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Abstract

We demonstrate how to build computationally secure commitment schemes with the aid of
quantum auxiliary inputs without unproven complexity assumptions. Furthermore, the quantum
auxiliary input can be either sampled in uniform exponential time or prepared in at most doubly
exponential time, without relying on an external trusted third party. Classically, this remains
impossible without first proving 𝖯 ̸= 𝖭𝖯.

1 Introduction

It has been known since 1990 [IL89, Gol90] that almost all interesting classical cryptographic tasks
requires computational security, and furthermore, hardness assumptions that are at least as strong
as the existence of one-way functions. Thus realizing these cryptographic tasks unconditionally
faces the barrier of “𝖯 ?

= 𝖭𝖯”, a problem that has undergone intense studies by complexity theorists.
These cryptographic tasks in particular include constructing a commitment scheme, the feasibility of
which is equivalent to the existence of one-way functions.

Auxiliary-input cryptography, studied since the 1990s [OW93], is a non-uniform version of
cryptography where every party in the protocol gets access to a copy of some public information
that might not be efficiently preparable. This is not to be confused with non-uniform security,
which is the default security notion where the adversaries, in addition to running in polynomial
time, get some advice at the beginning from an inefficient preprocessing phase or perhaps some
residual information from another protocol execution. Following the same proofs, the same barrier
of “𝖯 ?

= 𝖭𝖯” still applies in this more relaxed setting.
Given this difficulty, it is natural to consider constructing quantum commitments instead. Recent

works have demonstrated that quantum commitments play a similar central role as classical ones, in
terms of its tight connections to both quantum cryptography at large [Yan22, BCQ23, BEM+23]
and quantum complexity [BEM+23]. While commitments statistically (or information theoretically)
secure against both parties are impossible even quantumly [May97, LC97], recent works have
demonstrated that computationally secure ones are possible under complexity assumptions [BCQ23,
BEM+23, Bra23] that are evidently milder than 𝖯 ̸= 𝖭𝖯 [Kre21, AQY22, MY22, KQST23, LMW23].
This line of works suggests that achieving computationally secure quantum cryptography might not
be susceptible to the same barriers that apply to classical cryptography.

Nonetheless, it is still reasonable to speculate that any reasonable quantum computational
cryptography could face some other barriers. Indeed, all prior quantum computational cryptography
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still starts by assuming some hardness assumptions, even though they may be weaker than what is
needed classically as was shown above.

In this work, we consider a natural quantum non-uniform cryptography notion called quantum
auxiliary input, meaning that every party receives copies of the same quantum pure state as input.1

Therefore, in some sense, this quantum auxiliary information can be thought of as a “cryptographic
magic state”, extremely similar to magic states that occur in quantum fault tolerance, where a piece
of quantum state can augment the computational power of a less powerful circuit family.

Our main theorem, perhaps surprisingly, constructs quantum auxiliary-input commitments
without unproven complexity assumptions.

Theorem 1. There exists a computationally-hiding statistically-binding non-interactive quantum
commitment scheme with quantum auxiliary input. Furthermore, the quantum auxiliary input has an
exponential-size classical description that can be sampled uniformly in exponential time.

Our proof builds upon the prior work of Chailloux, Kerenidis, and Rosgen [CKR16] who established
the same result assuming the unproven complexity separation that 𝖰𝖨𝖯 ̸⊆ 𝖰𝖬𝖠. However, our
construction uses a sparse pseudorandom ensemble constructed with a probabilistic method instead
of the assumed hardness of a 𝖰𝖨𝖯-complete problem.

Despite their similarities, the fundamental nature of this theorem is different since it is uncondi-
tional. As a result, there are a few interpretations of this theorem.

1. This is the first demonstration of a useful crypcrypcrypcrypcrypcrypcrypcrypcrypcrypcryptographicgraphicgraphicgraphicgraphicgraphicgraphicgraphicgraphicgraphicgraphic task with unconditional inherentlyentlyentlyentlyentlyentlyentlyentlyentlyentlyently-
compupupupupupupupupupuputational securityrityrityrityrityrityrityrityrityrityrity (quantum or classical), meaning that such tasks are impossible with
statistical security. Cryptographers are often trained to instinctively assume that computational
security protocols rely on hardness assumptions, and conversely unconditionally secure protocols
are statistically secure. This work, however, reveals that such presumptions are unwarranted,
especially in the quantum setting.

2. Theorem 1 also reveals that we should be more cautious about the speculation that quantum
computational cryptography still requires making hardness assumptions, and perhaps even
reassess its validity and investigategategategategategategategategategategate the existence of barriers.

3. This is also arguably a conditional demonstration of quanquanquanquanquanquanquanquanquanquanquantum compupupupupupupupupupuputational advantagetagetagetagetagetagetagetagetagetagetage throughthroughthroughthroughthroughthroughthroughthroughthroughthroughthrough
crypcrypcrypcrypcrypcrypcrypcrypcrypcrypcryptogtogtogtogtogtogtogtogtogtogtographyphyphyphyphyphyphyphyphyphyphy. As discussed, a classical analogue of Theorem 1 would still imply 𝖯 ̸= 𝖭𝖯 [IL89].
Conversely, this shows that quantum auxiliary-input commitments are feasible even if 𝖯 = 𝖭𝖯
and classical (auxiliary-input) commitments are impossible. This is different from traditional
conditional quantum computational advantages (such as factoring) where the condition is
classical easiness rather than classical hardness of certain problems.

In fact, it is possible to strengthen this classical impossibility above further. As we show in
Theorem 4, this is true even if we consider the model where all parties get access to a single (possibly
inefficient) sampling oracle, and each sample is private to the requested party. Here we allow access
to randomized auxiliary information in order to level the playing field a bit for classical protocols,

1There are two different variants of auxiliary-input security considered in the literature: in this work, we focus
on the strong variant where the adversary’s success probability is small for all but finitely many auxiliary inputs;
however, there is also a weaker variant where we only require the adversary’s success probability to be small for
infinitely many auxiliary inputs [OW93]. Note that classical auxiliary input weakly secure quantum commitments
can be built assuming 𝖰𝖢𝖹𝖪 ̸⊆ 𝖡𝖰𝖯 [BCQ23], classical auxiliary-input (strong) quantum commitment can be built
assuming 𝖰𝖢𝖹𝖪 ̸⊆ 𝖰𝖬𝖠, and finally standard quantum commitments without auxiliary input can be built assuming
various other unproven assumptions.
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since a pure quantum state can also implement such randomized samples by taking an appropriate
superposition over bitstrings. This model is even stronger than having access to classical auxiliary
input, since the oracle could just output that fixed string with probability 1. (Considering every
party having access to the same randomized advice can be simply replaced with a fixed classical
advice by an averaging argument.) Thus in some sense, our result is even stronger than Raz’s result
of 𝖰𝖨𝖯/𝗊𝗉𝗈𝗅𝗒 = 𝖨𝖯/𝗋𝗉𝗈𝗅𝗒 = 𝖠𝖫𝖫 [Raz05] as the power of the quantum advice does not come from the
advice being inherently randomized and this randomness being private to each party.

Removing trust. One might be skeptical of the security since naïvely it appears that the parties
need to assume they can trust the quantum auxiliary input given to them. One way to address this
concern is to ask the skeptical party to simply inspect the classical description of the magic state
and verify that the commitment built with it is secure. This takes at most a doubly exponential time
since we can cast it as a 𝖰𝖬𝖠 problem (Theorem 9). Alternatively, we could also ask them to find
the lexicographically first magic state that works, which also takes at most doubly exponential time.

In Section 4, we show how to achieve computationally secure commitments without any trusted
auxiliary inputs through a more efficient preprocessing. Specifically, in the scheme we only need to
ask both the committer and the receiver to perform a uniform exponential-time preprocessing phase.

Removing inefficiency. Complementary to that, we also show how to do commitments in a
completely efficient setting with a weakly trusted setup in Section 3. Specifically, we adapt our
construction into a trusted setup model where a trusted third party efficiently generates a few copies
of the quantum auxiliary information for every party in the protocol to use before the protocol begins.
However, unlike Theorem 1, here the pure state distributed to every party is not deterministic.
Furthermore, the scheme could in fact be statistically secure against all parties if the number of
copies distributed is restricted.

In comparison, a stronger (in terms of trust) setup model is the secret parameter model [Ps05],
where we need to trust the setup to sample two correlated secret strings for each party. While
statistically secure classical non-interactive commitments are possible in the secret parameter model,
our model appears to be meaningfully weaker than the secret parameter model. In particular, we can
again invoke our classical impossibility (Theorem 4) to argue that statistically secure commitments
remain impossible in a classical sampling analogue of our model, since an unbounded adversary
could always solve any 𝖭𝖯 problem.

Polynomially bounded adversaries are physical, probably. A possible concern regarding the
claimed “unconditional” nature of this result is that the security relies on the “assumption” that the
adversary is polynomially bounded during the execution of the protocol. We address that concern
by noting that it is possible to reduce this assumption to physical assumptions. On one hand,
physical assumptions and more generally modeling assumptions (the mapping between real world
and mathematics) are unavoidable in any form of provably secure cryptography. On the other hand,
this suggests a new win-win philosophy, since either we can have secure cryptography or we are able
to discover exciting new physics.

More specifically, there is most likely a fundamental physical limit to the density of quantum
information before collapsing into a black hole given by the Bekenstein bound (see [Llo00] for an
exposition of this). Since any malicious computation must be done in polynomial time, and thus
space by the no superluminal signaling principle, it follows from extended Church–Turing thesis (for
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quantum information tasks) that any polynomial-time physical computation can be described by a
polynomial-size quantum circuit. Therefore, we can force adversary to be polynomially bounded by
simply limiting the protocol execution time. Even if the adversary could somehow leverage black
holes to perform useful computations, we could still monitor the energy density nearby to make sure
that this does not happen. We leave further materializing this idea to future work.

Additional applications. We note that it is possible to use this commitment scheme to further
instantiate oblivious transfer (OT) and secure multiparty computations (MPC), as we further detail
in Appendix B (see also [BCQ23]). This is in contrast with Kent’s statistically secure relativistic
commitment scheme [Ken99, Ken12] since (statistical) OT and MPC are known to be impossible
even in that quantum relativistic model [Rud02, Col06]. (Another comparison is that our model also
does not impose any strict constraints on the physical location of the parties: they simply need to
be a polynomial distance away from each other so that the polynomial timing constraints can be
satisfied.)

For a more concrete example for MPC, consider the classical Yao’s Millionaires’ Problem [Yao82],
except that now it’s a Trillionaires’ Problem! This means that two trillionaires want to figure
out who is richer without revealing anything else. Also since they are trillionaires, their entire
families and businesses are somehow also on the line, so if cheating is detected then chaos would
ensue. Furthermore, they also have the world’s best cryptanalyst to break any computational
hardness assumption should it be necessary and possible, and they are willing to use exponential-time
preprocessing as a small sacrifice.

Secure multiparty computations with preprocessing is the perfect solution for this problem! They
first spend exponential time to set up and during the protocol execution, they ensure that the
other party finish in time and no cheating occurs. So if nothing bad occurs, then both of them can
be satisfied knowing that their secrets are safe. Additionally, using certified everlasting transfer
[BK23], they can achieve everlasting security by having a third party referee, who is trusted to
be uninterested in spending exponential resources recovering the input, to certifiably delete the
remaining information.

Open problems. One undesirable feature of our scheme is that there is no good way to get
additional copies of the magic state. In the trusted setup model, it is possible to redo the setup
every once in a while to preserve statistical security and efficiency, but otherwise generating new
copies still takes exponential time, although it is possible to build dedicated hardware to pipeline
this process. A natural question is whether we can construct quantum cryptography with quantum
auxiliary information that is efficiently clonable or reusable. While there are families of quantum
states that is efficiently clonable but cannot be prepared in uniform polynomial time relative to a
quantum oracle [NZ24], even having a standard model candidate is open since the quantum oracle
there is a cloning oracle. The biggest issue with reusing our schemes is that for each invocation of
the commitment scheme, on average Θ(𝜆) copies of the magic state is transferred to the other party,
and there does not appear to be a way to certifiably retrieve these states. Of course, the ultimate
goal would be to construct these without inefficient preprocessing or having trusted setup at all.

Concurrent work. Near the completion of this work, I became aware of a parallel work done by
Tomoyuki Morimae, Barak Nehoran, and Takashi Yamakawa [MNY23]. In particular, both works
have the same constructions of quantum auxiliary-input commitments (Theorem 1) and statistically
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secure commitments with a weakly trusted (stateful) setup (Theorem 6 and Theorem 7). They have
an additional statistical commitment construction with stateless setup, however, the downside is that
this can only be secure given that at most a bounded number of copies is generated. Complementary
to the classical impossibility of Theorem 4, they also give an impossibility of classical auxiliary-input
(quantum) commitments in a weak setup model. They in addition have the application of quantum
auxiliary-input zero-knowledge proofs for 𝖭𝖯 (with negligible simulation security). They also point
out an observation by Fermi Ma that the cube root security loss of Theorem 2 can be improved to
square root if we instead augment the [GK92] argument with a matrix Chernoff bound like was done
in [LMW23]. This square root loss is also tight even against classical algorithms [DTT10, page 651].

Notably, their work point out that the quantum auxiliary-input commitment cannot be imme-
diately used to construct simulation-secure commitments through the [BCKM21] compiler due to
the use of Watrous rewinding in the simulator there. After the discussions with [MNY23], I present
the resolution of this in Appendix B by showing how to adapt [BCKM21] to recover 𝜀-simulation
security, which still suffices to recover almost all applications of a standard quantum commitment.

2 Quantum auxiliary-input commitment

We formally define non-interactive commitments and handle its subtleties for later applications
in Appendix A. To prove our main theorem, we first need the following result on the quantum
non-uniform security of pseudorandomness.

Proposition 2 ([CGLQ20a, Liu23]). For a random function 𝐻 : [𝑁 ] → [𝑀 ], the best quantum
circuit of size 𝑆 (potentially depending on 𝐻) can distinguish its output from a random element from

[𝑀 ] with advantage at most 12 · 3

√︁
𝑆
𝑁 (averaged over the choice of 𝐻).

While these works consider the more general case where quantum algorithms that could addition-
ally make queries to 𝐻, the same proofs also give a polynomial upper bound for standard query-less
algorithms. For completeness, we show this precise bound in Appendix C.

In particular, this implies the existence of a good function for which this is true against size
𝑆 − 1, since we can always use an extra bit to make the bias always have the same sign for all 𝐻. In
other words, for any (𝑆 − 1)-size algorithm 𝐴′, there is an 𝑆-size algorithm 𝐴 such that⃒⃒⃒⃒

𝔼
𝐻

[︂
𝔼
𝑥
[𝐴′(𝐻(𝑥))]− 𝔼

𝑦
[𝐴′(𝑦)]

]︂⃒⃒⃒⃒
= 𝔼

𝐻

[︂⃒⃒⃒⃒
𝔼
𝑥
[𝐴(𝐻(𝑥))]− 𝔼

𝑦
[𝐴(𝑦)]

⃒⃒⃒⃒]︂
,

where 𝐴 simply runs 𝐴′ and XOR its output with the extra advice bit. With some small inverse
exponential security loss, we can also use Markov’s inequality to argue that even sampling a function
uniformly at random would satisfy this with overwhelming probability.

Instantiating the above with 𝑆 = 2𝜆 + 1, 𝑁 = 25𝜆 and 𝑀 = 26𝜆, we get the following corollary,
which generalizes the classical (inefficient) sparse pseudorandom ensemble construction of Goldreich
and Krawczyk [GK92] to the post-quantum setting2.

2The naïve attempt of quantizing [GK92] proof cannot seem to handle quantum advice. For readers familiar with
that work, a natural strategy is to use union bound over all quantum algorithms/advice using an 𝜀-net, however, this
fails since the size of the 𝜀-net is doubly exponential, and thus eliminating the single exponential concentration we get
from Hoeffding’s bound.
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Corollary 3 (Exponentially secure sparse pseudorandom ensemble). There exists a pseudorandom
ensemble 𝐻 : {0, 1}5𝜆 → {0, 1}6𝜆 against all 2𝜆-size quantum circuits 𝐴 with quantum auxiliary
information, whose security |𝔼𝑥[𝐴(𝐻(𝑥))]− 𝔼𝑦[𝐴(𝑦)]| ≤ 2−𝜆 for all 𝜆 ≥ 11.

Proof of Theorem 1. Let {𝐻(𝑥)}𝑥∈{0,1}5𝜆 be the exponentially secure sparse pseudorandom ensemble
as above. We first specify the quantum auxiliary input

|𝑀𝜆⟩ := 2−5𝜆/2
∑︁

𝑥∈{0,1}5𝜆
|𝑥⟩ ⊗ |𝐻(𝑥)⟩ ,

a pure state of 11𝜆 qubits that can be prepared using a circuit of size �̃�(25𝜆).
We now specify the protocol. The sender, to commit to 0, simply sends the second half of |𝑀𝜆⟩;

and to commit to 1, sends the second half of a maximally entangled state

|Ψ𝜆⟩ := 2−3𝜆
∑︁

𝑦∈{0,1}6𝜆
|𝑦⟩ ⊗ |𝑦⟩ ;

to later decommit, the rest of the state is sent. The receiver, upon receiving the entire state and the
bit 𝑏 can efficiently test by performing a SWAP test between the received state and the correct state
of either |𝑀𝜆⟩ or |Ψ𝜆⟩. Finally, a 𝜆-fold parallel repetition is applied to this construction, meaning
that the committer commits to the same bit 𝜆 times in parallel, and the receiver checks that all
commitment decommits to the same bit.

For binding, we note that our construction is identical to that of [CKR16, Section 4] except for
the choice of two pure states used for the commitments. In our case, since the two reduced density
matrices on the commitment register are classical, so the fidelity between them is(︃∑︁

𝑦

√︂
Pr[𝐻(𝑥) = 𝑦]

26𝜆

)︃2

≤ 2−𝜆 (1)

by applying Cauchy–Schwarz on 𝑦’s in the image of 𝐻. The rest follows the same proof as [CKR16,
Proposition 4.4], thus we get that our commitment after taking 𝜆-fold parallel repetition is statistical
sum binding.

For hiding, the two reduced density matrices given to the hiding adversary exactly corresponds to
the security game of the pseudorandom ensemble. Finally taking a parallel repetition also preserves
hiding by a standard hybrid argument.

We remark that this construction can be straightforwardly “derandomized” using a (post-quantum)
pseudorandom generator, and thus eliminating the inefficiency at the cost of assuming the security
of the pseudorandom generator.

In fact, if we are only aiming for a commitment scheme with quantum auxiliary input and do not
require the classical description to be computable in exponential time, any non-trivial computationally
indistinguishable pair of quantum states suffices. The construction is essentially the same except
that the receiver does a SWAP test with the corresponding pure state for decommitments to either
bits.
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Classical impossibility. For convenience, we focus on non-interactive statistically-binding com-
mitments for the classical case. This is a fair comparison since such a commitment with classical
auxiliary information does exist assuming existence of one-way functions, by applying averaging
argument to the first message of Naor commitment [Nao91]. We leave improving this impossibility
to future work. The main insight is that having sample access to the oracle suffices to break the
security.

Theorem 4. If there exists a computationally-hiding statistically-binding non-interactive classical
commitment scheme where all parties share access to a sampling oracle, then 𝖭𝖯 ̸⊆ 𝖯/𝗉𝗈𝗅𝗒.

Proof. For simplicity, we consider that committer and receiver each gets a private sample 𝑠, 𝑟
respectively from the sampling oracle; to commit to bit 𝑏, the committer computes a deterministic
function 𝖢𝗈𝗆𝗆𝗂𝗍(𝑠, 𝑏) = 𝜏 and sends 𝜏 to the receiver; to decommit, the committer sends 𝑠, 𝑏 and
the receiver computes a deterministic function 𝖱𝖾𝗏𝖾𝖺𝗅(𝑠, 𝑏, 𝜏, 𝑟) ∈ {⊤,⊥} indicating accept or reject
the revealed bit 𝑏. This is without loss of generality since we can always have the oracle give
multiple samples per query and pad the oracle with uniform random bits so that the only source of
randomness is from the oracle.

Assume 𝖭𝖯 ⊆ 𝖯/𝗉𝗈𝗅𝗒, we show how to efficiently break the hiding. Let each sample be ℓ bits long.
The malicious receiver, on input 𝜏 and (ℓ+ 1) independent samples �⃗� := 𝑟0, ..., 𝑟ℓ from the sampling
oracle, predicts the commitment is to 0 if there exists 𝑠0 such that 𝖱𝖾𝗏𝖾𝖺𝗅(𝑠0, 0, 𝜏, 𝑟𝑖) = ⊤ for all 𝑖,
and predicts to 1 otherwise. This is also an 𝖭𝖯 language since 𝖱𝖾𝗏𝖾𝖺𝗅 is efficient and ℓ is polynomial.
Then in the case when the committer commits to 0, by completeness with overwhelming probability
over 𝜏 , Pr𝑟[𝖱𝖾𝗏𝖾𝖺𝗅(𝑠0, 0, 𝜏, 𝑟)] is negligibly close to 1, so this receiver always predicts 0 except with
negligible probability. On the other hand, when the committer commits to 1, by statistical binding,
with overwhelming probability over 𝜏 , for every 𝑠0 we have that Pr𝑟[𝑅(𝑠0, 0, 𝜏, 𝑟)] is negligible, and
by independence of samples, Pr�⃗�[∀𝑖 : 𝖱𝖾𝗏𝖾𝖺𝗅(𝑠0, 0, 𝜏, 𝑟𝑖)] ≤ 2−ℓ−1 for all sufficiently large 𝜆, thus by
union bound, Pr�⃗�[∃𝑠0∀𝑖 : 𝖱𝖾𝗏𝖾𝖺𝗅(𝑠0, 0, 𝜏, 𝑟𝑖)] ≤ 1

2 . This gives a hiding adversary with advantage at
least 1

2 − 𝗇𝖾𝗀𝗅.

Not accounting for implementing the 𝖭𝖯 oracle, the malicious receiver we construct in this proof
uses roughly quadratic space compared to the honest parties. Curiously, this matches the quadratic
space lower bound proven for bit commitments in the bounded storage model [GZ19, Section 6] so
this suggests that taking multiple samples is likely required for such attacks in general.

3 Commitment in the unclonable common random state model

The common random string (CRS) model is a commonly considered relaxation of the standard
trustless model where the only trust in the setup is that a classical string is uniformly sampled and
then published. This model was first proposed in the context of non-interactive zero knowledge
(NIZK) [BFM88] since interesting NIZK is impossible in the trustless model.

In this work, we introduce a quantum analogue of the CRS model that we call the unclonable
common random state (|𝖴𝖢𝖱𝖲⟩) model. In the |𝖴𝖢𝖱𝖲⟩ model, the only trust in the setup is that
a random pure state is drawn from a state distribution, and then many copies of that pure state
are made available to all parties. Furthermore, there should be a way to efficiently generate any
polynomial (but a priori unbounded) number of the common state. We emphasize that unclonability
only indicates a lack of the cloning functionality of the common state but the scheme’s security
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does not rely on the common state being unclonable — in fact in this model, any malicious party
is allowed to inefficiently process the classical description of the random state before the protocol
begins.

Going back to the commitment construction of Theorem 1, we note that the magic state is
simply a uniform superposition query on a function 𝐻, and even using a random function 𝐻 is
secure except with inverse exponential probability. Therefore, that construction is indeed also secure
in the |𝖴𝖢𝖱𝖲⟩ model, so the only missing piece of the puzzle is to show efficient sampling of the
magic state. This is tricky since the classical description requires an exponential size and there are a
doubly exponential number of possible states to sample from.

Nevertheless, we show that there is an efficient way to statefully sample these states. To do this,
we invoke Zhandry’s compressed oracle technique [Zha19].

Lemma 5 ([Zha19]). There exists a stateful simulation oracle 𝖢𝖲𝗍𝖮 that perfectly simulate any
number of (quantum) queries to a random function 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 for any 𝑛,𝑚. Furthermore,
the 𝑡-th query can be processed in time polynomial in 𝑚𝑡, and the state (also called the database)
after 𝑡 queries consists of (𝑚+ 𝑛+ 1) · 𝑡 qubits.

Since the simulation is perfect, the commitment constructed in Theorem 1, after replacing 𝐻
with a truly random function, still works. The simulation is also efficient since both 𝑚 and 𝑡 are
polynomial in 𝜆. Thus we arrive at the following corollary.

Corollary 6. There exists a computationally-hiding statistically-binding non-interactive quantum
commitment scheme in the |𝖴𝖢𝖱𝖲⟩ model.

Interestingly, the hiding of the commitment in fact becomes statistical if at most a polynomial
number of states are given out to the adversary, and the proof of this is deferred to Appendix C.
Therefore, we get a completely statistically secure commitment if we in addition trust the setup to
not generate too many copies of the magic state.

Proposition 7. Assuming the receiver has at most 𝑃 copies of the magic state on 𝐻, then the

commitment scheme of Theorem 6 is
(︂
8
√
2 ·
√︁

𝑃
𝑁

)︂
-statistically hiding.

Another interesting consequence of this is that for our scheme, we cannot trust either party
to distribute the magic state. If the receiver chooses the magic state for the committer, then
computational hiding can be trivially broken by picking a bad magic state like the all zero state. If
the committer chooses the magic state for the receiver, then Theorem 7 shows that this scheme is
in fact statistically hiding and thus not statistical binding. In fact, it is not even computationally
binding as we show below.

Proposition 8. Take the commitment scheme from Theorem 1 but instead have the committer
choose 𝐻 as a random function. Then this commitment scheme has computational sum binding error
of at least 1−𝑂(𝑡/

√
𝑁) even after taking 𝑡-fold parallel repetition using the same random function.

Proof sketch. We sketch how to efficiently break sum binding, even if the scheme is repeated 𝑡
times in parallel. Consider a binding adversary that commits to 0 honestly using the compressed
oracle. Certainly by sending the decommitment registers honestly, the receiver would accept 0 with
probability 1. We now show how to decommit to 1 with probability 1−𝑂(𝑡/

√
𝑁). First, we measure

the 𝑥 for every magic state (including the ones held by the decommitter are also measured, which is
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okay since the receiver does not touch those registers when checking decommitment to 1 so they are
essentially traced out) and abort if they are not all distinct, which happens with probability at most
𝑂(𝑡2/𝑁) by collision probability. Otherwise, every magic state holds a distinct 𝑥. For each fold,
the decommitment register contains some 𝑥𝑖: we apply 𝖲𝗍𝖽𝖣𝖾𝖼𝗈𝗆𝗉𝑥𝑖 and search in the database
where the entry 𝑥𝑖 occurs and send the corresponding image register as decommitment to 1, which
is maximally entangled with the corresponding commitment register. To make this into a malicious
committer that does not measure the 𝑥’s held by the receiver, we note that this measurement is only
used to conditionally abort the committer, so the success probability of the same adversary except
that it never aborts is still 1−𝑂(𝑡/

√
𝑁) by gentle measurement.

4 Eliminating trust with preprocessing

We first give a 𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖰𝖬𝖠 upper bound on the complexity of verifying the computational insecurity
of 𝐻 up to a constant multiplicative loss. Therefore, we can check if a function 𝐻 is secure in
doubly exponential time, or even exponential time if 𝖡𝖰𝖯 = 𝖰𝖬𝖠. Another consequence is that a
𝝨𝟤𝖯

𝖰𝖬𝖠 machine can also find the lexicographically smallest 𝐻 that is secure. Thus we can complete
the preprocessing phase from the construction of Theorem 1 in doubly-exponential time, or even
exponential time if 𝖡𝖰𝖯 = 𝖰𝖬𝖠.

Proposition 9. The language 𝐿, consisting of all functions 𝐻 such that the commitment constructed
in Theorem 1 using 𝐻 is insecure, is in 𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖰𝖬𝖠.

Proof. We prove this by constructing a 𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖰𝖬𝖠 verifier. The verifier, on input 𝐻 (of length
𝑁 log𝑀) and a witness |𝐶⟩ (a distinguisher quantum circuit of length 𝑆 which is polynomial in
|𝐻|), samples a random bit 𝑏 and runs the universal quantum circuit on either (|𝐶⟩ , 𝐻(𝑥)) for a
random 𝑥 ∈ [𝑁 ] or (|𝐶⟩ , 𝑦) for a random 𝑦 ∈ [𝑀 ], and accepts if the universal quantum circuit
predicts 𝑏 correctly. We set completeness to be 1

2 + 2−𝜆 and soundness to be 1
2 + 2−𝜆−1, so the gap

is 2−𝜆−1 which is inverse polynomial in |𝐻|.
If the output of 𝐻 is pseudorandom, then we have that 𝐻 ̸∈ 𝐿 as desired. On the other hand, if

there exists an 𝑆-sized witness for 𝐻 that distinguishes with advantage higher than 2 · 2−𝜆, then
𝐻 ∈ 𝐿.

We now give an alternative unconditional approach to eliminate trust on the magic state in
uniform exponential time, but at the cost of introducing exponential communication between the
parties in the preprocessing phase.

Theorem 10. There exists a computationally-hiding statistically-binding non-interactive quantum
commitment scheme with an exponential communication preprocessing phase.

Proof. We again adapt the commitment from Theorem 1 by adding a preprocessing phase to generate
the magic states for both parties. More specifically, the sender samples a random function 𝐻 on their
own, then send the classical description of 𝐻 to the receiver. Afterwards, they generate multiple
copies of the magic state for that function on their own before the protocol begins. (It is important
that they generate the quantum magic state on their own to not run into the impossibility of
Theorem 8 above.)

Computational hiding is preserved since in this case 𝐻 is honestly generated, and the proof
of Theorem 1 actually suffices to show that the commitment is statistically binding for any 𝐻:
specifically, the fidelity computed in (1) is bounded by 2−𝜆 for any 𝐻.
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A Non-interactive quantum commitments

In this section, we use 𝑥 ∈ 𝑆 as the auxiliary information for a certain set 𝑆 and implicitly its length
|𝑥| as the security parameter. Thus if 𝑥 is a classical unary string, then it is a standard uniform
commitment scheme. In order to prevent degeneracy, we require that 𝑆 must contain arbitrarily
long bitstrings or quantum states: for any integer 𝑛, there exists 𝑥 ∈ 𝑆 such that |𝑥| ≥ 𝑛. We refer
the readers to [BCQ23] for quantum information and cryptography background.

Definition 11. A non-interactive commitment scheme is a pair of efficient quantum algorithms
𝖢𝗈𝗆𝗆𝗂𝗍 and 𝖱𝖾𝗏𝖾𝖺𝗅 where 𝖢𝗈𝗆𝗆𝗂𝗍(𝑥, 𝑏) produces a bipartite state 𝜌 over the commitment register 𝖢
and the decommitment register 𝖣, and 𝖱𝖾𝗏𝖾𝖺𝗅(𝑥, 𝜌) outputs either the committed bit 𝑏′ or a rejection
symbol ⊥. Furthermore, Pr[𝖱𝖾𝗏𝖾𝖺𝗅(𝑥,𝖢𝗈𝗆𝗆𝗂𝗍(𝑥, 𝑏)) ̸= 𝑏] is negligible for any 𝑏 = 0, 1 and 𝑥 ∈ 𝑆.

We say it is computationally (or statistically) hiding if the 𝖢 registers of 𝖢𝗈𝗆𝗆𝗂𝗍(𝑥, 0) and
𝖢𝗈𝗆𝗆𝗂𝗍(𝑥, 1) are computationally (or statistically, respectively) indistinguishable.

We say it is statistically (or computationally) sum binding if for any state 𝜌 (over 𝖢,𝖣 and a
private register 𝖬) and any possibly inefficient (or efficient, respectively) unitary 𝑈 not acting on
register 𝖢, 𝑝0 + 𝑝1 − 1 is negligible, where 𝑝𝑏 is the probability that the receiver accepts bit 𝑏. In
particular, 𝑝0 := Pr[𝖱𝖾𝗏𝖾𝖺𝗅(𝑥, 𝜌𝖢𝖣) = 0] and 𝑝1 := Pr[𝖱𝖾𝗏𝖾𝖺𝗅(𝑥, (𝑈𝜌)𝖢𝖣) = 1].

Finally, we say it is in canonical form [Yan22], if 𝖱𝖾𝗏𝖾𝖺𝗅 takes the following form:

1. Perform a rank-1 projection on 𝖢𝖣 and output 0 if it succeeds.
2. Perform another orthogonal rank-1 projection on 𝖢𝖣 and output 1 if it succeeds.
3. Output ⊥.

Note that here 𝜌 can be arbitrarily inefficient even in the case of computational hiding, which
captures the standard non-uniform security notion where the adversary can have potentially a
different auxiliary input for every security parameter.

Since statistical sum binding is traditionally unwieldy to use in applications, the work of Ananth,
Qian, and Yuen defines an extractor-based binding definition, which on a high level states that for
any (non-uniform) malicious committer, there is an extractor that can extract the committed bit
from the receiver’s view after the commitment phase in an imperceptible way, as long as the receiver
does not touch those registers until the reveal phase.

Definition 12 ([AQY22, Definition 6]). We say that a quantum commitment scheme satisfies
receiver-extractable statistical binding if for any malicious (non-uniform) committer 𝒞, there exists
a (possibly inefficient) extractor algorithm ℰ such that 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍 is statistically indistinguishable from
𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍, where

• 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍: Execute the commit phase to obtain the joint state 𝜎𝐶𝑅. Execute the reveal phase to
obtain the trit 𝜇 outputted by the receiver. Output the pair (𝜏𝐶 , 𝜇) where 𝜏𝐶 is the final state
of the committer.

• 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍: Execute the commit phase to obtain the joint state 𝜎𝐶𝑅. Apply the extractor
𝐼𝐶 ⊗ ℰ𝑅(𝜎) to obtain a new joint committer-receiver state 𝜎′𝐶𝑅 along with the extracted trit
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𝑏′ ∈ {0, 1,⊥}. Starting from 𝜎′, execute the reveal phase to obtain the trit 𝜇. Let 𝜏𝐶 denote
the final state of the committer. If 𝜇 = ⊥ or 𝜇 = 𝑏′, then output (𝜏𝐶 , 𝜇). Otherwise, output a
special symbol E (unused in the real experiment) indicating extraction error.

For canonical form commitments, it is known that many variants of binding are equivalent,
including statistical sum binding and extractable binding [FUYZ22]. It is unclear how to make
commitments constructed in this work into canonical form due to the presence of quantum auxiliary
information, so for completeness we show how to extend the equivalence to general non-interactive
schemes.

We call a commitment scheme having a projective 𝖱𝖾𝗏𝖾𝖺𝗅 if 𝖱𝖾𝗏𝖾𝖺𝗅 is a projective measurement
on the receiver’s view. For example, any post-quantum commitment with a deterministic 𝖱𝖾𝗏𝖾𝖺𝗅
algorithm or any canonical-form commitment has a projective 𝖱𝖾𝗏𝖾𝖺𝗅 but our schemes do not due
to the swap test. Without loss of generality we can always generically make a commitment have a
projective 𝖱𝖾𝗏𝖾𝖺𝗅 via Stinespring dilation. In particular, we need to purify the 𝖱𝖾𝗏𝖾𝖺𝗅 algorithm so
that it is a unitary on registers 𝖢𝖣 and potentially some auxiliary register 𝖠 (which holds 𝑥 and
potentially some zeroes), followed by a complete measurement on a qutrit in the auxiliary register to
obtain the output. Furthermore, we ask the receiver to prepare the auxiliary register 𝖠 immediately
after the commit phase. This change is also imperceptible from the committer’s perspective.

We remark that due to a technicality, the equivalence cannot hold without giving the extractor
access to 𝖠. Consider the following unnatural counterexample, a non-interactive (classical) com-
mitment scheme without a projective 𝖱𝖾𝗏𝖾𝖺𝗅 that satisfies sum binding but not extractable binding.
To commit to bit 𝑏, the committer simply send a mode bit 1 followed by 𝑏; and the decommitment
message is empty. The 𝖱𝖾𝗏𝖾𝖺𝗅 algorithm checks that if the mode bit is 1 then output 𝑏, and if
the mode bit is 0 then output a random bit. Intuitively this scheme is binding since no matter
which mode the malicious committer uses, he cannot later change the bit in any way since the
decommitment message is empty; and indeed it is straightforward to see that it satisfies sum binding.
However, a malicious committer can cause the extractor to fail since without access to the random
bit register later used to sample the output of 𝖱𝖾𝗏𝖾𝖺𝗅, it is impossible for the extractor to predict
the bit that would be revealed later.

Theorem 13. Statistical sum binding is equivalent to extractable binding for any commitment scheme
with a projective 𝖱𝖾𝗏𝖾𝖺𝗅, thus we can build an extractable binding commitment scheme from any
statistical sum binding commitment scheme (and vice versa).

Proof. Extractable binding implies sum binding is straightforward: 𝑝0+𝑝1 ≤ 1 in the ideal experiment
where the bit is extracted and guaranteed to be correct, thus the indistinguishability between the
real and the ideal experiments implies sum binding.

For the other direction, fix any sender where the overall state before executing 𝖱𝖾𝗏𝖾𝖺𝗅 is 𝜌.
Without loss of generality we assume 𝜌 is pure by taking the purification into committer’s private
register. Let |𝜌0⟩ be the state post-selected on the event that 𝖱𝖾𝗏𝖾𝖺𝗅(|𝜌⟩) = 0 and |𝜌1⟩ be the state
post-selected on the event that 𝖱𝖾𝗏𝖾𝖺𝗅(|𝜌⟩) = 1, or 0 if such post-selection is not possible. |𝜌0⟩
and |𝜌1⟩ are orthogonal by the fact that 𝖱𝖾𝗏𝖾𝖺𝗅 is projective. Consider a canonical-form variant of
𝖱𝖾𝗏𝖾𝖺𝗅 where the rank-1 projections are given by |𝜌0⟩⟨𝜌0| and |𝜌1⟩⟨𝜌1|. We claim that this variant is
still sum binding since any sum binding adversary succeeding for this variant would also succeed
in breaking sum binding against the original 𝖱𝖾𝗏𝖾𝖺𝗅. Then the result of Fang, Unruh, Yan, and
Zhou [FUYZ22] (also in [MY22, Appendix B]) implies that there is an extractor for this modified
scheme, in particular, the extractor performs the optimal distinguishing measurement between these
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two states on registers 𝖠𝖢. This extractor also works for the original scheme since the extractor
almost perfectly project the state onto either |𝜌0⟩ or |𝜌1⟩ by statistical sum binding and gentle
measurement, and the two 𝖱𝖾𝗏𝖾𝖺𝗅 algorithms behave identically in the subspace spanned by these
states.

B Simulation security

Simulation security captures the security of a primitive using the real-ideal world paradigm more
precisely than the game-based security definitions (which are usually used for hardness assumptions)
and is the default security notion in the context of zero knowledge and secure multiparty computations.
In this appendix, we discuss how to further augment our commitment scheme following the template
of Bartusek, Coladangelo, Khurana, and Ma [BCKM21] so that it satisfies simulation security.

The simulation security for a bit commitment is morally trying to capture the following ideal
world: (1) in the commit phase, the committer sends a bit 𝑏 to the ideal functionality; (2) in the
reveal phase, the committer asks the ideal functionality to open and the ideal functionality sends
the bit 𝑏 to the receiver. More specifically, the security against receiver is called equivocality, which
states that the commitment can be simulated in a way that 𝑏 is only determined at the beginning
of the reveal phase. The security against committer is called extractability, which states that the
commitment can be simulated in a way that 𝑏 can be extracted from the committer after the commit
phase completes.

𝜀-simulation security for inefficient preprocessing. We first consider augmenting the base
protocol (Theorem 1) with simulation security. We note some caveats before proceeding.

The first caveat is that we allow the simulator to take a few copies of the auxiliary input state
as additional inputs. Intuitively, this means that a malicious party can come out of the protocol
obtaining a few extra copies of the magic state. Indeed, if we look at the construction of Theorem 1,
the receiver after an honest interaction gains one copy of the magic state from the committer for
each fold of repetition, and there does not seem to be a way for the committer to certifiably retrieve
the state back. We believe that this weakening is still meaningful and non-trivial since (1) the magic
state is supposed to be public knowledge anyways (everyone should have many copies), and (2) the
simulation security still guarantees that the “real” input is hidden from the other party.

The second caveat is that we only achieve 𝜀-simulation security (with quantum auxiliary informa-
tion |𝑎𝑢𝑥⟩), which states that there is an efficient simulator 𝑆 and some polynomial 𝑡 such that for
every adversary 𝐴 (that is possibly entangled with the distinguisher) and every 𝜀, the view outputted
by (𝐼 ⊗𝑆)(𝐴, |𝑎𝑢𝑥⟩⊗𝑡(1/𝜀)) is distinguishable from the real view except with advantage no more than
𝜀, where 𝑆 does not touch the distinguisher’s private register. We stress that the protocol itself is
independent of 𝜀. Furthermore, this still suffices for almost any game-based application that needs
simulation security although with a larger polynomial security loss. To see this, for example, suppose
an adversary can break a downstream game-based security with some non-negligible probability 𝑝,
then we can set our overall simulation error to be 𝑝/2 to reach a contradiction. On the other hand,
to prove a downstream 𝜀-simulation security, we can similarly pick a smaller 𝜀 for each fold and
invoke hybrid argument.

The main technical ingredient we need is to implement reflection unitary for an arbitrary initial
state, which in this case could contain some inefficient auxiliary information. This is proven in the
following lemma, which constructs such an algorithm by using a generalized SWAP test.
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Lemma 14 (Approximate state reflection). For any pure state |𝜓⟩, let ℛ𝜓 be the unitary channel
for unitary 𝑅𝜓 := 𝐼−2 |𝜓⟩⟨𝜓|. Then there is a uniformly efficient channel ℛ̃ such that ℛ̃(·, |𝜓⟩⟨𝜓|⊗𝑛)
is 4

√︁
64
𝑛+1 -close to ℛ𝜓 in diamond norm for all 𝜓, 𝑛 ≥ 0.

Proof. We describe the algorithm as follows. We denote the registers as 𝖷0, ...,𝖷𝑛 with 𝖷0 being the
input register and the rest being initialized to |𝜓⟩.

1. Initialize a uniform superposition |+⟩𝖭 := 1√
𝑛+1

∑︀𝑛
𝑖=0 |𝑖⟩𝖭.

2. Controlled on 𝖭 being |𝑖⟩, swap 𝖷0 and 𝖷𝑖.
3. Controlled on 𝖭 being |+⟩, apply phase −1.
4. Uncompute step 2.
5. Trace out everything except 𝖷0.

We begin analyzing the algorithm by considering pure state inputs. If the input is |𝜓⟩ then phase
−1 is correctly applied since steps 2 and 4 do not affect the state. If the input is some orthogonal
state |𝜑⟩, let |𝜑𝑖⟩ denote the state where 𝖷𝑖 is |𝜑⟩ and everywhere else is |𝜓⟩. Then after step 3, we
get the state

1√
𝑛+ 1

𝑛∑︁
𝑖=0

|𝜑𝑖⟩ (|𝑖⟩ − 2 |+⟩) = 1√
𝑛+ 1

∑︁
𝑖

|𝜑𝑖⟩ |𝑖⟩ −
2

𝑛+ 1

∑︁
𝑖,𝑗

|𝜑𝑖⟩ |𝑗⟩ .

Therefore after step 4, we get⃒⃒⃒
𝜑
⟩
:=

(︂
1− 2√

𝑛+ 1

)︂
|𝜑0⟩ |+⟩ − 2

𝑛+ 1

∑︁
𝑖 ̸=𝑗

|𝜑𝑖⟩ |𝑗⟩ .

We compare this state with the expected output and get that the overlap

(⟨𝜑0| ⟨+|)
⃒⃒⃒
𝜑
⟩
= 1− 2√

𝑛+ 1

(︂
1 +

𝑛

𝑛+ 1

)︂
≥ 1− 4√

𝑛+ 1
.

By decomposing a general pure state |𝑥⟩ = √
𝑝 |𝜓⟩+

√
1− 𝑝 |𝜑⟩ and let |𝜓𝑛⟩ := |𝜓⟩⊗𝑛 |+⟩, we have

that
(⟨𝑥|𝑅†

𝜓 ⊗ ⟨𝜓𝑛|) |�̃�⟩ ≥ 1− 4√
𝑛+ 1

(2)

as well by combining the two cases above. Furthermore, (2) generalizes to a larger entangled pure
state by simply applying (2) linearly to the Schmidt decomposition. For diamond norm, it suffices
to consider any input state where the overall entangled state is pure (since we can without loss
of generality purify the state for the distinguisher), thus we have that the trace distance between
(𝐼 ⊗𝑅𝜓) |𝑥⟩ ⊗ |𝜓𝑛⟩ and |�̃�⟩ is at most√︃

1−
(︂
1− 4√

𝑛+ 1

)︂2

≤ 4

√︂
64

𝑛+ 1
.

This completes the proof since trace distance cannot increase after the operation of tracing out the
auxiliary registers holding |𝜓𝑛⟩, which is CPTP.
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Theorem 15. 𝜀-simulation secure commitment schemes with quantum auxiliary input exist. Further-
more, it can be built from any non-interactive extractable-binding computationally-hiding commitment
scheme with quantum auxiliary input.

Proof. This follows the same construction and proof strategy as [BCKM21, AQY22] except for one
change. In particular, Watrous rewinding [Wat06] was used for a total of 𝜆 times in the equivocal
simulator [BCKM21, Section 4.1], which involved applying a unitary 𝐼 − 2 |0⟩⟨0| on a certain private
register of the simulator’s. The purpose of this unitary was to check whether this register returned to
all zero state. In our context, this register would be initialized to |0⟩ ⊗ |𝑎𝑢𝑥⟩⊗𝑡 instead for a suitably
large zero register and some polynomial 𝑡(𝜆), and similarly we need to reflect around this state in
order for the analysis to go through3.

We establish 𝜀-equivocality as follows. We first consider a simulator that runs the [BCKM21]
equivocal simulator with access to an inefficient reflection oracle: this gives a negligible simulation
error, and thus it is at most 𝜀/2 for all sufficiently large 𝜆. We now instantiate this inefficient oracle
with Theorem 14 where 𝑛 =

⌈︀
1024(𝜆/𝜀)4

⌉︀
− 1 and |𝜓⟩ = |0⟩ ⊗ |𝑎𝑢𝑥⟩⊗𝑡, then by a standard hybrid

argument we arrive that the overall simulation error is at most 𝜀. Furthermore, the number of copies
of |𝑎𝑢𝑥⟩ used is 𝑂(𝑡(𝜆/𝜀)4) which is polynomial.

The rest of the proof follows as [BCKM21] using a similar trick of running the inner simulator
with a polynomially smaller error parameter.

Simulation security in the unclonable common random state model. We conclude by
remarking on the simulation security of the commitment scheme with trusted setup from Theorem 6.
First of all, we can still apply the [BCKM21] transformation, but in this case we would get negligible
simulation security since with access to the compressed database register, the simulator can efficiently
test/uncompute the magic state.

However, we note that the argument of Theorem 8 gives an adversary that breaks honest binding
when the adversary could control the sampling of the random function using compressed oracles,
and thus an analogous argument can show that the commitment of Theorem 6 is in fact already
negligibly equivocal even without any further modification to the scheme.

Using similar ideas this commitment is probably also negligibly extractable as well, however,
the argument is more complicated since in this case we need to be able to extract any malicious
committer (this is unlike the equivocal case where the only freedom a passive but malicious receiver
has is to distinguish the views, so it suffices to simply show simulation correctness). We leave
formalizing this to future work.

C Post-quantum pseudorandomness

We view a quantum query-less circuit with auxiliary input of total size 𝑆 as an 𝑆-qubit input fed
to a universal quantum circuit, which itself is independent of the random function 𝐻. (Indeed we
can without loss of generality even take 𝑆 to be the number of qubits that actually depend on the
function 𝐻.)

3One naïve idea to fix this is to ask the simulator to only reflect the zero part and ignore the auxiliary information.
However, this does not work since we can calculate and see that such a rewinding algorithm (without any further
changes) would not work for an adversary that picks its challenge by measuring the auxiliary information it receives
from the simulator.
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The first polynomial upper bound for this problem was established by Chung, Guo, Liu, and
Qian [CGLQ20a] and was subsequently improved by Liu [Liu23]. We follow the second work in this
proof. We first recall a game 𝐺 in a 𝑃 -BF-QROM [Liu23] to be the following:

0. A random function 𝐻 : [𝑁 ] → [𝑀 ] is sampled uniformly at random.
1. The adversary starts by making 𝑃 (quantum) queries to 𝐻, and then we postselect on measuring

its first qubit and obtaining 1 (abort if it is not possible). This postselection may affect its
residual state as well as the conditional distribution of the random function.

2. The challenger then samples a random classical challenge to the adversary, using 𝑇𝑠𝑎𝑚𝑝 queries.
3. The adversary produces a response, using 𝑇 queries.
4. The challenger outputs a bit indicating accept or reject, using 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 queries.

We say 𝐺 is 𝜈(𝑃, 𝑇 )-secure in the 𝑃 -BF-QROM if any adversary with 𝑇 queries cannot make the
challenger accept with probability higher than 𝜈. In our case, the security game of a pseudorandom
ensemble (or PRG) against a query-less adversary corresponds to 𝑇𝑠𝑎𝑚𝑝 = 1 and 𝑇 = 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 = 0:
the challenger flips a random bit and either sends a pseudorandom 𝐻(𝑥) (using a single query) or a
random 𝑦, and asks the adversary to predict the bit.

Similarly, an (𝑆, 𝑇 ) non-uniform quantum adversary plays the same security game, except that
in step 1 it can do an arbitrary amount of queries but is not allowed to do post-selection, and its
output (to be used later in step 3) is restricted to at most 𝑆 qubits.

Lemma 16 ([Liu23, Lemma 4], with the coefficient from [CGLQ20b, Proof of Lemma 5.13]). The

PRG game has 𝜈(𝑃, 𝑇 ) = 1
2 + 4

√
2 ·
√︁

𝑃+𝑇 2

𝑁 in the 𝑃 -BF-QROM.

Theorem 17 ([Liu23, Theorem 5]). Any game 𝐺 that has security 𝜈 in the 𝑃 -BF-QROM has
security

𝛿(𝑆, 𝑇 ) ≤ min
𝛾>0

{𝜈(𝑃/𝛾, 𝑇 ) + 𝛾}

against (𝑆, 𝑇 ) non-uniform adversaries in QROM, where 𝑃 = 𝑆(𝑇 + 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 + 𝑇𝑠𝑎𝑚𝑝).

Proof of Theorem 2. Combining Theorem 16 and Theorem 17, we find that for any non-uniform
algorithm 𝐴 of size 𝑆 (that potentially depends on 𝐻),⃒⃒⃒⃒

𝔼
𝐻

[︂
𝔼
𝑥
[𝐴(𝐻(𝑥))]− 𝔼

𝑦
[𝐴(𝑦)]

]︂⃒⃒⃒⃒
= 2

⃒⃒⃒⃒
𝛿(𝑆 · 1, 0)− 1

2

⃒⃒⃒⃒
≤ 2min

𝛾>0

{︃√︃
25 · 𝑆

𝛾𝑁
+ 𝛾

}︃

= 12 · 3

√︂
𝑆

𝑁
,

showing the bound above.

Proof of Theorem 7. Since each copy of the magic state can be efficiently prepared through a single
quantum query to 𝐻, any distinguishing adversary is a valid query-less adversary in the 𝑃 -BF-QROM,
and thus we arrive at the proposition by invoking Theorem 16.
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