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Abstract. Minimizing the round complexity of byzantine broadcast is a fundamental question in
distributed computing and cryptography. In this work, we present the first early stopping byzantine
broadcast protocol that tolerates up to t = n−1 malicious corruptions and terminates in O(min{f2, t})
rounds for any execution with f ≤ t actual corruptions. Our protocol is deterministic, adaptively secure,
and works assuming a plain public key infrastructure. Prior early-stopping protocols all either require
honest majority or tolerate only up to t = (1− ε)n malicious corruptions while requiring either trusted
setup or strong number theoretic hardness assumptions. As our key contribution, we show a novel tool
called a polariser that allows us to transfer certificate-based strategies from the honest majority setting
to settings with a dishonest majority.

1 Introduction

In the problem of byzantine broadcast [22], a sender Ps holds a value v that it wants to share
among n parties P1, . . . ,Pn using a distributed protocol Π with the following properties: 1)
validity : if the sender is honest (i.e., it follows the protocol description of Π correctly), all
honest parties output v 2) agreement : all honest parties output the same value v′ from Π.
Broadcast is an integral building block in many cryptographic and and distributed protocols,
e.g., multi-party computation, verifiable secret sharing, and state-machine replication. One
of the most important efficiency metrics for a broadcast protocol is its round complexity :
how many rounds does the protocol run for until all parties have terminated?

A seminal result of Dolev and Strong [13] shows that any broadcast protocol tolerating
t < n malicious parties runs for at least t + 1 rounds in some runs. In the same work, they
also give a protocol that shows the tightness of their bound. However, their bound is known
to be loose for protocol executions where the number of corruptions f is less than t, i.e.,
f < t, and where eventual agreement is allowed. A seminal result of Dolev and Strong [13]
shows that any deterministic broadcast protocol tolerating t < n malicious parties runs for
at least t+ 1 rounds. In the same work, they also give a protocol that shows the tightness of
their bound. However, their bound is known to be loose for protocol executions where the
number of corruptions f is less than t, i.e., f < t. In this case, the tightest lower bound [12]
says that any (deterministic) protocol must run for at least f + 2 rounds. Intrigued by this
vexing gap, a long line of work has studied so-called early stopping protocols which terminate
in O(g(f)) = o(t) rounds (for some function g) in any execution where the actual number of
corrupted parties f is sufficiently small compared to t.
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Early stopping protocols are known for both the information theoretic setting with
t < n/3 malicious corruptions [7, 18, 2, 23] and the authenticated setting with t < n/2
corruptions [28]. To the best of our knowledge, however, little is known about early stopping
protocols for the setting of n/2 ≤ t < n malicious corruptions. On one hand, several ran-
domized protocols achieve sublinear (in n) round complexity for broadcast in the dishonest
majority setting [17, 16, 8, 31, 30]. However, these protocols require the maximum number t
of corruptions to be at most a constant fraction of n in order to stop early (some require t
to be much smaller).

All in all, for the full corruption threshold t = n− 1, the tightest lower bound says that
any protocol must run for at least f + 2 rounds, whereas the best protocol uses n rounds in
all runs, even for low f . Clearly, there is a fundamental gap in our understanding of early
stopping protocols when t = n − 1. Motivated by this discussion, we pose the following
question: Are there early stopping broadcast protocols tolerating up to t = n−1 corruptions?

1.1 Our Contribution

In this work, we answer this question in the affirmative by providing the first early stopping
protocol CDC for arbitrary majority corruption, i.e., t = n−1. Concretely, its properties can
be summarized as follows:

– CDC tolerates any number t < n of malicious corruptions.
– For any execution with f ≤

√
t faults, CDC terminates in O(f 2) rounds. It always ter-

minates within O(t) rounds. Prior work achieves either t+ 1 rounds deterministically or
requires that the maximum number of faults satisfy t = (1− ε) ·n for some ε > 0 in order
to achieve early stopping.

– Our protocol is secure with respect to a strongly adaptive adversary. This type of adver-
sary can observe an honest party’s messages, corrupt it, and replace its messages with
its own before these messages are delivered. This sets our work apart from existing early
stopping protocols for the dishonest majority regime with a strongly adaptive adversary.
Namely, existing protocols require either 1) strong number theoretic hardness assump-
tions (i.e., time-locked puzzles) [30, 29] or 2) tolerate only t = n/2 + O(1) malicious
corruptions [17, 16] in order to stop early.

– CDC is deterministic and works in the plain public key model. By comparison, existing
early stopping protocols for majority corruption are all randomized and, in many cases,
require strong setup assumptions.

In summary, CDC is the first early stopping protocol for t = n−1 and makes a significant
improvement over the state of the art for any execution with f = o(

√
n) corruptions. We

give further comparison with existing literature in the related work section.

1.2 Technical Overview

We now give an overview of our techniques. We begin by giving a brief recap of the classical
Dolev-Strong protocol [13] DSC. We then explain the difficulty of making this protocol early
stopping and our key insights to overcome it.
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Recap: the Dolev-Strong protocol. DSC achieves a round complexity of t+1 against a strongly
adaptive malicious adversary corrupting up to t < n parties. It works as follows for a sender
Ps holding a message m:

– In round 1, Ps signs m and sends it to all parties.
– In any round i ≤ t, a party Pj does as follows. If it receives a message m together with

a list of valid signatures from i distinct parties for the first time, it adds m to a set of
accepted messages A. Then, Pi adds its own signature to the list, and forwards it to all
parties so that they add it to A at most one round later.

– In round t + 1, a party Pi executes the above rule to update A, but does not forward
a new list. Instead Pi, determines its output as follows. If A = {} or |A| > 1, output a
default output NoMsg. If A = {m}, output m.

Clearly, if an honest Pi adds m to A at any point during the first t rounds of the protocol,
all honest parties add it to A at most one round later. If Pi adds m to A in round t + 1, it
sees m with t+ 1 signatures and thus knows that at least one honest party Pj has previously
signed m in a previous round. Since Pj was honest in that round, it would have added its
own signature to the list of t signatures it needed to add m to A and passed on the resulting
list of t+ 1 signatures to all parties. Hence, all honest parties add m to A by round t+ 1.

Why making DSC early stopping is hard. Stopping DSC early turns out to be very challeng-
ing. Surprisingly, however, this does not result from a fully malicious sender Ps that sends
conflicting (signed) messages in DSC to break consistency, as this allows all honest parties to
detect and prove that Ps is acting dishonestly. The central difficulty arises already from crash
faults: Ps can simply not send any message to (some of) the parties. Note that if Ps sends no
signature then DSC runs in silence for t+ 1 rounds before outputting NoMsg. We would like
to terminate this earlier. However, the sender might send a signature only to a single honest
party in round 1. Or send it to no honest party but collude with some Pi forwarding the
signature from Ps to a single honest party in round 2, et cetera. To detect this and stop early
it would help if honest parties from round 1 could prove that they did not get a message
from Ps. But how to prove this? This is a comparatively simple task in the honest majority
setting where there are n−t ≥ t+1 honest parties. At a high-level, parties can simply collect
a certificate of accusations against the sender for not sending them a message. If they can
obtain t+ 1 signed accusations, they can disqualify the sender and stop the protocol. On the
other hand, if Ps cannot be disqualified, then at least one honest party must have received
a message from Ps and can forward it to all other parties. Unfortunately, this strategy fails
when t ≥ n/2, as there are only n − t < t + 1 honest parties so a certificate might not be
constructible. Thus, the obstacle we must overcome is to design an analogue of a certificate
for the dishonest majority setting.

Polarisers to the rescue. Our key tool for achieving this is a novel primitive called a polariser.
Informally, a polariser partitions the parties into two ‘polarized’ sets Alive and Corrupt.
Polarisers are updated continuously throughout the protocol and maintain the following
properties. First, an honest party Pi accepts a polariser from another party (and subsequently
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updates its own polariser) only if it itself is in Alive. Moreover, for any party P ∈ Corrupt,
a polariser contains accusation against P from all parties in Alive. And it is ensured that
honest parties never accuse honest parties. As it turns out, these properties make it possible
for an honest party Pi to justify any decision in our protocol and convince other honest
parties to take the same decision. A crucial observation is that it follows from the properties
that all honest parties are in Alive and therefore Pi knows it can forward the polariser and
have it accepted by other honest parties: they too are in Alive. Thus, polarisers act as our
replacement for certificates. The idea behind creating a polariser is surprisingly simple. As an
example, suppose the sender Ps does not send a party Pi a message in the first round. Now,
Pi can publicly accuse Ps. To deal with having accusations levelled against honest senders,
note that honest parties will move Ps to Corrupt only if it was accused by all parties in Alive.
Since Pi never accuses an honest sender Ps and is itself in Alive, this precludes honest parties
from moving an honest Ps to Corrupt. However, this creates a different problem: if Pj is also
dishonest, but is itself in Alive, it can simply not accuse Ps. In this case, Ps cannot be moved
from Alive to Corrupt, since not all parties in Alive have accused Ps. To deal with this type of
behaviour from dishonest parties, we present a recursive solution for generating a polariser.
In our running example from above, we require that either Pj sends whatever it got from
Ps or it accuses Ps of cheating. If Pi receives neither of those two things from Pj, Pi knows
that Pj is itself corrupt and accordingly accuses Pj. And, importantly, Pi expects every other
party Pk to accuse Pj too, or send to Pi the reason that it did not accuse Pj, namely an
accusation of Pj against Ps (which would resolve the issue). If Pk does not send an accusation
or resolvement, then Pi will accuse Pk, et cetera. In each recursive step one more corrupt
party is accused, and there are at most f corrupt parties, so the recursion stops in at most
f steps. When it stops, then in the view of every honest party either Ps can be moved from
Alive to Corrupt or a signature from Ps was received. Hence each honest party receives either
a signed message from Ps or a polariser showing that Ps is corrupt.

Justifying outputs and graded broadcast. Polarisers can be used to justify the output (or
non-output) of any subprotocol to other parties. To do so, parties will either send their
entire view of the protocol transcript so far in case a subprotocol produces output, or send a
polariser to justify not having output. We show a protocol GSTM for graded broadcast that
is inspired by the protocol of Koo et al. [17]. Roughly, GSTM outputs a message m together
with a grade g ∈ {0, 1, 2} and a proof π that justifies the combination of m and g. The
grade g reflects a party’s confidence in its output. Grade g = 2 indicates high confidence,
meaning that m should be output, and all other parties have grade at least 1 for the same
message m. Grade g = 1 indicates low confidence in m, meaning that some parties might
not have received the message m. Finally, g = 0 indicates that the message was not received,
the sender was corrupt, and some dummy NoMsg should be output. Validity ensures that all
parties output (m, 2) whenever the sender is honest. The crucial property of GSTM, however,
is that if a dishonest party can produce a justified output then the grading rules from above
apply too. So a corrupted party basically cannot justify an output unless that output could
have been produced by an honest party.
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Putting things together: Protocol DC. Using GSTM we are able to run a broadcast protocol
DC that resembles the well-known phase-king approach [6] from the honest majority setting.
In this style of protocol, one rotates through f + 1 leaders until agreement on an output is
detected. Essentially, each leader is instructed to broadcast via GSTM whatever it received
from the previous instance. The crucial idea is that a malicious leader can never undo the
progress that the protocol has made so far by making them choose a different output from
one that they have already agreed on (or not choosing the output of an honest sender). This
is because each time a new broadcast is initiated by a leader, its input must be justified by
the entire view of the protocol so far. Therefore it must use an input which some honest
party could have used, or choose to abort the protocol. More precisely, once an output m is
received with a positive grade g in the jth leader iteration, parties set mj = m and broadcast
this message once it is their turn to be the leader. (If the previous king aborted then they pick
the most recent such value, if there is one, and otherwise they pick a fixed default output).
The consistency properties of GSTM and the justification that comes along with any new
output ensures that a dishonest leader can never introduce a new message once parties have
already agreed on a message m. Once parties see an output m with grade 2, they can detect
agreement, forward the justification for this output to all parties, and terminate. After f + 1
leader rotations, at least one of the leaders will be honest, giving grade 2, at which point the
agreement detection is triggered and the protocol terminates.

CDC: Ensuring O(t) round-complexity. In the worst case, each of the leader iterations in DC
identifies only a single party (i.e., the leader) as malicious. Since each of these steps takes
roughly f rounds, we end up with an overall complexity of O(f 2) for DC. To avoid exceeding
O(t) for the round complexity, we can simply stop the protocol after running for ` = O(t)
rounds. At this point, we can afford to run an additional instance of DSC to reach agreement.
More precisely, any party that has not terminated by round ` − 1 will thus use DSC to
broadcast its view of the protocol so far to all parties after completing iteration `. (Running
for one more iteration ensures that all parties have time to be forwarded justifications from
already terminated parties). Once DSC terminates after another O(t) rounds, all parties can
locally decide on a correct output which, by the justification properties of GSTM, will be
consistent with parties who have already terminated. This solution, however, still has an
undesirable property: honest parties can terminate O(t) rounds apart, whenever one party
terminates in iteration `−1, but other parties keep on running. This would make the protocol
very difficult to use as a subroutine in higher-level application. To have parties terminate
one round apart, our actual protocol CDC replaces DSC with a new protocol WES (WES
stands for weak early stopping) that terminates in O(f) rounds if the sender is honest and
O(t) rounds in any other case—furthermore, parties terminate at most one round apart.
This allows honest parties who terminate early in DC to always broadcast their justified
outputs via WES. If any WES reports a justified output of DC that will be the final output,
otherwise the final output will be NoMsg. Parties can terminate immediately upon receiving
output from the first terminating instance of WES reporting a justified output of DC. If an
honest party saw a justified output of DC it gets reported in O(f) rounds and the overall
protocol terminates in O(f 2) rounds. If no honest party saw a justified output from DC in
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O(t) rounds, there are (at least) f =
√
t corruptions and then the protocol is allowed to run

for O(t) rounds. We believe that WES may have other natural applications.

Achieving Polynomial Complexity. A final wrinkle is that sending along the protocol’s entire
transcript in every step would result in exponential communication complexity. However,
this turns out to be unnecessary, as Pi can simulate another party Pj’s behaviour from its
past messages. This means that Pj need only send information associated with the most
recent protocol step every time it is asked to justify one of its outputs. Thus, our combined
protocol CDC ends up with a communication complexity of O(n4λ), where λ is the length of
a signature.

1.3 Related Work

Below, we summarize some early stopping protocols from the literature. Dolev, Strong, and
Reischuk [12] define two notions of agreement: simultaneous agreement (SA) and eventual
agreement (EA). In SA, parties output in the same round, whereas in EA, they are allowed
to output in different rounds (but must of course still agree on the output itself). They show
that for SA, any protocol will have runs with t + 1 rounds even when f = 0. However, for
EA, they show a stronger lower bound of f + 2 rounds.3 Moreover, for EA, their work does
not give a protocol matching the f + 2 lower bound.

Deterministic Protocols. To the best of our knowledge, the first early stopping protocol for
byzantine agreement (which implies broadcast for t < n/2) with optimal resilience t < n/3
in the information theoretic setting was due to Berman et al. [7], who gave a protocol with
(optimal) round complexity min{f + 2, t + 1} and exponential communication. Their work
builds on earlier work of Berman and Garay [5] who achieved the same round complex-
ity with polynomial complexity and n > 4t. Garay and Moses [18, 19] later improved the
communication and computation for the corruption-optimal protocol to polynomial. How-
ever, their protocol achieves a slightly worse round complexity for the early stopping case of
min{f + 5, t + 1}. Much later, Abraham and Dolev [2] gave the first protocol with optimal
round complexity min{f + 2, t + 1} and polynomial communication/computation. In the
authenticated setting with t < n/2 and plain PKI, Perry and Toueg [28] showed a protocol
with polynomial communication and computation complexity and a round complexity of
min{2f + 4, 2t+ 2}.

Randomized Protocols. In the following, we let δ denote the failure probability of a proto-
col. There are various randomized protocols for the honest majority setting with constant
expected round complexity for both the t < n/3 (information theoretic) setting [15, 25]
and t < n/2 (authenticated) setting [20, 1]. They can all be made to terminate early with
worst-case failure probability δ by running them for O(log(1/δ)) iterations (each iteration
has constant many rounds).

3 The proof uses a hybrid argument appealing to agreement epoly(t) times, so holds only for protocols with agreement
error e− poly(t). The argument appeals to validity only twice so the validity error may be any constant < 1/2.
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One can use similar ideas to turn expected constant round protocols in the dishonest
majrority setting with t < n corruptions into protocols that always stop early and have failure
probability δ. Here, randomized protocols were first explored by Garay et al., who showed an
expected O(2t− n)2-round protocol from plain PKI for any t < n [17]. Their approach was
later improved by Fitzi and Nielsen [16], who showed a protocol with O(2t−n) complexity in
the same setting. These protocols lead to early stopping protocols with round complexities
O(log(1/δ) + (2t − n)2) and O(log(1/δ) + 2t − n), respectively, and failure probability δ.
However, since O(2t − n) = O(n) (regardless of f) whenever t = (1 − ε) · n where ε > 0,
these protocols are not early stopping.

Chan et al. [8] presented a randomized broadcast protocol with trusted setup and tol-
erating any (1 − ε)-fraction of adaptive corruptions (for an arbitrary constant ε > 0) by
assuming no after-the-fact removal of messages. Their protocol achieves a round complexity
of O(log(1/δ))·(n/(n−t)) for failure probability δ. Also assuming trusted setup and no after-
the-fact removals, but tolerating up to t = n− 1 corruptions, Wan et al. [31] give a protocol
achieving expected O((n/(n− t))2) round complexity and O(log(1/δ)/ log(n/t)) · (n/(n− t))
complexity for failure probability δ. Protocols tolerating adaptive corruptions with after-
the-fact message removals and t < (1 − ε)n corruptions were studied by Wan et al. [31]
and more recently by Srinivasan et al. [29], who gave protocols from time-lock-assumptions
achieving round complexities of (n/(n − t))2 · polylog(λ) (for failure probability negligible
in λ) and O(log(1/δ)) · (n/(n− t)), respectively. Most recently, Alexandru et al. [4] showed
how to remove the need for trusted setup in order to obtain O(log(1/δ)) · (n/(n− t)) round
complexity. Although these protocols all achieve early stopping (with failure probability δ)
for t = (1− ε) · n, they are also not early stopping when t = n−O(1). Namely, in this case,
their round complexity is at least O(n/(n− t)) = O(n).

Lower Bounds, communication optimizations, and weaker models. As mentioned above [12]
showed that the round complexity of an early stopping algorithm with eventual agreement
in an execution with f faults is lower bounded by min{f + 2, t+ 1}. This was later extended
by Keidar and Rajsbaum [21] to the setting of omission faults, which can fail to send or
receive some of their messages. They demonstrate that early stopping broadcast/agreement
algorithms require the same complexity as in the malicious setting if agreement is required
to be uniform, i.e., omission faulty parties that output, must output consistently with the
honest parties. Chandra et al. present reliable broadcast protocols achieving f + 2 rounds
in the crash fault model and 2f + 3 rounds in the omission fault model [9]. (In reliable
broadcast, parties need not terminate when the sender is dishonest.) The latter result was
later improved to f + 2 by Parvédy and Raynal [27] to min{f + 2, t+ 1} round complexity
and O(n2 · f) communication complexity in the omission fault model. Finally, Albouy et
al. [3] show a reliable broadcast protocol with polynomial communication which achieves
max{2, f + 3} rounds even against a dishonest majority of byzantine corruptions.

From the perspective of communication complexity, a result by Dolev and Lenzen [10]
shows that any (deterministic) early stopping algorithm with optimal round complexity re-
quires sending O(nt + t2f) messages. This tightens the famous Dolev-Reischuk bound for
the early stopping case [11]. On the other hand, the recent result of Lenzen and Sheik-
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holeslami [23] demonstrate that this bound can be circumvented by presenting an early
stopping protocol with (suboptimal) O(f) round complexity but significantly improved O(nt)
communication complexity.

2 Preliminaries

We work with directed trees Tree with a single root and edges pointing towards the leafs. For
a tree Tree we use path ∈ Tree to denote a path (r, . . . , l) from the root r to a leaf l. We let
depth(Tree) = maxpath∈Tree (|path| − 1). The tree with only a root thus has depth(Tree) = 0
and if the tree is empty depth(Tree) = −1. For path = (r, . . . , l) we let leaf(path) = l. We
assume a synchronous model with n parties P = {P1, . . . ,Pn}. The computation proceeds
in rounds where in each round each party can send a message to each other parties that
is guaranteed to arrive by the end of that round. We assume a rushing adversary that can
adaptively corrupt parties and replace or delete any of the messages they sent for a round and
which have not yet been delivered. We use t to denote the maximum number of corrupted
parties and f ≤ t to denote the actual number of corrupted parties. We allow t to take any
value 0 ≤ t ≤ n.

We assume a PKI. In an initial setup round each party Pi generates a key-pair (ski, vki)
for a signature scheme and announces vki to a public bulletin board. As is standard for
this line of work, we assume the Dolev-Yao model [14] and treat signatures as information
theoretic objects with perfect unforgeability. Throughout, we denote the size of a signature
in bits as λ.

Definition 1 (Broadcast). Let Π be a protocol executed by n parties P1, . . . ,Pn, where a
designated sender Ps holds input x and each party Pi terminates upon giving output yi. We
say that Π is a broadcast protocol if it has these properties:

– Validity: If Ps is honest, each honest party Pi outputs yi = x.
– Agreement: For honest parties Pi and Pj, yj = yi.

Sequential composition of protocols without simultaneous termination. When describing our
protocols we will assume that all parties get input in the same round. If a party has no input
in a protocol we assume that they nonetheless get a tacit, dummy input, to ensure they
know in which round to start running. We also assume that all sub-protocols give outputs
in the same round. This ensures that if the parties call a sub-protocol and then proceed
when it gives output, then they are still synchronized. Under these conditions we will design
protocol where parties might terminate at most one round apart. This leads to problems
with composition: when using a protocol as a subroutine, we assume parties give outputs in
the same round. But in many of our protoocols, parties terminate one round apart. This can,
however, be handled using known techniques for sequential composition of protocols without
simultaneous termination at a blowup in round complexity of just 2. Details can be found
in [24] and Chapter 7 in [26]. Here, we sketch the main idea for completeness. Protocols which
assume that the parties start in the same round will be compiled into protocols tolerating
that they start one round apart. The compiler works as follows. If parties start a protocol Π
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one communication round apart, then after Pi sends its messages for protocol round r of Π,
it will wait for two underlying communication rounds to ensure it received messages from
honest parties sending their messages one underlying communication round later than Pi.
Then, Pi computes its messages for the next protocol round and sends them out, waits for two
communication rounds et cetera. This leaves the problem that the parties might terminate
two communication rounds apart. This would be a problem for sequential composition as
we want them to start the next protocol only one communication round apart. This can be
mitigated when Π has justified outputs. When the first party gets an output it sends it to
the other parties. The output will arrive within 1 communication round. When a party sees
a valid incoming protocol output, they adopt this as their own output and forward it to all
parties. Now all parties terminate at most one communication round apart. We will call this
the staggering compiler.

3 Polarisers and Transferable Justifiers

We first put in place a tool which will allow us to write later protocols more concisely. The
tool is called a polariser as it polarises the n parties into two disjoint sets S and T of which
we know all honest parties are fully inside one of the sets. An external party might not know
whether S or T contain the honest parties, but an honest party will of course know which
set it is in.

Polarisers are used for proving that a corrupted party Pi did not send a message. To
motivate their design we first discuss this issue. Consider a party Pi which is to send a
message m of a particular form to Pk, say it should be signed. We would like to know when
this was not done and have a transferable proof of this. If we have a bound t < n/2 on
how many corruptions there can be then this is easy. You can ask Pi to send m via all
other parties Pj and have all Pj forward m to Pk or a signature σj = Sigskj((Acc,Pi,Pj))
which is a signed accusation of Pi that Pj did not send a message. Now Pk either gets m
or a certificate of t + 1 accusations which can act as a transferable proof that Pj did not
send a message. In contrast, in the dishonest majority setting, simple majority voting about
whether the message was sent will not solve the problem.

The solution is polarisers. The core of a polariser will be a tuple (Alive, Corrupt, Accuse),
where P = Alive ·∪ Corrupt and for all parties in Alive, we have a signed accusation for each
party in Corrupt. Assuming that all honest parties send all intended messages and honest
parties only accuse parties which fail to send a message, this leaves only two cases when
seeing (Alive,Corrupt,Accuse). Either all the honest parties are in Alive or all the honest
parties are in Corrupt (if there is an honest party in both Alive and Corrupt then an honest
party accused an honest party). But it might of course be that all the parties in Alive are
corrupted and falsely accusing the parties in Corrupt. This is hard to catch in the dishonest
majority case where it can happen that |Alive| > |Corrupt| and all parties in Alive are corrupt.
This prevents external agreement on who is corrupt.

The trick is to give up on externally valid certificates and go for a weaker type of certificate
which maintains transferability only within the context of the current protocol. An honest
party Pi can check whether Pi ∈ Alive or Pi ∈ Corrupt. If Pi ∈ Corrupt, then reject the
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polariser. Note that in this case all honest parties are in Corrupt and will therefore also
reject the polariser if it is sent to them. If Pi ∈ Alive, then accept the polariser. Note that in
this case all honest parties are in Alive and will therefore also accept the polariser.

Definition 2 (Polariser). Let Pol = (Alive,Corrupt,Accuse) be a tuple where we refer to
set Alive as the alive parties, to set Corrupt as the corrupt parties, and to set Accuse as the
accusations. We define the following structural properties:

– Justifiability. For every Pj ∈ Corrupt and for every party Pi ∈ Alive, there exists Ai,j ∈
Accuse, where Ai,j denotes a value (Acc,Pi,Pj, σi), where Vervki((Acc,Pi,Pj), σi) = >.

– Completeness. Alive ∩ Corrupt = ∅ and Alive ∪ Corrupt = P.

We define the following contextual property:

– Accusation Soundness. If Pi and Pj are honest then the adversary cannot construct
a valid Ai,j in PPT, in particular there is no such Ai,j in Accuse.

We call a polariser Pol a Pi-polariser if Pi ∈ Pol.Corrupt. We use
i

6→ to denote the set of
Pi-polarisers. As with the Landau notation for asymptotic complexity we misuse notation and

use Pol =
i

6→ to denote that Pol ∈
i

6→. We also sometimes let
i

6→ denote a generic element

from
i

6→.

In all our protocols constructing polarisers we only sign messages of the form (Acc,Pi,Pj, σi)
if Pj is corrupt. Therefore:

Lemma 1 (Polarisation Lemma). Let Honest be the set of honest parties and let Pol be
a polariser. Then Honest ⊂ Pol.Alive or Honest ⊂ Pol.Corrupt.

Proof. By Completeness, Honest ⊂ Pol.Alive ∪ Pol.Corrupt, and it cannot be the case that
Pi ∈ Pol.Alive and Pj ∈ Pol.Corrupt are honest, because then by Justifiability Ai,j ∈ Accuse,
contradicting Accusation Soundness. ut

3.1 Transferable Justifiers

Our second general tool is the concept of a transferable justifier for a protocol output. Recall
that the purpose of polarisers is to get a transferable proof that some party did not send
a message. From these, we build increasingly complex messages and eventually a justified
output. It is helpful to have some general machinery for talking about transferable justifiers.

Definition 3 (Justifier). We call a PPT predicate J : P × {0, 1}∗ × {0, 1}∗ → {>,⊥} a
justifier predicate. If for a party Pi, a message m and a proof π we have that J(Pi,m, π) = >
then we say that Pi accepts the message m with justifier π. We require that justifiers are
transferable, i.e., if Pi and Pj are honest then J(Pi,m, π) = > implies that J(Pj,m, π) = >.
We use J(m,π) = > to denote that J(Pi,m, π) = > for all honest Pi. By transferability this
is the implied if it holds for a single honest Pi.
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As an example consider a protocol where Pj was to send a message and let NoMsg(j) be
a special symbol denoting that Pj sent no message. Then a justifier predicare for this could

be J(Pi,NoMsg(j),Pol) ≡ Pi ∈ Pol.Honest ∧ Pol =
j

6→, i.e., Pi accepts that Pj sent nothing if
Pol proves that Pj is corrupt and that Pi is honest. This is a transferable justification qua
Lemma 1.

Definition 4 (Justified Inputs/Outputs). We say that a protocol Π has justified inputs
if it takes an input justifier JIn as parameter and works for any justifier predicate JIn. We
write ΠJIn to specify the value of JIn being used in a given run. When a protocol ΠJIn with
justified inputs is being called by an honest party Pi with input xi then xi must be of the form
xi = (mi, πi) such that JIn(Pi,mi, πi) = >. We say that a protocol Π has an output justifier
if the protocol, as part of its code, specifies a justifier predicate JOut. We denote the output
justifier of Π by Π.JOut. We say that a protocol Pi has justified outputs if it has an output
justifier and the outputs yi of honest Pi are of the form yi = (mi, πi) and it always holds that
Π.JOut(Pi,mi, πi) = > after a run of the protocol with a PPT adversary.

An important tool in our protocols is that justified outputs can be passed on to other
parties. Therefore, not even adversarial parties should be able to claim wrong outputs. The
following notion is later used to phrase this.

Definition 5 (Adversarial Justified Output (AJO)). Let Π be a protocol with an out-
put justifier and let A be a PPT adversary. Consider the following experiment: Execute
Π with A in the role of the adversary. When all honest parties Pi have produced an output
yi = (mi, πi), give all yi to A. We say that A generates ` adversarial justified outputs (AJOs)
(m1, . . . ,m`) if it outputs (P1,m1, π1), . . . , (P`,m`, π`) such that for all j = 1, . . . , ` such that
Pj is honest and Π.JOut(P

j,mj, πj) = >. Otherwise, we say that no outputs were generated.

Note that the triple (Pj,mj, πj) with Π.JOut(P
j,mj, πj) = > does not mean that Pj

produced the output (mj, πj). It merely means that Pj would accept the output (mj, πj)
given its current state and the predicate Π.JOut. Note also that if a property holds for all
AJOs it also holds for honest outputs as the adversary are given the honest outputs and can
reuse them as a triple in (P1,m1, π1), . . . , (P`,m`, π`).

4 Send Transferable Messages

We now present a protocol which forces a potentially corrupt sender to send a message,
solving the missing message problem discussed earlier. Throughput, we let NoMsg be a des-
ignated symbol where NoMsg 6∈ {0, 1}∗. We use it to signal that a sender was corrupt and
did not send a normal message. Ultimately, NoMsg could be mapped to a normal message,
like the empty string, but it helps the exposition to assume NoMsg 6∈ {0, 1}∗. We also use
another such symbol ⊥ and assume that ⊥ 6∈ {0, 1}∗ and ⊥ 6= NoMsg. The protocol allows
that a corrupted sender makes honest receivers receive several messages.

11



Definition 6 (Send Transferable Message Protocol). Let ΠJMsg
be a protocol run

among n parties P1, . . . ,Pn where JMsg is the parametrisable input justifier predicate. Assume
that ΠJMsg

specifies a designated sender Ps holding an input m ∈ {0, 1}∗ along with a justifier
π such that JMsg(Ps,m, π) = >. Parties Pi may generate several outputs yi in several rounds.
The protocol specifies an output justifier predicate Π.JOut.

– Correctness: Honest Pi outputs elements of the form yi = (mi, πi), where mi ∈ {0, 1}∗∪
{NoMsg} and πi ∈ {0, 1}∗.

– Justified Output: Outputs are justified. When honest Pi outputs yi = (mi, πi) then
JOut(Pi,mi, πi) = >.

– Justified Message: Only justified inputs can appear in justified outputs. For all AJOs
yi = (mi, πi) either mi = NoMsg or the justifier πi is of the form πi = (π1

i , π
2
i ) and

JMsg(Pi,mi, π
1
i ) = > for all honest Pi.

– Validity: Honest senders manage to send their intended message and only that message.
If Ps is honest and has input (m,π), then all honest parties Pj have output yj = (mj, πj)
with mj = m. Furthermore, for all AJOs m′ it holds that m′ = m.

– Agreement: All outputs are the same or NoMsg. For all AJOs m1 and m2 it holds that
m1 = NoMsg or m2 = NoMsg or m1 = m2.

We say that Π is a send transferable message with agreement (STMA) protocol with JOut-
justified output if it has the above properties. If it lacks agreement we call it an STM protocol.
If an STMA protocol has the additional property that m 6= NoMsg for all AJOs, then we call
it a justifiable broadcast. We call an output a legal STM output if it has the correctness and
justified output properties.

Remark 1. Note that justifiable broadcast ensures that all outputs are the same, so it implies
the notion of broadcast in Definition 1. It additionally has input and output justifiers, which
will be convenient when using it as sub-protocol. It is straight forward to see that we can
create a justified broadcast protocol DSCPs,JMsg

by using Dolev-Strong with sender Ps and
t = n− 1 corruptions and where parties only accept signatures from Ps on (m,πMsg) where
JMsg(m,πMsg) = >. The round complexity is O(n). On messages of length ` the communi-
cation complexity of DSC is O(n2` + n3λ), as each party sends the message to each other
party at most once and sends a signature chain of size nλ to each other party at most once.
We use this protocol later.

Remark 2. Note that honest parties have input m 6= NoMsg, so by Validity, if output m =
NoMsg can be justified, then Ps is corrupt. Furthermore, if m1 and m2 6= m1 can be justified
then by Validity Ps is corrupt.

Remark 3. Generic transformation into all justified messages delivered.

Remark 4. We have required that for all AJOs yi = (mi, πi) either mi = NoMsg or the
justifier πi is of the form πi = (π1

i , π
2
i ) and JMsg(Pi,mi, π

1
i ) = > for all honest Pi. Note that

the definition does not restrict what π2
i is or how it affects the output of JOut. Typically π2

i

will be a protocol dependent value proving that the message mi resulted from running Π
and JOut will check that this is the case. Typically π2

i also contains a signature on mi from
Ps to ensure validity.
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4.1 Polariser Cast

We present a STM protocol PC called polariser cast. The protocol will proceed roughly as
follows.

1. The sender signs its justified input and sends it to all parties.
2. If the sender Ps did not send a justified signed input in round 0 then each Pj accuses Ps.
3. If Ps should have been accused but a party Pj did not accuse Ps in round 1, then all

parties Pk will accuse Pj in round 2, unless Pj = Ps such that it was already accused, et
cetera.

4. Since only corrupted parties are accused, at some point there are no more parties to
accuse, and at this point an output can be computed. Either Ps sent a signed message or
Ps can be moved to Corrupt along with all parties with enough accusations.

5. This gives each party an output candidate, but different honest parties might hold dif-
ferent signed messages m.

6. The parties exchange their output candidates, and if some Pj has different signed values
in any of them, then this is used as a transferable proof that Ps is corrupt.

Before describing the protocol in detail we give some helping definitions. During the
protocol each Pi will keep a set S of received well-formed elements.

Definition 7 (Well-formed elements). We call an element e well-formed if it is of one
of the following two forms.

Inputs: e = (In,m, π, σ), where Vervks((In,m), σ) = > and JMsg(Ps,m, π) = >.
Accusations: e = (Acc,Pi,Pj, σi), where Vervki((Acc,Pi,Pj), σi) = >.

Each Pi has its own version of S. When we need to distinguish it we denote it by Si. We use
Sri to denote the value of Si at Pi in round r. We define some helper functions used in the
protocol.

Detect corruption: The function ToAccuser(S) ⊂ P takes as input a set of well-formed
elements and a round number r and computes a set of parties P ∈ P, which we think of
as being corrupt.

Complete: We call a set of well-formed elements S complete if there are no more parties
to accuse, i.e., Complete(S) ≡ ∃r > 0 (ToAccuser(S) = ∅) .

Output: The function Out(S) takes as input a complete set of well-formed elements and
computes a possible output of PC, i.e., if Complete(S) then Out(S) = (m,π) where π is

a signature on m under vks or Out(S) = (NoMsg,Pol) where Pol =
s

6→.

The protocol is given in Fig. 1. We now proceed to define ToAccuse and Out. We use a
tree-based definition where Tree is a tree of missing accusations. What messages are missing
depends on what round we are in, so the function Treer also depends on r. The nodes of the
tree will be elements (P, ρ) ∈ P× N.

Definition 8 (Tree Function). The output of Treer(S) is computed as:

13



PC(Ps,m, π)

Input: In round 0 all Pi initialise yi = ⊥, Si = ∅ and the sender Ps computes σ = Sigsks((In,m)), sends
e = (In,m, π, σ) to all parties and adds it to Ss.

Basic Loop: For r = 1, . . . party Pi does the following in round r:
1. Receive well-formed elements e sent in round r − 1 and add them to Si if the following holds. If

e is an input, then only add e to S if there is not already an input in Si. If e is an accusation of
(Acc,Pi,Pj , σi) then only add it if there is not already some (Acc,Pi,Pj , ·) in Si.

2. Compute Pi = ToAccuser(Si) and for each Pj ∈ Pi add e = (Acc,Pi,Pj , Sigski((Acc,Pi,Pj))) to
Si.

3. Echo rule: Send all e added to Si above to all parties.
Produce Candidate: In the first round r where Complete(Si) and yi = ⊥, compute yi = Out(Si) and

send yi to all other parties.
Adopt Candidate: In the first round r where yi = ⊥ and some Pj sent yj with JOut(Pi, yj) = > let

yi = yj and send yi to all parties.
Termination: In the first round r where yi 6= ⊥, run for one more round and then terminate with output

yi.
Output Justification: We define PC.JOut(Pi, yi). Parse yi = (m,π) and check that either yi =

(NoMsg,Pol) and Pi ∈ Pol.Honest and Pol =
s

6→ or m 6= NoMsg and π = (π1, π2) and
JMsg(m,π

1) = > and Vervks(m,π2) = >.

Fig. 1. A Sending Transferable Message Protocol.

1. Let T be the empty tree.
2. If @(In,m, ·, ·) ∈ S then add (Ps, 0) to T as the root.
3. For ρ = 1, . . . , r:

(a) For all path ∈ T with |path| = ρ:
i. Let (Pj, ρ− 1) = leaf(path).

ii. For all Pk ∈ P where (Pk, ·) 6∈ path and @(Acc,Pk,Pj, ·) ∈ S, add the edge ((Pj, ρ−
1), (Pk, ρ)) to T .

4. Output T .

We think of Treer(S) as the tree of missing elements relative to an honest run of PC(Ps, . . .).
As an example, if Ps is honest it should send (In,m, ·, ·) in round 0, so if @(In,m, ·, ·) ∈ S
then we add (Ps, 0) to signify that Ps omitted a message in round 0. Therefore, if the tree
has the path ((Ps, 0)) then all Pk should have accused Ps in round 1. If Pk does not do this,
then in the iteration of the loop with ρ = 1 the path path = ((Ps, 0)) of length 1 will get
considered and so will (Ps, 0) = leaf(path). So if Pk 6= Ps did not accuse Ps then we will
have @(Acc,Pk,Ps, ·) ∈ S and hence ((Ps, 0), (Pk, 1)) gets added to the tree T . So we add
an edge to (Pk, 1) to signify that in round 1 party Pk failed an obligation and then points
from (Ps, 0) to say that the obligation was to accuse Ps because Ps failed an obligation in
the previous round. The reason that Treer depends on r is that some accusation might be
missing simply because the parties did not have a chance to send them yet.

We now define ToAccuser(S). To motivate the definition, consider a tree Treer−1(Si) at
Pi at the beginning of round r, i.e., after receiving the accusations (Acc, ·, ·) sent out in
round r− 1. If path = (. . . , (Pj, r− 1)) ∈ Treer−1(Si) this is because Pj missed an obligation
in round r − 1. Therefore Pi must accuse Pj. This motivate the following definition

ToAccuser(S) =
{
Pj
∣∣ ∃(. . . , (Pj, r − 1)) ∈ Treer−1(S)

}
.
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Fig. 2. Party P1 is the sender. Parties P1, P2, and P3 are corrupted. Their timelines are shown as the top three.
Parties P4 and P5 are honest and their timelines shown at the bottom. Time runs from left to right and vertical
dashed lines are round separators with the first one showing the beginning of round 0. To not clutter the figure, we
do not show messages sent to corrupted parties. Below the timelines we show the tree built by P5. In round 0 it is
empty. In round 0 party P1 does not send its signature σ. Therefore P5 adds the root (P1, 0). We are then in round 1,
so all parties in leafs of paths of length 1 should be accused, i.e., P1. In round 1 party P4 therefore accuses P1 and P5

also accuses P1. The corrupted parties do not accuse P1. Therefore P5 adds edges from (P1, 0) to (P2, 1) and (P3, 1).
We are then in round 2, so all parties in leafs of paths of length 2 should be accused, so both honest parties accuse
P2 and P3. The corrupted parties do not accuse. Therefore P3’s missing accusation of P2 is added as an edge and
P2’s missing accusation of P3 is added as an edge. Note that for instance P1’s missing accusation of P2 is not added
as an edge as we only add parties not already on a path. We are then in round 3 so parties in leafs on paths of length
3 should be accused, i.e., P3 and P2. However, no accusations are actually sent as equivalent accusations were sent
already. We are then in round 4. No new nodes are added. Parties in leafs of paths of length 4 should be accused.
There are no such paths, so the accusation is considered complete, and the protocol ends. We have Alive = {P4,P5},
Corrupt = {P1,P2,P3}, and Accuse = {A4,1,A5,1,A4,2,A4,3,A5,2,A5,3}, so we have a legal P1-polariser.
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If a set S is complete then it allows to compute an output as follows.

Definition 9 (Output). The function Out(S) is defined as follows.

1. The input is a complete set S, so we can find the smallest r such that ToAccuser(S) = ∅.
2. If r = 1 then pick (In,m, σ, π) ∈ S and output (m, (σ, π)).
3. If r > 1 then output (NoMsg,Pol = (Alive,Corrupt,Accuse)), where

Corrupt = {Pj | ∃(Pj, ·) ∈ nodes(Treer(S))} ,
Accuse = S ,

Alive = P \ Corrupt .

∅

A4,2,A4,3A4,1

A5,1

1

σ

σ

∅ ∅ ∅

Fig. 3. For notation see Fig. 2. In round 0 party P1 does not send its signature σ. Therefore P5 adds the root (P1, 0).
We are then in round 1 and parties P4 and P5 accuse P1. The corrupted parties do not accuse P1, but P3 forwards
a signature σ by P1 to P5. Therefore the tree computed by P5 in round 2 is again empty. Therefore the accusation
is over for P5. It outputs σ (it terminates one round later, not shown). Note that P4 is in the same situation as in
Fig. 2. Its tree will look like that of P5 in round 2 in Fig. 2. So, it accuses P2 and P3. By the echo rule P5 forwards
σ to P4 which will then have an empty tree by round 3 and outputs σ.

We proceed to prove PC secure when using the above definitions of ToAccuse, Complete,
and Out. Before the proof it may be instructive to consider the example runs of the protocol
in Figs. 2 to 4.

Definition 10 (equivalent sets). Let S and T be two sets of well-formed elements. We say
that S v T if ∃(In,m, π, σs) ∈ S implies that ∃(In,m′, π′, σ′s) ∈ T and ∃(Acc,Pi,Pj, σi) ∈ S
implies that ∃(Acc,Pi,Pj, σ

′
i) ∈ T . We call two sets equivalent if S v T and T v S. We call

two elements equivalent if {e1} and {e2} are equivalent.

Lemma 2 (propagation lemma). For all honest Pi and Pj and rounds r > 0 reached in
the protocol it holds that Sr−1i v Srj .
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Fig. 4. For notation see Fig. 2. In round 0 party P1 does not send its signature σ. Therefore P5 adds the root (P1, 0).
We are then in round 1 and parties P4 and P5 accuse P1. Party P3 accuses P1 but sends the accusation only to P5.
Party P2 does not accuse P1. Party P5 adds an edge representing the missing accusation of P1 by P2. Party P4 being
in the same situation as in Fig. 2 accuses P2 and P3. Party P5 accuses all parties which are leafs on paths of lenght 2,
i.e., party P2. It also forwards A3,1 because of the echo rule. Now P3 accuses P2 but only towards P4. Therefore P5 is
missing the accusation of P2 by P3 and adds an edge to represent it. It then has a path of length 3 in round 3 and thus
accuses P3. But in the same round P4 forwards A3,2 because of the echo rule. Therefore by round 4 the tree computed
by party P5 is back to height 1 and the protocol ends for P5. It outputs Alive = {P3,P4,P5}, Corrupt = {P1,P2} and
Accuse = {A4,1,A5,1,A3,1,A5,2,A4,2,A5,3,A3,2}, which is a legal P1-polariser.
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Proof. This follows from the fact that all elements s added to Si get forwarded to Pj and if
s is considered well-formed by Pi then it is also considered well-formed by Pj. Therefore s is
added to Srj , unless Srj contains an equivalent element. ut

Lemma 3 (tree monotonicity lemma). For all sets of well-formed elements S, T and
all r ≥ 0 its holds that

S v T =⇒ Treer(T ) ⊆ Treer(S) .

Proof. Note that for an object o, root or edge, to be included in Treer(T ) it is required that
some element is missing in T , i.e., @(In,m, ·, ·) ∈ T or @(Acc,Pk,Pj, ·) ∈ T . Since S v T
these conditions imply that @(In,m, ·, ·) ∈ S and @(Acc,Pk,Pj, ·) ∈ S, so the same object o
gets included in Treer(S). ut

The following corollary is important in showing that honest do not accuse honest parties.
The tree Treer−1(Sr−1i ) is the tree that Pi used in round r − 1 to calculate who it should
accuse. The tree Treer−1(Srj ) is the tree that Sj uses in round r to calculate who Si ought

to have sent an accusation against—it uses the same function Treer−1, but its own set Srj . If

Treer−1(Srj ) v Treer−1(Sr−1i ) then Pj does not expect to receive any accusations which are
not sent.

Corollary 1. For all honest Pi and Pj and rounds r > 0 reached in the protocol it holds
that

Treer−1(Srj ) v Treer−1(Sr−1i ) .

Proof. By the preceding lemmas we have that Sr−1i v Srj and that S v T =⇒ Treeρ(T ) ⊆
Treeρ(S) for all S, T and ρ. Set S = Sr−1i , T = Srj and ρ = r − 1. ut

Lemma 4. If Pi is honest and accuses Pj then Pj is corrupted.

Proof. By construction, if Pi accuses Pj in round r then Pj ∈ ToAccuser(Sri ). By definition
this means that ∃(. . . , (Pj, r− 1)) ∈ Treer−1(Sri ). If r = 1 then this implies that ∃((Pj, 0)) ∈
Tree0(Sri ), and hence Pj = Ps, as only Ps can occur in the root. Therefore @(In,m, ·, ·) ∈ Si.
Hence, Pj = Ps did not send its signed input to Pi in round 0. Therefore Pj = Ps is
corrupted. If r > 1 then we have that ∃(. . . , (Pk, r − 2), (Pj, r − 1)) ∈ Treer−1(Sri ). By
construction (see Item 3(a)ii in Definition 8) this implies that ∃(. . . , (Pk, r−2)) ∈ Treer−1(Sri )
and @(Acc,Pj,Pk, ·) ∈ Sri . If Pj is honest this implies that ∃(. . . , (Pk, r−2)) ∈ Treer−1(Sr−1j ),

as Treer−1(Sri ) v Treer−1(Sr−1j ). Therefore Pk ∈ ToAccuser−1(Sr−1j ). So if Pj is honest it sent
(Acc,Pj,Pk, ·) to Pi in round r − 1. This contradicts @(Acc,Pj,Pk, ·) ∈ Sri . ut

The following lemma shows that when the set S is complete at an honest party such that
it terminates, then Out(S) produces a correct output, i.e., if there is no signature in S, then
a polariser is produced proving that Ps is corrupt.

Lemma 5 (justified output). If S is held by an honest party Pi and Complete(S), such
that Pi produces output Out(S), then PC.JOut(Pi,Out(S)).
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Proof. We want to prove that PC.JOut(Pi,Out(S)) = >. This means that if we let yi =
Out(S), as defined in Definition 9, then we have to make sure that PC.JOut(Pi, yi) where
PC.JOut is defined in Output Justification in Fig. 1. We write this out. First parse yi =
(m,π). We then have to prove that either 1) yi = (NoMsg,Pol) and Pi ∈ Pol.Honest and

Pol =
s

6→ or 2) m 6= NoMsg and π = (π1, π2) and JMsg(m,π
1) = > and Vervks(m,π

2) = >.
By Complete(S) there exists r such that ToAccuser(S) = ∅. Assume that r = 1. From

Complete(S) we get that ToAccuse1(S) = ∅. This implies that @(. . . , (Pj, r−1)) ∈ Treer−1(S)
which for r = 1 means that @((Pj, 0)) ∈ Tree0(S), which by the construction of the tree T in
the algorithm Tree0 defined in Definition 8 means that it is not the case that @(In,m, ·, ·) ∈ S.
So, there is some well-formed (In,m, ·, ·) ∈ S. Therefore the output is of the form in case 2
above.

Assume then that r > 1. From Complete(S) we get that ToAccuser(S) = ∅ and by
r being minimal we have that ToAccuser−1(S) 6= ∅. From ToAccuser−1(S) 6= ∅, it follows
that there is at least one path in Treer−1(S) and hence also a root. Therefore (Ps, 0) ∈
nodes(Treer−1(S)) and hence Ps ∈ Pol.Corrupt. We therefore just have to show that Pol is a
legal polariser. Completeness follows from Alive = P \ Corrupt. Since S contains only well-
formed elements and Accuse = S by Definition 9, for justifiability it is sufficient to prove that
for all (Pi,Pj) ∈ Alive×Corrupt it holds that (Accuse,Pi,Pj, ·) ∈ S. So, assume that (Pi,Pj) ∈
Alive × Corrupt. This implies that (Pj, ρ) ∈ nodes(Treeρ(S)) for some ρ < r. We argue that
this implies that S contains (Acc,Pi,Pj, ·). Assume to the contrary that S does not contain
(Acc,Pi,Pj, ·). Then it would be the case that ((Pj, ρ), (Pi, ρ+ 1)) ∈ Treer(S) by Item 3(a)ii
in Definition 8 unless (Pi, ·) was already on the path in question (but (Pi, ·) being on the
path contradicts Pi ∈ Alive as we added to Corrupt all parties on all paths by construction
of Definition 9). But if ((Pj, ρ), (Pi, ρ + 1)) ∈ Treer(S) then from ρ + 1 ≤ r and because
we assume that (Acc,Pi,Pj, ·) 6∈ S it is not the case that ToAccuser(S) 6= ∅, as we would
have Pi ∈ ToAccuser(S) by construction. Since we have as premise that ToAccuser(S) = ∅ it
follows that (Acc,Pi,Pj, ·) ∈ S, as desired. ut

Theorem 1. The protocol PC is an STM protocol for t < n. Furthermore, assume that PC
has inputs (m,π) with |(m,π)| ≤ `. Let λ be the length of a signature. Then the protocol
has communication complexity O(n2` + n4λ) and the size of the justified output is at most
O(` + n2λ). Not counting the accusation of a polariser the the justified output is at most
O(`). The protocol uses at most f + 2 rounds.

Proof. Correctness follows by construction of Out. Justified output follows from Lemma 5.
Justified message follows by construction of JOut. Validity follows by the fact that if Ps
is honest then in any polariser Pol accepted by an honest party it holds that Ps ∈ Alive
by Lemma 4. We then count communicaiton complexity. We ignore constant factors in the
counting. In round 0 party Ps sends to all parties its input of lenght ` and a signature. This
is the sending of n(`+ λ) bits. During the basic loop each party forwards at most one well-
formed input from Ps to other parties, so this is at most n2(` + λ) bits. Besides this, each
Pi might send an accusation of each Pj which will then be relayed by each other party. This
is the flooding of at most n4λ bits. The output consists of at most one well-formed input
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of Ps so is at most ` + n2λ bits. In Produce Candidate and Adopt Candidate each party
sends it to at most n other parties, yielding communication at most n2`+ n4λ. We consider
round complexity. For illustration consider the easy case for f = 0. In the first round Ps
sends its signed input to all parties and in round 2 all parties send their adopted candidate
yi. This is 2 = f + 2 rounds. Note then that if the protocol in rounds r ≥ 1 do not send an
adopted candidate it is because ¬Complete(S), which implies that ToAccuser(S) 6= ∅ which
by Item 3(a)ii in Definition 8 implies that Pk for which (Pk, ·) 6∈ path is added to T in Tree·,
extending path by length 1. After this path contains one more corrupted party. There are
at most f corrupted parties. So this adds at most f extra rounds, for a total of at most
2 + f . ut

The bulk for the communication of PC is the flooding of up to n2 accusations. It turns
out this can be compressed accross multiple runs of PC as each accusation needs only be
sent once.

Lemma 6 (Amortized Communication Complexity). Assume that in the life time of
the system ι instances PC1, . . . ,PCι are run and that PCi has inputs (mi, πi) with |(mi, π̂i)| ≤
`i, where π̂i is πi with all accusations removed. Then the communication complexity of run-
ning all ι copies can be compressed to O (n2

∑
i `i + n4λ) without affecting the security of the

protocol.

Proof. If in a given system an accusation e = (Acc,Pi,Pj, σi) was sent as part of running
one PC, then do not send it again. Also, add it to all sets Si in all copies. Also, do not send it
as part of the justifications after it was sent once. If e = (Acc,Pi,Pj, σi) was received once
then add it to all incoming justifications. This can be seen to not affect the execution of the
protocol. If π justified m then it also does so after adding one more accusation. This way,
overall, each of the n2 possible e = (Acc,Pi,Pj, σi) will be sent at most once per pair of
parties for a total of n4λ communication. Then notice that extra to accusations the protocol
only send something when an input e is added to S. This happens at most n times as we
do not add e if S already has an input element. And when it happens (mi, πi) is sent to at
most n parties. Sending one (mi, πi) counts as `i bits of extra communication as we already
accounted for the accusation. ut

Remark 5 (Further Amortisation). We will later discuss how communication can be amor-
tised more than the above lemma reflects. This is because justifiers often consist of values
which have already been sent. If a justifier for an outgoing message contains justifiers for
earlier incoming messages and the corresponding justifiers were already resent earlier, then
there is no reason to send them again. Thereby each “basic” justifier will be sent at most
n2 times. These optimisation are better done in context of concrete protocols, so we add the
details later.

5 Send Transferable Messages with Agreement

We now show how to add agreement to any STM protocol by giving an STMA protocol
using STM as sub-protocol. The protocol is given in Fig. 5.
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STMAJMsg,Ps(m,πMsg)

The input of Ps is (m,πMsg), where JMsg(m,πMsg) = >.

– Ps: On input (m,πMsg) the sender inputs (m,πMsg) to STMJMsg,Ps .
– Pi: Let y be the output of STMJMsg,Ps and let

z =

{
m′ if y = (m′, π′) for m′ 6= NoMsg

NoMsg(s) if y = (NoMsg, π′) .
(1)

Here, NoMsg(s) 6= NoMsg is a special symbol denoting that Ps sent NoMsg (and thus was cor-
rupt). Let the justifier be γ = y and let J denote the justifier predicate where J(y) = > iff
STMJMsg,Ps .JOut(y) = > and y produces m′ in Eq. (1).

– Pi: Input (z, γ) to STMJ,Pi .
– Pi: For j ∈ [n], let zj = (mj , γj) be the output from STMJ,Pj and let

A = {mj}nj=1 \ {NoMsg} , (2)

m =

{
NoMsg if A = {NoMsg(s)} ∨ |A| > 1

m′ if A = {m′} for m′ 6= NoMsg(s) .
(3)

– We now define the output justifier predicate STMAJMsg,Ps(m,πMsg).JOut and justifier δ.
• If m = NoMsg then let δ = ξ where ξ = {zj}Pj∈P is the justified outputs of all STMJ,Pi .

• If m = m′ 6= NoMsg then pick some zj = (mj , γj) with mj = m′. Note that m′ 6= NoMsg(s).
From STMJ,Pj .JOut(zj) = > and Justified Message of STMJ,Pi find γ1

j in γj such that
J(mj , γ

1
j ) = >. By the above definition of J this means that STMJMsg,Ps .JOut(mj , γ

1
j ) = > . By

Justified Message of STMJMsg,Ps find π in γ1
j such that JMsg(mj , π) = >. Then let δ = (π, ξ).

• Let STMAJMsg,Ps(m,πMsg).JOut be the justifier predicate where STMAJMsg,Ps(m,πMsg).JOut(m, δ) =
> only if δ contains ξ containing zj ’s such that STMJ,Pj .JOut(zj) = > for Pj ∈ P and the
zj = (mj , γj) lead to m after executing Eqs. (2) and (3). Furthermore, if m 6= NoMsg then also
require that δ = (π, ξ) and JMsg(m,π) = >.

– Pi: Output (m, δ).

Fig. 5. An STMA protocol.

Theorem 2. Protocol STMAJMsg,Ps is an STMA protocol. Assuming that STMA has inputs
(m,π) with |m,π| ≤ `, it has communication complexity O(n3` + n4λ) and the size of the
justified output is at most O(n`+ n2λ). If Ps is honest, it uses 2 rounds.

We have to argue Correctness, Justified Output, Justified Message, Validity, Agreement
and the claimed communication. Correctness follows by construction. Justified Output too:
the constructed justifier δ clearly matched the defined predicate STMAJMsg,Ps .JOut. Justified
Message is also be construction. When m 6= NoMsg then by construction δ = (π, ·), where
JMsg(m,π) = >. We now argue Validity and Agreement.

Lemma 7 (Validity). Protocol STMAJMsg,Ps in Fig. 5 is valid.

Proof. By the properties of STM, any AJO of STMJMsg,Ps is justified by the justifier predicate
STMJMsg,Ps .JOut defined by the protocol. By definition we have to show that if Ps is honest
and tries to send m then all AJOs for STMAJMsg,Ps(m,πMsg).JOut have message m. We show
this in three steps. In step 1 we show that if Ps is honest then all AJOs for STMJMsg,Ps .JOut

are for m. In step 2 we argue that this means that all AJOs for STMJ,Pi
.JOut are for m or
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NoMsg and that it is for m when Pi is honest. In step 3 we argue that this means that if
STMAJMsg,Ps .JOut has an AJO for m′′ then m′′ = m.

Arguing validity also includes arguing that all honest parties get output. This follows by
construction and the fact that all sub-protocols terminate. We do not go further into this
below.

Step 1. Suppose Ps is honest and has input (m,πMsg). In this case, Ps inputs (m,πMsg) to
STMJMsg,Ps such that JMsg(m,πMsg) = >. By validity of STMJMsg,Ps , every AJO for STMJMsg,Ps .JOut

is therefore of the form y = (m, ·).
Step 2. By the above argument all honest parties Pi input (m, γ) to STMJ,Pi

. By va-
lidity of STMJ,Pi

, every AJO (m, γi) for STMJ,Pi
.JOut will have J(m, γi) = > when Pi is

honest. Furthermore, even for corrupt Pj it follows from Justified Message that an AJO
for STMJ,Pj

.JOut is either for NoMsg or has J(m′, γj) = >. If J(m′, γj) = > then by definition
STMJMsg,Ps .JOut(m

′, γj) = >. Therefore, as argued in step 1, m′ = m. All in all, this gives us
that all AJOs m′ for STMJ,Pi

.JOut are for m′ = m or m′ = NoMsg and that m′ = m when Pi
is honest.

Step 3. Assume then an AJO (m′′, δ) for STMAJMsg,Ps .JOut. By definition of STMAJMsg,Ps .JOut

this means that δ contains ξ = {zj}Pj∈P and that STMJ,Pj
.JOut(zj) = > for Pj ∈ P and the

zj = (mj, γj) in ξ leads to m′′ after executing Eqs. (2) and (3). There is at least one honest
party Pi, which by step 2 implies that mi = m 6= NoMsg. Again by step 2, all mj are either
NoMsg or m. This means that after executing Eq. (2) we have A = {m}. As argued above,
after executing Eqs. (2) and (3) we get m′′. By construction of Eq. (3) we conclude that
m′′ = m. ut

Lemma 8 (Agreement). Protocol STMAJMsg,Ps in Fig. 5 has agreement.

Proof. We have to show that if (m1, ·) and (m2, ·) are AJOs for STMJMsg,Ps .JOut then m1 =
NoMsg or m2 = NoMsg or m1 = m2. For b = 1, 2 assume then an AJO (mb, δb) for
STMAJMsg,Ps .JOut. By definition of STMAJMsg,Ps .JOut this means that δb contains ξb = {zbj}Pj∈P
and that STMJ,Pj

.JOut(z
b
j) = > for Pj ∈ P and the zbj = (mb

j, γ
b
j) in ξb leads to mb after exe-

cuting Eqs. (2) and (3). Let Ab be the value after executing Eq. (2) on ξb. There is at least
one honest party Pi, which by Validity of STMJ,Pi

gives us that m1
i = m2

i 6= NoMsg. Namely,
when Pi is honest then STMJ,Pi

can only output the mi that Pi intends to send, and there
is exactly one such mi. And this honest input value mi cannot be NoMsg. Let mi 6= NoMsg

be the common value such that mb
i = mi. If mi = NoMsg(s) then by construction of Eqs. (2)

and (3) we get m1 = m2 = NoMsg as NoMsg(s) ∈ Ab, so Ab = {NoMsg(s)} or |Ab| > 1.
If mi 6= NoMsg(s) then because mi ∈ Ab and by definition of Eq. (3), either mb = mi or
mb = NoMsg. In either case we showed what we had to. ut

Lemma 9 (Amortised Communication). Let ` = |(m,πMsg)|. Not counting accusations
the communication of the protocol is O(n3`) and the size of a justifier δ is O(n`). Counting
also accusations the communication of the protocol is O(n3`+n4λ) and the size of the justifier
δ is O(n`+ n2λ).

Proof. The communication is dominated by that of running the n instances of STMJ,Pi
. For

these the input is (z, γ). Not counting accusations of a possible justifier the size of (z, γ)
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is basically that of (m,πMsg), i.e., O(`). Therefore the communication of one instance is
O(n2`) and the overall communication is O(n3`). This is again not counting the sending of
accusations. Not counting accusations the size of one justified output zj is O(`). Therefore
the size of one justifier δ is O(n`). Using the optimisation of Lemma 6, each of the possible n2

accusations is each sent at most n2 times, which adds at most O(n4λ) to the communication.
There is at most n2 accusations and we only need to add each of them once to the justifier
δ, which adds at most O(n2λ) to the size of the justifier. ut

6 Compressed Transferable Justifiers

In this section we introduce an abstraction called Compressed Transferable Justifiers which
helps to control the communication complexity. In the following sections, we present protocols
which run for up to n rounds. In these protocols, justifiers for later rounds consist of justifiers
for outputs in previous rounds. Without further care, this could lead to an exponential
blowup in communication complexity. To prevent this from happening, our key technique
is to forward all outputs of all STMA subprotocols to all parties and then simply let the
justifiers point to those STMA outputs that they are using. This will be based on the three
following rules.

STMA Justification: In all protocols which follow, all messages can ultimately be justified
by previous outputs of some STMA instance(s). This is based on the observation that
each of our protocol subroutines internally only calls STMA for communication. Hence,
even though message m might be justified by the output y of some previous sub-protocol
different from STMA, y (and therefore m) will then in turn recursively be justified by
previous outputs of some STMA instances.

STMA Echo: Whenever a party locally receives an output NoMsg from an STMA instance
I, it forwards this message to all other parties. It will also echo any justified NoMsg value
for I forwarded to it from other parties. In either case, it only forwards NoMsg if it did
not previously forward NoMsg for STMA instance I. Similarly, whenever a party receives
a justified output m 6= NoMsg for an STMA instance I or receives one by forward, it sends
m to all other parties if it did not previously send some justified m for STMA instance I.
Since by Agreement of STMA, each STMA instance has at most one m 6= NoMsg such
that an AJO for m can be produced, it follows that for each STMA instance I, each party
forwards to each other party at most two justified outputs (one for NoMsg and one for
some m). Furthermore, for all STMA instances, all parties will see the same outputs with
at most one round of delay as a party forwards any received message in the round where
it sees it the first time.

STMA Justifier Predicates: Finally, we will by design only use so-called STMA justi-
fiers, i.e., justifier predictates whose satisfaction depends only on the set of justified
outputs y from STMA, but not the particular justifiers π which justify those y. This en-
sures that it suffices for parties to eventually hold the same set of justified y. They need
not end up holding the same justifiers π. This observation is crucial as a given justified
y can have exponentially many different justifiers.
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Compressed Justifiers: The above rules allow to compress justifiers as follows. If a justi-
fier π for y holds as part of it a justified output (y′, π′) for a previous STMA instance I ′,
then we can replace (y′, π′), and in particular the justifier π′, by a pointer to instance I ′.
We simply send (I ′, b) where b = 0 indicates to use NoMsg as the output of I ′ and b = 1
indicates to use a non-NoMsg value as the output of I ′. In either case, the STMA Echo
rule ensures that a receiver of a forwarded compressed justifier will have the referenced
STMA outputs available when it receives that justifier. Moreover, the STMA Justifica-
tion and the STMA Justifier Predicates rules together ensure that any compressed
justifier can be expressed as a combination of STMA outputs and that the evaluation of
that justifier will evaluate to the same outcome in the view of any honest party: even if
it uses different justifiers it will have the justified y’s needed to satisfy the predicate of
the compressed justifier.

We now add more details to the above mechanism. We start with the STMA Echo and
Compressed Justifiers. All parties will run the following rules in the background.

Init Pi: In round 0 let Si be the empty set.
Output Pi: If an instance I of STMA outputs (y, π) and there is not already an element of

the form (I, y, ·) ∈ Si, then add (I, y, π) to Si and forward (I, y, π) to all parties. Note
that in this case I.JOut(y, π) = > by Justified Output.

Echo Pi: On receiving (I, y, π) from any party where I.JOut(y, π) = > and there is not
already an element of the form (I, y, ·) ∈ Si, add (I, y, π) to Si and forward (I, y, π) to
all parties.

Compress Pi: When sending a justifier π for instance I take any component of the form
(I ′, y′, π′) in π, where (I ′, y′, π′) ∈ Si, and replace it by (I ′, b), where b = 0 if y′ = NoMsg

and b = 1 if y′ 6= NoMsg. We write π̂ = enc(π, Si) to denote the compressed version of
justifier π.

Decompress Pi: When receiving a compressed justifier π̂ for instance I take any component
of the form (I ′, b) in π̂ and replace it by some (I ′, y′, π′) ∈ Si, where y′ = NoMsg if b = 0
and y′ 6= NoMsg if b = 1. If no such element exists in Si then drop the incoming π̂. We
write π′ = dec(π̂, Si) and let π′ = ⊥ denote that the message was dropped. For notational
convenience we assume below that J(y,⊥) = ⊥ for all justifier predicates.

We call the above the Compressed Echo System. In the following, we denote as Sri the value
of Si at Pi in round r. We drop r from the superscript if a statement is true for all rounds
of r. By design the following holds.

Lemma 10 (Output Propagation). For all honest parties Pi and Pj, all rounds r, and
all STMA instances I it holds that

∃(I, y, π) ∈ Sri =⇒ ∃(I, y, π′) ∈ Sr+1
j .

Note that compression and subsequent decompression will always reproduce the same y′,
by Agreement. However, the value of π′ might change as the receiver might have another
justifier. To argue about this the following notions are helpful.
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Definition 11. Let S and S ′ be sets of justified STMA outputs. We say that S @ S ′ if for
all (I, y, π) ∈ S there exists at least one (I, y, π′) ∈ S ′.

Lemma 11 (Output Correctness). Let Pi and Pj be honest parties. If Si @ Sj and π̂ =
enc(π, Si) and π̃ = dec(π̂, Sj) then π̃ is equal to π except that each value of the form (I, y′, π′)
with I.JOut(y

′, π′) = > in π might have been replaced by some (I, y′, π′′) with I.JOut(y
′, π′′) =

>.

The following captures that a justifier predicate does not change from true to false if
some π′ is replaced by π′′ as above.

Definition 12 (STMA Justifier Predicate). We say that J is an STMA justifier pred-
icate if it holds for all S @ S ′ and (y, π) that J(y, π) = > =⇒ J(y, dec(enc(π, S), S ′)) = >.

Combining the above, we easily get the following corollary, which shows correctness of
the Compressed Echo System in the sense that whenever a justified (y, π) is sent for an
instance I, then a justified (y, π′) is received for I.

Corollary 2 (Justification Propagation). For all STMA justifiers J , honest parties Pi
and Pj, all rounds r, and all STMA instances I it holds that

J(y, π) = > =⇒ J(y, dec(enc(π, Sri ), S
r+1
j )) = > .

Below we assume that instance names I can be represented by O(λ) bits.

Lemma 12 (Communication). Consider an execution with STMA instances I1, . . . , I`,
where `i is an upper bound on the bit length of an output yi of instance Ii and pruleni is an
upper bound on the bit-length of a compressed πi for Ii after also removing all accusations.
Then the communication of the above Compressed Echo System is at most

O

(
n2

(∑̀
i=1

(`i + pruleni)

)
+ n4λ

)
.

Proof. When applying Lemma 6, each accusation is sent from each party to each party at
most once, giving the n4λ term. Besides this, each different output y of each instance I is
sent by each party to each party at most once, and each instance, by Agreement, has at
most two different justified outputs. This gives at most O(n2

∑`
i=1 `i). Finally, the parts of

justifiers π which are not accusations or previous outputs of STMA instances will be sent by
each party to each other party at most once, contributing O(n2

∑`
i=1 pruleni). ut

We finally define a notion of generic justifier. This is just an STMA justifier for an input to
a sub-protocol which recursively proves that this input could have been obtained by running
the protocol thus far on justified outputs from even earlier sub-protocols. We formalise this
in the following.

In all protocols Π which follow, the protocols proceed in super rounds, where in each
super round s = 1, 2, . . . the parties invoke a sub-protocol Πs, wait for its outputs, and then
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run the next super round. In the first super round, we assume that each Pi has an input
(xi, πi), where JIn(Pi, xi, πi) = > and that this is the input to the first sub-protocol Π1. As
a sentinel, let x0i = xi and π0

i = πi and define Π0.JOut := Π.JIn. Consider then a super round
s where in the previous s − 1 super rounds the parties ran protocols Π1, . . . , Πs−1 and in
super round s are to run Πs. For k = 1, . . . , s − 1, let yki be the output of Pi from Πk and
let πki be the justifier. Then the message to be input to Πs by Pi will be computed using a
function

xsi = NxtInp({yki }s−1k=0) (4)

and the accompanying justifier computed using a function

πsi = NxtJst({(yki , πki )}s−1k=0) . (5)

Definition 13 (Generic Justifier (Predicate)). When we say that we use a generic
justifier in a setting as described above then we mean that

NxtJst({(yki , πki )}s−1k=0) = {(yki , πki )}s−1k=0 .

We call input justifier predicate Πs.JIn generic if it is of the form

Πs.JIn(Pj, x
s
i , {(yki , πki )}s−1k=0)) ≡

xsi = NxtInp({yki }s−1k=0) ∧
s−1∧
k=0

Πk.JOut(Pj, y
k
i , π

k
i ) .

We call Πs.JIn 1-STMA generic iff it is generic and Π only sends messages as part of
invoking an instance of STMA as a subprotocol. We call Πs.JIn (c+1)-STMA generic iff it is
c-STMA generic or it is generic and Π only sends messages as part of invoking an instance
of a c-STMA generic subprotocol. We call Πs.JIn STMA generic iff it is c-STMA generic for
some c ∈ N+.

We also use generic justifiers for the outputs. We simply show that the output can be
computed from justified outputs of the sub-protocols.

Definition 14 (Generic Justifier for Output). In a protocol with σ super-rounds, we
give generic justified outputs by computing xσ+1

i as if it was an input for a virtual round
σ+ 1 (which we can also think of as the first round of the next protocol where xσ+1

i is input)
and then we let the output of Pi be yi = xσ+1

i and πi = πσ+1
i where xσ+1

i is computed as in
Eq. (4) and πi as in Eq. (5).

Lemma 13. If J is an STMA-generic justifier, then J is an STAM justifier.

Proof. Let π = {(yki , πki )}s−1k=0 ⊂ S @ S ′. By Lemma 11 compressing and then decompressing,
π′ = dec(enc(π, S), S ′), does not change the value of any yki . Therefore the validity of xsi =
NxtInp({yki }s−1k=0) does not depend on whether (Πk, yki , π

k
i ) ∈ S or (Πk, yki , π

k
i
′
) ∈ S ′ are used.

Assume then that J is simple STMA-generic, i.e., all Πk are STMA instances. Since S ′ is a set
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of justified STMA outputs, (Πk, yki , π
k
i
′
) ∈ S ′ implies that Πk.JOut(Π

k, yki , π
k
i
′
) = >. There-

fore
∧s−1
k=0Π

k.JOut(Pj, y
k
i , π

k
i
′
) = >. Similarly, if J is STMA-generic then all Πk are STMA in-

stances of are generic-STMA. If Πk is an STMA we conclude as above. If Πk is generic-STMA
we recursively conclude fromΠk.JOut(Pj, y

k
i , π

k
i ) = > thatΠk.JOut(Pj, , dec(enc(π

k
i , S), S ′)) =

>. Again we gert that
∧s−1
k=0Π

k.JOut(Pj, y
k
i , π

k
i
′
) = >. ut

When an output is generically justified, then one can extract a view of the protocol
execution of the party producing it. We capture this in the following definition.

Definition 15 (Weak Unfolded View). Consider an AJO4 y in some σ-super-round
protocol Π as described above using generic justifiers. Let π′ be the justifier. By the weak
unfolded view of y we mean

unfold(y, π′) := ( (x, π), (y1, π1) . . . , (yσ, πσ), y ) ,

where by construction of the generic output justifier predicate JOut π
′ contains x = x0 and

π = π0 such that Π.JIn(x, π) = > and outputs y1, . . . , yσ of its sub-protocols Π1, . . . , Πσ

along with justifiers π1, . . . , πσ such that Πs.JOut(y
s, πs) = > for all 1 ≤ s ≤ σ and such that

y = NxtInp({yk}σk=0)
5 is a correctly constructed output.

Remark 6 (Inconsistent Unfolded Views). Note that the weak unfolded view does not
demonstrate that the input xs toΠs was computed according to the protocol from (y0, . . . , ys−1).
It only shows that the output ys of Πs, which is included in the justifier π′, was justified
and that the final y was computed from x and these justified ys. In particular, if we were
to unfold the output ys of Πs using πs it might give result in an input xs′ to Πs, where
xs′ 6= NxtInp({yki }s−1k=0. This is intended and seems crucial in controlling that the size of
generic justifiers does not grow exponentially. Namely, because of compression and decom-
pression, the justifier πs that the receiver of ys uses to unfold the view might not be the
same as the one used by the sender of ys. It is not only for compression-decompression that
it is feature that ys might not be consistent with xs = NxtInp({yk}s−1k=0) in the view of Pi.
This will soon allow us that Pi takes over a justified output ysj from another party Pj for
some sub-protocol, i.e., it lets Pi use ysi = ysj without having to recursively check consistency
of the output ysj which it takes over with its own overall execution. It takes over ysj if and
only if it can be justifier as an output. To remind ourselves that unfolded views may not be
globally consistent we call the weak.

Definition 16 (Amortised STMA Complexity). Below when we calculate the commu-
nication complexity of protocol we count the total length of inputs the STMA instances at a
single party along with the length of the justifiers after compression and after removing all
accusations of polarisers in justifiers. We call the sum the amortised STMA complexity.

The following is a corollary to Lemma 12.

Lemma 14 (Amortised STMA Complexity). If the amortised STMA complexity of a
protocol is ` then the communication complexity is O(n3`+ n4λ).
4 Recall that this means that some honest party would accept y as output from the protocol.
5 Recall that by Definition 14 we compute the output as if it was the input for a next virtual round.
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7 Justified Grade Cast

In STMA, some parties might have output NoMsg while some have m 6= NoMsg. We now show
how to upgrade an STMA to a graded STM where the output contains a grade g ∈ {0, 1, 2}
which indicates the confidence in this output. When g = 2, no AJO can have m 6= NoMsg.
Furthermore, grades are at most 1 apart and honest senders always produce grade 2. A
detailed definition is given in Definition 17. Our protocol is given in Fig. 6.

GSTMJMsg,Ps(m,πMsg)

The input of Ps is (m,πMsg), where JMsg(m,πMsg) = >.

– Ps: Input (m,πMsg) to STMAJMsg,Ps .
– Pi: Let y be the output of STMAJMsg,Ps and let

z =

{
m′ if y = (m′, π′) for m′ 6= NoMsg

NoMsg(s) if y = (NoMsg, π′) .

Let the justifier be γ = y and let J be the generic justifier predicate.
– Pi: Input (z, γ) to STMAJ,Pi .
– Pi: For j ∈ [n], let zj = (mj , γj) be the output from STMAJ,Pj and let

A = {mj}nj=1 \ {NoMsg} ,

(m, g) =


(NoMsg, 0) if A = {NoMsg(s)}
(m′, 1) if A = {m′,NoMsg(s)} for m′ 6= NoMsg(s)

(m′, 2) if A = {m′} for m′ 6= NoMsg(s) .

Let δ = {zj}Pj∈P be the generic justifier and let GSTMJMsg,Ps .JOut be the generic justifier predicate.
– Pi: Output ((m, g), δ).

Fig. 6. A justified gradecast protocol.

Definition 17 (Graded Send Transferable Message). Let Π be a protocol run among
n parties P1, . . . ,Pn and let JMsg be a parametrisable input justifier predicate. Assume that
Π specifies a designated sender Ps holding input (m,πMsg) such that JMsg(Ps,m, πMsg) = >
and parties terminate upon generating output in Π. As part of its code the protocol specifies
an output justifier predicate Π.JOut. We say that Π is a graded send transferable message
(GSTM) protocol if it has the following properties:

– Correctness: Honest Pi outputs yi = ((mi, gi), πi) for gi ∈ {1, 2} and mi 6= NoMsg or
yi = ((mi = NoMsg, gi = 0), πi).

– Justified Output: When honest Pi outputs yi = ((mi, gi), πi) then JOut(Pi, (mi, gi), πi) =
>.

– Justified Message: For all AJOs yi = ((mi, gi), πi) either mi = NoMsg and gi = 0 or
πi is of the form πi = (π1

i , π
2
i ) and JMsg(mi, π

1
i ) = >.

– Validity: If Ps is honest and has input (m,πMsg), then all honest parties Pj have output
mj = m and gj = 2. Furthermore, for all AJOs (m′, g′) it holds that m′ = m and g′ = 2.
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– Graded Agreement: For all AJOs (m1, g1) and (m2, g2) it holds that |g1− g2| ≤ 1 and
if g1, g2 > 0 then m1 = m2.

Theorem 3. Protocol GSTMJMsg,Ps is a GSTM for t < n. Assume that GSTM has inputs
(m,π) with |m| ≤ `. Then the protocol has STMA communication complexity O(n`).

As for STMA, all properties but validity and agreement are trivial and so is the commu-
nication complexity.

Lemma 15 (Validity). Protocol GSTMJMsg,Ps in Figure 6 is valid.

Proof. Suppose that Ps is honest and has input m. By validity of STMAJMsg,Ps , every AJO y
for that protocol is y = (m′, π′) form′ = m. Now let ((m, g), δ) be any AJO of GSTMJMsg,Ps(m,πMsg)
and assume for the sake of contradiction that g ∈ {0, 1}. Then the weak unfolded view of
((m, g), δ) contains an AJO for (NoMsg, 0) or (m′, 1) from STMAJ,Pj

. By definition of A the
weak unfolded view of either of these AJOs will contain an AJO for y = (NoMsg, π′) from
STMAJMsg, s, a contradiction. ut

Lemma 16 (Graded Agreement). Protocol GSTMJMsg,Ps in Figure 6 has graded agree-
ment.

Proof. Suppose we have AJOs ((mi, gi), δi) and ((mj, gj), δj) with gi, gj > 0. By the properties
of the generic justifier, it must be the case that the weak unfolded view of ((mi, gi), δi) holds
an AJO for mi 6= NoMsg from some STMAJ,Pk

. By the justified message property of STMA
it follows that mi is justified using the input justifier J of STMAJ,Pk

, which was the generic
justifier checking that mi was an AJO of STMAJMsg,Ps . Symmetrically, we can conclude that
mj was an AJO of STMAJMsg,Ps . By the agreement property of STMAJMsg,Ps it follows that
mi = mj. It remains to show that it cannot be the case for two AJOs that gi = 2 and
gj = 0. Assume that gi = 0. Suppose then for the sake of contradiction that we have AJOs
((mi, gi), δi) and ((mj, gj), δj) with gi = 0 and gj = 2. The weak unfolded view of ((mi, gi), δi)
holds an AJO for mi = NoMsg(s) from all STMAJ,Pk

which did not output NoMsg, in particular
for all honest Pk. Symmetrically, we can conclude that mj was an AJO from STMAJ,Pk

for all
honest Pj. Since gj = 2 we have mj 6= NoMsg(s). Since there is at least one honest Pj we have
found one STMAJ,Pk

where Pk is honest and it has AJO NoMsg(s) and AJO mj 6= NoMsg(s).
This breaks validity of STMAJ,Pk

as the honest Pk cannot have inputted both NoMsg(s) and
6= NoMsg(s). ut

8 Early Stopping Broadcast

We now present our main result, early stopping broadcast.

8.1 Diagonal Cast

We begin by building an early stopping protocol, called DC (for diagonal cast), which is early
stopping, but may run up to O(t2) rounds. The protocol will be a justifiable broadcast in the
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sense of Definition 6, which implies that it is also a broadcast protocol. The protocol DC uses
GSTM as (blackbox) sub-protocol. Since we use DC as a building block in our final protocol,
we also make its output justified. During the protocol we use a helper function computing a
party’s next vote. In each round the parties run one GSTM to get output (m, g). Consider a
party which in the previous rounds saw outputs (m1, g1), . . . , (mr, gr). Then it should use the
m from the latest GSTM with gρ > 0. If no such ρ exists it should use NoMsg(s) to indicate
the sender Ps was corrupt. More formally we use this function:

NxtInp((m1, g1), . . . , (mr, gr)) =

{
NoMsg(s) if g1 = · · · = gr = 0

mmax{i∈[r] | gi>0} otherwise.

Below we let i∗ = max{i ∈ [r] | gi > 0} when we are not in the case g1 = · · · = gr = 0.
At the end of the protocol we want to map NoMsg(s) to NoMsg. For this we use a simple
helper: Out(m) = NoMsg if m = NoMsg(s) and Out(m) = m otherwise. The protocol is given
in Fig. 7.

Diagonal Cast DCJMsg,Ps

Without loss of generality, assume that P1 is the sender, i.e., s = 1.

– In round 1:
• P1: Has input (m,πMsg) with JMsg(P1,m, πMsg) = > and inputs it to GSTMJMsg,P1 .

• Pi: Let y = ((m1
i , g

1
i ), π1

i ) be the output from GSTMJMsg,P1 .

• Pi: If g1i = 2 then send (1, (m1
i , g

1
i ), π1

i ) to all other parties, output m = Out(m1
i ), run for one

more round (to ensure that no honest party terminates until all honest gave output), and then
terminate.

– For j ∈ {2, . . . , n} do as follows:
• Pj : Compute mj = NxtInp((m1

j , g
1
j ), . . . , (mj−1

j , gj−1
j )).

• Pj : Compute the generic justifier γj = {((mk
j , g

k
j ), πk

j )}j−1
k=1 and let Jj be the generic justifier

predicate for this round.
• Pj : Input (mj , γj) to GSTMJj ,Pj

.

• Pi: Let y = ((mj
i , g

j
i ), πj

i ) be the output from GSTMJj ,Pj
.

• Pi: If gji = 2 then send (j, (mj
i , g

j
i ), πj

i ) to all other parties, output m = Out(mj
i ), run for one

more round, and then terminate.
– Pi: Upon receiving a tuple (j, (m′, g′), π′) (for any j ∈ [n] and in any round) such that

GSTMJj ,Pj
.JOut(Pi, (m

′, g′), π′) = > and g′ = 2, forward it to all parties, output m = Out(m′),
run for one more round, and then terminate.

– The output justifier for the protocol is DCJMsg,Ps .JOut(m,π), which is true if π = (j, (m′, g′), π′) and
j ∈ [n] and GSTMJj ,Pj

.JOut(Pi, (m
′, g′), π′) = > and m = Out(m′).

Fig. 7. The broadcast protocol.

Lemma 17 (Validity). DC satisfies validity.

Proof. Suppose that P1 is an honest sender holding input (m,πMsg). Since JMsg(P1,m, πMsg) =
> validity of GSTMJMsg,P1 implies that all honest parties get output (m, 2, π). Hence, all par-
ties terminate with output m after running for one round. ut
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Lemma 18 (Stabilisation). Let j be the minimal iteration such that for some honest Pi an
AJO ((m, 2), π) satisfying GSTMJj ,Pj

.JOut(Pi, (m, 2), π) = > can be produced. Then for any
j′ ≥ j and any honest Pi′ and any AJO ((m′, 2), π′) satisfying GSTMJj′ ,Pj′

.JOut(Pi′ , (m
′, g′), π′) =

> it holds that g′ = 0 or m′ = m. Furthermore, if j′ = j then g′ > 0 and thus m′ = m.

Proof. We do induction in |j′−j| = 0, 1, . . .. For the base case |j′−j| = 0 we have j′ = j and
that g′ ∈ {1, 2} and m′ = m by graded agreement of GSTMJj ,Pj

. Assume then the induction
hypothesis for all |j′ − j| < `. We prove it for |j′ − j| = `. We have to prove that g′ = 0
or m = m′. So it is enough to prove that if g′ > 0 then m′ = m. When g′ > 0 then by the
justified message property of GSTMJj′ ,Pj′

we have that m′ is justified by J j
′
, which was the

generic justifier for iteration j′. Therefore m′ was computed as

m′ = NxtInp((m1, g1), . . . , (mj′−1, gj
′−1))

from AJOs. By induction hypothesis gj ≥ 1 and mj = m, and for j ≤ k ≤ j′ − 1 it holds
that gk = 0 or mk = m. This by construction gives

NxtInp((m1, g1), . . . , (mj′−1, gj
′−1)) = m ,

as desired. ut

Corollary 3. DC has agreement.

Proof. When an honest party Pi produces output m′ then it by construction produces or
receives an AJO (m′, g = 2) for some GSTMJj′ ,Pj′

. Clearly there is a smallest j for which an

AJO (m, g = 2) can be produced for GSTMJj ,Pj
. By Lemma 18 it holds that m′ = m. This

holds for all honest outputs m′. ut

Lemma 19. DC terminates in 8(f + 1)(f + 2) rounds. If P1 is honest then it runs in at
most 8(f + 2) rounds.

Proof. The protocol terminates at the latest once the first honest party acts as the sender in
some iteration j as this gives gj = 2. This is worstcase in iteration (f+1). Each iteration runs
one GSTM, which uses two STMA, which each uses two STM, which each uses f + 2 rounds.
This gives 4(f + 2) rounds per GSTM, and applying the staggering compiler contributes a
factor of 2. ut

Lemma 20. When DC is run on an input of size ` then it has STMA complexity O(f 2n`).

Proof. The protocol calls O(f 2) instances of GSTM, one in each round. Each GSTM is called
with an input of size ` = `, so each GSTM has STMA complexity n`. This gives the desired
bound. ut
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8.2 Weak Early Stopping O(f) and Worstcase O(t)

The protocol DC can do early stopping, but if there are f = ω(
√
t) corruptions it runs for

more than O(t) rounds, which is asymptotically sub-optimal. We solve this by capping the
running time at O(t). Doing this safely is subtle, and we now present a protocol with weak
early stopping which helps doing it safely. Weak early stopping means that the protocol
achieves early stopping when the sender is honest. If the sender is corrupt it may run for
O(n) rounds. We describe the protocol with P1 as sender, but it can be adopted to any Ps.

WESJMsg,P1

– P1: Has input (m,πMsg) with JMsg(P1,m, πMsg) = > and inputs it to GSTMJMsg,P1 .
– P1: Let ((m, g), π) be the output of GSTMJMsg,P1 and run DSCP1,J with input ((m, g), π) by P1, where
J is the generic justifier predicate.

– Pi: Upon receiving a tuple ((m′, g′), π′) as output from GSTMJMsg,P1 or relayed by another party,
where GSTMJMsg,P1 .JOut(Pi, (m

′, g′), π′) = > and g′ = 2, forward it to all parties, output m = m′, and
terminate.

– If DSCP1,JMsg outputs ((m, g), π) before an output was produced using the above rule, output as
follows. If GSTMJMsg,P1 .JOut(Pi, (m, g), π) = > and g > 0, output m. Otherwise, output NoMsg.

Fig. 8. The weak early stopping broadcast protocol.

Theorem 4. The protocol WESJMsg,P1 is a broadcast protocol. Parties terminate one round
apart and the round complexity is O(t). If P1 is honest then the round complexity is O(f).
The GSTM complexity is O(`) and there is an additional communication of O(n2` + n3λ)
from DSC.

Proof. Validity is trivial: if P1 is honest then GSTMJMsg,P1 outputs ((m, g), π) with g = 2
and all honest parties output m. This happens within one run of GSTM, so in O(f) rounds.
We argue agreement. If all honest parties give output by receiving a tuple ((m′, g′), π′)
which is an AJO for GSTMJMsg,P1 and with g′ = 2 then agreement follows from agreement
of GSTMJMsg,P1 . If all honest parties give output by receiving ((m, g), π) from DSC then
agreement follows from agreement of DSC. Assume then that some honest Pi gives output
using ((m′ = mi, g

′ = 2), π′) which is an AJO for GSTMJMsg,P1 and some honest Pj gives
output mj by receiving ((m, g), π) from DSCP1,J . Since g′ = 2 and m′ = mi it follows from
graded agreement for GSTMJMsg,P1 that m = mi and g > 0 for all AJOs for GSTMJMsg,P1 .
Since J is the generic justifier it follows that all AJOs ((m, g), π) for DSCP1,J has m′′ = mi

and g′′ > 0. Therefore Pj has output mj = m = mi. Parties terminate one round apart as
they terminate one round apart in DSC and if they terminate by the g′ = 2 rule then they
forward the AJO and then all honest parties terminate in the next round. ut

8.3 Early Stopping O(f2) and Worstcase O(t)

We now give a broadcast protocol Capped Diagonal Cast which basically runs Diagonal Cast
for a capped number of rounds and uses WES to have all parties report whether they saw an
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output from DC before the time cap. Since the reports are sent with WES parties will agree
on the reports and make the same decision. Furthermore, if an honest party saw an output
it will be reported with early stopping. We again describe the protocol with P1 as sender,
but can trivially adopt to any Ps.

Capped Diagonal Cast CDCP1,JMsg

We describe the protocol from the view of party Pi.

– P1: Has input (m,πMsg) with JMsg(m,πMsg) = > and inputs it to DCP1,JMsg .
– Pi: Participate in DCP1,JMsg for at most 8(t+ 1) rounds.a

– Pi: If DCP1,JMsg produced output (m,π) in or before round 8(t + 1) then run WESPi,> with input
(m,π) in the round where DCP1,JMsg produced output. If by round 8(t+ 1) protocol DCP1,JMsg did not
produce output run WESPi,> with input NoMsg in round 8(t+ 1).

– Pi: If and when the first WESPj ,> outputs (m,π) such that DCP1,JMsg .JOut(m,π) = >, output m.
– Pi: If WESP1,>, . . . ,WESPn,> all terminated and none had an output (m,π) such that

DCP1,JMsg .JOut(m,π) = >, then output NoMsg.

a Here we count base communication rounds, not iterations of GSTM.

Fig. 9. An Early Stopping Broadcast protocol with O(min((f + 1)2, n)) rounds.

Theorem 5. The protocol CDCJMsg,P1 is a broadcast protocol. Parties terminate one round
apart and the round complexity is O(min(f 2, t)). If the sender is honest output is given in
O(f) rounds. From CDCJMsg,P1 we can get a broadcast protocol EBC for definition Definition 1
with the same round complexity simply by dropping the input justifier predicate JMsg and the
justifier πMsg. The communication complexity is O(n4(min(f 2, t)`+ λ)).

Proof. First note that all WESPi,> are started at most one round apart. Namely, no party
starts them later then by round 8(t+ 1). So if they are to be started 2 rounds apart the first
is started in round 8(t+1)−2 or earlier. But then DCP1,JMsg

terminated by round 8(t+1)−2
at the first honest party. But then it terminated by round 8(t+1)−1 at all honest. Hence all
honest started WESPi,> exactly when DCP1,JMsg

terminated, which is at most one round apart.
We can then apply the staggering compiler to ensure that WESPi,> tolerates being started
one round apart. This gives a O(1) blowup in round comlexity. We then argue validity: if
P1 is honest then DCJMsg,P1 outputs (m,π) within 8(f + 2) ≤ 8(t + 2) rounds. Therefore an
honest party Pj will send (m,π) on WESPj ,> which will output (m,π) within O(f) rounds
and then all honest output m. This all happens within O(f) rounds. Agreement is trivial
from agreement of WES, as the output is computed deterministically from the outputs of
WESP1,>, . . . ,WESPn,>. Consider then the round complexity. We have that all copies of WES
are started after O(min(f 2, t)) rounds as DCP1,JMsg

stops after O(f 2) rounds and we cap after
8(t + 1) rounds. If DCP1,JMsg

did give an output at all honest parties before round 8(t + 1)
then it will be input to WESPi,> which will output after O(f) rounds, and hence output
is produces in O(f 2) rounds as DCP1,JMsg

terminates in O(f 2) rounds. If DCP1,JMsg
did not

give output within 8(t + 1) rounds then 8(t + 1) = O(f 2), so O(min(f 2, t)) = O(t). And in
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this case the overall protocols runs for at most O(t) rounds as each WES terminates in O(t)
rounds.

Running DC capped for 8(t + 1) rounds gives STMA complexity O(min(f 2, t)n`). This
results in communication complexityO(min(f 2, t)n4`+n4λ). Running the n instances of WES
gives STMA complexity O(n`) and there is an additional communication of O(n3` + n4λ),
which is dominated by the above. ut
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