×m

)
. (14.3)

This typically does not reduce the security of a UOV-based scheme because
it was shown in [Pet13] that for any instance of a UOV secret key (F ′, S ′),
there is an equivalent key (F , S) where S has the form as in (14.3). The
advantage of using the equivalent keys form is a reduction of the size of the
secret key, as only the submatrix S1 needs to be stored. This optimization
is used in most modern UOV-based schemes, including the original MQ-Sign
submission.
With the equivalent keys structure of the map S, the computation of the
public key for UOV-like signatures schemes can be written as

(
I 0
S>1 I

)(
F

(k)
1 F

(k)
2

0 0

)(
I S1

0 I

)
,

which in upper-triangular matrix form simplifies to(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
F

(k)
1 (F

(k)
1 + F

(k)>
1 )S1 + F

(k)
2

0 Upper(S>1 F
(k)
1 S1 + S>1 F

(k)
2 )

)
(14.4)

adding the entry at (j, i) to the entry of (i, j) for j > i.

From this representation, we can easily see that P
(k)
1 = F

(k)
1 and we have the

following relation
P

(k)
2 = (P

(k)
1 + P

(k)>
1 )S1 + F

(k)
2 . (14.5)

From (14.5), we can derive a polynomial system containing variables from

the matrix S and the matrices F
(k)
2 , and notably, the system is linear. Fur-

thermore, F
(k)
2 is sparse and the MQ-Sign specification defines exactly which

entries are zero. The main idea in [AST23] is to build this system and remove



Security Category
Variant I III V

Before After Before After Before After
MQ-Sign-SS 15561 26173 37729 63521 66421 111749
MQ-Sign-RS 133137 143749 485281 511073 1110709 1156037

Table 14.1: Size (in Bytes) of the secret key of MQ-Sign before and after the
update of the implementation.

all of the equations where the F
(k)
2 entry is not zero. The resulting subsystem

contains only the vm variables from the matrix S. The number of equations
that we obtain is mv(m− 1), so we expect to have vm linearly independent
equations and solve the system easily through Gaussian Elimination.
The attack was implemented in both SageMath [The22] and
MAGMA [BCP97], and it was reported to run in 0.6 seconds for the
proposed parameters for security level I, 2.3 seconds for security level III
and 6.9 seconds for security level V.
The authors of MQ-Sign acknowledged that the attack works and specified
that MQ-Sign should be implemented using a random affine map S instead of
the equivalent keys form. They added that they would update the implemen-
tation accordingly. Table 14.1 shows the impact of this modification on the
secret key sizes, compared to the sizes reported in the MQ-Sign specification.

14.4 Second algebraic attack

Less than a month after the first attack, Ikematsu, Jo, and Yasuda proposed
another algebraic attack that also targets the MQ-Sign-{S/R}S variants but
is not dependent on S having the equivalent keys structure [IJY23]. This is
achieved by taking an approach that aims at recovering the trapdoor space O
from the public key. For all UOV-based schemes, it is known that P vanishes
on a secret linear subspace O ⊂ Fnq and that if this subspace is recovered by
an attacker, any signature can be forged easily. Concretely, the task is to
find m linearly independent vectors o1, . . . ,om ∈ Fnq such that

o>i P
(k)oj = 0, for i, j, k ∈ {1, . . . ,m}.

This algebraic attack starts by rewriting the relations P (i) = S>F (i)S as

P (i)S−1 = S>F (i)



Since in MQ-Sign-{S/R}S the matrices F (i) are sparse, separating these re-
lations by column results in

P (i)s′(i+m−1( mod m)) = smβ
(i)
m , for i ∈ {1, . . . ,m},

where β
(i)
m are single entries from F (i), instead of column vectors in the general

case. This idea starts a chain of reasoning that, with some guessing of variable
assignments that remains practical, results in recovering the first two vectors.
When two vectors of the O space are recovered, it is easy to recover the entire
space O. Recent work shows how the entire space can be practically recovered
with even a single vector [ACK+23].
Similarly as in [AST23], this attack was verified with an implementation in
MAGMA that was reported by the authors to run in no more that 30 minutes
for all security levels.

14.5 Vulnerabilities in third variant

As a result of these two attacks, the authors of MQ-Sign announced that the
MQ-Sign-SS and MQ-Sign-RS variants are removed and a binding technique
is added in the implementation of MQ-Sign so that a signature is identified
with a unique public key and message to prevent potential attacks. The
updated implementation still uses a map S with the equivalent keys struc-
ture, but there are no attacks announced that exploit this structure for the
remaining variants.
The first variant that is not impacted by the algebraic attacks on MQ-Sign
is MQ-Sign-SR. In this variant, only the vinegar-vinegar quadratic part is
sparse and the vinegar-oil quadratic part is random. Intuitively, it seems that
there is no danger in having a specific structure in the vinegar-vinegar part of
the secret key, as this part corresponds exactly to the vinegar-vinegar part of
the public key. Indeed, it can be seen from (14.4) that P

(k)
1 = F

(k)
1 for all k ∈

{1, . . . ,m}, so the vinegar-vinegar part of the secret key can always be derived
from the public key. This is inherent to the general UOV construction,
because of the equivalent keys attacks and the extensive analysis of UOV
suggests that there is currently no known way that this can be exploited
without using side-channel information. However, further analysis is needed
to see whether attacks that exploit the fact that the vinegar-vinegar part of
the secret key is sparse (and not only that it is known) can be developed, as
this structure is specific to the recently proposed MQ-Sign candidate.
We outline here a first idea of such an attack, and point out where the key
vulnerabilities in this variant come from. Consider again that our goal is to



find a vector o such that o>P (k)o = 0, for all k. Rewriting this in block
matrix form

(
o>V o>O

)(P (k)
1 P

(k)
2

0 P
(k)
4

)(
oV
oO

)
= 0

gives us the following algebraic constraint

o>V P
(k)
1 oV + o>V P

(k)
2 oO + o>OP

(k)
4 oO = 0. (14.6)

From (14.6) we can see that fixing all variables in oO gives us a system of m
equations in v variables where the quadratic part depends only on the sparse
P

(k)
1 . Since v is greater than m, we can still fix another (v − m) variables

and expect to have a solution. We notice also that because of the sparseness
in P

(k)
1 , we can extract a subset of equations that yields a bilinear system.

For instance, for m even, there is a subset of m
2

equations that is bilinear
in the sets of variables {x1,x3, . . . ,xm−1} and {x2,x4, . . . ,xm}, where we
denote by xi the variables in vector oV . Hence, fixing all variables in the
set of odd variables yields a linear system in the even variables. Specifically,
we can fix (v −m) variables and enumerate the rest with the usual cost of
enumeration. Then, from the linear system of m

2
equations in v

2
variables,

we obtain a solutions space of dimension v−m
2

. Substituting these findings
in the remaining quadratic equations from the initial system, we are faced
with a quadratic system of m

2
equations in v−m

2
variables, which we can solve

using Gröbner basis techniques. The overall cost of this attack is the cost
of the enumeration times the cost of the Gröbner algorithm, which amounts
approximately to 2111 for the security level I, 2170 for security level III and
2228 for security level V MQ-Sign parameters. The attack was developed in
collaboration with Aulbach and Samardjiska, and the complexity analysis
and the methodology for finding bilinear subsystems will be detailed in an
extended version of [AST23].
This simple attack shows that MQ-Sign-SR falls below the security require-
ments by a small margin. We do not think that simply increasing the pa-
rameters would be sufficient to meet the security levels, as there can be more
elaborate attacks that exploit this or other bilinear subsystems that arise
from the sparseness in P

(k)
1 . However, a straightforward way to mitigate this

attack would be to remove the use of equivalent keys structure of S. The
impact of this countermeasure on the secret key sizes is summarized in Ta-
ble 14.2. If this countermeasure is adopted, the attack outlined here would
be avoided, but further research is needed to see whether the sparseness of
P

(k)
1 can still be exploited in a similar manner.



Security Category
Variant I III V

Before After Before After Before After
MQ-Sign-SR 164601 175213 610273 636065 1416181 1461509

Table 14.2: Size (in Bytes) of the secret key of MQ-Sign-SR before and after
adopting the potential countermeasure.

Security MQ-Sign-SR MQ-Sign-RR
UOV in [BCH+23]

Category with random S with equivalent keys S
I 175213 282177 237896

III 636065 1057825 1044320
V 1461509 2460469 2436704

Table 14.3: Size (in Bytes) of the secret key of MQ-Sign and another UOV
variant.

14.6 Secure MQ-Sign variant

The second remaining variant is MQ-Sign-RR. There is strong confidence
that this variant is secure, especially because it is equivalent to the traditional
UOV scheme. The confidence in its security comes with the disadvantage of
not having any reduction in the secret key size. Other techniques for storing
the secret key can be used that are common in the literature, such as for
instance, storing a basis of the oil space instead of the central map [BCH+23].
UOV with the implementation and parameter choices outlined in [BCH+23]
was submitted to the additional call for signatures by NIST in summer 2023.
It differs from MQ-Sign-RR mainly in the representation of the secret keys
and, as a result, the signing algorithm. Another difference is that MQ-
Sign uses the Block Matrix Inversion (BMI) method proposed in [SLK22]
and offline precomputation to improve the signing runtime. Even though
the secret keys of UOV in [BCH+23] and MQ-Sign-RR consist of entirely
different data structures, they have comparable sizes. Table 14.3 shows this
comparison, including also MQ-Sign-SR with a random S, as this variant is
not affected by current attacks.

14.7 General assessment

For security proofs, MQ-Sign refers to [SSH11], an article studying the prov-
able security of UOV schemes. These arguments should be included in a
future version of the scheme.



The analysis of generic attacks against MQ systems in the MQ-Sign submis-
sion is adequate and we are not aware of any attack against the systems with
sizes as described in Table 14.3.
There has been a lot of research over the past year on UOV schemes due to
the NIST call for additional signatures which closed in June 2023. For round
2, the MQ-Sign authors may want to adjust parameters and implementation
in order to adopt some of the new improvements found during the past year
since they submitted to KpqC.



Chapter 15

NCC-Sign: A New
Lattice-based Signature Scheme
using Non-Cyclotomic
Polynomials

The main idea of NCC-Sign is to take the Dilithium design and replace the
mathematical structure used. While Dilithium uses a module lattice, NCC-
Sign moves to ideal lattices.

15.1 System description

NCC-Sign [SKA22] is based on Lyubashevky’s signature scheme [Lyu12]
using Fiat–Shamir with aborts, a signature compression technique by Bai
and Galbraith [BG14], and the public-key compression technique from
Dilithium [LDK+20] on the signature side and on NTRU Prime [BCLv17,
BBC+20b] and NTTRU [LS19] on the ideal lattice side.
The main part of the submission, as also reflected in the title, uses ideal
lattices over the NTRU Prime field R = Z[x]/(xp−x− 1) modulo a prime q,
where q is chosen such that xp − x− 1 is irreducible modulo q and that q is
inert in Q[x]/(xp − x − 1). The authors follow NTRU Prime in pointing to
security concerns related to the cyclotomic structure and the many subfields
present in the typical choice of xn + 1 for n = 2d.
The submission also considers a version using cyclotomic polynomials of the
form x2n−xn + 1 for n = 2a3b. These cyclotomic polynomials were proposed
in [LS19] to add flexibility in the dimension beyond n = 2d while keeping the
speed benefits of NTT-friendly rings. In the original NCC-Sign submission
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from October 2022 this version is presented in Section 3.5 and Table 6 while
all implementation considerations cover only the non-cyclotomic case. In
the updated version [SKA23], labeled v1.0 in that document, two sets of
parameters are proposed for this case and implementation results indeed show
better speeds, however, most of the text still focuses on the non-cyclotomic
case.
KeyGen, Sign, and Verify as well as the supporting algorithms match those
of Dilithium. The difference is that where Dilithium uses module lattices,
NCC-Sign uses ideal lattices. The supporting algorithms are defined for
the coefficients and thus match 1-to-1, for the other functions matrices of
polynomials are replaced by polynomials.
KeyGen generates a public polynomial a ∈ Rq from some seed ζ, this seed
forms the first part of the public key. The second part part is an RLWE
sample using a: Pick small (s1, s2) and compute t = as1 + s2, where “small”
means that the coefficients are in {0,±1,±2}; the July-2023 version includes
also an option for using ∈ {0,±1}. The public key includes only the top
part of t while the bottom part is included in the secret key along with the
small polynomials s1 and s2. The secret key additionally includes the seed
ζ, the hash ph = H(ζ, t1) of the public key, and a string dK to generate
pseudo-random numbers in signing.
Top and bottom parts of t are defined as follows: Assume that the coefficients
of t are in [0, q−1]. Let t0 be the polynomial whose coefficients are computed
from the coefficients of t taking the remainder under division by 2d using
representatives inside (−2d−1, 2d−1]. Then t1 = (t − t0)/(2

d). Since the
division here is by a power of 2, the top part basically means the top bits
of each coefficient, apart from the detail that the remainder can be negative
which then adds 1 to the top part. Other functions use top and bottom
parts for more general moduli γ, using the same approach of computing the
remainder centered around 0 and then taking the quotient of division by γ
after subtracting the remainder.
The signature should show that the signer indeed knows s1, s2 matching t1.
To sign message M , first a random commitment y ∈ Rq with restricted
coefficients is sampled; this process may need to be repeated (the aborts
part), hence the sampling includes a counter κ. The randomized version
version picks a 512-bit ρ at random while for the deterministic version ρ
depends on M, ph, and dK. Here, “restricted” is not as small as in the key
generation but coefficients of y are in (−217, 217] for the 128-bit security level
and the range doubles for each level. Then w = ay is computed and only the
quotient after division by some γ2 is taken, the remainder is centered around
0 and γ2 is co-prime to q and has 7 – 5 bits less than q. (The full details
include one corner case, see the Decompose function.)



The challenge is then given by c̃ = H(µ,w1) ∈ {0, 1}256, where µ = H(ph,M).
This c̃ is then used to deterministically sample a fixed-weight polynomial c,
having τ coefficients in {−1, 1} and the rest being 0, where τ = 25 for the
smallest parameters and 32 for the largest.
The polynomial z = y + cs1 then uses the secret key. However, the public
key is computed using also s2 and the public key only includes the top part
of t, hence the next steps in signature generation ensure that verification
can proceed. First it is checked z does not leak information on s, for that it
is checked that none of the coefficients are larger than some bound γ1 − β,
where γ1 was the bound on the coefficients of y and β = 4τ . This means that
z does not depend on the secret. Signature verification for Bai–Galbraith
signature compression reconstructs the top part of w as the top part of
az − ct = ay + acs1 − cas1 − cs2 = w − c − s2 which matches the top
part of w if s2 is sufficiently small. This is checked by checking that the
centered remainder of w − cs2 after division by 2γ2 has no coefficient larger
than γ2 − β, because β = 2ητ is the maximum size a coefficient of cs2 can
have (note that reductions modulo xp − x − 1 cause the extra factor of 2
here. If either of these are violated, the counter κ is incremented and a new
y is sampled. There is an indentation error in the signing function in both
versions of NCC-Sign [SKA22, SKA23] as Step 20 needs to be indented less
(be at the same level as if and else).
NCC-Sign follows Dilithium in additionally compressing the public key (in-
cluding only t1 instead of t), which means that only ct1 is available, leading
to w−cs2+ct0. The signature includes a vector h of hints, which are 1 in the
positions in which the high parts of w−cs2 and of w−cs2 +ct0 differ. Valid
signatures are limited in how large the Hamming weight of h is permitted to
be as these hints give extra flexibility to a forger. If the calculated h has too
large weight κ is incremented and a new c is sampled.
Eventually all checks succeed and the signature is (c̃, z,h).
To verify signature (c̃, z,h) on M compute c from c̃ and compute the high
part w′1 of az− ct1 · 2d using the hint vector h. If this computation worked
correctly, w1 = w′1 and c̃ = H(µ,w′1), hence this forms the verification check
along with checking the weight of h and the coefficient sizes of z.
By the above, an honestly generated signature passes verification.

15.2 Security

The suitability of the underlying lattice problem has been argued in NTRU
Prime and NTTRU respectively. While NTRU Prime cautions of using cyclo-
tomic lattices no actual attacks on RLWE or RLWR are known. The general



strategy of NCC-Sign equals that of Dilithium and is thus well studied. As
we comment in the section on security proofs, the differences are not fully
explored and it is not clear that the proofs hold, however, we have not been
able to turn the differences into attacks. The most visible difference, caused
by the asymmetry in how reductions modulo xp−x−1 affect the coefficients,
has been taken into account by the designers. there is no matching counter-
part for the cyclotomic polynomial. This leaves generic attacks as the main
attack avenue and guidance on choosing parameters.

15.2.1 Generic lattice attacks

Tables 15.1 and 15.2 contains the results of the estimator for the BKZ lattice
attacks from Albrecht, Curtis, Deo, Davidson, Player, Postlethwaite, Virdia
and Wunderer found in [ACD+18] for the concrete and conservative param-
eters respectively. For more information see Section 2.1. The input of the
code is given in Table 15.3 for the concrete parameters and Table 15.4 for
conservative parameters.

Parameter n 1021 1429 1913
Type primal dual primal dual primal dual
Q-Core-Sieve 112 127 173 194 249 274
Q-Core-Sieve + O(1) 128 141 189 207 265 287
Q-Core-Sieve (min space) 126 141 194 212 279 303
Q-β-Sieve 121 135 182 201 258 283
Q-8d-Sieve + O(1) 143 155 204 220 280 302
Core-Sieve 124 138 191 210 274 298
Core-Sieve + O(1) 140 152 207 224 290 314
Core-Sieve (min space) 156 169 240 259 345 367
β-Sieve 132 146 200 218 284 308
8d-Sieve + O(1) 154 166 221 239 305 326
Q-Core-Enum + O(1) 138 158 247 273 397 420
Lotus 143 166 270 290 448 472
Core-Enum + O(1) 276 279 493 489 793 777
8d-Enum (quadratic fit) + O(1) 310 316 587 561 1046 931

Table 15.1: Estimations for security level for the concrete parameters found
with code by [ACD+18]



Parameter n 1201 1607 2093
Type primal dual primal dual primal dual
Q-Core-Sieve 131 146 190 211 263 288
Q-Core-Sieve + O(1) 147 160 206 224 279 304
Q-Core-Sieve (min space) 147 162 213 233 295 319
Q-β -Sieve 140 155 199 218 273 298
Q-8d-Sieve + O(1) 161 174 221 237 294 317
Core-Sieve 144 159 209 229 290 313
Core-Sieve + O(1) 160 175 225 243 306 329
Core-Sieve (min space) 182 196 263 283 365 387
β-Sieve 153 168 218 237 300 323
8d-Sieve + O(1) 175 186 240 258 321 343
Q-Core-Enum + O(1) 170 191 279 301 427 454
Lotus 180 202 308 329 485 502
Core-Enum + O(1) 339 346 557 552 854 834
8d-Enum (quadratic fit) + O(1) 386 379 677 646 1149 1042

Table 15.2: Estimations for security level for the conservative parameters
found with code by [ACD+18]

15.3 Implementation considerations

NCC-Sign required fixing CRYPTO ALGNAME but then still had issues with
signing large messages and sometimes on short messages, too.
The designers observe that reducing csi modulo xp − x − 1 leads to higher
weight in the bottom half of the result. They modify the sampler to split
c into top and bottom parts c = c2 + xp2c1 with weight τi in ci. Taking si
with extremal coefficients ±η leads to a polynomial with constant term and
coefficients of xj with j ≥ p2 bounded by β2 = (2τ1 + τ2)η and coefficients
of xj with 1 ≤ j < p2 bounded by β1 = 2(τ1 + τ2)η. They thus suggest to
change the distribution of c to have τ1 < τ2 and to change the size constraints
to using β1 and β2 instead. There is an error in Table 7 of [SKA22] in that
the columns labeled τ1, τ2 should be labeled β1, β2. The choice of variable
name κ for the challenge entropy is bad as κ in the signing algorithm is a
counter. While it is confusing that τ1 + τ2 6= τ and no comment is made to
this regard, the examples have τ1 + τ2 > τ which is good as the sampler loses
some entropy by fixing a split of the weight, e.g., the first parameter set has
τ2 = 14, τ1 = 12 for τ = 25.
NCC-Sign gains flexibility over power-of-two cyclotomics by permitting any
prime p as length. NTRU Prime has shows that arithmetic in these rings can



n 1021 1429 1913

Standard deviation 1.414 1.414 1.414

q 8339581 8376649 8343469

Secret distribution (−2, 2) (−2, 2) (−2, 2)

m 2458 3605 5055

Claimed security 147 211 291

Category 1 3 5

Ring xn − x− 1 xn − x− 1 xn − x− 1

Table 15.3: Input for the concrete parameters in the code by [ACD+18]

n 1021 1429 1913

Standard deviation 1.414 1.414 1.414

q 17279291 17305741 17287423

Secret distribution (−2, 2) (−2, 2) (−2, 2)

m 3186 4251 5385

Claimed security 167 229 298

Category 1 3 5

Ring xn − x− 1 xn − x− 1 xn − x− 1

Table 15.4: Input for the conservative parameters in the code by [ACD+18]

be competitive with implementations using NTT but NCC-Sign needs larger
parameters than the KEM. It is likely that further speedups are possible,
using the tooling for code generation in NTRU Prime, but at this moment the
speed is much slower. The cyclotomic rings can use the implementation from
NTTRU and do obtain better speed in the experiments reported in [SKA23].
In general, there is room for improvement.

15.4 Provable security of the signature

scheme

The following is based on the submitted version of NCC-Sign [SKA22]; the
more recent version [SKA23] from July 2023 comments on the flaw in the
Dilithium security proof but the proof remained a sketch.
One way to prove that NCC-Sign is secure, is showing that the Dilithium



proof [KLS18] applies with appropriately adapted assumptions. This is also
the approach taken by the NCC-Sign authors. In more detail, this requires
to show security of the signature scheme under No-Message Attacks (UF-
NMA) as well as non-aborting Honest-Verifier Zero-Knowledge (naHVZK)
of the underlying identification scheme.
The presented proof is not convincing as it is neither giving a full proof, nor
working out exactly which parts of the Dilithium proof have to be adopted,
why they have to be adopted, and how.
For UF-NMA security, the given proof sketch is so much compressed, that
it is not possible to recover a meaningful proof without redoing the proof.
With regard to HVZK, the specification tries to argue HVZK without even
presenting the underlying identification scheme. Hence, also here the reader
is left to essentially redo the proof.
We did not redo the proofs. While it is believable that the proofs go through
with the changes in assumptions made by the authors, we do not think one
can rely on this without someone carefully doing the proofs and writing them
out to enable public scrutiny.
Even if the proofs were well done, it has to be noted that a recent pa-
per [BBD+23] (published after the KpqC deadline) pointed out a flaw in
the security proof of Dilithium. While [BBD+23] also presents a fix, this fix
comes with a loss in tightness that has to be analyzed for the specific scheme.
Although it is likely that the analysis for Dilithium carries over to NCC-Sign
with minimal changes due to their similarity, this should be done with care.

15.5 General assessment

NCC-Sign is built on a solid design history and we did not identify any
weakness. The gap in Dilithium’s security proof (2 papers at Crypto 2023)
applies to whole family of signature systems using Fiat–Shamir with aborts.
But the changes in how the rings are chosen mean that the proofs need to
be done carefully to deal with differences in the distributions. The authors
seem aware of these differences for the implementation parts and developed
a sampling strategy suitable for reductions modulo xp−x−1 but more work
is needed to show that the proofs still apply.



Chapter 16

Peregrine: Toward Fastest
FALCON Based on GPV
Framework

16.1 Introduction

Peregrine [SKLN22a, SKLN22b] is a signature scheme based on Falcon
[PFH+22]. It is similar to Falcon in that it is based on the GPV frame-
work due to Gentry, Peikert and Vaikunthanathan [GPV08], using NTRU
lattices, and in those aspects Peregrine is actually more or less identical to
Falcon. It is based on the hardness of the SIS problem, and security argu-
ments are given in the quantum random oracle model. The main difference is
in the trapdoor sampler. The main design rationale here is performance, and
indeed it seems that for signature generation Peregrine outperforms Falcon
by a factor of about 3.1 Other design rationales are a simpler implementa-
tion resulting in better side channel resistance than Falcon offers, but the
submission already itself notices that this is achieved at the price of a loss of
security assurance.

16.2 Overview

The GPV framework has the following structure.
Key generation: the public key is a full rank matrix A ∈ Zm×nq (with m > n),
of which the rows are seen as the basis of a q-ary lattice Λ. The private key

1This is reflected in the choice of name: the peregrine bird is a subspecies of falcon that
is known to be the fastest of all animals, with measured speeds of well over 300 km/h.
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is a matrix B ∈ Zm×mq of which the rows form a basis of the q-ary lattice Λ⊥,
so that B · A> = 0.
Signature generation: for a message m with hash H(m), find a c ∈ Zmq 6∈ Λ⊥,
satisfying c·A> = H(m), then find a v = v0 ·B ∈ Λ⊥ close to c (so v0 ∈ Zm),
the signature is s = c− v, which is short by construction.
Signature verification: s · A> = c · A> − v0 ·B · A> = H(m).
For NTRU details we refer to the submission [SKLN22a] and Chapters 5 and
17.

16.3 The trapdoor sampler

The trapdoor sampler in the signature generation is the method to find
v ∈ Λ⊥ close to the given c 6∈ Λ⊥. Two basic methods are known. Babai’s
round-off algorithm computes c0 ∈ Rm such that c = c0B (i.e. computes the
Rm-coordinates of c relative to the basis B), and then rounds off: v0 = bc0e.
Babai’s nearest plane algorithms recursively finds coordinates in nearest hy-
perplanes. Both methods are deterministic, and find s = c−v in respectively
[−1

2
, 1
2
]m ·B and [−1

2
, 1
2
]m ·B∗, where B∗ is the Gram-Schmidt matrix of B.

Both algorithms compromise security when they are applied just like that,
as then the ‘Learning a parallelepiped’ attack by Nguyen and Regev [NR06]
applies, leaking the private key after sufficiently many signatures have been
generated.
To solve this issue, Falcon uses the Fast Fourier nearest plane algorithm by
Ducas and Prest [DP15], which interleaves Babai’s nearest plane algorithm
with adding random lattice points at each recursion (computed with FFT)
and apples rejection sampling, which makes the signature distribution inde-
pendent of the private basis B, with security proof. This is shown to be
efficient, secure and usable with NTRU lattices, but is susceptible to side
channel attacks as it uses rejection sampling.
This is the main point where Peregrine deviates from Falcon. It is argued
that this application of the Fast Fourier sampler is a major source for the
computational complexity of the signature generation. That is why the Pere-
grine authors propose to replace this by a much simpler trapdoor sampler,
that works as follows. One simply takes Babai’s round-off algorithm to find
v, and then randomizes this by adding a random a ∈ Λ⊥, so v′ = v + a
is used instead of v. This a is sampled from a centered binomial distribu-
tion. This design choice makes the rejection sampling disappear so that the
implementation becomes a lot less complex and it removes the side channel
vulnerability, but also the security proof of Falcon is lost. Nevertheless the
submission claims to achieve sufficient (experimentally observed) indepen-



dence for the signature distribution from the private basis B.

16.4 Security of the trapdoor sampler

The Peregrine authors make only two comments on the security of their
trapdoor sampler.

[SKLN22b, Section 2, p. 6, just above Figure 4]: Using the numer-
ical simulation, we can show the uniform distribution of signature
enough to hide the information on the secret key B. Thus, Pere-
grine can be securely used like Crystal-Kyber, an algorithm based
on the centered binomial distribution.
[SKLN22b, Section 5, p. 17, top]: Peregrine currently does not
provide the same security proof level as FALCON. However, the
centered binomial distribution is widely used in many lattice-
based cryptosystems instead of the discrete Gaussian distribu-
tion.

This argumentation has been shown to be quite weak by Lin, Suzuki, Zhang,
Espitau, Yu, Tibouchi and Abe [LSZ+23], who describe a practical statistical
learning key recovery attack, with experimental validation. The point is
that the randomization of Peregrine is still dependent on the private basis
B. This attack is a generalization of the method of Nguyen and Regev
[NR06]. The latter applies to a signature distribution inside one fundamental
parallelepiped of the private basis B, which now is replaced by a set of
adjacent similar parallelepipeds labeled by α, where the distribution of the
α’s is independent of B. This leads to studying the Hidden Transformation
Problem (HTP), which is the problem of finding good approximations of the
rows (up to sign) of the hidden matrix B from a number of independent
samples y = B · x where x is sampled from a public distribution.
This Learning a Hidden Transformation is optimized for the case of Peregrine,
and is applied to a Peregrine reference implementation for n = 512. More-
over, it is shown that only about half of the coefficients of a basis vector are
needed, since the other half can then be recovered using a recent technique
by Prest using the NTRU equations. This allows for recovering a private
key with high probability from only about 25, 000 signatures when parame-
ters are chosen according to the reference implementation, and 11, 000, 000
signatures when parameters are chosen according to the specification.
As a result the key recovery parameters in [SKLN22b, Table 3] are untrust-
worthy, and the submissions’ claim that their method will not significantly



damage Falcon’s security level is unjustified. It seems that Peregrine’s secu-
rity cannot be fixed without losing its performance advantages over Falcon.
It would be of interest to study whether adding rejection sampling to the
randomization procedure of Peregrine has better security and performance
properties.

16.5 Miscellaneous

Indeed in the KpqC benchmark Peregrine is among the fastest schemes for
signature generation and verification, for the vulnerable parameter choices.
As remarked in [LSZ+23], the reference implementation has a parameter
choice deviating from the specification.
In the implementation we noticed that Peregrine has a heap overflow but was
matching KAT files before.



Chapter 17

SOLMAE: quantum-Secure
algorithm for Long-term
Message Authentication and
Encryption

SOLMAE [KTW+22] is a lattice-based signature scheme and may be seen as
the result of a sequence of follow-up works to the NIST-selected algorithm
FALCON [PFH+22]. More specifically, it follows the ideas presented in MI-
TAKA [EFG+22], to remove the requirement of floating-point arithmetic, as
well as new compression techniques presented in [ETWY22].

17.1 System description

The system is based on the hash-then-sign approach in which the message is
hashed to some point in the n-dimensional space and the signature is a lattice
point close to the hash. Early proposals based on this approach were broken
in [NR06] because of the way that the difference of the lattice points from the
hashed points reveals the secret basis of the lattice. See also Chapter 16 on
Peregrine, a candidate in the KpqC competition falling to the same attack.
FALCON [PFH+22], one of the signature systems selected by NIST for stan-
dardization, is based on the same ideas but hides the secret basis using the
approach from Gentry, Peikert, and Vaikuntanathan [GPV08]. It uses NTRU
lattices and the public key is the quotient of two small polynomials, the latter
forming the secret key:
Let d = 2n. KeyGen picks small f, g ∈ R = Z[x]/(xd + 1) and computes
h ≡ g/f mod q for some prime q, typically chosen so that 2n divides q − 1.
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The public key h defines a lattice with matrix

A =

(
1 0
h q

)
which defines the same lattice as

B =

(
f F
g G

)
for some F,G ∈ R with fG − gF = q. Denote by L(A) = L(B) the lattice
defined by A and B. Turning the polynomials into d × d matrices corre-
sponding to the multiplication by that polynomial modulo xd + 1 mean that
this is a lattice of dimension 2d, but for most of this explanation we work
with polynomials.
Let c = (0, H(r||m))> ∈ R2 for some hash function H. Sign uses B to
compute z ∈ L(B) and s with s = c− z. Pick new r until s is short enough
so that it does not leak information on B.
The signature is then (r, s).
Verification then checks that s is small and that z = c− s ∈ L(A).
The overall scheme is easy to understand, however, FALCON is the only
of the NIST-selected schemes for which NIST has not yet posted a draft.
One reason is that FALCON is notoriously hard to implement securely and
that it is generally hard to implement on small devices that do not feature
floating-point units. This is because the sampling of lattice points z in the
signing procedure is defined using floating-point arithmetic. It is possible
to emulate floating-point arithmetic using integer arithmetic via so-called
fixed-point arithmetic, but high-precision computations get very costly.
MITAKA [EFG+22] is a signature scheme following the same ideas but chang-
ing the sampler to the hybrid sampler in Ducas–Prest [DP16]. This has the
benefit that the scheme has less system requirements but the downside that
the sampled lattice points end up further away from the hash value, which
decreases security. The paper puts much effort into improving the sampler
and is analysis.
SOLMAE [KTW+22] builds on the same sampler but changes how the secret
key is generated, achieving better quality. The main idea in SOLMAE is in
KeyGen, defining how f and g are chosen to ensure that s is short enough
and that z = c−s is a lattice point. Computations in R = Z[x]/(x2

n
+1) use

the FFT and the Fast Fourier Sampler from [DP16], used in Falcon, samples
in the Fourier domain using complex embeddings and needing floating point
numbers. The main idea in SOLMAE is to generate the key as small elements
in the Fourier domain, ensuring that the sampler would have very good



quality (corresponding to a small value of α, but we do not want to speak of
“low” here). KeyGen then checks that also the corresponding polynomials
in R (obtained after the inverse FFT and rounding) and their canonical
embeddings are small and repeats the choice otherwise. While in general
smallness in both domains is related, it is not a strict correspondence, so it
is relevant to ensure that both are small. At the expense of more sampling
during key generation, SOLMAE achieves as good quality as FALCON at
the 128-bit security level and slightly worse at higher levels.
To give more precise definitions we need the concept of canonical embeddings.
Let ζ be a primitive 2d-th root of unity. All odd powers of ζ give different
primitive 2d-th roots of unity. Let ϕj be the embedding R→ C, x 7→ ζ2j−;1.

Note that ϕd−j(f) = ϕj(f), where ¯ denotes complex conjugation. The
canonical embedding of f ∈ R is ϕ(f) = (ϕ1(f), ϕ2(f), . . . , ϕd(f)). The
lengths of f and ϕ(f) are linked with ||ϕ(f)|| =

√
d||f || (taking the Euclidean

norm of the coefficients of f .
The definition of quality depends on the sampling algorithm, for the hybrid
sampler

Q(f, g)2 = max
1≤i≤d/2

max

(
ϕi(f)2 + ϕi(g)2

q
,

q

ϕi(f)2 + ϕi(g)2

)
.

The sampling during key generation picks pairs of Fourier terms in polar
coordinates by uniformly picking their absolute values within a segment of
a 2-dimensional torus and then uniformly selecting the angle in [0, 2π). The
inverse FFT is applied to get back to a polynomial where the coefficients
are rounded to the nearest integers to determine f and g. Of those rounded
polynomials the Fourier coefficients are computed anew and the key is ac-
cepted if the absolute value of each part is within [q/α2, dα2]. The target
quality for Falcon is α512 = α1024 = 1.17, for SOLMAE it is α512 = 1.17
and α1024 = 1.64, A later scheme, Antrag [ENS+23], which is a develop-
ment of SOLMAE involving many of the same authors, uses α512 = 1.15 and
α1024 = 1.23.
The smaller Fourier coefficients of f and g then allow to find smaller s effi-
ciently.
A further improvement in SOLMAE, using [ETWY22], is to shorten the
signatures. Let s = (s1, s2)

> and change the signature to (r, s1).
Verification then computes s2 = H(r||m)+hs1 mod q and checks that (s1, s2)
is short. This uses that (a, b)> ∈ L(A) if ah−b ≡ 0 mod q, so it reconstructs
s2 so that the vector z is in the lattice, but unless s1 was properly constructed,
s2 will not be short.



17.2 Security

The system uses power-of-two cyclotomics and quotient NTRU for the ideal
lattices. The scheme is close to FALCON and we have found no security
concerns in the changed sampling of the secret key. This leaves generic
attacks to determine the dimensions and sizes of the keys.

17.3 Generic lattice attacks

Table 17.1 contains the results of the estimator for the BKZ lattice attacks
from Albrecht, Curtis, Deo, Davidson, Player, Postlethwaite, Virdia and
Wunderer found in [ACD+18]. For more information see Section 2.1. The
input of the code is given in Table 17.2.

Parameter n 512 1024
Type primal primal
Q-Core-Sieve 122 248
Q-Core-Sieve + O(1) 138 264
Q-Core-Sieve (min space) 137 278
Q-β-Sieve 131 258
Q-8d-Sieve + O(1) 151 278
Core-Sieve 134 273
Core-Sieve + O(1) 150 289
Core-Sieve (min space) 169 344
β-Sieve 143 283
8d-Sieve + O(1) 164 304
Q-Core-Enum + O(1) 154 396
Lotus 162 447
Core-Enum + O(1) 308 791
8d-Enum (quadratic fit) + O(1) 347 1041

Table 17.1: Estimations for security level found with code by [ACD+18]

17.4 Provable security aspects

The authors of SOLMAE are clear and open about the scheme not being
covered by a formal proof. To be precise, SOLMAE follows the GPV frame-
work [GPV08] of hash-then-sign using a preimage-sampleable trapdoor func-
tion. While the GPV framework itself has a formal proof of security, the



n 512 1024

Standard deviation
√

(12889/2)/512
√

(12889/2)/1024

q 12289 12289

Secret distribution normal normal

m 512 1024

Norm f
√

(12889/2)
√

(12889/2)

Norm g
√

(12889/2)
√

(12889/2)

Claimed security 127 256

Category 1 5

Ring xn −+1 xn + 1

Table 17.2: Input for the code by [ACD+18]

parameters used by SOLMAE do not meet the requirements of the proof;
this is the same situation as for FALCON.

17.5 Overall assessment

Overall, SOLMAE has a solid design history with GPV and FALCON and is
easier to implement than FALCON. Compared to MITAKA it offers better
security relative to the dimension. The later design Antrag shares this benefit
and achieves slightly better quality. In the next round SOLMAE should
consider adopting these benefits.
For FALCON, a core problem is that GPV requires a certain product to
be uniformly distributed. This is commonly proven via the leftover hash
lemma and its variants. However, for the mathematical structure underlying
FALCON (i.e., module lattices), no strong enough result is known. Given
that SOLMAE is using the same structure, the same issue applies.
In conclusion, it is possible that the additional structure used in FALCON
or SOLMAE enables attacks that are not possible when using GPV with
unstructured lattices. On the positive side, no such vulnerability has been
found for FALCON to this moment, although it was selected as a NIST
finalist in 2020, and for standardization in 2022.
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[HHM22] Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz.
Failing gracefully: Decryption failures and the fujisaki-okamoto
transform. In Shweta Agrawal and Dongdai Lin, editors, Ad-
vances in Cryptology – ASIACRYPT 2022, Part IV, volume
13794 of Lecture Notes in Computer Science, pages 414–443.
Springer, Heidelberg, December 2022.

[HK22] Andreas Hülsing and Mikhail A. Kudinov. Recovering the tight
security proof of SPHINCS+. In Shweta Agrawal and Dong-
dai Lin, editors, Advances in Cryptology – ASIACRYPT 2022,
Part IV, volume 13794 of Lecture Notes in Computer Science,
pages 3–33. Springer, Heidelberg, December 2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://ntru.org/f/tr/tr004v2.pdf


[HLS18] Andreas Hülsing, Tanja Lange, and Kit Smeets. Rounded
Gaussians - fast and secure constant-time sampling for lattice-
based crypto. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018: 21st International Conference on Theory and Prac-
tice of Public Key Cryptography, Part II, volume 10770 of Lec-
ture Notes in Computer Science, pages 728–757. Springer, Hei-
delberg, March 2018.

[How07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-
in-the-middle attack against NTRU. In Alfred Menezes, edi-
tor, Advances in Cryptology – CRYPTO 2007, volume 4622 of
Lecture Notes in Computer Science, pages 150–169. Springer,
Heidelberg, August 2007.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU:
A ring-based public key cryptosystem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423 of Lecture
Notes in Computer Science, pages 267–288. Springer, Heidel-
berg, June 1998.

[HS01] Jeffrey Hoffstein and Joseph H. Silverman. Optimizations for
NTRU. In Public-key cryptography and computational number
theory. Proceedings of the international conference organized by
the Stefan Banach International Mathematical Center, Warsaw,
Poland, September 11–15, 2000, pages 77–88. de Gruyter, 2001.

[HTMR15] Anna-Lena Horlemann-Trautmann, Kyle Marshall, and
Joachim Rosenthal. Extension of Overbeck’s attack for
Gabidulin-based cryptosystems. Designs, Codes and Cryptog-
raphy, 86:319–340, 2015.

[IJY23] Yasuhiko Ikematsu, Hyungrok Jo, and Takanori Yasuda. A se-
curity analysis on MQ-Sign. Cryptology ePrint Archive, Paper
2023/581, 2023. https://eprint.iacr.org/2023/581.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sa-
hai. Zero-knowledge proofs from secure multiparty computation.
SIAM J. Comput., 39(3):1121–1152, 2009.
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[OK15] Ayoub Otmani and Hervé Talé Kalachi. Square code attack on
a modified sidelnikov cryptosystem. In C2SI, volume 9084 of
Lecture Notes in Computer Science, pages 173–183. Springer,
2015.

[Ove05] Raphael Overbeck. A new structural attack for GPT and vari-
ants. In Mycrypt, volume 3715 of Lecture Notes in Computer
Science, pages 50–63. Springer, 2005.

[Ove08] R. Overbeck. Structural attacks for public key cryptosystems
based on Gabidulin codes. Journal of Cryptology, 21(2):280–301,
April 2008.

[Pan19] Lorenz Panny. Isogeny-based hashing despite known endomor-
phisms. Cryptology ePrint Archive, Report 2019/927, 2019.
https://eprint.iacr.org/2019/927.

[Pat75] Nicholas J. Patterson. The algebraic decoding of Goppa codes.
IEEE Transactions on Information Theory, 21:203–207, 1975.

[Pat97] Jacques Patarin. The oil and vinegar signature scheme.
Dagstuhl Workshop on Cryptography, 1997.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To
BLISS-B or not to be: Attacking strongSwan’s implementa-
tion of post-quantum signatures. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017: 24th Conference on Computer and Communications
Security, pages 1843–1855. ACM Press, October / November
2017.

[Pel23a] Alex Pellegrini. Email and attachment posted on KpqC Bulletin
3 Oct 2023, 2023.

https://eprint.iacr.org/2019/927
https://groups.google.com/g/kpqc-bulletin/c/8nOd28f2K7k/m/yWzjJXWWAwAJ


[Pel23b] Alex Pellegrini. Email and attachment posted on KpqC Bulletin
22 Oct 2023, 2023.

[Pet13] Albrecht Petzoldt. Selecting and reducing key sizes for mul-
tivariate cryptography. PhD thesis, Darmstadt University of
Technology, Germany, 2013.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul
Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2022. available at https:

//csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

[PJP+22] Seunghwan Park, Chi-Gon Jung, Aesun Park, Joongeun Choi,
and Honggoo Kang. TiGER: Tiny bandwidth key encapsulation
mechanism for easy miGration based on RLWE(R). Submission
to KpqC Round 1, 2022.

[PL17] Christophe Petit and Kristin Lauter. Hard and easy problems
for supersingular isogeny graphs. Cryptology ePrint Archive,
Report 2017/962, 2017. https://eprint.iacr.org/2017/962.

[PP19] Chris Peikert and Zachary Pepin. Algebraically structured
LWE, revisited. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019: 17th Theory of Cryptography Conference, Part I,
volume 11891 of Lecture Notes in Computer Science, pages 1–
23. Springer, Heidelberg, December 2019.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes.
IRE Transactions on Information Theory, 8(5):5–9, 1962.

[PW23] Aurel Page and Benjamin Wesolowski. The supersingular en-
domorphism ring and one endomorphism problems are equiv-
alent. Cryptology ePrint Archive, Paper 2023/1399, 2023.
https://eprint.iacr.org/2023/1399.

[Reg05] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald Fa-
gin, editors, 37th Annual ACM Symposium on Theory of Com-
puting, pages 84–93. ACM Press, May 2005.

https://groups.google.com/g/kpqc-bulletin/c/8nOd28f2K7k/m/bsTvJSe-AAAJ
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2017/962
https://eprint.iacr.org/2023/1399


[RKY+22] Jieun Ryu, Yongbhin Kim, Seungtai Yoon, Ju-Sung Kang, and
Yongjin Yeom. IPCC – Improved Perfect Code Cryptosystems.
Submission to KpqC Round 1, 2022.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and
Shivam Bhasin. Generic side-channel attacks on CCA-secure
lattice-based PKE and KEMs. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2020(3):307–335,
2020. https://tches.iacr.org/index.php/TCHES/article/

view/8592.

[S+21] W. A. Stein et al. Sage Mathematics Software (Ver-
sion (9.3)). The Sage Development Team, 2021.
http://www.sagemath.org.

[Saa17] Markku-Juhani O. Saarinen. HILA5. Techni-
cal report, National Institute of Standards and
Technology, 2017. available at https://csrc.

nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/

round-1-submissions.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas,
Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Gregor Seiler, Damien Stehlé, and
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