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Abstract. Blind Signatures are a useful primitive for privacy preserving applications such as
electronic payments, e-voting, anonymous credentials, and more. However, existing practical
blind signature schemes based on standard assumptions require either pairings or lattices.
We present the first practical construction of a round-optimal blind signature in the random
oracle model based on standard assumptions without resorting to pairings or lattices. In
particular, our construction is secure under the strong RSA assumption and DDH (in pairing-
free groups). For our construction, we provide a NIZK-friendly signature based on strong
RSA, and efficiently instantiate a variant of Fischlin’s generic framework (CRYPTO’06). Our
Blind Signature scheme has signatures of size 4.28 KB and communication cost 10.98 KB.
On the way, we develop techniques that might be of independent interest. In particular, we
provide efficient relaxed range-proofs for large ranges with subversion zero-knowledge and
compact commitments to elements of arbitrary groups.

1 Introduction

In privacy-preserving authentication of data, a central question is how to authenticate without
compromising one’s private information. A blind signature solves this question by allowing a user
to obtain signatures blindly from a signer while satisfying strong security guarantees. The property
of blindness ensures that the signer cannot learn anything about the message when signing and
cannot link signatures to the signing sessions of a user. This must hold even when the signer’s
public key is chosen maliciously. On the other hand, the property one-more unforgeability imposes
that after ℓ completed signing sessions, a user cannot obtain more than ℓ valid signatures (i.e., it
cannot forge an additional signature).

Due to the strong security guarantees, blind signatures have applications in e-cash [28, 31, 74],
e-voting [30, 49], or anonymous credentials [29, 21], and more. In the past few years blind signatures
also play an important role in new applications such as blockchains [86, 23] or private access
tokens [59, 53].

Initial constructions. Since their introduction by Chaum [28], many variants of blind signatures
were proposed. The first proposed construction—blind RSA [28]—was proven secure under one-
more RSA [13]. A similar construction secure under one-more CDH was proposed in [20]. These
constructions have great efficiency—a signing interaction requires only two rounds—but require both
the random oracle model (ROM) and an interactive security assumption. These strong assumptions
are only somewhat falsifiable [71] and are tailored to the schemes itself.

Protocols with three or more rounds. Historically, the main alternative to the aforementioned blind
signatures are based on linear identification protocols, e.g., blind Schnorr [78] or similar construc-
tions [73, 6, 55, 64]. These blind signatures are shown to be secure under falsifiable assumptions
(e.g., DLOG, RSA) for poly-logarithmically many concurrent signing sessions in the ROM. But for
a polynomially large number of concurrent sessions, there are efficient attacks on such protocols
[81, 16]. Since, interesting mechanisms that bind an obtained signature to a signing session were
proposed, and the resulting schemes are secure in the ROM for an unbounded number of concurrent
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sessions [1, 47, 63, 80, 36] under standard assumptions. Unfortunately, the security proof also
requires the generic group model (i.e., it is assumed that the adversary interacts with the group in a
black-box manner). Alternatively, stateful blind signatures can be obtained for an a-priori bounded
number of signatures via a cut-and-choose technique [25, 76, 67]. Generally, these Schnorr-style
approaches require more than two moves, i.e., are not round-optimal.

Round optimality. Round optimality is a desirable efficiency measure as it removes the requirement
of storing a state for each signing session and less interaction is required to obtain a signature.
Another advantage of round optimal blind signatures is that sequential security implies concurrent
security [68, 56]. However, it is difficult to construct round-optimal blind signatures in the plain
model under standard assumptions which is supported by several impossibility results [68, 43, 75].
Katsumata et al. [65] shows that this is possible under classical and quantum standard assumptions.
While this result is of theoretical interest, the construction is impractical, due to its reliance on
general-purpose cryptographic primitives, namely garbled circuits. More commonly, constructions
circumvent such hurdles via a trusted setup [42, 5, 70, 17, 19, 79, 3], idealized models (e.g., generic
groups and/or the random oracle model [54, 4, 18, 37, 54, 66]), complexity leveraging [51, 50], or
interactive assumptions [11, 69, 8, 46, 45, 52]. All such constructions require pairings or lattices 4

with the exception of blind RSA [28, 13, 69, 8].
But over large networks and complex web applications, existing implementations of pairings

(e.g., [83]) seem to remain a significant bottleneck. Another disadvantage of pairing-based construc-
tions is that highly-verified standard cryptographic libraries (for instance BoringSSL and NSS) do
not support pairing-friendly curves. Similarly, lattice-based constructions are still in the process
of being standardized [82]. On the other hand, plain groups (without pairings) and RSA-based
constructions have found widespread use in practice, e.g., in Apple’s Proposal for Click Fraud
Prevention in Safari [84] or SSH [85]. The only efficient round-optimal blind signature in this setting
is blind RSA [28, 13] and its variants [69, 8]. The latter are covered in an RTF draft [38] and blind
RSA is still a recommended nowadays [27]. Unfortunately, these schemes require both an interactive
assumption (tailored to the scheme itself) and the ROM. This brings us to the following natural
question:

Can we construct efficient round optimal blind signatures in the ROM, based on standard
non-interactive assumptions without resorting to pairings or lattices? 5

1.1 Our Contributions

In this paper we answer this question affirmatively. We construct a round optimal blind signature
scheme with competitive efficiency, whose security is proven in the ROM under standard assumptions
in the RSA setting and group setting (without pairings) simultaneously. Concretely, our construction
is secure under the strong RSA (sRSA) assumption and DDH in ordinary prime-order groups.

Our starting point for our construction is the variant of Fischlin’s framework [42] proposed in [66].
Roughly, [66] shows how to construct a blind signature via a signature scheme with an all-but-one
reduction 6. We instantiate the framework with a variant of the signature proposed in [41] (hereafter
denoted by Sfis), and obtain blind signatures with 10.98 KB communication and signatures of
size 4.28 KB. We provide a comparison to prior works in Table 1. Notably, we provide the first
round-optimal blind signature without pairings or lattices. On a practical level, our signature is 2
times smaller than the previously most efficient blind signature in this regime [25]—and adds the
desirable features of stateless, session-independent efficiency and round optimality. In particular,
the computation cost in [25] (measured in group operations) grows linearly with the number of
signing sessions opened, whereas in our construction communication and computation is O(λ) in

4 The framework of Fischlin [42] yields round-optimal blind signatures with trusted setup generically, but
efficient instantiations rely either on pairings [18, 4, 66] or lattices [37, 7].

5 Note that due to impossibility results for round optimal blind signatures [68, 43, 75], the reliance on
random oracles can likely not be removed efficiently.

6 In the context of signatures, an all-but-one reduction allows to puncture the verification key in such a
way that all-but-one message m∗ can be signed and given a signature on m∗, a hard problem can be
solved. We refer to [72] for more details.
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the number of group elements. Compared to Blind RSA [28], our construction is only around 10
larger times without relying on a strong interactive assumption 7.

We emphasize that our instantiation is non-trivial and requires several new techniques to achieve
round-optimality and malicious blindness (i.e., blindness holds even if the signer’s verification key
was setup maliciously). Also, since the security proof of Sfis does not fit the framework as it has
no all-but-one reduction, the one-more unforgeability proof requires new insights. We refer to the
technical overview in Section 2 for more details. Along the way, we provide techniques that might
be of independent interest, such as:

– Easy-to-use notions for subversion zero-knowledge in the ROM (i.e., zero-knowledge holds even
for a maliciously setup crs).

– Efficient relaxed range proofs for large ranges, i.e., zero-knowledge proofs that prove to a
verifier that a given value x ∈ [0, B] lies in a range [−TB,BT ], where T ∈ N is the slack, with
subversion zero-knowledge.

– Compact commitments to elements of arbitrary cyclic groups based on DDH in an independent
prime-order group. Our commitments can be opened efficiently in zero-knowledge using our
relaxed range proofs.

– A zero-knowledge-friendly variant of the Sfis signature [41]. Knowledge of a signature on a given
message m can be shown efficiently in zero-knowledge using our relaxed range proofs.

Table 1: Comparison to relevant state-of-the-art blind signatures.
Reference Sig. size Comm. size Setting Assumption

del Pino et al. [37] 100 KB 850 KB Lattices DSMR,MLWE,MSIS

Blazy et al. [18] 96 B 220 KB † Pairings SXDH,CDH
Abe et al. [4] 5.5 KB 1 KB Pairings SXDH

Hanzlik et al. [54]††
5 KB 72 KB Pairings CDH9 KB 36 KB

Katsumata et al. [66] 447 B 303 B Pairings SXDH
96 B 2.2 KB DDH,CDH

This work 4.28 KB 10.98 KB RSA, Groups sRSA,DDH

We provide signature size, communication size, the algebraic setting, and the underlying assumptions
for known round-optimal blind signatures in the ROM secure under non-interactive assumptions.
We stress that our work relies on assumptions in prime-order groups without pairing.
(†): Communication of [18] scales linearly with the message size, and is given here for 256 bit
messages. (††): [54] offers tradeoffs between signature and communication sizes.

Reference Sig. size Comm. size #Rounds Assumption

Blind RSA and variants [28, 69, 8] 768 B 384 B 2 One-more RSA
Chairattana-Apirom et al. [25]‡ 8.66 KB 8.08 KB 5 RSA

This work 4.28 KB 10.98 KB 2 sRSA,DDH

We provide signature size, communication size, number of rounds and the underlying assumption
of known blind signatures in the RSA setting.
(‡): [25] is not round-optimal and at most an a-priori fixed number of signatures can be issued,
here 230. Also, the signer is required to keep a state and communication scales logarithmically in
the number sessions in size but linearly in computation.

1.2 Concurrent Works

There is an independent and concurrent work that also constructs a pairing-free blind signature in
the ROM from standard assumptions [26] but for a stricter notion of pairing-free. That is, their
construction relies exclusively on a prime-order group without pairing, whereas our construction
relies on a prime-order group and a hidden order group (namely QRN ). In addition to this difference,
we give a brief comparison. [26] presents three blind signatures: two constructions BS1 and BS2
based on an interactive assumption, and BS3 based on a non-interactive assumption in the ROM.
7 In the pairing setting, the known tradeoffs are similar (cf. [54, 66]) compared to Blind BLS [20].
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When instantiating BS3 with a group of order 256 bit, it has communication and signature size of
roughly 26 KB and 10 KB, respectively. Compared to our construction, their signature size and
communication is more than twice as large as ours. Their construction relies on weaker assumptions,
namely CDH, but has 4 rounds of interaction. Our construction is round-optimal, but relies on DDH
and sRSA. We believe it to be non-trivial to reduce the number of rounds in the protocol of BS3 as
it relies on a Schnorr-style proof of knowledge that is interactively computed. Similarly, we believe
it to be non-trivial to remove the reliance of hidden order groups in our round-optimal construction.

2 Technical Overview

We provide an overview of our construction. Since our blind signature builds on the framework
proposed in [66], we give a brief recap.

The framework. The framework of [66] is based on a signature scheme S with a compatible
additively homomorphic commitment scheme Com, i.e., Com(m; r) + Com(m′; r′) = Com(m +

m′; r + r′). Here, compatible means that there exists an algorithm Ŝig such that the signing
algorithm Sign(sk,m) can be rewritten as Ŝig(sk,Com(m; r)) − Com(0; r). Namely, Ŝig computes
an intermediate signature σr = Ŝig(sk,Com(m; r)) given a commitment to the message m with
randomness r. Then, a signature can be computed by removing Com(0; r) from σr homomorphically
8. To turn this into a blind signature, a user can generate a commitment c = Com(m; r), send it
to the signer, and the signer can simply return σr ← Ŝig(sk, c). Finally, the user obtains a valid
signature σ ← σr − Com(0; r). During the signing process, the user also sends a proof π along with
c that proves knowledge of (m, r) such that c = Com(m; r) via an online-extractable NIZK 9. This
is required for proof of one-more unforgeability (OMUF).

The above approach hides the message m during signing, and if the scheme is rerandomizable,
then a user can produce a fresh signature σ′ on the message m to ensure blindness. For OMUF,
their proof relies on the all-but-one reduction of their underlying signature scheme—this means
the reduction can set up the verification key in an alternate way that allows to sign all but one
message m∗. Also, this property naturally yields the desired algorithm Ŝig. Since our OMUF proof
differs, we refer to [66] for more details. We finally remark that Katsumata et al. [66] instantiates
this framework with Boneh-Boyen signatures and Pedersen commitments in the pairing setting.

A compatible RSA-based commitment. A natural approach to construct pairing-free blind
signatures is to identify a signature scheme in the RSA setting which fulfills these requirements
(i.e., a signature scheme with an all-but-one reduction that is rerandomizable and has a compatible
commitment scheme). Unfortunately, to the best of our knowledge, all RSA-based signatures are
not rerandomizable or have no all-but-one reduction. Instead, we choose a signature scheme that
is almost compatible with Pedersen commitments over ZN , namely the signature scheme Sfis [41]
based on Cramer-Shoup signatures [35]. Here, the verification key vk = (N,h, h1, h2) consists of an
RSA modulus N and three QRN generators h, h1, h2. As usual, the secret key is the factorization
of N . To sign a message m, the signer chooses a random prime e and a random integer a—both
from specific intervals—and computes y such that

ye ≡ h · ha1 · ha⊕m
2 mod N (1)

using its secret key. A valid signature is a tuple (e, a, y) that satisfies Eq. (1), where a and e lie in
the aforementioned intervals. While the scheme is not quite compatible with Pedersen commitments
due to the XOR operation in the exponent, we observe that a functions as a mask of m within the
security proof. If we replace XOR-based masking with noise flooding 10, then XOR is replaced with
8 This view is a simplified variant of [66]’s framework for the sake of exposition. We assume implicitly that
σr contains a component with the same range as Com(0; r).

9 Online-extractability allows the reduction to obtain (m, r) in the proof of one-more unforgeability in an
on-the-fly manner.

10 With noise flooding, we refer to adding a mask a that is exponentially larger than m.
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a simple addition. We adapt the scheme and modify Eq. (1) as follows:

ye ≡ h · ha1 · ha+m
2 mod N, (2)

where a is chosen from an exponentially larger interval compared to before. Since in Eq. (2), m is
masked statistically by a, the security proof can be adapted in a straightforward manner.

Turning it into a blind signature. We observe that the above scheme is almost compatible with
Pedersen commitments. Let g be another QRN generator. We can sign a Pedersen commitment
c ≡ hm2 · gr mod N for some random r by first choosing an appropriate e and a, then computing y
such that

yer ≡ h · ha1 · ha2 · c mod N. (3)

This corresponds to the algorithm Ŝig but unfortunately, the value y′ = yr ·g−r does not yield a valid
Sfis signature (e, a, y′) since Eq. (2) is not satisfied 11. It even seems that the user cannot derive a
valid signature from yr in another manner, since it requires computing y ≡ yr ·g−r/emodΦ(N) mod N .
But taking e-th roots is assumed to be hard in the first place! To fix this, we can let the signer
send e first, and let the user commit via c ≡ hm2 · ge·r mod N . Then, the computable value
y ≡ yr · g−r mod N satisfies Eq. (2), where yr is generated as in Eq. (3) as before. Then, as in [66],
the user proves with a proof πped that she committed to message m with randomness e · r to the
signer via an online-extractable NIZK Πped. Since the Sfis signatures are not rerandomizable, to
present a signature, the user generates a proof πfis via an additional NIZK Πfis that proves that it
knows a Sfis signature on message m (instead of presenting (e, a, y) directly).

Making it round optimal. Unfortunately, the above construction requires an additional round
of communication to send e. Note that the user cannot generate e itself, as the reduction for Sfis

needs to be able to choose the primes e used in signatures. Indeed, it is required in the security
proof that a fresh prime e and mask a are picked for each fresh message m to be signed. A natural
idea is to let the user generate it via a hash function HP mapping into primes (of desired range).

As the signer also needs to derive the same prime e (i.e. see the input of HP), we need to make
sure that the message m is hidden by the input to HP In particular, we cannot simply derive
e = HP(m). Another idea would be to derive e = HP(c) as the commitment c is already hiding the
message. However, the user needs to know e already to set up c, so there is a cyclic dependency.

Therefore, we require that the user commits to m as well as the randomness r for generating c
using an integer commitment cZ 12 which can then be hashed to derive e. Since cZ fixes c implicitly,
this ensures that for each fresh commitment c, we use a fresh e. Under binding of CZ, this implies
that for each distinct message m, a fresh e is picked as desired. For technical reasons, we also need
that if e is reused, e.g., if the same commitment is sent twice, the signer reuses the same mask a.
This can be guaranteed by deriving a from a pseudorandom function PRF via a← PRF(c∥cZ)13.

In summary, the user commits to (m, r) in cZ , computes e← Hpp(cZ) and sets c ≡ hm2 ·gr·e modN .
Then, the user proves in πped generated via a NIZK Πped that the commitment c is constructed based
on the values committed in cZ , and sends (c, cZ , πped) to the signer. The signer verifies πped, sets
e← Hpp(cZ) and a← PRF(c∥cZ), then computes yr as in Eq. (3). Finally, the user sets y ← yr · g−r

and obtains a valid Sfis signature (e, a, y) for m. The blind signature is πfis generated via Πfis as
before.

Proving one-more unforgeability. While the unforgeability reduction of Sfis has no all-but-one
flavor, we can show one-more unforgeability for our blind signature with the above modifications if
the NIZK Πfis is adaptively knowledge sound 14. We stress that we cannot reduce to unforgeability
11 Recall that this property is required for the commitment to be compatible.
12 An integer commitment allows to commit to (vectors) of integers, i.e., has message space Zn, and

knowledge of an opening can be proven in zero-knowledge. Here, that means that (m, r) is fixed over Z2.
For our construction, we can slightly relax this requirement if we hash m first, but we omit details here.

13 Later, we implement this PRF with a random oracle.
14 That is, there is an extractor that can extract a witness via black-box access to the prover, e.g., via

rewinding.
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the Sfis signature scheme directly, as the adversary obtains the prime e for the signature before the
reduction knows the message m to be signed.

Instead, analogous to Sfis, the reduction for one-more unforgeability sets up the verification key
vk in an alternative way so that it can sign without knowing the factorization of N . This involves
guessing the “format” of the forgery generated by the adversary A.

To sign a commitment c, the reduction extracts (m, r) on-the-fly from the proof πped, and uses
the alternatively set up key to sign m. It then reapplies the user’s blinding. When the adversary
outputs its forgeries, the reduction identifies a signature πfis on a message m that it never signed 15,
and then extracts a valid signature (e, a, y) from πfis.

Since the final extraction is not performed in a on-the-fly manner, there is a subtlety. For
example, if the extractor rewinds the adversary to extract a proof, then the extracted witness might
depend on the guess we made during the vk setup, rendering the forgery useless for our reduction.
A similar issue was observed, e.g., in [6, 62], since witness indistinguishability is not necessarily
preserved when rewinding. To solve this issue, we let the user commit to the signature parts (e, a)
in cI with a perfectly binding integer commitment CRInt

16. Then, the extracted values (e, a) are
fixed during the initial run when our guess is still hidden. Even if our guess is revealed during
extraction, the extractor still succeeds in finding a valid signature with fixed (e, a). Since our guess
depends only on these values, we can conclude that we guess correctly with sufficient probability
which allows to solve sRSA with this modification.

Making it maliciously blind. An observant reader might realize that our scheme is not blind
yet. Concretely, there are two types of problems: (a) we need to embed the crs into the vk, i.e. the
crs is chosen by the signer and (b) Pedersen commitments are not hiding over Z∗

N . We show how
we deal with both problems below.

(a) Subversion Zero-knowledge. Since the signer can choose vk maliciously, we need to ensure that
zero-knowledge holds for arbitrary crs in vk. As in [48], we require that the NIZKs Πped and Πfis are
subversion zero-knowledge, i.e., zero-knowledge holds even for a malicious setup [12]. Unfortunately,
this notion is difficult to instantiate in our setting. To the best of our knowledge, all instantiations
of subversion zero-knowledge NIZKs [12, 44] require strong knowledge assumptions (which we wish
to avoid). Instead, we give a simplified definition which yields similar guarantees in the ROM.
Roughly, we split the crs = (urs, srs) into a uniform part urs ∈ {0, 1}ℓ of length ℓ and structured
part srs ∈ SRS. In our notion, we ask that (a) membership in SRS is testable efficiently and
(b) zero-knowledge holds with respect to crs = (urs, srs) for some random urs ← {0, 1}ℓ and any
malicious srs ∈ SRS. Our notion can be instantiated under standard assumptions (e.g., DDH in
pairing-free groups) because in the security proof, we can embed trapdoors into the uniform part
(which is output by a random oracle). More details on our instantiations are given below.

(b) Subgroup arguments over Z∗
N . Pedersen commitments over Z∗

N are not hiding for malicious
modulus N : if ⟨g⟩ is a proper subset of ⟨h2⟩, there is a concrete attack on blindness. Thus, we let
the signer prove that ⟨g⟩ = ⟨h2⟩ with a NIZK with subversion soundness [12] (i.e., soundness holds
even for malicious crs). We embed this proof into the verification key to avoid the trivial attack. We
also need to ensure that CRInt and CZ are hiding. For both, we simply ask that public parameters
are uniform (and sample them via a random oracle). There remain two more subtle problems.

(b.1) Recall that the user sets c ≡ hm2 · gr·e mod N , so even if ⟨h2⟩ = ⟨g⟩, we might have
⟨ge⟩ ⊊ ⟨h2⟩. Fortunately, we can show that if ⟨h2⟩ = ⟨g⟩, then ⟨ge⟩ = ⟨h2⟩ with overwhelming
probability over the choice of a random prime e for arbitrary modulus N .

(b.2) The signer sends yr to the user which again, might not be in the same subgroup. If the
signature πfis reveals the subgroup of yr, blindness is broken. But conditioned on Eq. (3), we can
show that yr ∈ ⟨g⟩ if {h, h1, h2} ⊆ ⟨g⟩ and c ∈ ⟨g⟩. We let the former be proven by the signer in vk.
If we let the user check that Eq. (3) holds, then the latter can be shown to hold with overwhelming
probability over the choice of e.
15 Since we sign at most ℓ messages but there are ℓ+ 1 forgeries on distinct messages, such a signature

exists.
16 Again, we can relax the commitment scheme, i.e., we do not require that CRInt is a full-fledged integer

commitment. We elaborate later.
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Instantiation. There are several challenges when instantiating the NIZKs required for our blind
signature. While it is somewhat straightforward to obtain an instantiation with generic techniques,
our goal is to keep the instantiation as efficient as possible. We give a brief overview of the challenges
and our solutions.

Online-extraction and integer commitments. Recall that we require an integer commitment scheme
CZ to commit to (m, r) ∈ Z2 in combination with an efficient online-extractable NIZK for the
statement

cZ = CZ.Commit(m, r; rz) ∧ c ≡ hm2 · gr·e mod N. (4)

For online-extraction, we use the approach of [66] (cf. Section 6). Let G be a pairing-free group of
prime order p with generators G,H. The values (m, r) are decomposed into (ei)i = ((mi)i, (ri)i)
via B-ary decomposition (e.g., B = 264), committed in ElGamal commitments Ei = eiG+ siH for
s← Zp, and a range proof ensures that ei ∈ [0, B − 1] (e.g., Bulletproofs [22]). We then interpret
(Ei)i as a bounded integer commitment cZ , i.e., the committed values must lie in the limited range
[0, B − 1]. This notion suffices for our construction. While we follow the template of [66], our
instantiation is considerably more complicated since we need to show a statement over two algebraic
structures: prime order groups and Z∗

N . For this, we employ a structured srs to argue over the
integers with techniques from [32]. We refer to Appendix E for more details.

Proof for Sfis signatures. To derive a blind signature, we need a perfectly binding commitment CRInt

and a NIZK Πfis for the relation in Eq. (2) and simultaneously:

cI = CRInt.Commit(e, a, rI) ∧ a ∈ [0, 23λ − 1] ∧ e ∈ [23λ, 23λ+1] ∩ Zodd.

Note that these are the specific ranges for Sfis verification. While it is fine to employ range proofs
during the (one-time) signing interaction, it is undesirable to include a range proof for presenting
the signature (as the verification overhead is noticeable for such large ranges).

Instead, we relax the range requirements in such a way that the unforgeability proof of Sfis still
goes through, i.e., we allow that a and e lie in larger (but distinct) intervals for verification. Then,
we construct very efficient relaxed range proofs with subversion zero-knowledge for CRInt consisting
of ElGamal commitments over a prime-order G (for perfect binding). Roughly, the range proof is
a simple Σ-protocol to open ElGamal in zero-knowledge, where we also add range checks for the
messages sent in third flow, compiled with Fiat-Shamir. In addition, we add a fresh RSA modulus
Ñ to the crs and commit to a and e in a commitment over Z∗

Ñ
(similar to [32]). This technique

guarantees that extracted values are short integers (but within a larger range). The overhead over
simply opening the ElGamal commitment in zero-knowledge—which we need anyway to instantiate
the NIZK—is just 784 Byte for a modulus of size 3072 bits. For comparison, a Bulletproof for
the above ranges requires 932 Byte [22]. Our relaxed range proofs are smaller and allow seamless
integration into more complex Σ-protocols.

To construct Πfis, we combine our relaxed range proofs for CRInt with standard commit-then-prove
Σ-protocol techniques to show the remaining equations. For this, we require commitments over
Z∗
N for potentially malicious N to commit to y. Using the above techniques, we construct such

commitments and provide efficient openings in zero-knowledge. Roughly, such a commitment is
of the form y · gs for s ∈ [N · 2λ] with y ∈ ⟨g⟩, in conjunction with a CRInt commitment to fix s
over the integers. Especially for this purpose our relaxed range proofs shine, since s lies in a large
interval. (For such ranges, e.g., Bulletproofs requires 1.6 seconds for proof generation and almost
5 ms for verification.) We generalize the construction for arbitrary untrusted groups.

The remaining NIZKs are straightforward to instantiate. In total, we obtain blind signatures
with 10.98 KB communication of size 4.28 KB.

Alternative View. Instead of viewing our construction as an instantiation of the Fischlin-style
framework of [66] without pairings, we can view it as a maliciously-secure and optimized instantiation
the construction sketched in [24]. In particular, [24] presents a blinded interactive signing protocol
for sRSA-based signatures. Our instantiation of the underlying signature is more efficient, and the
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construction in [24, Figure 1] does not seem to yield maliciously-secure blind signatures 17. We
provide techniques to achieve OMUF and malicious blindness simultaneously and efficiently, while
preserving round optimality.

3 Preliminaries

Notations. We denote the security parameter by λ. A polynomial time (PT) algorithm A runs in
time polynomial in the (implicit) security parameter λ. We denote “probabilistic polynomial time”
by PPT. We write Time(A) for the runtime of A. A function f(λ) is negligible in λ if it is O(λ−c) for
every c ∈ N. We write f = negl(λ) for short. Similarly, we write f = poly(λ) if f(λ) is a polynomial
with variable λ. If D is a probability distribution, x← D means that x is sampled from D and if S
is a set, x← S means that x is sampled uniformly and independently at random from S. We also
write |S| for the cardinality of set S. Further, we write D0

c
≈ D1 for distributions D0, D1, if for all

PPT adversaries A, we have |Pr[x0 ← D0 : A(1λ, x0) = 1]−Pr[x1 ← D1 : A(1λ, x1) = 1]| = negl(λ).
Similarly, we write D0

s
≈ D1 if the above holds even for unbounded adversaries. For some PPT

algorithm A, we write AO if A has oracle access to the oracle O. If A performs some check, and the
check fails, we assume that A outputs ⊥ immediately. Generally, we assume that adversaries are
implicitly stateful. We denote with [n] the set {1, . . . , n} for n ∈ N. We write P for the set of primes
and PI for the set of primes in the interval I. For some odd prime p, we use the representatives
{−p−1

2 , · · · , p−1
2 } for Zp. For a group G we write ord(G) to denote the order of G and unless stated

otherwise we write G with additive notation. For a group element g we write ord(g) to denote
the order of the group element. We denote by QRN = {a ∈ Z∗

N : ∃ b ∈ Z∗
N , b

2 ≡ a mod N} the
quadratic residues modN . For some N ∈ N, the group QRN is a cyclic subgroup of Z∗

N and we
denote by Gen(QRN ) the set of generators of QRN . Some properties of QRN are recalled in lemma 3
in Appendix A.

Probability. Let V,L ∈ N. We define uniform rejection sampling for the interval [V, (V + 1)L]
with masking overhead L as in [32]. Let v ∈ [0, V ]. To mask v additively with a mask µ via rejection
sampling, perform the following steps.

1. Draw a random mask µ← [0, (V + 1)L].
2. Abort if v + µ /∈ [V, (V + 1)L].
3. Output w = v + µ.

The value w is uniform over [V, (V + 1)L] conditioned on no abort and the abort probability is
at most 1/L18. We use a version of the Forking Lemma from [2, Lemma 1] that fits our usage of
it. The lemma was first introduced by Pointcheval and Stern [77] then generalized in [14, 2]. The
formal statement can be found in Appendix A.2.

Hardness Asssumptions. We use the following assumptions in this paper. Let GenG be a PPT
algorithm that on input 1λ and prime order p, outputs (a description of) a group G← GenG(1λ) of
order p. We generally use additive notations for prime order groups and capital letters for elements.
Also, we assume that given the description, group operations and membership tests are efficient.
We write g ← G for drawing elements from some group G at random. In the following, we assume
that prime order groups are setup with GenG implicitly.

Let GenRSA be a PPT algorithm that on input 1λ outputs (N,P,Q)← GenRSA(1λ) such that
N = P ·Q with P,Q ∈ P, where P = 2P ′ + 1 and Q = 2Q′ + 1 are strong primes (i.e., P ′, Q′ are
also primes). We assume that P ′, Q′ > 2λ+1.

First of all, the (D, ℓ)-relaxed DLOG assumption with regards to g⃗, where g⃗ = (g0, . . . , gℓ) ∈
QRℓ+1

N , assumes that for any PPT adversary, given (N, g0, . . . , gℓ) it is only with negligible probability
17 For example, observe that Cx is not hiding if N and (a, b) are set up maliciously. In particular, there is

an attack if a and b are chosen in different subgroups. Proving that Cx is hiding requires a computational
assumption over QRN , so it is limited (at most) to honest signer blindness.

18 When v = 0, the number of “bad” µ ∈ [0, (V + 1)L] causing abort is #{[0, V − 1]} = V . For a fixed
0 < v ∈ (0, V ], the number of “bad” µ causing abort is #{[0, V −1−v]}+#{[(V +1)L−v+1, (V +1)L]} = V .
In both cases the abort probability over choices of µ is V/((V + 1)L+ 1) ≤ 1/L.

https://orcid.org/0000-0002-8879-8226
https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0002-3498-5472
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to output (c, d, x0, . . . , xℓ) satisfying cd =
∏ℓ

i=0 g
xi
i ∧ ∃i :

xi

d ̸∈ Z ∧ d ∈ [0, D] ∧ xi ∈ Z. The (D, ℓ)-
relaxed DLOG assumption holds under the strong RSA assumption for all D ≤ 2λ+1. Next,
the Decisional Diffie-Hellman (DDH) assumption in a cyclic group G assumes that for all PPT
adversary it is only with negligible probability that the adversary can distinguish (aG, bG, abG)
from (aG, bG, cG) where G← G and a, b, c← ord(G). Finally, the strong RSA (sRSA) assumes that
it is only with negligible probability for any PPT adversary to output (e, z) such that ze ≡ y mod N .

Explaining Random Group Elements as Random Strings. For our framework, we require
commitments with uniform public parameters pp. For readability, we allow pp (and also uniform
random strings urs of NIZKs) to contain (uniform) group elements g of prime-order groups G with
known order p. This is without loss of generality because with explainable sampling, we can explain
g ← G as a random bitstring. We refer to, e.g., [66, Appendix B] for more details.

3.1 Cryptographic Primitives

Commitment Scheme. A commitment scheme is a tuple of PPT algorithms C = (C.Setup,C.Commit,
C.Commit) such that

– C.Setup(1λ): generates the public parameters pp,
– C.Commit(pp,m): given the public parameters pp, message m ∈ Cmsg, computes a commitment
c ∈ Ccom with opening randomness d, and outputs the pair (c, d),

– Verify(pp, c,m, d): given the public parameters pp, message m ∈ Cmsg, and opening randomness
d, outputs a bit b ∈ {0, 1} which depends on the validity of the opening (m, d) with respect to
the commitment c.

Here, Cmsg, Crnd, Ccom, are message, randomness, and commitment spaces, respectively. If the public
parameters are uniform or explainable (i.e., Setup outputs some pp← {0, 1}ℓ for ℓ ∈ N) we omit
Setup without loss of generality.

We require the correctness, hiding and binding properties for a commitment scheme. A com-
mitment schemes is correct, if honest commitments (c, d)← Commit(pp,m; r) always verify, i.e. it
holds that Verify(pp, c,m, d) = 1 where pp are the public parameters. It is hiding if it is hard to
decide whether an unopened commitment c commits to message m0 or m1, and it is binding if it is
hard to open commitments c to distinct messages. We can have computational, statistical, perfect
variants for hiding and binding properties. The formal definitions can be found in Appendix A.5.

(Bounded) Integer Commitments. We refer to a commitment scheme with message space
[A,B] ⊆ N as a (bounded) integer commitment scheme. We often omit the term bounded if the
message space is clear by context.

ElGamal commitments. We recall ElGamal (EG) over a group G of prime order p with message
space Zp [39]. We use additive notation for prime order groups.

– EG.GenPP(1λ): set (G,H)← G and output pp = (G,H).
– EG.Commit(pp,m): sample r ← Zp and set c = (mG+ rH, rG), and output (c, r).
– EG.Verify(pp, c,m, r): check if c = (mG+ rH, rG).

Note that the public parameters are uniform and we can sample them via a random oracle to avoid
trusted setup. EG commitments are correct, hiding under DDH and perfectly binding.

Remark 1. If in verification of EG, we check that m ∈ [0,M ] for M < p, then m is fixed over
the integers and we can interpret the commitment as an integer commitment with message space
[0,M ] ⊆ N.
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Pedersen Commitments in QRN . We recall Pedersen multi-commitments (MPed) over QRN

with message space Zℓ for some ℓ ∈ N (cf. [34]).

– MPed.GenPP(1λ): set (N,P,Q) ← GenRSA(1λ) and sample ℓ random generators gi of QRN ,
and output pp = (N,h, g1, · · · , gℓ). Note that with (P,Q), we can check whether gi generates
QRN .

– MPed.Commit(pp, m⃗): sample r ← [0, N · 2λ], set c← hr ·
∏ℓ

i=1 g
mi
i mod N , and output (c, r).

– MPed.Verify(pp, c, m⃗, r): check if c = ±hr ·
∏ℓ

i=1 g
mi
i mod N .

MPed commitments are correct, statistically hiding and binding under the factoring assumption
(which is implied by sRSA). Throughout this work, we use MPed commitments in QRN to enforce
in security proofs that values extracted from NIZKs are integers via lemma 6.

Signature Scheme. A signature scheme is a tuple of PPT algorithms S = (KeyGen,Sign,Verify)
such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, deterministically outputs a

signature σ,
– Verify(vk,m, σ): given a verification key pk and a signature σ on message m, deterministically

outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We define the standard notion of correctness and euf-cma
security. Correctness requires that any honestly generated signature σ ← Sign(sk,m) verifies, i.e.
Verify(vk,m, σ) = 1. The euf-cma security imposes that even with oracle accesses to Sign(sk, ·), no
PPT adversary will be able to forge a valid signature σ on a message m that is not queried to
Sign(sk, ·).

Blind Signature Scheme. A (two-move) blind signature scheme is a tuple of PPT algorithms
BS = (KeyGen,Sign,Verify) such that

Definition 1 (Blind Signature). A (two-move) blind signature scheme is a tuple of PPT
algorithms PBS = (KeyGen,Sign,Verify) such that

– KG(1λ): generates the verification key bvk and signing key bsk,
– Sign is split into the following algorithms:
• User(bvk,m): given verification key bvk and message m ∈ BSmsg, outputs a first message
ρ1 and a state st,
• Signer(bsk, ρ1): given signing key bsk and first message ρ1, outputs a second message ρ2,
• Derive(st, ρ2): given state st and second message ρ2, outputs a signature σ

– Verify(bvk,m, σ): given verification key bvk and signature σ on message m ∈ BSmsg, outputs a
bit b ∈ {0, 1}.

Here, BSmsg is the message spaces.

We consider the standard security notions for blind signatures [61]. Below, we define correctness,
blindness under malicious keys, and one-more unforgeability of a blind signature scheme. Moreover,
we will omit the state for better readability on occasion.

Definition 2 (Correctness). A blind signature scheme is correct, if for all messages m ∈ BSmsg,
(bvk, bsk)← KG(1λ), (ρ1, st)← User(bvk,m), ρ2 ← Signer(bsk, ρ1), σ ← Derive(st, ρ2), it holds that
Verify(bvk,m, σ) = 1.

Definition 3 (Blindness Under Malicious Keys). A blind signature scheme is blind under
malicious keys if for any PPT adversary A, we have

AdvblindA (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(bvk,m0,m1)← A(1λ), coin← {0, 1},
(ρ1,b, stb) ← User(bvk,mb) for b ∈
{0, 1},
(ρ2,coin, ρ2,1−coin)← A(ρ1,coin, ρ1,1−coin),
σb ← Derive(stb, ρ2,b) for b ∈ {0, 1},
if ∃b s.t. Verify(bvk,mb, σb) = 0:

then σ0 = σ1 = ⊥,

: coin = A(σ0, σ1)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

https://orcid.org/0000-0002-8879-8226
https://orcid.org/0000-0002-3867-4209
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Definition 4 (One-more Unforgeability). A blind signature scheme is one-more unforgeable if
for any Q = poly(λ) and PPT adversary A that makes at most Q signing queries, we have

Advomuf
A (λ) = Pr

(bvk, bsk)← KG(1λ)
{(mi, σi)}i∈[Q+1] ← ASigner(bsk,·)(bvk)

:

∀i ̸= j ∈ [Q+ 1] :
mi ̸= mj

∧
Verify(bvk,mi, σi) = 1

 = negl(λ).

Σ-Protocol. Let R be an NP relation with statements x and witnesses w. We denote by LR =
{x | ∃w s.t. (x,w) ∈ R} the language induced by R. A Σ-protocol for an NP relation R for language
LR with challenge space CH is a tuple of PPT algorithms Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R, outputs a first flow
message (i.e., commitment) Ω and a state st, where we assume st includes x,w,

– Chall(): samples a challenge γ ← CH (without taking any input),
– Resp(st, γ): given a state st and a challenge γ ∈ CH, outputs a third flow message (i.e.,

response) τ ,
– Verify(x,Ω, γ, τ): given a statement x ∈ LR, a commitment Ω, a challenge γ ∈ CH, and a

response τ , outputs a bit b ∈ {0, 1}.

We recall the standard notions of correctness, high-min entropy, (non-abort) honest-verifier
zero-knowledge, and k-special soundness. A Σ-protocol is correct, if for all (x,w) ∈ R, if for any
honestly generated transcripts (Ω, γ, τ), the verifier accepts, i.e. Verify(x,Ω, γ, τ) = 1. It has high
min-entropy if for all (x,w) ∈ R, it is statistically hard to predict a honestly generated first flow Ω.
It is honest-verifier zero-knowledge (HVZK), if there exists a PPT zero-knowledge simulator Sim
such that the distributions of Sim(x, γ) and a honestly generated non-aborting transcript with Init
initialized with (x,w) are statistically indistinguishable for any x ∈ LR, and γ ∈ CH, where the
honest execution is conditioned on γ being used as the challenge. Finally, it is k-special sound, if
there exists a deterministic PT extractor Ext such that given k valid transcripts {(Ω, γi, τi)}i∈[k]

for statement x with pairwise distinct challenges (γi)i, outputs a witness w such that (x,w) ∈ R.

Non-Interactive Zero Knowledge. All formal definitions of the following can be found in
Appendix A.8. Let URS = {0, 1}ℓ be a set of uniform random strings for some ℓ ∈ N and
SRS be some set of structured random strings with efficient membership test 19. A NIZK for a
relation R with common reference string space CRS = SRS × URS is a tuple of PPT algorithms
(GenSRS,ProveH,VerifyH), where the latter two are oracle-calling, such that:

– GenSRS(1λ): outputs a structured reference string srs ∈ SRS,
– ProveH(crs, x, w): receives a crs = (srs, urs) ∈ CRS, a statement x and a witness w, and outputs

a proof π,
– VerifyH(crs, x, π): receives a crs = (srs, urs) ∈ CRS, a statement x and a proof π, and outputs a

bit b ∈ {0, 1}.

We recall that LR = {x | ∃w : (x,w) ∈ R} denotes the language induced by R. If there
is no crs needed, i.e. CRS = ∅, we then omit crs as an input to Prove and Verify. A NIZK
is correct if for any crs = (srs, urs) with srs ← GenSRS(1λ) and urs ← URS, (x,w) ∈ R, and
π ← ProveH(crs, x, w), it holds that VerifyH(crs, x, π) = 1. It is zero-knowledge if there exists a
PPT simulator Sim = (Simcrs,SimH,Simπ) such that the distributions of π′ ← Simπ(crs, x) and
π ← ProveH(crs, x, w) are computationally indistinguishable for any (x,w) ∈ R. Note that the
sub-algorithms of Sim share state. For simulated proofs, the algorithm SimH simulates the random
oracle and Simcrs simulates the crs = (srs, urs), where there is an structured part srs. We also define a
notion of subversion zero-knowledge, inspired by the notion introduced in [12]. To recall, the second
part of the crs = (srs, urs) is a random reference string which can later be sampled via a random
oracle, and the first part is a structured string srs. For subversion zero-knowledge, there is no Simcrs

19 This membership test is required for our definition of subversion zero-knowledge. Let H be a random
oracle. Note that in general it is difficult to check that some srs was generated via GenSRS. (We allow
that SRS is not equal to the output space of GenSRS.)
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anymore and the structured srs can be chosen by A, while urs is sampled uniformly at random by
H for the real proofs π ← ProveH(crs, x, w) or by SimH for the simulated proofs π′ ← Simπ(crs, x).
Here we also require that the subverted srs belongs to SRS.

We define adaptive knowledge soundness. An NIZK is adaptively knowledge sound for relation20

R̃ if there exist positive polynomials pT, pP, constant c, a PPT extractor Ext and a PPT simulator
SimCRS so that for any (crs, td)← SimCRS(1λ), given oracle access to any PPT A (with explicit
random tape ρ and making QH = poly(λ) RO queries) that cannot distinguish crs ∈ CRS from
a real crs := (srs← GenSRS(1λ), urs← URS), given (x, π)← AH(crs; ρ), with probability at least
µ(λ)c−negl(λ)

pP(λ,QH) the extractor finds w ← Ext(crs, td, x, π, ρ, h⃗) where (x,w) ∈ R̃. Here, h⃗ contains the
outputs of H, the probability is over the random tape ρ of A, the random tape of SimCRS, and the
random choices of H. Also, we require that the runtime of Ext is bounded by pT(λ,QH) · Time(A).

We further define partial online-extractability for NIZKs over a relation with statements x =
(x0, x1) and witnesses w = (w0, w1). A NIZK is partially online-extractable if there extists an
algorithm Ext = (Ext1,Ext2) such that Ext1 samples a partial statement x0 uniformly at random
along with a trapdoor td and for any PPT adversary that outputs pairs of partial statements x1,i
and proofs πi such that all ((x0, x1,i), πi) verify with probability µ(λ), the extraction algorithm
Ext1 can use the trapdoor to extract partial witnesses w1,i for all statements such that there exist
partial witnesses w0,i with probability µ(λ)−negl(λ)

pP(λ,QH) where pP is a polynomial and QH is the number
of hash queries made by the adversary. Looking forward, we will set the first partial statement x0 to
be the public parameters of a commitment scheme and the extracted witness to be the committed
values - where the non-extracted witness is the opening of the commitments.

We also define (statistical) adaptive subversion soundness. Note that this notion does not require
an extractor for the witness and the srs can be maliciously set up by an adversary, which differs
from the standard notion of adaptive soundness. An NIZK is (statistically) adaptively subversion
sound for relation R̃ inducing a language LR̃ if no (possibly unbounded) adversary, given a urs
and access to the RO H, can output a subverted srs, an instance x, and a proof π such that
VerifyH(crs := (srs, urs), x, π) = 1 but x /∈ LR̃.

Fiat-Shamir transformation. We recall the Fiat-Shamir transformation [40, 10] to turn a
Σ-protocol Σ = (Init,Chall,Resp,Verify) that satisfies correctness, high-min entropy, honest verifier
zero-knowledge, and k-special soundness, into a NIZK FS[Σ] = (GenSRS,ProveH,VerifyH) using a
random oracle H that maps to the challenge space CH of Σ:

– GenSRS(1λ): outputs the empty string ϵ as we do not require a common reference string and
omit crs as an input for other below algorithms,

– ProveH(x,w): receives a statement x and a witness w, runs (Ω, st)← Init(x,w), computes the
challenge γ ← H(x,Ω), then computes τ ← Resp(st, γ) and outputs π = (Ω, γ, τ).

– VerifyH(x, π): receives a statement x and a proof π = (Ω, γ, τ), checks that and outputs
b← Verify(x,Ω, γ, τ) ∧ γ = H(x,Ω).

The resulted NIZK satisfies correctness, adaptive knowledge soundness and zero-knowledge.

4 NIZK-friendly Signature Scheme

In the following, we describe the signature scheme underlying our construction of a blind signature
scheme. The scheme is NIZK-friendly, i.e., compatible with efficiently proving statements about
signatures (e.g. knowledge of a valid signature) in NIZK proofs due to its algebraic structure. Looking
forward, this property will be useful for creating a blind signature scheme using a Fischlin-inspired
construction.

4.1 The scheme

We describe a variant of Fischlin’s variant of the Cramer-Shoup signature. We adapt it with
the goal of constructing an efficient proof of knowledge of a signature later. The hash function
H : : {0, 1}∗ → {0, 1}2λ is modelled as a random oracle.
20 We remark that the soundness relation R̃ can be different from the (correctness) relation R. If R̃ is not

explicitly defined, we implicitly set R̃ = R.
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The signature consists of three values y ∈ Z∗
N , a ∈ Z and e ∈ Z. We define intervals Sa and Se

which we use to sample a and e in Sign, respectively. Also, we define the intervals Ra and Re which
we use to in Verify to check range membership of a and e, respectively.

Let A = 23λ and Sa = [0, A]. Also, let Ra ⊇ Sa, Se and Re ⊇ Se be intervals such that for all
a ∈ Ra, we have a < e for any e ∈ Re. Further, we require that |PSe

| = Ω(22λ) (i.e., Se contains at
least Ω(22λ) primes).

– Sfis.KeyGen(1
λ): Sets (N,P,Q)← GenRSA(1λ). Samples generators h, h1, h2 ← Gen(QRN ) for

QRN at random. Outputs the public key vk = (N,h, h1, h2) and the secret key sk = (P,Q).
– Sfis.Sign(sk,m): Parses sk = (P,Q) and computes m = H(m). Then, picks e← PSe

and a← Sa
at random. Computes y such that

ye = h · ha1 · ha+m
2 mod N.

Output the signature σ = (e, a, y).
– Sfis.Verify(vk,m, σ): Parses vk = (N,h, h1, h2) and σ = (e, a, y). Checks that e ∈ Re is odd,
a ∈ Ra, and that

ye = hha1h
a+H(m)
2 mod N.

4.2 Proof of Security

A detailed proof is given in Appendix B.2. We give a brief sketch below.
Our proof mostly follows the proof given in [41]. The reduction first punctures the verification

key vk∗. Roughly, this is done by generating all primes E = {e1, · · · , eQ} chosen during signing in
advance, and setting up h, h1, h2 with respect to E . There are two cases for the punctured setup 21:

1. The reduction guesses that the forgery’s e was used during signing, i.e., e ∈ E .
2. The reduction guesses that the forgery contains a fresh e, i.e., e /∈ E .

Then, the reduction sets up h, h1, h2 in such a way that it can sign Q arbitrary messages via a
trapdoor td but without knowing the factorization of N . This is done by embedding E into h, h1, h2
depending on the guess. Note the punctured setup is indistinguishable from the real setup in both
cases. Also, signing via the trapdoor td reveals no information about the guess. Then, it answers
all Q signing queries via td and hopes that its guess was correct. If so, the reduction can derive a
sRSA solution. Since the guess remains hidden, this happens with sufficient probability.

We also use this strategy in the proof of the blind signature scheme in Section 6. In our blind
signature, the primes e are not chosen by the signer but output by a hash function HP. This still
allows the reduction to prepare the list E of primes used during signing. For a modular security
proof, we provide the punctured key generation and alternative signing procedure in Appendix B.1.
Since these algorithms depend on guesses with respect to the forgery’s format, they are indexed by
bits (b, b′) that correspond to with in a case distinction in the proof.

5 Novel Commitment Schemes

We give an overview of our novel commitment constructions. These are helpful for our instanti-
ation and influence the choice of primitives that our blind signature relies on. We construct two
commitments that admit efficient openings in zero-knowledge:

Relaxed Integer Commitments: allows to commit to integers of a specific range I. The proof
of knowledge of an opening proves that the committed integer lies in I. The soundness is relaxed
however, i.e., it only guarantees membership in a larger range IR ⊃ I. Importantly, binding
still holds with respect to the range IR.

Commitments in Groups: allows to commit to elements of arbitrary cyclic groups G given a
generator g of G.

21 In the detailed proof, the first case has two additional sub cases.
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To improve readability, we use additive notation for prime-order groups and multiplicative notation
otherwise. Recall that we require several types of commitments in our blind signature construction.
Before we describe our novel commitments, we recap the required commitments and sketch how
they are instantiated to provide context for the reader. We use the terminology from the technical
overview (cf. Section 2):

– Compatible commitment : instantiated via MPed commitments (cf. Section 3.1). This is the
homomorphic commitment that the user sends to the signer to sign. The user can then later
derive a signature on the original message from the signature on the commitment.

– CZ: instantiated via ElGamal commitments via the observation in remark 1. Details are provided
in Appendix E.1. Recall that this commitment is used as an input to the hash function HP to
obtain the prime exponent e.

– CRInt: instantiated via our relaxed integer commitments (cf. Section 5.1). This commitment will
be used as a building block of the proof of knowledge of a Sfis signature that the user outputs
in the end.

– CGrp: This commitment to group elements (cf. Section 5.2) is used as a building block in the
NIZK that constitutes our blind signature.

5.1 Relaxed Integer Commitments with Slack

We define the notion of relaxed integer commitment schemes parameterized by B, T ∈ N. Those are
commitments with message space Cmsg = [0, B] that admit efficient opening proofs in zero-knowledge
with some slack, i.e., soundness guarantees that x ∈ [−BT,BT ]. We refer to B as the range and T
as the slack.

Definition 5. A relaxed integer commitment is a commitment scheme CB⃗,T
RInt = (Setup,Commit,Verify)

parameterized by two values T ∈ N and B⃗ ∈ Nℓ for some ℓ ∈ N. The value B⃗ defines the message
space Cmsg = [0, B⃗] ⊆ Zℓ. The value T defines a relaxed message space Crelmsg = [−B⃗T, B⃗T ]. We
further require that the commitment scheme CRInt is

1. correct and hiding with respect to Cmsg ( i.e., the messages are sampled from Cmsg in the Defini-
tions 11 and 12), and

2. binding with respect to Crelmsg ( i.e., the adversarial messages are allowed to be in Crelmsg instead of
Cmsg in Definition 13).

We now instantiate CRInt over a group G with prime order p ≥ 22λ. Let pp = (G,H) ∈ (G\{0})2
be the public parameters, where 0 denotes the neutral element. Let B, T ∈ N such that BT < p−1

2 .
The commitments are ElGamal commitments c← (xG+ rH, rG) for r ← Zp, except that we add
the additional requirement of x ∈ [−BT,BT ] in verification. Note that as we have [−BT,BT ] ⊂
[−p−1

2 , p−1
2 ], this condition ensures that no overflows occur (so we commit to a subset of Z). Looking

ahead, our zero-knowledge opening proofs leverage the structure of QRN to ensure that extracted
values are integers in the relaxed range.

We naturally generalize our commitment scheme to vectors m⃗ = (m1, · · · ,mℓ) ∈ [0, B⃗] of integers
from (potentially different) intervals induced by B⃗ = (B1, · · · , Bℓ). We require that Bi · T < p−1

2

for all i ∈ [ℓ]. The integer commitment CB⃗,T
RInt with uniform public parameters pp = (H, G⃗) is given

below, where G⃗ = (G1 · · · , Gℓ). The randomness space is Crnd = Zp. By definition, the message
space is Cmsg = [0, B⃗] and the relaxed message space is Crelmsg = [−B⃗T, B⃗T ].

– CB⃗,T
RInt .Commit(pp, m⃗): Takes as input public parameters pp and m⃗ ∈ [0, B⃗], samples r ← Zp,

sets Ci ← miH + rGi, C⃗ ← (C1, · · · , Cℓ), F ← rH, and outputs (c, r) for c = (C⃗, F ).
– CB⃗,T

RInt .Verify(pp, c, m⃗, r): Takes as input (c, r) ∈ Gℓ+1 × Zp, parses c = (C⃗, F ) and checks that

m⃗ ∈ [−B⃗T, B⃗T ], F = rH, C⃗ = m⃗H + rG⃗.

If the (relaxed) range (induced by B⃗ and T ) is clear by context, we often write CRInt for short.

Theorem 1. The scheme CRInt is correct, hiding under DDH in G, and perfectly binding.
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Proof. Correctness is straightforward.
For hiding, we have (H,Gi, rH, rGi)

c
≈ (H,Gi, rH, tiGi) for ti ← Zp under DDH. Since tiGi

masks miH additively, the value miH + tiGi is uniform in G. Thus, (C⃗, F )
c
≈ D⃗ for D⃗ ← Gℓ+1

after ℓ game hops.
For binding, observe that since m⃗ ∈ [−B⃗T, B⃗T ] ⊂ [−p−1

2 , p−1
2 ]ℓ, the message m⃗ is uniquely

determined by c and the verification equations. In more detail, if c = (C⃗, F ) verifies correctly, then
we have r = logH(F ) ∈ Zp and miH = Ci− rGi. Thus, we have mi ≡ logH(Ci− rGi) mod p. Since
for every x ∈ Zp, there is exactly one mi ∈ [−p−1

2 , p−1
2 ] such that mi ≡ x, the value mi is uniquely

determined. ⊓⊔

Note that we could also set C ← rH +
∑

i xiGi to obtain compact commitments. We choose
ElGamal commitments instead of Pedersen commitments as in our applications, we require perfect
binding. In our construction, we also require exact integer commitments for some fixed range.

Definition 6 (Integer commitments with bounded range). If the range in verification is
identical to the message space, we say that the commitment is an (exact) integer commitment with
Cmsg = [0, B⃗] (and Cmsg = Crelmsg).

5.2 Commitments in Arbitrary Cyclic Groups

Let Ĝ = ⟨ĝ⟩ be an arbitrary cyclic group with generator ĝ. We assume an upper bound U on the
order of Ĝ.

We construct a commitment scheme with message space Cmsg = Ĝ (i.e., for messages x̂ ∈ Ĝ).
Looking ahead, we cannot rely on computational hardness assumptions in Ĝ (as in our construction,
this group can be chosen maliciously by the adversary). As secure (non-interactive) commitments
require some type of hardness assumption, we need some additional structure. For this, we use an
additional relaxed integer commitment scheme CB,T

RInt (with parameters B, T defined below) 22. To
commit to x̂ ∈ Ĝ, a user first sets ĉ← x̂ĝs for s← [0, U · 2λ]. Note that ĉ hides x̂ statistically, but
is not binding to x̂. For example, a user can open ĉ = ĝĝ2 to message ĝ or ĝ2.

To achieve binding, the user additionally commits to its randomness s in a commitment c via
CB,T
RInt for B = U · 2λ and T arbitrary. If s is fixed over the integers Z, the user is forced to open the

commitment ĉ to the message x̂ = ĉ · ĝ−s. Note that the commitment c fixes s over a subset of Z
(due to binding of CRInt) which is sufficient 23. Since CRInt is hiding, the additional commitment c
reveals no information about s and thus, the scheme remains hiding.

Since our instantiation of CRInt requires a group G (whose size scales with B), we allow s

to be split into a vector s⃗ with si ∈ [0, B]. Then, the user commits to s⃗ ∈ [0, B⃗] via CB⃗,T
RInt for

B⃗ = (B, · · · , B) and arbitrary B ∈ N. Let ℓ = ⌈log(U · 2λ)/ log(B)⌉. The commitment scheme CGrp

(which is implicitly parameterized by CRInt) is given below.

– CGrp.Setup(1
λ): Outputs pp← CB⃗,T

RInt .Setup(1
λ).

– CGrp.Commit(pp, x̂): Takes as input public parameters pp and x̂ ∈ Ĝ, samples s← [0, U ·2λ], sets
ĉ← x̂ĝs. Then, decomposes s =

∑ℓ
i=1 siB

i−1 with si ∈ [0, B] and commits to s⃗ = (s1, · · · , sℓ)
via (c, r)← CRInt.Commit(pp, s⃗). Outputs (cx, rx) for cx = (ĉ, c) and rx = (s⃗, r).

– CGrp.Verify(pp, cx, x̂, rx): Parses cx, rx as above. Then, sets s =
∑ℓ

i=1 siB
i−1 and checks that

CRInt.Verify(pp, c, s⃗, r) = 1 and ĉ = x̂ĝs.

Theorem 2. The scheme CGrp is correct, hiding and binding under the hiding and binding property
of CRInt, respectively.
22 If we instantiate CRInt as in Section 5.1, then the additional structure is a prime order group G in which

DDH is assumed to be hard.
23 Note that for our construction, it is important that CRInt commits over the integers. For example, a

commitment c over Zp is not sufficient. To illustrate this, assume that s ∈ Z is fixed over Zp. Then,
ĉ = ĝsĝs

p

can be opened to ĝs or ĝs
p

since s ≡ sp mod p. But we have ĝs = ĝs
p

only if ord(ĝ) | s(sp−1−1).
Since the order is unknown, this does not hold in general and thus, the commitment is not binding.
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Proof. Correctness is straightforward.
Hiding is argued as follows. First, observe that c ← CRInt(pp, s⃗)

c
≈ CRInt(pp, 0⃗) under the

hiding property of CRInt. Also, the distribution of ĉ = x̂ · ĝs for s ← [0, U · 2λ] has a statistical
distance of at most 2−λ to the uniform distribution UĜ over Ĝ. Thus, we have ĉ

s
≈ UG. In total,

(ĉ, c)
c
≈ (UĜ,CRInt(pp, 0⃗)) for (ĉ, c)← CGrp.Commit(pp, x̂).

Binding follows from the binding property of CRInt and since x̂ = ĝsĉ−1 is uniquely determined
if s is fixed. In more detail, we reduce binding to the binding property of CRInt. Let A be an
adversary on the binding property of CGrp. First, obtain pp from a challenger of the CRInt binding
property. Set (cx, x̂

(0), x̂(1), r
(0)
x , r

(1)
x ) ← A(pp). Parse cx = (ĉ, c) and r

(b)
x = (s⃗ (b), r(b)). Output

(c, s⃗ (0), s⃗ (1), r(0), r(1)) to the challenger.
To analyze the success probability, assume that A is successful. Then, we have x̂(0) ̸= x̂(1) ∈ Ĝ

and CGrp.Verify(pp, cx, x̂
(b), r

(b)
x ) = 1 for b ∈ {0, 1}. Set s(b) =

∑ℓ
i=1 s⃗

(b)
i Bi−1. If s(0) = s(1) := s, we

have that
ĉ = x̂(0) · ĝs = x̂(1)ĝs.

Thus, we have x̂(0) = x̂(1) which contradicts our assumption. Consequently, it holds that s(0) ̸= s(1).
By construction of s(0) and s(1), it must hold that s⃗ (0) ̸= s⃗ (1) over Zℓ. But since CRInt.Verify(pp, c, s⃗

(b), r(b))
= 1 for b ∈ {0, 1}, the values (c, s⃗ (0), s⃗ (1), r(0), r(1)) form a valid solution solution for the binding
game of CRInt. ⊓⊔

5.3 Efficient Opening in Zero-Knowledge

We construct efficient NIZKs Πint and Πgrp to open CRInt and CGrp, respectively, in zero-knowledge.
Due to space limitations, we refer to Section 2 for a brief overview. The full schemes are given in
Appendix C.1.

6 Blind Signature with Malicious Signer Blindness

In this section, we detail our blind signature construction based on the strong RSA assumption and
DDH in prime order groups.

6.1 Primitives

Before we detail our construction, we prepare the required primitives and related parameters. To
see how these primitives fit in the larger picture, we refer to Section 2.

Remark 2. In the following, we will define several NIZKs. As the reference string crs of these NIZKs
are set up by the signer, we need to be careful with the security guarantees of each NIZK. For cases
where the signer takes the role of the prover, we require subversion soundness (i.e., the soundness
property should hold even with regard to a maliciously generated crs) but standard zero-knowledge
is sufficient. If the signer takes on the role of the verifier, we require subversion zero-knowledge (i.e.,
the zero-knowledge property should still hold even with regard to a maliciously generated crs).

Relaxed integer commitment. To construct a proof of knowledge of a signature of the scheme
Sfis, we use a relaxed integer commitment. The scheme is required to be perfectly binding to fix
(parts of) the signature before extraction. We describe the choices of parameters and motivate them
in the following.

Let T ∈ N. Let A = 23λ, E = 23λ, and E ∈ N such that the following equations hold.

log(E) = poly(λ) (5)

A · T < E − ET. (6)

Let CB⃗,T
RInt be a relaxed integer commitment scheme with uniform public parameters of length ℓrint,

perfect binding and computational hiding (cf. Section 5.1) for B⃗ := (A,E) and slack T . We write
CRInt for short. The choices for these parameters are motivated below.
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Recall that B⃗ defines the message space [0, B⃗] and that the slack T dictates the relaxed message
space [−B⃗T, B⃗T ], i.e., the message space for verification 24.

For convenience, let Sa := [0, A] and Se := [E,E +E]. In our construction, we commit to a ∈ Sa
and e− E ∈ [0, E] for e ∈ Se via CRInt. The above parameter choices guarantee that for message
(a, e− E) that passes CRInt verification, it holds that the values (a, e) pass the range checks in the
Sfis signature.

To illustrate this, set Ra := [−AT,AT ] and Re := [E −ET,E +ET ]. By Eq. (6), we have that
for any a ∈ Ra and e ∈ Re that a < e. Further, verification of CRInt guarantees that the committed
a lies in the interval a ∈ Sa as desired. Also, since we commit to e − E ∈ [−ET,ET ], we have
e ∈ Se.

In our instantiation, we can employ our CRInt construction from Section 5.1 which can be opened
with a simple NIZK Πint. This is the core technique that allows us to construct a proof of knowledge
of a Sfis signature in an efficient manner 25.

In the instantiation, we set E = 25λ. Then, it is guaranteed that the interval Se = [E,E + E]
contains at least Ω(22λ) primes. This follows from a recent refinement [58] of Huxley’s bound [60, 57].
We provide a full proof in Appendix D.1. This is required to avoid collisions in a hash function
mapping into Se.

Proof of Knowledge for Sfis signatures. We require a NIZK to proof knowledge of a valid Sfis
signature (e, a, y) on the hash of a message m. To prove one-more unforgeability, we require that
(e, a) are fixed statistically in the statement. Thus, we add a CRInt commitment for (e, a) which also
enables efficient proofs for range membership (as discussed above). Let Πfis be an NIZK with oracle
Hfis for the relation

Rfis :=
{
(x,w) | ye ≡ h · ha1 · ha+m

2 mod N, e ≡ 1 mod 2, y ∈ ⟨h1⟩,
(cI , dI) = CRInt.Commit(ppI , (a, e− E); rI), e ∈ Se, a ∈ Sa

}
for x = (ppI , N, h1, h2, h,m, cI), w = (e, a, y, rI , dI) with subversion zero-knowledge, correctness,
and adaptive knowledge soundness for the relation

R̃fis :=
{
(x,w) | ye ≡ h · ha1 · ha+m

2 mod N, e ≡ 1 mod 2,

CRInt.Verify(ppI , (a, e− E), dI) = 1
}

with x,w as above. Note that the soundness relation R̃fis implies that a ∈ Ra and e ∈ Re (cf.
Section 6.1) and thus, (e, a, y) form a valid Sfis signature. For zero-knowledge and correctness, there
are stronger requirements for the witness (which are fulfilled in our construction). Notably, we
require that a ∈ Sa, e ∈ Se, and that y ∈ ⟨h1⟩. (The latter is required to commit to y via CGrp in
our instantiation.)

Integer commitment and opening proof for Pedersen. Let S ∈ N. Let CZ be an exact
integer commitment scheme with message space CZ.Cmsg = [0, 2λ − 1]× [0, S] with uniform public
parameters of length ℓz, correctness, perfect binding, and computational hiding (cf. Definition 6).
We denote by CZ.Copn the opening space of CZ. In the blind signature scheme, we will require the
user to both the hash m as well as the random coins r that it plans to use to derive the Pedersen
commitment using the perfectly binding commitment scheme CZ. This first commitment is hashed
to obtain the prime e used for signing. Furthermore, the user is required to attach a proof πped that
the Pedersen commitment c is consistent with the hash m and the coins r. The commitment cZ
along with the proof πped allows the reduction in the one-more unforgeability proof to obtain the
value m and the coins r which in turn enables it to generate signatures using the alternate signing
algorithms from Appendix B.1. In the proof of blindness, we rely on the zero-knowledge property of
Πped as well as the hiding property of the commitment schemes.
24 In our instantiation, we have T = 2λ+1L with L = 210. It is sufficient to set E = 25λ to have

AT = 24λ+11 < 25λ − 24λ+11 = E − ET for Eq. (6) if λ ≥ 14.
25 In our construction, the value B⃗ is large. Our technique allows to avoid the use of exact range proofs

whose efficiency scales noticeably with the range [0, B⃗].
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Let Πped be an NIZK with oracle Hped for the relation

Rped :=
{
(x,w) | c ≡ hm2 · gre mod N,CZ.Verify(pp, cZ , (m, r), dZ) = 1,

m ∈ [0, 2λ − 1], r ∈ [0, S]
}
,

for x = (pp, N, e, h2, g, c, cZ), w = (m, r, dZ) with correctness and subversion zero-knowledge. We
also require partial online-extraction for Rped, where we split the statement x into x0 = pp and
x1 = (N, e, h2, g, c) and the witness into w0 = dZ and w1 = (m, r). (This implicitly defines the
partial statement space X0 = {0, 1}ℓz and the partial witness space W1 = CZ.Copn.) The user uses
the NIZK to ensure that the commitment c is indeed formed with the values committed via CZ.
For the security proof, the reduction “punctures” the verification key in such a way that it can
sign messages without knowing the secret key. For this reason, online-extraction is required to
extract the messages before signing. As mentioned above, we exclude dZ from the extracted witness
for efficiency (as existence is sufficient). Also, we embed the extraction trapdoor in the public
parameters (instead of the crs also for efficiency) 26.

NIZKs for group membership. As the factorization of the RSA modulus N is private, it is
hard to check whether a given g ∈ Z∗

N generates the entire group QRN . This means that we need to
prevent the signer from setting up the signing key for Sfis in a malicious way that allows the following
attack against blindness. Recall that the user sends blinded commitment c = hm2 g

re to the signer
during signing. When ⟨h2⟩ ≠ ⟨g⟩, a malicious signer could raise c to the power of ord(g) to remove
the part gre and then check whether the resulting cord(g) = (hm0

2 )ord(g) or cord(g) = (hm1
2 )ord(g), and

thus breaking blindness.
We carefully design our blind signature such that it actually suffices to check that for some

group elements h in the verification key and a generator g, it holds that ⟨g⟩ =: G = ⟨h⟩.
We describe how the signer can prove this in a NIZK: Since the signer sets up the elements g and

h itself, it can set h = gx for some x ∈ Zord(g). Knowing x, constructing such a proof for ⟨h⟩ = G is
simple. Since the signer sets up multiple such values h, we batch the statement for simplicity.

Let Πgen be an NIZK with oracle Hgen satisfying statistical adaptive subversion soundness,
zero-knowledge, and correctness for the relation

Rgen =
{
(x,w) | ∀i ∈ [k] : hαi

i ≡ h mod N,hβi ≡ hi mod N
}
,

where x = (N, k, h, (hi)i∈[k]), w = ((αi, βi)i∈[k]). Note that Rgen implies that ⟨h⟩ = ⟨hi⟩ for all i.

Hash functions. We require the following hash functions in our construction. Each hash function
is modeled as random oracle in the security proofs.

– Hurs: Let Hurs : {0, 1}∗ → {0, 1}ℓped × {0, 1}ℓfis × {0, 1}ℓgen be a hash function, where ℓzkp is the
bit-size of the uniform reference string of Πzkp. Later, we use Hurs to setup the random part urs
of each crs for the above NIZKs.

– H: Let H : {0, 1}∗ → [0, 22λ − 1] be a hash function. Later, we use H to compute a short digest
m = H(m) of the message m ∈ {0, 1}∗.

– HP: Let HP : {0, 1}∗ → PSe
be a hash function mapping into the primes in the interval Se.

– Hpp: Let Hpp : {0, 1}∗ → {0, 1}ℓz × {0, 1}ℓrint be a random oracle.
– Hprf : Let Hprf : {0, 1}λ×{0, 1}∗ → Sa be a random oracle. We use this hash function like a PRF

to make the signer deterministic.

Note that we can instantiate HP : {0, 1}∗ → PSe
by picking uniformly random elements in the

space Se := [E,E + E] until we hit a prime. The distribution of the outputs of HP is uniform over
PSe , which is the set of primes in the interval Se. Appendix D.1 proves the following lemma.

Lemma 1. For E = 23λ, E = 25λ, there are Ω(22λ) primes in Se = [E,E + E].

26 Roughly, the commitment CZ is extractable and we embed the extraction trapdoor into pp. But pp is
part of the statement, so we make sure that this part is sampled at random (cf. Definition 25).

https://orcid.org/0000-0002-8879-8226
https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0002-3498-5472


Pairing-Free Blind Signatures from Standard Assumptions in the ROM 19

6.2 Construction

Set S = N · 2λ which is passed implicitly as parameter in our construction. Also, we set pp =
(ppI , ppZ) ← Hpp(0). We assume that user and signer compute pp = Hpp(0) implicitly. The
construction is detailed below. We also detail a signing session in Fig. 1.

– BSfis.KG(1
λ): First, generates the crs for the NIZKs as crszkp ← (srszkp, urszkp), where srszkp ←

Πzkp.GenSRS(1
λ) for zkp ∈ {ped, fis, gen} and (ursped, ursfis, ursgen)← Hurs(0). Then, generates a

public key for Sfis as follows. Sets (N,P,Q)← GenRSA(1λ) and samples g ∈ QRN . Samples αi ←
Zord(g) and sets βi ← α−1

i mod ord(g) for i ∈ [3]. Computes h1 ← gα1 mod N , h2 ← gα2 mod N
and h ← gα3 mod N . Note that h, h1 and h2 are generators of QRN with overwhelming
probability. Next, proves that all QRN elements in bvk key generate the same group via
πgen ← Πgen.Prove

Hgen(crsgen, xgen, wgen), where xgen = (N, 3, g, (h, h1, h2)), wgen = (αi, βi)i∈[3].
Then, sample a key K ← {0, 1}λ for Hprf . Finally, output

bvk = (crsfis, crsped, crsgen, N, h, h1, h2, g, πgen),

bsk = (bvk, P,Q,K).

– BSfis.User(bvk,m): Given verification key bvk, and message m, checks

Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1

for xgen = (N, 4, (h, h1, h2, g)). Then, sets m ← H(m) and set up a commitment c to m
as follows. Samples randomness r ← [0, S] for c and commits to (m, r) via (cZ , dZ) ←
CZ.Commit(pp, (m, r)). Sets e ← HP(cZ) and compute c = hm2 · gre mod N . Next, generate a
proof πped ← Πped.Prove

Hped(crsped, xped, wped) for xped = (pp, N, e, h2, g, c, cZ), wped = (m, r, dZ).
Note that πped proves that the generation of c was performed honestly with respect to cZ .
Finally, output

ρ1 = (c, cZ , πped),

stU = (e, r,m).

– BSfis.Signer(bsk, ρ1): Given signing key bsk = (bvk, P,Q,K) and user’s output ρ1 = (c, cZ , πped),
checks Πped.Verify

Hped(crsped, xped, πped) = 1 for xped = (pp, N, e, h2, g, c, cZ). Next, computes e←
HP(cZ) and sets d← e−1 mod ϕ(N). Then, sets a← Hprf(K, c ∥ cZ) which it uses as randomness
for the signing process. Using d and a, computes a presignature z via z′ ← h · ha1 · c · ha2 mod N
and z ← (z′)d mod N . Finally, outputs

ρ2 = (z, a)

– BSfis.Derive(stU , ρ2): given state stU and last message ρ2 = (z, a), sets z′ ← h · ha1 · c · ha2 ,
for a ∈ Sa, and checks ze ≡ z′ mod N given e from stU . Next, computes a Sfis signature
on m from the presignature z via y ← z · g−r mod N . Then, checks whether σfis = (e, a, y)
indeed forms a correct signature on m via Sfis.Verify(vk,m, σfis) = 1. Next, generates a BSfis
signature as follows. Sets m = H(m) and (cI , dI) ← CRInt.Commit(ppI , (a, e − E); rI) for
rI ← CRInt.Crnd. Proves that σfis verifies correctly via πfis ← Πfis.Prove

Hfis(crsfis, xfis, wfis) for
xfis = (ppI , N, h1, h2, h,m, cI), wfis = (e, a, y, rI , dI). Outputs

σ = (πfis, cI).

– BSfis.Verify(bvk,m, σ): Given verification key bvk, message m, and signature σ = (πfis, cI),
computes m = H(m) and checks

Πfis.Verify
Hfis(crsfis, xfis, πfis) ,

for xfis = (pp, N, h1, h2, h,m, cI).



20 Julia Kastner , Ky Nguyen , and Michael Reichle

Signer(bvk, bsk) User(bvk,m)

1 : check Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1

2 : m← H(m)

3 : r ← [0, S]

4 : (cZ , dZ)← CZ.Commit(ppZ , (m, r))

5 : e← HP(cZ)

6 : c = hm
2 · gre mod N

7 : πped ← Πped.Prove
Hped(crsped, xped, wped)

(c, cZ , πped)

8 : check Πped.Verify
Hped(crsped, xped, πped) = 1

9 : e← HP(cZ)

10 : d← e−1 mod ϕ(N)

11 : a← Hprf(K, c ∥ cZ)
12 : z′ ← h · ha

1 · c · ha
2 mod N

13 : z ← (z′)d mod N

(z, a)

14 : check ze ≡ z′ mod N

15 : check a ∈ Sa
16 : y ← z · g−r mod N

17 : check Sfis.Verify(vk,m, (e, a, y)) = 1

18 : rI ← CRInt.Crnd
19 : (cI , dI)← CRInt.Commit(ppI , (a, e− E), rI)

20 : πfis ← Πfis.Prove
Hfis(crsfis, xfis, wfis)

21 : return σ = (πfis, cI)

Fig. 1: A signing session of BSfis for message m. We have (ppI , ppZ) = Hpp(0),
xgen = (N, 4, (h, h1, h2, g)), xped = (pp, N, e, h2, g, c, cZ), wped = (m, r, dZ), xfis =
(ppI , N, h1, h2, h,m, cI), wfis = (e, a, y, rI , dI). If a check fails, the party aborts.

6.3 Blindness under Malicious Keys

Before proving that our scheme BSfis satisfies blindness under malicious keys, we state a lemma
and its corollary that will be used in our proof:

Lemma 2. Let λ ∈ N and N > 3 be an odd natural number of bitlength polynomially large in λ.
We consider Z∗

N and fix G = ⟨g⟩ ⊆ Z∗
N where g ∈ Z∗

N . Given e ← Se where Se contains at least
Ω(2λ) primes, we have

Pr [⟨ge⟩ ≠ G : e← Se] ≤ negl(λ)

where the probability is taken over the choice of e.

Corollary 1. Let λ ∈ N and N > 3 be an odd natural number of bitlength polynomially large in
λ. We consider Z∗

N and fix G = ⟨g⟩ ⊆ Z∗
N where g ∈ Z∗

N . Given e← Se where Se contains at least
Ω(2λ) primes, with overwhelming probability over the choice of e

ψ : G→ ⟨ge⟩
z 7→ ze mod N

is a group isomorphism.
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We defer the proofs to Appendix D.2. We now state the main theorem for blindness of BSfis
followed by an overview. The full proof can be found in Appendix D.3.

Theorem 3. The scheme BSfis is blind under malicious keys following the subversion statistical
adaptive soundness of Πgen, the subversion zero-knowledge property of Πfis, the computational
hiding property of CRInt, and the subversion zero-knowledge property of Πped.

Proof Overview. In the proof we use a sequence of games to transition from the blindness game as in
Definition 3 with coin = 0 to the blindness game with coin = 1. To achieve this, we first employ the
subversion zero-knowledge property of Πfis for simulating the proofs πfis. Particularly, corollary 1,
which ensures that with overwhelming probability the presignature z is a unique correct e-th root of
a masked Sfis signature, together with the adaptive soundness of Πgen will guarantee that the derived
signature y will be a valid Sfis signature in order to use the subversion zero-knowledge simulator of
Πfis. This allows us to change the commitment cI of the signature on m0 to a commitment to 0,
under the hiding property of CRInt, which makes the signature independent of the signing session’s
exponents e and a. We then to turn to exchanging the CRS of Πped to a simulated one along with
simulating the proof πped using the subversion zero-knowledge property of Πped. We also rule out
that the signer gave us a key with ⟨h2⟩ ≠ ⟨g⟩ via the adaptive soundness of Πgen as otherwise
the Pedersen commitment would not be perfectly hiding. Combining the previous game hop with
lemma 2 makes sure that with overwhelming probability over the choices of e the commitment c is
Pedersen over ⟨g⟩ and its committed values are independent from πped. Thus c can be switched
to a uniformly random c ← ⟨g⟩ for the session where m0 is getting signed. After the Pedersen
commitment is independent of the message, we also switch the commitment cZ to be independent
of the message using the hiding property of CZ. We then use the an analogous series of games in
the other direction to end up with the real game for coin = 1.

6.4 One-more Unforgeability

Theorem 4. If the strong RSA problem is hard, H, HP, Hurs, and Hpp are random oracles, Πped is
a NIZK with partial online-extractability, CZ is a perfectly binding commitment scheme, PRF is a
pseudo-random function, Πfis is a NIZK with adaptive knowledge-soundness, and CRInt is a perfectly
binding integer commitment scheme then BSfis is one-more unforgeable.

Proof Overview. For one-more unforgeability, we want to use similar techniques to generate
signatures and solve the strong RSA problem as the scheme in Section 4.1. Our final reduction will
do the following: It sets up the verification key for Sfis as the reduction for the scheme in Section 4.1.
In particular, this means guessing the format of the “forgery”. One guess whether the adversary
re-uses a prime e used also in a signing interaction with the signer or whether it picks a new e which
may or may not be a prime. This guess we denote by a bit b. In the case that the adversary re-uses
the prime e, more guesses are made. The reduction guesses the index j of which of the primes will
be re-used. The other guess b′ concerns the choice of the signature randomness a, namely whether
it holds that aj ≠ a∗ or aj +mj ̸= a∗ +m∗ where m is the hash of a message m. If mj ̸= m∗, at
least one of the above will be the case. Analogous to the reduction for plain Sfis signatures, the
reduction manipulates the signature randomness aj and verification key in such a way that it can
sign using exactly one choice of aj and solve the strong RSA problem for other choices of a∗.

To answer signing queries, it extracts the message and commitment randomness from the NIZK
sent by the adversary in the first message of a signing interaction. It then signs the message using
the alternate signing key and reapplies the randomness.

To obtain an Sfis signature from the adversary, it uses the knowledge soundness extractor of Πfis.
It then solves the sRSA problem using the same strategy as the reduction described in Appendix B.2.

To apply this reduction we do game hops to arrive to a game where:

– The reduction can online-extract the hash of the message m and the random blinding factor r
used to generate the blinded message c. This we achieve by switching to the CRS that allows
for extraction and by introducing extraction in a game.

– The reduction can be sure that in signing queries, the adversary uses an exponent e for which
the reduction has trapdoored its verification key. This we achieve through programming the
hash oracle HP accordingly (as well as through online-extraction).
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– The reduction needs to be able to obtain an actual fresh signature (like in the EUF-CMA game
for the adapted Fischlin scheme from Section 4.1). This we achieve by applying the knowledge
extractor of Πfis.

– We need to be sure that the extracted signature is independent of the various signature
simulation modes employed by the reduction (i.e. the choices of b, b′, j). This is provided by
employing a perfectly binding commitment to contain the signature.

– We make additional game hops to rule out corner cases such as collisions in the hash functions.

We refer to Appendix D.4 for a detailed proof.

6.5 Instantiation

We instantiate the primitives from Section 6.1 required for our blind signature BSfis as follows.
For CRInt, we use our construction from Section 5.1 which admits efficient opening proofs in zero-
knoweldge. For Πgen, we use the construction from Appendix C.1 and for the PRF, an arbitrary
choice is sufficient. It remains to instantiate Πfis and Πped. Our constructions are technically involved.
We refer to Section 2 for a brief overview. For detailed constructions, we refer to Appendix E.

For our instantiation, we choose a standard RSA modulus of size 3072 bit for λ = 128. In
total, we obtain blind signatures secure under DDH and sRSA of size 4.28 KB with 10.98 KB
communication.
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Supplementary Material

A Full Preliminaries

A.1 Notation

Let λ ∈ N be the security parameter. A probabilistic polynomial time (PPT) algorithm A runs
in time polynomial in the (implicit) security parameter λ. We write Time(A) for the runtime of
A. A function f(λ) is negligible in λ if it is O(λ−c) for every c ∈ N. We write f = negl(λ) for
short. Similarly, we write f = poly(λ) if f(λ) is a polynomial with variable λ. If D is a probability
distribution, x ← D means that x is sampled from D and if S is a set, x ← S means that x is
sampled uniformly and independently at random from S. We also write |S| for the cardinality
of set S. Further, we write D0

c
≈ D1 for distributions D0, D1, if for all PPT adversaries A, we

have |Pr[x0 ← D0 : A(1λ, x0) = 1] − Pr[x1 ← D1 : A(1λ, x1) = 1]| = negl(λ). Similarly, we write
D0

s
≈ D1 if the above holds even for unbounded adversaries. For some PPT algorithm A, we write

AO if A has oracle access to the oracle O. If A performs some check, and the check fails, we assume
that A outputs ⊥ immediately. Generally, we assume that adversaries are implicitly stateful.

We denote with [n] the set {1, . . . , n} for n ∈ N. We write P for the set of primes and PI for the
set of primes in the interval I. For some odd prime p, we use the representatives {−p−1

2 , · · · , p−1
2 }

for Zp. For a group G we write ord(G) to denote the order of G and unless stated otherwise we
write G with additive notation. We denote by QRN = {a ∈ Z∗

N : ∃ b ∈ Z∗
N , b

2 ≡ a mod N} the
quadratic residues modN . For some N ∈ N, the group QRN is a cyclic subgroup of Z∗

N and we
denote by Gen(QRN ) the set of generators of QRN . We recall some properties of QRN

Lemma 3 (Proposition 1, [34]). Let λ ∈ N and (N,P,Q)← GenRSA(1λ). Considering QRN ,
the following holds:

– The group QRN is cyclic of order P ′Q′ where P = 2P ′ + 1 and Q = 2Q′ + 1.
– −1 /∈ QRN .
– Any square h ∈ QRN has excatly four roots, among which there is exactly one square.
– For any element h ∈ QRN , finding roots of h is equivalent to factoring N .
– For g, h← QRN , finding a, b ∈ N \ {0} such that ga ≡ hb mod N is equivalent to factoring N .
– For any e ∈ N coprime with ϕ(N) and y ∈ Z∗

N , finding x, e′ ∈ N such that xe ≡ ye′ mod N is
equivalent to finding an e-th root of y in Z∗

N .

A.2 Probability

Rejection Sampling. Let V,L ∈ N. We define uniform rejection sampling for the interval [0, V ]
with masking overhead L as in [32]. Let v ∈ [0, V ]. To mask v additively with a mask µ via rejection
sampling, perform the following steps.

1. Draw a random mask µ← [0, (V + 1)L].
2. Abort if v + µ /∈ [V, (V + 1)L].
3. Output w = v + µ.

The value w is uniform over [V, (V + 1)L] conditioned on no abort and the abort probability is at
most 1/L. This is easy to see as it is a requirement for the abort that either

Noise Flooding. Let V,L ∈ N. We define noise flooding for the interval [−V, V ] with masking
overhead L = 2λ. Let v ∈ [−V, V ]. To mask v additively with a mask µ via noise flooding, output
w = v + µ, where µ← [0, V L] is sampled at random. The value w is distributed close to uniform
over [0, V L] with statistical distance at most 1/L = negl(λ).
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Forking Lemma. We state here a version of Forking Lemma [77, 14] that fits our usage of it.

Lemma 4 (Lemma 1, [2]). Let H be a set and let F : Hq → [q] be a possibly random function.
For every h⃗ ∈ Hq, let E(⃗h) be a probability event. The probability that when sampling k vectors
h⃗1, . . . , h⃗k uniformly and independently at random (conditioned that vectors are identical on their
first F (⃗h1) components), E(⃗hi) happens for all i ∈ [k] and F (⃗h1) = F (⃗h2) = · · · = F (⃗hk), is at
least δ(E)k/qk−1, where δ(E) := Pr[⃗h← Hq : E(⃗h)].

A.3 Assumptions

Groups and RSA. Let GenG be a PPT algorithm that on input 1λ and prime order p, outputs (a
description of) a group G← GenG(1λ) of order p. We generally use additive notations for prime
order groups and capital letters for elements. Also, we assume that given the description, group
operations and membership tests are efficient. We write g ← G for drawing elements from some
group G at random. In the following, we assume that prime order groups are setup with GenG
implicitly.

Let GenRSA be a PPT algorithm that on input 1λ outputs (N,P,Q)← GenRSA(1λ) such that
N = P ·Q with P,Q ∈ P, where P = 2P ′ + 1 and Q = 2Q′ + 1 are strong primes (i.e., P ′, Q′ are
also primes). We assume that P ′, Q′ > 2λ+1.

Before recalling some standard hardness assumptions, let us recall the following well-known
lemma.

Lemma 5. Given x, y ∈ Z∗
N with a, b ∈ Z such that xa = yb and gcd(a, b) = 1, one can efficiently

compute x̄ ∈ Z∗
N such that x̄a = y.

Remark 3. We need the following well-known fact. Let G be a group and let G← G be a random
element from G. Let S ∈ N. We consider the problem of distinguishing zG, where z ← [0, S], from
z̃G where z̃ ← Zord(G).

If the order p of the group G is known, then the distinguishing probability is 0 for S = p− 1. If
only an upper bound U on the order is known, then the distinguishing probability is upper bounded
by 1/L for S = L · U . For the latter, we set L = 2λ throughout to obtain negligible distinguishing
probability.

Next, we recall the definition of a relaxed DLOG-relation from [32] (for the hidden order group
QRN ).

Definition 7 ((D, ℓ)-relaxed DLOG-relation). Let (N,P,Q) ← GenRSA(1λ), D, ℓ ∈ N, and
g⃗ = (g0, . . . , gℓ) ∈ QRℓ+1

N . Define the (D, ℓ)-relaxed DLOG relation with regards to g⃗ as

RD,ℓ(g⃗) =

{
(c, d, {xi}ℓi=1)

∣∣∣∣ cd =
∏ℓ

i=0 g
xi
i ∧ ∃i :

xi

d ̸∈ Z
∧ d ∈ [0, D] ∧ xi ∈ Z

}
We define the advantage of A against the hardness of the (D, ℓ)-relaxed DLOG-relation as

Advrel-dlog(D,ℓ),A(λ) := Pr

(N,P,Q)← GenRSA(1λ); g0, · · · , gℓ ← Gen(QRN );
(c, d, x0, . . . , xℓ)← A(N, g0, . . . , gℓ) :

(c, d, x0, . . . , xℓ) ∈ RD,ℓ(g⃗)

 .
The following lemma is a simplification of Lemma A.13 of [32] sufficient for our purpose. Note

that ord(QRN ) = P ′Q′ and we assume that P ′, Q′ > 2λ+1.

Lemma 6. Let D ≤ 2λ+1 and ℓ = poly(λ). For every PPT adversary A we have that Advrel-dlog(D,ℓ),A(λ) =

negl(λ) under the strong RSA assumption.

Definition 8 (Decisional Diffie-Hellman). In a cyclic group G of prime order p, which are set
up w.r.t a security parameter λ ∈ N, the Decisional Diffie-Hellman (DDH) assumption in G holds if
for all PPT adversary A the advantage

|Pr [G← G; a, b← Zp : A(G, aG, bG, abG) = 1]

− Pr [G← G; a, b, c← Zp : A(G, aG, bG, cG) = 1]|

is negligible in λ.

https://orcid.org/0000-0002-8879-8226
https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0002-3498-5472


Pairing-Free Blind Signatures from Standard Assumptions in the ROM 29

Definition 9 (Strong RSA). Let λ ∈ N. The strong RSA (sRSA) assumption holds if for all PPT
A the advantage

Advs-rsaA (λ) := Pr

[
(N,P,Q)← GenRSA(1λ); y ← Z∗

N

(e, z)← A(N, y) : ze ≡ y mod N

]
is negligible in λ.

A.4 Explaining Random Group Elements as Random Strings

For our framework, we require commitments with uniform public parameters pp. For readability,
we allow pp (and also uniform random strings urs of NIZKs) to contain (uniform) group elements
g of prime-order groups G with known order p. This is without loss of generality because with
explainable sampling, we can explain g ← G as a random bitstring.

A.5 Commitment Scheme

Definition 10 (Commitment Scheme). A commitment scheme is a tuple of algorithms C =
(C.Commit,C.Verify) such that

– C.Setup(1λ): generates the public parameters pp,
– C.Commit(pp,m): given the public parameters pp, message m ∈ Cmsg, computes a commitment
c ∈ Ccom with opening randomness d, and outputs the pair (c, d),

– Verify(pp, c,m, d): given the public parameters pp, message m ∈ Cmsg, and opening randomness
d, outputs a bit b ∈ {0, 1} which depends on the validity of the opening (m, d) with respect to
the commitment c.

Here, Cmsg, Crnd, Ccom, are message, randomness, and commitment spaces, respectively. If the public
parameters are uniform or explainable as per Appendix A.4 ( i.e., Setup outputs some pp← {0, 1}ℓ
for ℓ ∈ N) we omit Setup without loss of generality.

Below, we define the correctness, hiding and binding properties of a commitment scheme.

Definition 11 (Correctness). A commitment scheme is correct, if for all pp← Setup(1λ),m ∈
Cmsg, r ∈ Crnd, (c, d)← Commit(pp,m; r), it holds that Verify(pp, c,m, d) = 1.

Definition 12 (Hiding). A commitment scheme is hiding if for any PPT adversary A, we have

AdvhideA (λ) =

∣∣∣∣∣∣Pr
pp← Setup(1λ), (m0,m1)← A(pp),
m0,m1 ∈ Cmsg, coin← {0, 1}
(c, d)← Commit(pp,mcoin),

: coin = A(c)

− 1

2

∣∣∣∣∣∣ = negl(λ).

Definition 13 (Binding). A commitment scheme is binding if for any PPT adversary A, we
have

AdvbindA (λ) = Pr

[
pp← {0, 1}ℓC ,
(c,m0,m1, d0, d1)← A(pp)

:
m0 ̸= m1 ∈ Cmsg

Verify(pp, c,mb, db) = 1, b ∈ {0, 1}

]
= negl(λ).

Remark 4. A commitment scheme is said to be perfectly binding if for any (possibly unbounded) A,
it holds that AdvbindA (λ) = 0.

(Bounded) Integer Commitments. We refer to a commitment scheme with message space
[A,B] ⊆ N as a (bounded) integer commitment scheme. We often omit the term bounded if the
message space is clear by context.
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ElGamal commitments. We recall ElGamal (EG) over a group G of prime order p with message
space Zp [39]. We use additive notation for prime order groups.

– EG.GenPP(1λ): set (G,H)← G \ {0} and output pp = (G,H).
– EG.Commit(pp,m): sample r ← Zp and set c = (mG+ rH, rG), and output (c, r).
– EG.Verify(pp, c,m, r): check if c = (mG+ rH, rG).

Note that the public parameters are uniform and we can sample them via a random oracle to avoid
trusted setup. EG commitments are correct, hiding under DDH and perfectly binding.

Remark 5. If in verification of EG, we check that m ∈ [0,M ] for M < p, then m is fixed over
the integers and we can interpret the commitment as an integer commitment with message space
[0,M ] ⊆ N.

Pedersen Commitments in QRN We recall Pedersen multi-commitments (MPed) over QRN

with message space Zℓ for some ℓ ∈ N [34].

– MPed.GenPP(1λ): set (N,P,Q) ← Gen(1λ) and sample ℓ random generators gi of QRN , and
output pp = (N,h, g1, · · · , gℓ). Note that with (P,Q), we can check whether gi generates QRN .

– MPed.Commit(pp, m⃗): sample r ← [0, N · 2λ], set c← hr ·
∏ℓ

i=1 g
mi
i mod N , and output (c, r).

– MPed.Verify(pp, c, m⃗, r): check if c = ±hr ·
∏ℓ

i=1 g
mi
i mod N .

MPed commitments are correct, statistically hiding and binding under the factoring assumption
(which is implied by sRSA). Throughout this work, we use MPed commitments in QRN to enforce
in security proofs that values extracted from NIZKs are integers via lemma 6.

A.6 Signature Scheme

Definition 14 (Signature Scheme). A signature scheme is a tuple of PPT algorithms S =
(KeyGen,Sign,Verify) such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, outputs a signature σ,
– Verify(vk,m, σ): given a verification key pk and a signature σ on message m, deterministically

outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space.

We define the standard notion of correctness and euf-cma security

Definition 15 (Correctness). A signature scheme is correct, if for all (vk, sk) ← KeyGen(1λ),
m ∈ Smsg, and σ ← Sign(sk,m), it holds that Verify(vk,m, σ) = 1.

Definition 16 (EUF-CMA). A signature scheme is euf-cma if for any PPT adversary A, we
have

AdveufA (λ) = Pr

[
(vk, sk)← KeyGen(1λ)
(m,σ)← ASign(sk,·)(vk)

: m /∈ L ∧ Verify(vk,m, σ) = 1

]
= negl(λ),

where L is the list of messages A queried to the Sign-oracle.

A.7 Σ-Protocol

Let R be an NP relation with statements x and witnesses w. We denote by LR = {x | ∃w s.t. (x,w) ∈
R} the language induced by R. A Σ-protocol for an NP relation R for language LR is a tuple of
PPT algorithms Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R, outputs a first flow
message (i.e., commitment) Ω and a state st, where we assume st includes x,w,
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– Chall(): samples a challenge γ ← CH (without taking any input),
– Resp(st, γ): given a state st and a challenge γ ∈ CH, outputs a third flow message (i.e.,

response) τ ,
– Verify(x,Ω, γ, τ): given a statement x ∈ LR, a commitment Ω, a challenge γ ∈ CH, and a

response τ , outputs a bit b ∈ {0, 1}.

Definition 17 (Correctness). A Σ-protocol is correct, if for all (x,w) ∈ R, (Ω, st)← Init(x,w),
γ ∈ CH, and τ ← Resp(st, γ), it holds that Verify(x,Ω, γ, τ) = 1.

Definition 18 (High Min-Entropy). A Σ-protocol has high min-entropy if for all (x,w) ∈ R
and (possibly unbounded) adversary A, it holds that

Pr[(Ω, st)← Init(x,w), Ω′ ← A(1λ) : Ω = Ω′] = negl(λ).

Definition 19 (Non-abort HVZK). A Σ-protocol is non-abort honest-verifier zero-knowledge
(HVZK), if there exists a PPT zero-knowledge simulator Sim such that the distributions of Sim(x, γ)
and the honestly generated transcript with Init initialized with (x,w) are statistically indistinguishable
for any x ∈ LR, and γ ∈ CH, where the honest execution is conditioned on γ being used as the
challenge and no abort occurring.

We write HVZK for short if the Σ-protocol never aborts.

Definition 20 (k-Special Soundness). A Σ-protocol is k-special sound, if there exists a deter-
ministic PT extractor Ext such that given k valid transcripts {(Ω, γi, τi)}i∈[k] for statement x with
pairwise distinct challenges (γi)i, outputs a witness w such that (x,w) ∈ R.

A.8 Non-Interactive Zero Knowledge

Let URS = {0, 1}ℓ be a set of uniform random strings for some ℓ ∈ N and SRS be some set of
structured random strings with efficient membership test 27. An NIZK for a relation R with common
reference string space CRS = SRS ×URS is a tuple of PPT algorithms (GenSRS,ProveH,VerifyH),
where the latter two are oracle-calling, such that:

– GenSRS(1λ): outputs a structured reference string srs ∈ SRS,
– ProveH(crs, x, w): receives a crs = (srs, urs) ∈ CRS, a statement x and a witness w, and outputs

a proof π,
– VerifyH(crs, x, π): receives a crs = (srs, urs) ∈ CRS, a statement x and a proof π, and outputs a

bit b ∈ {0, 1}.

We recall that LR = {x | ∃w : (x,w) ∈ R} denotes the language induced by R. If there is no crs
needed, i.e. CRS = ∅, we then omit crs as an input to Prove and Verify.

Definition 21 (Correctness). An NIZK is correct if for any crs = (srs, urs) with srs← GenSRS(1λ)
and urs← URS, (x,w) ∈ R, and π ← ProveH(crs, x, w), it holds that VerifyH(crs, x, π) = 1.

Definition 22 (Zero-Knowledge). An NIZK is zero-knowledge (ZK) if there exists a PPT
simulator Sim = (Simcrs,SimH,Simπ) such that for any PPT adversary A, it holds that

AdvzkA (λ) =

∣∣∣∣∣∣Pr
srs← GenSRS(1λ),

crs = (srs, urs),
AH,P(crs) = 1

− Pr

crs← Simcrs(1
λ),

crs = (srs, urs),
ASimH,S(crs) = 1

∣∣∣∣∣∣ = negl(λ),

where P and S are oracles that on input (x,w) return ⊥ if (x,w) /∈ R, and else output ProveH(crs, x, w)
or Simπ(crs, x) respectively. Note that the probability is taken over the randomness of Sim and A,
and the random choices of H and urs. Also, Simcrs,SimH and Simπ have a shared state.
27 This membership test is required for our definition of subversion zero-knowledge. Note that in general it

is difficult to check that some srs was generated via GenSRS. (We allow that SRS is not equal to the
output space of GenSRS.)
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We also define a notion of subversion zero-knowledge, inspired by the notion introduced in [12].
Informally, it guarantees that zero-knowledge holds even for a malicious crs.

Definition 23 (Subversion Zero-Knowledge). An NIZK is subversion zero-knowledge (Sub-ZK)
if there exists a PPT simulator Sim = (SimH,Simπ) such that for any PPT adversary A, it holds
that

Advsub-zkA (λ) =

∣∣∣∣∣∣∣∣Pr


urs← URS,
(srs, st)← AH(urs),
crs = (srs, urs),

AH,P(st) = 1 ∧ srs ∈ SRS

− Pr


urs← URS,

(srs, st)← ASimH(urs),
crs = (srs, urs),

ASimH,S(st) = 1 ∧ srs ∈ SRS


∣∣∣∣∣∣∣∣ = negl(λ),

where P and S are oracles that on input (x,w) return ⊥ if (x,w) /∈ R, and else output ProveH(crs, x, w)
or Simπ(crs, x), respectively. Note that the probability is taken over the randomness of Sim and A,
and the random choices of H and urs. Also, both SimH and Simπ have a shared state.

We define different notions of soundness. We remark that the soundness relation R̃ can be
different from the (correctness) relation R. If R̃ is not explicitly defined, we implicitly set R̃ = R.

Definition 24 (Adaptive Knowledge Soundness). An NIZK is adaptively knowledge sound
for relation R̃ if there exists PPT simulator SimCRS and extractor Ext such that

CRS Indistinguishability. For any PPT adversary A, we have

AdvcrsA (λ) =

∣∣∣∣Pr [srs← GenSRS(1λ), urs← URS,
crs = (srs, urs) : AH(crs) = 1

]
− Pr

[
(crs, td)← SimCRS(1λ) :

AH(crs) = 1

]∣∣∣∣ = negl(λ),

Knowledge Soundness. There exists positive polynomials pT, pP and a constant c such that given
oracle access to any PPT adversary A (with explicit random tape ρ) that makes QH = poly(λ)
random oracle queries with

Pr[(crs, td)← SimCRS(1λ), (x, π)← AH(crs; ρ) : VerifyH(crs, x, π) = 1] ≥ µ(λ),

we have

Pr

(crs, td)← SimCRS(1λ),
(x, π)← AH(crs; ρ),
w ← Ext(crs, td, x, π, ρ, h⃗)

: (x,w) ∈ R̃

 ≥ µ(λ)c − negl(λ)

pP(λ,QH)
,

where h⃗ are the outputs of H, and the probability is over the random tape ρ of A, the random tape
of SimCRS, and the random choices of H. Also, we require that the runtime of Ext is bounded by
pT(λ,QH) · Time(A).

We also adapt the standard notion of online-extractability in two ways. Instead of embedding
the online-extraction trapdoor td into crs, we allow that the extractor embeds it into specific parts
of statement. Also, we relax the requirements in the sense that only a partial witness w1 is extracted.
For extraction, we require that there exists a witness w0 such that (x, (w0, w1)) ∈ R̃.

Definition 25 (Partial Online Extractability). An NIZK is partially online-extractable for
relation R̃ with statements x = (x0, x1) and witnesses w = (w0, w1), where w0 ∈W0 and x0 ∈ X0

for some sets W0, X0, if for all PPT adversaries A, there exists a stateful PPT extractor Ext =
(Ext1,Ext2), such that

1. x0 is distributed uniform over X0 for (x0, td)← Ext1(1
λ) and

2. there exists positive polynomials pT, pP such that for any QH = poly(λ) and PPT adversary A
that makes at most QH random oracle queries with

Pr

 (x0, td)← Ext1(1
λ), crs← GenSRS(1λ),

{(x1,i, πi)}i∈[QS ] ← AH(crs, x0), xi ← (x0, x1,i) :

∀i ∈ [QS ] : Verify
H(crs, xi, πi) = 1

 ≥ µ(λ),
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it holds that

Pr


(x0, td)← Ext1(1

λ), crs← GenSRS(1λ),
{(x1,i, πi)}i∈[QS ] ← AH(crs, x0), xi ← (x0, x1,i)

{w1,i ← Ext2(crs, td, xi, πi)}i∈[QS ] :

∀i ∈ [QS ] ∃w0,i ∈W0 : (xi, (w0,i, w1,i)) ∈ R̃

∧ VerifyH(crs, xi, πi) = 1

 ≥ µ(λ)− negl(λ)

pP(λ,QH)
,

where the runtime of Ext is upper bounded by pT(λ,QH) · Time(A).

Adaptive Subversion Soundness. We also define adaptive subversion soundness, where we
allow that srs can be maliciously set up by an adversary. Note that this notion does not require an
extractor for the witness.

Definition 26 (Statistical Adaptive Subversion Soundness). An NIZK is (statistically)
adaptively sound for relation R̃ inducing a language LR̃ if for any possibly unbounded A we have

AdvsndA (λ) := Pr

urs← URS,(srs, x, π)← AH(1λ; urs),
crs← (srs, urs)

:
x /∈ LR̃,

VerifyH(crs, x, π) = 1

 ≤ negl(λ),

where the probability is over the random coins of A and GenCRS, the random choices of urs, and
the random choices of H.

Fiat-Shamir transformation. We recall the Fiat-Shamir transformation [40] to turn a Σ-protocol
into a NIZK. Sometimes, we require more involved variants of this transformations. In that case, we
provide the compiled NIZK explicitly.

Theorem 5. Let Σ = (Init,Chall,Resp,Verify) be a Σ-protocol that satisfies correctness, high-min
entropy, honest verifier zero-knowledge, and 2-Special Soundness. The Fiat-Shamir transformation
FS[Σ] = (GenSRS,ProveH,VerifyH) is described below:

– GenSRS(1λ): outputs the empty string ϵ as we do not require a common reference string and
omit crs as an input for other below algorithms,

– ProveH(x,w): receives a statement x and a witness w, runs (Ω, st)← Init(x,w), computes the
challenge γ ← H(x,Ω), then computes τ ← Resp(st, γ) and outputs π = (Ω, γ, τ).

– VerifyH(x, π): receives a statement x and a proof π = (Ω, γ, τ), and outputs b← Verify(x,Ω, γ, τ)∧
γ = H(x,Ω).

In the ROM, FS[Σ] is a NIZK that is correct and satisfies adaptive knowledge soundness.

B Deferred Content from Section 4

B.1 Alternative Algorithms

For the proof of security, we describe some “alternative” algorithms for signing and key generation.
First, we describe the alternate key generation algorithms:

Sfis.KeyGen0,0(1
λ, N, z) sample QS primes e1, . . . , eQS

← Se. Sample β ← Sa. Sample v, w ← Z∗
N .

Sample j ← {1, . . . , QS}. Set h1 := z2
∏

i̸=j ei , h2 := v2
∏

i ei , h := h−β
1 · w2

∏
i ei . Output

vk = (N,h, h1, h2) along with sk0,0 = (β, v, w, e1, . . . , eQS
, j)

Sfis.KeyGen0,1(1
λ, N, z) sample QS primes e1, . . . , eQS

← Se. Sample β ← Sa. Sample v, w ← Z∗
N .

Sample j ← {1, . . . , QS}. Set h1 := v2
∏

i ei , h2 := z2
∏

i̸=j ei , h := h−β
2 · w2

∏
i ei . Output

vk = (N,h, h1, h2) along with sk0,1 = (β, v, w, e1, . . . , eQS
, j)

Sfis.KeyGen1(1
λ, N, z) sample QS primes e1, . . . , eQS

← Se. Sample a, a′ ← {1, . . . , N2} and set
h1 := z2

∏
i ei , h2 := ha

′

1 , h := ha1 . Output vk = (N,h1, h2, h) along with sk1 = (a, a′, e1, . . . , eQS
).
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Corresponding to these alternate key generation algorithms, we describe how to use the internal
state for generating signatures on hashes of messages m where k is a counter for the number of
signing queries.

Sfis.Sign0,0(β, v, w, e1, . . . , eQS
, j, k,m) If k ̸= j, sample ak ← Sa. Compute

yk :=w2
∏

i̸=k ei ·

(
z
2
∏

i ̸=j
i ̸=k

ei
)ak−β (

v2
∏

i̸=k ei
)ak+m

=
(
h · hak

1 · h
ak+m
2

) 1
ek

For k = j, it sets ak = β and computes

yk :=w2
∏

i̸=k ei ·
(
v2

∏
i̸=k ei

)ak+m

=
(
h · hak

1 · h
ak+m
2

) 1
ek

Output σk = (ek, ak, yk).
Sfis.Sign0,1(β, v, w, e1, . . . , eQS

, j, k,m) For any k ̸= j, sample ak ← Sa and compute

yk :=w2
∏

i̸=k ei ·

(
z
2
∏

i ̸=j
i ̸=k

ei
)ak+m−β (

v2
∏

i̸=k ei
)ak

=
(
h · hak

1 · h
ak+m
2

) 1
ek

For k = j, it sets ak = β −m and computes

yk :=w2
∏

i̸=k ei ·
(
v2

∏
i̸=k ei

)ak+m

=
(
h · hak

1 · h
ak+m
2

) 1
ek

Sfis.Sign1(a, a
′, e1, . . . , eQS

, k,m) Sample ak ← Sa and compute

yk :=z2·(a+ak·a′+(ak+m))
∏

i̸=k ei

=
(
h · hak

1 · h
ak+m
2

) 1
ek

B.2 Proof of security

Theorem 6. If the sRSA assumption holds and the hash function H is a random oracle mapping
from {0, 1}∗ to {0, 1}2λ then the scheme described above is EUF-CMA secure.

Proof. Let A be an adversary against the EUF-CMA security of the scheme that runs in time t′
and has advantage ε′ and makes QS queries to the signing oracle.

We denote by mi the ith message queried to the signing oracle by A, by σi = (ei, ai, yi) the ith
signature output by the signing oracle to A, and by m∗, σ∗ = (e∗, a∗, y∗) we denote A’s forgery. We
show security through a series of games.

Game 1: Game 1 is the original EUF-CMA game.

Game 2: In Game 2 the game aborts if for any i, j mi ̸= mj it holds that H(mi) = H(mj) or if
H(mi) = H(m∗). We can bound the abort probability by bounding the number of collisions in H,
namely,

|Pr[Game 2 = 1]− Pr[Game 1 = 1]| ≤ Q2
H

2 · 22λ
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Game 3: In Game 3, we introduce an abort condition in which our reduction will not be able
to simulate. At the end of the game, the game Game 3 samples a bit b and aborts if b = 0 and
e∗ /∈ {e1, . . . , eQS

} or if b = 1 and e∗ ∈ {e1, . . . , eQS
}. It is easy to see that

Pr[Game 3 = 1] ≥ 1

2
Pr[Game 2 = 1].

Game 4: In Game 4, if b = 0, the Game samples an index j ∈ {1, . . . , QS}. It aborts if e∗ ̸= ej . It
holds that

Pr[Game 4 = 1] ≥ 1

QS
Pr[Game 3 = 1]

Game 5: In Game 5, if b = 0, the Game samples a bit b′. If b′ = 0 and aj = a∗ (where j is as
defined in Game 4), the game aborts. If b′ = 1 and aj + H(mj) = a∗ + H(m∗), the game aborts.
We argue why the abort probability is 1

2 . As the adversary is not allowed to re-sign a previously
signed message, it holds that mj ̸= m∗. This, along with the abort condition induced in Game 2,
implies that H(m∗) ̸= H(mj). Thus, if the adversary chooses a∗ = aj , it must be the case that
aj + H(mj) ̸= a∗ + H(m∗). Otherwise it holds that a∗ ̸= aj . The bit b is chosen independently of
this choice of the adversary regarding his forgery and therefore,

Pr[Game 5 = 1] ≥ 1

2
Pr[Game 4 = 1].

Game 6: In Game 6, we sample b, b′, j at the beginning of the game. This is a purely conceptual
change, thus

Pr[Game 6 = 1] = Pr[Game 5 = 1]

Game 7: In Game 7 we change how the values aj are sampled during signature generation. If b = 0,
b′ = 0, instead of sampling aj ← Sa, it first samples β ← Sa and then sets aj = β. If b = 1 and
b′ = 1, it samples β ← Sa and sets aj = β −H(mj). A simple argument shows that the distribution
of aj in Game 7 has statistical distance at most 1/2λ from the distribution of a in Game 6.

Thus, we get that |Pr[Game 7 = 1]− Pr[Game 6 = 1]| ≤ 1
2λ

.

The Reduction: We now provide a reduction that simulates Game 7 and breaks the strong RSA
assumption.

On input (N, z ∈ Z∗
N ) ,the reduction behaves as follows:

First, it samples a bit b, b′ and an index j. If b = 0 (recall that in this case Game 7 aborts if
e∗ /∈ {e1, . . . , eQS

}), the reduction works as follows:

Setup. Runs Sfis.KeyGen0,b′(1
λ, N, z) to obtain vk, sk0,b′ It passes the public key (N,h, h1, h2) to

the adversary.
Signing Queries. For the kth signing query it runs Sfis.Sign0,b′(sk0,b′ , k,H(m)) to obtain σk =

(ek, ak, yk) and outputs σk.
Output Determination. When the adversary outputs a forgery m∗, σ∗ = (e∗, a∗, y∗), the re-

duction can compute an ejth root of z. As Game 7 aborts unless e∗ = ej , the reduction
obtains

h
−aj

1 h
−(aj+H(mj))
2 · yejj = h = h−a∗

1 h
−(a∗+H(m∗))
2 y∗ej

If b′ = 0, solving for z using the preselected values from the public key yields:

z2
∏

i̸=j ei·(a∗−aj) =
(
v2

∏
i̸=j ei·(aj+H(mj)−a∗−H(m∗))

)ej
(y∗y−1

j )ej

Which we can solve for a ejth root of z if gcd(ej , 2
∏

i ̸=j ei · (a∗ − aj)) = 1 using lemma 5. It
holds that the gcd is 1 as aj < e and a∗ < e by virtue of the range checks, and thus also their
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difference is smaller than ej . As ej is prime this immediately implies coprimality. Furthermore,
all the other ei are coprime to ej , and ej is odd, so it is also coprime with 2.
Analogously, if b′ = 1, we swap the roles of h1 and h2 and get

z2
∏

i̸=j ei·(m∗+a∗−(mj+aj)) =
(
v2

∏
i̸=j ei·(aj−a∗))

)ej
(y∗y−1

j )ej .

Again, using the same reasoning as above, we can solve for an ejth root of z using lemma 5.

For the case that b = 1, the reduction simulates as follows:

Setup. Given N and z ∈ ZN , the reduction runs Sfis.KeyGen1(1λ, N, z) to obtain vk = (N,h, h1, h2)
and sk1. It outputs the public key vk to the adversary.

Signing Queries. The reduction responds to the kth signing query by running Sfis.Sign1(sk1, k,H(m))
to obtain σk. It outputs the signature σk.

Output Determination. When the adversary outputs its forgery m∗, σ∗ = e∗, a∗, y∗), the reduc-
tion can learn the following

y∗e
∗
= hha

∗

1 h
a∗+H(m∗)
2 = z2·(a+a∗·a′+(a∗+H(m∗)))

∏
i̸=k ei

Computing a root of z follows as in [41] where the probability of success is (1− 1/r) where r is
the smallest prime factor dividing e∗. As e∗ is odd, r is at least 3.
Putting this together yields

AdvsRSAB ≥2

3
Pr[Game 7 = 1]

≥2

3

(
Pr[Game 6 = 1]− 1

2λ

)
≥2

3

(
1

4QS
Pr[Game 2 = 1]− 1

2λ

)
≥2

3

(
1

4QS

(
Pr[Game 1 = 1]− Q2

H

2 · 22λ

)
− 1

2λ

)
=

1

6QS
Adveuf−cma

A − 1

6QS

Q2
H

2 · 22λ
− 1

3 · 2λ−1

C Deferred Content from Section 5

C.1 Efficient Opening in Zero-Knowledge

We construct efficient NIZKs Πint and Πgrp to open CRInt and CGrp, respectively, in zero-knowledge.

Proof for Public Parameters. Before we detail both NIZKs, we construct an additional NIZK
Πgen to prove that MPed is statistically hiding under public parameters pp = (N,h, g⃗) for MPed
and g⃗ = (g1, · · · , gℓ). This is the case if ⟨h⟩ = ⟨gi⟩ ⊆ Z∗

N for all i ∈ [ℓ]. More generally, we construct
an NIZK Πgen with oracle Hgen for the relation

Rgen =
{
(x,w) | ∀i ∈ [ℓ] : gαi

i ≡ h mod N,hβi ≡ gi mod N
}
,

where x = (N, ℓ, h, (gi)i∈[ℓ]) and w = ((αi, βi)i∈[ℓ]) for some ℓ ∈ N. Note that we also use Πgen

in Section 6. It is based on the Σ-protocol Σgen given in Fig. 2 with challenge space [0, C] for
C = 2λ − 1, compiled into a NIZK via Fiat-Shamir. The random oracle is denoted by Hgen. Note
that no crs is required (i.e., SRS = URS = {⊥}).
– Πgen.GenSRS(1

λ): Outputs ⊥.
– Πgen.Prove

Hgen(crs, x, w): On input crs, statement x, and witness w, outputs the proof π computed
as follows

(ΩΣ , st)← Σgen.Init(x,w),

γΣ ← Hgen(x,ΩΣ),

τΣ ← Σgen.Resp(x, st, γΣ),

π ← (ΩΣ , γΣ , τΣ).
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– Πgen.Verify
Hgen(crs, x, π): On input crs, statement x, and proof π, checks

Hgen(x,ΩΣ) = γΣ ,

Σped.Verify(x,ΩΣ , γΣ , τΣ) = 1,

where π = (ΩΣ , γΣ , τΣ), and outputs 1 iff all checks succeed.

Prover(x;w) Verifier(x)

1 : µ⃗α, µ⃗β ←
(
[0, N · 22λ]ℓ

)λ

2 : Ω⃗g ← g⃗µ⃗α , Ω⃗h ← hµ⃗β

Ω⃗g, Ω⃗h

3 : γ⃗ ← {0, 1}λ

γ⃗

4 : τ⃗α ← γ⃗ ◦ α⃗+ µ⃗α, τ⃗β ← γ⃗ ◦ β⃗ + µ⃗β

τ⃗α, τ⃗β

5 : check Ω⃗g ◦ hγ⃗ ≡ g⃗ τ⃗α mod N

6 : check Ω⃗h ◦ gγ⃗ ≡ hτ⃗β mod N

Fig. 2: Description of Σgen for x = (N, ℓ, h, g⃗) and w = (αi, βi)i∈[ℓ] with g⃗ = (g1, · · · , gℓ). We denote
the Hadamard product by ◦.

We first show that the Σ-protocol Σgen given in Fig. 2 satisfies desired properties for the
Fiat-Shamir transform.

Theorem 7. The Σ-protocol Σgen given in Fig. 2 satisfies correctness, 2-special soundness, honest-
verifier zero-knowledge, and has high min-entropy.

Proof. For the commitment vectors Ω⃗g, Ω⃗h and the response vectors τ⃗α, τ⃗β , their i-th element is
denoted by Ω⃗g,i, Ω⃗h,i, τ⃗α,i, τ⃗β,i. First of all, we recall that Σ-protocol Σgen is used for N comes from
the pp = (N,h, g⃗) for the Pedersen commiment MPed in QRN . (Since membership in QRN cannot
be efficiently tested without factorization of N , the MPed commitment is formally defined over Z∗

N .
Later, N and pp are given in the crs, and pp are generators of QRN else we find witness of some
relaxed DLOG relation as per Definition 7.) Thus as long as h, gi ≠ 1 for i ∈ [ℓ], the groups ⟨h⟩, ⟨gi⟩
are of exponentially large orders in λ. Therefore, using the fact that the space

(
[0, N · 22λ]ℓ

)λ is
exponentially large in λ, Σgen has high min-entropy. Next, correctness is straightforward, noting
that by construction, for x = (N, ℓ, h, g⃗) and w = (αi, βi)i∈[ℓ], for all i ∈ [ℓ]

Ω⃗g,i ◦ hγ⃗ = g
µ⃗α,i

i ◦ gαi·γ⃗
i = g

τ⃗α,i

i ; Ω⃗h,i · gγ⃗i = hµ⃗β,i ◦ hβiγ⃗ = h
τ⃗β,i

i .

For 2-special soundness, given two valid transcripts (Ω⃗g, Ω⃗h), γ⃗
b, τ⃗ bα, τ⃗

b
β where b ∈ {0, 1} and γ⃗0 ̸= γ⃗1,

a deterministic polynomial-time extractor Ext can executes as follows: First, identify an index j s.t.
γ0j ̸= γ1j

1. For each i ∈ [ℓ], Ext sets αi :=
τ⃗0
α,i−τ⃗1

α,i

γ0
j−γ1

j
.

2. For each i ∈ [ℓ], Ext sets βi :=
τ⃗0
β,i−τ⃗1

β,i

γ0
j−γ1

j
.

3. Outputs w := (αi, βi)i∈[ℓ] as a witness for x = (N, ℓ, h, g⃗).
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The output w by Ext is well defined and indeed a witness of x because γ0 ̸= γ1, γ0j − γ1j ∈ {−1, 1}
(and thus has an efficiently computable multiplicative inverse) andΩ⃗g,i · hγ

0
j = g

τ⃗0
α,i

i

Ω⃗g,i · hγ
1
j = g

τ⃗1
α,i

i

;

Ω⃗h,i · g
γ0
j

i = hτ⃗
0
β,i

Ω⃗h,i · g
γ1
j

i = hτ⃗
1
β,i

⇒

hγ
0
j−γ1

j = g
τ⃗0
α,i−τ⃗1

α,i

i

g
γ0
j−γ1

j

i = hτ⃗
0
β,i−τ⃗1

β,i

.

A PPT simulator Sim for honest-verifier zero-knowledge works as follows:

1. For each i ∈ [ℓ]
– Sim samples the challenge γ⃗ ← {0, 1}λ as well as the i-th responses τ⃗α,i, τ⃗β,i ← ([0, N ·22λ])λ.
– Sim computes Ω⃗g,i := g

τ⃗α,i

i (hγ⃗)−1 and Ω⃗h,i := hτ⃗β,i ◦ (gγ⃗i )−1. The commitments are defined
Ω⃗g := (Ω⃗g,i)i∈[ℓ], Ω⃗h := (Ω⃗h,i)i∈[ℓ].

– Output (Ω⃗g, Ω⃗h, γ, τ⃗α, τ⃗β).

For any x ∈ LR, i.e. ⟨h⟩ = ⟨gi⟩ ⊆ Z∗
N for all i ∈ [ℓ], the simulator Sim(x,C) outputs a valid

transcript that follows a distribution statistically close to that of the honestly generated transcript
with Init initialized with (x,w). First we argue the distribution of the commitments Ω⃗g, Ω⃗h. We

use the fact that because ⟨h⟩ = ⟨gi⟩, it holds that Ω⃗g,i :=
g
τ⃗α,i
i

hγ ∈ ⟨gi⟩ and Ω⃗h,i := hτ⃗β,i

gγ
i
∈ ⟨h⟩

having the statistically close distributions thanks to Noise Flooding recalled in Appendix A.2.
Indeed, τ⃗α, τ⃗β ← ([0, N · 22λ]ℓ)λ, where each i-th responses τ⃗α,i, τ⃗β,i ← ([0, N · 22λ])λ, act as masks
for the given values γ⃗ ◦ α⃗, γ⃗ ◦ β⃗ ∈ ([0, N ]ℓ)λ. By noise flooding the induced µ⃗α ← −γ⃗ ◦ α⃗ + τ⃗α,

µ⃗β ← −γ⃗ ◦ β⃗ + τ⃗β are distributed close to uniform within distance 1/22λ. Next we argue that the
distribution of the real responses τ⃗α, τ⃗β in the real protocol are statistically close to unform over
([0, N · 22λ]ℓ)λ. More specifically, in the real protocol

τ⃗α ← γ⃗ ◦ α⃗+ µ⃗α, τ⃗β ← γ⃗ ◦ β⃗ + µ⃗β

where µ⃗α, µ⃗β ←
(
[0, N · 22λ]ℓ

)λ act as masks for γ⃗ ◦ α⃗, γ⃗ ◦ β⃗ ∈ ([0, N ]ℓ)λ. Then similarly noise
flooding concludes that the induced τ⃗α, τ⃗β are distributed close to uniform within distance 1/22λ.
This means the way of simulating τ⃗α, τ⃗β ← ([0, N · 22λ])λ is statistically close to the real responses
and the proof is completed. ⊓⊔

We now show that the Πgen satisfies statistical adaptive subversion soundness, zero-knowledge,
and correctness.

Theorem 8. Πgen satisfies statistical adaptive subversion soundness, zero-knowledge, and correct-
ness.

Proof.

Correctness. Correctness directly follows from the correctness of the underlying Σ-protocol.

Soundness. As the CRS of this protocol is empty, it suffices to consider an adversary A that outputs
a pair (x, π) for x /∈ LR. Consider an arbitrary x /∈ LR, i.e. ⟨h⟩ ≠ ⟨gi⟩ for some i ∈ [ℓ]. W.l.o.g. we
consider the case that ⟨h⟩ ̸⊆ ⟨gi⟩ (the argument for the other direction is symmetrical). This in
particular means h /∈ ⟨gi⟩. Thus, for any value Ωg,i,j ∈ Z∗

N it cannot hold that both Ωg,i,j · h ∈ ⟨gi⟩
as well as Ωg,i,j ∈ ⟨gi⟩. We consider a hash query made by the statistical soundness adversary. The
adversary submits vectors Ω⃗g, Ω⃗h to the random oracle. By what we saw above, for each entry
Ω⃗g,i,j , it holds that either Ωg,i,j ·h ∈ ⟨gi⟩ or Ωg,i,j ∈ ⟨gi⟩ (if neither is the case the adversary cannot
output a proof using this hash query). As the hash oracle is a random oracle, with probability
≤ 1

2 , the j-th entry of the hash response is bj such that Ωg,i,j · hb ∈ ⟨gi⟩. As the bj are sampled
uniformly at random by the random oracle, it follows that the probability that for all j ∈ [λ],
Ωg,i,j · hb ∈ ⟨gi⟩ is ≤ 1

2λ
. Union bounding over all QHgen hash queries made by the adversary yields

that AdvsndA (λ) ≤ QHgen

2λ
.

Zero-knowledge. The Zero-Knowledge property directly follows from the honest verifier zero-
knowledge property of the Σ-protocol and the Fiat-Shamir transform.
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Efficient Proof of Opening for CRInt. We construct a NIZK Πint that allows to open CB⃗,T
RInt in

zero-knowledge for arbitrary B ∈ N and slack T = 2λ+1L, where L ∈ N is the masking overhead for
rejection sampling. Note that the size of T and B⃗ impact the size of the underlying group G.

To construct Πint, we compile a Schnorr-styleΣ-protocol with challenge space [0, C] for C := 2λ−1
using Fiat-Shamir with abort. To ensure (relaxed) range membership we use techniques from
[33, 32]. Roughly, we add an MPed commitment c to m⃗ that in conjunction with a size check
ensures that the extracted integers are in the relaxed range [−B⃗T, B⃗T ]. The public parameters
ppMPed = (N,h, g1, · · · , gℓ) for MPed constitute the srs. To obtain subversion zero-knowledge, we
add a proof πgen generated via Πgen that ⟨h⟩ = ⟨gi⟩ for all i ∈ [ℓ] to ensure that MPed is hiding even
for a malicious ppMPed. We denote by Hgen the hash function for Πgen.

Formally, the zero-knowledge relation is

R = {(x,w) | (c, d) = CRInt.Commit(m⃗; r), m⃗ ∈ [0, B⃗]}

for x = (pp, c) with c = (C⃗, F ) and w = (m⃗, r), where d = r ∈ Zp. The soundness relation is

R̃ = {(x,w) | CRInt.Verify(pp, c, m⃗, r)}.

The underlying Σ-protocol Σint is given in Fig. 3. Note that the crs is included in the statement
of Σint for technical reasons. The NIZK Πint with hash function Hint : {0, 1}∗ → [0, C], urs length
ℓint = 0 and

SRS =
{
(ppMPed, πgen) |ppMPed = (N,h, g⃗) ∈ N× (Z∗

N )ℓ+1,

Πgen.Verify
Hgen(xgen, πgen), xgen = (N, ℓ, h, g⃗)

}
is defined as follows. Note that membership checks for SRS are efficient by design.

– Πint.GenCRS(1
λ): On input 1λ, samples ppMPed = (N,h, g⃗)← MPed.Setup(1λ). Then, sets πgen ←

Πgen.Prove
Hgen(wgen, xgen) for xgen = (N, ℓ, h, g⃗) and appropriate wgen (which can be computed

explicitly during MPed.Setup). Outputs the structured reference string srs = (ppMPed, πgen).
– Πint.Prove

Hint(crs, x, w): Computes a proof π as follows for xσ = (x, crs).

(ΩΣ , st)← Σint.Init(x,w),

γΣ ← Hint(xΣ , ΩΣ),

τΣ ← Σint.Resp(xΣ , st, γΣ),

π ← (ΩΣ , γΣ , τΣ).

Restarts if Σint.Resp aborted, else outputs π.
– Πint.Verify

Hgen(crs, x, π): On input crs, statement x, and proof π, sets xΣ = (x, crs) and checks

Hint(xΣ , ΩΣ) = γΣ ,

Σped.Verify(xΣ , ΩΣ , γΣ , τΣ) = 1,

where π = (ΩΣ , γΣ , τΣ), and outputs 1 iff all checks succeed.

We show that Πint is secure. We give a brief sketch. Correctness is clear (if the abort probability
is sufficiently low). For soundness, we use the forking lemma to obtain 2 accepting transcripts. Then,
we compute openings for CRInt as usual. Due to lemma 6 and the shortness checks, the opening is in
the right interval. For subversion zero-knowledge, observe that for any srs ∈ SRS, the commitment
c is hiding (under soundness of Πgen).

Theorem 9. The NIZK is correct if (1− 1
L )

−ℓ = poly(λ), adaptively knowledge sound for R̃ and
subversion zero-knowledge.

Proof. We give a proof sketch for correctness and subversion zero-knowledge (as the proofs are
straightforward) and give a detailed proof for soundness.

Correctness. Note that a single run succeeds with probability (1− 1
L )

ℓ because 1/L is the abort
probability of the size check in line 10 per coordinate (cf. Appendix A.2). Thus, proof generation



40 Julia Kastner , Ky Nguyen , and Michael Reichle

Prover(x;w) Verifier(x)

1 : c← hr ·
ℓ∏

i=1

gmi
i mod N for r ← [0, N · 2λ]

2 : µr ← Zp, µr ← [0, CN · 22λ]

3 : µ⃗m ← [0, (B⃗C + 1)L]

4 : ΩF ← µrH, Ω⃗C ← µ⃗xH + µrG⃗

5 : Ωc ← hµr ·
ℓ∏

i=1

g
(µm)i
i mod N

c,ΩF , Ω⃗C , Ωc

6 : γ ← [0, C]

γ

7 : τ⃗m ← γm⃗+ µ⃗m

8 : check τ⃗m ∈ [B⃗C, (B⃗C + 1)L]

9 : τr ← γr + µr mod p, τr ← γr + µr

τ⃗m, τr, τr

10 : check τ⃗m ∈ [0, (B⃗C + 1)L]

11 : check ΩF + γF = τrH

12 : check ΩC + γC⃗ = τ⃗mH + τrG⃗

13 : check Ωc · (c)γ = hτr ·
ℓ∏

i=1

g
(τm)i
i mod N

Fig. 3: Description of Σint, an efficient Σ-protocol for opening CRInt. Here, x = (pp, C⃗, F, crs) and
w = (m⃗, r). Also, crs = (N,h, g⃗, πgen) for g⃗ = (g1, · · · , gℓ). If a check fails, the party aborts.

runs in time O((1− 1
L )

−ℓ) in expectation. In case of no abort, the verification equations verify by
construction.

Subversion zero-knowledge. This follows with standard arguments. We sketch the zero-knowledge
simulator below. The simulator samples a challenge γΣ ← [0, C] and τ⃗m ← [B⃗C, (B⃗C+1)L], τr ← Zp

and τr̄ ← [0, (B⃗C + 1)L]. It is easy to check that the response follows the honest distribution
(conditioned on no abort due to Appendix A.2). Next, the simulator an MPed commitment c̄ to
zero. Because for any srs ∈ SRS, the scheme MPed is statistically hiding (under soundness of Πgen),
this commitment also follows the distribution of honestly generated c̄ with negligible statistical
distance. Finally, the simulator samples ΩF , Ω⃗C , Ωc̄ according to the verification equations, and
sets

– ΩΣ = (c̄, ΩF , Ω⃗C , Ωc̄),
– τΣ = (τ⃗m, τr, τr̄).

Before the simulator outputs the proof π = (ΩΣ , γΣ , τΣ), it programs the random oracle Hint

accordingly. Observe that the underlying Σ-protocol has high min-entropy (since ΩF is distributed
uniform over G), thus Hint is not defined at input (xΣ , c̄, ΩF , Ω⃗C , cZ c̄) yet with overwhelming
probability. As discussed above, conditioned on no abort, the proof π is identically distributed to
honestly generated proofs. Repetitions due to aborts are only noticeable if the adversary observes
Hint queries for aborted transcripts. Due to high min-entropy, this occurs only with negligible
probability.
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Adaptive knowledge soundness. For soundness, we obtain two valid transcripts tr = (α, γ, ω),
tr ′ = (α, γ′, ω′) with shared α = (c,ΩF , Ω⃗C , Ωc) but distinct challenges γ ≠ γ′ via the forking
lemma (cf. Appendix A.2). Parse ω = (τ⃗m, τr, τr) and ω′ = (τ⃗m′ , τr′ , τr′). Let us denote ∆m⃗ =
τ⃗m − τ⃗m′ , ∆r = τr − τr′ , ∆r = τr − τr′ , and ∆γ = γ − γ′ ≠ 0. Without loss of generality, we have
∆γ ∈ [0, C]. Since both transcripts are valid (with shared α = α′), we have

ΩF = τrH − γF = τr′H − γ′F

Rearranging both terms yields

τrH − τr′H = −γ′F + γF

=⇒ ∆γF = ∆rH

=⇒ F =
∆r

∆γ
H

Similarly, we obtain

C⃗ =
∆m⃗

∆γ
H +

∆r

∆γ
G⃗

Thus, m⃗ := ∆m⃗
∆γ and r = ∆r

∆γ form a valid opening for c if m⃗ ∈ [−B⃗T, B⃗T ]. For this, we use the
properties of c. As above, we obtain

hτr ·
ℓ∏

i=1

g
(τm)i
i · (c)−γ = hτr′ ·

ℓ∏
i=1

g
(τm′ )i
i · (c)−γ′

mod N

=⇒ h∆r ·
ℓ∏

i=1

g
(∆m)i
i = (c)∆γ mod N

Recall that ∆γ ∈ [0, C] with C = 2λ − 1. Under lemma 6, we have ∆r/∆γ, (∆m)i/∆γ ∈ Z. Also,
since (τm)i, (τm′)i ∈ [0, (BiC+1)L] we have that |(∆m)i/∆γ| ≤ 2(BiC+1)L. Since 2(BiC+1)L ≤
2λ+1BiL = TiL, we have m⃗ ∈ [−B⃗T, B⃗T ] as desired.

Efficient Proof of Opening for CGrp. A commitment of CGrp consists of a Pedersen commitment
(in Ĝ) and a CRInt commitment. If CRInt is instantiated as in Section 5.1, it is straightforward to
obtain a NIZK for opening CGrp in zero-knowledge using the techniques from Appendix C.1 (since
the decomposition of s is linear). An example of this NIZK is given within the NIZK provided in
Appendix E.2.

D Deferred content from Section 6

D.1 Number of primes in [25λ, 25λ + 23λ]

Lemma 1. For E = 23λ, E = 25λ, there are Ω(22λ) primes in Se = [E,E + E].

Proof. We prove that there are Ω(22λ) in the interval [25λ, 25λ + 23λ]. In the following we denote
by π(x) the number of primes at most x, for any x ∈ R is a function of λ. In the following we use
∼ to write the limit as λ→∞. We want to estimate

π(25λ + 23λ)− π(25λ) (7)

which is the number of primes in [25λ, 25λ + 23λ]. First, from a recent result [58], which refines the
celebrated Huxley’s bound [60, 57], we have

π(x+ y)− π(x) ∼ y/ log x
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for Huxley’s range x7/12 ≤ y ≤ x. Setting x = 25λ and y = 23λ, while noticing that 7/12 < 3/5
yields

π(25λ + 23λ)− π(25λ) ∼ 23λ

5λ
. (8)

The approximation Eq. (8) means that for any ϵ > 0, there exists λ0 ∈ R>0 such that for sufficiently
large λ > λ0, the number of primes between 25λ and 25λ + 23λ satisfies∣∣∣∣π(25λ + 23λ)− π(25λ)− 23λ

5λ

∣∣∣∣ ≤ ϵ . (9)

We choose ϵ := 1
5 > 0 and (9) implies: for sufficiently large λ∣∣∣∣π(25λ + 23λ)− π(25λ)− 23λ

5λ

∣∣∣∣ ≤ 1

5
⇒ 23λ

5λ
− 1

5
≤ π(25λ + 23λ)− π(25λ)

⇒ 23λ − λ
5λ

≤ π(25λ + 23λ)− π(25λ) .

In other words, we have

π(25λ + 23λ)− π(25λ) = Ω

(
23λ − λ

λ

)
= Ω

(
22λ
)

and the claim is proved. ⊓⊔

D.2 Proof of lemma 2 and Corollary 1

Lemma 2. Let λ ∈ N and N > 3 be an odd natural number of bitlength polynomially large in λ.
We consider Z∗

N and fix G = ⟨g⟩ ⊆ Z∗
N where g ∈ Z∗

N . Given e ← Se where Se contains at least
Ω(2λ) primes, we have

Pr [⟨ge⟩ ≠ G : e← Se] ≤ negl(λ)

where the probability is taken over the choice of e.

Proof. We write N =
∏k

i=1 p
νi
i for some k ∈ N and pi ∈ Se where pi > 2 as N is odd. We denote

by ℓ(λ) : N→ N a polynomial dictating the bit length of N . Then, since 3 < N it holds that

2ℓ(λ) > N > ϕ(N) =

k∏
i=1

pνi−1
i (pi − 1)

>
k∏

i=1

2 > 2k (10)

and thus k < ℓ(λ), i.e. the number of distinct prime factors of ϕ(N) is at most ℓ(λ).
Moreover, we have ⟨ge⟩ ⊊ ⟨g⟩ if and only if e | ord(g). Because G = ⟨g⟩ ⊆ Z∗

N , we have
ord(g) | ϕ(N) and from (10) it follows that the number of distinct prime factors of ord(g) is also at
most ℓ(λ). Consequently, this implies

Pr [⟨ge⟩ ⊊ ⟨g⟩ : e← Se] ≤ Pr [e | ord(g) : e← Se]

≤ k

|Se|
= O

(
ℓ(λ)

2λ

)
= negl(λ)

by the fact that k < ℓ(λ), Se contains at least Ω(2λ), as well as ℓ(λ) is a polynomial in λ28. The
proof is completed. ⊓⊔
28 In our blind signature scheme BSfis (Fig. 1) we set ℓ(λ) := 2λ.
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Corollary 1. Let λ ∈ N and N > 3 be an odd natural number of bitlength polynomially large in
λ. We consider Z∗

N and fix G = ⟨g⟩ ⊆ Z∗
N where g ∈ Z∗

N . Given e← Se where Se contains at least
Ω(2λ) primes, with overwhelming probability over the choice of e

ψ : G→ ⟨ge⟩
z 7→ ze mod N

is a group isomorphism.

Proof. Suppose ⟨ge⟩ = G, we will prove that

ψ : G→ ⟨ge⟩
z 7→ ze mod N

which is a group isomorphism. For a, b ∈ G, ψ(ab-1) =
(
ab-1

)e
= ψ(a) · ψ(b)-1 mod N by arithmetic

in Z∗
N . As a consequence ψ is a group homomorphism. We now show that ψ is surjective. Thanks to

the hypothesis ⟨ge⟩ = G, it holds that gcd(e, ord(G)) = 1, ord(G) = ord(⟨ge⟩), and e-1 mod ord(⟨ge⟩)
is well defined. Therefore, for any z′ ∈ ⟨ge⟩, we define d := e-1 mod ord(⟨ge⟩), and z := (z′)

d mod N .
It can be verified that

ψ(z) = (z′)
ed

= z′ mod N

as ed ≡ 1mod ord(⟨ge⟩). Next, ψ is injective if and only if ker(ψ) = {1}. The inclusion {1} ⊆ ker(ψ) is
clear. Suppose for the sake of contradiction that there exists 1 ̸= z ∈ G so that ψ(z) = 1. This implies
ze ≡ 1 mod N and thus ord(z) | e. Moreover, from 1 ̸= z ∈ G it holds that 1 < ord(z) | ord(G)
thanks to Larange. Combiningly we obtain 1 < ord(z) | gcd(e, ord(G)), which contradicts the
hypothesis that ⟨ge⟩ = G. Therefore ker(ψ) = {1} and ψ is injective.

Finally, with overwhelming probability over the choice of e ← Se, lemma 2 concludes that
⟨ge⟩ = G and this finishes the proof. ⊓⊔

D.3 Blindness under Malicious Keys of BSfis - Proof of Theorem 3

Theorem 3. The scheme BSfis is blind under malicious keys following the subversion statistical
adaptive soundness of Πgen, the subversion zero-knowledge property of Πfis, the computational
hiding property of CRInt, and the subversion zero-knowledge property of Πped.

Proof. We proceed by a sequence of hybrids. We denote by AdvblindA,Game i(λ) the probability that a
PPT adversary A outputs 1 in Game i. We assume that all the check steps are passed during the
execution. This is not without loss of generality, but for the ease of presentation. In Remark 6 we
elaborate on the cases when some check steps are not passed.

Game 1: We start with the game following Definition 3 where coin = 0.

Game 2: This hybrid is the same as Game 1, except that we use the subversion zero-knowledge
simulator Simfis = (SimH,fis,Simπ,fis) of Πfis to simulate πfis in the derived signature σ = (πfis, cI).
Game 2 differs from Game 1 in the following details. We program the unstructured reference string
ursfis in (ursped, ursfis, ursgen) ← Hurs(0) together with honest ursped, ursgen ∈ URS. The blindness
adversary A also sets up srszkp for zkp ∈ {ped, fis, gen}. The common reference strings are defined,
in particular crsfis = (srsfis, ursfis) along with crsped, crsgen in bvk. We program Hfis by SimH,fis for
further RO queries. Then, run πfis ← Simπ,fis(crsfis, xfis). The following lemma 7 argues that Game 2
and Game 1 are indistinguishable. In particular, for any blindness adversary A, there exist PPT
B1,B2,B3 so that

|AdvblindA,Game 2(λ)− AdvblindA,Game 1(λ)| ≤ AdvsndB2,Πgen
(λ) + Advsub-zk

B3,Πfis
(λ) + negl(λ) .

and is negligible in λ.
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Lemma 7. Under the subversion zero-knowledge of Πfis as well as the subversion adaptive sound-
ness Πgen, the games Game 2 and Game 1 are indistinguishable. For any blindness adversary A,
there exist PPT B2,B3 so that

|AdvblindA,Game 2(λ)− AdvblindA,Game 1(λ)| ≤ AdvsndB2,Πgen
(λ) + Advsub-zkB3,Πfis

(λ) + negl(λ) .

Proof. By construction, with respect to the relation Rfis, the values e, (cI , dI), rI determined by the
user satisfy: 

e ≡ 1 mod 2

(cI , dI) = CRInt.Commit(ppI , (a, e− E); rI) = 1,

e ∈ Se
.

We also recall that c = hm2 · gre mod N in the first message to the blindness adversary A and
y ← z · g−r mod N during the signature derivation are both computed by the user. Moreover, we
suppose that all the check steps are passed during the execution, it holds a ∈ Sa as a part in the
relation Rfis. Now, using the simulation as described in Game 2, there are three cases to treat as
follows:

Case 1: Suppose that xfis /∈ LRfis
and ye ̸≡ h · ha1 · ha+m

2 mod N . This implies

ye ̸≡ h · ha1 · ha+m
2 mod N

⇒ ze · g−re ̸≡ h · ha1 · ha+m
2 mod N

⇒ ze ̸≡ h · ha1 · hm2 · gre · ha2 mod N

⇒ ze ̸≡ h · ha1 · c · ha2 mod N

⇒ ze
(†)
̸≡ z′ mod N

From Corollary 1, with overwhelming probability over the choice of e ← Se, raising to the
power of e is a bijection. Therefore, except with negligible probability, inequality (†) contradicts
the fact that during Derive it is set z′ ← h · ha1 · c · ha2 and the hypothesis that the check
ze ≡ z′ mod N holds. Equivalently, this current case with the inequality (†) happens only with
negligible probability.

Case 2: Suppose that xfis /∈ LRfis
and ye ≡ h ·ha1 ·ha+m

2 mod N but y /∈ ⟨h1⟩. Due to the hypotheses
that ye ≡ h · ha1 · ha+m

2 mod N and y /∈ ⟨h1⟩, we have ⟨h1⟩ ̸= ⟨h⟩ or ⟨h1⟩ ̸= ⟨h2⟩. Recalling
that without loss of generality we are supposing all the check steps are passed during the
execution, in particular Πgen.Verify

Hgen(crsgen, xgen, πgen) = 1. This means we obtain an instance
(N, 3, g, (h, h1, h2)) that breaks the subversion soundness of Πgen.
We provide a PPt adversary B2 breaking the subversion soundness of Πgen as follows:
– B2 simulates Game 2 by programming the unstructured reference string ursfis in Hurs(0)

together with honest ursped ∈ URS. Then B2 receives ursgen from its subversion soundness
challenger.

– The blindness adversary A sets up srszkp for zkp ∈ {ped, fis, gen}. The common reference
strings are defined, in particular crsfis = (srsfis, ursfis) along with crsped, crsgen in bvk.

– Specifically, as soon as A outputs

bvk = (crsfis, crsped, crsgen, N, h, h1, h2, g, πgen)

B2 outputs the instance (N, 3, g, (h, h1, h2)) to its challenger against the subversion soundness
of Πgen.

Hence, the probability of this case is bounded by AdvsndB2,Πgen
(λ) for some PPT B2 against the

subversion soundness of Πgen.
Case 3: Finally, suppose that xfis ∈ LRfis

. The adversary A can be used to construct a PPT B3
against the subversion zero-knowledge (S-ZK) game of Πfis as below:
– B3 receives ursfis from the S-ZK challenger and program ursfis intp the output of Hurs(0),

together with honest ursped, ursgen ∈ URS.
– The blindness adversary A sets up crsfis as part of bvk. B3 parses crsfis = (srsfis, ursfis) and

outputs srsfis to the S-ZK challenger for Πfis.
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– The blindness game for A is simulated by B3: computes then sends (c, cZ , πped) to A,
simulates Hfis and queries the RO for other Hped queries, receives (z, a) from A. At the step
of derived signature, B3 queries its S-ZK challenger on

xfis = (ppI , N, h1, h2, h,m, cI), wfis = (e, a, y, rI , dI)

to get πfis. We note that B3 possesses the witness wfis throughout the signing session that is
simulated to A (see Fig. 1). Then B3 outputs (πfis, cI) as the derived signature.

– B3 outputs what A outputs.
We argue that B3 is breaking S-ZK of Πfis:
– Following Definition 23, Game 2 corresponds to the simulated case in the S-ZK game for

Πfis, where B3 receives ursfis and outputs a possibly subverted srsfis, then interacts with
SimH,fis. The proofs in the derived signatures by B3 during signing sessions with A are
simulated by πfis ← Simπ,fis(crsfis, xfis), where crsfis = (srsfis, ursfis).

– On the other hand Game 1 correspond to the real case in Definition 23, where the adversary
receives ursfis and output a possibly subverted srsfis, then interacts with H. The proofs in the
derived signatures by B3 during signing sessions with A are computed by ProveH(crs, x, w)
where crsfis = (srsfis, ursfis).

Conditioned on the foregoing case, the advantage that A can distinguish Game 2 from Game 1
is bounded by Advsub-zk

B3,Πfis
(λ) against the subversion zero-knowledge property of Πfis.

Totally, the probability that A can distinguish Game 2 from Game 1 is bounded by

AdvsndB2,Πgen
(λ) + Advsub-zk

B3,Πfis
(λ) + negl(λ)

for PPT adversaries B2,B3 as described above. Assuming the subversion zero-knowledge of Πfis

as well as the subversion adaptive soundness of Πgen against all such PPT B2,B3, Game 2 are
indistinguishable from Game 1. ⊓⊔

Game 3: This hybrid is the same as Game 2, except that we make cI independent of the blind-
ness adversary’s response (z, a, πsub). More specifically, we change the computation (cI , dI) ←
CRInt.Commit(ppI , (0, 0), rI) for rI ← CRInt.Crnd. We argue that this change is indistinguishable using
the fact that rI is information theoretically hidden thanks to the simulation of πfis from Game 2 as
well as the hiding property of CRInt. Indeed, we construct a simulator B against the hiding game of
CRInt that simulates Game 3. At the time of computing cI , B outputs two messages (a, e− E) and
(0, 0) when interacting with the hiding game’s challenger, to receive cI . Finally, B uses cI in the
derived signature σ = (πfis, cI) to the blindness adversary A and outputs what A outputs. We have

|AdvblindA,Game 3(λ)− AdvblindA,Game 2(λ)| ≤ AdvhideB,CRInt
(λ)

and is negligible in λ.

Game 4: This hybrid is the same as Game 3, except that we use the subversion zero-knowledge
simulator Simped = (SimH,ped,Simπ,ped) of Πped to simulate πped in the first message (c, cZ , πped).
Game 4 differs from Game 3 in the following details. We program the unstructured reference string
ursped in (ursped, ursfis, ursgen) ← Hurs(0) together with honest ursfis, ursgen ∈ URS. The blindness
adversary A also sets up srszkp for zkp ∈ {ped, fis, gen}. The common reference strings are defined, in
particular crsped = (srsped, ursped) along with crsfis, crsgen in bvk. We also program Hped by SimH,ped

for further RO queries. We afterwards run πped ← Simπ,ped(crsped, xped). The following lemma 8
argues that this simulation of πped is indistinguishable from the real proofs. The following lemma 8
argues that Game 4 and Game 3 are indistinguishable. In particular, for any blindness adversary A,
there exist PPT B1,B2 so that

|AdvblindA,Game 4(λ)− AdvblindA,Game 3(λ)| ≤ AdvsndB1,Πgen
(λ) + Advsub-zk

B2,Πped
(λ)

and is negligible in λ.
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Lemma 8. Under the subversion zero-knowledge of Πped as well as the subversion adaptive
soundness of Πgen, the games Game 4 and Game 3 are indistinguishable. For any blindness adversary
A, there exist PPT B1,B2 so that

|AdvblindA,Game 4(λ)− AdvblindA,Game 3(λ)| ≤ AdvsndB1,Πgen
(λ) + Advsub-zkB2,Πped

(λ) .

Proof. By construction, with respect to the relation Rped, the values m, r, (cZ , dZ) determined by
the user satisfy: 

CZ.Verify(pp, cZ , (m, r), dZ) = 1

m ∈ [0, 2λ − 1]

r ∈ [0, S]

.

We recall that c = hm2 · gre mod N is computed by the user in this Game 4, as part of the first
message that is sent to the adversarial signer. Now, using the simluation as described in Game 2,
there are three cases to treat as follows:

Case 1 Suppose xped /∈ LRped
and c /∈ ⟨g⟩. This implies ⟨g⟩ ̸= ⟨h2⟩. As we are supposing

Πgen.Verify
Hgen(crsgen, xgen, πgen) = 1, without loss of generality so that all check pass, the

instance (N, 3, g, (h, h1, h2)) breaks the subversion soundness of Πgen. We provide a PPT adver-
sary B1 breaking the subversion soundness of Πgen as follows:
– B1 simulates Game 4 by programming the unstructured reference string ursped in Hurs(0)

together with honest ursfis ∈ URS. Then B1 receives ursgen from its subversion soundness
challenger.

– The blindness adversary A sets up srszkp for zkp ∈ {ped, fis, gen}. The common reference
strings are defined, in particular crsped = (srsped, ursped) along with crsped, crsgen in bvk.

– Specifically, as soon as A outputs

bvk = (crsfis, crsped, crsgen, N, h, h1, h2, g, πgen)

B1 outputs the instance (N, 3, g, (h, h1, h2)) to its challenger against the subversion soundness
of Πgen.

Hence, the probability of this case is bounded by AdvsndB1,Πgen
(λ) for some PPT B1 against the

subversion soundness of Πgen.
Case 2 Suppose xped ∈ LRped

. The adversary A can be used to construct a PPT B2 against the
subversion zero-knowledge (S-ZK) game of Πped aas follows:
– B2 receives ursped from the S-ZK challenger and program ursped intp the output of Hurs(0),

together with honest ursfis, ursgen ∈ URS.
– The blindness adversary A sets up crsped as part of bvk. B2 parses crsped = (srsped, ursped)

and outputs srsped to the S-ZK challenger for Πped.
– The blindness game for A is simulated by B2. First of all B2 queries its S-ZK challenger on

xped = (pp, N, e, h2, g, c, cZ), wped = (m0, r, dZ)

to get πped. We note that B2 possesses the witness wped, where m0 := H(m0), throughout
the signing session that is simulated to A (see Fig. 1). Then B2 sends (c, cZ , πped) to A,
queries the RO for other Hsub,Hfis queries, receives (z, a, πsub) from A. Finally, B2 derives
and outputs (πfis, cI) as the derived signature.

– B2 outputs what A outputs.
We argue that B2 is breaking S-ZK of Πped:
– Following Definition 23, Game 4 corresponds to the simulated case, where the adversary

receives ursped and outputs a possibly subverted srsped, then interacts with SimH,ped. The
proofs in the derived signatures by B2 during signing sessions with A are simulated by
πped ← Simπ,ped(crsped, xped), where crsped = (srsped, ursped).

– On the other hand Game 3 correspond to the real case in Definition 23, where the adversary
receives ursped and output a possibly subverted srsped, then interacts with H. The proofs in the
derived signatures by B2 during signing sessions with A are computed by ProveH(crs, x, w)
where crsped = (srsped, ursped).
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Conditioned on the foregoing case, the advantage that A can distinguish Game 4 from Game 3
is bounded by Advsub-zk

B2,Πped
(λ) against the subversion zero-knowledge property of Πped.

Totally, the probability that A can distinguish Game 4 from Game 3 is bounded by

AdvsndB1,Πgen
(λ) + Advsub-zk

B2,Πped
(λ)

for some PPT B1,B2. Assuming the subversion zero-knowledge of Πped as well as the subversion
adaptive soundness of Πgen against all such PPT B1,B2, Game 4 are indistinguishable from Game 3.

⊓⊔

Game 5: This hybrid is the same as Game 4, except that we replace c in the first user’s message by
c← ⟨g⟩. This transition is statistical. By the union bound, the advantage of any possibly unbounded
adversary A to distinguish between this Game 5 and the previous Game 4 can be bounded by
considering two cases:

Case 1 The replacement c← ⟨g⟩ is distinguishable from the previous computation

c = hm2 · gre mod N

in Game 4 because ⟨g⟩ ≠ {hx2 ·gy mod N | x, y ∈ N}. This implies that ⟨h2⟩ ≠ ⟨g⟩ and under our
hypothesis that Πgen.Verify

Hgen(crsgen, xgen, πgen) = 1, this implies the adversary A can output
(N, 3, g, (h, h1, h2)) that breaks the subversion soundness of Πgen. We provide a PPT adversary
B1 breaking the subversion soundness of Πgen in the same manner as Case 1 in Game 4. The
probability of this case is bounded by AdvsndB1,Πgen

(λ) for some PPT B1 against the statistical
subversion soundness of Πgen.

Case 2 Else, suppose that ⟨h2⟩ = ⟨g⟩. By lemma 2 under the fact that HP is uniform over Se where
|Se| = Ω(22λ), with overwhelming probability we have ⟨gre⟩ = ⟨g⟩. This means we can write
c = hm2 · ḡr mod N for some generator ḡ := ge of ⟨g⟩ = ⟨h2⟩, thus has the form of a Pedersen
commitment over ⟨g⟩. Therefore, because r ← [0, S], where S = N · 2λ is exponentially large in
λ, remark 3 implies the statistical hiding of the commitment c = hm2 · ḡr mod N that encures
the advantage of distinguishing of A in this case is negl(λ).

By combining the two cases, we conclude that the probability a blindness adversary A can distinguish
Game 5 from Game 4 is bounded by AdvsndB1,Πgen

(λ) + negl(λ), for some PPT B1, and thus negligible
under the subversion soundness of Πgen.

Game 6: This hybrid is the same as Game 5, except that we makes cZ independent of the adversary’s
response. More specifically, we change the computation (cZ , dZ) ← CRInt.Commit(ppZ , (0, r)) for
r ← [0, S]. We argue that this change is indistinguishable by constructing a simulator B against the
hiding game of CRInt that simulates Game 6. At the time of computing cZ , B outputs two messages
(m0, r) and (0, 0) when interacting with the hiding game’s challenger, to receive cZ . We are using
the fact that r is information theoretically hidden thanks to the simulation of πfis from Game 2, the
simulation of πped from Game 4, and the replacement of the commitment c← ⟨g⟩ from Game 5.
Finally, B uses cZ in the first message (c, cZ , πped) to the blindness adversary A and outputs what
A outputs. We have

|AdvblindA,Game 6(λ)− AdvblindA,Game 5(λ)| ≤ AdvhideB,CRInt
(λ)

and is negligible in λ.

Game 7: We note that after hopping to Game 6, the first message (c, cZ , πped) as well as the derived
signature (πfis, cI) do not depend on m0 anymore. We then apply a similar sequence of hoppings,
but symmetrically in a reverse order to go to the game following Definition 3 where coin = 1, i.e.
m1 is used in the first message and the derived signature. The above arguments still apply so that
the transitions stay indistinguishable. In total, we have proved that

2 · AdvblindA,BSfis
(λ) =

∣∣∣AdvblindA,Game 1(λ)− AdvblindA,Game 7(λ)
∣∣∣

is negligible in λ and the proof is completed. ⊓⊔
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Remark 6. We now give more details on the argument when some checks in the blindness game
are not passed. Suppose there is mb among the blindness challenges (m0,m1) such that one of the
checks in User or Derive does not pass.

– If the failed check is in User : The only check therein is on bvk, independent from (m0,m1),
hence the first signing messages from User are

ρ1,0 = ρ1,1 = ⊥

independent from coin. Consequently, for whatever second signing messages ρ2,0 and ρ2,1 that
A outputs, we have σ0 = σ1 = ⊥. Therefore, its advantage to output coin correctly is 0.

– If the failed check is in Derive : this implies that the Fischlin Sfis.Verify(vk,mb, σb) = 1 does
not pass for some b ∈ {0, 1}. Then our Derive algorithm outputs σb = ⊥ and therefore
Verify(bvk,mb, σb) = 0. Thus the ‘if’ condition in Definition 3 is satisfied, implying both derived
signatures are set

σ0 = σ1 = ⊥

and vacuously do not depend on (m0,m1). Hence, by combining the aforementioned with the
fact that the check in User passes in this current case, an argument similar to our game hops
Game 4→ Game 5 → Game 6 in the blindness proof argue that the first signing messages
ρ1,0 and ρ1,1 can be made independent from coin as well. This concludes that in this case
A’s advantage to correctly output coin stays negligible in λ (union bound, 0 from the derived
signatures and negligible from the first signing messages).

Finally, it remains to argue that whether the check(s) fail(s) or not does not depend on the blindness
challenger’s coin. This is clear for the check in User that is only on bvk and does not involve coin.
With respect to the check in Derive, conditioned that the check in User passes, the first signing
messages ρ1,0 and ρ1,1 of our scheme (will be given to the adversary as defined in the blindness
game Definition 3) can be made independent from coin in the same vein of the game hops Game 4→
Game 5 → Game 6 in the blindness proof. Therefore, the event that “the check in Derive fails” in
the adversary’s view, given ρ1,0 and ρ1,1, happens independently from coin.

D.4 One-More Unforgeability Proof of BSfis

Proof. We prove this using a series of games to rule out some cases in which the reduction won’t
work.

Game 1: This is the one-more-unforgeability game.

Game 2: In this game we introduce an abort condition. Namely, the game aborts if there is a
collision in the hash oracle H, i.e. if the adversary during the game makes two queries ζ, ζ ′ to H
such that H(ζ) = H(ζ ′), but ζ ̸= ζ ′.

Lemma 9. |AdvA,Game 1(λ)− AdvA,Game 2(λ)| ≤ Q2
H/2 · 22λ

Proof. Birthday bound.

Game 3: In this game we introduce an abort condition. Namely, the game aborts if there is a
collision in the hash oracle HP, i.e. if the adversary during the game makes two queries ζ, ζ ′ to HP
such that HP(ζ) = HP(ζ

′), but ζ ̸= ζ ′.

Lemma 10. |AdvA,Game 2(λ)− AdvA,Game 3(λ)| ≤ negl(λ)

Proof. This follows via a birthday bound since due to lemma 1, the image of HP is of exponential
size.
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Game 4: In this game, we alter how the parameters for CZ are set up. Namely, we use the algorithm
Πped.Ext1 to set up the parameters for CZ as (x0, td)← Πped.Ext1(1

λ) and we program the random
oracle Hpp so that it returns x0 as ppZ . Apart from this, Game 4 behaves identically to Game 3. As
the parameters ppZ are chosen uniformly at random by Ext1, this game is identically distributed to
the previous one and we get AdvA,Game4(λ) = AdvA,Game3(λ).

Game 5: In this game, we introduce another abort condition, namely the game aborts if there exists
a signing session where no witness can be extracted from πped. The game now extracts the values
m, r for every signing session. This game hop can be bounded by the Partial Online-Extractability
of Πped. We formalize this in the following claim:

Lemma 11. There exists a PPT adversary B1 against the online-extractability of Πped such that
AdvA,Game 5(λ) ≥ AdvA,Game 4(λ)−negl(λ)

pP(λ,QH) where we plugged in AdvA,Game4(λ) as µ(λ) from Defini-
tion 25 and negl, pP are as in Definition 25.

Proof. We provide an adversary B1 against the online-extractability of Πped to bound the distance
between the two games. The adversary receives the simulated CRS crs for Πped. It then simulates
Game 4 to the adversary A by sampling all the other parts of vk as in Game 4 and answering the
signing queries using the secret key. It outputs the proofs of Πped that the adversary sent when
opening a new signing session. The online-extractability of Πped yields the claim.

Remark 7. We note that as the commitment scheme CZ is perfectly binding, and the above online
extraction property guarantees the existence of a full witness, there cannot be two sessions using
the same commitment cZ with different messages m,m′ and different r, r′. Thus, it follows that if
m ̸= m′, also cZ ̸= c′Z and HP(cZ) ̸= HP(c

′
Z) due to the abort condition introduced in Game 3.

Game 6: This game aborts if among the message-signature pair in the adversary’s output there is
a message for which the adversary has never queried H(m).

Lemma 12. |AdvA,Game5 − AdvA,Game6(λ)| ≤ 1
22λ

.

Proof. This boils down to the adversary having to guess the hash value m = H(m). As H is a
random oracle mapping into {0, 1}2λ, the probability of guessing a uniformly random value from
this space is 22λ

Game 7: In this game, the game samples all random choices that the signer and the random oracle
make at the beginning of the game. As this change is purely conceptual, it holds that

AdvA,Game7(λ) = AdvA,Game6(λ)

Game 8: In this game, we change how the CRS for Πfis is generated. Namely, we instead of
generating crsfis using GenCRS, we switch to generating crsfis using SimCRS. This game hop can be
bounded by the CRS indistinguishability property of Πfis.

Lemma 13. There exists a reduction B2 such that |AdvA,Game8 − AdvA,Game7| ≤ AdvcrsB2
(λ)

Proof. The reduction A2 receives a CRS from the CRS indistinguishability challenger.
It samples all other parts of the verification key as in Game 7 and outputs them to the adversary.

It answers signing queries as in Game 7. If the adversary wins the game it outputs that the CRS
was honest, otherwise that it was simulated. It is easy to see that the claim follows.

Game 9: In Game 9 we change how the values aj are sampled during signature generation. In
particular, the game samples bits b, b′ ← {0, 1} and j ← {1, . . . , QHP}.

If b = 1, b′ = 0, instead of sampling aj ← {0, 1}2λ, it first samples β ← {0, 1}3λ and then
sets aj = β. If b = 1 and b′ = 1, it samples β ← {0, 1}3λ and sets aj = β − H(mj). A simple
argument shows that the distribution of aj in Game 9 has statistical distance at most 1/2λ from
the distribution of a in Game 8.

Thus, we get that ||Pr[Game 9 = 1]− Pr[Game 8 = 1]|| ≤ 1
2λ

.
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Game 10: In Game 10, we change how we set up the key vk. Namely, instead of using Sfis.KeyGen,
we use the alternate algorithm Sfis.KeyGenb,b′ using N generated as before and z ← ZN and it
programs the random oracle HP to return primes from e1, . . . eQHP

Everything else we do as in Game
9. As the keys are distributed the same, it holds that

AdvA,Game10(λ) = AdvA,Game9(λ).

Game 11: In Game 11, we change how signatures are created. In particular, the game uses the
alternate signing algorithms Sfis.Signb,b′ as follows. As we introduced extraction of m, r in Game 5,
the game has access to these two values. It therefore applies Sfis.Signb,b′(skb,b′ ,m) to obtain a
signature σ = (e, a, y). It then outputs y′, a to the adversary.

As the signatures produced by this game are identically distributed to the ones output by Game
10, we obtain that

AdvA,Game11(λ) = AdvA,Game10(λ).

Game 12: In Game 12 we switch the setup of the CRS for Πfis to generating it using the simulator
SimCRS for extraction.

Lemma 14.
|AdvA,Game12(λ)− AdvA,Game11(λ)| = negl(λ).

Proof. We construct an adversary B3 against CRS indistinguishability (see Definition 24). The
adversary takes as input a CRS for Πfis. It sets up the rest of the verification key vk as Game 12
and simulates all oracles except for Hfis as Game 12. It simulates Hfis by forwarding the queries
of the adversary to its own hash oracle provided by the CRS indistinguishability challenger. It
aborts whenever Game 12 would abort. If the adversary outputs a valid one-more forgery, the
reduction B3 outputs 1, otherwise 0. The claim follows from the CRS indistinguishability according
to Definition 24 of Πfis.

Moving Towards Breaking sRSA: We now want to use the knowledge soundness property of the
NIZK Πfis to obtain a signature that will be used by the final reduction to break sRSA.

Namely, after the adversary has submitted its signatures, we extract a witness from πfis.
We describe below how this extraction procedure works.
We describe a “wrapper” B4 around A to extract from. This is necessary for formal reasons

as the adversary A requires additional inputs and oracles compared to a knowledge soundness
adversary, in particular A expects a verification key, several random oracles, as well as a signing
oracle. The wrapper B4 will be our soundness adversary to extract from and it will provide all
additional inputs and oracles to A.

Setup The algorithm B4 takes as input a (simulated) CRS and has access to the random oracle
Hfis. It generates all other parts of the verification key as Game 12, that is, it chooses the bits
b, b′ and runs the corresponding alternative key generation algorithm, however it replaces the
CRS for Πfis with the one from its input. Note that the CRS of Πfis is generated completely
independently of the rest of the verification key in the honest setup of KeyGen, as well as in
the alternative setup algorithms that use a different secret key to sign, and hence this new
verification key vk using the input CRS is identically distributed to a verification key set up by
Game 12.

Online Phase. The wrapper simulates the following oracles to the adversary. It aborts whenever
Game 12 would abort.
Signing The wrapper answers signing queries as Game 12 using the online-extraction and the

alternative signing algorithms corresponding to the bits b, b′.
Hash oracle Hfis It simulates Hfis by forwarding queries and responses to and from its own

oracle Hfis provided by the extractor.
Other Random Oracles The other random oracles it provides itself and implements them

in the same way as Game 12.
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Output determination Due to the changes made in Game 6, for each message that the adversary
A outputs a signature for, it has to have made a hash query. Further, as we introduced online-
extraction of all witnesses of πped submitted during signing queries, the wrapper can identify
the hashes m that it has signed and which messages they belong to. As Game 2 aborts if there
are collisions in H, there are no collisions in H in Game 12, and therefore, the wrapper can
efficiently identify which of the messages submitted as part of the final message-signature pairs
it has not signed. Once the adversary outputs its message-signature pairs, the wrapper identifies
the first message-signature pair (m∗, (c∗I , π

∗
fis)) where it has never signed the message m∗ itself.

It outputs (c∗I , π
∗
fis)

Lemma 15. B4 is a valid adversary against adaptive knowledge soundness of Πfis and it holds that

Pr[(crs, td)← SimCRS(1λ), (x, π)← BHfis
4 (crs; ρ) : VerifyHfis(crs, x, π) = 1] ≥ εB4

,

where εB4 = AdvA,Game12(λ)

Proof. As the wrapper perfectly simulates Game 12 to the adversaryA, with probability AdvA,Game12(λ),
the adversary outputs a one-more forgery. Therefore, with the same probability, the wrapper outputs
a pair (c∗I , π

∗
fis) which is a statement-witness pair with a valid proof π∗

fis. The claim follows.

The extractor Πfis.Ext is now run on the wrapper B4 wrapping A.

Lemma 16. It holds that

Pr

(crs, td)← SimCRS(1λ),
(c∗I , π

∗
fis)← B

Hfis
4 (crs; ρ),

w ← Ext(crs, td, c∗I , π
∗
fisρ, h⃗)

: (c∗I , w) ∈ R̃fis

 ≥ εcB4
− negl(λ)

pP(λ,QHfis
)

Proof. This follows immediately from lemma 15 along with the adaptive knowledge soundness (see
Definition 24) of Πfis.

We now discuss how the witness is affected by the wrapper:
Information-theoretically, c∗I contains a unique opening. We define the distribution

DGame12 := {w|c′I is a commitment to w}

where (m′, c′I , π
′
fis) is the first tuple in the output of A Game 12 such that Game 12 has not signed

m′ in a signing session.
Furthermore, we define the distribution

Dext :=

w
∣∣∣∣∣∣
(crs, td)← SimCRS(1λ),
(c∗I , π

∗
fis)← B

Hfis
4 (crs; ρ),

w ← Ext(crs, td, c∗I , π
∗
fisρ, h⃗)

 .

Lemma 17. DGame12 = Dext

Proof. The witness extracted by Πfis.Ext is information-theoretically fixed already after one run
of the wrapper and adversary because cI is perfectly binding. As the wrapper simulates Game 12
perfectly to the adversary, the witness contained in the commitment c∗I is therefore the unique
witness the adversary would have committed to in Game 12. As there exist no other openings for
the commitment, i.e., no other witnesses, this is the unique witness that the extractor can extract
from B4 wrapping around A.

Remark 8. We note that a similar argument would not go through if cI was only a computationally
binding commitment. In this case, there would be no unique witness that the extractor is guaranteed
to extract – any witness would mean success of the extractor, and thus the witness extracted might
turn out to be dependent on the behavior of the wrapper in the same way as the witness extracted
in [6, 62] can depend on the behavior of the wrapper there.
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Reduction simulating Game 12 We describe a reduction B5 that simulates Game 12 and solves the
strong RSA problem.

Setup. The reduction receives a strong RSA challenge N, z from its challenger. The reduction
samples b, b′ ← {0, 1} and then runs Sfis.KeyGenb,b′(1

λ, N, z) to generate the verification key
parts of Sfis. It sets up the NIZK and commitment parameters as in Game 12.

Online Phase. The reduction interacts with the adversary as follows:
Simulation of H This is done via lazy sampling from {0, 1}2λ
Simulation of HP on the i-th fresh query to HP, return ei from skb,b′ .
Simulation of other hash oracles Lazy Sampling apart from whatever is defined through

the setup of the NIZKs
Answering Signing Queries The reduction extracts the values (m, r) from the proof πped

using Πped.Ext. It then derives e using HP. By the programming of HP, it identifies the index
k such that e = ek ∈ {e1, . . . , eQHP

}. It then uses Sfis.Signb,b′(skb,b′ , k,m) to generate the
signature σ = (e, a, y). It then re-blinds the signature as z = y · gr and outputs z, a.

Output Determination When the adversary A outputs its message-signature pairs, the reduction
identifies the first message m∗ that it has not signed before. It then uses the extractor Πfis.Ext to
obtain a signature σ∗ = (e∗, a∗, y∗) The reduction then solves for z

1
e∗ using the same techniques

as in Section 4.

It is easy to see that B5 simulates Game 12 perfectly.
We compute the probability that the reduction can use the solution output by the adversary to

solve its sRSA challenge:

Lemma 18. The probability that none of the following properties hold for the combined run of the
reduction, extractor, wrapper, and adversary is at least 1

4QHP
· ε

c
B5

−negl(λ)

pP(λ,QHfis
) :

– extraction fails
– b = 0 and e∗ ∈ {e1, . . . , eQHP

}
– b = 1 and e∗ /∈ {e1, . . . , eQHP

}
– b = 1 and e∗ ̸= ej where j is the index j from skb,b′ .
– b = 1, the previous condition doesn’t apply, j as above. Denote by aj and mj the values used in

the first signing session where ej was used as an exponent. If no such session exists, sample
aj ← Sa.
• b′ = 0 and a∗ = aj
• b′ = 1 and a∗ +m∗ = aj +mj

Proof. We calculate the probability of the opposite event.
By lemma 16, extraction works with probability at least

εcB5
−negl(λ)

pP(λ,QHfis
) .

The witness committed to in Game 12 is independent of the choices of b, b′, j. This follows as in
Theorem 6.

Therefore, by lemma 17, the witness extracted is also independent. Thus the probability of
b = 1 and e∗ ∈ {e1, . . . , eQHP

} is at least 1
2 . The probability of e∗ = ej and b = 0 is at least 1

2QHP
,

multiplied by the probability 1
2 that either b′ = 1 and a∗ = aj or b′ = 0 and a∗ +m∗ = aj +mj .

We briefly describe why solving sRSA works as in Section 4. First of all, Πfis guarantees that
a ∈ Sa and e ∈ Se. Thus a < e and in the case of b = 1, we know e∗ is prime and thus co-prime to
aj − a∗. In the case of b = 0 we cannot guarantee primality of e∗ as it is chosen by the adversary,
however, Πfis still guarantees that e∗ is odd and thus the same strategy as in Section 4 can be
applied.

E Instantiations of NIZKs

In this section, we instantiate the remaining NIZKs required for BSfis: Πped and Πfis. Let us give
first give a brief overview of the constructions. Both constructions follow roughly the Fiat-Shamir
template: (1) Construct a Σ-protocol for the desired relation and (2) apply the Fiat-Shamir
transformation to obtain a NIZK.
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As before, we use the following notational conventions. In Σ-protocols, we denote by Ω the ZK
commitments sent in the first flow. To improve readability, specific Ω are indexed by the relation to
be shown. We denote by γ the challenge. The responses (generally consisting of a linear combination
of γ, a witness w and a mask denoted by µw) are denoted by τw.

Design principles of our Σ-protocols. Throughout, we will utilize two groups types of groups: Z∗
N

and prime-order G. The latter is used for commitments (cf. Section 5). The technical difficulty of
both instantiations is due to the need to argue over both groups (of distinct order) consistently.
Also, we cannot reduce to computational assumptions with respect to N because it is part of the
statement. Roughly, our approach is as follows:

– For relations over either Z∗
N or G alone, we employ Schnorr-style Σ-protocol techniques. If a

witness w appears within relations over both Z∗
N and G, the verifier checks both equations

using the same response τw for both relations. Later, this ensures that the extracted witness
satisfies the relations in both groups consistently. Because the order of Z∗

N and G is different 29,
for instance, we cannot reuse a response in Zp within an equation over Z∗

N—–this would lead
to inconsistencies and already correctness fails.
Instead, to compute the Σ-protocol responses, the prover masks the witness over the integers
with either rejection sampling or noise flooding. Roughly, this ensures correctness when reusing
the same response over both Z∗

N and G.
– For relations between witnesses over the integers, we use a technique often used in Lattice-based

NIZKs (e.g., [15]). Roughly, we embed the desired relation in the leading coefficient fd of a
polynomial f of degree d, where γ is interpreted as variable. Here, f is defined over the integers
to avoid a dependence on the order of the groups. We design f such that the desired relation
holds iff fd = 0 over the integers. Then, the prover proves that fd = 0 over the integers by
employing MPed commitments over QRÑ , where Ñ is a fresh RSA modulus 30. For this, the
prover commits to each coefficient except the leading coefficient fd via MPed. The evaluation
fd(γ) is computable by the verifier by design, and the verifier checks that the prover committed
to fd(γ) by linearity of MPed. A Schwarz-Zippel argument then allows to argue that fd = 0
over the integers 31 Note that MPed over QRÑ is binding over the integers, so fd = 0 ∈ Z
independent of the order of the group(s).

– To show (relaxed) ranges within the Σ-protocol, we employ the techniques in Section 5
and Appendix C.1. That is, we commit to the witness via a relaxed integer commitment and
open it in zero-knowledge by verifying range memberships of the response.

– To argue special soundness, we need to ensure that we can extract witnesses in Z. Then, all
relations are well-defined since exponentiation in Z∗

N and G is well-defined for integer exponents.
For this, we proceed as in Appendix C.1. That is, the prover commits to all witnesses over Z in
an MPed commitment over QRÑ . Due to lemma 6, we can argue that extracted values must be
integers. Then, to argue that specific relations hold, we follow standard proof techniques.
Formally, we show that the extractor finds a witness for the desired relations, or it finds a
witness for a hard relation (e.g., for a relaxed DLOG relation over QRÑ ). Later, we argue that
the latter does not occur under computational assumptions within the NIZKs.

– Another technicality is that for non-abort HVZK, we need that the witnesses lie within a
specified range for masking to hide the witness statistically. Since some range checks are
introduced in a modular manner later, the soundness extractor does not guarantee this at this

29 Furthermore, the order of Z∗
N is unknown to both verifier and prover within this section.

30 We stress that we cannot reuse the modulus N for the MPed commitment because soundness relies
on binding of MPed (which holds under sRSA). As N is part of the statement, we cannot reduce to
computational assumptions related to N within our proof. On the other hand, we later embed Ñ into
the NIZK’s crs, more precisely srs. In that case, we can reduce extraction failure to assumptions over Ñ .
Let us also remark that for subversion zero-knowledge, we also cannot use assumptions related to Ñ
either since Ñ is non-uniform.

31 Roughly, the check ensures that fd(x) and polynomial f ′(x) :=
∑

i∈[0,d−1] fix
i committed to in MPed

evaluate to the same values for x = γ. If fd(γ)− f ′(γ) = 0 for d+ 1 different values γ, then it must hold
that fd(x) = f ′(x). Since the degree of f ′ is d− 1, this means that fd = 0. We provide more details when
introducing our specific Σ-protocols below.
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point 32. These technicalities are why there are more than one relation per Σ-protocol: one for
correctness and HVZK, and one for special soundness.

NIZKs. To construct both NIZKs, we construct appropriate Σ-protocols. Let us now give more
intuition on how they are employed within our NIZKs.

– Πped: The first NIZK Πped is an online-extractable NIZK. We achieve online-extraction as
follows. We commit to each witness in an ElGamal commitment. A trapdoor for extraction
is a decryption key for ElGamal. Because we encrypt in the exponent, we need the messages
to be small (i.e., within [0, B] for B = poly—–this also ensures that they are well-defined as
integers). The latter is proven via Bulletproofs [22]. An appropriate Σ-protocol compiled with
Fiat-Shamir proves that the desired relation holds for the witnesses that are encrypted via
ElGamal. (Because the witnesses are in general larger than B, we decompose them in B-ary
representation first.) The extractor simply decrypts the ElGamal commitments. Due to the
Bulletproof, decryption is guaranteed to work and due the Σ-protocol, the decrypted values
satisfy the desired relation. To show that online extraction succeeds with high probability, we
rely on the techniques in [66].

– Πfis: This NIZK is obtained by applying the Fiat-Shamir transformation to an appropriate
Σ-protocol.

More details are given below.

E.1 Instantiation of Πped

We instantiate the online-extractable NIZK Rped. We follow the well-known blueprint of combining
an extractable commitment (e.g., ElGamal) with an adaptively knowledge sound NIZK for the
relation to obtain online-extraction (see, e.g., [66]). Roughly, we decompose the witnesses into
short values committed in ElGamal commitments and show that the relation holds with respect to
these values. A range proof (i.e., a variant of Bulletproofs [22, 9]) guarantees that the committed
values are short to enable online-extraction via a discrete logarithm computation. (The trapdoor is
the ElGamal decryption key.) These ElGamal commitments function as the integer commitment
CZ. The commitment and its public parameters pp are part of the statement, but since these are
sampled uniform, we can embed a trapdoor into pp (cf. Definition 25).

Integer Commitment. Recall that we want to show that c ≡ hm2 ·gre mod N , where m ∈ [0, 2λ−1]
and r ∈ [0, S] are committed in some integer commitment (cZ , dZ)← CZ.Commit(pp, (m, r)) with
bounded range. Let B = poly(λ) be a power of two. Let Gp be a group with prime order p ≥ 22λ.
To instantiate CZ, we essentially decompose m, r into values (mi)i, (ri)i ∈ [0, B − 1] via a B-ary
decomposition, respectively, and commit to the values via ElGamal commitments over Gp. Let
ℓm = ⌊ λ

logB − 1⌋ and ℓr = ⌊logB(S)− 1⌋. The scheme CZ is defined below.

– CZ.Setup(1
λ): Samples G,H ← Gp and outputs pp← G,H.

– CZ.Commit(pp, (m, r)): Takes as input public parameters pp and message (m, r), where m ∈
[0, 2λ − 1] and r ∈ [0, S]. Decomposes m =

∑ℓm
i=1miB

i−1 and r =
∑ℓr

i=1 riB
i−1. Let e⃗ =

(m1, . . . ,mℓm , r1, . . . , rℓr ) ∈ [0, B−1]ℓm+ℓr . Samples si ← Zp and sets Ei = eiG+siH,Si = siG.
Outputs cZ = (Ei, Si)

ℓm+ℓr
i=1 and dZ = (s1, . . . , sℓm+ℓr ).

– CZ.Verify(pp, cZ , (m, r), dZ): Parses cZ and dZ as above. Decomposes m and r into mi and ri,
respectively, and defines e⃗ as above. Checks that Ei = eiG+ siH,Si = siG and ei ∈ [0, B] for
all i ∈ [ℓm + ℓr].

Lemma 19. The integer commitment scheme with bounded range CZ with message space CZ.Cmsg =
[0, 2λ − 1]× [0, S] is correct, hiding under DDH in Gp and perfectly binding (cf. Definition 6).
32 Also, sometimes the ranges required for HVZK and ranges guaranteed by soundness are different due to

optimizations akin to Section 5.
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Proof. For correctness, given cZ , dZ from CZ.Commit(pp, (m, r)) and the opening (m, r), we parse
cZ = (Ei, Si)

ℓm+ℓr
i=1 and dZ = (si)

ℓm+ℓr
i=1 . The values si are the same that are used in CZ.Commit. Since

B = poly(λ) is a power of two, or more generally since the super-increasing (1, B,B2, . . .) satisfies
Bi >

∑i−1
j=0B

j , the B-ary decomposition ofm and r is unique. Hence, in CZ.Verify(pp, cZ , (m, r), dZ),
decomposingm =

∑ℓm
i=1miB

i−1 and r =
∑ℓr

i=1 riB
i−1 gives the same vector e⃗ = (m1, . . . ,mℓm , r1, . . . , rℓr ) ∈

[0, B − 1]ℓm+ℓr that is used in CZ.Commit, satisfying the range checks of ei for all i ∈ [ℓm + ℓr].
Finally, the fact that G,H ← Gp being cyclic ensures that the equality Ei = eiG+ siH holds, by
using the same (ei, si) that are used in CZ.Commit(pp, (m, r)) to set Ei.

For hiding, observe that a commitment cZ is comprised of ℓm + ℓr = poly(λ) ElGamal com-
mitments (Ei, Si). Let us argue with a hybrid argument. Let A be an adversary on hiding. In
the i-th hybrid, replace (Ei, Si) with (E′

i, S
′
i) ← Gp. Since (H,Si, siH) form a DDH-tuple, it is

straightforward to construct an adversary on DDH that distinguishes two consecutive hybrids with
advantage ε = AdvhideA (λ). Since (ℓm + ℓr)ε = negl(λ) under DDH, the claim follows.

Let us show binding. Let cZ = (Ei, Si)i∈[ℓm+ℓr] ∈ G(2·ℓm+ℓr). Observe that (Ei, Si) fixes
ei mod p perfectly 33. If ∃i : ei /∈ [0, B], then the commitment cannot be opened because the interval
membership check in verification fails. Else, since poly(λ) = B < 2λ ≤ p, any valid opening of
(Ei, Gi) fixes unique ei over the integers as described above. These values determine the message
(m, r) uniquely within [0, 2λ − 1]× [0, S] through B-ary decomposition. In conclusion, cZ can only
be opened to (m, r) fixed as described above.

Online-Extractable NIZK. We are now ready to instantiate Πped. Let B = poly(λ) and ℓm :=
⌊ λ
logB − 1⌋, ℓr := ⌊logB(S)− 1⌋. For the above CZ, we can rewrite the relation Rped as follows.

Rped =
{
(x,w) | c ≡ hm2 · gre mod N,Ei = eiG+ siH,Si = siG, ei ∈ [0, B − 1],

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1
}
,

for x = (B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = (m, r, (si)i∈[ℓm+ℓr]). Above, m ∈ [0, 2λ −

1], r ∈ [0, S] and si ∈ Zp. Note and that the values ei are unique given m and r via the B-ary
decomposition. Moreover, by the choices of (ℓm, ℓr) it holds that

0 ≤ m =

ℓm∑
i=1

eiB
i−1 ≤

ℓm∑
i=1

(B − 1)Bi−1 ≤
ℓm∑
i=1

Bi <

ℓm∑
i=0

Bi < Bℓm+1
(∗)
≤ 2λ

where (∗) follows from the fact that ℓm = ⌊ λ
logB −1⌋ and ⌊x⌋ ≤ x for all x ∈ R. A similar calculation

on r can be obtained

0 ≤ r < Bℓr+1
(∗∗)
≤ S

and (∗∗) follows from the fact that ℓr = ⌊logB(S)− 1⌋.
To instantiate Πped, we construct a standard Σ-protocol Σped to show that Rped holds, except

for the statement ei ∈ [0, B − 1]. For the latter, we later use a range proof Πrp from [9]. Then, we
compile Σped into an NIZK Πped via Fiat-Shamir and combine both NIZKs Πped and Πrp into an
NIZK for the full relation Rped as in [66], Section 6. This approach was shown to be secure in [66].

There is one difficulty that arises during the construction of Σ-protocol: the relations for m
and r have to hold over the integers. For example, notice that it is not sufficient to show that
r =

∑ℓr
i=1 eℓm+iB

i−1 mod p over Gp since the commitment CZ is (perfectly) binding only if this
relation holds over Z. To ensure that soundness guarantees that the relations hold over Z, we add
an additional MPed commitment c̃ over QRÑ for a fresh RSA modulus Ñ . If we commit to all
witnesses (except si since these are defined over Zp) in c̃ and open it in ZK, the extracted values
are integers under sRSA (cf. lemma 6). We can also use MPed commitments to show the statements
over the integers (leveraging the binding property of MPed). To ensure subversion zero-knowledge,

33 An inefficient algorithm can recompute a unique ei ∈ Zp that satisfies Ei = eiG+ siH, where si is the
DLOG of Si.
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we add a Πgen proof (cf. Appendix C.1) which ensures that the public parameters of MPed are setup
in a manner that ensures hiding.

Below, we provide the protocols Σped and Πrp, and then combine them to construct Πped.

Step 1: the Σ-protocol. Let C = 2λ (which determines the challenge space). Let Ñ ∈ N and let
p̃p = (h̃, g̃1, . . . , g̃ℓm+ℓr ) ∈ (Z∗

Ñ
)1+ℓm+ℓr denote the public parameters of an MPed commitment with

message space Zℓm+ℓr . (Since membership in QRÑ cannot be efficiently tested without factorization
of Ñ , the MPed commitment is formally defined over Z∗

Ñ
. Later, Ñ and p̃p are given in the crs.)

Denote by R the relation

R =
{
(x,w) : c ≡ hm2 · gre mod N,Ei = eiG+ siH,Si = siG

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1
}
,

where x = (Ñ , p̃p, B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = ((ei, si)

ℓm+ℓr
i=1 ,m, r). Here, m, r, ei ∈

Z and si ∈ Zp. The protocol Σped for relation

RΣped
=
{
(x,w) : (x,w) ∈ R and ei ∈ [0, B − 1] and ⟨h̃⟩ = ⟨g̃i⟩

}
,

is given in Fig. 4. We include the statements ei ∈ [0, B − 1] and ⟨h̃⟩ = ⟨g̃i⟩ in the relation
RΣped

because this is required for correctness and HVZK 34. For the soundness relation, we omit
ei ∈ [0, B − 1] and ⟨h̃⟩ = ⟨g̃i⟩ (since these statements are shown via a separate NIZK within Πped

later—in particular these relations are not ensured to hold by Σ-protocol yet). We remark that
to show the decompositions, we use a standard technique that is often used in lattices to show
multiplicative relations (e.g., [15]). In particular, we show 2-special soundness for the relation

R̃Σped
= {(x,w) : (x,w) ∈ R or (p̃p, w) ∈ RC,ℓ̃(p̃p) or (p̃p, w) ∈ Rdlog},

where RC,ℓ̃(p̃p) is defined in Definition 7 and Rdlog denotes the relation that contains all non-trivial
DLOG relations in p̃p (see [9] for more details). Note that under the factoring assumption, it is hard
to find a witness for Rdlog if the statement p̃p are random generators of QRÑ .

Our construction follows the design principles discussed at the start of this section. Let us give
a brief overview. To show the statements over Z∗

N and Gp, we use use Schnorr-type Σ-protocol
techniques except that the witnesses are masked over the integers via noise flooding 35. This ensures
that we can reuse the responses over groups of distinct order. For the relations related to the
B-ary decomposition of m and r, we define two polynomials fm and fr of degree 1 where the
leading coefficient is fm,1 = m −

∑ℓm
i=1 eiB

i−1 and fr,1 = r −
∑ℓr

i=1 eℓm+iB
i−1, respectively. The

polynomials are designed such that fm(γ) and fr(γ) can be recomputed given the Σ-protocol
responses, where γ is the challenge. Notably, if fm and fr are constant, then the desired relations
hold. This can be efficiently verified if the prover commits to the constant terms fm,0 of fr,0 in a
separate MPed commitment and the verifier checks that fm,0(γ) = fm(γ) and fr,0(γ) = fr(γ) using
the commitment’s linearity. Roughly, special soundness is argued as follows: If fm,0(γ)− fm(γ) = 0
for two distinct values γ, then because fm,0−fm is of degree 1 but has two zeroes, it must hold that
fm,0 − fm = 0. But then, fm,1 = 0 because fm,0 is constant. Thus, the relation holds as discussed
above.

The above discussion is formalized below.

Lemma 20. The Σ-protocol Σped is correct, HVZK, has high min-entropy for relation RΣped
, and

is 2-special sound for relation R̃Σped
.

34 As discussed in the beginning of this section, we commit to ei via an MPed commitment over Ñ to ensure
that ei ∈ Z and that the statements hold over the integers. Thus, we need that the public parameters p̃p
is setup such that MPed is hiding. This is guaranteed by ⟨h̃⟩ = ⟨g̃i⟩. Further, we know that in an honest
execution, we have that ei ∈ [0, B − 1]. We add this condition in the correctness and HVZK relation in
order to mask over the integers with small masks. (This is required to compute the Σ-protocol responses.)

35 We could use rejection sampling and compile Σped with Fiat-Shamir with aborts for better efficiency. We
choose noise flooding for simplicity.
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Proof. For correctness, the first check on line 16 follows arithmetics modulo N where c−γ ≡
h−γm
2 · g−γre mod N together with

hτm2 · gτre ≡ h
γm+µm

2 · gγre+µre mod N

and Ωc ← hµm

2 · gµre mod N implies c−γhτm2 · gτre ≡ Ωc mod N . In a similar manner, the checks
on lines 23 and 22 follow from modular arithmetics in ZÑ . More specifically, the check on line 22
passes because

c̃−γ · h̃τt̃ ·
∏ℓm+ℓr

i=1 g̃
τei
i ≡ h̃−γt̃+τt̃ ·

∏ℓm+ℓr
i=1 g̃

−γei+τei
i

(∗)
≡ h̃µt̃ ·

∏ℓm+ℓr
i=1 g̃

µei
i mod Ñ

and is congrument to Ωc̃ modulo Ñ thanks to Ωc̃ ← h̃µt̃ ·
∏ℓm+ℓr

i=1 g̃
µei
i mod Ñ , where (∗) follows

from τt̃ ← γt̃+ µt̃ and τei ← γei + µei . To examine the check on line 23, we observe the following
in Z

fm = (
∑ℓm

i=1 τeiB
i−1)− τm

= (
∑ℓm

i=1(γei + µei)B
i−1)− (γm+ µm)

= γ
(∑ℓm

i=1B
i−1ei −m

)︸ ︷︷ ︸
=0

+(
∑ℓm

i=1B
i−1µei)− µm = fm,0

and in the same manner, also in Z,

fr = (
∑ℓr

i=1B
i−1τeℓm+i

)− τr
= (
∑ℓr

i=1(γeℓm+i + µeℓm+i
)Bi−1)− (γr + µr)

= γ (
∑

i∈[ℓr]
eℓm+iB

i−1 − r)︸ ︷︷ ︸
=0

+(
∑ℓr

i=1 µeℓm+i
Bi−1)− µr = fr,0 .

This gives
h̃tq · g̃fm1 · g̃fr2 ≡ h̃tq · g̃

fm,0

1 · g̃fr,02 ≡ Ωq mod Ñ .

Finally, the checks on lines 18 and 19 are done in Gp, even though γsi ∈ Z while µsi ∈ Zp, the
computation is in Gp of order p and thus τsiH = (γsi + µsi)H ∈ Gp is well-defined (which would
not be the case if µsi was a congruent class of a modulus other than p). The calculations can be
verified with ease

−γEi + τeiG+ τsiH = −γ(eiG+ siH) + (γei + µei)G+ (γsi + µsi)H = µeiG+ µsiH = ΩEi
∈ Gp

and −γSi + τsiG = −γsiG+ (γsi + µsi)G = µsiG = ΩSi
∈ Gp.

For showing high min-entropy, we consider the first flow

Ω := (c̃, Ωc̃, Ωq, (ΩEi)i, (ΩSi)i, Ωc) .

The cyclic group Gp has order p ≥ 2λ and because µsi ← Zp uniformly at random modulo p, the
terms µsiH,µsiG are uniformly distributed in Gp and implying ΩEi , ΩSi are uniformly distributed
in Gp. The probability that an adversary correctly guesses Ω is thus at most 2−λ, concluding the
high min-entropy property.

For HVZK, we observe that following the properties of noise flooding (see Supplementary
materials A.2), the masking by

µt̃ ← [0, CÑ · 22λ], µm ← [0, C23λ], µr ← [0, CS · 2λ]
µei ← [0, CB · 2λ], µsi ← Zp

ensures that the values

τm ← γm+ µm, τr ← γr + µr, τt̃ ← γt̃+ µt̃

τei ← γei + µei , τsi ← γsi + µsi
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sent in the third flow are statistically close to uniform over their respective ranges [0, CB · 2λ]ℓm ×
Zℓr
p × [0, C · 23λ]× [0, CS · 2λ]× [0, CÑ · 22λ]× [0, Ñ · 2λ]. Moreover, the commitment c̃ is distributed

close to uniform over ⟨h̃⟩ (with statistical distance at most 2−λ) because t̃ is drawn uniform over
[0, Ñ · 2λ], and because ⟨h̃⟩ = ⟨g̃i⟩. The remaining values Ωc̃, Ωq, (ΩEi

)i, (ΩSi
)i, Ωc are determined

from the third flow and the challenge γ, by setting with respect to the verification equations

Ωc = c−γhτm2 · gτre mod N

∀ i ∈ [ℓm + ℓr] : ΩEi
= −γEi + τeiG+ τsiH; ΩSi

= −γSi + τsiG

Ωc̃ = c̃−γ · h̃τt̃ ·
∏ℓm+ℓr

i=1 g̃
τei
i mod Ñ

Ωq = h̃tq · g̃fm1 · g̃fr2 mod Ñ .

Given the above discussion, the simulator receives the challenge γ and samples the responses (for
the third flow) according to the above distributions. It also samples c̃ (with negligible distance close
to) uniform over ⟨h̃⟩. Finally, it recomputes the remaining first flow that is determined as above
and outputs the full transcript. Since the distribution is statistically close to the real protocol, the
simulator suffices.

Let us finally show 2 special soundness. We want to construct a deterministic PT extractor so
that, for

x = (Ñ , p̃p, B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) ,

given 2 valid transcripts that are indexed by i ∈ [2] with

Identical first flow: Ω = (c̃, Ωc̃, Ωq, (ΩEi
)i, (ΩSi

)i, Ωc)

Pairwise distinct challenge: γi

Third flow: τ⃗i =
(
(τek,i

)k, (τsk,i
)k, τmi

, τri , τt̃i , tq,i
)

the extractor extracts the witness w = ((ek, sk)
ℓm+ℓr
k=1 ,m, r) such that (x,w) ∈ R̃Σped

. In the following,
we denote by ∆vi,j := τv,i − τv,j ∈ Z for v ∈ {(ek, sk)ℓm+ℓr

k=1 ,m, r} and ∆γi,j := γi − γj ̸= 0.
By verification on line 22, we have that for i ∈ [2], it holds that

c̃−γi · h̃τt̃,i ·
∏ℓm+ℓr

k=1 g̃
τek,i

k ≡ Ωc̃ mod Ñ

Thus, it holds for i ̸= j ∈ [2] that

c̃∆γi,j ≡ h̃∆t̃i,j ·
∏ℓm+ℓr

k=1 g̃
∆eki,j

k mod Ñ

Thus, either ∆γi,j divides ∆vi,j for v ∈ {(ei, si)ℓm+ℓr
i=1 ,m, r} over Z, or the above equation yields a

witness w for (p̃p, w) ∈ RC,ℓ̃(p̃p). In the latter case, the extractor outputs the witness w.
Further, the verification checks ensure that

c−γ1h
τm,1

2 · gτr,1e = c−γ2h
τm,2

2 · gτr,2e (11)

∀ k ∈ [ℓm + ℓr] : −γ1Ek + τek,1G+ τsk,1H = −γ2Ek + τek,2G+ τsk,2H (12)

∀ k ∈ [ℓm + ℓr] : −γ1Sk + τsk,1G = −γ2Sk + τsk,2G (13)

We set ek = ∆ek1,2/∆γ1,2, sk = ∆sk1,2/∆γ1,2 mod p,m = ∆m1,2/∆γ1,2, and r = ∆r1,2/∆r1,2.
From (11), it holds that

c ≡ h∆m1,2/∆γ1,2

2 · g(∆r1,2/∆γ1,2)·e mod N

where we note that the division ∆m1,2/∆γ1,2 and ∆r1,2/∆γ1,2 are well defined over integer values
∆m1,2, ∆r1,2, ∆γ1,2 ∈ Z, with respect to the above argument regarding verification in line 22.
Consequently, setting m = ∆m1,2/∆γ1,2, and r = ∆r1,2/∆r1,2 satisfies c ≡ hm2 · gre mod N . Next,
for each k ∈ [ℓm + ℓr], (12) and (13) imply that

Ek = ∆ek1,2/∆γ1,2G+∆sk1,2/∆γ1,2H and Sk = ∆sk,1,2/∆γ1,2G
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where the inverse 1/∆γ1,2 is well defined in Z following a similar argument regarding verification in
line 22, else we find a witness for the relaxed DLOG relation. As a result, setting ek = ∆ek1,2/∆γ1,2
and sk = ∆sk1,2/∆γ1,2 satisfies Ek = ekG+ skH,Sk = skG for all k ∈ [ℓm + ℓr].

From line 23, we obtain two openings for Ωq. Thus, we know that fm = f ′m and fr = f ′r, else
we find a non-trivial DLOG relation in p̃p as in [34], Section 5.1. By definition, we have

fm = (
∑ℓm

i=1B
i−1τei)− τm = (

∑ℓm
i=1B

i−1τei
′)− τm′ = f ′m

=⇒ (
∑ℓm

i=1B
i−1ei)−m = 0

=⇒
∑ℓm

i=1B
i−1ei = m.

Similarly, we obtain r =
∑ℓr

i=1 eℓm+iB
i−1. This concludes the proof.

Prover(x;w) Verifier(x)

1 : tq, t̃← [0, Ñ · 2λ]

2 : µt̃ ← [0, CÑ · 22λ], µm ← [0, C23λ], µr ← [0, CS · 2λ]
3 : for i ∈ [ℓm + ℓr] do

4 : µei ← [0, CB · 2λ], µsi ← Zp

5 : ΩEi ← µeiG+ µsiH,ΩSi ← µsiG

6 : Ωc ← hµm
2 · gµre mod N

7 : fm,0 ← (
∑

i∈[ℓm] B
i−1µei)− µm

8 : fr,0 ← (
∑

i∈[ℓr ]
Bi−1µei+ℓm

)− µr

9 : c̃← h̃t̃ ·
∏ℓm+ℓr

i=1 g̃eii mod Ñ

10 : Ωc̃ ← h̃µt̃ ·
∏ℓm+ℓr

i=1 g̃
µei
i mod Ñ

11 : Ωq ← h̃tq · g̃fm,0

1 · g̃fr,02 mod Ñ

c̃, Ωc̃, Ωq, (ΩEi)i, (ΩSi)i, Ωc

12 : γ ← [0, C]

γ

13 : τm ← γm+ µm, τr ← γr + µr, τt̃ ← γt̃+ µt̃

14 : for i ∈ [ℓm + ℓr] do

15 : τei ← γei + µei , τsi ← γsi + µsi

(τei)i, (τsi)i, τm, τr, τt̃, tq

16 : check c−γhτm
2 · gτre ≡ Ωc mod N

17 : for i ∈ [ℓm + ℓr] do

18 : check − γEi + τeiG+ τsiH = ΩEi

19 : check − γSi + τsiG = ΩSi

20 : fm ← (
∑ℓm

i=1 B
i−1τei)− τm,

21 : fr ← (
∑ℓr

i=1 B
i−1τeℓm+i)− τr

22 : check c̃−γ · h̃τt̃ ·
∏ℓm+ℓr

i=1 g̃
τei
i ≡ Ωc̃ mod Ñ

23 : check h̃tq · g̃fm1 · g̃fr2 ≡ Ωq mod Ñ

Fig. 4: Description of Σped for x = (Ñ , p̃p, N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = ((ei, si)

ℓm+ℓr
i=1 ,m, r).
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Step 2: the range proof. Next, let Πrp be the NIZK with random oracle Hrp from [66] (cf. Section
6.2). Note that Πrp is obtained by compiling Bulletproofs [22, 9] via Fiat-Shamir. The correctness
and zero-knowledge relation is

Rrp = {(x,w) : Ei = eiG+ siH, ei ∈ [0, B − 1] for i ∈ [ℓm + ℓr]},

with x = (G,H,B, (Ei)i∈[ℓm+ℓr]) and w = ((ei, si)i∈[ℓm+ℓr]), where B is a power of two 36. Note

that srs = ⊥ and ursrp = ((ĝi)i∈[ℓrp]) ∈ Gℓrp
p define the crs = ursrp of Πrp, where ℓrp ∈ N is chosen

appropriately. The soundness relation is

R̃rp := {(x,w) : (x,w) ∈ Rrp or ((G,H, ursrp), w) ∈ Rdlog},

where Rdlog = {((G,H, ursrp), w)} denotes the relation that contains all non-trivial DLOG relations
w for (G,H, ursrp) (see [9] for more details). Note that for uniform statement, it is hard to find a
witness for Rdlog under the DLOG assumption. We recall well-known properties of Πrp in lemma 21.

Lemma 21 ([66], Theorem 17). The NIZK Πrp for relation Rrp is correct, zero-knowledge and
adaptively knowledge sound for the relaxed relation R̃rp ⊇ Rrp.

Step 3: the online-extractable NIZK. Finally, we combine Σped and Πrp to construct Πped for the
relation

Rped =
{
(x,w) | c ≡ hm2 · gre mod N,Ei = eiG+ siH,Si = siG, ei ∈ [0, B − 1],

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1
}
.

The construction is similar to the NIZK in Section 6.3 [66] except that our Σ-protocol is more
involved. We first define the srs space. Recall that Σped relies on a fresh modulus Ñ and MPed
parameters p̃p. These are provided in the srs. To ensure subversion zero-knowledge, we follow the
approach in Appendix C.1. That is, we add a NIZK to prove that shows that p̃p is setup in a hiding
manner and set

SRS =
{
(Ñ , p̃p, πgen) | Ñ ∈ N, p̃p = (h̃, g̃1, · · · , g̃ℓm+ℓr ) ∈ (Z∗

N )1+ℓm+ℓr ,

Πgen.Verify
Hgen(xgen, πgen) = 1, xgen = (Ñ , ℓm + ℓr, h̃, (g̃1, · · · , g̃ℓm+ℓr ))

}
.

The proof πgen ensures that the preconditions with respect to p̃p for the HVZK relation of Σped

are ensured for malicious srs, and thus ensure subversion zero-knowledge. We denote by Hped

the random oracle of Πped and by URS = Gℓrp
p the space for the urs of Πped. Below, we have

urs ∈ URS and crs = (srs, urs) for some srs ∈ SRS. Let Hγ be a random oracle mapping into [0, C].
The random oracle of Πped is Hped = (Hrp,Hγ). Let x = (B,G,H,N, e, h2, g, c, (Ei, Si)

ℓm+ℓr
i=1 ) and

w = (m, r, (si)i∈[ℓm+ℓr]). The scheme is given below. Roughly, the prover decomposes m and r
via B-ary decomposition, commits to ei in ElGamal commitments (Ei, Si), and then proves that
ei ∈ [0, B] via Πrp and that the committed values satisfy R̃Σped

via Fiat-Shamir compiled Σped.

– Πped.GenSRS(1
λ): Samples ppMPed = (Ñ , p̃p)← MPed.Setup(1λ) with p̃p = (h̃, g̃1, · · · , g̃ℓm+ℓr).

Then, sets πgen ← Πgen.Prove
Hgen(wgen, xgen) for xgen as above and appropriate wgen. Outputs

the structured reference string srs = (Ñ , p̃p, πgen).
– Πped.Prove

Hped(crs, x, w): Parses x = (B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and w = (m, r, (si)i∈[ℓm+ℓr]).

Decomposes m and r into (mi)i and (ri)i via B-ary decomposition, respectively. Note that
(Ei, Si) = (eiG+ siH, siG). Then, computes

π0 ← Πrp.Prove
Hrp(crs, x0, w0),

36 We moved the generators G and H to the statement from the uniform reference string ursrp. This is a
purely notational change and we adapted the soundness relation below accordingly.
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for x0 = (G,H,B, (Ei)i∈[ℓm+ℓr]) and w0 = ((ei, si)i∈[ℓm+ℓr]),

(ΩΣ , st)← Σped.Init(x1, w1),

γΣ ← Hγ(x1, ΩΣ),

τΣ ← Σped.Resp(x1, st, γΣ),

π1 ← (ΩΣ , γΣ , τΣ),

for statement x1 = (Ñ , p̃p, B,G,H,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and witness w1 = ((ei, si)

ℓm+ℓr
i=1 ,m, r).

Outputs π = (π0, π1).
– Πped.Verify

Hped(crs, x, π): On input crs, x, and π = (π0, π1), checks

Πrp.Verify
Hrp(crs, x0, π0) = 1,

Hγ(x0, ΩΣ) = γΣ ,

Σped.Verify(x1, ΩΣ , γΣ , τΣ) = 1,

where π1 = (ΩΣ , γΣ , τΣ) and x0, x1 are defined as above, and outputs 1 iff all checks succeed.

We show that the scheme is sufficient to instantiate our framework BSfis in Section 6 (i.e., the
NIZK is correct, subversion zero-knowledge, and partially online-extractable). Correctness and
subversion zero-knowledge follow from the discussion above. For partial online-extraction, recall
that statement x and witness w of relation Rped are split into x0 = (G,H), w0 = (s1, . . . , sℓm+ℓr)

and x1 = (B,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ), w1 = (m, r). For the sake of simplicity, we sketch how

the extractor proceeds to extract from a single proof. Let A be an adversary (i.e., prover) for
online-extraction. Since the tuple x0 = (G,H) is drawn at random from X0 = G2

p, the extractor
samples G ← Gp and td ← Zp at random, then sets H = td · G. Then, it outputs x0 = (G,H)
and crs = (srs, urs) to A, where srs← Πped.GenSRS(1

λ) and urs← URS. After obtaining (partial)
statement x1 and proof π from A, the extractor decrypts the ElGamal commitments (Ei, Si) via
a brute-force computation of the discrete logarithm ei = DLOGG(E

′
i) of E′

i ← Ei − td · Si. If
ei /∈ [0, B − 1], the extractor aborts. (Since B = poly(λ), the extractor remains efficient and the
NIZKs guarantee that aborts happen with low probability.) Using ei, the adversary recomputes m
and r via B-ary decomposition and checks that c ≡ hm2 · gre mod N . Note that in that case, the
existence of suitable ElGamal openings w0 = (si)i is guaranteed. (These are the discrete logarithms
si = DLOGG(Si) of Si.) A subtlety of the proof is that we need to extract from both proofs π0 and
π1 of π = (π0, π1) simultaneously in the case that extraction fails. Fortunately, this was shown to
be possible in [66]. In both extractions succeed, we can reduce to either DLOG in Gp or sRSA.

Theorem 10. The NIZK Πped is correct, subversion zero-knowledge under the DDH assumption,
and partially online-extractable under the sRSA assumption and the DLOG assumption in Gp.

Proof. Correctness is straightforward. In more detail, let us show that (x0, w0) ∈ Rrp and (x1, w1) ∈
Rsub. Then, correctness of both Πrp and Σped yield correctness of Πped. First, observe that ei ∈
[0, B − 1]. Also, Ei = eiG + siH holds since (x,w) ∈ RΣped

. Thus, (x0, w0) ∈ Rrp. Similarly,
(x,w) ∈ RΣped

yields that c ≡ hm2 ·gre mod N , Si = siG. By construction, it holds that ei ∈ [0, B−1]

and m =
∑ℓm

i=1 eiB
i−1, r =

∑ℓr
i=1 eℓm+iB

i−1. Further, we have that ⟨h̃⟩ = ⟨g̃i⟩ by definition of
MPed.Setup. Thus, (x1, w1) ∈ Rsub as desired.

Subversion zero-knowledge follows similarly to Theorem 9. Notably, we have (x0, w0) ∈ Rsub by
design—this follows as above and since πgen in the adversarial srs ensures that ⟨h̃⟩ = ⟨g̃i⟩ under
soundness of Πgen with overwhelming probability. The simulator then simply simulates π1 via HVZK
of Σped and by programming Hγ accordingly. (The latter is possible due to high min-entropy of
Σped.) Similarly, π0 is simulated via the zero-knowledge simulator of Πrp. This is possible since
(x1, w1) ∈ Rrp which again, follows as above.

Online-extraction requires some care, but the proof is similar to the proof of Theorem 20, [66]
(taking into account that we embed the trapdoor into the statement x0 = (G,H) instead of the
crs). That is, the extractor Ext proceeds as follows.

– Ext(1λ): Sets up G← Gp and H ← td ·G for td← Zp and outputs x0 = (G, hp)
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– Ext(crs, td, x, π): Parses x = (x0, x1) with x0 = (G,H) and x1 = (B,N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ).

Note that H = td · G. Decrypts the ElGamal commitments (Ei, Si) to ei = DLOGG(E
′
i) via

a discrete logarithm computation of E′
i ← Ei − td · Si (but outputs ⊥ and aborts if there is

no such ei ∈ [0, B − 1]). Then, sets m =
∑ℓm

i=1 eiB
i−1 and r =

∑ℓr
i=1 eℓm+iB

i−1. Checks that
c ≡ hm2 ·gre mod N . If the check succeeds, outputs partial witness w1 = (m, r), and ⊥ otherwise.

Note that Ext(1λ) outputs uniform (G,H) over G2

p = X0 and that Ext runs in polynomial time
(since the DLOG computation aborts in case ei is not short, i.e., of polynomial size). Also, if all
check succeed, then the output of Ext is sufficient, i.e., there is a w0 = (s1, . . . , sℓm+ℓr) such that
((w0, w1), x) ∈ Rped due to the following facts.

– We have that c ≡ hm2 · gre mod N due to the last check.
– We have that Ei = eiG+ siH and Si = siG, ei ∈ [0, B − 1], where si = DLOGG(E

′
i) for some

si ∈ Zp. This holds by construction since for si = DLOGG(Si), we have that Ei = E′
i + td ·Si =

eiG+ siH.
– We have that m =

∑ℓm
i=1 eiB

i−1, r =
∑ℓr

i=1 eℓm+iB
i−1 by construction.

Now let A be an adversary that on input (crs, x0) outputs QS pairs (x1,i, πi)i∈[QS ] that verify (i.e., we
have that Πped.Verify

Hped(crs, (x0, xi,1), πi) = 1) with probability at least µ(λ). Here, crs = (srs, ursrp)

is setup via srs ← Πped.Setup(1
λ) and ursrp ← Gℓrp

p . Denote with Faili the event that the proof
(x1,i, πi) verifies but extraction fails for i ∈ [QS ]. It remains to show Pr[Faili] = negl(λ). Then, we
can conclude that Pr[∃i : Faili] = negl(λ) via a union bound.

Assume that Faili occurs. Parse x1,i = (N, e, h2, g, c, (Ei, Si)
ℓm+ℓr
i=1 ) and πi = (πi,0, πi,1) with

πi,0 = (ΩΣ , γΣ , τΣ). Set x = (x0, x1,i), xrp = (G,H,B, (Ei)i∈[ℓm+ℓr]) and xΣ = (Ñ , p̃p, B,G,H,N, e, h2, g, c,

(Ei, Si)
ℓm+ℓr
i=1 ). We then use the procedure from Theorem 20, [66] to obtain a witness wrp such that

(xrp, wrp) ∈ R̃rp ⊇ Rrp and two related transcripts (tr , tr ′) of Σped for the statement xΣ 37.
Under the DLOG assumption, we have ((G,H, ursrp), wrp) ∈ Rdlog with at most negligible

probability. Thus, (xrp, wrp) ∈ Rrp which means that wrp = (e′i, s
′
i)i∈[ℓm+ℓr] and

Ei = e′iG+ s′iG
′ and e′i ∈ [0, B − 1]. (14)

Then, we invoke 2-special soundness of Σped on (tr , tr ′) and obtain a witness wΣ with (xΣ , wΣ) ∈
RΣped

. We have that (xΣ , wΣ) ∈ R or (p̃p, wΣ) ∈ RC,ℓ̃(p̃p) or (p̃p, wΣ) ∈ Rdlog. Under sRSA, we have
that (p̃p, wΣ) ∈ RC,ℓ̃(g⃗) or (p̃p, wΣ) ∈ Rdlog with at most negligible probability. Thus, (xΣ , wΣ) ∈ R.
Parse wΣ = ((ei, si)

ℓm+ℓr
i=1 ,m, r). By definition, it holds that

c ≡ hm2 · gre mod N

Ei = eiG+ siH,Si = siG

m =

ℓm∑
i=1

eiB
i−1, r =

ℓr∑
i=1

eℓm+iB
i−1

(15)

Notably, we have ei = e′i under DLOG as otherwise, we can compute a non-trivial DLOG relation
between H and G. Finally, observe that Eqs. (14) and (15) with ei = e′i imply that extraction of
Πped via Ext succeeds, i.e., Faili does not occur. Thus, Pr[Faili] = negl(λ). This concludes the proof.

Optimizations. We apply standard Σ-protocol optimizations for Σped. That is, we omit the first
flow of Σped (i.e., the values Ωc̃, Ωq, (ΩEi

)i, (ΩSi
)i, Ωc except c̃) from the proof π1. The verification

equations are then verified within the hash function Hγ .

Efficiency. We set B = 264. Then, the DLOG computation in extraction runs in time O(232).
Further, we use standard RSA moduli and groups for λ = 128 bit security, i.e., N and Ñ of size
3072 bit and group Gp with order 256 bit. With these parameters, we have ℓm + ℓr = 54 and an
integer commitment CZ is of size 3.46 KB. The online-extractable NIZK is of size 5.62 KB and the
range proof Πrp is of size 1088 Byte. In total, the proof size of Πped is 6.7 KB.
37 Roughly, the procedure extracts a witness for xrp via the knowledge extractor of Πrp and two related

transcripts for xΣ via forking. Notably, the argument is agnostic to the concrete Σ-protocol that is being
used. [66] proves that the procedure succeeds in polynomial time with probability close to Pr[Faili]. We
refer to [66] for more details.
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E.2 Instantiation of Πfis

In this section, we instantiate Πfis. Recall that Πfis allows to prove knowledge of a valid Sfis signature
(e, a, y), where (e, a) are fixed in a CRInt commitment cI . We instantiate CRInt with CB⃗,T

RInt , where
B⃗ = (23λ, 23λ) and T = 2λ+1L for L ∈ N (cf. Section 5). As discussed in Section 6.1, we set
E = 25λ. The public parameters are ppI = (G1, G2, H) ∈ G for some group G of order p such that
23λT < p−1

2 . We assume without loss of generality that G1, G2, H ̸= 0. Denote by G⃗ := (G1, G2).
We can rewrite the relation Rfis as follows

Rfis :=
{
(x,w) | ye ≡ h · ha1 · ha+m

2 mod N, e ≡ 1 mod 2, y ∈ ⟨h1⟩,

(e− E, a) ∈ [0, B⃗], C⃗ = (e− E, a)H + rG⃗, F = rH
}
,

for x = (ppI , N, h1, h2, h,m, C⃗, F ), w = (e, a, y, r). The soundness relation can be written as R̃fis

R̃fis :=
{
(x,w) | ye ≡ h · ha1 · ha+m

2 mod N, e ≡ 1 mod 2,

(e− E, a) ∈ [B⃗T, B⃗T ], C⃗ = (e− E, a)H + rG⃗, F = rH
}
,

We construct a Σ-protocol Σfis for the relation Rfis, and then compile it via Fiat-Shamir.

Step 0: Preparing a ZK-friendly relation for Rfis. First, we derive a more Σ-protocol friendly rela-
tion that implies Rfis. Assume that y ∈ ⟨h1⟩ 38. Note that the relation Rfis contains the equation

ye ≡ h · ha1 · ha+m
2 mod N .

Since both y and e are part of the witness, this equation is non-trivial to prove, especially since y is
an element of a group ⟨h1⟩ that might be setup maliciously. We solve this by committing to y in
an additional CGrp commitment cN (cf. Section 5.2) over the group ⟨h1⟩. We recall that CGrp is an
ElGamal commitment of the form cN = y · hs1 ∈ ⟨h1⟩, where the integer randomness s is fixed via
an Πint commitment over a prime-order group. Then, with ω = e · s ∈ Z, we have that

ye ≡ ceN · h−es
1 ≡ ceN · h−ω

1 mod N

and consequently, we have an equivalence

ye ≡ h · ha1 · ha+m
2 mod N ⇔ ceN · h−ω

1 ≡ h · ha1 · ha+m
2 mod N (16)

in Z∗
N . More specifically, it suffices to show

ceN · h−ω
1 ≡ h · ha1 · ha+m

2 mod N ∧ ω = e · s ∧ CGrp.Verify(pp, cN , y, s) = 1

and we can resort to well-known techniques for quadratic equations over Z. Also, we follow the
technique to open cN in zero-knowledge outlined in Section 5. Recall that CGrp is defined over a
prime-order group. In order to use the same group G for the relaxed integer commitment of CGrp

and the commitment cI of (e, a) defined above, we split the integer randomness s of CGrp into ℓs
values si ∈ [0, 23λ−1] via 23λ-ary decomposition, i.e., s =

∑ℓs
i=1 si ·23λ(i−1). We recall to Section 5.2

for this splitting of s into ℓs values in a vector s⃗ = (si)i∈[ℓs], while remarking that the domain of s

is [0, N · 2λ], since the order of ⟨h1⟩ is upper bounded by N . Specifically, we set ℓs = ⌈ log(N ·2λ)
3λ ⌉

and B⃗′ = (23λ, · · · , 23λ) ∈ Nℓs . Then, we use a second relaxed integer commitment C′
RInt = CB⃗′,T

RInt

with public parameters pp′I = (H ′, G′
1, · · · , G′

ℓs
) to commit to s⃗ satisfying si ∈ [0, 23λ − 1] for all

i ∈ [ℓs]. Below, we denote by G⃗′ := (G′
1, · · · , G′

ℓs
).

We modify the relation in two other ways:

1. Instead of using witness e, we use e = e − E for some even E ∈ Z and adapt the relations
accordingly. As e is shorter, this reduces the proof size. Also, note that e ≡ 1 mod 2 is equivalent
to showing that e = 2e′ + 1 over Z because E is even.

38 This is guaranteed by the correctness and HVZK relation.
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2. Let Ñ ∈ N. We add public parameters p̃p = (h̃, g̃1, · · · , g̃ℓ̃) ∈ (Z∗
Ñ
)ℓ̃+1 for MPed to the statement,

where ℓ̃ = 4 + ℓs. In the Σ-protocol, the prover commits to the witnesses over Z via MPed. As
in previous NIZKs, this allows to ensure that the extracted values are integers in the soundness
proof.

We are now ready to describe the Σ-protocol-friendly relation. First, let us define the relation
R as follows. (R serves as basis for both the correctness and HVZK relation, and the soundness
relation.)

R :=
{
(x,w) | ce+E

N · h−ω
1 · h−s·E

1 ≡ h · ha1 · ha+m
2 mod N, (17)

ω = e · s, e = 2e′ + 1, (18)

C⃗ = (e ·H, a ·H) + rG⃗, F = rH, (19)

C⃗ ′ = s⃗H ′ + r′G⃗′, F ′ = r′H, s =
∑

i∈[ℓs]
si2

3λ(i−1), cN ≡ y · hs1 mod N
}
, (20)

where x = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗

′, F ′), w = (e, a, y, r, r′, ω, (s1, · · · , sℓs)). Let
us remark that Eqs. (17) and (18) correspond to verifying that the signature (e, a, y) is valid with
respect to Sfis verification (except the range membership), where e = e+E. Also, y is committed in
a CGrp commitment (cN , C⃗

′, F ′) and (e, a) is committed in a CRInt commitment (C⃗, F ), as specified
by Eqs. (19) and (20), respectively, except range checks are omitted. Then, adding the range and
subgroup checks, gives the correctness and HVZK relation RΣ as follows:

RΣ := {(x,w) | (x,w) ∈ R, y ∈ ⟨h1⟩, (e, a) ∈ [0, B⃗], (s1, . . . , sℓs) ∈ [0, B⃗′], ⟨h̃⟩ = ⟨g̃i⟩}. (21)

Note that RΣ is obtained by applying the modifications discussed above to Rfis. Similarly, applying
the above modifications to the soundness relation R̃fis, we obtain relation

R̃Σ =
{
(x,w) | ((x,w) ∈ R, (e, a) ∈ [−B⃗T, B⃗T ], (s1, . . . , sℓs) ∈ [−B⃗′T, B⃗′T ]) or

(p̃p, w) ∈ RC,ℓ̃(p̃p) or (p̃p, w) ∈ Rdlog

}
,

where RC,ℓ̃(p̃p) is defined in Definition 7 and Rdlog denotes the relation that contains all non-trivial
DLOG relations in p̃p (cf. Appendix E.1). Later, we show that a Σ-protocol for these relations
allows to construct a NIZK for Rfis via Fiat-Shamir under sRSA.

Step 1: the Σ-protocol. We now construct a Σ-protocol for relations RΣ, R̃Σ defined in the previous
paragraph. Set C = 2λ − 1 which defines the challenge space [0, C]. The Σ-protocol Σfis is given in
Fig. 5. We briefly discuss the construction. (Note that we follow the design guidelines described in
the beginning of Appendix E.)

– The Eq. (19) and the (relaxed) range membership for (e, a) correspond to opening a CRInt

commitment in zero-knowledge. We proceed as discussed in Appendix C.1 for these equations
(using MPed with parameters p̃p to argue over the integers).

– The Eq. (20) and the (relaxed) range membership for (si)i∈[ℓs] correspond to opening a CGrp

commitment in zero-knowledge. We proceed as discussed in Appendix C.1 for these equations
(again, using MPed with parameters p̃p to argue over the integers).

– We show Eq. (17) with Schnorr-style Σ-protocol techniques.
– To show Eq. (18), we define degree 2 polynomials, where the leading coefficient is 0 iff both

relations hold. That is, we construct a polynomial fe = fe,2γ
2 + fe,1γ + fe,0 and fω =

fω,2γ
2 + fω,1γ + fω,0, where the challenge γ is interpreted as variable, such that fω,2 = fe,2 = 0

implies that ω = e · s and e = 2e′ + 1. The prover shows that indeed fω,2 = fe,2 = 0 by
committing to the non-zero coefficients in a MPed commitment. Then, the verifier recomputes
fω(γ) and fe(γ) (which is possible by construction) and verifies that fω(γ) = fω,1γ + fω,0 and
fe(γ) = fe,1γ + fe,0 by linearity of MPed over Z∗

Ñ
.

Then, 3 special soundness is argued as follows. If fe(γ) = fω,1γ + fω,0 holds for three 3 distinct
challenge γ, then the polynomial fdiff := fe(x)−fe,1x+fe,0 has three zeroes. Since the polynomial
fdiff is of degree 2 with 3 zeroes, it must be the zero polynomial. In particular, the leading
coefficient of fe is zero and thus, e = 2e′ + 1. The equation ω = e · s is argued similarly.
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– The integer witnesses are committed in a MPed commitment c̃ (with public parameters p̃p).
This allows to argue that extracted values are integers.

Lemma 22. The Σ-protocol Σfis for relation RΣ is correct with abort probability 1− (1− 1
L )

ℓs+3,
is non-abort HVZK, has high min-entropy, and is 3-special sound for R̃Σ.

Proof. We only give a brief sketch as this follows as similarly to security of previous Σ-protocols. For
correctness, we examine each of the checks. The range checks on lines 19 and 20 for (τe, τa, τ⃗s, τe′)
are saisfied thanks to the checks by prover before sending the responses (on lines 17 and 18). The
check on line 21 on the commitment Ωf is satisfied by

c−τe
N · hτω1 · h

E
∑

i∈[ℓs] τsi2
3λ(i−1)

1 · hγ · hτa1 · h
τa+γm
2

≡ c−γe−µe

N · hγω+µω

1 · h
E

∑
i∈[ℓs](γsi+µsi

)23λ(i−1)

1 · hγ · hγa+µa

1 · hγa+µa+γm
2 mod N

≡ c−µe

N · hµω

1 · h
E

∑
i∈[ℓs] µsi

23λ(i−1)

1 · hµa

1 · h
µa

2 ·
(
c−γe
N · hγω1 · h

γE
∑

i∈[ℓs] si2
3λ(i−1)

1 · hγ · hγa1 · h
γa+γm
2

)
mod N

(∗)
≡ c−µe

N · hµω

1 · h
E

∑
i∈[ℓs] µsi

23λ(i−1)

1 · hµa

1 · h
µa

2 ·
(
c−γe
N · hγω1 · h

γEs
1 · hγ · hγa1 · h

γa+γm
2

)
mod N

(∗∗)
≡ c−µe

N · hµω

1 · h
E

∑
i∈[ℓs] µsi

23λ(i−1)

1 · hµa

1 · h
µa

2 mod N

≡ Ωf mod N

where we make use of the response calculations τe ← γe+ µe, τa ← γa+ µa, τω ← γω + µω over Z,
(∗) follows from the unique 23λ(i−1)-decomposition of s =

∑
i∈[ℓs]

si2
3λ(i−1), and (∗∗) follows from

Equation (17). Next, the check on line 22 is satisfied as per the following computation over G

(τe, τa)H + τrG⃗− γC⃗

= (γe+ µe, γa+ µa)H + (γr + µr)G⃗− γ((e ·H, a ·H) + rG⃗) (22)

= (µe, µa)H + µrG⃗

= Ω⃗C , (23)
τrH − γF
= (γr + µr)H − γrH
= ΩF (24)

where the first equality (22) follows from the definition (19) of C⃗ = (eH, aH) + r · G⃗ in relation RΣ,
and equalities (23, 24) follow from the definitions by prover at line 6.

We now examine the nextt check on line 23. In the same vein of computation

τ⃗sH
′ + τr′G⃗′ − γC⃗ ′

= (γs⃗+ µ⃗s)H
′ + (γr′ + µr′)G⃗′ − γ(s⃗ ·H ′ + r′G⃗′)

= µ⃗sH
′ + µr′G⃗′

= Ω⃗C′ ,

τr′H
′ − γF ′

= (γr′ + µr′)H
′ − γr′H ′

= ΩF ′ ,

where the opening τ⃗s ← γs⃗+ µ⃗s and the opening τr′ ← γr′+µr′ are both over Z from lines (16, 13),
for which the group exponentiation is well defined in the cyclic group G. Regarding the check
on line 24, we apply the specification of the opening τt̃ ← γt̃ + µt̃, together with those of τe ←
γe+ µe, τa ← γa+ µa, τe′ ← γe′ + µe′ as well as τ⃗s ← γs⃗+ µ⃗s by the prover on lines (14, 15, 16),
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respectively:

c̃−γ · hτt̃ · g̃τe1 g̃
τa
2 g̃

τe′
3

∏
i∈[ℓs]

g̃
τsi
3+i · g̃

τω
4+ℓs

≡ c̃−γ · hγt̃+µt̃ · g̃γe+µe

1 g̃γa+µa

2 g̃
γe′+µe′
3

∏
i∈[ℓs]

g̃
γsi+µsi
3+i · g̃γω+µω

4+ℓs

(∗)
≡
(
ht̃ · g̃e1g̃a2 g̃e

′

3

∏
i∈[ℓs]

g̃si3+i · g̃ω4+ℓs

)−γ

· hγt̃+µt̃ · g̃γe+µe

1 g̃γa+µa

2 g̃
γe′+µe′
3

∏
i∈[ℓs]

g̃
γsi+µsi
3+i g̃γω+µω

4+ℓs

≡
(
hµt̃ · g̃µe

1 g̃µa

2 g̃
µe′
3

∏
i∈[ℓs]

g̃
µsi
3+i · g̃

µω

4+ℓs

)
≡ Ωc̃ mod Ñ

where (∗) and the last equality follow from the definition of c̃ and the definition of Ωc̃ by prover on
line 10, respectively. Lastly, the check on line 26 is satisfied by

c̃γq ·Ωq ≡
(
h̃tq · g̃fω,1

1 · g̃fe,12

)γ
· h̃µtq · g̃fω,0

1 · g̃fe,02 (25)

≡ h̃γtq+µtq · g̃
γ·(µω−

∑
i∈[ℓs](µsi

e+siµe)2
3λ(i−1))−

∑
i∈[ℓs] µsi

µe2
3λ(i−1)

1 · g̃µe−2γµe′
2 (26)

≡ h̃τtq · g̃fω1 · g̃
fe
2 (27)

where equation (25) follows from the definition of c̃q and Ωq by prover on line 10, equation (26)
comes from fω,0 ← −

∑
i∈[ℓs]

µsiµe2
3λ(i−1) as well as

fω,1 ← µω−
∑

i∈[ℓs]
(µsie+siµe)2

3λ(i−1)+
∑

i∈[ℓs]
µsiE23λ(i−1) = µω−

∑
i∈[ℓs]

(µsie+siµe)2
3λ(i−1) ,

where we are using the fact that e = e − E. Moreover, fe,0 ← µe, fe,1 ← −2µe′ on lines (8, 9)
by prover, and the last equation (27) results from τtq ← γtq + µtq ∈ Z together with the below
calculation

fω = γ · τω −

∑
i∈[ℓs]

τsi2
3λ(i−1)

 · τe
= γ · (µω + γω)−

∑
i∈[ℓs]

(µsi + γsi) · 23λ(i−1)

 · (µe + γe)

= γ ·

µω −
∑
i∈[ℓs]

(µsie+ siµe)2
3λ(i−1)

− ∑
i∈[ℓs]

µsi2
3λ(i−1)µe + γ2 · (ω − se)

= γ ·

µω −
∑
i∈[ℓs]

(µsie+ siµe)2
3λ(i−1)

− ∑
i∈[ℓs]

µsi2
3λ(i−1)µe (28)

fe = γ · (τe − (2 · τe′ + γ))

= γ · (γe+ µe − 2 · µe′ − 2γe′ − γ)
= γ · (µe − 2 · µe′) (29)

in which equation (28) follows from the condition (18) that ω = es in RΣ, while equation (29) also
follows from e = 2e′ + 1 in condition (18) of RΣ.

For showing that the Σ-protocol has high min-entropy, we consider the first flow

Ω := (c̃, c̃q, Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃, Ωq).

Recall that G is of order p > 22λ. Observe that ΩF = µrH is distributed uniform over G, since
H ̸= 0 and µr is sampled uniform over Zp. Thus, an adversary can predict Ω with probability at
most 2−2λ, and the Σ-protocol has high min-entropy.

For non-abort HVZK, we need to show that the transcript can be simulated indistinguishably
conditioned that the prover does not abort and the challenge γ of an honest verifier is known in
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advance. We observe that following properties of noise flooding (recall Supplementary Materials A.2),
the masking by

µt̃, µtq ← [0, CN · 22λ]

(µe, µa)← [0, (B⃗C + 1)L], µe′ ← [0, (B1C + 1)L]

µ⃗s ← [0, (B⃗′C + 1)L]

µω ← [0, CB1N · 22λ]

ensures that the following values

τt̃ ← γt̃+ µt̃, τtq ← γtq + µtq

τe ← γe+ µe, τa ← γa+ µa, τe′ ← γe′ + µe′

τ⃗s ← γs⃗+ µ⃗s, τω ← γω + µω

sent in the third flow are distributed uniform over the corresponding interval in the prover’s range
conditioned on no abort. Similarly, τr ← γr + µr, τr′ ← γr′ + µr′ are distributed uniform since
µr, µr′ are sampled uniformly at random from Zp. Also, c̃ and c̃q are distributed close to uniform
over ⟨h̃⟩ (with statistical distance at most 2−λ) because t̃ and tq are drawn uniform over [0, N · 2λ],
and because ⟨h̃⟩ = ⟨g̃i⟩. (Note that the order of ⟨h̃⟩ ⊆ Z∗

N is at most N .) The remaining values
Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃ and Ωq are determined from the third flow and the challenge γ, by setting
with respect to the verification equations

Ωf = c−τe
N · hτω1 · h

E
∑

i∈[ℓs] τsi2
3λ(i−1)

1 · hγ · hτa1 · h
τa+γm
2 mod N

Ω⃗C = (τe, τa)H + τrG⃗− γC⃗, ΩF = τrH − γF

Ω⃗C′ = τ⃗sH
′ + τr′G⃗′ − γC⃗ ′, ΩF ′ = τr′H

′ − γF ′

Ωc̃ = c̃−γ · hτt̃ · g̃τe1 g̃
τa
2 g̃

τe′
3

∏
i∈[ℓs]

g̃
τsi
3+i mod Ñ

Ωq = c̃−γ
q · h̃τtq · g̃fω1 · g̃

fe
2 mod Ñ

where fω = γ ·τω−((
∑

i∈[ℓs]
τsi2

3λ(i−1))·(τe)), fe = γ(τe−(2·τe′+γ)). Given the above discussion, it
is straightforward to provide an appropriate simulator. Roughly, the simulator receives the challenge
γ and samples the responses (for the third flow) according to the above distributions. It also samples
c̃ and c̃q (with negligible distance close to) uniform over ⟨h̃⟩. Finally, it recomputes the remaining
first flow that is determined as above and outputs the full transcript. Since the distribution is
statistically close to the real protocol (conditioned on no abort), the simulator suffices.

For 3-special soundness, let us construct a deterministic PT extractor so that, for

x = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗

′, F ′) ,

given 3 valid related transcripts that are indexed by i ∈ [3]

Identical first flow: Ω = (c̃, c̃q, Ωf , Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃, Ωq)

Pairwise distinct challenge: γi

Third flow: τ⃗i = (τr,i, τr′,i, τt̃,i, τtq,i, τe,i, τa,i, τe′,i, τ⃗s,i, τω,i)

the extractor extracts a witness w such that (x,w) ∈ R̃Σ. In the following, we denote by ∆vi,j :=
τv,i − τv,j ∈ Z for v ∈ {r, r′, t̃, tq, ē, a, e′, s, ω} and ∆γi,j := γi − γj .

By verification, we have that for i ∈ [3], it holds that

c̃−γi · hτt̃,i · g̃τe,i1 g̃
τa,i

2 g̃
τe′,i
3

∏
k∈[ℓs]

g̃
τsk,i

3+k · g̃
τω
4+ℓs

≡ Ωc̃ mod Ñ

Thus, it holds for i ̸= j ∈ [3] that

c̃∆γi,j ≡ h∆t̃i,j · g̃∆ei,j
1 g̃

∆ai,j

2 g̃
∆e′i,j
3

∏
k∈[ℓs]

g̃
∆ski,j

3+k · g̃∆ωi,j

4+ℓs
mod Ñ
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Thus, either ∆γi,j divides ∆vi,j for v ∈ {t̃, ē, a, e′, s, ω} over Z, or the above equation yields a
witness w for (p̃p, w) ∈ RC,ℓ̃(p̃p). In the latter case, the extractor outputs the witness w. In the
former case, the extractor defines r := ∆r1,2/∆γ1,2 mod p, r′ := ∆r′1,2/∆γ1,2 mod p over Zp,
as well e := ∆e1,2/∆γ1,2, a := ∆a1,2/∆γ1,2, si := ∆(si)1,2/∆γ1,2, and ω := ∆(ω)1,2/∆γ1,2 over Z
(which is now well-defined).

Further, the verification checks ensure that

(τe,1, τa,1)H + τr,1G⃗− γ1C⃗ = (τe,2, τa,2)H + τr,2G⃗− γ2C⃗ = (τe,3, τa,3)H + τr,3G⃗− γ3C⃗ (30)
τr,1H − γ1F = τr,2H − γ2F = τr,3H − γ3F (31)

τ⃗s,1H
′ + τr′,1G⃗′ − γ1C⃗ ′ = τ⃗s,2H

′ + τr′,2G⃗′ − γ2C⃗ ′ = τ⃗s,3H
′ + τr′,3G⃗′ − γ3C⃗ ′ (32)

τr′,1H
′ − γ1F ′ = τr′,2H

′ − γ2F ′ = τr′,3H
′ − γ3F ′ (33)

We first use the identities (31, 33) to obtain

F =
∆r1,2
∆γ1,2

H = rH

F ′ =
∆r′1,2
∆γ1,2

H ′ = r′H

as correct representations of F and F ′. Then, the identity (30) gives

(τe,1, τa,1)H + τr,1G⃗− γ1C⃗ = (τe,2, τa,2)H + τr,2G⃗− γ2C⃗

=⇒ (τe,1 − τe,2, τa,1 − τa,2)H + (τr,1 − τr,2)G⃗ = (γ1 − γ2)C⃗

=⇒ C⃗ =

(
∆e1,2
∆γ1,2

,
∆a1,2
∆γ1,2

)
H +

∆r1,2
∆γ1,2

G⃗

=⇒ C⃗ = (e, a)H + rG⃗.

Thus, the extractor obtains a correct opening for C⃗ where the range is ensured (e, a) ∈ [−B⃗T, B⃗T ]
thanks to check on line 19 and 0 ̸= ∆γ1,2 ∈ (0, C] without loss of generality. The same calculation
based on (32) can be carried out for C⃗ ′ as well, yielding

C⃗ ′ = s⃗H ′ + r′G⃗′.

The obtained opening is ensured to be correct (in the sense that s⃗ ∈ [−B⃗′T, B⃗′T ]) thanks to passing
the check on line 20 and 0 ̸= ∆γ1,2 ∈ (0, C] without loss of generality.

Next, we look at the check on line 21, where the three valid transcripts give

c
−τe,1
N · hτω,1

1 · h
E

∑
i∈[ℓs] τ1,si2

3λ(i−1)

1 · hγ1 · hτa,1

1 · hτa,1+γ1m
2

≡ c
−τe,2
N · hτω,2

1 · h
E

∑
i∈[ℓs] τ2,si2

3λ(i−1)

1 · hγ2 · hτa,2

1 · hτa,2+γ2m
2

≡ c
−τe,3
N · hτω,3

1 · h
E

∑
i∈[ℓs] τ3,si2

3λ(i−1)

1 · hγ3 · hτa,3

1 · hτa,3+γ3m
2

≡ Ωf mod N .

In particular, this implies

c
−∆e1,2
N · h∆ω1,2

1 · h
E

∑
i∈[ℓs] ∆si(1,2)2

3λ(i−1)

1 ≡ h∆γ1,2 · h∆a1,2

1 · h∆a1,2+∆γ1,2m

2 mod N. (34)

As noted above, ∆γ1,2 divides all the values in the exponent over Z, and thus, equation (34) implies
that:

c
−∆e1,2/∆γ1,2

N · h∆ω1,2/∆γ1,2

1 · h
E

∑
i∈[ℓs]

∆si(1,2)
∆γ1,2

23λ(i−1)

1 ≡ h · h∆a1,2/∆γ1,2

1 · h∆a1,2/∆γ1,2+m

2 mod N

=⇒ c−e
N · h

ω
1 · h

E
∑

i∈[ℓs] si2
3λ(i−1)

1 ≡ h · ha1 · ha+m
2 mod N
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leading to a witness for equation (17) in R̃Σ. Also, the extractor sets y such that y ≡ cN · h−s
1 ,

where s =
∑

i∈[ℓs]
si2

3λ(i−1) and finally, w = (e, a, y, r, r′, ω, (s1, · · · , sℓs)). It remains to show that
ω = e · s, e = 2e′ + 1. Roughly, this follows due to the check in line 26 since we there are three
related transcripts. This follows similarly to the equations over Z in Lemma 20, else we find a a
witness for the hard DLOG relation. (Note that we need 3 related transcripts because the degree of
f is 2 instead of 1 but the required adaptions to obtain the result are straightforward).

Step 2: the NIZK. For the final NIZK, we compile Πfis into an NIZK via Fiat-Shamir with abort.
Again, we require public parameters for MPed in the srs, where SRS is defined as in Appendix E.1,
i.e.,

SRS =
{
(Ñ , p̃p, πgen) | Ñ ∈ N, p̃p = (h̃, g̃1, · · · , g̃4+ℓs) ∈ (Z∗

N )5+ℓs ,

Πgen.Verify
Hgen(xgen, πgen) = 1, xgen = (Ñ , 3 + ℓs, h̃, (g̃1, · · · , g̃ℓm+ℓr ))

}
.

Let URS = G1+ℓs . Note that urs = pp′I specifies the public parameters for a second CRInt commitment
(in addition to the ppI within the statement). This is the commitment for CGrp. We denote by
Hfis = (Hgen,Hγ) random oracle of Πfis. (Here, Hgen corresponds to the random oracle for Πgen and
Hγ maps into [0, C].) Below, we have urs ∈ URS and crs = (srs, urs) for some srs ∈ SRS. Also,
let x = (ppI , N, h1, h2, h,m, C⃗, F ) and w = (e, a, y, r). (Note that (C⃗, F ) corresponds to an CRInt

commitment to (a, e− Ē) with opening r.) The scheme is given below.

– Πfis.GenSRS(1
λ): Samples ppMPed = (Ñ , p̃p) ← MPed.Setup(1λ) with p̃p = (h̃, g̃1, · · · , g̃4+ℓs).

Then, sets πgen ← Πgen.Prove
Hgen(wgen, xgen) for xgen as above and appropriate wgen. Outputs

the structured reference string srs = (Ñ , p̃p, πgen).
– Πfis.Prove

Hfis(crs, x, w): First, commits to y via CGrp. That is, samples s← [N · 2λ], splits s into
(si)i ∈ [0, 23λ]ℓs via 23λ-ary decomposition and computes cN = y · hs1, C⃗ ′ = s⃗H ′ + r′G⃗′ and
F ′ = r′H. Then, compiles Σfis into a proof π via

(ΩΣ , st)← Σfis.Init(xΣ , wΣ),

γΣ ← Hγ(xΣ , ΩΣ),

τΣ ← Σfis.Resp(xΣ , st, γΣ),

πΣ ← (ΩΣ , γΣ , τΣ),

for statement xΣ = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗

′, F ′) and witness wΣ = (e, a, y, r, r′,

ω, (s1, · · · , sℓs)), where ω = (e− E) · s. Outputs π = (πΣ , cN , C⃗ ′, F ′).
– Πfis.Verify

Hfis(crs, x, π): On input crs, x, and π = (πΣ , cN , C⃗ ′, F ′), checks

Hfis(xΣ , ΩΣ) = γΣ ,

Σfis.Verify(xΣ , ΩΣ , γΣ , τΣ) = 1,

where πΣ = (ΩΣ , γΣ , τΣ). The statement xΣ is defined as above. Outputs 1 iff all checks
succeed.

Theorem 11. The NIZK Πfis is correct, subversion zero-knowledge under the DDH assumption,
and adaptively knowledge sound under the sRSA assumption.

Proof. First, correctness follows by correctness of Σfis. (It is easy to check that (xΣ , wΣ) ∈ Rfis by
design.)

Subversion ZK follows as in previous NIZKs (cf. Theorems 9 and 10) and since CGrp is hiding.
In more detail, observe that πgen in the adversarial srs ensures that ⟨h̃⟩ = ⟨g̃i⟩ under soundness of
Πgen with overwhelming probability. Since thus (xΣ , wΣ) ∈ Rfis in the real proof generation, the
simulator simply simulates πΣ via non-abort HVZK of Σfis and by programming Hγ accordingly.
(The latter is possible due to high min-entropy of Σfis.) Also, the simulator outputs a fresh CGrp

commitment (cN , C⃗
′, F ′) to 1 ∈ ⟨h1⟩ (instead of a commitment to y). This is justified by the hiding

property of CGrp. A simple hybrid argument allows to show that the above simulator suffices for
subversion zero-knowledge.
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Finally, we show adaptive knowledge soundness (cf. Definition 24). Roughly, this follows by
forking the adversary twice to obtain three related transcripts. Then, 3 special soundness of Σfis

ensures that a witness can be recomputed. In more detail, SimCRS simply outputs crs = (srs, urs) with
srs← GenCRS(1λ) and urs← URS. Since crs follows the real distribution, CRS indistinguishability
holds. (Note that td = ⊥.) To define the extractor Ext with oracle access to some prover A making
Q Hγ queries, let us make some preparations. First, assume that

Pr[crs← SimCRS(1λ), (x, π)← AHγ (crs; ρ) : VerifyHfis(crs, x, π) = 1] ≥ µ(λ)

Denote by (x, π) ← AHγ (crs; ρ) the statement-proof pair output by A on input (crs; ρ), where
the oracle queries to Hγ are answered via a vector h⃗ ∈ [0, C]Q and Hgen queries are answered
via a vector h⃗′. Parse x = (ppI , N, h1, h2, h,m, C⃗, F ), π = (πΣ , cN , C⃗ ′, F ′) and πΣ = (ΩΣ , γΣ , τΣ).
Denote xΣ = (cN , Ñ , p̃p, ppI , pp

′
I , c,N, h1, h2, h,m, C⃗, F, C⃗

′, F ′), where (p̃p, pp′I) are specified by
the crs. Define by i the index of the first oracle query qi = (xΣ , ΩΣ) to Hγ made by A. If no such
query exists, then i = ⊥. Note that if (x, π) verifies, then except with probability 1/(C + 1) such a
query exists because Hγ(xΣ , ΩΣ) = γΣ must hold. Denote by E the event that VerifyHfis(crs, x, π) = 1
and i ̸= ⊥. By the above discussion, we have

Pr[E] ≥ µ(λ)− 1/(C + 1).

For fixed (crs, ρ, h⃗′), let us define a function FExt : [0, C]Q 7→ [Q] by FExt(⃗h) = i− 1 if E occurs and
FExt(⃗h) = 1 otherwise.

We are now ready to define the extractor Ext. First, Ext samples randomness ρ for A and
a tuple h⃗1 ∈ [0, C]Q which corresponds to the Hγ outputs to A’s queries. Also, samples the
Hgen outputs h⃗′ which remain unaltered in the following. Then, Ext runs A on input (crs; ρ)

answering the Hfis queries via h⃗1 and h⃗′. If E occurs, then Ext samples 2 other vectors h⃗2 and
h⃗3 from [0, C] at random conditioned on FExt(⃗h1) = FExt(⃗h2) = FExt(⃗h3). Then, Ext runs A two
more times on input (crs; ρ) by answering the Hγ queries h⃗2 and h⃗3 (and the Hgen queries via
h⃗′). If E occurs for all h⃗k, k ∈ [3], parse A’s output for each run as above but indexed by k.
By construction, we have that (xΣ , ΩΣ) := (xΣ,1, ΩΣ,1) = (xΣ,2, ΩΣ,2) = (xΣ,3, ΩΣ,3)

39. If the
challenges (γΣ,k)k∈[3] are distinct, then Ext applies the extractor of Σfis to the three related transcripts
(ΩΣ,k, γΣ,k, τΣ,k)k∈[3] for statement xΣ . This yields a witness wΣ such that (wΣ , xΣ) ∈ R̃Σ. Parse
wΣ = (e, a, y, r, r′, ω, (s1, · · · , sℓs)). Finally, Ext outputs w = (e, a, y, r). If the challenges are not
distinct or E does not occur for i ∈ [k], Ext outputs ⊥.

It remains to show that Ext outputs a witness w such that (x,w) ∈ R̃fis with sufficient probability.
For convenience, let us recall the definition of R̃fis below.

R̃fis =
{
(x,w) | ye ≡ h·ha1 ·ha+m

2 modN, e ≡ 1mod 2, (e−E, a) ∈ [B⃗T, B⃗T ], C⃗ = (e−E, a)H+rG⃗, F = rH
}
.

First, let us analyze the probability that Ext outputs some witness w ̸= ⊥. By lemma 4, the event
E occurs for all runs of A with probability at least µ(λ)3/Q2. Also, with probability 1− 3/(C + 1),
the challenges (γΣ,k)k are distinct. Thus, we have

Pr[(xΣ , wΣ) ∈ R̃Σ] ≥ µ(λ)3/q2 − 3/(C + 1) = µ(λ)3/Q2 − negl(λ),

Further, under the sRSA assumption, it holds that

Pr[(p̃p, wΣ) ∈ RC,ℓ̃(p̃p) or (p̃p, wΣ) ∈ RC,ℓ̃(p̃p)] = negl(λ).

To see this, recall that finding a witness for either of the above relations is hard under sRSA for
random p̃p ∈ QRℓs+5

Ñ
and RSA modulus Ñ . Since (Ñ , p̃p) is part of the srs, it is possible to embed

a hard instance into srs. It is straightforward to construct appropriate adversaries on sRSA and we
omit details. Thus, we have

Pr[(xΣ , wΣ) ∈ R̃Σ ∧ (p̃p, wΣ) /∈ RC,ℓ̃(p̃p), (p̃p, wΣ) /∈ RC,ℓ̃(p̃p)] ≥ µ(λ)
3/Q2 − negl(λ),

39 Observe that for fixed h⃗ ∈ [0, C]Q, the output of A is deterministic. Because each run, the Hγ queries are
answered identically until query qi,k = (xΣ,k, ΩΣ,k), the input qi,k to this query is identical for all k ∈ [3].
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By definition of R̃Σ, if (wΣ , xΣ) ∈ R̃Σ but (p̃p, wΣ) /∈ RC,ℓ̃(p̃p) and (p̃p, wΣ) /∈ RC,ℓ̃(p̃p), the
following holds:

ce+E
N · h−ω

1 · h−s·E
1 ≡ h · ha1 · ha+m

2 mod N,ω = e · s, e = 2e′ + 1, e = e+ E

C⃗ = (e ·H, a ·H) + rG⃗, F = rH

C⃗ ′ = s⃗H ′ + r′G⃗′, F ′ = r′H, s =
∑

i∈[ℓs]
si2

3λ(i−1), cN ≡ y · hs1 mod N,

(e, a) ∈ [−B⃗T, B⃗T ], (s1, . . . , sℓs) ∈ [−B⃗′T, B⃗′T ]

It follows that (x,w) ∈ R̃fis. To see this, observe that all equations but ye ≡ h · ha1 · ha+m
2 mod N

follow immediately. The latter follows because

ce+E
N · h−ω

1 · h−s·E
1

≡(y · hs1)e · h−e·s
1 · h−s·E

1

≡ye · (he·s1 · h
−s(e·E)
1 ) ≡ ye mod N.

This concludes the proof.

Optimizations. Again, we omit the first flow of Σfis (i.e., the values Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃, Ωq except
c̃ and c̃q) from the proof πΣ . The verification equations are verified within the hash function Hfis.

Efficiency. We use standard RSA moduli and groups for λ = 128 bit security, i.e., N and Ñ of size
3072 bit. We set L = 210 and thus T = 2λ+11. Further, we assume that G is of order 4λ+12 (which
is required for CRInt). With these parameters, we have ℓs = 9. In total, a proof is of size 4.08 KB.
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Prover(x;w) Verifier(x)

1 : t̃, tq ← [0, N · 2λ], µr, µr′ ← Zp, µt̃, µtq ← [0, CN · 22λ]

2 : (µe, µa)← [0, (B⃗C + 1)L], µe′ ← [0, (B1C + 1)L]

3 : µ⃗s ← [0, (B⃗′C + 1)L]

4 : ω ← e · (
∑

i∈[ℓs]
si2

3λ(i−1)), µω ← [0, CB1N · 22λ]

5 : Ωf ← c−µe
N · hµω

1 · h
E

∑
i∈[ℓs] µsi

23λ(i−1)

1 · hµa
1 · h

µa
2 mod N,

6 : Ω⃗C = (µe, µa)H + µrG⃗, ΩF ← µrH,

7 : Ω⃗C′ = (µ⃗s)H + µr′G⃗, ΩF ′ ← µr′H,

8 : fω,0 ← −
∑

i∈[ℓs]
µsiµe2

3λ(i−1), fω,1 ← µω −
∑

i∈[ℓs]
(µsie+ siµe)2

3λ(i−1) +
∑

i∈[ℓs]
µsiE23λ(i−1)

9 : fe,0 ← µe, fe,1 ← −2µe′

10 : c̃← ht̃ · g̃e1 g̃a2 g̃e
′

3

∏
i∈[ℓs]

g̃si3+i · g̃
ω
4+ℓs , Ωc̃ ← hµt̃ · g̃µe

1 g̃µa
2 g̃

µe′
3

∏
i∈[ℓs]

g̃
µsi
3+i · g̃

µω
4+ℓs

11 : c̃q ← h̃tq · g̃fω,1

1 · g̃fe,12 , Ωq ← h̃µtq · g̃fω,0

1 · g̃fe,02

c̃, c̃q, Ωf , Ω⃗C , ΩF , Ω⃗C′ , ΩF ′ , Ωc̃, Ωq

12 : γ ← [0, C]

γ

13 : τr ← γr + µr, τr′ ← γr′ + µr′

14 : τt̃ ← γt̃+ µt̃, τtq ← γtq + µtq

15 : τe ← γe+ µe, τa ← γa+ µa, τe′ ← γe′ + µe′

16 : τ⃗s ← γs⃗+ µ⃗s, τω ← γω + µω

17 : check (τe, τa) ∈ [B⃗C, (B⃗C + 1)L]

18 : check τ⃗s ∈ [B⃗′C, (B⃗′C + 1)L], τe′ ∈ [B1C, (B1C + 1)L]

τr, τr′ , τt̃, τtq , τe, τa, τe′ , τ⃗s, τω

19 : check (τe, τa) ∈ [0, (B⃗C + 1)L]

20 : check τ⃗s ∈ [0, (B⃗′C + 1)L], τe′ ∈ [0, (B1C + 1)L]

21 : check c−τe
N · hτω

1 · h
E

∑
i∈[ℓs] τsi2

3λ(i−1)

1 · hγ · hτa
1 · h

τa+γm
2 ≡ Ωf mod N

22 : check (τe, τa)H + τrG⃗− γC⃗ = Ω⃗C , τrH − γF = ΩF

23 : check τ⃗sH
′ + τr′G⃗′ − γC⃗′ = Ω⃗C′ , τr′H

′ − γF ′ = ΩF ′

24 : check c̃−γ · hτt̃ · g̃τe1 g̃τa2 g̃
τe′
3

∏
i∈[ℓs]

g̃
τsi
3+i · g̃

τω
4+ℓs

≡ Ωc̃ mod Ñ

25 : fω = γ · τω − ((
∑
i∈[ℓs]

τsi2
3λ(i−1)) · (τe)), fe = γ(τe − (2 · τe′ + γ))

26 : check c̃γq ·Ωq ≡ h̃τtq · g̃fω1 · g̃
fe
2 mod Ñ

Fig. 5: Description of Σfis with x = (cN , Ñ , p̃p, ppI , pp
′
I , c,N, h1, h2, h,m, C⃗, F, C⃗

′, F ′) and w =
(e, a, y, r, r′, ω, (s1, · · · , sℓs)).
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