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Abstract. Authenticated PIR enables a server to initially commit to a database of N items,
for which a client can later privately obtain individual items with complexity sublinear in N ,
with the added guarantee that the retrieved item is consistent with the committed database.
A crucial requirement is privacy with abort, i.e., the server should not learn anything about a
query even if it learns whether the client aborts.
This problem was recently considered by Colombo et al. (USENIX ’23), who proposed solutions
secure under the assumption that the database is committed to honestly. Here, we close this
gap for their DDH-based scheme, and present a solution that tolerates fully malicious servers
that provide potentially malformed commitments. Our scheme has communication and client
computational complexity Oλ(

√
N), does not require any additional assumptions, and does not

introduce heavy machinery (e.g., generic succinct proofs). We do so by introducing validation
queries, which, from the server’s perspective, are computationally indistinguishable from regular
PIR queries. Provided that the server succeeds in correctly answering κ such validation queries,
the client is convinced with probability 1− 1

2κ that the server is unable to break privacy with
abort.

1 Introduction

Private Information Retrieval (PIR) [16] allows a client to retrieve items from a database
of N items held by a server, without revealing which items are being retrieved. Crucially,
both the communication and the client’s runtime are sublinear in N . In this paper, we are
interested in the more challenging setting of single server PIR [34], for which constructions
are known from a variety of assumptions (cf. e.g. [34,11,37,41,20,21,1,3,23,29,18]).
Maliciously secure PIR. The literature has by now surfaced countless applications of PIR,
such as anonymous web search [28], anonymous messaging [4,15], private media delivery [27],
certificate transparency logs [38,29], secure analytics [26], secure breach alerts [2] and more.
In most use cases, a PIR service is queried by multiple clients, but PIR schemes usually
assume a semi-honest server and do not ensure integrity. Hence, clients are not guaranteed
consistent answers. This paper considers a setting, referred to as authenticated PIR, where
the server succinctly commits to a database x, and then can only provide answers consistent
with this commitment. At first, it appears easy to solve the problem: The server publishes
a succinct vector commitment d to x (e.g., the root of a Merkle Tree), and then runs a PIR
scheme on a modified database x′ where x′[i] consists of x[i] and a valid proof πi of inclusion
with respect to d.

While this solution indeed guarantees integrity, Kushilevitz and Ostrovsky [34] already
observed that this approach is prone to so-called selective-failure attacks, where the server
intentionally includes an invalid proof πi for a position i ∈ [N ], and learning about a failure
reveals that the client’s query is for this particular index. Such attacks are realistic, as
failures are hard to hide (e.g., because an application will behave differently in an observable
way), and they have been considered in a number of settings, such as encryption [8,39] and
two-party computation [32,12,36,30].
Authenticated PIR. Early proposals to make single-server PIR authentic [40,43] have
not considered selective-failures, and only provide authenticity guarantees that a query is
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consistent with some valid database, but not a specific one the server a-priori committed to.
In contrast, multi-server verifiable PIR [42] considers a similar functionality, however without
covering selective-failures.

Only very recently, Colombo et al. [17] initiated the study of selective-failure attacks
in the context of PIR. They propose in particular single-server PIR schemes based on the
LWE and DDH assumptions, both with Oλ(

√
N) complexity, which, while less practical than

non-authenticated counterparts, offer acceptable performance, integrity, and privacy under
selective-failure attacks. However, their model explicitly disallows maliciously generated di-
gests.

Still, it is natural and prudent to assume that a data owner willing to deviate maliciously
from a PIR protocol would also attempt to do so with help of a malicious digest. Say, the
PIR server is maintained by a streaming service, where the server obviously has the power to
choose the digest that represents a commitment to the database. Then, it is not possible for a
client to obtain the digest with “out-of-band” means as described in [17] without involvement
of the malicious server, hence protection against selective abort attacks would not apply here.
Or, consider a different database that is used for password breach checking [2]. Again, if the
database owner has the power of choosing the digest maliciously, they may infer private data
about users’ passwords.
Our contributions. In this paper, we prove that under the DDH assumption, a variant of
the scheme from [17] is in fact secure against a fully malicious server generating malicious
digests, achieving both integrity and privacy against selective-failure attacks. To achieve the
latter property, our solution requires the client to ask λ additional validation queries which
are indistinguishable from regular PIR queries from the perspective of the server—privacy
under selective-failure attacks holds provided these validation queries are successful. We note
that our protocol comes with no overhead compared to that of [17], except for the λ initial
validation queries, after which an unbounded number of database queries can be made. This
means that our scheme retains communication complexity Oλ(

√
N) for PIR queries, and the

digest can be made constant size.
Furthermore, by reducing the number of validation queries from λ to any smaller integer

κ, the client will still be convinced with probability 1 − 1
2κ that the server is unable to

break privacy. For example, in a scenario where the database is simultaneously accessed by
sufficiently many users seeing the same digest, it may be in fact enough to choose κ = 1,
assuming we can rely on a mechanism that allows users to voice complaints should they fail
the validation phase. In particular, validation would fail for roughly half of the users, and
this is a strong incentive for the server to behave honestly.

We give an overview of our scheme and our analysis in Section 1.2. The core of our
approach is a new technique which turns an adversary that succeeds in the validation phase
into an extraction algorithm able to answer any query to the PIR server. This shows that the
information of whether a query would abort can be simulated, thus reducing selective-failure
privacy to regular privacy.

In Section 1.1, we first discuss other related and concurrent works, along with less effi-
cient generic baseline solutions using existing cryptographic techniques. This discussion will
highlight a unique feature of our work, namely that unlike all alternative solutions, we do
not rely on adding additional proof machinery to a PIR scheme to verify validity of a di-
gest. Rather, we show that the much simpler machinery from the scheme of [29] is already
sufficient, as is, for verifiability.

1.1 Related Works & Generic Baselines
We discuss here some more related work, including concurrent work on authenticated PIR
and less efficient baseline solutions to the problem.
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Concurrent work. We first point out that concurrently to this work, de Castro and
Lee [14] propose an alternative authenticated PIR scheme that provides security against a
maliciously generated digest. It extends SimplePIR [29] by adding proofs to each answer to
convince the client that computation has been done correctly and is consistent with a digest.
Further, as in our scheme, an additional validation phase ensures validity of the digest.
However, there are also several aspects in which VeriSimplePIR differs from our work:
– VeriSimplePIR utilizes lattices assumptions that are more expressive than DDH, and in

order avoid several additional rounds of interaction it also requires assuming the Random
Oracle Model. Our protocol is based on plain DDH, and therefore gives a theoretically
stronger result.

– The two solutions achieve different communication/computation tradeoffs: VeriSimplePIR
can be expected to be scheme with better computational efficiency, as it only works with
lattices. On the other hand, it also comes at the cost of either large per-query communi-
cation cost or large client storage cost. For example, the evaluation in [14] shows that for
a database of size N = 4GiB, the preprocessing phase requires almost 2GiB of commu-
nication, out of which more than 600MiB need to be permanently stored on the client’s
device. Our scheme (instantiated with 256-bit elliptic curves and κ = 80) would have a
validation phase with about 260MiB of communication, and requires no client storage
except for the digest of size 6MiB. Thus, our scheme could even be used on mobile de-
vices, provided that the server has sufficient resources to offset its larger computational
cost through parallelization.

– There are several unique features of our protocol: our validation phase is entirely oblivious
to the server, because each validation query looks identical to a regular PIR query. In
fact, we can take an existing server that implements the scheme from [17], and let a client
validate that the server will be unable to break privacy with abort. Furthermore, each
client will only need to run validation once in its lifetime. In contrast, VeriSimplePIR
requires restarting the expensive preprocessing phase whenever cheating was detected
during a single query, or when the client erases its storage.

Generic baselines. We also discuss a few alternative solutions based on generic (and
heavier) techniques added on top of the authenticated PIR from [17]. For instance, the
server could include in each query response a succinct proof of knowledge of an opening of
the digest d to which this response is consistent. This could be done using a SNARK (for
which constructions under standard falsifiable assumptions hit well-known barriers [24]), or
a succinct two-move proof (which are, as of now, not known to be easier to achieve than
SNARKs).

Alternatively, leveraging the fact that the schemes from [17] are already secure for hon-
estly generated digests, the validation phase may be used for a succinct interactive proof of
knowledge of an opening of the digest d to a binary database. (In essence, the same extractor
as the one we use to prove our scheme’s security could be used to achieve the crucial notion of
answer extractability here.) One could use Kilian’s four-round protocol [31], which has also
been shown to be a proof of knowledge [5]. Roughly, the first protocol round, which consists
of a description of a collision-resistant hash function, would be included in the public pa-
rameters. Then, Kilian’s second round, which is a succinct Merkle commitment to a suitable
PCP, would be merged with the digest, whereas the remaining two rounds would constitute
the actual validation stage verifying the (committed) PCP by opening a random subset of
Merkle paths. However, this solution would have to rely on non-black box techniques or
stronger assumptions. Therefore, we cannot expect them to be concretely more efficient than
our PIR protocol in terms of communication complexity or computation time.

We also note that for the specific case of the DDH-based scheme from [17] we use in this
paper, the inner-product argument from Bulletproofs [10] would provide a fully-algebraic
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pairing-free solution. This is specific to our setting, in which the digest is supposed to have the
form of a commitment d =

∏
i∈[N ] h[i]x[i] given the database x. The techniques would allow us

to prove that all elements in the commitment are binary, but this incurs linear computation
cost O(N) for the verifier, thus violating an important requirement of a PIR scheme. It also
requires either a random oracle (to make the proof non-interactive), or O(log N) rounds.
In contrast, our protocol has a communication complexity of O(κ

√
N) group elements per

validation phase, only needs a single round-trip, and does not require a random oracle.
Finally, we note that none of the generic baselines we presented here preserves the prop-

erty of an oblivious validation phase that does not require modification of the server imple-
mentation.
Other related work. Ben David et al. [7] recently studied a different and unrelated
notion of verifiable PIR which allows the server to prove properties about the database
with sublinear complexity. A number of works [6,25,19,33,22] studied robustness of PIR
against malicious servers, i.e., the goal is to guarantee answers even when some of the servers
fail/deviate, but they rely on the availability of some honest server. There have also been
impressive advances on single-server PIR with sublinear server complexity [35,9,13], but this
is not considered in the context of this work.

1.2 Technical Overview

The CNCWF DDH-based scheme. Our starting point is the DDH-based scheme from [17]
(henceforth referred to as CNCWF), which only provides security against selective-failure
attacks when the digest was selected honestly. The scheme relies on a cyclic group G of
order q in which the DDH assumption holds. We only discuss here the unbalanced version
of the scheme, for which queries consist of N group elements, whereas responses are a single
group element. (One can turn this into a scheme with O(

√
N) size queries and responses via

standard re-balancing techniques which will preserve all claimed properties.)
In CNCWF, the server initially commits to an N -bit database x ∈ {0, 1}N via a digest

d =
∏N

i=1 h[i]x[i], where h is a vector of N independent generators of G, included in the
public parameters of the scheme, along with an extra generator g. To retrieve item i ∈ [N ],
the client samples r ← Zq, α← Z∗q , and computes a query vector ẽ ∈ GN , where

ẽ[j] =
{

h[j]r · gα if j = i,
h[j]r if j ∈ [N ] \ {i} .

We also write this succinctly as ẽ = hr ◦ (gei)α, where ei is the i-th unit vector, ◦ denotes
component-wise vector multiplication, and gv = (gv[1], . . . , gv[N ]). The server’s response is
ẽ =

∏N
j=1 ẽ[j]x[j], and the client computes e = (d−rẽ)α−1 . It returns 1 if e = g, 0 if e = 1,

and otherwise aborts if e /∈ {1, g}.
Integrity, but no privacy with abort. Under the DDH assumption, we will show that
this scheme already prevents an attacker from providing a malicious digest d along with two
different valid answers e′0, e′1 to the same query. This is a stronger notion of integrity than
what is shown in [17].

However, there is a simple selective-failure attack, in which a malicious server can commit
to an (invalid) database with x1 = 2 and x2 = 1. An honest client would abort on a query
for i = 1, as g2 /∈ {1, g}, but succeed for a query with i = 2. Learning whether the operation
aborts or not hence tells the adversary whether the query was for i = 1 or i = 2.
Digest validation. In an attempt to mitigate the above attack, we introduce an initial
digest validation phase, which consists of a single round-trip of interaction between the client
and the server. If successfully completed, we expect the scheme to be private even under
selective-failure attacks, a notion we henceforth refer to as “privacy with abort.”
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Our validation approach leverages the fact that a client can actually learn gx·s (where ·
denotes inner product) for any vector s via the query s̃ = (h)r◦(gs)α, with no modification to
the server. Further, under the DDH assumption, the server cannot distinguish such a query
from a regular query, which corresponds to the case s = ei. Concretely, the client asks λ
queries s̃1, . . . , s̃λ associated with s1, . . . , sλ ←$ {0, 1}N , and accepts if all of them return a
value in the range {g0, g1, . . . , gN}.

Intuitively, this ensures that the server answers using a database with entries x[i] which
are small enough (say, in {−N, . . . , N}), hence preventing the above attack if we additionally
modify processing a query answer to output 1 whenever e ∈ {g−N , . . . , gN} \ {1}, instead of
e = g as in the original CNCWF scheme. Of course, we need to prove that any other attack
is prevented, and furthermore, we want to do so while relying solely on the DDH assumption.
Answer extractability. The stepping stone to proving privacy with abort, upon passing
validation, is proving a notion we call answer extractability. To define it, we consider any
two-stage adversary (D,V), where D initially outputs a digest d, along with a state stD.
Then, V, on input validation queries s1, . . . , sλ, as well as stD, returns answers s̃1, . . . , s̃λ.
Validation passes if these answers reconstruct to values s1, . . . , sλ ∈ {g0, g1, . . . , gN}.

Answer extractability asks for an extractor Eans which, on input stD and d, is able to
answer each honest PIR query ẽ = (h)r ◦ (gei)α in a non-aborting way, i.e., Eans(ẽ, stD, d)
returns with overwhelming probability ẽ ∈ G such that

(d−rẽ)1/α ∈ {g−N , . . . , gN} .

This is too strong of a requirement, so we will only require Eans to succeed whenever the
state stD is such that V is able to pass the validation stage with non-negligible probability ν
given that state. We also do allow the running time of Eans to depend polynomially on 1/ν.

When combined with standard PIR privacy and integrity, we will show that answer
extractability implies privacy with abort. Intuitively, the idea is to use the extractor to
simulate the abort information in the standard privacy experiment. We omit details here,
and refer to the body of the paper.
The extractor construction. The core of the security proof is our construction of
an extractor Eans for answer extractability, along with its analysis. Given an honest query
ẽ = hr ◦ (gei)α, along with d and stD, a natural strategy for Eans to answer this query is to
repeatedly invoke V as

(s̃1, . . . , s̃λ)← V(stD, (ẽ, s̃2, . . . , s̃λ)) .

where s̃2, . . . , s̃λ are “fake” validation queries The hope is that the fact that V passes vali-
dation with non-negligible probability ν also implies that, with overwhelming probability, s̃1
is a good answer for ẽ after poly(1/ν) attempts. There are however two obvious challenges:

(1) V is only guaranteed to provide accurate answers for validation queries, but it is not clear
why this would imply that it provides correct answers for a regular PIR query.

(2) We need to be able to check when s̃1 is correct without knowing the randomness r, α.

To overcome (2), we will show that the following strategy works: in each iteration we invoke
V twice, the second call as

(s̃′1, . . . , s̃λ)← V(stD, (ẽ′, s̃′2, . . . , s̃′λ)) , (1)

where ẽ′ is obtained by randomizing ẽ, i.e., ẽ′ = hr′ ◦ ẽα′ , and s̃′2, . . . , s̃′λ are fresh validation
queries. Then Eans outputs s̃1 whenever for two such calls we have (d−r′

s̃′1)1/α′ = s̃1. If this
never happens, it outputs ⊥.

To achieve sufficient independence for this argument to go through, the extractor needs
to in fact also re-randomize ẽ itself for each iteration, and then remove this randomization
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from answers s̃1 and s̃′1. This has the added benefit of simplifying notation, as a statistical
argument implies the fact that Eans(d, stD, ẽ) returning a value ẽ such that (d−rẽ)1/α ∈
{g−N , . . . , gN} is equivalent to

Eans(d, stD, gei) ∈ {g−N , . . . , gN} ,

where the input gei is not randomized.
Correctness. To prove that Eans works as desired, hence overcoming (1), a crucial prop-
erty we establish is that it behaves homomorphically—with overwhelming probability, for
any p1, . . . ,pm ∈ GN and t1, . . . , tm ∈ Zq, if we let pm+1 =

∏m
i=1 p

ti
i and compute pi ←

Eans(d, stD,pi) for i ∈ [m + 1], then

p1, . . . , pm+1 ̸= ⊥ =⇒ pm+1 =
m∏

i=1
pti

i . (2)

Then, the proof considers an extended experiment where we initially run D to sample (d, stD),
and subsequently:

– Compute ei ← Eans(d, stD, gei) for all i ∈ [N ].
– Pick sj,k ←$ {0, 1}N for k ∈ [λ] and sufficiently many j’s, then run sj,k ← Eans(d, stD, gsj,k)

for each j and k ∈ [λ].

In this experiment, we prove that, with overwhelming probability, the event that (d, stD) is
good implies the following two events:

(1) ei ̸= ⊥ for all i ∈ [N ]
(2) There exists j∗ such that sj∗,k ∈ {1, g, . . . , gN} for all k ∈ [λ]

Both properties are non-obvious to prove, but they follow from the fact that V does well on
a good (d, stD). Then, Equation 2 yields

sj∗,k =
N∏

i=1
e

sj∗,k[i]
i ∈ {1, g, . . . , gN} for all k ∈ [λ] .

A simple statistical lemma shows that if e1, . . . , eN were not all in {g−N , . . . , gN}, then due to
sj,k being uniformly sampled from {0, 1}N , the above was unlikely to have happened. Hence,
all ei’s are in {g−N , . . . , gN}, which implies that the extractor can answer any honest query.

1.3 Open Problems

The most obvious open question is to develop a lattice analogue of our results, e.g., on top
of the simple LWE-based scheme from [17]. The main challenge here seems to be the step
from answer extractability to privacy with abort. To show the latter, we need to simulate the
abort-bit, which we do in the case of DDH by first extracting a “good” answer that correctly
answers the query without aborting. However, for lattices, even when it is possible to extract a
database x, any honest answer w.r.t. x would itself already be noisy, and therefore comparing
it with the actual answer given by the adversary does not necessarily allow for a correctly
computed abort-bit. Despite lattices, another interesting question is to add updatability to
the scheme.
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2 Preliminaries

Basic notation and computational model. We let λ denote the security parameter, and
use poly(λ) and negl(λ) as placeholders for a generic polynomial and negligible function in λ,
respectively. All algorithms in this paper are randomized unless otherwise stated. We assume
a standard model of computation, and refer to our adversaries as “ppt” to indicate they run
in polynomial time. For convenience, we assume these algorithms are non-uniform (i.e., they
can also use polynomial-time advice), although it is not hard to extend our treatment to
the uniform setting. Throughout this paper, we use ← to denote the random sampling of
an output of a randomized algorithm, ←$ to denote the uniform sampling of an element
from a set, and := to denote assignment of a value to a variable. We say that two families
of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable,
denoted X ≈c Y , if the size of Xλ, Yλ is polynomial in λ, and, for all ppt A, we have
Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1] = negl(λ).
Group-theoretic preliminaries. We will work with cyclic groups throughout this paper.
We will typically use a group parameter generator GG to sample parameters. Such an algo-
rithm, on input 1λ, outputs (G, g, q) consisting of the description of a group G with generator
g and order 2λ ≤ q < 2λ+1. The group also allows for computing group operations in time
poly(λ), and in particular its elements are also represented as polynomially-sized strings.
Decisional Diffie-Hellman. Our results rely on the Decisional Diffie-Hellman (DDH)
assumption, which we repeat below for completeness.

Definition 1 (DDH). The Decisional Diffie-Hellman assumption (DDH) holds for a group
generator GG if, for pp = (G, q, g)← GG(1λ),{

(pp, ga, gb, gab)
∣∣∣ a, b←$ Zq

}
≈c

{
(pp, ga, gb, gc)

∣∣∣ a, b, c←$ Zq

}
.

We will also repeatedly need the following standard lemma, which we prove for completeness
in Appendix A.

Lemma 1. If the DDH assumption holds, then for all polynomials N(λ) = poly(λ), and
pp′ = (G, q, g)← GG(1λ), we have{

(pp′, h, hr)
∣∣∣ h←$ GN , r ←$ Zq

}
≈c

{
(pp′, h, h)

∣∣∣ h←$ GN , h←$ GN
}

.

3 Authenticated PIR: Definitions and Basic Properties

3.1 Basic Definitions

PIR Syntax. In this section, we define our notion of authenticated PIR. In contrast to prior
work, we allow for a short validation phase. Here, we do not impose any restrictions on how
this phase is run, although our concrete scheme (Section 4) will guarantee that server is
unable to tell validation queries from regular ones, which is a fundamental feature of such a
scheme.

Definition 2 (Authenticated PIR). An authenticated PIR scheme (APIR) APIR consists
of the following eight algorithms:

– The setup algorithm, on input the security parameter and the database length, both in
unary, outputs the public parameters pp← Setup(1λ, 1N ).

– The digest algorithm, on input pp and database x ∈ {0, 1}N , outputs a digest d ←
Digest(pp, x).
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Process ConfD
APIR(λ, N)

1 : pp← Setup(1λ, 1N )
2 : stD, d← D(pp)
3 : return c := (pp, d, stD)

Game INTEGRITYD,A
APIR(λ, N, i)

1 : c = (pp, d, stD)← ConfD(λ, N)
2 : st, q ← Query(pp, i)
3 : a, a′ ← A(c, q)

4 : return I

[
a ̸= a′ ∧ Rec(st, d, a) ̸= ⊥
∧ Rec(st, d, a′) ̸= ⊥

]

Fig. 1. Definition of the configuration generation process (left) and of the integrity definition game (right).

– The client’s validation query algorithm only takes as input pp, and outputs (st, v) ←
VQuery(pp), where st is a state and v is the validation query.

– The server’s validation response algorithm takes as input pp, the database x, and a
validation query v, and returns a response av ← VAnswer(pp, x, v).

– The client’s validation check algorithm takes as inputs pp, the state st, digest d, and a
response av, and returns a decision bit VCheck(pp, st, d, av) ∈ {0, 1}.

– The client’s query algorithm takes as input pp, along with a query index i ∈ [N ], and
outputs a pair (st, q)← Query(pp, i) consisting of a state st and a query q.

– The server’s query response algorithm takes as input pp, the database x, and the query
q, and returns an answer a← Answer(pp, x, q).

– The client’s reconstruction algorithm takes as inputs pp, the state st, digest d, and an
answer a, and returns a value Rec(pp, st, d, a) ∈ {0, 1,⊥}.

For correctness, we require that for all λ, N ∈ N and pp ∈ Supp(Setup(1λ, 1N )), databases
x ∈ {0, 1}N , and indices i ∈ [N ],

Pr

VCheck(pp, st, d, av) = 1

∣∣∣∣∣∣∣
d← Digest(pp, x)

st, v← VQuery(pp)
av ← VAnswer(pp, x, v)

 = 1 ,

Pr

Rec(pp, st, d, a) = x[i]

∣∣∣∣∣∣∣
d← Digest(pp, x)

st, q← Query(pp, i)
a← Answer(pp, x, q)

 = 1 .

Remark 1. We can assume without loss of generality that VCheck and Rec are both determin-
istic, as their randomness can be chosen ahead of time by VQuery and Query, and included
in the state. We will also often omit pp from the algorithms when they are understood from
the context.

Digest generators. We introduce a number of security properties that are meant to hold
against fully malicious adversaries. These are in particular allowed to choose the digest
themselves. All of our adversaries will proceed in stages, and we denote by D the initial
stage of the adversary (common to all of our security games) that generates the digest d
and outputs a state stD that may be used by later stages of the adversary. We refer to such
adversaries as digest generators. It will be convenient to introduce the following formalism
that will be reused across definitions to capture the initial stage of the game.

Definition 3 (Configuration). For an APIR scheme APIR, and adversarial digest gener-
ator D, we define a configuration c = (pp, d, stD) as a triple consisting of pp, d, and stD,
where pp ∈ Supp(Setup(1λ, 1N )) and (stD, d) ∈ Supp(D(pp)). We define ConfDAPIR(λ, N) as
the random process generating a configuration c as on the left-hand side of Figure 1.
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Integrity. We target a strong definition of integrity which prevents the adversary from com-
ing up with two different non-aborting answers for the same query, even if they reconstruct
to the same value.

Definition 4 (Integrity). The APIR scheme APIR fulfills integrity if for all ppt adversaries
A∗ = (D,A), database sizes N = N(λ) ≤ poly(λ), and indices i = i(λ) ∈ [N(λ)],

Pr
[
INTEGRITYA∗

APIR(λ, N, i) = 1
]
≤ negl(λ) ,

where INTEGRITYA∗
APIR(λ, N, i) is defined on the right-hand side of Figure 1.

Remark 2. Another natural definition of integrity would send two independently generated
queries for the same index i to the adversary A, who then wins if they are able to produce
answers that successfully reconstruct to different values. This notion follows from Definition 4
for any APIR scheme that allows to re-randomize a query q into another query q′, and to
recover an answer a′ for query q′ into an answer a for query q. This is indeed the case for
our protocol in Section 4.

Privacy. We consider two notions of privacy. The former is the standard definition of APIR
privacy in a setting where the adversary can generate malicious digests, whereas the latter
allows the attacker to additionally learn whether a response to a query aborts. The two
notions are defined by the games described in Figure 2.

Definition 5 (Standard Privacy). We say the APIR scheme APIR fulfills privacy if for
all ppt adversaries A∗ = (D,A), database sizes N = N(λ) ≤ poly(λ), and indices i0 =
i0(λ), i1 = i1(λ) ∈ [N(λ)],

|Pr[PRIVA∗
APIR(λ, N, i0) = 1]− Pr[PRIVA∗

APIR(λ, N, i1) = 1]| ≤ negl(λ) ,

where PRIVA∗(λ, N, i) is defined on the left of Figure 2.

Definition 6 (Privacy with abort). The APIR scheme fulfills privacy with abort if for
all ppt adversaries A∗ = (D,A1,A2,A3), database sizes N = N(λ) ≤ poly(λ), and indices
i0 = i0(λ), i1 = i1(λ) ∈ [N(λ)],

|Pr[PRIV/AA∗
APIR(λ, N, i0) = 1]− Pr[PRIV/AA∗

APIR(λ, N, i1) = 1]| ≤ negl(λ) ,

where PRIVA∗(λ, N, i) is defined on the right of Figure 2.

One can also consider an alternative definition where validation and the PIR query hap-
pen concurrently, and the client learns if either of them aborts. It is not hard to show that
this notion is implied by that in Definition 6. (We discuss this in Appendix B.)
Uniform definitions. Our definitions quantify over functions of the security parameter,
e.g., N(λ), i0(λ), i1(λ). Without further restrictions, this leads to non-uniform proofs of
security. One could alternatively give uniform counterparts of all definitions by allowing
adversarial choice of these values. Our results would easily extend, although with significant
notational clutter we seek to avoid here.

3.2 Answer Extractability
Our approach to proving that an APIR scheme fulfills privacy with abort relies on an in-
termediate notion which we refer to as answer extractability. Informally, this notion means
that ability to pass the validation phase implies ability to answer arbitrary PIR queries. The
correct definition of this notion is rather tricky, along with showing that answer extractabil-
ity, when combined with (regular) privacy and integrity, implies privacy with abort. Our
definition relies on measuring the adversary’s probability of passing validation, conditioned
on a particular configuration c having been produced, which we now define.
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Game PRIVD,A
APIR(λ, N, i)

1 : c = (pp, d, stD)← ConfD(λ, N)
2 : st, q ← Query(pp, i)
3 : return A(c, q)

Game PRIV/AD,A1,A2,A3
APIR (λ, N, i)

1 : c = (pp, d, stD)← ConfD(λ, N)
2 : stv, v ← VQuery(pp)
3 : stA, av ← A1(c, v)
4 : if VCheck(stv, d, av) = 0, return 0
5 : stq, q ← Query(pp, i)
6 : st′

A, aq ← A2(stA, q)
7 : abort := I [Rec(stq, d, aq) = ⊥]
8 : return A3(st′

A, abort)

Fig. 2. Authenticated PIR Privacy Notions. The two above experiments define our standard privacy
(left) and privacy with abort (right) security notions.

Definition 7 (Validation success probability). Let APIR be an APIR scheme, (D,V)
be an adversary, where D generates a digest and V attempts to pass validation queries.
Then, for any fixed λ, N ∈ N and configuration c = (pp, d, stD) ∈ Supp(ConfDAPIR(λ, N)), the
adversary’s validation success probability is defined as

νAPIR
D,V (c) := Pr [VCheck(st, d,V(c, v)) = 1 | st, v ← VQuery(pp)] .

For a pair (D,V), a corresponding answer extractor Eans is a ppt algorithm that takes a
running time parameter 1r, the configuration c output by ConfDAPIR(λ, N), and an arbitrary
query q. Its task is to give a non-aborting answer for q. The extractor construction will
typically depend on V (this is the case for our construction in Section 4.4), and it is natural
that its response time is inversely proportional to νAPIR

D,V (c), i.e., when V has a low validation
success probability for some configuration c, then this will also make it “harder” for Eans
to extract the answer for any given query. For this reason, the actual definition of answer
extractability given next sets the running time parameter 1r so that the running time of Eans
may grow with the inverse of νAPIR

D,V (c).

Definition 8 (Answer extractability). The validation step of an APIR scheme APIR
fulfills answer extractability if for all ppt adversaries (D,V), there exists an answer extractor
Eans s.t. for all database sizes N(λ) ≤ poly(λ), indices i(λ) ∈ [N ], and polynomials r(λ):

Pr
[

νAPIR
D,V (c) ≥ 1

r(λ)
⇒ Rec(stq, d, Eans(1r(λ), c, q)) ̸= ⊥

∣∣∣∣∣ c← ConfDAPIR(λ, N)
stq, q← Query(pp, i)

]
≥ 1− negl(λ) . (3)

Proving privacy with abort. Together with integrity and standard privacy, our notion
of answer extractability implies privacy with abort: We can transform an adversary A∗ for
privacy with abort into an adversary B∗ that breaks standard privacy. The idea is that B∗
makes use of the extractor Eans guaranteed by extractability, to simulate the abort-bit by
itself without knowing whether the answer given by A∗ actually aborts. In particular, B∗
simply asks Eans for the “correct” answer to the given query, and compare it with the actual
answer to check whether there will be an abort.

Lemma 2. If an APIR scheme APIR fulfills (1) integrity, (2) standard privacy, and (3)
answer extractability, then it also fulfills privacy with abort.

Proof. We start with some notation. For some adversary A∗ = (D,A1,A2,A3), we often
consider games for a fixed configuration c ∈ Supp(ConfD(λ, N)): we define PRIV/AA∗(c, i)
to be exactly the same as PRIV/AA∗(λ, N, i), except that c is fixed and not sampled in
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the first step anymore. Similarly, for adversary B∗ = (D,B), we denote by PRIVB∗(c, i) the
privacy game in which c is already fixed. By abuse of notation, we use νA∗(c) to denote the
validation success probability νD,A′

1
(c), where we A′1 is identical to A1, except that it does

not output stA. If λ and N are clear from the context, we write Prc[·] for a probability where
c is implicitly sampled as c← ConfD(λ, N).

Assume that privacy with abort does not hold, and let A∗ = (D,A1,A2,A3) be the adver-
sary who wins the privacy with abort game for database sizes N(λ) and indices i0(λ), i1(λ) ∈
[N(λ)] with non-negligible probability. That is, there exists a polynomial r(λ), s.t.∣∣∣Pr

c
[PRIV/AA∗(c, i0)]− Pr

c
[PRIV/AA∗(c, i1)]

∣∣∣ ≥ 1
r(λ) (4)

holds for infinitely many λ ∈ N. Furthermore, let Eans be the answer extractor for (D,A1)
that is guaranteed to exist by answer extractability.

We construct a ppt adversary B∗ = (D,B) for standard privacy, where B is defined as
follows:

Adversary B(c = (pp, d, stD), q)
1 : c = (pp, d, stD)← ConfD(λ, N)
2 : stv, v ← VQuery()
3 : stA, av ← A1(c, v)
4 : if VCheck(stv, d, av) = ⊥, return 0
5 : st′

A, aq ← A2(stA, q)

6 : ãq ← Eans(14r(λ), c, q)
7 : abort := I [aq ̸= ãq]
8 : return A3(st′

A, abort)

Note that PRIVB∗ is exactly the same as PRIV/AA∗ , except that abort is computed as
I [aq ̸= ãq] (with ãq ← Eans(14r(λ), c, q)) instead of I [Rec(stq, d, aq) = ⊥].

Towards proving that B∗ breaks standard privacy, we distinguish between configurations
c with νA∗(c) < 1

4r(λ) , and those with νA∗(c) ≥ 1
4r(λ) .

Case (1): νA∗(c) < 1
4r(λ) . In this case, we cannot be certain that the answer ãq given by Eans

is correct. Therefore, we would like to bound the impact on B∗’s advantage. Indeed, B returns
0 whenever the validation step with A1 does not succeed. Furthermore, by assumption, the
validation success probability in this case is at most 1

4r(λ) , which means that for both b = 0, 1:

Pr
c

[
PRIVB∗(c, ib) = 1
∧ νA∗(c) < 1

4r(λ)

]
≤ Pr

c

[
VCheck(stv, d, av)
∧ νA∗(c) < 1

4r(λ)

∣∣∣∣∣ stv, v ← VQuery()
stA, av ← A1(c, v)

]

=
∑

c∈Supp(ConfD(λ,N))
νA∗ (c)< 1

4r(λ)

Pr[c] · νA∗(c) ≤ 1
4r(λ) .

Therefore, in case νA∗(c) < 1
4r(λ) , B∗ has no significant (and therefore also no significant

negative) advantage:∣∣∣∣∣Pr
c

[
PRIVB∗(c, i0) = 1
∧ νA∗(c) < 1

4r(λ)

]
− Pr

c

[
PRIVB∗(c, i1) = 1
∧ νA∗(c) < 1

4r(λ)

]∣∣∣∣∣ ≤ 1
4r(λ) . (5)

Case (2): νA∗(c) ≥ 1
4r(λ) . In this case, we are going to show that PRIVB∗ and PRIV/AA∗

are close, by showing that w.h.p. their respective ways of defining abort are identical. We use
both answer extractability and integrity:
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– By answer extractability, for both b = 0, 1:

Pr
c

[
νA∗(c) ≥ 1

4r(λ) ⇒
Rec(stq, d, ãq) ̸= ⊥

∣∣∣∣∣ stq, q ← Query(ib)
ãq ← Eans(14r(λ), c, q)

]
≥ 1− negl(λ) (6)

– By integrity, for both b = 0, 1:

Pr
c


aq ̸= ãq
∧ Rec(stq, d, aq) ̸= ⊥
∧ Rec(stq, d, ãq) ̸= ⊥

∣∣∣∣∣∣∣∣∣∣∣

stq, q ← Query(ib)
stv, v ← VQuery()
stA, av ← A1(c, v)
st′A, aq ← A2(stA, q)
ãq ← Eans(14r(λ), c, q)

 ≤ negl(λ) (7)

Note that if both of the events

{Rec(stq, d, ãq) ̸= ⊥} and


aq = ãq
∨ Rec(stq, d, aq) = ⊥
∨ Rec(stq, d, ãq) = ⊥


are true, then the two ways I[aq ̸= ãq] and I[Rec(stq, d, aq) = ⊥] of defining abort in PRIVB∗

and PRIV/AA∗ are identical:

– If aq ̸= ãq, then together with the left event Rec(stq, d, ãq) ̸= ⊥, the right event proves
that Rec(stq, d, aq) = ⊥.

– If aq = ãq, then (because Rec is deterministic), the left event proves that Rec(stq, d, aq) ̸=
⊥.

Thus, combining Equations 6 and 7 with a union bound yields

Pr
c


νA∗(c) ≥ 1

4r(λ) ⇒
I[aq ̸= ãq] = I[Rec(stq, d, aq) = ⊥]

∣∣∣∣∣∣∣∣∣∣∣

stq, q ← Query(ib)
stv, v ← VQuery()
stA, av ← A1(c, v)
st′A, aq ← A2(stA, q)
ãq ← Eans(14r(λ), c, q)

 ≥ 1− negl(λ) .

As a result, we can use the two definitions of abort interchangingly (when νA∗(c) ≥ 1
4r(λ)),

with only negligible difference. As this is the only thing that makes PRIVB∗ different from
PRIV/AA∗ , we get for both b = 0, 1∣∣∣∣∣Pr

c

[
PRIVB∗(c, ib) = 1
∧ νA∗(c) ≥ 1

4r(λ)

]
− Pr

c

[
PRIV/AA∗(c, ib) = 1
∧ νA∗(c) ≥ 1

4r(λ)

]∣∣∣∣∣ ≤ negl(λ) . (8)

It remains to lower bound the advantage that PRIV/AA∗ has in case νA∗(c) ≥ 1
4r(λ) . Note that

for any configuration c ∈ Supp(ConfD(λ, N)) and index i ∈ [N ], we have Pr[PRIV/AA∗(c, i) =
1] ≤ νA∗(c) (because PRIV/AA∗ can only output 1 whenever validation succeeds). Thus, we
get the following bound (for infinitely many λ, by using Equation 4)∣∣∣∣∣Pr

c

[
PRIV/AA∗(c, i0) = 1
∧ νA∗(c) ≥ 1

4r(λ)

]
− Pr

c

[
PRIV/AA∗(c, i1) = 1
∧ νA∗(c) ≥ 1

4r(λ)

]∣∣∣∣∣ (9)

≥ 1
r(λ) −

∑
c∈Supp(ConfD(λ,N))

νA∗ (c)< 1
4r(λ)

Pr[c] · |Pr[PRIV/AA∗(c, i0)]− Pr[PRIV/AA∗(c, i1)]|︸ ︷︷ ︸
≤νA∗ (c)< 1

4r(λ)

≥ 3
4r(λ)
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By combining Equations 5, 8, and 9, the advantage of PRIVB∗ is non-negligible:∣∣∣Pr[PRIVB∗(λ, N, i0) = 1]− Pr[PRIVB∗(λ, N, i1) = 1]
∣∣∣

≥ (9)− 2 · (8)− (5) ≥ 1
2r(λ) − negl(λ)

for infinitely many λ. ⊓⊔

3.3 Alternative Notion for Relaxed Validation

In our definition of privacy with abort, passing the validation phase is very strict: if the
server succeeds, then the client may assume that for all subsequent queries, the server’s
distinguishing advantage will be negligible. Below we sketch a way of formalizing a tradeoff,
which potentially allows for better efficiency in cases where it is acceptable to have a lower
confidence in the server’s honesty.

First, we augment the VQuery algorithm for initiating the validation phase, by letting it
take an additional parameter κ. Then, privacy with abort can be relaxed by decoupling the
adversary into (1) V attempting to pass the validation phase, and (2) A answering queries
and later making a decision based on query and abort-bit. Denoting the success probability
of V by ν(c), and the advantage of A by δ(c), privacy with abort now states that for any
polynomial p(λ) it is highly unlikely that simultaneously

δ(c) >
1

p(λ) and ν(c) >
1

p(λ) + 1
2κ

hold (over the random choice of the configuration c← ConfD(λ, N)).
Intuitively, this means that with probability 1

2κ , the validation phase may succeed despite
the server’s ability to break privacy in any of its subsequent, unbounded number of queries
(i.e., validation has false negatives). In other words, κ serves as a tunable confidence param-
eter: higher κ means more confidence in the validation phase (e.g., choosing κ = λ means
overwhelming confidence), while lower κ may allow for a more efficient APIR scheme.

Similar to Lemma 2, this relaxed notion of privacy with abort can be proven under the
assumption of integrity, standard privacy, and a modified type of answer extractability. The
latter requires the probability in Equation (3) to hold with probability 1− 1

2κ − negl(λ) only,
but also imposes a restriction that requires all non-⊥ answers given by Eans to reconstruct
correctly (except with negligible probability).

Concretely, in our APIR construction (Section 4), κ may correspond to the number of
individual “challenges” that the client includes in a single validation query. Since each such
challenge has a success probability of at most 1

2 +negl(λ) if the server is cheating, the client’s
confidence in the server’s inability to break privacy with abort will be 1− 1

2κ −negl(λ). Given
this, it is possible to prove the modified answer extractability sketched above, but for the
purpose of a clean presentation we will stick to the setting with κ = λ for the remainder of
this paper.

3.4 Rebalancing

We revisit the standard rebalancing trick, originally proposed in [34], in the context of Au-
thenticated PIR. Given a PIR scheme APIR, we construct a rebalanced scheme APIR. It splits
a database of size N into

√
N chunks of size

√
N (w.l.o.g. we may assume that N is a perfect

square, as the database can always be padded with dummy values).
For database x ∈ {0, 1}N , we denote by xi the i-th chunk (which is a vector in {0, 1}

√
N ),

s.t. x = (xT
1 , . . . , xT√

N
). Any index i ∈ [N ] can be split into two values irow ∈ [

√
N ] and
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Setup(1λ, 1N )

1. return APIR.Setup(1λ, 1
√

N )

Digest(x)

1. dj ← APIR.Digest(xj) ∀j ∈
√

N
2. return d := (d1, . . . , d√

N )

Validation Query

VQuery()

1. return st, v ← APIR.VQuery()

Query(i)

1. st, q ← APIR.Query(irow)
2. return st := (st, icol), q

VAnswer(x, v)

1. aj ← APIR.VAnswer(xj , v) ∀j ∈ [
√

N ]
2. return a := (a1, . . . , a√

N )

Answer(x, q)

1. aj ← APIR.Answer(xj , q) ∀j ∈ [
√

N ]
2. return a := (a1, . . . , a√

N )

VCheck(st, d = {dj}, a = {aj})

1. tj ← APIR.VCheck(st, dj , aj) ∀j ∈ [
√

N ]
2. return I

[
t1 ∧ · · · ∧ t√

N

]
Rec((st, icol), d = {dj}, a = {aj})

1. tj ← APIR.Rec(st, dj , aj) ∀j ∈ [
√

N ]
2. if ∃j ∈ [

√
N ] with tj = ⊥, return ⊥

3. else return ticol

Fig. 3. Rebalancing APIR of an PIR scheme APIR. We assume that the public parameters pp output by
Setup are available to all algorithms, but omit them for ease of readability.

icol ∈ [
√

N ], s.t. x[i] = xicol [irow] (icol denotes the chunk that i is in, and irow denotes the
position within that chunk). The full scheme is described in Figure 3.

It is easy to see that if APIR fulfills integrity, then APIR fulfills integrity as well, and if
APIR fulfills standard privacy, then APIR fulfills standard privacy. Furthermore, we can prove
that if APIR fulfills answer extractability, then APIR does so as well.
Lemma 3. If APIR fulfills answer extractability, then the re-balanced scheme APIR fulfills
answer extractability as well.

Remark 3. As in [17], we can compress the digest by letting APIR.Digest return a short hash
of (d1, . . . , d√N ) (any collision-resistant hash function chosen by APIR.Setup suffices). Then,
APIR.VAnswer and APIR.Answer would both output the full digest (d1, . . . , d√N ) (in addition
to the actual answers), and APIR.VCheck and APIR.Rec test whether it matches the digest
hash before doing anything else.

Proof (of Lemma 3). Let (D,V) be a ppt adversary for APIR as in Definition 8. We define
an adversary (D,V) for the original scheme APIR as follows:
– D(pp) runs stD, d ← D(pp), parses d = (d1, . . . , d√N ), and samples a random i∗col ←$

[
√

N ]. Then, it outputs (stD, di∗
col

), where stD := (stD, d, i∗col).
– V(c = (pp, di∗

col
, (stD, d, i∗col)), v) runs (a1, . . . , a√N )← V((pp, d, stD), v) and outputs ai∗

col
.

For a configuration c = (pp, d, stD) ∈ Supp(ConfD
APIR(λ, N)) of APIR (with digest d =

(d1, . . . , d√N )) and any i∗col ∈ [
√

N ], we define the configuration ci∗
col

= (pp, di∗
col

, (stD, d, i∗col)) ∈
Supp(ConfDAPIR(λ,

√
N)) of APIR.

By answer extractability for APIR, there exists an answer extractor Eans, s.t. for all
database sizes N(λ) ≤ poly(λ), indices irow(λ) ∈ [

√
N ], and polynomials r(λ):

Pr

νD,V(ci∗
col

) ≥ 1
r(λ) ⇒

APIR.Rec(st, di∗
col

, Eans(1r(λ), ci∗
col

, q)) ̸= ⊥

∣∣∣∣∣∣∣
i∗col ←$ [

√
N ]

c← ConfDAPIR(λ, N)
st, q← APIR.Query(pp, irow)

 ≥ 1− negl(λ) .
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Note that for any i∗col, we have νD,V(ci∗
col

) ≥ νD,V(c), because V succeeds with answering
validation queries only whenever all of the

√
N instances of APIR succeed. Thus, in the

probability above, we may replace νD,V(ci∗
col

) by νD,V(c) without decreasing the probability.
Furthermore, by taking a union bound over all fixed i∗col, we get

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∀i∗col : APIR.Rec(st, di∗
col

, Eans(1r(λ), ci∗
col

, q)) ̸= ⊥

∣∣∣∣∣ c← ConfDAPIR(λ, N)
st, q← APIR.Query(pp, irow)

]
≥ 1− negl(λ) .

(10)

Now we construct the answer extractor Eans for (D,V) as follows:

– Eans(1r, c, q) runs ai∗
col
← Eans(1r, ci∗

col
, q) for each i∗col ∈ [

√
N ], and outputs a1, . . . , a√N .

Fix the database size N(λ) ≤ poly(λ), indices i(λ) ∈ [
√

N ], and polynomials r(λ). Note that
for any (st, icol), q ← APIR.Query(pp, i), we have

APIR.Rec((st, icol), d, Eans(1r(λ), c, q)) ̸= ⊥
iff ∀i∗col ∈ [

√
N ] : APIR.Rec(st, di∗

col
, Eans(1r(λ), ci∗

col
, q)) ̸= ⊥

Therefore, the desired property

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

APIR.Rec((st, icol), d, Eans(1r(λ), c, q)) ̸= ⊥

∣∣∣∣∣ c← ConfDAPIR(λ, N)
(st, icol), q← APIR.Query(pp, i)

]
≥ 1− negl(λ) .

is implied by the Equation 10. ⊓⊔

4 The Authenticated PIR Scheme and its Security

4.1 Description and Security

This section describes our APIR scheme, and states the security theorems we then prove
below. A description of the scheme is given in Figure 4.
Main ideas behind the scheme. We discuss first the unbalanced version of our scheme,
which we refer to as APIR. We obtain a re-balanced version APIR which achieve O(

√
N)

complexity following the transformation of Section 3.4. The scheme is based on the DDH
scheme from Colombo et al. [17]. The server is in fact identical: It initially publishes a
Pedersen hash d =

∏
i∈[N ] h[i]x[i] of the database as the digest, where h ∈ GN is a vector of

independent random generators for G. The server then answers any query vector p ∈ GN by
returning the product

∏
i∈[N ] p[i]x[i].

Item retrieval. To retrieve an item i ∈ [N ] privately, the client sends a randomized version
of the vector e = gei , where ei is the i-th unit vector. The easiest way to hide the query, under
the DDH assumption, is to multiply e component-wise with a blinding vector hr. Then, the
client would receive the response ẽ = dr · gx[i], and e = gx[i] is recovered by dividing off dr.
To achieve integrity, however, we will need to additionally randomize e by exponentiating it
with a non-zero α ←$ Z∗q , where q is the group order. Then, if the server answers honestly
with a value ẽ, we get the final answer as e = (d−rẽ)1/α. However, in contrast to [17], to
accommodate the validation process we describe next, we will need to allow e to take values
in {g−N , . . . , gN}. We think of any value different than 1 = g0 as corresponding to the output
1, whereas 1 = g0 is mapped to 0.

In summary, we define a general query randomization mechanism (and the associated
recovery operation), used for both validation and normal queries in Figure 4, as
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Setup(1λ, 1N )

1. (G, q, g) = pp′ ← GG(1N )
2. h←$ GN

3. return pp := (G, q, g, h)

Digest(x)

1. return d :=
∏

i∈[N ]

h[i]x[i]

Validation Query

VQuery()

1. sj ←$ {0, 1}N ∀j ∈ [λ]
2. stj , s̃j ← randomize(gsj ) ∀j ∈ [λ]
3. return st := (stj)j∈[λ], v := (s̃j)j∈[λ]

Query(i)

1. st, ẽ← randomize(gei )
2. return st, q := ẽ

VAnswer(x, v = (s̃j)j∈[λ])

1. s̃j :=
∏

i∈[N ]

(s̃j [i])x[i] ∀j ∈ [λ]

2. return a := (s̃j)j∈[λ]

Answer(x, q = ẽ)

1. return a := ẽ =
∏

i∈[N ]

(ẽ[i])x[i]

VCheck(st = (stj)j∈[λ], d, a = (s̃j)j∈[λ])

1. sj ← recover(stj , d, s̃j) ∀j ∈ [λ]
2. return I

[
s1, . . . , sλ ∈ {g0, . . . , gN}

]
Rec(st, d, a = ẽ)

1. e← recover(st, d, ẽ)
2. if e ∈ {g−N , . . . , gN} \ {g0}, return 1
3. else if e = g0, return 0
4. else return ⊥

Fig. 4. Our PIR scheme. We assume that the public parameters pp output by Setup are available to all
algorithms, but omit them for ease of readability.

randomize(p)
1 : r ←$ Zq

2 : α←$ Z∗
q

3 : return st := (r, α), p̃ := hr ◦ pα

recover(st = (r, α), d, p̃)
1 : return p := (d−r · p̃)1/α

Generalized queries. It will be convenient to think of queries in a more general sense,
where the the client can ask for any selection vector p ∈ ZN

q , turning it into a corresponding
vector of group elements p = gp, which is then randomized as p̃. We usually denote the
answer as p̃, and the de-randomized answer as p. This defines some notational conventions
we follow throughout our proofs.
Digest validation. Our digest validation procedure consists of λ parallel generalized queries
where the selection vectors are independent random binary vectors. The client accepts if all
results of these queries are in the set {g0, g1, . . . , gN}. Note that if the server produces
the digest and answers honestly, the check passes. It also passes on a “slightly malformed”
database, in which the sum of any subset of database components is between 0 and N (say
one database entry is N , all others are 0.) This is the main reason why we do relax the
allowable range of values for e for PIR queries.
Security of APIR. Below, we prove the following three theorems in Sections 4.2, 4.3, and
4.4, respectively.

Theorem 1. Assuming that the DDH assumption holds, APIR fulfills integrity.

Theorem 2. Assuming that the DDH assumption holds, APIR fulfills standard privacy.

Theorem 3. Assuming that the DDH assumption holds, APIR fulfills answer extractability.
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Combining these theorems with Lemmas 2 and 3 immediately yields the following corol-
lary.

Corollary 1. Assuming that the DDH assumption holds, both APIR and its rebalancing APIR
fulfill integrity, standard privacy, and privacy with abort.

Efficiency. After rebalancing our scheme as described in Section 3.4, a single query and its
answer both have size proportional to that of

√
N group elements. Each validation consists

of λ individual queries, each with cost identical to that of a regular query (thus, v consists
of λ
√

N group elements in total). The relaxed security notion described in Section 3.3 is
achieved by performing only κ instead of λ individual queries per validation phase.

Note that if we apply the rebalancing transformation naïvely, APIR.Rec would run APIR.Rec
for
√

N times, each of them re-computing the same 2
√

N + 1 powers of g during the call
to recover. This would result in computational complexity O(N). Obviously, a client should
compute these powers only once, store them in a suitable data structure (e.g., a hash table),
and perform a single constant-time look up. While we did not perform own benchmark, it
should be clear that the same performance profile as in [17] would emerge here.

Remark 4. In order to remove clutter, when clear from context (e.g., configuration c =
(pp, d, stD) is fixed) we will typically omit the parameter d passed to recover(st, d, p̃) when
proving security of APIR in the following sections.

In some places, an answer p̃ ∈ G ∪ {⊥} may be equal to ⊥. Any operations involving
p̃ = ⊥ will result in ⊥, e.g. recover(st, d,⊥) = ⊥.

4.2 Proof of Theorem 1 (Integrity)

Lemma 4 establishes a slightly stronger version of integrity that will be useful within proofs
of other theorems below. Specifically:

1. We let A choose the query vector p ∈ GN that will be randomized. For integrity, it
suffices to consider p = gei .

2. We let A choose a small set S, along with its answers p̃, p̃′. The adversary wins whenever
their two answers p̃ and p̃′ are distinct, and the ratio between the two recovered answers
is in S.

We show that the probability of winning is small, and we refer to this as “Evasive ratio”
lemma. Below, we show integrity easily follows.

Lemma 4 (Evasive Ratio). Assuming that the DDH assumption holds, then for any ppt
adversaries D,A1,A2 (where A1(c) outputs state stA and a query vector p ∈ GN , and
A2(stA, p̃) outputs two answers p̃, p̃′ ∈ G ∪ {⊥} and a set S ⊆ G of size |S| ≤ poly(λ, N))
and database sizes N(λ) ≤ poly(λ):

Pr


p̃ ̸= p̃′ ∧
recover(st, p̃′)
recover(st, p̃) ∈ S

∣∣∣∣∣∣∣∣∣
c = (pp, d, stD)← ConfD(λ, N)
stA,p← A1(c)
st, p̃← randomize(p)
p̃, p̃′, S ← A2(stA, p̃)

 ≤ negl(λ) .

Proof. By unrolling the calls to randomize and recover in the probability above, we need to
show

Pr[Hyb0(λ, N) = 1] ≤ negl(λ) ,

where Hyb0 is defined as follows.
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Hyb0(λ, N)
1 : c = (pp, d, stD)← ConfD(λ, N)
2 : stA,p← A1(c)
3 : (r, α)←$ Zq × Z∗

q

4 : p̃ := hr ◦ pα

5 : p̃, p̃′, S ← A2(stA, p̃)

6 : return I

[
p̃ ̸= p̃′ ∧

(
p̃′

p̃

)1/α

∈ S

]

We do so by a hybrid argument.

Hyb1 Note that in Hyb0, the random r ←$ Zq is only used for computing hr. By DDH
(Lemma 1), this means that hr looks identical to a uniformly random vector in GN .
Therefore, in Hyb1, we replace the lines

(r, α)←$ Zq × Z∗q
p̃ := hr ◦ pα

by
α←$ Z∗q
h←$ GN

p̃ := h ◦ pα

.

We use the following ppt adversary B distinguishing between the two distributions in
Lemma 1:
• B(pp′, h): Run (stD, d)← D(pp) (with pp := (pp′, h)) to create the configuration c :=

(pp, d, stD), and run stA,p← A1(c). Then, sample α←$ Z∗q and compute p̃ := h ◦pα.
Run p̃, p̃′, S ← A2(stA, p̃), and return I[( p̃′

p̃ )1/α ∈ S \ {1}].
Note that running B on left-hand side distribution in Lemma 1 is identical to Hyb0 (i.e.,
h := hr for r ←$ Zq), and that running B on the right-hand side distribution is identical
to Hyb1 (i.e., h←$ GN ). Thus, by Lemma 1, we get

|Pr[Hyb1(λ, N) = 1]− Pr[Hyb0(λ, N) = 1]| ≤ negl(λ) .

Hyb2 Note that p̃ := h ◦ pα for random h ←$ GN is identically distributed as a uniformly
random vector in GN . Thus, in Hyb2, we replace the lines

h←$ GN

p̃ := h ◦ pα by p̃←$ GN .

We have Hyb2 ≡ Hyb1.

Note that in Hyb2, α←$ Z∗q is only used in the very last line, which returns I[p̃ ̸= p̃′∧( p̃′

p̃ )1/α ∈
S]. Furthermore, if p̃ ̸= p̃′ (i.e., p̃′

p̃ ̸= 1), then ( p̃′

p̃ )1/α will be ⊥ or a uniformly random element
in G \ {1}. Thus, the probability of returning 1 is at most |S|q−1 . Because of |S| ≤ poly(λ, N),
we get

Pr[Hyb2(λ, N) = 1] ≤ negl(λ) ,

which concludes the proof by our hybrid argument. ⊓⊔

Now we prove integrity: let D,A be an adversary for the integrity game, N(λ) ≤ poly(λ)
the database size, and i(λ) ∈ [N ] an index. We need to show

Pr

 p̃ ̸= p̃′ ∧
Rec(st, d, p̃) ̸= ⊥ ∧
Rec(st, d, p̃′) ̸= ⊥

∣∣∣∣∣∣∣
c = (pp, d, stD)← ConfD(λ, N)
st, p̃← randomize(gei)
p̃, p̃′ ← A(c, p̃)

 ≤ negl(λ) .
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Note that the event Rec(st, d, p̃) ̸= ⊥ holds iff recover(st, p̃) ∈ {g−N , . . . , gN} (and analogously
for p̃′). Therefore,

p̃ ̸= p̃′ ∧
Rec(st, d, p̃) ̸= ⊥ ∧
Rec(st, d, p̃′) ̸= ⊥

⇒
p̃ ̸= p̃′ ∧
recover(st, p̃′)
recover(st, p̃) ∈ {g

−2N , . . . , g2N}
,

and it suffices to prove that the probability of the event on the right-hand side is negligible.
This follows immediately by applying Lemma 4 to the following adversary D,B1,B2.

– B1(c) outputs stB := c, p := gei .
– B2(stB, p̃) runs p̃, p̃′ ← A(c, p̃), chooses S := {g−2N , . . . , g2N}, and outputs p̃, p̃′, S.

4.3 Proof of Theorem 2 (Standard Privacy)

We prove a stronger notion of privacy, called chosen-vector indistinguishability, which will
be useful elsewhere, and whose security game is as follows:

Game CVAA∗(λ, N, b)
1 : c = (pp, d, stD)← ConfD(λ, N)
2 : stA,v0,v1 ← A1(c); r ←$ Zq

3 : return A2(stA, hr ◦ vb)

Lemma 5 (Chosen Vector Indistinguishability). Assuming that the DDH assumption
holds, then for any ppt adversaries A∗ = (D,A1,A2) and database sizes N(λ) ≤ poly(λ),

|Pr[CVAA∗(λ, N, 0) = 1]− Pr[CVAA∗(λ, N, 1) = 1]| ≤ negl(λ) .

Remark 5. In order to simplify reductions involving CVAA∗ , we defined this experiment
to sample a configuration c = (pp, d, stD) ← ConfD(λ, N). Lemma 5 would still hold if
CVAA∗ does not run the digest generator stD, d ← D(pp), and instead only provides pp ←
Setup(1λ, 1N ) as input to A1.

Proof. We show that both CVAA∗(λ, N, 0) and CVAA∗(λ, N, 1) are close to Hyb defined
below.

Hyb(λ, N)
1 : c = (pp, d, stD)← ConfD(λ, N)
2 : stA,v0,v1 ← A1(c)

3 : ṽ←$ GN

4 : return A2(c, ṽ)

By a hybrid argument, it suffices to show

|Pr[CVAA∗(λ, N, b) = 1]− Pr[Hyb(λ, N) = 1]| ≤ negl(λ), (11)

for both b = 0, 1.
To show that Equation 11 holds, we construct an adversary B that distinguishes between

the two distributions stated in Lemma 1 in the following way:

– B(pp′, h): Run (stD, d) ← D(pp) (with pp := (pp′, h)) to create the configuration c :=
(pp, d, stD). Then, compute stA,v0,v1 ← A1(c). Run and output A2(stA, h ◦ vb).
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Procedure Eans(1r, c = (pp, d, stD),p)

1 : repeat λ · r3 times
2 : st, p̃← randomize(p)
3 : p̃← V(c, p̃)
4 : st′, p̃′ ← randomize(p̃)
5 : p̃′ ← recover(st′,V(c, p̃′))
6 : if p̃ = p̃′, return recover(st, p̃)
7 : return ⊥

Procedure V(c, p̃)

1 : sj ←$ {0, 1}N ∀j ∈ [λ] \ {1}
2 : _, s̃j ← randomize(gsj ) ∀j ∈ [λ] \ {1}
3 : (p̃, _, . . . , _)← V(c, (p̃, s̃2, . . . , s̃λ))
4 : return p̃

Fig. 5. Description of the extractor Eans (left-hand side) used in the proof of Theorem 3. The right-hand side
describes a sub-procedure used within Eans.

Note that running B on the left-hand side distribution of Lemma 1 is identical to CVAA∗(λ, N, b).
Furthermore, running B on the right-hand side distribution of Lemma 1 is identical to
Hyb(λ, N). Equation 11 follows. ⊓⊔

Now we prove standard privacy. Let D,A be an adversary for the privacy game, N(λ) ≤
poly(λ) the database size, and i0(λ), i1(λ) ∈ [N ] indices.

We plug in the following adversary B∗ := (D,B1,B2) into Lemma 5:

– B1(c): sample α←$ Z∗q and output stA := c, v0 := (gei0 )α, v1 := (gei1 )α.
– B2(c, ṽ): run and output A(c, ṽ).

Privacy follows from Lemma 5 because of CVAB∗(λ, N, b) ≡ PRIVD,A(λ, N, ib).

4.4 Proof of Theorem 3 (Answer extractability)

Let (D,V) be an adversary against answer extractability for our PIR scheme, where D is
the digest generator, and V answers validation queries. Our answer extractor Eans(1r, c,p) is
described in Figure 5. The core idea is to repeatedly invoke V to get answers for p. Because
V expects a list v = (s̃1, . . . , s̃λ) of λ validation queries, we use a wrapper procedure V(c, p̃)
which embeds p̃ as the first component of a vector consisting of otherwise honestly generated
λ− 1 validation queries.

Throughout λr3 iterations, the extractor Eans queries first V(c, p̃) on a fresh randomization
p̃ of p, and obtains answer p̃. Then, Eans generates a fresh randomization p̃′ of p̃, and runs
V(c, p̃′). Intuitively, we use the fact that the recovered answer p̃′ matches p̃ as an indication
that V has answered correctly. Therefore, in this case, Eans returns recover(st, p̃). However, if
no iteration is successful, then Eans returns ⊥.
Roadmap. We now give an informal description of why Eans indeed works. We refer to
several lemmas that we will state formally afterwards, followed by the full proof of answer
extractability using these lemmas.

First, Lemma 9 establishes what we refer to as the answer guarantee property, i.e., the fact
that Eans never answers with ⊥ on any (even adversarially chosen) query, as long as νD,V(c)
is large enough. The proof will use crucially the indistinguishability of any two randomized
queries.

The bulk of the proof considers the scenario in which we query Eans on gei for all i ∈ [N ],
obtaining answers

ei ← Eans(1r(λ), c, gei) ∀i ∈ [N ] .

The queries gei are not randomized, which is going to simplify our analysis–Lemma 6 (ran-
domization independence) shows that this is equivalent to randomizing gei first, and later
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recovering Eans’s answer. Therefore, to infer answer extractability, we simply need to show
that ei ∈ {g−N , . . . , gN} for each i ∈ [N ].

Also, assume that we already know that Eans answers validations successfully, i.e., for λ
random vectors s1, . . . , sλ ∈ {0, 1}N the answers s′k ← Eans(1r(λ), c, gsk) will fulfill s′1, . . . , s′λ ∈
{g0, . . . , gN}. To draw a connection to the individual answers ei, we need a homomorphism
property (Lemma 8), which states that

s′k =
∏

i∈[N ]
e

sk[i]
i ∀k ∈ [λ] .

Because vectors sk are random, a simple argument (Lemma 10, random subset testing) shows
that, due to the small range of all s′k, with probability at least 1− 1

2λ , all the individual answers
are also in a small range: ei ∈ {g−N , . . . , gN}.

It remains to ensure that there is a good chance of Eans answering all validation queries
s1, . . . , sλ correctly. Indeed, whenever V(c, p̃) manages to reply to the randomization p̃ of
a query gsk with a value sk ∈ {g0, . . . , gN}, then w.h.p., Eans will output the exact same
value s′k = sk (Lemma 7, Eans agrees with small answers). Therefore, whenever νD,V(c) is
large enough, we can be sure that (after testing sufficiently many different validations), Eans’s
responses fulfill s′1, . . . , s′λ ∈ {g0, . . . , gN}, thereby implying e1, . . . , eN ∈ {g−N , . . . , gN}.
Basic extractor properties. We state four essential properties of our Eans construction
that suffice to prove answer extractability. We defer their proofs to Sections 4.5, 4.6, 4.7,
and 4.8.

Lemma 6 (Randomization Independence). For all λ, N ∈ N and configurations c =
(pp, d, stD) ∈ Supp(ConfD(λ, N)), queries p ∈ GN , randomizations (st, p̃) ∈ Supp(randomize(p))
of p, and runtime parameters r ∈ N, the following two distributions are exactly the same:

Eans(1r, c,p) and recover(st, Eans(1r, c, p̃))

Lemma 7 (Agrees with Small Answers). Assuming the DDH assumption holds, then
for all ppt adversaries A1,A2 (where A1(c) outputs a state stA and a query vector p ∈ GN ,
and A2(stA, p̃∗) outputs an answer p∗ ∈ G ∪ {⊥}), database sizes N(λ) ≤ poly(λ), and
polynomials r(λ):

Pr


p∗ ∈ {g0, . . . , gN}
⇒ p ∈ {p∗,⊥}

∣∣∣∣∣∣∣∣∣∣∣

c = (pp, d, stD)← ConfD(λ, N)
stA,p← A1(c)
st∗, p̃∗ ← randomize(p)
p∗ ← recover(st∗,A2(stA, p̃∗))
p← Eans(1r(λ), c,p)

 ≥ 1− negl(λ) .

Lemma 8 (Homomorphism). Assuming the DDH assumption holds, then for all ppt
adversaries A (where A(c) outputs m query vectors p1, . . . ,pm ∈ GN and m exponents
t1, . . . , tm ∈ Zq), and N(λ), r(λ) ≤ poly(λ),

Pr


p, p1, . . . , pm ̸= ⊥
⇒ p =

∏
i∈[m]

pti
i

∣∣∣∣∣∣∣∣∣
c = (pp, d, stD)← ConfD(λ, N)
p1, . . . ,pm, t1, . . . , tm ← A(c)
p← Eans(1r(λ), c,

∏
i∈[m] p

ti
i )

pi ← Eans(1r(λ), c,pi) ∀i ∈ [m]

 ≥ 1− negl(λ) .

Lemma 9 (Answer Guarantee). Assuming the DDH assumption holds, then for all ppt
adversaries A (where A(c) outputs a query vector p ∈ GN ), database sizes N(λ) ≤ poly(λ),
and polynomials r(λ),

Pr
[

νD,V(c) ≥ 1
r(λ)

⇒ Eans(1r(λ), c,p) ̸= ⊥

∣∣∣∣∣c = (pp, d, stD)← ConfD(λ, N)
p← A(c)

]
≥ 1− negl(λ) .
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Random Subset Testing. We will also make use of the following lemma, which is proved
in Section 4.9.

Lemma 10 (Random Subset Testing). Let N ∈ N, let G be a cyclic group with generator
g ∈ G, and let e1, . . . , eN ∈ G be arbitrary group elements. Further, assume that for at least
one i∗ ∈ [N ], we have ei∗ /∈ {g−N , . . . , gN}. Then, for s1, . . . , sλ ←$ {0, 1}N ,

Pr

∀k ∈ [λ] :
∏

i∈[N ]
e

sk[i]
i ∈ {g0, . . . , gN}

 ≤ 1
2λ

.

The actual proof. We are now ready to combine all of the above elements and prove
answer extractability (Equation 3), i.e., for all database sizes N(λ) ≤ poly(λ), indices i(λ) ∈
[N(λ)], polynomials r(λ) ≤ poly(λ),

Pr

νD,V(c) ≥ 1
r(λ) ⇒

Rec(st, d, ẽ) ̸= ⊥

∣∣∣∣∣∣∣
c = (pp, d, stD)← ConfD(λ, N)

st, ẽ← Query(i)
ẽ← Eans(1r(λ), c, ẽ)

 ≥ 1− negl(λ) .

Using Lemma 6, this simplifies to

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

e ∈ {g−N , . . . , gN}

∣∣∣∣∣c = (pp, d, stD)← ConfD(λ, N)
e← Eans(1r(λ), c, gei)

]
≥ 1− negl(λ) .

In fact, we will prove something even stronger, which is that for all database sizes N(λ) ≤
poly(λ) and polynomials r(λ), the answers of Eans on the whole database (not just a single
index i) is in {g−N , . . . , gN}:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∀i ∈ [N ] : ei ∈ {g−N , . . . , gN}

∣∣∣∣∣ c = (pp, d, stD)← ConfD(λ, N)
ei ← Eans(1r(λ), c, gei) ∀i ∈ [N ]

]
≥ 1− negl(λ) . (12)

To prove this, it is helpful to consider the following augmented experiment, which additionally
introduces several validation queries, and both V’s and Eans’s answers to those:

1. First, sample configuration c = (pp, d, stD)← ConfD(λ, N).
2. Second, query Eans on the whole database:

ei ← Eans(1r(λ), c, gei) ∀i ∈ [N ]

3. Third, sample λ · r(λ) random validations, and run V on them:

sj,k ←$ {0, 1}N ∀j ∈ [λ · r(λ)], k ∈ [λ]
stj,k, s̃j,k ← randomize(gsj,k) ∀j ∈ [λ · r(λ)], k ∈ [λ]
s̃j,1, . . . , s̃j,λ ← V(c, (s̃j,1, . . . , s̃j,λ)) ∀j ∈ [λ · r(λ)]
sj,k ← recover(stj,k, s̃j,k) ∀j ∈ [λ · r(λ)], k ∈ [λ]

4. And finally, we run Eans on the same validation queries:

s′j,k ← Eans(1r(λ), c, gsj,k) ∀j ∈ [λ · r(λ)], k ∈ [λ]

We are now going to apply Lemmas 7, 8, and 9. In each of the following probabilities, we
refer to the distribution of all c, ei, sj,k, sj,k, and s′j,k as described above.
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– Note that Step 3 performs λ · r(λ) independently sampled validations identically to
VQuery(). Thus, under the assumption that configuration c has a high success probability
(νD,V(c) ≥ 1

r(λ)), there will be at least one validation that succeeds: The probability that
for no j∗ ∈ [λ · r(λ)], the j∗-th validation succeeds, is at most(

1− 1
r(λ)

)λ·r(λ)
≤ e
− 1

r(λ) ·λ·r(λ) = e−λ ≤ negl(λ) .

A successful validation (as defined by VCheck({stj∗,k}, d, {s̃j∗,k})) means that sj∗,1, . . . , sj∗,λ ∈
{g0, . . . , gN}, and therefore:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∃j∗ ∈ [λ · r(λ)] with sj∗,1, . . . , sj∗,λ ∈ {g0, . . . , gN}

]
≥ 1− negl(λ) (13)

– For all j ∈ [λ · r(λ)] and k ∈ [λ], we apply Lemma 7 (Eans agrees with small answers) to
the following adversary A:
• A1(c) samples sj,k ←$ {0, 1}N and returns stA := (c, sj,k) and gsj,k .
• A2(stA, s̃j,k), for all k′ ∈ [λ]\{k}, samples sj,k′ ←$ {0, 1}N and randomizes stj,k′ , s̃j,k′ ←

randomize(gsj,k′ ), then runs s̃j,1, . . . , s̃j,λ ← V(c, (s̃j,1, . . . , s̃j,λ)) and outputs s̃j,k.
Then, by Lemma 7, for sj,k produced by V that is within the set {g0, . . . , gN}, we can be
certain that Eans’s answer s′j,k is equal to sj,k or ⊥:

Pr
[

sj,k ∈ {g0, . . . , gN} ⇒
s′j,k ∈ {sj,k,⊥}

]
≥ 1− negl(λ) ∀j ∈ [λ · r(λ)], k ∈ [λ] (14)

– For all j ∈ [λ · r(λ)] and k ∈ [λ], we apply Lemma 8 (homomorphism) to the following
adversary A:
• A(c) samples sj,k ←$ {0, 1}N , and outputs the N unit queries ge1 , . . . , geN , and expo-

nents sj,k[1], . . . , sj,k[N ].
Then, by Lemma 8, we can be certain that Eans’s answer s′j,k to validation query gsj,k is
equal to the product

∏
i∈[N ] e

sj,k[i]
i of answers ei (as long as none of these answers is ⊥):

Pr
[

s′j,k, e1, . . . , eN ̸= ⊥ ⇒
s′j,k =

∏
i∈[N ] e

sj,k[i]
i

]
≥ 1− negl(λ) ∀j ∈ [λ · r(λ)], k ∈ [λ] (15)

– For all i ∈ [N ], we apply Lemma 9 (guaranteed to answer) to the following adversary A:
• A(c) returns gei .

Then, by Lemma 9, whenever c has high validation success probability (i.e., νD,V(c) ≥
1

r(λ)), then w.h.p. Eans answered all queries without ever returning ⊥:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

ei ̸= ⊥

]
≥ 1− negl(λ) ∀i ∈ [N ] (16)

Similarly, Lemma 9 also shows that none of the answers s′j,k of Eans is ⊥:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

s′j,k ̸= ⊥

]
≥ 1− negl(λ) ∀j ∈ [λ · r(λ)], k ∈ [λ] (17)

We can now take the union bound of the probabilities in Equations 13 through 17. If all of
the given events hold, and furthermore νD,V(c) ≥ 1

r(λ) for the sampled configuration c, then:
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– By Equation 13, there is a j∗ ∈ [λ ·r(λ)], s.t. V’s answers to the j∗-th validation are good:
sj∗,1, . . . , sj∗,λ ∈ {g0, . . . , gN}.

– By Equation 14, this in turn means that Eans answers to the same queries are good or ⊥:
s′j∗,1, . . . , s′j∗,λ ∈ {⊥, g0, . . . , gN}.

– By Equation 17, we know that none of s′j∗,k is⊥, and therefore we can infer: s′j∗,1, . . . , s′j∗,λ ∈
{g0, . . . , gN}.

– By Equations 16 and 15, we can infer that not only s′j∗,k’s themselves, but also the
answers to gsj,k computed as combinations of ei’s are all good. That is, for all k ∈ [λ]:∏

i∈[N ] e
sj∗,k[i]
i ∈ {g0, . . . , gN}.

In summary, this yields:

Pr
[

νD,V(c) ≥ 1
r(λ) ⇒

∃j∗ s.t. ∀k ∈ [λ] :
∏

i∈[N ] e
sj∗,k[i]
i ∈ {g0, . . . , gN}

]
≥ 1− negl(λ) (18)

Now we use Lemma 10, which says that for any set of fixed ei’s, if at least one of them is not
within {g−N , . . . , gN}, then w.h.p. at least one of the products

∏
i∈[N ] e

sj∗,k[i]
i will be outside

of {g0, . . . , gN}. More precisely:

Pr
[
∀i ∈ [N ] : ei ∈ {g−N , . . . , gN} ∨
∃k ∈ [λ] :

∏
i∈[N ] e

sj,k[i]
i /∈ {g0, . . . , gN}

]
≥ 1− negl(λ) ∀j ∈ [λ · r(λ)] (19)

Taking the union bound of Equations 18 and 19, we get that w.h.p., whenever νD,V(c) ≥ 1
r(λ) ,

then ei ∈ {g−N , . . . , gN} for all i ∈ [N ] (Equation 12). This concludes the proof of Theorem 3.

Remark 6. By applying the statistical Lemma 10 to κ instead of λ, we would achieving the
relaxed version of privacy with abort (see Section 3.3), because Eans would return a non-
aborting answer with probability 1− 1

2κ − negl(λ) only.

4.5 Proof of Lemma 6 (Randomization Independence)

The randomization independence property of Eans follows from the simple statistical obser-
vation that randomizing a query vector multiple times is identical to randomizing it a single
time. Any new randomization “absorbs” the previous randomization, as captured by the
following lemma.

Lemma 11 (Double Randomization). For all λ, N ∈ N, configurations c = (pp, d, stD) ∈
Supp(ConfD(λ, N)), queries p ∈ GN and its randomizations (st∗,p∗) ∈ Supp(randomize(p)),
and unbounded adversaries A (with output in G ∪ {⊥}), the following two distributions are
identical:

{recover(st,A(p̃)) | (st, p̃)← randomize(p)}
≡ {recover(st∗, recover(st,A(p̃∗))) | (st, p̃∗)← randomize(p∗)}

Proof. Let st∗ = (r∗, α∗) and p∗ = hr∗ ◦ pα∗ . By unrolling randomize and recover, the two
distributions are equal to{(

d−r · A(hr ◦ pα)
)1/α

∣∣∣ (r, α)←$ Zq × Z∗q
}

and
{(

d−r−r∗α · A(hr+r∗α ◦ pα∗α)
)1/(α∗α)

∣∣∣∣ (r, α)←$ Zq × Z∗q
}

.
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When substituting r by r + r∗α, and α by α∗α in the first distribution, the result is exactly
the second one. This substitution does not have any impact on distribution, because for any
fixed r∗ ∈ Zq and α∗ ∈ Z∗q , the following identity holds.

{(r, α) | (r, α)←$ Zq × Z∗q} ≡ {(r + r∗α︸ ︷︷ ︸
over Zq

, α∗α︸︷︷︸
over Z∗

q

) | (r, α)←$ Zq × Z∗q}

This concludes the proof. ⊓⊔

Now we can prove randomization independence of Eans, meaning that for any query p ∈
GN , and its randomization (st∗,p∗) ∈ Supp(randomize(p)), applying Eans to p yields the same
outcome as applying Eans to p∗, and then recovering:

Eans(1r, c,p) ≡ recover(st∗, Eans(1r, c,p∗))

To see that this holds, consider the k-th iteration (where k ∈ [λ · r3]) of Eans, and apply
Lemma 11 with the following adversary.
– A(p̃) simulates lines 3-5 of Eans by running p̃ ← V(c, p̃), st′, p̃′ ← randomize(p̃), and

p̃′ ← recover(st′,V(c, p̃′)). Then, if p̃ = p̃′, output p̃. Otherwise, output ⊥.
The k-th iteration of Eans can be rewritten as

st, p̃← randomize(p)
p← recover(st,A(p̃))
if p ̸= ⊥, return p

By Lemma 11, the behavior stays the same when replacing p by p∗ and returning recover(st∗, p)
instead of p (since p ̸= ⊥ is equivalent to recover(st∗, p) ̸= ⊥). The result is exactly
recover(st∗, Eans(1r, c,p∗)), thereby concluding the proof of Eans’s randomization indepen-
dence.

Remark 7. Note that in both randomization independence of Eans, and double randomization
for arbitrary adversary A, the first randomization (st∗,p∗) ∈ Supp(randomize(p)) does not
need to be sampled by actually calling randomize(p). There simply need to exist r∗ ∈ Zq and
α∗ ∈ Z∗q with st∗ = (r∗, α∗) and p∗ = hr∗ ◦ pα∗ .

4.6 Proof of Lemma 7 (Agrees with Small Answers)
In this section, we prove Lemma 7, i.e., that if an adversary A is capable of answering a
query p with p∗ ∈ {g0, . . . , gN}, then the value p returned by Eans on p is equal to p∗ (if it
is not ⊥).

To do so, we open up the definition of Eans: let p̃ and p̃′ be the two answers to p̃ as
defined in Figure 5. Furthermore, let p := recover(st, p̃) and p′ := recover(st, p̃′) be the two
recovered answers. Note that Eans returns p whenever p̃ = p̃′ (or equivalently, p = p′, due to
the bijectivity of recover(st, ·)).

Therefore, by a union bound over all λ · r(λ) iterations of Eans, we just need to prove the
following (which states that it is unlikely that Eans terminates in the current iteration if the
answer does not match p∗):

Pr

p∗ ∈ {g0, . . . , gN}
∧ p = p′

∧ p ̸= p∗

∣∣∣∣∣∣∣
c = (pp, d, stD)← ConfD(λ, N)
stA,p← A1(c)
(p, p′, p∗)← Answers(stA,p)

 ≤ negl(λ) . (20)

To remove clutter in our calculations, the three answers p, p′, p∗ are generated by the following
procedure Answers(λ, N), which computes p and p′ exactly as an iteration of Eans would, and
p∗ as the answer computed by A2.
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Procedure Answers(stA,p)
1 : p∗ ← recover(st∗,A2(stA, p̃∗)), where st∗, p̃∗ ← randomize(p)
2 : p← recover(st,V(c, p̃)), where st, p̃← randomize(p)
3 : p′ ← recover(st, recover(st′,V(c, p̃′))), where st′, p̃′ ← randomize(p̃)
4 : return (p, p′, p∗)

To provide some intuition for the remainder of this proof, note that our generalized notion
of integrity (evasive ratio, Lemma 4) shows that for any two different ways of answering a
query, it is impossible to predict their ratio. However, if the probability above were not
negligible, then there is (1) the option of answering with p∗, given by A2, and (2) the option
of answering with p′, given by V. Furthermore, it would be easy to predict the ratio p′

p∗ : we
just need to query V again to get another answer p. Then, with non-negligible probability,
the ratio would be in the small set { p

g0 , . . . , p
gN }.

To formalize this idea, note that the probability in Equation 20 is upper bounded by

Pr

p′ ̸= p∗

∧ p′

p∗ ∈
{

p
g0 , . . . , p

gN

}
∣∣∣∣∣∣∣

c = (pp, d, stD)← ConfD(λ, N)
stA,p← A1(c)
(p, p′, p∗)← Answers(stA,p)

 . (21)

We face one technical difficulty preventing us from applying Lemma 4: we would need an
adversary that computes two answers p̃′ and p̃∗ from the same randomization st∗, p̃∗ ←
randomize(p) of query p (without knowing st∗). While p̃∗ = A2(stA, p̃∗) is an answer to p̃∗,
the value p̃′ ← recover(st′,V(c, p̃′)) is an answer to p̃, a separate randomization of p. We
fix this issue using double randomization (Lemma 11) twice with adversary V(c, ·): we may
replace line 3 of Answers(stA,p) by

p′ ← recover(st∗, recover(st′,V(c, p̃′))), where st′, p̃′ ← randomize(p̃∗) ,

to obtain the procedure Answers′(stA,p) which behaves identical to Answers(stA,p). Now,
we use Lemma 4 (evasive ratio) with the following adversary B1,B2.
– B1(c): run stA,p← A1(c), and output stB := (stA, c) and p.
– B2(stB, p̃∗): Compute the first answer as p̃∗ ← A2(stA, p̃∗), and the second answer by

running st′, p̃′ ← randomize(p̃∗) and p̃′ ← recover(st′,V(c, p̃′)). Choose the set S :={
p
g0 , . . . , p

gN

}
by running p ← recover(st,V(c, p̃)) with st, p̃ ← randomize(p̃). Output p̃∗,

p̃′, S.

Lemma 4, applied to adversary B1,B2 shows that

Pr


p̃′ ̸= p̃∗∧
recover(st∗,p̃′)
recover(st∗,p̃∗) ∈

{
p
g0 , . . . , p

gN

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c = (pp, d, stD)← ConfD(λ, N)
stA,p← A1(c)
st∗, p̃∗ ← randomize(p)
p̃∗ ← A2(stA, p̃∗)
st′, p̃′ ← randomize(p̃∗)
p̃′ ← recover(st′,V(c, p̃′))
st, p̃← randomize(p)
p← recover(st,V(c, p̃))


≤ negl(λ) . (22)

Note that for p′ := recover(st∗, p̃′) and p∗ := recover(st∗, p̃∗), the equivalence

p̃′ ̸= p̃∗ ⇔ p′ ̸= p∗

holds due to the bijectivity of recover(st∗, ·). Therefore, we can observe that the probability
in Equation 22 is identical to the one in Equation 21 (after replacing Answers(stA,p) by the
equivalent Answers′(stA,p)). This concludes the proof of Lemma 7. ⊓⊔
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4.7 Proof of Lemma 8 (Homomorphism)
In this section, we prove the homomorphism property of Eans. Let A be a ppt adversary,
and let N(λ) and r(λ) be polynomials. W.l.o.g., we may assume that ti∗ ̸= 0 holds for each
ti∗ chosen by A (otherwise, the adversary would only increase its success probability by
not returning pi∗ and ti∗ in the first place, because neither p = Eans(1r(λ), c,

∏
i∈[m] p

ti
i ) nor∏

i∈[m] pti
i would be affected by doing so.)

Consider the following hybrid experiment Hybi∗(λ, N) (for any i∗ ∈ {0, . . . , m}) that
corresponds to the statement of Lemma 8, except that the first i∗ queries have been changed
from pi to 1 (where 1 is the vector consisting of N times the neutral group element 1).

Hybi∗(λ, N)
1 : c = (pp, d, stD)← ConfD(λ, N)
2 : p1, . . . ,pm, t1, . . . , tm ← A(c)

3 : p← Eans(1r(λ), c,
∏

i∈{i∗+1,...,m} p
ti
i )

4 : pi ← Eans(1r(λ), c,1) ∀i ∈ {1, . . . , i∗}

5 : pi ← Eans(1r(λ), c,pi) ∀i ∈ {i∗ + 1, . . . , m}

6 : return I
[
p, p1, . . . , pm ̸= ⊥ ⇒ p =

∏
i∈[m] pti

i

]
Note that the statement of Lemma 8 is identical to

Pr[Hyb0(λ, N) = 1] ≥ 1− negl(λ) ,

which is what we will show with a hybrid argument. That is, we need∣∣Pr[Hybi∗−1(λ, N) = 1]− Pr[Hybi∗(λ, N) = 1]
∣∣ ≤ negl(λ) ∀i ∈ [w] , (23)

and

Pr[Hybm(λ, N) = 1] ≥ 1− negl(λ) . (24)

We start with proving Equation 23, by applying Lemma 5 (chosen vector indistinguishability)
to the following ppt adversary B1,B2:
– B1(c): Run p1, . . . ,pm, t1, . . . , tm ← A(c). Output state stB := (c, {pi}, {ti}) and vectors

v0 := p
ti∗
i∗ , v1 := 1.

– B2(stB, ṽ): Compute the two answers p̃ ← Eans(1r(λ), c, ṽ ·
∏

i∈{i∗+1,...,m} p
ti
i ) and p̃i∗ ←

Eans(1r(λ), c, ṽ). Further, compute answers pi ← Eans(1r(λ), c,1) for each i ∈ [i∗ − 1] and
pi ← Eans(1r(λ), c,pi) for each i ∈ {i∗ + 1, . . . , m}. Then output

I
[
p̃, p1, . . . , pi∗−1, p̃i∗ , pi∗+1, . . . , pm ̸= ⊥ ⇒ p̃ = p̃i∗ ·

∏
i∈[m]\{i∗} pti

i

]
.

Note that the chosen-vector experiment CVAD,B1,B2(λ, N, 0) for bit b = 0 (as defined in
Lemma 5) is exactly the following:

Game CVAD,B1,B2(λ, N, 0)
1 : c = (pp, d, stD)← ConfD(λ, N)
2 : p1, . . . ,pm, t1, . . . , tm ← A(c)
3 : r ←$ Zq

4 : p̃← Eans(1r(λ), c, hr ◦
∏

i∈{i∗,...,m} p
ti
i )

5 : pi ← Eans(1r(λ), c,1) ∀i ∈ {1, . . . , i∗ − 1}

6 : p̃i∗ ← Eans(1r(λ), c, hr ◦ pti∗
i∗ )

7 : pi ← Eans(1r(λ), c,pi) ∀i ∈ {i∗ + 1, . . . , m}

8 : return I
[
p̃, p1, . . . , pi∗−1, p̃i∗ , pi∗+1, . . . , pm ̸= ⊥ ⇒ p̃ = p̃i∗ ·

∏
i∈[m]\{i∗} pti

i

]
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By randomization independence (Lemma 6) (which we can apply due to ti∗ ̸= 0), the following
two equivalences hold:

p̃ = Eans(1r(λ), c, hr ◦
∏

i∈{i∗,...,m} p
ti
i ) ≡ dr · Eans(1r(λ), c,

∏
i∈{i∗,...,m} p

ti
i ) ,

p̃i∗ = Eans(1r(λ), c, hr ◦ pti∗
i∗ ) ≡ dr · (Eans(1r(λ), c,pi∗))ti∗ .

Thus, without affecting the distribution, in CVAD,B1,B2(λ, N, 0) we can replace line 4 by
p← Eans(1r(λ), c,

∏
i∈{i∗,...,m} p

ti
i ), line 6 by pi∗ ← Eans(1r(λ), c,pi∗), and the return value by

I
[
dr · p, p1, . . . , pi∗−1, dr · pti∗

i∗ , pi∗+1, . . . , pm ̸= ⊥ ⇒ dr · p = dr ·
∏

i∈[m] pti
i

]
.

We note that dr · p = ⊥ ⇔ p = ⊥ and dr · p
ti∗
i∗ ⇔ pi∗ = ⊥, and that the factor dr

cancels out on both sides in the equality test. The result is identical to Hybi∗−1(λ, N),
i.e., CVAD,B1,B2(λ, N, 0) ≡ Hybi∗−1(λ, N). Analogously, we also get CVAD,B1,B2(λ, N, 1) ≡
Hybi∗(λ, N). Therefore, Equation 23 follows from Lemma 5.

It remains to prove Equation 24. Note that in Hybm(λ, N), Eans is only ever called on
query 1. If all those calls to Eans return ⊥ or 1, then Hybm(λ, N) will output 1. Indeed, we
do have such a property, captured by the following lemma. Applying it to all m + 1 calls to
Eans(1r(λ), c,1) in Hybm(λ, N) concludes the proof of homomorphism.

Lemma 12. For any λ ∈ N and polynomials N(λ) ≤ poly(λ) and r(λ) ≤ poly(λ):

Pr
[
Eans(1r(λ), c,1) ∈ {1,⊥} | c← ConfD(λ, N)

]
≥ 1− negl(λ)

Proof. We show that in each of the [λ · (r(λ))3] iterations of Eans(1r(λ), c,1), the probability
of returning anything ̸= 1 is negligible. The full lemma then follows by a union bound.

By unrolling randomize and recover, we can rewrite a single iteration of Eans as on the
left-hand side in the following equation.

r, r′ ←$ Zq and α, α′ ←$ Z∗q
p̃← V(c, hr)
p̃′ ← (d−r′ · V(c, hr′+rα′))1/α′

if p̃ = p̃′, return (d−r · p̃)1/α

≡

r, r′ ←$ Zq and α, α′ ←$ Z∗q
p̃← V(c, hr)
p̃′ ← V(c, hr′)
if d−r · p̃ = (d−r′ · p̃′)1/α′

, return (d−r · p̃)1/α

By replacing r′ with (r′ − rα′) mod q (which are identically distributed for r′ ←$ Zq), we
obtain the right-hand side. Note that α′ is only used for checking the the final if -condition.
For any x, y ∈ G with x ̸= 1, it is easy to see that (due to the group size q being prime)

Pr
[
x = y1/α′

∣∣∣ α′ ←$ Z∗q
]
≤ 1

q − 1 ≤ negl(λ) .

Thus, plugging in x = d−r · p̃ and y = d−r′ · p̃′ shows that the probability of Eans returning a
value ̸= 1 is negligible. ⊓⊔

4.8 Proof of Lemma 9 (Answer Guarantee)

In this section, we prove that Eans is guaranteed to answer ̸= ⊥ to any query, as long as the
runtime parameter 1r is large enough:

Pr
[

νD,V(c) ≥ 1
r(λ)

⇒ Eans(1r(λ), c,p) ̸= ⊥

∣∣∣∣∣c = (pp, d, stD)← ConfD(λ, N)
p← A(c)

]
≥ 1− negl(λ) . (25)
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In our proof, we want to apply chosen vector indistinguishability (Lemma 5) in order to
switch between an honest validation query gs1 and the query p that Eans wants to answer.
However, we have no way of computing νD,V(c) exactly. Therefore, we will only approximate
this value with the following Lemma, which is going to be sufficient.

Lemma 13. There exists a ppt estimator C of νD,V and a negligible function negl(λ), s.t. for
any λ, N, and configurations c ∈ Supp(ConfD(λ, N)):

Pr
[
|C(1r(λ), c)− νD,V(c)| > 1

r(λ)

]
< negl(λ) .

Proof (of Lemma 13). Our C(1r(λ), c) will compute an estimation ν̃ of νD,V(c) by repeatedly
querying V on random validations for q(λ) times, and averaging the number of successful
runs (q(λ) is a polynomial to be specified later):

– Input: 1r, c = (pp, d, stD)
– For each j ∈ [q(λ)], check if V would pass a random validation:
• st, v ← VQuery()
• av ← V(c, v)
• bj ← I{VCheck(st, d, av) = ⊤}

– Output ν̃ := b1+···+bq(λ)
q(λ)

For any fixed c, we now estimate the probability of ν̃ (as generated by C) being far from
the real νD,V(c). Using Hoeffding’s inequality, we receive for any ε > 0:

Pr [|ν̃ − νD,V(c)| > ε] ≤ 2e−2(ε·q(λ))2
,

and therefore with ε := 1
r(λ) and q(λ) := λ · r(λ):

Pr
[
|ν̃ − νD,V(c)| > 1

r(λ)

]
≤ negl(λ) .

⊓⊔

Now we are ready to prove Lemma 9. Let A be an adversary (who generates a query p),
and let N(λ) and r(λ) be polynomials.

Our starting point is the following distribution Hyb0(λ, N), for which we can easily prove
that it returns 1 with overwhelming probability. We will transform Hyb0(λ, N) into hybrid
Hyb6(λ, N) that resembles Equation 25, which then holds by the hybrid argument.

Hyb0(λ, N)
1 : c← ConfD(λ, N)

2 : if νD,A(c) <
1

2r(λ) , return 1

3 : repeat λ · (r(λ))3 times

4 : s1 ←$ {0, 1}N

5 : st, p̃← randomize(gs1 )
6 : p← recover(st,V(c, p̃))
7 : st′, p̃′ ← randomize(gs1 )
8 : p′ ← recover(st′,V(c, p̃′))

9 : if p, p′ ∈ {g0, . . . , gN}, return 1
10 : return 0
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– Unrolling the definition of V, note that lines 4-8 of Hyb0(λ, N) run V on two independently
generated validations, except that they use the same selection vector s1. We return 1 when-
ever both validations succeed. (In fact, the condition p, p′ ∈ {g0, . . . , gN} is even more
relaxed, because only the first out of λ queries need to be within the set {g0, . . . , gN}.
The “real” VCheck would require this for all λ queries.)
Let γ(c, s1) be the probability that V passes a single validation with fixed configuration c
and fixed first selection vector s1. Let c be any configuration with νD,A(c) ≥ 1

2r(λ) . Then,
it is clear that

Pr
[
γ(c, s1) ≥ 1

4r(λ)

∣∣∣∣ s1 ←$ {0, 1}N
]
≥ 1

4r(λ) ,

i.e., with probability 1
4r(λ) , the choice of s1 was “good”. Note that whenever γ(c, s1) ≥

1
4r(λ) , then the probability of Hyb0 returning 1 in this iteration is at least 1

16(r(λ))2 . Thus,
in each iteration, the probability of returning 1 is at least 1

64(r(λ))3 .
In conclusion, for a c with νD,A(c) ≥ 1

2r(λ) , 0 is only returned with probability

≤
(

1− 1
64(r(λ))3

)λ·(r(λ))3

≤ e
− 1

64(r(λ))3 ·λ·(r(λ))3
= e−λ/64 ≤ negl(λ) .

Furthermore, for any c with νD,A(c) < 1
2r(λ) , 0 is returned with probability 0, and there-

fore

Pr[Hyb0(λ, N) = 1] ≥ 1− negl(λ) .

– In Hyb0(λ, N), replace the lines

st′, p̃′ ← randomize(gs1)
p′ ← recover(st′,V(c, p̃′))

by
st′, p̃′ ← randomize(p̃)
p′ ← recover(st, recover(st′,V(c, p̃′)))

to obtain Hyb1. By Lemma 11 (double randomization) with adversary V(c, ·), we have
Hyb1 ≡ Hyb0.

– In Hyb1(λ, N), replace the line

if p, p′ ∈ {g0, . . . , gN}, return 1 by if p′

p
∈ {g−N , . . . , gN}, return 1 ,

and call the new distribution Hyb2(λ, N).
Note that this modification relaxes the condition for returning 1. As p, p′ ∈ {g0, . . . , gN}
implies p′

p ∈ {g
−N , . . . , gN}, we get

Pr[Hyb2(λ, N) = 1] ≥ Pr[Hyb1(λ, N) = 1] .

– Now, we are going to use Lemma 4 (evasive ratio) to show that the success condition
p′

p ∈ {g
−N , . . . , gN} can be simplified to p̃′ = p̃.

Let Hyb3(λ, N) be the same as Hyb2(λ, N), except that we replace

p← recover(st,V(c, p̃)) by p̃← V(c, p̃) ,

p′ ← recover(st, recover(st′,V(c, p̃′))) by p̃′ ← recover(st′,V(c, p̃′)) , and

if p′

p
∈ {g−N , . . . , gN}, return 1 by if p̃ = p̃′, return 1 .

We can construct an adversary B1,B2 for Lemma 4 in the following way:
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• B1(c) samples s1 ←$ {0, 1}N and outputs state stB := c and p := gs1 .
• B2(stB, p̃) computes the first answer as p̃ ← V(c, p̃) and the second answer as p̃′ ←

recover(st′,V(c, p̃′)) with st′, p̃′ ← randomize(p̃), chooses S := {g−N , . . . , gN}, and
outputs (ã, ã′, S).

Applying Lemma 4 with the adversary above to the k-th iteration (for each k ∈ [λ ·
(r(λ))3]), shows that

Pr
[
p̃ ̸= p̃′ ∧ p′

p
∈ {g−N , . . . , gN}

]
≤ negl(λ),

where this probability is taken over the distribution Hyb3(λ, N), and p̃, p̃′ denote the val-
ues computed in the k-th iteration, and p = recover(st, p̃), p′ = recover(st, p̃′). Therefore:

Pr[Hyb3(λ, N) = 1] ≥ Pr[Hyb2(λ, N) = 1]− negl(λ) .

– Now we switch from νD,A(c) to its estimation. That is, in Hyb3(λ, N), replace

if νD,A(c) <
1

2r(λ) , return 1 by if C(14r(λ), c) <
3

4r(λ) , return 1 ,

and call the new distribution Hyb4(λ, N). Note that by Lemma 13, for any configuration
c with νD,A(c) < 1

2r(λ) , the probability of C(14r(λ), c) ≥ 3
4r(λ) is negligible, i.e., Hyb4(λ, N)

is likely to return 1. For any other c, the probability of returning 1 may only increase by
making this change. Thus,

Pr[Hyb4(λ, N) = 1] ≥ Pr[Hyb3(λ, N) = 1]− negl(λ) .

– Now, we replace the random query gs1 by a randomization of the actual query p that
Eans wants to answer.
Let Hyb5,k(λ, N) be the same as Hyb4(λ, N), except that we add the line

p← A(c)

right after generating c, and in the first k iterations of the loop we replace

s1 ←$ {0, 1}N

st, p̃← randomize(gs1)
by st, p̃← randomize(p) .

We apply chosen vector indistinguishability (Lemma 5) to the following adversary B1,B2.
• B1(c) runs p← A(c), samples α←$ Z∗q , and returns stB := c, pα.
• B2(stB, p̃) behaves like Hyb4,k−1, except that it does not execute the first two steps

that sample c and p, and in the k-th iteration, it uses p̃ directly instead of computing
it as a randomization of gs1 .

Note that the distribution CVAD,B1,B2(λ, N, 0) is identical to Hyb5,k−1, and the distribu-
tion CVAD,B1,B2(λ, N, 1) is identical to Hyb5,k. Thus, by Lemma 5, the following holds
for all k ≥ 1: ∣∣∣Pr[Hyb5,k(λ, N) = 1]− Pr[Hyb5,k−1(λ, N) = 1]

∣∣∣ ≤ negl(λ)

Let Hyb5(λ, N) = Hyb5,λ·(r(λ))3(λ, N) denote the hybrid in which all loop iterations have
been modified. Then,

|Pr[Hyb5(λ, N) = 1]− Pr[Hyb4(λ, N) = 1]| ≤ negl(λ) .
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– In Hyb5(λ, N), replace the line

if C(14r(λ), c) <
3

4r(λ) , return 1 by if νD,A(c) <
1

r(λ) , return 1 ,

and call the new distribution Hyb6(λ, N). We use Lemma 13 again, which shows that

Pr[Hyb6(λ, N) = 1] ≥ Pr[Hyb5(λ, N) = 1]− negl(λ) .

Finally, by the hybrid argument, we have shown that

Pr[Hyb6(λ, N) = 1] ≥ 1− negl(λ) .

Furthermore, note that

Pr[Hyb6(λ, N) = 1] = Pr
[

νD,A(c) ≥ 1
r(λ)

⇒ Eans(1r(λ), c,p) ̸= ⊥

∣∣∣∣∣c = (pp, d, stD)← ConfD(λ, N)
p← A(c)

]
,

which concludes the proof of Lemma 9. ⊓⊔

4.9 Proof of Lemma 10 (Random Subset Testing)

Note that, since all sk are sampled independently of each other, it suffices to show the
following:

Pr
s←${0,1}N

 ∏
i∈[N ]

e
s[i]
i ∈ {g0, . . . , gN}

 ≤ 1
2 .

Fix s[i] ∈ {0, 1} for all i ∈ [N ] \ {i∗}. It suffices to show that

Pr
s[i∗]←${0,1}

e
s[i∗]
i∗ ·

∏
i∈[N ]\{i∗}

e
s[i]
i ∈ {g0, . . . , gN}

 ≤ 1
2 ,

i.e., at most one of ∏
i∈[N ]\{i∗}

e
s[i]
i and ei∗ ·

∏
i∈[N ]\{i∗}

e
s[i]
i

is in {g0, . . . , gN}. Note that if this is the case for the left term, then the right term will be
equal to ei∗ · gm for some m ∈ {0, . . . , N}.

Now assume that, additionally, ei∗ · gm ∈ {g0, . . . , gN}. This implies that ei∗ = gm′ for
some m′ ∈ {−N, . . . , N}, which contradicts this lemma’s assumptions. ⊓⊔
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A Proof of Lemma 1 (DDH Lemma)

Define hybrid Hybi as the following distribution:
(
G, q, g, (ga1 , . . . , gaN ),

(gc1 , . . . , gci , gai+1·r, . . . , gaN ·r)
)

∣∣∣∣∣∣∣∣∣
(G, q, g)← GG(1λ)

a1, . . . , aN ←$ Zq

c1, . . . , ci ←$ Zq

r←$ Zq


Note that Hyb0 is identical to the left-hand side of the Lemma’s statement, and HybN is iden-
tical to the right-hand side (because a random vector h←$ GN is the same as (gc1 , . . . , gcN )
for random c1, . . . , cN ←$ Zq). Thus, it just remains to prove Hybi ≈c Hybi−1 for i ∈ [N ].

Let A be an adversary that distinguishes Hybi and Hybi−1, i.e.,∣∣Pr[A(I) = 1 | I ← Hybi−1(λ)]− Pr[A(I) = 1 | I ← Hybi(λ)]
∣∣ ≤ negl(λ) . (26)

Then we construct adversary B(G, q, g, x, y, z) for DDH as follows:

– Sample random a1, . . . , ai−1, ai+1, . . . , aN ←$ Zq.
– Sample random c1, . . . , ci−1 ←$ Zq.
– Output A(G, q, g, (ga1 , . . . , gai−1 , y, gai+1 , . . . , gaN ), (gc1 , . . . , gci−1 , z, xai+1 , . . . , xaN )).

There are two cases:

1. If the input for B is generated as (G, q, g) ← GG(1λ) and x = gr, y = ga, z = ga·r with
r, a←$ Zq, then B(G, q, g, x, y, z) is identical to running A(I) for I ← Hybi−1(λ).

2. If the input for B is generated as (G, q, g) ← GG(1λ) and x = gr, y = ga, z = gc with
r, a, c←$ Zq, then B(G, q, g, x, y, z) is identical to running A(I) for I ← Hybi(λ).

Note that case (1) means that B was run with an input generated using the left-hand side
distribution of DDH, and case (2) means that B was run with an input generated using the
right-hand side distribution of DDH. By the DDH assumption, this implies Equation (26).

⊓⊔

B Combining Validations with Queries

In this section, we prove that it is possible to jointly run the validation and query procedures.
Compared to the setting considered in the main body of this paper, this approach will save
the validation round-trip that a client needs to perform before making its first query.

Consider any APIR scheme that fulfills privacy with abort. We construct a scheme APIR′
identically to APIR, except that every query has a built-in validation. If the validation fails,
then Rec aborts.

– APIR′.Query(i) runs (stv, v) ← APIR.VQuery() and (stq, q) ← APIR.Query(i). It outputs
state (stv, stq) and query (v, q).

– APIR′.Answer(x, (v, q)) returns (APIR.VAnswer(x, v), APIR.Answer(x, q)).
– APIR′.Rec((stv, stq), d, (av, aq)) runs t ← APIR.VCheck(stv, d, av) and b ← Rec(stq, d, aq).

If t = 0, it outputs ⊥. Otherwise, it outputs b.

The scheme APIR′ does not contain any validation algorithms VQuery, VAnswer, and
VCheck. Thus, while integrity of APIR′ follows immediately from integrity of APIR, our orig-
inal notion of privacy with abort (Definition 6) does not even match the syntax of APIR′
anymore. Instead, we modify the PRIV/A game (Figure 2) by removing steps 2-4, and we
say that APIR′ fulfills privacy with abort if the output of the new game PRIV/A′ is indis-
tinguishable for any i0(λ) and i1(λ).
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Lemma 14. If APIR fulfills privacy with abort, then APIR′ fulfills the modified notion of
privacy with abort.

Proof sketch. Let A∗ := (D,A1,A2) be an adversary that breaks the modified notion of
privacy with abort in APIR′. That is, A1(c, (v, q)) outputs a state stA and answers av, aq,
and A2(stA, abort′) outputs a decision bit.

We construct an adversary B∗ := (D,B1,B2,B3) against privacy with abort in scheme
APIR as follows:

– B1(c, v) attempts to pass validation v by generating an arbitrary query, say st∗q, q∗ ←
APIR.Query(1), and then running st∗A, av, a∗q ← A1(c, (v, q∗)). It outputs state stB := c
and validation answer av. (Note that st∗A, a∗q will not be used at all, because B1 just tries
to get past the validation requirement of PRIV/A.)

– B2(stB, q) generates a validation st∗v, v∗ ← APIR.VQuery() and runs stA, a∗v, aq ← A1(c, (v∗, q)).
It checks t ← APIR.VCheck(st∗v, d, a∗v), and then outputs state st′B := (stA, t) and answer
aq.

– B3(st′B, abort) computes the modified abort bit abort′ := I[t = 0 ∨ abort], and then runs
and outputs A2(stA, abort′).

If we were to remove line 4 from the definition of PRIV/A (which returns 0 whenever B1
does not respond successfully to validation v), then the distribution of PRIV/AB∗(λ, N, i)
would be identical to that of PRIV/A′A∗(λ, N, i). Furthermore, B1 simply answers the ini-
tial validation v (which is completely independent of v∗) by querying A1 together with
a query generated for index 1. Therefore, for any i ∈ [N ] and fixed configuration c ∈
Supp(ConfD(λ, N)), we get

Pr[PRIV/AB∗
APIR(c, i) = 1] = Pr[PRIV/AA∗

APIR(c, i) = 1] · µA∗(c, 1) ,

where the experiments above use the fixed configuration c instead of generating it newly, and
µA∗(c, j) is the probability of A∗ successfully passing the validation component of a query
APIR′.Query(j).

Furthermore, by standard privacy, for any ib ∈ [N ] we have∣∣∣E
c
[µA∗(c, 1)]− E

c
[µA∗(c, ib)]

∣∣∣ ≤ negl(λ) ,

where both expectations are taken over the random choice of c← ConfD(λ, N).
However, because A∗ breaks the modified notion of privacy with abort, we know that

Ec[µA∗(ib)] (for at least one of b = 0, 1) is not negligible. Combining this with the previous
two equations shows that B∗ breaks privacy with abort of APIR. ⊓⊔
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