
A note on Failing gracefully: Completing the picture for
explicitly rejecting Fujisaki-Okamoto transforms using

worst-case correctness

Kathrin Hövelmanns1 and Christian Majenz2

1 Eindhoven University of Technology, The Netherlands
2 Department of Applied Mathematics and Computer Science, Technical University of Denmark

kathrin@hoevelmanns.net

Abstract. The Fujisaki-Okamoto (FO) transformation is used in most proposals for post-
quantum secure key encapsulation mechanisms (KEMs) like, e.g., Kyber [BDK+18]. The
security analysis of FO in the presence of quantum attackers has made huge progress over
the last years, however, it had a particular quirk: unless incurring (even more) unreasonable
security bounds, security was only shown for FO variants that react to invalid ciphertexts
by returning a pseudorandom value (’implicit’ reject) rather than ’explicitly’ reporting
decryption failure by returning a failure symbol. This part of the design has been subject
to some debate, with the main question being whether explicitly rejecting variants could
indeed be less secure than their implicitly rejecting counterparts.
A recent work by Hövelmanns, Hülsing and Majenz [HHM22] gave a proof which, in con-
trast to previous ones, was agnostic to the choice of how invalid ciphertexts are being dealt
with, thus indicating that the two variants might be similarly secure. It involved, however,
a new correctness notion for the encryption scheme that is used to encapsulate the keys.
While this new notion in principle might allow to improve the overall security bound, it
places a new analysis burden on designers: when looking at a concrete KEM at hand, it
becomes necessary to analyze this new notion for the encryption scheme on which the
KEM is based.
This note offers a trade-off between [HHM22] and its predecessors: it offers a bound for
both rejection variants, but uses the established correctness notion that was used in all
previous work.

Keywords: Public-key encryption, post-quantum, QROM, Fujisaki-Okamoto, decryption
failures, NIST

1 Introduction

The Fujisaki-Okamoto (FO) transform [FO99, FO13, Den03] has become the de-facto standard
to build secure KEMs. In particular, it was used in most KEM submissions to the NIST PQC
standardisation process [NIS17]. In the context of post-quantum security, however, two novel
issues surfaced:

1. Many of the PKE schemes used to encapsulate keys occasionally fail to decrypt a ciphertext
to its plaintext (they do not have perfect correctness), and decryption failures have been
shown [DGJ+19, BS20, DRV20, FKK+22] to impact security.

2. To rule out quantum attacks, the security proofs have to be done in the quantum-accessible
random oracle model (QROM).

Both issues were tackled in [HHK17] and follow-up work (e.g., [SXY18, JZC+18, BHH+19,
HKSU20, KSS+20, HHM22]). The QROM proofs prior to [HHM22], however, had a particular
quirk: To avoid extreme additional reduction losses, they required the scheme to reject implicitly,
that is, to return pseudorandom session keys instead of simply reporting an error when presented
with a malformed ciphertext.
The FO transformation. Before discussing the goal of this note, we briefly recall the FO KEM
transformation as introduced in [Den03] and revisited as FO⊥m by [HHK17]. FO⊥m constructs a

2 K. Hövelmanns, C. Majenz

KEM from a public-key encryption scheme PKE by first modifying PKE to obtain a deterministic
scheme PKEG, and then applying a PKE-to-KEM transformation (U⊥m in [HHK17]) to PKEG:
Derandomised scheme PKEG. Starting from PKE and a hash function G, PKEG encrypts
messages m according to the encryption algorithm Enc of PKE, using the hash value G(m) as the
random coins for Enc:

EncG(pk,m) := Enc(pk,m; G(m)) ,

DecG uses the decryption algorithm Dec of PKE to decrypt a ciphertext c to plaintext m′. DecG

rejects by returning failure symbol ⊥ if c fails to decrypt or m′ fails to encrypt back to c. (The
formal definition is recalled on page 7).
PKE-to-KEM transformation U⊥m. Starting from a deterministic encryption scheme PKE’
and a hash function H, key encapsulation algorithm KEM⊥m := U⊥m[PKE′,H] encapsulates a key
K via a ciphertext c by letting

Encaps(pk) := (c := Enc′(pk,m),K := H(m)),

where m is picked at random from the message space. Decapsulation returns K := H(Dec′(c))
unless c fails to decrypt, in which case it returns failure symbol ⊥.

The role of correctness errors. The impact of correctness errors on security is reflected in
hindrances when trying to show that FO-transformed KEMs are IND-CCA secure: During the
proofs, the decapsulation oracle oDecaps is replaced with a simulation. This simulation, however,
is “too good” – it accurately decapsulates ciphertexts for which the real oDecaps would fail.
In other words, the change from the honest to a simulated decapsulation oracle is noticeable to
attackers if they manage to craft a ciphertext where the honest decapsulation fails detectably. In
[HHK17], the resulting advantage in distinguishing oDecaps from its simulation was dealt with
in two steps:

1. Bound it via a ’break-correctness’ game COR. COR asks the adversary, equipped with the
complete key pair including the secret key, to produce a plaintext m such that EncG(m) fails
to decrypt.

2. Bound the maximal COR advantage in terms of a statistical ’worst-case’ quantity δwc of the
underlying scheme PKE. δwc is the maximal probability for plaintexts to cause decryption
failure, averaged over the key pair.

This lead to a typical search bound, as the adversary can use the secret key to check if ciphertexts
fail.

Correctness treatment in [HHM22] and open question. A central motivation of [HHM22]
was that it is hard to estimate concrete δwc-bounds for particular schemes without relying on
heuristics, and that it might be easier to estimate bounds for notions in which the attacker does
not obtain the secret key.

[HHM22] therefore introduced a new family of correctness games that represent the search
for failing plaintexts without the secret key, called Find Failing Plaintext (FFP) games, and then
related the respective advantages to properties of the underlying encryption scheme PKE (see
Fig. 1):

The resulting correctness requirements on PKE (δik, σδik and FFP-NG) are defined in a way
such reasoning about their concrete estimates can safely involve computational assumptions, as
they represent settings in which the attacker does not possess the secret key. On the other hand,
as already mentioned in [HHM22] (and later in [MX23]), these notions nonetheless introduce
new analysis tasks for designers who want to argue security of their concrete scheme. Given that
δwc-correctness can be bounded heuristically by available estimator scripts, it might very well be
that scheme designers are happy to resort to that heuristic. We therefore address the following
open question:

Can we reconcile the proof for explicitly rejecting KEMs given in [HHM22]
with the more established correctness notion (worst-case correctness)?

Failing gracefully and worst-case correctness 3

δik, σδik
small for PKE

PKE
FFP-NG

PKEG

FFP-CCA in
the eQROM

KEM⊥
m

IND-CPA

PKE
IND-CPA or

OW-CPA
KEM⊥

m
IND-CCA

FO⊥
m

Fig. 1. Simplification of Figure 1 in [HHM22].The red-dotted part introduces new analysis tasks for KEM
designers.

Result of this note. We will show that the red-dotted part of Fig. 1 can be replaced with a
picture only involving the worst-case correctness parameter δwc, see Fig. 2.

δwc
small for PKE

KEM⊥
m

IND-CPA

PKE
IND-CPA or

OW-CPA KEM⊥
m

IND-CCA

FO⊥
m

Fig. 2. Analogue of Fig. 1 with the alternative decryption failure analysis developed in this note.

To achieve this, the only part requiring a change will be how we reason that attackers cannot
distinguish oDecaps from its simulation, to which end we would like to simply resort to the
original COR notion.

The only hurdle is that COR, as analysed so far, isn’t a seamless fit: the simulation of oDecaps
in [HHM22] involves a slightly more complicated variant of the QROM, called eQROM. In the
eQROM, the attacker gets an additional interface that essentially inverts certain encryptions,
Since the search bound for COR was only known in the plain QROM that does not provide this
additional interface, we need to reprove the bound in the eQROM.
TL;DR for scheme designers. Theorem 1 (on page 9) provides concrete bounds for the
IND-CCA security of FO⊥m[PKE,G,H]. Ignoring constant factors up to 10 and an additive term
related to the size of the message space (denoted “.”), our bound is roughly of the following
form:

εIND-CCA-KEM .
√

(d+ qD) · εIND-CPA + (q + qD + 1)2 · δwc + qD(q + qD) · 2−γ/2 .

The bound requires to upper bound the following values:

εIND-CPA IND-CPA advantage against PKE

q number of issued random oracles queries

qD number of decryption queries

d random oracle query depth (can be bounded trivially by q)

2−γ/2 maximal probability that encryption hits a specific ciphertext (see Def. 1
on page 4)

δwc worst-case correctness of PKE as defined in [HHK17] (see Def. 4 on page 5):
probability that decrypting Enc(m) doesn’t yield m for the worst message
m, averaged over KG

4 K. Hövelmanns, C. Majenz

Assuming an attacker makes far less online queries than hash queries (so qD � q), trivially
bounding d < q, and dropping constant factors up to 4, we can further simplify the bound to

εIND-CCA-KEM .
√
q · εIND-CPA + q2 · δwc + qD · q · 2−γ/2 .

2 Preliminaries.

After establishing basic notation, we recall several correctness-related notions for public-key en-
cryption schemes that were introduced in [HHK17] and [HHM22]. (For convenience, we also recall
more standard definitions for public-key encryption and key encapsulation algorithms.)

For a finite set S, we denote the sampling of a uniform random element x by x←$ S, and we
denote deterministic computation of an algorithm A on input x by y := A(x). By JBK we denote
the bit that is 1 if the Boolean statement B is true, and otherwise 0.

Below, we also consider all security games in the (quantum) random oracle model, where PKE
and adversary A are given access to (quantum) random oracles. (How we model quantum access
is made explicit in Section 2.5 below.)

2.1 Standard definitions for PKE

For convenience, we start by recalling the formal definition of γ-spreadness.

Definition 1 (γ-spreadness). We say that PKE is γ-spread iff for all key pairs (pk, sk) ∈
supp(KG) and all messages m ∈M it holds that

max
c∈C

Pr[Enc(pk,m) = c] ≤ 2−γ ,

where the probability is taken over the internal randomness Enc.

We also recall two standard security notions: One-Wayness under Chosen Plaintext Attacks
(OW-CPA) and Indistinguishability under Chosen-Plaintext Attacks (IND-CPA).

Definition 2 (OW-CPA, IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption scheme
with message space M. We define the OW-CPA game as in Fig. 3 and the OW-CPA advantage
function of an adversary A against PKE as

AdvOW-CPA
PKE (A) := Pr[OW-CPAAPKE ⇒ 1] .

Furthermore, we define the ’left-or-right’ version of IND-CPA by defining games IND-CPAb,
where b ∈ {0, 1} (also in Fig. 3), and the IND-CPA advantage function of an adversary A =
(A1,A2) against PKE (where A2 has binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA0 ⇒ 1]− Pr[IND-CPAA1 ⇒ 1]| .

Game OW-CPA
01 (pk, sk)← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk, m∗)
04 m′ ← A(pk, c∗)
05 return Jm′ = m∗K

Game IND-CPAb

06 (pk, sk)← KG
07 (m∗

0, m∗
1, st)← A1(pk)

08 c∗ ← Enc(pk, m∗
b)

09 b′ ← A2(pk, c∗, st)
10 return b′

Fig. 3. Games OW-CPA and IND-CPAb for PKE.

Failing gracefully and worst-case correctness 5

Game FFP-CCAPKEG

01 (pk, sk)← KG
02 m← AoDecrypt,eCO.RO,eCO.Ext(pk)
03 c := Enc(pk, m; G(m))
04 m′ := Dec(sk, c)
05 if c 6= Enc(pk, m′; G(m′))
06 m′ := ⊥
07 return Jm′ 6= mK

Oracle oDecrypt(c 6= c∗)
08 m′ := Dec(sk, c)
09 if c 6= Enc(pk, m′; G(m′))
10 return ⊥
11 else
12 return m′

Fig. 4. Game FFP-CCA for derandomised scheme PKEG, with G modelled as an extractable compressed
oracle eCO, so with oracle interface eCO.RO and additional extractor interface eCO.Ext that, intuitively,
produces plaintexts for queried ciphertexts. Lines 03-05 are defined relative to the random oracle G
which is modelled as an extractable QRO, we stuck with writing G for the sake of simplicity. (Formally,
G represents oracle interface eCO.RO.) This game is for derandomised schemes PKEG (instead of an
arbitrary dPKE), the decryption oracle thus includes the respective re-encryption step.

2.2 FO-related correctness notions for PKE

Finding Failing Plaintexts (FFP). Following [HHM22], we formalise the finding of failing
plaintexts as the winning condition of the FFP game below. In the FFP-CCA game, the adversary
is given the public key and access to a decryption oracle, outputs a message m and wins if
Dec(sk,Enc(pk,m)) 6= m. We are only concerned with the game run against PKEG, i.e., a public-
key encryption scheme that stems from derandomising some public-key encryption scheme PKE
as sketched in the introduction and formalised in Fig. 8 on page 7).

Definition 3 (FFP-CCA of PKEG). Let PKEG = (KG,EncG,DecG) be the modified public-key
encryption scheme stemming from derandomising some public-key encryption scheme PKE =
(KG,Enc,Dec). We define the FFP-CCA game for PKEG as in Fig. 4, and the FFP-CCA advantage
function of an adversary A against PKEG as

AdvFFP-CCA
PKEG (A) := Pr[FFP-CCAAPKEG ⇒ 1] .

We now recall the definition of worst-case-correctness introduced in [HHK17], there called
δ-correctness.

Definition 4 (δwc-worst-case-correctness). We say that a public-key encryption scheme PKE
is δwc-worst-case-correct if

E[max
m∈M

Pr [Dec(sk, c) 6= m | c← Enc(pk,m)]] ≤ δwc ,

where the expectation is taken over (pk, sk)← KG and the probability is over the randomness of
Enc.

In particular, δwc-worst-case correctness means that even (possibly unbounded) adversaries
with access to the secret key will succeed in triggering decryption failure with probability at most
δwc. This property was formalised in [HHK17] as the winning condition of a correctness game
COR, in which the adversary gets the full key pair, outputs a message, and wins if the message
exhibits decryption failure. The difference between FFP-CCA and COR is having the full key pair
(COR) vs. having access to a decryption oracle (FFP-CCA).

Like [HHK17], we need to analyse the respective term for PKEG, i.e., a public-key encryption
scheme resulting from derandomising some public-key encryption scheme PKE. Since derandomi-
sation happens via a random oracle G, [HHK17] introduced a QROM analogue of game COR,
called COR-QRO, in which the attacker has quantum access to G.

Unlike in [HHK17], however, the proof structure imposed by [HHM22] makes it necessary to
analyse the correctness game in an extension of the QROM, called eQROM. (For convenience, we

6 K. Hövelmanns, C. Majenz

briefly recapture the eQROM in Section 2.5 below.) With Definition 5 below, we hence extend
the COR-QRO definition from [HHK17] to the extended QROM. In the extended QROM, G
is modelled as an extractable compressed oracle eCO that provides the oracle’s interface (called
eCO.RO) and, additionally, an extractor interface eCO.Ext that is defined relative to some function
f . We will need to refer to the unitary operator facilitating queries to eCO.RO, which we denote
by O. Intuitively, the extractor interface eCO.Ext, when queried on some target value t, produces
preimages x such that f(x,G(x)) = t, assuming that such an x was already noticeable in previous
oracle queries. Like [HHM22], we will work with f := Enc. This means that eCO.Ext, when queried
on a ciphertext c, will produce a plaintext m for c such that m and its random oracle value r
have the property that Enc(m; r) = c.

Definition 5. We define correctness game COR-eQROMPKEG for PKEG– modelling G as an ex-
tended QROM – in Fig. 5, and the advantage of an adversary A against PKEG as

AdvCOR-eQROMEnc
PKEG (A) := Pr[COR-eQROMAPKEG ⇒ 1] .

GAME COR-eQROMPKEG

13 (pk, sk)← KG
14 m← AeCO.RO,eCO.Ext(sk, pk)
15 c := Enc(pk, m; G(m))
16 m′ := DecG(sk, c)
17 if c 6= Enc(pk, m′; G(m′))
18 m′ := ⊥
19 return Jm′ 6= mK

Fig. 5. Correctness game COR-eQROMEnc for PKEG with G modelled as an extractable compressed oracle
eCO, so with oracle interface eCO.RO and additional extractor interface eCO.Ext. Like in the FFP-CCA
game (Fig. 4), we write G (instead of eCO.RO) in lines 03-05 for the sake of simplicity. The difference
between games FFP-CCA and COR-eQROM is that in FFP-CCA, A has the decryption oracle oDecrypt,
while in COR-eQROM, it has the full secret key.

2.3 Standard notions for KEM

We now recall Indistinguishability under Chosen-Plaintext Attacks (IND-CPA) and under Chosen-Ciphertext
Attacks (IND-CCA).

Definition 6 (IND-CPA, IND-CCA). Let KEM = (KG,Encaps,Decaps) be a key encapsulation
mechanism with key space K. For ATK ∈ {CPA,CCA}, we define IND-ATK-KEM games as in
Fig. 6, where

OATK :=
{
− ATK = CPA
oDecaps ATK = CCA .

We define the IND-ATK-KEM advantage function of an adversary A against KEM as

AdvIND-ATK-KEM
KEM (A) := |Pr[IND-ATK-KEMA ⇒ 1]− 1/2| .

2.4 The Fujisaki-Okamoto transformation with explicit rejection

This section recalls the definition of FO⊥m. To a public-key encryption scheme PKE = (KG,Enc,Dec)
with message space M, randomness space R, and hash functions G :M→R and H : {0, 1}∗ →
{0, 1}n, we associate

KEM⊥m := FO⊥m[PKE,G,H] := (KG,Encaps,Decaps) .

Failing gracefully and worst-case correctness 7

Game IND-ATK-KEM
01 (pk, sk)← KG
02 b←$ {0, 1}
03 (K∗

0 , c∗)← Encaps(pk)
04 K∗

1 ←$ K
05 b′ ← AOATK (pk, c∗, K∗

b)
06 return Jb′ = bK

oDecaps(c 6= c∗)
07 K := Decaps(sk, c)
08 return K

Fig. 6. Game IND-ATK-KEM for KEM, where ATK ∈ {CPA, CCA} and OATK is defined in Definition 6.

Its constituting algorithms are given in Fig. 7. FO⊥m uses the underlying scheme PKE in a deran-
domized way by using G(m) as the encryption coins (see line 02) and checks during decapsulation
whether the decrypted plaintext does re-encrypt to the ciphertext (see line 06). This building
block of FO⊥m, i.e., the derandomisation of PKE and performing a re-encryption check, is incor-
porated in the following transformation T:

PKEG := T[PKE,G] := (KG,EncG,DecG) ,

with its constituting algorithm given in Fig. 8.

Encaps(pk)
01 m←$ M
02 c := Enc(pk, m; G(m))
03 K := H(m)
04 return (K, c)

Decaps(sk, c)
05 m′ := Dec(sk, c)
06 if m′ = ⊥ or c 6= Enc(pk, m′; G(m′))
07 return ⊥
08 else
09 return K := H(m′)

Fig. 7. Key encapsulation mechanism KEM⊥
m = (KG, Encaps, Decaps), obtained from PKE =

(KG, Enc, Dec) by setting KEM⊥
m := FO⊥

m [PKE, G, H].

EncG(pk)
01 m←$ M
02 c := Enc(pk, m; G(m))
03 return c

DecG(sk, c)
04 m′ := Dec(sk, c)
05 if m′ = ⊥ or c 6= Enc(pk, m′; G(m′))
06 return ⊥
07 else
08 return m′

Fig. 8. Derandomized PKE scheme PKEG = (KG, EncG, DecG), obtained from PKE = (KG, Enc, Dec) by
encrypting a message m with randomness G(m) for a random oracle G, and incorporating a re-encryption
check during DecG.

2.5 Compressed oracles and extraction

For convenience, we now also recapture the eQROM. It was shown in [Zha19] how a quantum-
accessible random oracle O : X → Y can be simulated by preparing a database D with an
entry Dx for each input value x, with each Dx being initialized as a uniform superposition of
all elements of Y , and omitting the “oracle-generating” measurements until after the algorithm
accessing O has finished.

8 K. Hövelmanns, C. Majenz

In [DFMS21], this oracle simulation was generalized to obtain an extractable oracle simulator
eCO (for extractable Compressed Oracle) that has two interfaces, the random oracle interface
eCO.RO and an extraction interface eCO.Extf , defined relative to a function f : X × Y →
T . Informally, eCO.Extf takes as input a classical value t. Consider the classical procedure of
going through a lexicographically ordered list of lazy-sampled input output pairs (x, y) and
outputting the first one such that f(x, y) = t. eCO.Extf performs the quantum analogue of that:
a measurement that partially collapses the oracle database, just enough so that the classical
procedure would yield one particular outcome x for all parts of the superposition. After the
measurement, D is thus in a state such that the superposition held in database entry Dx only
contains possibilities y for eCO.RO(x) such that f(x, y) = t, and no entry Dx′ for any x′ < x will
have any possibilities y′ left such that also f(x′, y′) = t. Whenever it is clear from context which
function f is used, we simply write eCO.Ext instead of eCO.Extf .

In general, eCO.Extf can extract preimage entries from the “database” D during the runtime
of an adversary instead of only after the adversary terminated. This allows for adaptive behaviour
of a reduction, based on an adversary’s queries. In [DFMS21], it was already used for the same
purpose we need it for – the simulation of a decapsulation oracle, by having eCO.Ext extract a
preimage plaintext from the ciphertext on which the decapsulation oracle was queried. We will
denote oracles modelled as extractable quantum-accessible ROs by eQROf , and a proof that uses
an eQROf will be called a proof in the eQROMf .

We will now make this description more formal, closely following notation and conventions
from [DFMS21]. Like in [DFMS21], we keep the formalism as simple as possible by describing
an inefficient variant of the oracle that is not (yet) “compressed”. Efficient simulation is possible
via a standard sparse encoding, see [DFMS21, Appendix A]. The simulator eCO for a random
function O : {0, 1}m → {0, 1}n is a stateful oracle with a state stored in a quantum register
D = D0m . . . D1m , where for each input value x ∈ {0, 1}m, register Dx has n + 1 qubits used
to store superpositions of n-bit output strings y, encoded as 0y, and an additional symbol ⊥,
encoded as 10n. We adopt the convention that an operator expecting n input qubits acts on the
last n qubits when applied to one of the registers Dx. The compressed oracle has the following
three components.

– The initial state of the oracle, |φ〉 = |⊥〉2
m

– A quantum query with query input register X and output register Y is answered using the
oracle unitary O defined by

O |x〉X = |x〉X ⊗
(
FDx

CNOT⊗n
Dx:Y FDx

)
, (1)

where F |⊥〉 = |φ0〉, F |φ0〉 = |⊥〉 and F |ψ〉 = |ψ〉 for all |ψ〉 such that 〈ψ|⊥〉 = 〈ψ|φ0〉 = 0,
with |φ0〉 = |+〉⊗n being the uniform superposition. The CNOT operator here is responsible
for XORing the function value (stored in Dx, now in superposition) into the query algorithm’s
output register.

– A recovery algorithm that recovers a standard QRO O: apply F⊗2m to D and measure it to
obtain the function table of O.

We now make our description of the extraction interface eCO.Ext formal: Given a random
oracle O : {0, 1}m → {0, 1}n, let f : {0, 1}m × {0, 1}n → {0, 1}` be a function. We de-
fine a family of measurements (Mt)t∈{0,1}` . The measurement Mt has measurement projectors
{Σt,x}x∈{0,1}m∪{∅} defined as follows. For x ∈ {0, 1}m, the projector selects the case where Dx

is the first (in lexicographical order) register that contains y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′

D′
x
⊗Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y〉〈y| (2)

and Π̄ = 1−Π. The remaining projector corresponds to the case where no register contains such
a y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m

Π̄t,x′

D′
x
. (3)

Failing gracefully and worst-case correctness 9

As an example, say we model a random oracle H as such an eQROf . Using f(x, y) := JH(x) = yK,
M1 allows us to extract a preimage of y.

eCO is initialized with the initial state of the compressed oracle. eCO.RO is quantum-accessible
and applies the compressed oracle query unitary O. eCO.Ext is a classical oracle interface that, on
input t, applies Mt to eCO’s internal state (i.e. the state of the compressed oracle) and returns
the result. The simulator eCO has several useful properties that were characterized in [DFMS21,
Theorem 3.4], given below.These characterisations are in terms of the quantity

Γ (f) = max
t
ΓRf,t

, with

Rf,t(x, y) :⇔ f(x, y) = t and
ΓR := max

x
|{y | R(x, y)}|. (4)

For f = Enc(·; ·), the encryption function of a PKE that takes as first input a message m and
as second input an encryption randomness r, we have Γ (f) = 2−γ |R| if PKE is γ-spread. In this
case, eCO.Ext(c) outputs a plaintext m such that Enc(m, eCO.RO(m)) = c, or ⊥ if the ciphertext
c has not been computed using eCO.RO before.

3 Our main result

We start by stating our main result that relates IND-CCA security of FO⊥m[PKE,G,H] to IND-CPA
security, δwc-worst-case correctness and γ-spreadness of PKE.

Theorem 1 (PKE IND-CPA secure and δwc-worst-case correct ⇒ FO⊥m[PKE] IND-CCA).
Let PKE be a (randomized) PKE scheme that is γ-spread and δwc-worst-case-correct, with message
space of size |M|. Let A be an IND-CCA-KEM adversary (in the QROM) against FO⊥m[PKE,G,H],
issuing at most qG many queries to its oracle G, qH many queries to its oracle H, and at most
qD many queries to its decapsulation oracle oDecaps. Let q = qG + qH, and let d be the query
depth of the combined queries to G and H. Then there exists an IND-CPA adversary B against
PKE such that

AdvIND-CCA-KEM
FO⊥

m [PKE,G,H](A) ≤ AdvPKE,B + 10(q + 1)2δwc + εγ ,

with
AdvPKE,B = 4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (B) + 8 (q + qD)√
|M|

,

and the additive spreadness term εγ being defined by

εγ = 24qD(qG + 4qD) · 2−γ/2 .

The running time of B is bounded by Time(B) ≤ Time(A)+Time(eCO, q+qD, qD)+O(qD) and B
requires quantum memory bounded by QMem(B) ≤ QMem(A) + QMem(eCO, q + qD, qD), where
Time(eCO, q, qE), and QMem(eCO, q, qE), denote the time, and quantum memory, necessary to
simulate the extractable QROM for q many queries to eCO.RO and qE many queries to eCO.Ext.

Proof. We begin by stating an implicit result of [HHM22] as Theorem 2 (below) that relates
IND-CCA security of FO⊥m[PKE,G,H] to IND-CPA security of PKE and FFP-CCA security of PKEG

in the eQROMEnc.
Theorem 1 is obtained by bounding the FFP-CCA term in Eq. (5) of Theorem 2 in terms of

δwc, which we will do in Section 4: Theorem 3 states that the FFP-CCA term can be bounded by
10(qG + qH + qD + 1)2δwc. Here, we identified C’s number of eCO.RO queries in Theorem 3 with
qG + qH + qD as indicated by Theorem 2.

For completeness, we show that Theorem 2 indeed follows straightforwardly from the results
in [HHM22] in Section 5. ut

10 K. Hövelmanns, C. Majenz

Theorem 2. [PKEG FFP-CCA and PKE IND-CPA secure ⇒ FO⊥m[PKE] IND-CCA] Let PKE be
a (randomized) PKE scheme that is γ-spread, and let A be an IND-CCA-KEM adversary (in
the QROM) against FO⊥m[PKE,G,H], issuing at most qG many queries to its oracle G, qH many
queries to its oracle H, and at most qD many queries to its decapsulation oracle oDecaps. Let
q = qG + qH, and let d be the query depth of the combined queries to G and H. Then there exist
an IND-CPA adversary B against PKE and an eQROMEnc FFP-CPA adversary C against PKEG

such that

AdvIND-CCA-KEM
FO⊥

m [PKE,G,H](A) ≤ AdvPKE,B + AdvFFP-CCA
PKEG (C) + εγ , (5)

with
AdvPKE,B = 4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (B) + 8 (q + qD)√
|M|

,

and the additive spreadness term εγ being defined by

εγ = 12qD(qG + 4qD)2−γ/2 .

The running time of B is bounded by Time(B) ≤ Time(A)+Time(eCO, q+qD, qD)+O(qD) and B
requires quantum memory bounded by QMem(B) ≤ QMem(A) + QMem(eCO, q + qD, qD), where
Time/QMem(eCO, q, qE) denotes the time/quantum memory necessary to simulate the extractable
QROM for q many queries to eCO.RO and qE many queries to eCO.Ext. C makes qG + qH + qD
queries to eCO.RO.

4 Bounding FFP-CCA in the eQROM via worst-case correctness

We now give the alternative analysis of FFP-CCA in the eQROMEnc that allows us to replace the
FFP-CCA term in Theorem 2 by 10(q + 1)2δwc.

Theorem 3 (PKE δwc-worst-case-correct ⇒ PKEG FFP-CCA). Let PKE be a (randomized)
PKE scheme that is δwc-worst-case-correct, and let C be an FFP-CCA adversary C against PKEG

in the eQROMEnc, issuing at most qD decryption queries and q many queries to its extQROM
oracle interface eCO.RO. Then

AdvFFP-CCA
PKEG (C) ≤ 10(q + qD + 1)2δwc . (6)

Proof. The proof proceeds in two steps.

1. Use FFP-CCA adversary C to construct a COR-eQROM adversary Ĉ against PKEG in the
eQROMEnc that has the same advantage as C and makes q̂ := q + qD many queries to
eCO.RO.

2. Prove that any such COR-eQROMPKEG,Enc adversary D, making q̂ many queries to the oracle
interface eCO.RO that models G, has advantage at most 10(q̂ + 1)2δwc.

δwc
small for PKE

PKEG

COR-eQROM
in the

eQROM

PKEG

FFP-CCA in
the eQROM

Step 2 Step 1

For step 1, we note that COR-eQROM adversaries get the full key pair (sk, pk) (as specified
by game COR-eQROM, see Fig. 5) and can hence simulate the decryption oracle on their own. In
more detail, we construct COR-eQROM adversary Ĉ against PKEG as follows: Ĉ runs C, forwards
all eCO.RO/eCO.Ext queries to its own extractable oracle interfaces, and simulates C’s Dec oracle
using the secret key. To perform the re-encryption check during the simulation of Dec, Ĉ has to

Failing gracefully and worst-case correctness 11

make one additional query to eCO.RO per Dec call. Once C finishes, Ĉ simply forwards C’s output
m. Ĉ perfectly simulates the FFP-CCA game for C and wins iff C wins, hence

AdvFFP-CCA
PKEG (C) ≤ AdvCOR-eQROMEnc

PKEG (Ĉ) .

To begin with step 2 (analysing the COR-eQROMEnc advantage), we first slightly simplify the
winning condition of the COR-eQROMEnc game for PKEG: We introduce game 1 that only differs
from game 0, the original COR-eQROMEnc game for PKEG, by dropping the re-encryption check
from the winning condition. It is easy to verify that the COR-eQROMEnc advantage is exactly
the advantage against game 1:

– The winning condition in game 1 implies the winning condition in game 0.
– To show the other direction, we notice that A wins game 0 by producing a message m such

that either its encryption fails to decrypt (which is the winning condition in game 1) or such
that the re-encryption check fails. But if the the re-encryption check fails, then Dec(sk, c)
cannot yield m (and A again wins in game 1).

AdvCOR-eQROMEnc
PKEG (Ĉ) = Pr[Ĉ wins in G1] .

GAMES 0 - 1
09 (pk, sk)← KG
10 m← AeCO.RO,eCO.Ext(sk, pk)
11 c := Enc(pk, m; G(m))
12 m′ := DecG(sk, c)
13 if c 6= Enc(pk, m′; G(m′)) �Game G0
14 m′ := ⊥ �Game G0
15 return Jm′ 6= mK

Fig. 9. Game G0, the correctness game COR-eQROMEnc for PKEG, and Game G1 with slightly simplified
winning condition.

We proceed by analysing the COR-eQROMEnc advantage with this simplified winning condi-
tion. More concretely, we would like to bound the maximal advantage in game 1 of any adversary
that makes at most q̂ many queries. To that end, we fix the key pair and define a predicate
Pfail,PKEG by

Pfail,PKEG(m)⇔ Decsk(EncG
pk(m)) 6= m.

We use the predicate to rewrite the winning condition in game 1:

Pr[Ĉ wins in G1] = EKG Pr
m←ĈeCO.RO,eCO.Ext(sk,pk)

[Pfail,PKEG(m)] .

We will now bound the right-hand side, i.e., the probability that Ĉ returns a message satisfying
the predicate, for any fixed key pair. To that end, we give a helper Lemma 1 below which relates
Ĉ’s success probability to a sum of square roots of probabilities (“amplitudes”). The sum is taken
over all random oracle queries (including an implicit one to check the predicate). In the sum,
the k–th summand intuitively represents the following: Consider the oracle query database D
for eCO to contain up to k many entries, meaning up to k many queries to eCO.RO were made
so far, without satisfying the predicate. We consider the maximal probability that picking a
random output value u for some oracle input value m leads to (m,u) satisfying the predicate.
(In the lemma’s notation, Found(D[m 7→ u]), where we define Found like in Lemma 1, using our
predicate Pfail,PKEG on the message space.) The maximum is taken over all possible oracle input
values m and all query databases D such that the predicate was not yet satisfied (¬Found(D)).

12 K. Hövelmanns, C. Majenz

We continue by giving a formal argument. Note that the predicate Pfail,PKEG can be computed
using a single query to G, we can therefore identify variable qP in Lemma 1 with 1. Applying
Lemma 1, we thus obtain

√
Pr

m←ĈeCO.RO,eCO.Ext(sk,pk)
[Pfail,PKEG(m)] ≤

q̂+1∑
k=1

max
m,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[Found(D[m 7→ u])]

≤ (q̂ + 1) max
m,D:
|D|≤q+1
¬Found(D)

√
10 Pr

u←Y
[Found(D[m 7→ u])]

where the second inequality holds because any database with ` < q + 1 entries fulfilling the
predicate can be completed to a database with q + 1 entries still fulfilling the predicate.

To translate the summands back into terms concerning decryption failure, we note the fol-
lowing: If ¬Found(D), but Found(D[x 7→ u]), then it must be specifically the entry (x, u) that
satisfies the predicate. Thus, assuming the database D before was in a state such that ¬Found(D),
we find

Found(D[x 7→ u])⇔ Decsk(Encpk(x;u)) 6= x .

Using this fact and squaring both sides of the above inequality yields

Pr
m←ĈeCO.RO,eCO.Ext(sk,pk)

[Pfail,PKEG(m)] ≤ 10(q̂ + 1)2 max
m

Pr
u←Y

[Decsk(Encpk(m;u)) 6= x]

for any fixed key pair (sk, pk). Taking the expectation over KG hence yields

Pr[Ĉ wins in G1] ≤ EKG10(q̂ + 1)2 max
m

Pr
u←Y

[Decsk(Encpk(m;u)) 6= x]

= 10(q̂ + 1)2δwc.

ut

In the above proof, we used the following

Lemma 1 (Variant of Lemma 1 in [AMHJ+23]). Let G : X → Y be a random oracle and
let PG be a predicate on some set Z that can be computed using at most qP classical queries to
G. Let further AG be an algorithm in the eQROf (for an arbitrary f), making at most q quantum
queries to eCO.RO and outputting z ∈ Z. Then

√
Pr

z←AG
[P (z)] ≤

q+qP∑
k=1

max
x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[FoundP(D[x 7→ u])] (7)

where FoundP is the database property

FoundP = (∃z ∈ Z : PD(z)) (8)

and PD is the algorithm that computes P but makes queries to D instead of G, and if any query
returns ⊥, PD outputs ‘false’.

Before we give a proof of Lemma 1, we need to prepare some ingredients. In particular, the
proof uses the concept of transition capacities from [CFHL21], we now recall the required notation
from that paper.

A database property P is a predicate on the set of partial functions with the same input
and output space as G. Overloading notation, we also denote by P the projector acting on
a compressed oracle database register with support spanned by the computational basis states
corresponding to partial functions fulfilling P . For any database property P we define the database
property Pi such that f fulfils Pi iff it fulfils P and is defined on at most i inputs.

Failing gracefully and worst-case correctness 13

We now define the quantum transition capacity, following [CFHL21]. The quantum transition
capacity

q
P → P ′

y
is the quantum analogue of the maximum probability that a query transcript

has a property P ′ after an input together with a freshly lazy-sampled output has been added to
the transcript, given that the transcript has property P before. In addition, we define a q-query
variant that considers q adaptively chosen inputs.

Definition 7 (Quantum transition capacity). Let P, P ′ be two database properties. Then,
the quantum transition capacity is defined as

q
P

q→ P ′
y

:= sup
U1,...,Uq−1

‖P ′OUq−1 O · · ·OU1 OP‖ .

where the supremum is over all adversary register sizes and all unitaries U1, . . . , Uq−1 acting on
the adversary’s registers. We write

q
P → P ′

y
:=

q
P

1→ P ′
y

= ‖P ′OP‖

To bound the power of the eQROMf for search tasks, we strengthen the model slightly by
having the interface eCO.Ext apply the purified version (the Stinespring dilation) ofMt on input
t, and return the (quantum) output register. This generalization is not strictly necessary for our
proof, but is convenient as it allows us to model an algorithm with query access to eQROMf as
unitary. Concretely, the purified measurement is the isometry

VT D→T DO =
∑

t

|t〉〈t|T ⊗ V
(t)

D→DO, with

V
(t)

D→DO =
∑

x∈{0,1}m

Σt,x
D ⊗ |x〉O .

Let us call this model the eQROM∗f and the strengthened extraction interface eCO.Ext∗. Any
algorithm in the eQROMf can be simulated in the eQROM∗f by submitting any eCO.Ext queries
to eCO.Ext∗, measuring the output and returning the result.

In the following we prove that for query bounds for oracle search problems (like, e.g., preimage
search, collision search) proven using the compressed oracle framework, the same bound holds
for algorithms with eQROM∗f -access, irrespective of the number of queries made to the interface
eCO.Ext∗. On a high level, this is due to the fact that the operator that facilitates a query to
eCO.Ext∗ and the projector checking the database property commute. The argument is similar
to the one made in Appendix B of [AMHJ+23]. We define the decorated transition capacity as

q
P → P ′

y
V

= ‖P ′V OP‖.

We have the following

Lemma 2. Let VDE be a controlled unitary with control register the database register D, and
acting on an arbitrary additional register E. Then

q
P → P ′

y
V

=
q
P → P ′

y
.

Proof. As V is a controlled unitary with control register D, and P ′ is an operator that is diagonal
in the computational basis, we have VDEP

′
D = P ′DVDE . We thus get

q
P → P ′

y
V

= ‖P ′V OP‖ = ‖V P ′OP‖ = ‖P ′OP‖ =
q
P → P ′

y
.

Here, the second equality follows because V and P ′ commute, and the third equality is due to
the unitary invariance of the operator norm. ut

This lemma can be used to show that the framework for query bounds developed in [CFHL21]
works essentially unchanged for the decorated transition capacity

q
P → P ′

y
V

with a controlled
unitary V as in Lemma 2 as well.3

3 Here we have only defined and characterized the decorated transition capacity as needed for analyses
that don’t distinguish sequential and parallel queries, which suffices for our purposes.

14 K. Hövelmanns, C. Majenz

Now, any algorithm A in the eQROM∗f proceeds without loss of generality by applying the
unitary

UA = UqOUq−1O . . . OU0

to a quantum register initialized in the all-0 state, where the Ui have the form

Ui = Ui,`V Ui,`−1V . . . V Ui,0,

where the unitaries Ui,j do not act on the compressed oracle database.
Using the prepared ingredients, we can conclude that Lemma 1 from [AMHJ+23] holds in the

eQROM∗f , with a bound depending on the number of eCO.RO queries only:

Proof (of Lemma 1). The proof is identical to the proof of Lemma 1 in [AMHJ+23], with one
difference: If we denote the adversary’s unitary (we can purify/Stinespring-dilate any adversary
for this mathematical argument) between the ith and the (i+ 1)-st query to eCO.RO by Ui, we
obtain the decorated transition capacity

q
¬Found ∧ (|D| ≤ k − 1) → Found

y
Ui

instead of the
’non-decorated’ capacity

q
¬Found∧(|D| ≤ k−1)→ Found

y
. (Note that Ui includes any eCO.Ext

queries made by the adversary between the ith and the (i + 1)st query to eCO.RO, which are
controlled unitaries with control register D.) Due to Lemma 2, however, this does not make any
difference and the proof proceeds as in [AMHJ+23]. ut

5 Obtaining the passive-to-active KEM result (Theorem 2) from
[HHM22]

For the reader’s convenience, we begin by restating Theorem 2.

Theorem 2. [PKEG FFP-CCA and PKE IND-CPA secure ⇒ FO⊥m[PKE] IND-CCA] Let PKE be
a (randomized) PKE scheme that is γ-spread, and let A be an IND-CCA-KEM adversary (in
the QROM) against FO⊥m[PKE,G,H], issuing at most qG many queries to its oracle G, qH many
queries to its oracle H, and at most qD many queries to its decapsulation oracle oDecaps. Let
q = qG + qH, and let d be the query depth of the combined queries to G and H. Then there exist
an IND-CPA adversary B against PKE and an eQROMEnc FFP-CPA adversary C against PKEG

such that

AdvIND-CCA-KEM
FO⊥

m [PKE,G,H](A) ≤ AdvPKE,B + AdvFFP-CCA
PKEG (C) + εγ , (5)

with
AdvPKE,B = 4 ·

√
(d+ qD) ·AdvIND-CPA

PKE (B) + 8 (q + qD)√
|M|

,

and the additive spreadness term εγ being defined by

εγ = 12qD(qG + 4qD)2−γ/2 .

The running time of B is bounded by Time(B) ≤ Time(A)+Time(eCO, q+qD, qD)+O(qD) and B
requires quantum memory bounded by QMem(B) ≤ QMem(A) + QMem(eCO, q + qD, qD), where
Time/QMem(eCO, q, qE) denotes the time/quantum memory necessary to simulate the extractable
QROM for q many queries to eCO.RO and qE many queries to eCO.Ext. C makes qG + qH + qD
queries to eCO.RO.

The corollary is obtained in a straightforward manner by combining Theorems 4 and 7 from
[HHM22] as indicated in the figure below:

PKEG

FFP-CCA

PKE
IND-CPA

KEM⊥
m

IND-CPA

KEM⊥
m

IND-CCAFO⊥
m , [HHM22, Theorem 7]

[HHM22, Theorem 4]

Failing gracefully and worst-case correctness 15

We begin by repeating [HHM22, Theorem 3].

Theorem 4 (FO⊥
m [PKE] IND-CPA and PKEG FFP-CCA eQROMEnc⇒ FO⊥

m [PKE] IND-CCA). Let PKE be a
(randomized) PKE that is γ-spread, and KEM⊥m := FO⊥m[PKE,G,H]. Let A be an IND-CCA-KEM-
adversary (in the QROM) against KEM⊥m, making at most qD many queries to its decapsulation
oracle oDecaps, and making qG, qH queries to its respective random oracles. Let furthermore d
and w be the combined query depth and query width of A’s random oracle queries. Then there
exist an IND-CPA-KEM adversary Ã and an FFP-CCA adversary B against PKEG, both in the
eQROMEnc, such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ AdvFFP-CCA

PKEG (C) + 12qD(qG + 4qD) · 2−γ/2 .

The adversary Ã makes qG + qH + qD queries to eCO.RO with a combined depth of d + qD, and
qD queries to eCO.Ext. Here, eCO.RO simulates G × H. Adversary C makes qD many queries to
oDecrypt and eCO.Ext and qG queries to eCO.RO. Neither Ã nor C query eCO.Ext on the chal-
lenge ciphertext. The running times of the adversaries Ã and C are bounded by Time(Ã),Time(C) ≤
Time(A) +O(qD).

We proceed by repeating [HHM22, Theorem 7]. The bound in Theorem 2 is obtained by
plugging [HHM22, Theorem 7] into [HHM22, Theorem 3] above, identifying q̃ with qG + qH + qD,
d̃ with d+ qD, and q̃E with qD.

Theorem 5. Let Ã be an IND-CPA-KEM adversary against KEM⊥m := FO⊥m[PKE,G,H] in the
eQROMEnc, issuing q̃ many queries to eCO.RO in total, with a query depth of d̃, and q̃E many
queries to eCO.Ext, where none of them is with its challenge ciphertext. Then there exists an
IND-CPA adversary B against PKE such that

AdvIND-CPA-KEM
KEM⊥

m
(Ã) ≤ 4 ·

√
d̃ ·AdvIND-CPA

PKE (B) + 8q̃√
|M|

.

The running time and quantum memory footprint of B satisfy Time(B) = Time(Ã)+Time(eCO, q̃, q̃E)
and QMem(B) = QMem(Ã) + QMem(eCO, q̃, q̃E).

References

AMHJ+23. Carlos Aguilar-Melchor, Andreas Hülsing, David Joseph, Christian Majenz, Eyal Ronen,
and Dongze Yue. Sdith in the qrom. Cryptology ePrint Archive, Paper 2023/756, 2023.
https://eprint.iacr.org/2023/756.

BDK+18. Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS - Kyber: A CCA-Secure Module-
Lattice-Based KEM. In IEEE (EuroS&P) 2018, pages 353–367, 2018.

BHH+19. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Per-
sichetti. Tighter proofs of CCA security in the quantum random oracle model. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference,
Part II, volume 11892 of Lecture Notes in Computer Science, pages 61–90, Nuremberg, Ger-
many, December 1–5, 2019. Springer, Heidelberg, Germany.

BS20. Nina Bindel and John M. Schanck. Decryption failure is more likely after success. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 206–225, Paris, France, April 15–17, 2020. Springer,
Heidelberg, Germany.

CFHL21. Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part II,
volume 12697 of Lecture Notes in Computer Science, pages 598–629, Zagreb, Croatia, Octo-
ber 17–21, 2021. Springer, Heidelberg, Germany.

Den03. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th
IMA International Conference on Cryptography and Coding, volume 2898 of Lecture Notes
in Computer Science, pages 133–151, Cirencester, UK, December 16–18, 2003. Springer,
Heidelberg, Germany.

https://eprint.iacr.org/2023/756

16 K. Hövelmanns, C. Majenz

DFMS21. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in
the quantum random-oracle model. Cryptology ePrint Archive, Report 2021/280, 2021.
https://eprint.iacr.org/2021/280, accepted for publication at Eurocrypt 2022.

DGJ+19. Jan-Pieter DAnvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Ver-
cauteren, and Ingrid Verbauwhede. Decryption failure attacks on ind-cca secure lattice-
based schemes. In Public-Key Cryptography PKC 2019, volume 11443 of Lecture Notes in
Computer Science, pages 565–598. Springer, 2019.

DRV20. Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. (One) failure is not an option:
Bootstrapping the search for failures in lattice-based encryption schemes. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part III, volume
12107 of Lecture Notes in Computer Science, pages 3–33, Zagreb, Croatia, May 10–14, 2020.
Springer, Heidelberg, Germany.

FKK+22. Michael Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob Lichtinger, Dana
Dachman-Soled, Daniel Genkin, Alexander Nelson, Ray Perlner, Arkady Yerukhimovich,
and Daniel Apon. When frodo flips: End-to-end key recovery on frodokem via rowhammer.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’22, page 979993, New York, NY, USA, 2022. Association for Computing
Machinery.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 537–554, Santa Barbara, CA,
USA, August 15–19, 1999. Springer, Heidelberg, Germany.

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, January 2013.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 341–371, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.

HHM22. Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Failing gracefully: Decryp-
tion failures and the fujisaki-okamoto transform. In Shweta Agrawal and Dongdai Lin,
editors, Advances in Cryptology – ASIACRYPT 2022, Part IV, volume 13794 of Lecture
Notes in Computer Science, pages 414–443, Taipei, Taiwan, December 5–9, 2022. Springer,
Heidelberg, Germany.

HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated
key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020: 23rd International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 12111 of Lecture Notes
in Computer Science, pages 389–422, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg,
Germany.

JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, vol-
ume 10993 of Lecture Notes in Computer Science, pages 96–125, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

KSS+20. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-
rewind-measure: Tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, Part III, volume 12107 of Lecture Notes in Computer Science, pages 703–728,
Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

MX23. Varun Maram and Keita Xagawa. Post-quantum anonymity of Kyber. In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference on
Theory and Practice of Public Key Cryptography, Part I, volume 13940 of Lecture Notes in
Computer Science, pages 3–35, Atlanta, GA, USA, May 7–10, 2023. Springer, Heidelberg,
Germany.

NIS17. NIST. National institute for standards and technology. postquantum crypto project, 2017.
http://csrc.nist.gov/groups/ST/post-quantum-crypto/.

SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 520–551, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

https://eprint.iacr.org/2021/280
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

Failing gracefully and worst-case correctness 17

Zha19. Mark Zhandry. How to record quantum queries, and applications to quantum indifferentia-
bility. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 239–268,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

	Introduction
	Preliminaries.
	Standard definitions for PKE
	FO-related correctness notions for PKE
	Standard notions for KEM
	The Fujisaki-Okamoto transformation with explicit rejection
	Compressed oracles and extraction

	Our main result
	Bounding FFP-CCA in the eQROM via worst-case correctness
	Obtaining the passive-to-active KEM result (cor:Gracefully) from AC:HovHulMaj22

