
A Modular Approach to Unclonable Cryptography

Prabhanjan Ananth∗

UCSB

Amit Behera†

Ben-Gurion University

Abstract

We explore a new pathway to designing unclonable cryptographic primitives. We propose a
new notion called unclonable puncturable obfuscation (UPO) and study its implications for
unclonable cryptography. Using UPO, we present modular (and in some cases, arguably, simple)
constructions of many primitives in unclonable cryptography, including, public-key quantum
money, quantum copy-protection for many classes of functionalities, unclonable encryption, and
single-decryption encryption.

Notably, we obtain the following new results assuming the existence of UPO:

• We show that any cryptographic functionality can be copy-protected as long as this func-
tionality satisfies a notion of security, which we term puncturable security. Prior feasibility
results focused on copy-protecting specific cryptographic functionalities.

• We show that copy-protection exists for any class of evasive functions as long as the asso-
ciated distribution satisfies a preimage-sampleability condition. Prior works demonstrated
copy-protection for point functions, which follows as a special case of our result.

We put forward a candidate construction of UPO and prove two notions of security, each based
on the existence of (post-quantum) sub-exponentially secure indistinguishability obfuscation and
one-way functions, the quantum hardness of learning with errors, and a new conjecture called
simultaneous inner product conjecture.

∗prabhanjan@cs.ucsb.edu
†behera@post.bgu.ac.il

1

Contents

1 Introduction 3
1.1 Our Contributions in a Nutshell . 4
1.2 Our Contributions . 5
1.3 Technical Overview . 10

2 Preliminaries 15
2.1 Quantum Algorithms . 15

3 Unclonable Puncturable Obfuscation: Definition 16
3.1 Security . 17
3.2 Composition Theorem . 19

4 Conjectures 21

Part I: Constructions of Unclonable Puncturable Obfuscation 23

5 Direct Construction 23
5.1 A New Public-Key Single-Decryptor Encryption Scheme 23
5.2 Copy-Protection for PRFs with Preponed Security 31
5.3 UPO for Keyed Circuits from Copy-Protection with Preponed Security 40

6 Construction from Quantum State iO 55

Part II: Applications 57

7 Applications 57
7.1 Notations for the applications . 58
7.2 Copy-Protection for Puncturable Function Classes 58
7.3 Copy-Protection for Puncturable Cryptographic Schemes 61
7.4 Public-key Single-Decryptor Encryption . 67
7.5 Unclonable Encryption . 88
7.6 Copy-Protection for Evasive Functions . 89

A Unclonable Cryptography: Definitions 102
A.1 Quantum Copy-Protection . 102
A.2 Public-Key Single-Decryptor Encryption . 103
A.3 Unclonable Encryption . 106

B Related Work 107

C Additional Preliminaries 109
C.1 Indistinguishability Obfuscation (IO) . 109

2

1 Introduction

Unclonable cryptography leverages the no-cloning principle of quantum mechanics [WZ82, Die82]
to build many novel cryptographic notions that are otherwise impossible to achieve classically. This
has been an active area of interest since the 1980s [Wie83]. In the past few years, researchers have
investigated a dizzying variety of unclonable primitives such as quantum money [AC12, Zha19,
Shm22, LMZ23] and its variants [RS19, BS20, RZ21], quantum one-time programs [BGS13], copy-
protection [Aar09, CLLZ21], tokenized signatures [BS16, CLLZ21], unclonable encryption [Got02,
BL20] and its variants [KN23], secure software leasing [AL21], single-decryptor encryption [GZ20,
CLLZ21], and many more [BKL23, GMR23, JK23].

Establishing the feasibility of unclonable primitives has been quite challenging. The adversarial
structure considered in the unclonability setting (i.e., spatially separated and entangled) is quite
different from what we typically encounter in the traditional cryptographic setting. This makes
it difficult to leverage traditional classical techniques, commonly used in cryptographic proofs, to
argue the security of unclonable primitives. As a result, there are two major gaping holes in the
area.

• Unsolved Foundational Questions: Despite the explosion of results in the past few
years, many fundamental questions in this area remain to be solved. One particular research
direction relevant to our work is the design of quantum copy-protection schemes. Quantum
copy-protection, first invented by [Aar05], is arguably one of the most fundamental primitives
of unclonable cryptography besides quantum money.

• Lack of Abstractions: Due to the lack of good abstractions, proofs in the area of un-
clonable cryptography tend to be complex and use sophisticated tools, making the literature
less accessible to the broader research community. This makes not only verification of proofs
difficult but also makes it harder to use the techniques to obtain new feasibility results.

Overarching goal of our work. We advocate for a modular approach to designing unclonable
cryptography. Our goal is to identify an important unclonable cryptographic primitive that would
serve as a useful abstraction leading to the design of other unclonable primitives. Ideally, we would
like to abstract away all the complex details in the instantiation of this primitive, and it should be
relatively easy, even to classical cryptographers, to use this primitive to study unclonability in the
context of other cryptographic primitives. We believe that the identification and instantiation of
such a primitive will speed up the progress in the design of unclonable primitives.

Indeed, similar explorations in other contexts, such as classical cryptography, have been fruitful.
For instance, the discovery of indistinguishability obfuscation [BGI+01, GGH+16] (iO) revolution-
ized cryptography and led to the resolution of many open problems (for instance: [SW14, GGHR14,
BZ17, BPR15]). Hence, there is merit to exploring the possibility of such a primitive in unclonable
cryptography, as well.

Thus, we ask the following question:

Is there an “iO-like” primitive for unclonable cryptography?

We seek the pursuit of identifying unclonable primitives that would have a similar impact on
unclonable cryptography as iO did on classical cryptography.

3

1.1 Our Contributions in a Nutshell

In our search for an “iO-like” primitive for unclonable cryptography, we propose a new notion called
unclonable puncturable obfuscation (UPO) and explore its impact on unclonable cryptography.

New Feasibility Results. Specifically, using UPO and other well-studied cryptographic tools,
we demonstrate the following new results.

• We show any class of functionalities can be copy-protected as long as they are puncturable
(more details in Section 1.2).

• We show that a large class of evasive functionalities can be copy-protected.

The above two results not only subsume all the copy-protectable functionalities studied in prior
works but also capture new functionalities.

Even for functionalities that have been studied before our work, we get qualitatively new re-
sults. For instance, our result shows that any puncturable digital signature can be copy-protected
whereas the work of [LLQZ22] shows a weaker result that the digital signature of [SW14] can be
copy-protected. We get similar conclusions for copy-protection for pseudorandom functions.

Implication to Unclonable Cryptography. Apart from quantum copy-protection, UPO im-
plies many of the foundational unclonable primitives such as public-key quantum money, unclonable
encryption, and single-decryptor encryption. The resulting constructions from UPO are conceptu-
ally different compared to the prior works. Since building unclonable primitives is a daunting task
even when relying on exotic computational assumptions, it becomes crucial to venture into alterna-
tive approaches. Moreover, this endeavor could potentially yield fresh perspectives on unclonable
cryptography.

Simpler Constructions. We believe that some of our constructions are simpler than the prior
works, albeit the underlying assumptions are incomparable1. The construction of copy-protection
for puncturable functionalities yields simpler constructions of copy-protection for pseudorandom
functions, studied in [CLLZ21], and copy-protection for signatures, studied in [LLQZ22].

One potential criticism of our work is that our construction of UPO is based on a new conjecture2

(Section 4). Specifically, we show that UPO can be based on the existence of post-quantum secure
iO, learning with errors and a new conjecture.

However, it is essential to keep in mind the following facts:

• Assumptions: If our conjectures are true, then this would mean that we can construct UPO
from indistinguishability obfuscation and other standard assumptions. On the other hand,
we currently do not know whether the other direction is true, i.e., whether UPO implies
post-quantum indistinguishability obfuscation. As a result, it is plausible that UPO could be
a weaker assumption than post-quantum iO! One consequence of this is the construction of
public-key quantum money from generic assumptions weaker than post-quantum iO.

1We assume UPO whereas the previous works assume post-quantum iO and other well-studied assumptions.
2We also have a second construction, which is conceptually different from quantum state iO and a new notion of

unclonable encryption. See Section 6.

4

If our conjectures are false, by itself, this does not refute the existence of UPO. We would
like to emphasize that there is no reason to believe these conjectures are necessary for the
existence of UPO. Instead, it merely suggests that we need a different approach to investigate
the feasibility of UPO.

• Pushing the Feasibility Landscape: Time and time again, in cryptography, we have been
forced to invent new assumptions. In numerous instances, these assumptions have unveiled a
previously uncharted realm of cryptographic primitives, expanding our understanding beyond
what we once deemed feasible. While not all of the computational assumptions have survived
the test of time, in some cases3, the insights gained from their cryptanalysis have helped us
to come up with more secure instantiations in the future. In a similar vein, being aggressive
with exploring new assumptions could push the boundaries of unclonable cryptography.

We also present another construction of UPO from quantum state iO and a new notion of unclonable
encryption, referred to as leakage-resilient unclonable encryption. We discuss this more at the end
of Section 1.2.

1.2 Our Contributions

Definition. We discuss our results in more detail. Roughly speaking, unclonable puncturable
obfuscation (UPO) defined for a class of circuits C in P/Poly, consists of two QPT algorithms
(Obf,Eval) defined as follows:

• Obfuscation algorithm: Obf takes as input a classical circuit C ∈ C and outputs a
quantum state ρC .

• Evaluation algorithm: Eval takes as input a quantum state ρC , an input x, and outputs
a value y.

In terms of correctness, we require y = C(x). To define security, as is typically the case for unclon-
able primitives, we consider non-local adversaries of the form (A,B, C). The security experiment,
parameterized by a distribution DX , is defined as follows:

• A (Alice) receives as input a quantum state ρ∗ that is generated as follows. A sends a circuit
C to the challenger, who the samples a bit b uniformly at random and samples

(
xB, xC

)
from

DX . If b = 0, it sets ρ∗ to be the output of Obf on input C, or if b = 1, it sets ρ∗ to be
the output of Obf on G, where G is a punctured circuit that has the same functionality as
C on all the points except xB and xC . It is important to note that A only receives ρ∗ and in
particular, xB and xC are hidden from A.

• A then creates a bipartite state and shares one part with B (Bob) and the other part with C
(Charlie).

• B and C cannot communicate with each other. In the challenge phase, B receives xB and C
receives xC . Then, they each output bits bB and bC .

3Several candidates of post-quantum indistinguishability obfuscation had to be broken before a secure candidate
was proposed [JLS21].

5

(A,B, C) win if bB = bC = b. The scheme is secure if they can only win with probability at most
0.5 (ignoring negligible additive factors).

Keyed Circuits. Towards formalizing the notion of puncturing circuits in a way that will be
useful for applications, we consider keyed circuit classes in the above definition. Every circuit in
a keyed circuit class is of the form Ck(·) for some key k. Any circuit class can be implemented
as a keyed circuit class using universal circuits and thus, by considering keyed circuits, we are not
compromising on the generality of the above definition.

Challenge Distributions. We could consider different settings of DX . In this work, we focus
on two settings. In the first setting (referred to as independent challenge distribution), sampling
(xB, xC) from DX is the same as sampling xB and xC uniformly at random (from the input space of
C). In the second setting (referred to as identical challenge distribution), sampling (xB, xC) from
DX is the same as sampling x uniformly at random and setting x = xB = xC .

Generalized UPO. In the above security experiment, we did not quite specify the behavior of
the punctured circuit on the points xB and xC . There are two ways to formalize and this results
in two different definitions; we consider both of them in Section 3. In the first (basic) version, the
output of the punctured circuit G on the punctured points is set to be ⊥. This version would be
the regular UPO definition. In the second (generalized) version, we allow A to control the output
of the punctured circuit on inputs xB and xC . For instance, A can choose and send the circuits µB
and µC to the challenger. On input xB (resp., xC), the challenger programs the punctured circuit
G to output µB(x

B) (resp., µC(x
C)). We refer to this version as generalized UPO.

Applications. We demonstrate several applications of UPO to unclonable cryptography.
We summarise the applications4 in Figure 1. For a broader context of these results, we refer

the reader to Appendix B (Related Work).

Copy-Protection for Puncturable Cryptographic Schemes (Section 7.2 and Sec-
tion 7.3). We consider cryptographic schemes satisfying a property called puncturable security.
Informally speaking, puncturable security says the following: given a secret key sk, generated us-
ing the scheme, it is possible to puncture the key at a couple of points xB and xC such that it is
computationally infeasible to use the punctured secret key on xB and xC . We formally define this
in Section 7.3.

We show the following:

Theorem 1. Assuming UPO for P/poly, there exists copy-protection for puncturable cryptographic
schemes.

Prior works [CLLZ21, LLQZ22] aimed at copy-protecting specific cryptographic functionalities
whereas we, for the first time, characterize a broad class of cryptographic functionalities that can
be copy-protected.

As a corollary, we obtain the following results assuming UPO.

4We refer the reader unfamiliar with copy-protection, single-decryptor encryption, or unclonable encryption to the
introduction section of [AKL23] for an informal explanation of these primitives.

6

Unclonable Puncturable Obfuscation

Section 7.3

Copy-Protection for Spunc

Copy-Protection for Signatures

Quantum Money

Section 7.2

Copy-Protection for Fpunc

Copy-Protection for PRFs

Section 7.6

Copy-Protection for Fevasive

Copy-Protection for Point Functions

Section 7.4

Single-Decryptor Encryption

Section 7.5

Unclonable Encryption

Figure 1: Applications of Unclonable Puncturable Obfuscation. Spunc denotes cryptographic
schemes satisfying puncturable property. Fpunc denotes cryptographic functionalities satisfying
functionalities satisfying puncturable property. Fevasive denotes functionalities that are evasive
with respect to a distribution D satisfying preimage-sampleability property. The dashed lines de-
note corollaries of our main results. The blue-filled boxes represent primitives whose feasibility was
unknown prior to our work. The red-filled boxes represent primitives for which we get qualitatively
different results or from incomparable assumptions when compared to previous works.

• We show that any class of puncturable pseudorandom functions that can be punctured at
two points [BW13, BGI14] can be copy-protected. The feasibility result of copy-protecting
pseudorandom functions was first established in [CLLZ21]. A point to note here is that
in [CLLZ21], given a class of puncturable pseudorandom functions, they transform this into
a different class of pseudorandom functions5 that is still puncturable and then copy-protect
the resulting class. On the other hand, we show that any class of puncturable pseudorandom
functions, which allows for the puncturing of two points, can be copy-protected. Hence, our
result is qualitatively different than [CLLZ21].

• We show that any digital signature scheme, where the signing key can be punctured at two
points, can be copy-protected. Roughly speaking, a digital signature scheme is puncturable if
the signing key can be punctured on two messages mB and mC such that given the punctured
signing key, it is computationally infeasible to produce a signature on one of the punctured
messages. Our result rederives and generalizes a recent result by [LLQZ22] who showed how
to copy-protect the digital signature scheme of [SW14].

In the technical sections, we first present a simpler result where we copy-protect puncturable func-
tionalities (Section 7.2) and we then extend this result to achieve copy-protection for puncturable
cryptographic schemes (Section 7.3).

Copy-Protection for Evasive Functions (Section 7.6). We consider a class of evasive func-
tions associated with a distribution D satisfying a property referred to as preimage-sampleability

5Spefically, they add a transformation to generically make the pseudorandom function extractable.

7

which is informally defined as follows: there exists a distribution D′ such that sampling an evasive
function from D along with an accepting point (i.e., the output of the function on this point is
1) is computationally indistinguishable from sampling a function from D′ and then modifying this
function by injecting a uniformly random point as the accepting point. We show the following.

Theorem 2. Assuming generalized UPO for P/poly, there exists copy-protection for a class of
functions that is evasive with respect to a distribution D satisfying preimage-sampleability property.

Unlike Theorem 1, we assume generalized UPO in the above theorem.
As a special case, we obtain copy-protection for point functions. A recent work [CHV23] pre-

sented construction of copy-protection for point functions from post-quantum iO and other standard
assumptions. Qualitatively, our results are different in the following ways:

• The challenge distribution considered in the security definition of [CHV23] is arguably not
a natural one: with probability 1

3 , B and C get as input the actual point, with probability
1
3 , B gets the actual point while C gets a random value and finally, with probability 1

3 , B
gets a random value while C gets the actual point. On the other hand, we consider identical
challenge distribution; that is, B and C both receive the actual point with probability 1

2 or
they both receive a value picked uniformly at random.

• While the result of [CHV23] is restricted to point functions, we show how to copy-protect
functions where the number of accepting points is a fixed polynomial.

We clarify that none of the above results on copy-protection contradicts the impossibility result
by [AL21] who present a conditional result ruling out the possibility of copy-protecting contrived
functionalities.

Unclonable Encryption (Sections 7.4 and 7.5). Finally, we show, for the first time, an
approach to construct unclonable encryption in the plain model. We give a direct and simple
construction of unclonable encryption for bits, see Section 7.5.

Theorem 3. Assuming generalized UPO for P/poly, there exists a one-time unclonable bit-encryption
scheme in the plain model.

We also obtain a construction of unclonable encryption for arbitrary fixed length messages by
first constructing public-key single-decryptor encryption (SDE) with an identical challenge distri-
bution.

Theorem 4. Assuming generalized UPO for P/poly, post-quantum indistinguishability obfuscation
(iO), and post-quantum one-way functions, there exists a public-key single-decryptor encryption
scheme with security against identical challenge distribution, see Section 7.4.

[GZ20] showed that SDE with such a challenge distribution implies unclonable encryption. Prior
work by [CLLZ21] demonstrated the construction of public-key single-decryptor encryption with
security against independent challenge distribution, which is not known to imply unclonable en-
cryption. We, thus, obtain the following corollary.

Corollary 5. Assuming generalized UPO, post-quantum iO, and post-quantum one-way functions,
there exists a one-time unclonable encryption scheme in the plain model.

8

Note that using the compiler of [AK21], we can generically transform a one-time unclonable
encryption into a public-key unclonable encryption in the plain model under the same assumptions
as above.
We note that this is the first construction of unclonable encryption in the plain model. All the
previous works [BL20, AKL+22, AKL23] construct unclonable encryption in the quantum random
oracle model. The disadvantage of our construction is that they leverage computational assumptions
whereas the previous works [BL20, AKL+22, AKL23] are information-theoretically secure.

Apart from unclonable encryption, single-decryptor encryption also implies public-key quantum
money, thereby giving the following corollary.

Corollary 6. Assuming generalized UPO, post-quantum iO, and post-quantum one-way functions,
there exists a public-key quantum money scheme.

The construction of quantum money from UPO offers a conceptually different approach to con-
structing public-key quantum money in comparison with other quantum money schemes such
as [Zha19, LMZ23, Zha23].

As an aside, we also present a lifting theorem that lifts a selectively secure single-decryptor
encryption into an adaptively secure construction, assuming the existence of post-quantum iO.
Such a lifting theorem was not known prior to our work.

Construction. Finally we demonstrate a construction of generalized UPO for all classes of effi-
ciently computable keyed circuits. We show that the same construction is secure with respect to
both identical and independent challenge distributions. Specifically, we show the following:

Theorem 7 (Informal). Suppose C consists of polynomial-sized keyed circuits. Assuming the fol-
lowing:

• Post-quantum sub-exponentially secure indistinguishability obfuscation for P/poly,

• Post-quantum sub-exponentially secure one-way functions,

• Learning with errors secure against QPT adversaries and,

• Simultaneous inner product conjecture.

there exists generalized UPO with respect to identical DX for C.

On the Simultaneous Inner Product Conjecture: Technically we need two different ver-
sions of the simultaneous inner product conjecture (Conjecture 14 and Conjecture 15) to prove
the security of our construction with respect to identical and independent challenge distributions.
At a high level, the simultaneous inner product conjecture states that two (possibly entangled)
QPT adversaries (i.e., non-local adversaries) should be unsuccessful in distinguishing (r, ⟨r,x⟩+m)

versus (r, ⟨r,x⟩), where r
$←− Znq ,x

$←− Znq ,m
$←− Zq for every prime q ≥ 1. Moreover, the adversaries

receive as input a bipartite state ρ that could depend on x with the guarantee that it should be
computationally infeasible to recover x. As mentioned above, we consider two different versions of
the conjecture. In the first version (identical), both the adversaries get the same sample (r, ⟨r,x⟩)
or they both get (r, ⟨r,x⟩ +m). In the second version (independent), the main difference is that
r and x are sampled independently for both adversaries. Weaker versions of this conjecture have

9

been investigated and proven to be unconditionally true [AKL23, KT22].

Composition: Another contribution of ours is a composition theorem (see Section 3.2), where we
show how to securely compose unclonable puncturable obfuscation with a functionality-preserving
compiler. In more detail, we show the following. Suppose UPO is a secure unclonable puncturable
obfuscation scheme and let Compiler be a functionality-preserving circuit compiler. We define
another scheme UPO′ such that the obfuscation algorithm of UPO′, on input a circuit C, first runs
the circuit compiler on C to obtain C̃ and then it runs the obfuscation of UPO on C̃ and outputs
the result. The evaluation process can be similarly defined. We show that the resulting scheme
UPO′ is secure as long as UPO is secure. Our composition result allows us to compose UPO with
other primitives such as different forms of program obfuscation without compromising on security.
We use our composition theorem in some of the applications discussed earlier.

Concurrent and Independent Work. Concurrent to our work is a recent work by Coladangelo
and Gunn [CG23] who also showed the feasibility of copy-protecting puncturable functionalities and
point functions albeit using a completely different approach. At a high level, the themes of the
two papers are quite different. Our goal is to identify a central primitive in unclonable cryptog-
raphy whereas their work focuses on exploring applications of quantum state indistinguishability
obfuscation, a notion of indistinguishability obfuscation for quantum computations, to unclonable
cryptography.

We discuss the other differences below.

• Unlike our work, which only focuses on search puncturing security, their work considers both
search and decision puncturing security.

• The two notions of obfuscation considered in both works seem to be incomparable. While the
problem of obfuscating quantum computations has been notoriously challenging, their work
considers the (weaker) problem of obfuscating a subclass of quantum computations that are
implementations of classical functionalities.

• They demonstrate the feasibility of quantum state indistinguishability obfuscation in the
quantum oracle model. We demonstrate the feasibility of UPO based on well-studied crypto-
graphic assumptions and a new conjecture.

Subsequent Work. Subsequent to [CG23], we were able to show that the notion of quantum
state iO introduced by Colandangelo and Gunn implies UPO, assuming a strong form of unclonable
encryption, referred to as leakage-resilient unclonable encryption. We discuss this in Section 6.

Subsequent to [CG23], Bartusek, Brakerski and Vaikuntanathan [BBV24] obtained a construc-
tion of quantum state iO in the classical oracle model.

1.3 Technical Overview

We give an overview of the techniques behind our construction of UPO and the applications of
UPO. We start with applications.

10

1.3.1 Applications

Copy-Protecting Puncturable Cryptographic Schemes. We begin by exploring methods
to copy-protect puncturable pseudorandom functions. Subsequently, we generalize this approach
to achieve copy-protection for a broader class of puncturable cryptographic schemes.

Case Study: Puncturable Pseudorandom Functions. Let F = {fk(·) : {0, 1}n → {0, 1}m :
k ∈ Kλ} be a puncturable pseudorandom function (PRF) with λ being the security parameter and
Kλ being the key space. To copy-protect fk(·), we simply obfuscate fk(·) using an unclonable
puncturable obfuscation scheme UPO. To evaluate the copy-protected circuit on an input x, run
the evaluation procedure of UPO.

To argue security, let us look at two experiments:

• The first experiment corresponds to the regular copy-protection security experiment. That
is, A receives as input a copy-protected state ρfk , which is copy-protection of fk where k is
sampled uniformly at random from the key space. It then creates a bipartite state which
is split between B and C, who are two non-communicating adversaries who can share some
entanglement. Then, B and C independently receive as input x, which is picked uniformly at
random. (B, C) win if they simultaneously guess fk(x).

• The second experiment is similar to the first experiment except A receives as input copy-
protection of fk punctured at the point x, where x is the same input given to both B and
C.

Thanks to the puncturing security of F , the probability that (B, C) succeeds in the second experi-
ment is negligible in λ. We would like to argue that (B, C) succeed in the first experiment also with
probability negligible in λ. Suppose not, we show that the security of UPO is violated.

Reduction to UPO: The reduction RA samples a uniformly random fk and forwards it to the
challenger of the UPO game. The challenger of the UPO game then generates either an obfuscation
of fk or the punctured circuit fk punctured at x which is then sent to RA, who then forwards this
to A who prepares the bipartite state. The reduction RB (resp., RC) then receives as input x which
it duly forwards to B (resp., C). Then, B and C each output yB and yC . Then, RB outputs the bit
0 if fk(x) = yB, otherwise it outputs 1. Similarly, RC outputs bit 0 if fk(x) = yC , otherwise it
outputs 1. The reason behind boldifying “bit 0” part will be discussed below.

Let us see how (RA,RB,RC) fares in the UPO game.

• Case 1. Challenge bit is b = 0. In this case, RA receives as input obfuscation of fk with
respect to UPO. Denote p0 to be the probability that (RB,RC) output (0, 0).

• Case 2. Challenge bit is b = 1. Here, RA receives as input obfuscation of the circuit fk
punctured at x. Similarly, denote p1 to be the probability that (RB,RC) output (1, 1).

From the security of UPO, we have the following: p0+p1
2 ≤ 1

2 + µ(λ), for some negligible function
µ(·). From the puncturing security of F , the probability that (RB,RC) outputs (1, 1) is at least
1−ν(λ), for some negligible function ν. In other words, p1 ≥ 1−ν(λ). From this, we can conclude,
p0 is negligible which proves the security of the copy-protection scheme.

11

Perhaps surprisingly (at least to the authors), we do not know how to make the above reduction
work if RB (resp., RC) instead output bit 1 in the case when fk(x) = yB (resp., fk(x) = yC). This
is because we only get an upper bound for p1 which cannot be directly used to determine an upper
bound for p0.

Generalizing to Puncturable Cryptographic Schemes. We present two generalizations of
the above approach. We first generalize the above approach to handle puncturable circuit classes
in Section 7.4. A circuit class C, equipped with an efficient puncturing algorithm Puncture, is said
to be puncturable6 if given a circuit C ∈ C, we can puncture C on a point x to obtain a punctured
circuit G such that given punctured circuit G, it is computationally infeasible to predict C(x). As
we can see, puncturable pseudorandom functions are a special case of puncturable circuit classes.
The template to copy-protect an arbitrary puncturable circuit class, say C, is essentially the same
as the above template to copy-protect puncturable pseudorandom functions. To copy-protect C,
obfuscate C using the scheme UPO. The evaluation process and the proof of security proceed along
the same lines as above.

We then generalize this further to handle puncturable7 cryptographic schemes. We consider an
abstraction of a cryptographic scheme consisting of efficient algorithms (Gen,Eval,Puncture,Verify)
with the following correctness guarantee: the verification algorithm on input (pk, x, y) outputs 1,
where Gen(1λ) produces the secret key-public key pair (sk, pk) and the value y is the output of Eval
on input (sk, x). The algorithm Puncture on input (sk, x) outputs a punctured circuit that has the
same functionality as Eval(sk, ·) on all the points except x. The security property roughly states
that predicting the output Eval(sk, x) given the punctured circuit should be computationally infea-
sible. The above template of copy-protecting PRFs can similarly be adopted for copy-protecting
puncturable cryptographic schemes.

Copy-Protecting Evasive Functions. Using UPO to construct copy-protection for evasive
functions turns out to be more challenging. To understand the difficulty, let us compare both the
notions below:

• In a UPO scheme, A gets as input an obfuscation of a circuit C (if the challenge bit is b = 0)
or a circuit C (if b = 1) punctured at two points xB and xC . In the challenge phase, B gets
xB and C gets xC .

• In the copy-protection for evasive function scheme, A gets as input copy-protection of C,
where C is a circuit implements an evasive function. In the challenge phase, B gets xB and C
gets xC , where (xB, xC) = (x, x) is sampled as follows: x is sampled uniformly at random (if
challenge bit is b = 0), otherwise x is sampled uniformly at random from the set of points on
which C outputs 1 (if challenge bit is b = 1).

In other words, the distribution from which A gets its input from depends on the bit b in UPO but
the challenges given to B and C are always sampled from the same distribution. The setting in the
case of copy-protection is the opposite: the distribution from which A gets its input is always fixed
while the challenge distribution depends on the bit b.

6We need a slightly more general version than this. Formally, in Definition 49, we puncture the circuit at two
points (and not one), and then we require the adversary to predict the output of the circuit on one of the points.

7We again consider a more general version where the circuit is punctured at two points.

12

Preimage Sampling Property: To handle this discrepancy, we consider a class of evasive func-
tions called preimage sampleable evasive functions. The first condition we require is that there is a
distribution D from which we can efficiently sample a circuit C (representing an evasive function)
together with an input x such that C(x) = 1. The second condition states that there exists another
distribution D′ from which we can sample (C ′, x′), where x′ is sampled uniformly at random and
then a punctured circuit C ′ is sampled conditioned on C ′(x′) = 1, satisfying the following property:
the distributions D and D′ are computationally indistinguishable. The second condition is devised
precisely to ensure that we can reduce the security of copy-protection to UPO.

Construction and Proof Idea: But first let us discuss the construction of copy-protection:
to copy-protect a circuit C, compute two layers of obfuscation of C. First, obfuscate C using a
post-quantum iO scheme and then obfuscate the resulting circuit using UPO. To argue security, we
view the obfuscated state given to A as follows: first sample C from D and then do the following:
(a) give ρC to A if b = 0 and, (b) ρC to A if b = 1, where ρC is the copy-protected state and b is
the challenge bit that is used in the challenge phase. So far, we have done nothing. Now, we will
modify (b). We will leverage the above conditions to modify (b) as follows: we will instead sample
from D′. Since D and D′ are computationally indistinguishable, the adversary will not notice the
change. Now, let us examine the modified experiment: if b = 0, the adversary receives ρC (defined
above), where (C, x) is sampled from D and if b = 1, the adversary receives ρC′ , where (C ′, x′) is
sampled from D′. We can show that this precisely corresponds to the UPO experiment and thus,
we can successfully carry out the reduction.

Single-Decryptor Encryption. A natural attempt to construct single-decryptor encryption
would be to leverage UPO for puncturable cryptographic schemes. After all, it would seem that
finding a public-key encryption scheme where the decryption key can be punctured at the challenge
ciphertexts would give us our desired result. Unfortunately, this does not quite work: the reason
lies in the way we defined the challenge distribution of UPO. We required that the marginals of the
challenge distribution for a UPO scheme have to be uniform. Any public-key encryption scheme
where the decryption keys can be punctured would not necessarily satisfy this requirement and
hence, we need to find schemes that do8.

We start with the public-key encryption scheme due to Sahai andWaters [SW14]. The advantage
of this scheme is that the ciphertexts are pseudorandom. First, we show that this public-key
encryption scheme can be made puncturable. Once we show this, using UPO for puncturable
cryptographic schemes (and standard iO tricks), we construct single-decryptor encryption schemes
of two flavors:

• First, we consider search security (Figure 34). In this security definition, B and C receive
ciphertexts of random messages and they win if they are able to predict the messages.

• Next, we consider selective security (Figure 37). In this security definition, B and C receive
encryptions of one of two messages adversarially chosen and they are supposed to predict
which of the two messages was used in the encryption. Moreover, the adversarially chosen
messages need to be declared before the security experiment begins and hence, the term

8Of course, we could try the aforementioned issue in a different way: we could instead relax the requirements on
the challenge distribution of UPO. Unfortunately, we currently do not know how to design an UPO for challenge
distributions that do not have uniform marginals.

13

selective security. Once we achieve this, we propose a generic lifting theorem to lift SDE
security satisfying selective security to full adaptive security (Figure 38) where the challenge
messages can be chosen later in the experiment.

1.3.2 Construction of UPO

We move on to the construction of UPO.

Starting Point: Decoupling Unclonability and Computation. We consider the following
template to design UPO. To obfuscate a circuit C, we build two components. The first component
is an unclonable quantum state that serves the purpose of authentication. The second component
is going to aid in computation once the authentication passes. In more detail, given an input x, we
first use the unclonable quantum state to authenticate x and then execute the second component
on the authenticated tag along with x to obtain the output C(x).

The purpose of designing the obfuscation scheme this way is two-fold. Firstly, the fact that the
first component is an unclonable quantum state means that an adversary cannot create multiple
copies of this. And by design, without this state, it is not possible to execute the second component.
Secondly, decoupling the unclonability and the computation part allows us to put less burden on the
unclonable state, and in particular, only require the first component for authentication. Moreover,
this approach helps us leverage existing tools in a modular way to construct UPO.

To implement the above approach, we use a copy-protection scheme for pseudorandom func-
tions [CLLZ21], denoted by CP, and a post-quantum indistinguishability obfuscation scheme, de-
noted by iO. In the UPO scheme, to obfuscate C, we do the following:

1. Copy-protect a pseudorandom function fk(·) and,

2. Obfuscate a circuit, with the PRF key k hardcoded in it, that takes as input (x, y) and
outputs C(x) if and only if fk(x) = y.

First Issue. While syntactically the above template makes sense, when proving security we run
into an issue. To invoke the security of CP, we need to argue that the obfuscated circuit does not
reveal any information about the PRF key k. This suggests that we need a much stronger object
like virtual black box obfuscation instead of iO which is in general known to be impossible [BGI+01].
Taking a closer look, we realize that this issue arose because we wanted to completely decouple the
CP part and the iO part.

Second Issue. Another issue that arises when attempting to work out the proof. At a high level,
in the security proof, we reach a hybrid where we need to hardwire the outputs of the PRF on
the challenge inputs xB and xC in the obfuscated circuit (i.e., in bullet 2 above). This creates an
obstacle when we need to invoke the security of copy-protection: the outputs of the PRF are only
available in the challenge phase (i.e., after A splits) whereas we need to know these outputs in
order to generate the input to A.

Addressing the above issues. We first address the second issue. We introduce a new security
notion of copy-protection for PRFs, referred to as copy-protection with preponed security. Roughly
speaking, in the preponed security experiment, A receives the outputs of the PRF on the challenge

14

inputs instead of being delayed until the challenge phase. By design, this stronger security notion
solves the second issue.

In order to resolve the aforementioned problem, we pull back and only partially decouple the two
components. In particular, we tie both the CP and iO parts together by making non-black-box use
of the underlying copy-protection scheme. Specifically, we rely upon the scheme by Colandangelo
et al. [CLLZ21]. Moreover, we show that Colandangelo et al. [CLLZ21] scheme satisfies preponed
security by reducing their security to the security of their single-decryptor encryption construction;
our proof follows along the same lines as theirs. Unfortunately, we do not know how to go further.
While they did show that their single-decryptor encryption construction can be based on well
studied cryptographic assumptions, the type of single-decryptor encryption scheme we need has a
different flavor. In more detail, in their scheme, they consider independent challenge distribution
(i.e., both B and C receive ciphertexts where the challenge bit is picked independently), whereas
we consider identical challenge distribution (i.e., the challenge bit for both B and C is identical).
We show how to modify their construction to satisfy security with respect to identical challenge
distribution based on the simultaneous inner product conjecture.

Summary. To summarise, we design UPO for keyed circuit classes in P/poly as follows:

• We show that if the copy-protection scheme of [CLLZ21] satisfies preponed security, UPO for
P/poly exists. This step makes heavy use of iO techniques.

• We reduce the task of proving that the copy-protection scheme of [CLLZ21] satisfies preponed
security to the task of proving that the single-decryptor encryption construction of [CLLZ21]
is secure in the identical challenge setting.

2 Preliminaries

We refer the reader to [NC10] for a comprehensive reference on the basics of quantum information
and quantum computation. We use I to denote the identity operator. We use S(H) to denote the
set of unit vectors in the Hilbert space H. We use D(H) to denote the set of density matrices in
the Hilbert space H. Let P,Q be distributions. We use dTV (P,Q) to denote the total variation
distance between them. Let ρ, σ ∈ D(H) be density matrices. We write TD(ρ, σ) to denote the
trace distance between them, i.e.,

TD(ρ, σ) =
1

2
∥ρ− σ∥1

where ∥X∥1 = Tr(
√
X†X) denotes the trace norm. We denote ∥X∥ := sup|ψ⟩{⟨ψ|X|ψ|}⟩ to be the

operator norm where the supremum is taken over all unit vectors. For a vector |x⟩, we denote its
Euclidean norm to be ∥|x⟩∥2. We use the notation M ≥ 0 to denote the fact that M is positive
semi-definite.

2.1 Quantum Algorithms

A quantum algorithmA is a family of generalized quantum circuits {Aλ}λ∈N over a discrete universal
gate set (such as {CNOT,H, T}). By generalized, we mean that such circuits can have a subset of
input qubits that are designated to be initialized in the zero state and a subset of output qubits that
are designated to be traced out at the end of the computation. Thus a generalized quantum circuit

15

Aλ corresponds to a quantum channel, which is a completely positive trace-preserving (CPTP) map.
When we write Aλ(ρ) for some density matrix ρ, we mean the output of the generalized circuit Aλ
on input ρ. If we only take the quantum gates of Aλ and ignore the subset of input/output qubits
that are initialized to zeroes/traced out, then we get the unitary part of Aλ, which corresponds to a
unitary operator which we denote by Âλ. The size of a generalized quantum circuit is the number
of gates in it, plus the number of input and output qubits.

We say that A = {Aλ}λ is a quantum polynomial-time (QPT) algorithm if there exists a polyno-
mial p such that the size of each circuit Aλ is at most p(λ). We furthermore say that A is uniform
if there exists a deterministic polynomial-time Turing machine M that on input 1λ outputs the
description of Aλ.

We also define the notion of a non-uniform QPT algorithmA that consists of a family {(Aλ, ρλ)}λ
where {Aλ}λ is a polynomial-size family of circuits (not necessarily uniformly generated), and for
each λ there is additionally a subset of input qubits of Aλ that are designated to be initialized
with the density matrix ρλ of polynomial length. This is intended to model nonuniform quantum
adversaries who may receive quantum states as advice. Nevertheless, the reductions we show in
this work are all uniform.

The notation we use to describe the inputs/outputs of quantum algorithms will largely mimic
what is used in the classical cryptography literature. For example, for a state generator algorithm
G, we write Gλ(k) to denote running the generalized quantum circuit Gλ on input |k⟩⟨k|, which
outputs a state ρk.

Ultimately, all inputs to a quantum circuit are density matrices. However, we mix-and-match
between classical, pure state, and density matrix notation; for example, we may write Aλ(k, |θ⟩, ρ)
to denote running the circuit Aλ on input |k⟩⟨k| ⊗ |θ⟩⟨θ| ⊗ ρ. In general, we will not explain all the
input and output sizes of every quantum circuit in excruciating detail; we will implicitly assume
that a quantum circuit in question has the appropriate number of input and output qubits as
required by the context.

3 Unclonable Puncturable Obfuscation: Definition

We present the definition of an unclonable puncturable obfuscation scheme in this section.

Keyed Circuit Class. A class of classical circuits of the form C = {Cλ}λ∈N is said to be a keyed
circuit class if the following holds: Cλ = {Ck : k ∈ Kλ}, where Ck is a (classical) circuit with input
length n(λ), output length m(λ) and K = {Kλ}λ∈N is the key space. We refer to Ck as a keyed
circuit. We note that any circuit class can be represented as a keyed circuit class using universal
circuits. We will be interested in the setting when Ck is a polynomial-sized circuit; henceforth,
unless specified otherwise, all keyed circuit classes considered in this work will consist only of
polynomial-sized circuits. We will also make a simplifying assumption that Ck and Ck′ have the
same size, where k, k′ ∈ Kλ.

Syntax. An unclonable puncturable obfuscation (UPO) scheme (Obf,Eval) for a keyed circuit
class C = {Cλ}λ∈N, consists of the following QPT algorithms:

• Obf(1λ, C): on input a security parameter λ and a keyed circuit C ∈ Cλ with input length
n(λ), it outputs a quantum state ρC .

16

• Eval(ρC , x): on input a quantum state ρC and an input x ∈ {0, 1}n(λ), it outputs (ρ′C , y).

Correctness. An unclonable puncturable obfuscation scheme (Obf,Eval) for a keyed circuit class
C = {Cλ}λ∈N is δ-correct, if for every C ∈ Cλ with input length n(λ), and for every x ∈ {0, 1}n(λ),

Pr

[
C(x) = y |

ρC←Obf(1λ,C)

(ρ′C ,y)←Eval(ρC ,x)

]
≥ δ

If δ is negligibly close to 1 then we say that the scheme is correct (i.e., we omit mentioning δ).

Remark 8. If (1 − δ) is a negligible function in λ, by invoking the almost as good as new
lemma [Aar16], we can evaluate ρ′C on another input x′ to get C(x′) with probability negligibly
close to 1. We can repeat this process polynomially many times and each time, due to the quantum
union bound [Gao15], we get the guarantee that the output is correct with probability negligibly close
to 1.

3.1 Security

Puncturable Keyed Circuit Class. Consider a keyed circuit class C = {Cλ}λ∈N, where Cλ
consists of circuits of the form Ck(·), where k ∈ Kλ, the input length of Ck(·) is n(λ) and the
output length is m(λ). We say that Cλ is said to be puncturable if there exists a deterministic
polynomial-time puncturing algorithm Puncture such that the following holds: on input k ∈ {0, 1}λ,
strings xB ∈ {0, 1}n(λ), xC ∈ {0, 1}n(λ), it outputs a circuit Gk∗ . Moreover, the following holds: for
every x ∈ {0, 1}n(λ),

Gk∗(x) =

{
Ck(x), x ̸= xB, x ̸= xC ,
⊥, x ∈ {xB, xC}.

Without loss of generality, we can assume that the size of Gk∗ is the same as the size of Ck. Note
that for every keyed circuit class, there exists a trivial Puncture algorithm. The trivial Puncture
algorithm on any input k, x1, x2, µ1, µ2, constructs the circuit Ck and then outputs the circuit G
that on input x, if x = x0 or x1 outputs ⊥, else if x ̸∈ {x1, x2} outputs Ck(x)9.

Definition 9 (UPO Security). We say that a pair of QPT algorithms (Obf,Eval) for a puncturable
keyed circuit class C, associated with puncturing procedure Puncture, satisfies UPO security with
respect to a distribution DX on {0, 1}n(λ) × {0, 1}n(λ) if for every QPT (A,B, C) in UPO.Expt (see
Figure 2), there exists a negligible function negl(λ) such that

Pr
[
1← UPO.Expt(A,B,C),DX ,C

(
1λ, b

)
: b

$←− {0, 1}
]
≤ 1

2
+ negl(λ).

3.1.1 Generalized Security

For most applications, the security definition discussed in Section 3.1 suffices, but for a couple
of applications, we need a generalized definition. The new definition generalizes the definition
in Section 3.1 in terms of puncturability as follows. We allow the adversary to choose the outputs
of the circuit generated by Puncture on the punctured points. Previously, the circuit generated by

9The output circuit Gk∗ is not of the same size as Ck, but this issue can be resolved by sufficient padding of the
circuit class.

17

UPO.Expt(A,B,C),DX ,C
(
1λ, b

)
:

• A sends k, where k ∈ Kλ, to the challenger Ch.

• Ch samples (xB, xC) ← DX (1λ) and generates Gk∗ ←
Puncture(k, xB, xC).

• Ch generates ρb as follows:

– ρ0 ← Obf(1λ, Ck(·)),
– ρ1 ← Obf(1λ, Gk∗(·))

It sends ρb to A.

• Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if b = bB = bC.

Figure 2: Security Experiment

the puncturing algorithm was such that on the punctured points, it output ⊥. Instead, we allow
the adversary to decide the values that need to be output on the points that are punctured. We
emphasize that the adversary still would not know the punctured points itself until the challenge
phase. Formally, the (generalized) puncturing algorithm GenPuncture now takes as input k ∈ Kλ,
polynomial-sized circuits µB : {0, 1}n(λ) → {0, 1}m(λ), µC : {0, 1}n(λ) → {0, 1}m(λ), strings xB ∈
{0, 1}n(λ), xC ∈ {0, 1}n(λ), if xB ̸= xC , it outputs a circuit Gk∗ such that for every x ∈ {0, 1}n(λ),

Gk∗(x) =


Ck(x), x ̸= xB, x ̸= xC

µB(x
B), x = xB

µC(x
C), x = xC ,

else it outputs a circuit Gk∗ such that for every x ∈ {0, 1}n(λ),

Gk∗(x) =

{
Ck(x), x ̸= xB

µB(x
B), x = xB.

As before, we assume that without loss of generality, the size of Gk∗ is the same as the size of Ck.
A keyed circuit class C associated with a generalized puncturing algorithm GenPuncture is

referred to as a generalized puncturable keyed circuit class. Note that for every keyed circuit
class C = {Ck}k, there exists a trivial GenPuncture algorithm, which on any input k, x1, x2, µ1, µ2,
constructs the circuit Ck and then outputs the circuit Gk∗

10 that on input x, if x = xi for any
i ∈ {0, 1}, outputs µi(xi), else if x ̸∈ {x1, x2} outputs Ck(x).

10As before, the output circuit Gk∗ may not have the same size as Ck, but this can be resolved by sufficient padding
of the complexity class.

18

Definition 10 (Generalized UPO security). We say that a pair of QPT algorithms (Obf,Eval) for
a generalized keyed circuit class C = {Cλ}λ∈N equipped with a puncturing algorithm GenPuncture,
satisfies generalized UPO security with respect to a distribution DX on {0, 1}n(λ)×{0, 1}n(λ) if
the following holds for every QPT (A,B, C) in GenUPO.Expt defined in Figure 3:

Pr
[
1← GenUPO.Expt(A,B,C),DX ,C

(
1λ, b

)
: b

$←− {0, 1}
]
≤ 1

2
+ negl(λ).

GenUPO.Expt(A,B,C),DX ,C
(
1λ, b

)
:

• A sends (k, µB, µC), where k ∈ Kλ, µB : {0, 1}n(λ) →
{0, 1}m(λ), µC : {0, 1}n(λ) → {0, 1}m(λ), to the challenger Ch.

• Ch samples (xB, xC) ← DX (1λ) and generates Gk∗ ←
Puncture(k, xB, xC , µB, µC).

• Ch generates ρb as follows:

– ρ0 ← Obf(1λ, Ck),

– ρ1 ← Obf(1λ, Gk∗)

It sends ρb to A.

• Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if b = bB = bC.

Figure 3: Generalized Security Experiment

Instantiations of DX . In the applications, we will be considering the following two distributions:

1. U{0,1}2n : the uniform distribution on {0, 1}2n. When the context is clear, we simply refer to
this distribution as U .

2. IdU{0, 1}n: identical distribution on {0, 1}n × {0, 1}n with uniform marginals. That is, the
sampler for IdU{0, 1}n is defined as follows: sample x from U{0,1}n and output (x, x). When
the context is clear, we simply refer to this distribution as IdU .

3.2 Composition Theorem

We state a useful theorem that states that we can compose a secure UPO scheme with any
functionality-preserving compiler without compromising on security.

19

Let Compile be a circuit compiler, i.e., Compile is a probabilistic algorithm that takes as input a
security parameter λ, classical circuit C and outputs another classical circuit C̃ such that C and C̃
have the same functionality. For instance, program obfuscation [BGI+01] is an example of a circuit
compiler.

Let C be a generalized puncturable keyed circuit class associated with keyspace K defined as
follows: C = {Cλ}λ∈N, where every circuit in Cλ is of the form Ck, where k ∈ Kλ, with input length
n(λ) and the output lengthm(λ). We denote GenPuncture to be a generalized puncturing algorithm
associated with C.

Let UPO = (UPO.Obf,UPO.Eval) be an unclonable puncturable obfuscation scheme for a gen-
eralized puncturable keyed circuit class G (defined below) with respect to the input distribution
DX .

We define G = {Gλ}λ∈N, where every circuit in Gλ is of the form Gk||r(·), with input length

n(λ), output length m(λ), k ∈ Kλ, and r ∈ {0, 1}t(λ). Here, t(λ) denotes the number of bits of
randomness consumed by Compile(1λ, Ck; ·). Moreover, the circuit Gk||r takes as input x ∈ {0, 1}n,
applies Compile(1λ, Ck; r) to obtain C̃k and then it outputs C̃k(x). The puncturing algorithm asso-
ciated with G is GenPuncture′ which on input k∥r and the set of inputs x1, x2 and circuits µ1, µ2,
generates Dk∗ ← GenPuncture(k, x1, x2, µ1, µ2), and then outputs the circuit Gk∗,r, where Gk∗,r is

defined as follows: it takes as input x ∈ {0, 1}n, applies Compile(1λ, Dk∗ ; r) to obtain D̃k∗ and then

it outputs D̃k∗ . The keyspace associated with G is K′ = {K′λ}λ∈N, where K′λ = Kλ × {0, 1}t(λ).

We define UPO′ = (UPO′.Obf,UPO′.Eval) as follows:

• UPO′.Obf(1λ, C) = UPO.Obf(1λ, C̃), where C̃ ← Compile(1λ, C).

• UPO′.Eval = UPO.Eval.

Proposition 11. Assuming UPO satisfies DX -generalized unclonable puncturable obfuscation se-
curity for G and Compile is a circuit compiler for C, UPO′ satisfies DX -generalized unclonable
puncturable obfuscation security for C.

Proof. Suppose there is an adversary (A,B, C) that violates the security of UPO′ with probability
p. We construct a QPT reduction (RA,RB,RC) that violates the security of UPO, also with
probability p. From the security of UPO′ it then follows that p is at most 1

2 + ε, for some negligible
function ε, which proves the theorem.

RA(1λ) first runs A(1λ) to obtain k ∈ Kλ. It then samples r
$←− {0, 1}t(λ). Then, RA forwards

k||r to the external challenger of UPO. Then, RA receives ρ∗ which it then duly forwards to A.
Similarly, even in the challenge phase, RB (resp., RC) forwards the challenge from the challenger
to B (resp., C).

It can be seen that the probability that (A,B, C) breaks the security of UPO′ is the same as the
probability that (RA,RB,RC) breaks the security of UPO.

Theorem 12 (Composition theorem). Let Compile be a circuit compiler, i.e., Compile is a prob-
abilistic algorithm that takes as input a classical circuit C and outputs another classical circuit C̃
such that C and C̃ have the same functionality. Let UPO = (UPO.Obf,UPO.Eval) be an unclonable

20

puncturable obfuscation scheme that satisfies DX -generalized unclonable puncturable obfuscation se-
curity for any class of generalized puncturable keyed circuit classs in P/poly, then the same holds for
the unclonable puncturable obfuscation scheme UPO′ = (UPO′.Obf,UPO′.Eval) defined as follows:

• UPO′.Obf(1λ, C) = UPO.Obf(1λ,Compile(C)) for every circuit C.

• UPO′.Eval = UPO.Eval.

Proof. Let C be an arbitrary generalized puncturable keyed class in P/poly. Let G be the gen-
eralized puncturable keyed class in P/poly derived from C as defined on Page 20. Note that by
the assumption in the theorem, UPO satisfies DX -generalized unclonable puncturable obfuscation
security for G. Therefore, by Proposition 11, UPO′ satisfies DX -generalized unclonable puncturable
obfuscation security for C. Since C was arbitrary, we conclude that UPO′ satisfies DX -generalized
unclonable puncturable obfuscation security for any generalized puncturable keyed circuit class in
P/poly.

Instantiating Compile with an indistinguishability obfuscation iO in theorem 12, the following corol-
lary is immediate.

Corollary 13. Consider a keyed circuit class C. Suppose iO be an indistinguishability obfuscation
scheme for C. Suppose UPO is an unclonable puncturable obfuscation scheme for G (as defined
above). Then UPO′ is a secure unclonable puncturable obfuscation scheme for C where UPO′ is
defined as follows:

Assuming UPO is a unclonable puncturable obfuscation scheme that satisfies DX -generalized
unclonable puncturable obfuscation security for any DX -generalized puncturable keyed circuit class
in P/poly, then the same holds for the unclonable puncturable obfuscation scheme UPO′ = (UPO′.Obf,
UPO′.Eval) defined as follows:

• UPO′.Obf(1λ, C) = UPO.Obf(1λ, iO(1λ, C)), where C ∈ Cλ.

• UPO′.Eval = UPO.Eval.

In the corollary above, we assume that the indistinguishability scheme does not have an explicit
evaluation algorithm. In other words, the obfuscation algorithm on input a circuit C outputs
another circuit C̃ that is functionally equivalent to C. This is without loss of generality since we
can combine any indistinguishability obfuscation scheme (that has an evaluation algorithm) with
universal circuits to obtain an obfuscation scheme with the desired format.

4 Conjectures

The security of our construction relies upon some novel conjectures. Towards understanding our
conjectures, consider the following problem: suppose say an adversary B is given a state ρx that
is generated as a function of a secret string x ∈ Znq , where q, n ∈ N and q is prime. We are given
the guarantee that just given ρx, it should be infeasible to compute x for most values of x. Now,

the goal of B is to distinguish (u, ⟨u,x⟩), where u
$←− Znq versus (u,x) +m, where m

$←− Zq. The
Goldreich-Levin precisely shows that B cannot succeed; if B did succeed then we can come up
with an extractor that recovers x. Our conjectures state that the problem should be hard even for
two (possibly entangled) parties simultaneously distinguishing the above samples. Depending on
whether the samples are independently generated between these parties or they are correlated, we
have two different conjectures.

Before we formally state these conjectures and prove them, we first define the following problem.

21

(DX ,DCh,Dbit)-Simultaneous Inner Product Problem ((DX ,DCh,Dbit)-simultIP). Let DX be
a distribution on Znq ×Znq , DCh be a distribtion on Zn+1

q ×Zn+1
q and finally, let Dbit be a distribution

on {0, 1}×{0, 1}, for prime q ∈ N. Let B′ and C′ be QPT algorithms. Let ρ = {ρxB,xC}xB,xC∈Zn
q
be

a set of bipartite states. Consider the following game.

• Sample (xB,xC)← DX .

• Sample
((
uB,mB

)
,
(
uC ,mC

))
← DCh

• Set zB0 = ⟨uB,xB⟩, zC0 = ⟨uC ,xC⟩, zB1 = mB + ⟨uB,xB⟩, zC1 = mC + ⟨uC ,xC⟩

• Sample (bB, bC)← Dbit

• (̂bB, b̂C)← (B′(uB, zB
bB
, ·)⊗ C′(uC , zC

bC
, ·))(ρxB,xC)

We say that (B′, C′) succeeds if b̂B = bB and b̂C = bC .

Specific Settings. Consider the following setting: (a) q = 2, (b) Dbit is a uniform distribution
on {0, 1}2, (c) DCh is a uniform distribution on Z2n+2

q and DX is a uniform distribution on {(x,x) :
x ∈ Znq }. In this setting, recent works [KT22, AKL23] showed, via a simultaneous version of
quantum Goldreich-Levin theorem, that any non-local solver for the (DCh,Dbit)-simultaneous inner
product problem can succeed with probability at most 1

2 + ε(n), for some negligible function ε(n).
Although not explicitly stated, the generic framework of upgrading classical reductions to non-local
reductions, introduced in [AKL23], can be leveraged to extend the above result to large values of
q.

In the case when Dbit is not a uniform distribution, showing the hardness of the non-locally
solving the above problem seems much harder.

Specifically, we are interested in the following setting: Dbit is a distribution on {0, 1} × {0, 1},
where (b, b) is sampled with probability 1

2 , for b ∈ {0, 1}. In this case, we simply refer to the above
problem as (DX ,DCh)-simultIP problem.

Conjectures. We state the following conjectures. We are interested in the following distributions:

• We define Dind
Ch as follows: it samples

((
uB,mB

)
,
(
uC ,mC

))
, where uB

$←− Znq ,uC
$←− Znq ,mB

$←−
Zq,mC

$←− Zq. We define Dind
Ch as follows: it samples ((u,m) , (u,m)), where u

$←− Znq ,m
$←− Zq.

• Similarly, we define Dind
X as follows: it samples

(
xB,xC

)
, where xB

$←− Znq ,xC
$←− Znq . We define

Did
X as follows: it samples (x,x), where x

$←− Znq .

Conjecture 14 (
(
Did
X ,Did

Ch

)
-simultIP Conjecture). Consider a set of bipartite states ρ = {ρx}x∈Zn

q

satisfying the following property: for any QPT adversaries B, C,

Pr
[
(x,x)← (B ⊗ C) (ρx) : (x,x)← Did

X

]
≤ ν(n)

for some negligible function ν(λ).
Any QPT non-local solver for the

(
Did
X ,Did

Ch

)
-simultIP problem succeeds with probability at most

1
2 + ε(n), where ε is a negligible function.

22

Conjecture 15 ((Dind
X ,Dind

Ch)-simultIP Conjecture). Consider a set of bipartite states ρ = {ρxB,xC}xB,xC∈Zn
q

satisfying the following property: for any QPT adversaries B, C,

Pr
[(
xB,xC

)
← (B ⊗ C)

(
ρxB,xC

)
:
(
xB,xC

)
← Dind

X

]
≤ ν(n)

for some negligible function ν(λ).
Any QPT non-local solver for the Did

Ch-simultIP problem succeeds with probability at most 1
2+ε(n),

where ε is a negligible function.

Part I: Constructions

5 Direct Construction

In this section, we construct unclonable puncturable obfuscation for all efficiently computable
generalized puncturable keyed circuit classes, with respect to U and IdU challenge distribution (see
Section 3.1.1). Henceforth, we assume that any keyed circuit class we consider will consist of circuits
that are efficiently computable.

We present the construction in three steps.

1. In the first step (Section 5.1), we construct a single decryptor encryption (SDE) scheme
based on the CLLZ scheme [CLLZ21] (see Figure 4) and show that it satisfies Dind-msg-
indistinguishability from random anti-piracy (and Dind-msg-indistinguishability from random
anti-piracy respectively) (see Appendix A.2), based on the conjectures, Conjectures 14 and 15.

2. In the second step (Section 5.2), we define a variant of the security definition considered
in [CLLZ21] with respect to two different challenge distributions and prove that the copy-
protection construction for PRFs in [CLLZ21] (see Figure 8) satisfies this security notion,
based on the indistinguishability from random anti-piracy guarantees of the SDE scheme
considered in the first step.

3. In the third step (Section 5.3), we show how to transform the copy-protection scheme obtained
from the first step into UPO for a keyed circuit class with respect to the U and IdU challenge
distribution.

5.1 A New Public-Key Single-Decryptor Encryption Scheme

The first step is to construct a SDE scheme of the suitable form. While SDE schemes have been
studied in prior works [GZ20, CLLZ21], we require a weaker version of security called indistin-
guishability from random anti-piracy, see Appendix A.2, which has not been considered in prior
works.

Our construction is based on the SDE scheme in [CLLZ21, Section 6.3] which we recall in
Figure 4. From here on, we will refer to it as the CLLZ SDE scheme, given in Figure 4. Next,
we define a family of SDE schemes based on the CLLZ SDE, called CLLZ post-processing schemes,
and then in Section 5.1.2, we give a construction of CLLZ post-processing SDE scheme (Figure 6).
Unfortunately, we are able to prove the required security guarantees of this construction only
assuming conjectures that state the simultaneous inner-product conjectures, see Conjectures 14
and 15, given in Section 4.

23

Assumes: post-quantum indistinguishability obfuscation iO.

Gen(1λ):
1. Sample ℓ0 uniformly random subspaces {Ai}i∈[ℓ0] and for each i ∈

[ℓ0], sample si, s
′
i.

2. Compute {R0
i , R

1
i }i∈ℓ0 , where for every i ∈ [ℓ0], R

0
i ← iO(Ai + si)

and R1
i ← iO(A⊥i + s′i) are the membership oracles.

3. Output sk = {{Aisi,s′i}i} and pk = {R0
i , R

1
i }i∈ℓ0

QKeyGen(sk):
1. Interprete sk as {{Aisi,s′i}i}.
2. Output ρsk = {{|Aisi,s′i⟩}i}.

Enc(pk,m):
1. Interprete pk = {R0

i , R
1
i }i∈ℓ0 .

2. Sample r
$←− {0, 1}n.

3. Generate Q̃ ← iO(Qm,r) where Qm,r has {R0
i , R

1
i }i∈ℓ0 hardcoded

inside, and on input v1, . . . , vℓ0 ∈ {0, 1}nℓ0 , checks if Rrii (vi) = 1
for every i ∈ [ℓ0] and if the check succeeds, outputs m, otherwise
output ⊥.

4. Output ct = (r, Q̃)

Dec(ρsk, ct)
1. Interprete ct = (r, Q̃).
2. For every i ∈ [ℓ0], if ri = 1 apply H⊗n on |Aisi,s′i⟩. Let the

resulting state be |ψx⟩.
3. Run the circuit Q̃ in superposition on the state |ψx⟩ and measure

the output register and output the measurement result m.

Figure 4: The CLLZ single decryptor encryption scheme, see [CLLZ21, Construction 1].

5.1.1 Definition of a CLLZ post-processing single decryptor encryption scheme

We call a SDE scheme (Gen,QKeyGen,Enc,Dec) a CLLZ post-processing if there exists polynomial
time classical deterministic algorithms (EncPostProcess,DecPostProcess), such that EncPostProcess
has input length 2q(λ) and output length s(λ), and DecPostProcess has input length q(λ) + s(λ)
and output length q(λ), where q(λ) is the length of the messages for the CLLZ SDE scheme (see
Figure 4) and s(λ) ∈ poly(λ), such that it is of the form described in Figure 5. For correctness of,
a CLLZ post-processing SDE scheme we require that for every string r,m ∈ {0, 1}q,

c′ ← EncPostProcess(m, r),m′ ← DecPostProcess(c′, r) =⇒ m = m′. (1)

It is easy to verify that assuming Equation (1), δ-correctness of the CLLZ SDE implies δ-correctness
of a CLLZ post-processing SDE for every δ ∈ [0, 1]. Note that if the above condition is satisfied

24

Assumes: CLLZ SDE scheme given in Figure 4.

Gen(1λ): Same as CLLZ.Gen(1λ).

QKeyGen(sk): Same as CLLZ.QKeyGen(sk).

Enc(pk,m):

1. Sample r
$←− {0, 1}q.

2. Generate c ← EncPostProcess(m, r) and generate c′ ←
CLLZ.Enc(pk, r)11.

3. Output ct = (c, c′).

Dec(ρsk, ct)
1. Interprete ct = (c, c′).
2. Generate r ← CLLZ.Dec(ρsk, c

′).
3. Output m← DecPostProcess(c, r).

Figure 5: Definition of a CLLZ post-processing SDE scheme.

then it holds that for every δ ∈ [0, 1], δ-correctness of the CLLZ SDE implies δ-correctness of the
CLLZ post-processing SDE (see Figure 5).

5.1.2 Construction of a CLLZ post-processing single decryptor encryption scheme

We next consider the following CLLZ post-processing scheme given in Figure 6. Note that EncPostProcess,DecPostProcess
in Figure 6 satisfies Equation (1), and hence if the CLLZ SDE scheme (depicted in Figure 4) satisfies
δ-correctness so does the SDE scheme in Figure 6. Next we prove that the SDE scheme in Figure 6
satisfiesDind-msg-indistinguishability from random anti-piracy andDidentical-cipher-indistinguishability
from random anti-piracy by exploiting the corresponding simultaneous inner product conjectures
(see Conjectures 14 and 15).

EncPostProcess(m, r):

1. Sample u
$←− {0, 1}q.

2. Output u,m ⊕ ⟨u, r⟩, where the innerproduct is the product over
the field FQ where Q is the smallest prime number greater than
2q,.

DecPostProcess(c, r):
1. Interprete c as u, z.
2. Output z ⊕ ⟨u, r⟩.

Figure 6: Construction of a CLLZ post-processing SDE scheme.

25

Theorem 16. Assuming Conjecture 15, the existence of post-quantum sub-exponentially secure
iO and one-way functions, and the quantum hardness of Learning-with-errors problem (LWE), the
CLLZ post-processing SDE as defined in Figure 5 given in Figure 6 satisfies Dind-msg-indistinguishability
from random anti-piracy (see Appendix A.2).

Theorem 17. Assuming Conjecture 14, the existence of post-quantum sub-exponentially secure
iO and one-way functions, and quantum hardness of Learning-with-errors problem (LWE), the
CLLZ post-processing SDE (as defined in Figure 5) given in Figure 6 satisfies Didentical-cipher-
indistinguishability from random anti-piracy (see Appendix A.2).

Proof of Theorem 16. Let (A,B, C) be an adversary against the single decryptor encryption scheme
CLLZ Post-Process given in Figure 4 in the Dind-msg-indistinguishability from random anti-piracy
experiment (see Game 36). We will do a sequence of hybrids; the changes would be marked in blue.
Hybrid0: Same as Ind-random.SDE.Expt(A,B,C),Dind-msg

(
1λ
)
(see Game 36) where Dind-msg is the chal-

lenge distribution defined in Appendix A.2 for the single-decryptor encryption scheme, CLLZ Post-Process
in Figure 6.

1. Ch samples (sk, pk)← KeyGen(1λ) and ρk ← QKeyGen(k) and sends ρk, pk to A.

2. A(ρk, pk) outputs σB,C .

3. Ch samples b
$←− {0, 1}.

4. Ch computes ctBb as follows:

(a) Sample rB
$←− {0, 1}q, and compute c′B ← CLLZ.Enc(pk, rB).

(b) Sample uB
$←− {0, 1}q and compute cBb = (uB, ⟨uB, rB⟩) if b = 0, else sample mB

$←− {0, 1}q
and compute cBb = (uB,mB ⊕ ⟨uB, rB⟩) if b = 1.

(c) Set ctBb = (cBb , c
′B).

5. Ch computes ctCb as follows:

(a) Sample rC
$←− {0, 1}q, and compute c′C ← CLLZ.Enc(pk, rC).

(b) Sample uC
$←− {0, 1}q and compute cCb = (uC , ⟨uC , rC⟩) if b = 0, else sample mC

$←− {0, 1}q
and compute cCb = (uC ,mC ⊕ ⟨uC , rC⟩) if b = 1.

(c) Set ctCb = (cCb , c
′C).

6. Apply (B(ctBb , ·)⊗ C(ctCb , ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b.

Hybrid1:

1. Ch samples (sk, pk)← KeyGen(1λ) and ρk ← QKeyGen(k) and sends ρk, pk to A.

2. A(ρk, pk) outputs σB,C .
11We would like to note that the obfuscated circuit may be padded more than what is required in the CLLZ SDE

scheme, for the security proofs of the CLLZ post-processing SDE.

26

3. Ch samples b
$←− {0, 1}.

4. Ch computes ctBb as follows:

(a) Sample rB
$←− {0, 1}q, and compute c′B ← CLLZ.Enc(pk, rB).

(b) Sample uB
$←− {0, 1}q and compute cBb = (uB, ⟨uB, rB⟩) if b = 0, else sample mB

$←− {0, 1}q
and compute cBb = (uB,mB ⊕ ⟨uB, rB⟩) if b = 1 compute cBb = (uB,mB) if b = 1.

(c) Set ctBb = (cBb , c
′B).

5. Ch computes ctCb as follows:

(a) Sample rC
$←− {0, 1}q, and compute c′C ← CLLZ.Enc(pk, rC).

(b) Sample uC
$←− {0, 1}q and compute cCb = (uC , ⟨uC , rC⟩) if b = 0, else sample mC

$←− {0, 1}q
and compute cCb = (uC ,mC ⊕ ⟨uC , rC⟩) if b = 1 compute cCb = (uC ,mC) if b = 1.

(c) Set ctCb = (cCb , c
′C).

6. Apply (B(ctBb , ·)⊗ C(ctCb , ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b.

The indistinguishability holds since the overall distribution of ctBb and ctCb did not change across
hybrids Hybrid0 and Hybrid1.

Consider the following independent search experiment against a pair of (uniform) efficient ad-
versaries B′, C′

1. Ch samples rB, rC
$←− {0, 1}q

2. Ch computes σB,C as follows:

(a) Sample (sk, pk)← KeyGen(1λ) and prepares ρk ← QKeyGen(k).

(b) Run A(ρk, pk) to get σB,C .

3. Ch computes c′B ← CLLZ.Enc(pk, rB), and computes c′C ← CLLZ.Enc(pk, rC).

4. Ch constructs the bipartite auxiliary state τ r
B,rC

B,C = c′B, σB,C , c
′C , i.e., the c′B, σB and c′C , σC

are the two partitions.

5. Ch sends the respective registers of τ r
B,rC

B,C to B′ and C′, and gets back the responses r′B and

r′C respectively.

6. Ouptput 1 if r′B = rB, and r′C = rC .

Clearly, the winning probability of (B′, C′) in the above game is the same as the winning prob-
ability of (A,B′, C′) in the independent search anti-piracy (see Appendix A.2) of the CLLZ single
decryptor encryption scheme given in Figure 4. It was shown in [CLLZ21, Theorem 6.15] that
the CLLZ single decryptor encryption satisfies independent search anti-piracy assuming the secu-
rity guarantess of post-quantum sub-exponentially secure iO and one-way functions, and quantum

27

hardness of Learning-with-errors problem (LWE). Hence, under the security guarantees of the above
assumptions, there exists a negligible function ϵ′() such that the winning probability of (B′, C′) in
the above game is ϵ′(λ). Therefore assuming Conjecture 15, there exists a negligible function ϵ()
such that the winning probability of (B, C) in the following indistinguishability game is at most
1
2 + ϵ(λ)

1. Ch samples rB, rC
$←− {0, 1}q

2. Ch computes σB,C as follows:

(a) Sample (sk, pk)← KeyGen(1λ) and prepares ρk ← QKeyGen(k).

(b) Run A(ρk, pk) to get σB,C .

3. Ch computes c′B ← CLLZ.Enc(pk, rB), and computes c′C ← CLLZ.Enc(pk, rC).

4. Ch constructs the bipartite auxiliary state τ r
B,rC

B,C = c′B, σB,C , c
′C , i.e., the c′B, σB and c′C , σC

are the two partitions.

5. Ch samples b
$←− {0, 1}.

6. Ch samples uB
$←− {0, 1}q and compute cBb = (uB, ⟨uB, rB⟩) if b = 0, else computes cBb =

(uB,mB) if b = 1.

7. Similarly, Ch samples uC
$←− {0, 1}q and computes cCb = (uC , ⟨uC , rC⟩) if b = 0, else computes

cCb = (uC ,mC) if b = 1.

8. Ch sends cBb and cCb along with the respective registers of τ r
B,rC

B,C to B′ and C′ respectively, and
gets back the responses bB and bC respectively.

9. Output 1 if bB = bC = b.

However, note that the view of the adversaries B and C in the indistinguishability game above
is the same as the view in Hybrid3. Therefore, the winning probability of (A,B, C) in Hybrid1 is at
most 1

2 + ϵ(λ). This completes the proof of the theorem.

Proof of Theorem 17. The proof directly follows by combining Lemmas 18 and 19, which we state
and prove next.

Lemma 18. Assuming Conjecture 14, the CLLZ post-processing single decryptor encryption as
defined in Figure 5 given in Figure 6 satisfies Didentical-cipher-indistinguishability from random anti-
piracy, if CLLZ single decryptor encryption (see Figure 4) satisfies IdU -search anti-piracy (see Ap-
pendix A.2).

Proof. Let (A,B, C) be an adversary against the single decryptor encryption scheme CLLZ Post-Process
given in Figure 4 in the Didentical-cipher-indistinguishability from random anti-piracy experiment. We
will do a sequence of hybrids; the changes will be marked in blue.
Hybrid0: Same as Ind-random.SDE.Expt(A,B,C),Didentical-cipher

(
1λ
)
(see Game 36) where Didentical-cipher

is the challenge distribution defined in Appendix A.2 for the single-decryptor encryption scheme,
CLLZ Post-Process in Figure 6.

28

1. Ch samples (sk, pk)← KeyGen(1λ) and ρk ← QKeyGen(k) and sends ρk, pk to A.

2. A(ρk, pk) outputs σB,C .

3. Ch samples b
$←− {0, 1}.

4. Ch computes ctb as follows:

(a) Sample r
$←− {0, 1}q, and compute c′ ← CLLZ.Enc(pk, r).

(b) Sample u
$←− {0, 1}q and compute cb = (u, ⟨u, r⟩) if b = 0, else sample m

$←− {0, 1}q and
compute cb = (u,m⊕ ⟨u, r⟩) if b = 1.

(c) Set ctb = (cb, c
′).

5. Apply (B(ctb, ·)⊗ C(ctb, ·))(σB,C) to obtain (bB, bC).

6. Output 1 if bB = bC = b.

Hybrid1:

1. Ch samples (sk, pk)← KeyGen(1λ) and ρk ← QKeyGen(k) and sends ρk, pk to A.

2. A(ρk, pk) outputs σB,C .

3. Ch samples b
$←− {0, 1}.

4. Ch computes ctb as follows:

(a) Sample r
$←− {0, 1}q, and compute c′ ← CLLZ.Enc(pk, r).

(b) Sample u
$←− {0, 1}q and compute cb = (u, ⟨u, r⟩) if b = 0, else sample m

$←− {0, 1}q and
compute cb = (u,m⊕ ⟨u, r⟩) if b = 1 compute cb = (u,m) if b = 1.

(c) Set ctb = (cb, c
′).

5. Apply (B(ctb, ·)⊗ C(ctb, ·))(σB,C) to obtain (bB, bC).

6. Output 1 if bB = bC = b.

The indistinguishability holds since the overall distribution of ctb did not change across hybrids
Hybrid0 and Hybrid1.

Consider the following search experiment against a pair of (uniform) efficient adversaries B′, C′

1. Ch samples r
$←− {0, 1}q.

2. Ch computes σB,C as follows:

(a) Sample (sk, pk)← KeyGen(1λ) and prepares ρk ← QKeyGen(k).

(b) Run A(ρk, pk) to get σB,C .

3. Ch computes c′ ← CLLZ.Enc(pk, r).

29

4. Ch constructs the bipartite auxiliary state τ rB,C = c′B, σB,C , c
′C , i.e., the c′B, σB and c′C , σC are

the two partitions, where c′B = c′C = c′.

5. Ch sends the respective registers of τ rB,C to B′ and C′, and gets back the responses r′B and

r′C respectively.

6. Ouptput 1 if r′B = r′C = r.

Clearly, the winning probability of (B′, C′) in the above game is the same as the winning prob-
ability of (A,B′, C′) in the IdU -search anti-piracy (see Appendix A.2) of the CLLZ single decryptor
encryption scheme given in Figure 4. Assuming the CLLZ single decryptor encryption satisfies IdU -
search anti-piracy (see Appendix A.2), there exists a negligible function ϵ′() such that the winning
probability of (B′, C′) in the above game is ϵ′(λ). Therefore by Conjecture 15, there exists a neg-
ligible function ϵ() such that the winning probability of (B, C) in the following indistinguishability
game is at most 1

2 + ϵ(λ)

1. Ch samples r
$←− {0, 1}q.

2. Ch computes σB,C as follows:

(a) Sample (sk, pk)← KeyGen(1λ) and prepares ρk ← QKeyGen(k).

(b) Run A(ρk, pk) to get σB,C .

3. Ch computes c′ ← CLLZ.Enc(pk, r).

4. Ch constructs the bipartite auxiliary state τ rB,C = c′B, σB,C , c
′C , i.e., the c′B, σB and c′C , σC are

the two partitions, where c′B = c′C = c′.

5. Ch samples b
$←− {0, 1}.

6. Ch samples u
$←− {0, 1}q and compute cb = (u, ⟨u, r⟩) if b = 0, else computes cb = (u,m) if

b = 1.

7. Ch sends cBb and cCb along with the respective registers of τ r
B,rC

B,C to B′ and C′ respectively,
where cBb = cCb = cb and gets back the responses bB and bC respectively.

8. Output 1 if bB = bC = b.

However, note that the view of the adversaries B and C in the indistinguishability game above
is the same as the view in Hybrid3. Therefore, the winning probability of (A,B, C) in Hybrid1 is at
most 1

2 + ϵ(λ). This completes the proof of the lemma.

Lemma 19. Assuimng post-quantum sub-exponentially secure iO and quantum hardness of Learning-
with-errors problem (LWE), the CLLZ single decryptor encryption (see Figure 4) satisfies IdU -search
anti-piracy (see Appendix A.2).

30

Proof. By [CLLZ21, Theorem 6.15], assuming the security of post-quantum sub-exponentially se-
cure iO and one-way functions, and quantum hardness of Learning-with-errors problem (LWE),
the CLLZ single decryptor encryption (see Figure 4) satisfies independent search anti-piracy. Since
the trivial success probabilities of the U-search anti-piracy and IdU -search anti-piracy expeirments
for single decryptor encryption are both negligible, by the lifting result in [AKL23, Theorem], we
conclude that Lemma 19 holds.

5.2 Copy-Protection for PRFs with Preponed Security

We first introduce the definition of preponed security in Section 5.2.1 and then we present the
constructions of copy-protection in Section 5.2.2.

5.2.1 Definition

We introduce a new security notion for copy-protection called preponed security.
Consider a pseudorandom function family F = {Fλ}λ∈N, where Fλ = {fk : {0, 1}ℓ(λ) →

{0, 1}κ(λ) : k ∈ {0, 1}λ}. Moreover, fk can be implemented using a polynomial-sized circuit,
denoted by Ck.

Definition 20 (Preponed Security). A copy-protection scheme CP = (CopyProtect,Eval) for F
(Appendix A.1) satisfies DX -preponed security if for any QPT (A,B, C), there exists a negligible
function negl such that:

Pr[PreponedExpt(A,B,C),F ,U
(
1λ
)
= 1] ≤ 1

2
+ negl.

where PreponedExpt is defined in Figure 7.
We consider two instantiations of DX :

1. U which is the product of uniformly random distribution on {0, 1}ℓ, meaning x1, x2 ← U(1λ)
where x1, x2

$←− {0, 1}ℓ independently.

2. IdU which is the perfectly correlatd distribution on {0, 1}ℓ with uniform marginals, meaning

x, x← IdU (1
λ) where x

$←− {0, 1}ℓ.

5.2.2 Construction

The CLLZ copy-protection scheme is given in Figure 8.

Construction of Copy-Protection.

Proposition 21. Assuming the existence of post-quantum iO, and one-way functions, and if there
exists a CLLZ post-processing SDE scheme that satisfies Dind-msg-indistinguishability from random
anti-piracy, see Appendix A.2, then the CLLZ copy-protection construction in [CLLZ21, Section
7.3] (see Figure 8) satisfies U-preponed security (Definition 20).

Proposition 22. Assuming the existence of post-quantum iO, and one-way functions, and if there
exists a CLLZ post-processing SDE scheme that satisfies Didentical-cipher-indistinguishability from
random anti-piracy, see Appendix A.2, then the CLLZ copy-protection construction in [CLLZ21,
Section 7.3] (see Figure 8) satisfies IdU -preponed security (Definition 20).

31

PreponedExpt(A,B,C),CP,DX
(
1λ
)
:

1. Ch samples k ← KeyGen(1λ), then generates ρCk
←

CopyProtect(1λ, Ck) and sends ρfk to A.

2. Ch samples xB, xC ← DX (1λ), b
$←− {0, 1}. Let yB1 = f(xB), yC1 =

f(xC) , and yB0 = y1, y
C
0 = y2 where y1, y2

$←− {0, 1}κ(λ). Ch gives
(yBb , y

C
b) to Alice.

3. A(ρCk
) outputs a bipartite state σB,C .

4. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

5. Output 1 if bB = bC = b.

Figure 7: Preponed security experiment for copy-protection of PRFs with respect to the distribution
DX .

Assumes: Punctrable and extractable PRF family F1 = (KeyGen,Eval)
(represented as F1(k, x) = PRF.Eval(k, ·)) and secondary PRF family
F2, F3 with some special properties as noted in [CLLZ21]

CopyProtect(K1):
1. Sample secondary keys K2,K3, and {{|Aisi,s′i⟩}i}, and compute

the coset state {{|Aisi,s′i⟩}i}.
2. Compute P̃ ← iO(P) where P is as given in Figure 11.
3. Output ρ = (P̃ , {{|Aisi,s′i⟩}i}).

Eval(ρ, x):
1. Interprete ρ = (P̃ , {{|Aisi,s′i⟩}i}).
2. Let x = x0∥x1∥x2, where x0 = ℓ0. For every i ∈ [ℓ0], if x0,i = 1

apply H⊗n on |Aisi,s′i⟩. Let the resulting state be |ψx⟩.
3. Run the circuit C̃ in superposition on the input registers (X,V)

with the initial state (x, |ψx⟩) and then measure the output register
to get an output y.

Figure 8: CLLZ copy-protection for PRFs.

Proof of Proposition 21. To prove the lemma, we adopt the proof of [CLLZ21, Theorem 7.12,
Appendix F].

32

P :

Hardcoded keys K1,K2,K3, R
0
i , R

1
i for every i ∈ [ℓ0] On input x =

x0∥x1∥x2 and vectors v = v1, . . . vℓ0 .

1. If F3(K3, x1)⊕ x2 = x0∥Q and x1 = F2(K2, x0∥Q):

Hidden trigger mode: Treat Q as a classical circuit and output
Q(v).

2. Otherwise, check if the following holds: for all i ∈ ℓ0, Rx0,i(vi) = 1
(where x0,i is the i

th coordinate of x0).

Normal mode: If so, output F1(K1, x) where F1() = PRF.Eval()
is the primary pseudorandom function family that is being copy-
protected. Otherwise output ⊥.

Figure 9: Circuit P in CLLZ copy-protection of PRF.

We will start with a series of hybrids. The changes are marked in blue.

Hybrid0: Same as PreponedExpt(A,B,C),CP,DX
(
1λ
)
(see Game 7) where D = U (see the definition in

Definition 20) for the CLLZ copy-protection scheme see Figure 8.

1. Ch samplesK1 ← PRF.Gen(1λ) and generates ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P))← CLLZ.QKeyGen(K1),
and sends ρ to A. P has K1,K2,K3 hardcoded in it where K2,K3 are the secondary keys.

2. Ch generates xB, xC
$←− {0, 1}n, where xB = xB0 ∥xB1 ∥xB2 , xC = xC0∥xC1∥xC2 and computes yB0 ←

PRF.Eval(K1, x
B) and yC0 ← PRF.Eval(K1, x

C).

3. Ch also samples yB1 , y
C
1

$←− {0, 1}m.

4. Ch samples b
$←− {0, 1}, and sends A, (ρ, yBb , yCb).

5. A on receiving (ρ, yBb , y
C
b) produces a bipartite state σB,C .

6. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b, else 0.

Hybrid1: We modify the sampling procedure of the challenge inputs xB and xC .

1. Ch samplesK1 ← PRF.Gen(1λ) and generates ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P))← CLLZ.QKeyGen(K1),
and sends ρ to A. P has K1,K2,K3 hardcoded in it where K2,K3 are the secondary keys.

2. Ch generates xB, xC
$←− {0, 1}n, where xB = xB0 ∥xB1 ∥xB2 , xC = xC0∥xC1∥xC2 and computes yB0 ←

PRF.Eval(K1, x
B) and yC0 ← PRF.Eval(K1, x

C).

33

3. Ch also computes xBtrigger ← Gen-Trigger(xB0 , y
B
0 ,K2,K3, {Aisi,s′i}i∈ℓ0),

and xCtrigger ← Gen-Trigger(xC0 , y
C ,K2,K3, {Aisi,s′i}i∈ℓ0).

4. Ch also samples yB1 , y
C
1

$←− {0, 1}m.

5. Ch samples b
$←− {0, 1} and sends A (ρ, yBb , y

C
b).

6. A on receiving (ρ, yBb , y
C
b) produces a bipartite state σB,C .

7. Apply (B((xB xBtrigger , ·)⊗ C((xC xCtrigger , ·))(σB,C) to obtain (bB, bC).

8. Output 1 if bB = bC = b, else 0.

Claim 23. Assuming the security of PRF, hybrids Hybrid1 and Hybrid2 are computationally indis-
tinguishable.

Proof. Hybrid1 is computationally indistinguishable from Hybrid0 due to [CLLZ21, Lemma 7.17].
The same arguments via [CLLZ21, Lemma 7.17] were made in showing the indistinguishability
between hybrids Hybrid0 and Hybrid1 in the proof of [CLLZ21, Theorem 7.12].

Hybrid2: We modify the generation of the outputs yB0 and yC0 .

1. Ch samplesK1 ← PRF.Gen(1λ) and generates ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P))← CLLZ.QKeyGen(K1),
and sends ρ to A. P has K1,K2,K3 hardcoded in it where K2,K3 are the secondary keys.

2. Ch generates xB, xC
$←− {0, 1}n, where xB = xB0 ∥xB1 ∥xB2 , xC = xC0∥xC1∥xC2 and computes yB0 ← PRF.Eval(K1, x

B)

and yC0 ← PRF.Eval(K1, x
C) samples yB0 , y

C
0

$←− {0, 1}m.

3. Ch also computes xBtrigger ← Gen-Trigger(xB0 , y
B
0 ,K2,K3, {Aisi,s′i}i∈ℓ0),

and xCtrigger ← Gen-Trigger(xC0 , y
C ,K2,K3, {Aisi,s′i}i∈ℓ0).

4. Ch also samples yB1 , y
C
1

$←− {0, 1}m.

5. Ch samples b
$←− {0, 1} and sends A (ρ, yBb , y

C
b).

6. A on receiving (ρ, yBb , y
C
b) produces a bipartite state σB,C .

7. Apply (B(xBtrigger, ·)⊗ C(xCtrigger, ·))(σB,C) to obtain (bB, bC).

8. Output 1 if bB = bC = b, else 0.

Hybrid2 is statistically indistinguishable from Hybrid1 due to the extractor properties of the primary
PRF family. For more details, refer to the proof of see [CLLZ21, Theorem 7.12].

Claim 24. Assuming the extractor properties of PRF, hybrids Hybrid2 and Hybrid3 are statistically
indistinguishable.

Proof. The proof is identical to the proof of indistinguishability of Hybrid1 and Hybrid2 in the proof
of [CLLZ21, Theorem 7.12].

34

Hybrid3: This hybrid is a reformulation of Hybrid2 in terms of the CLLZ single decryptor encryption
scheme, see fig. 4.

1. Ch samples {Aisi,s′i}i∈ℓ0 and generates {|Aisi,s′i⟩}i∈ℓ0 , and treats it as the quantum decryption
key for the CLLZ single-decryptor encryption scheme (see fig. 4), where the secret key is
{Aisi,s′i}i∈ℓ0 . Ch also generates pk = {R0

i , R
1
i }i∈ℓ0 , where for every i ∈ [ℓ0], R

0
i = iO(Ai + si)

and R1
i = iO(A⊥i + s′i).

2. Ch generates xB, xC
$←− {0, 1}n, where xB = xB0 ∥xB1 ∥xB2 , xC = xC0∥xC1∥xC2 and samples yB0 , y

C
0

$←−
{0, 1}m.

3. Ch also computes xBtrigger ← Gen-Trigger(xB0 , y
B
0 ,K2,K3, {Aisi,s′i}i∈ℓ0),

and xCtrigger ← Gen-Trigger(xC0 , y
C ,K2,K3, {Aisi,s′i}i∈ℓ0).

4. Ch also samples yB1 , y
C
1

$←− {0, 1}m.

5. Ch samples b
$←− {0, 1}, and generates xB0 , Q

B ← CLLZ.Enc(pk, yBb) and x
C
0 , Q

C ← CLLZ.Enc(pk, yCb).

6. Ch samples keys K1,K2,K3 and constructs the program P which hardcodes K1,K2,K3. It
then prepares ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P)) and sends to A.

7. A on receiving (ρ, yBb , y
C
b) produces a bipartite state σB,C .

8. Ch then generates xBtrigger, x
C
trigger ∈ {0, 1}n as follows:

(a) Let xBtrigger1 = F2(K2, x
B
0 ∥QB) and xBtrigger2 = F3(K3, x

B
trigger1

). Let xBtrigger = xB0 ∥xBtrigger1∥x
B
trigger2

.

(b) Let xCtrigger1 = F2(K2, x
C
0∥QC) and xCtrigger2 = F3(K3, x

C
trigger1

). Let xCtrigger = xC0∥xCtrigger1∥x
C
trigger2

.

9. Apply (B(xBtrigger, ·)⊗ C(xCtrigger, ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b, else 0.

Claim 25. The output distributions of the hybrids Hybrid2 and Hybrid3 are identically distributed.

Proof. The proof is identical to the proof of indistinguishability of Hybrid2 and Hybrid3 in the proof
of [CLLZ21, Theorem 7.12].

Finally we give a reduction from Hybrid3 to the indistinguishability from random anti-piracy exper-
iment (fig. 36) for CLLZ post-processing single-decryptor encryption scheme, where CLLZ single
decryptor encryption is the one given in fig. 4, for more details see [CLLZ21, Construction 1, Sec-
tion 6.3, pg. 39]. Let (A,B, C) be an adversary in Hybrid3 above. Consider the following non-local
adversary (RA,RB,RC):

1. RA samples yB0 , y
B
1 , y

C
0 , y
C
1

$←− {0, 1}m.

2. RA gets the quantum decryptor {|Aisi,s′i⟩}i∈ℓ0 and a public key pk = (R0
i , R

1
i) from Ch, the

challenger in the correlated challenge SDE anti-piracy experiment (see fig. 37) for the CLLZ
SDE scheme.

35

3. RA samples K1,K2,K3 and prepares the circuit P using R0
i , R

1
i and the keys K1,K2,K3. Let

ρ = {|Aisi,s′i⟩}i∈ℓ0 , iO(P)).

4. RA samples a bit d
$←− {0, 1}and runs A on (ρ, yBd , y

C
d) and gets back the output σB,C .

5. RA sends (K1,K2,K3, d, σB) to RB and (K1,K2,K3, d, σC) to RC .

6. RB on receiving (cB, (xB0 , T
B)) as the challenge cipher text from Ch as the challenge ciphertext

and K1,K2,K3, d, σB from RA, does the following:

(a) RB generates the circuit QB which on any input x0 generates r ← TB(x0) and if the
output is ⊥ outputs ⊥, else computes DecPostProcess(cB, r) and if the outcome is 0,
output yB0 , else output yB1 . RB generates Q̃B ← iO(QB).

(b) RB constructs xBtrigger as follows. Let xBtrigger1 = F2(K2, x
B
0 ∥Q̃B) and xBtrigger2 = F3(K3, x

B
trigger1

).

Let xBtrigger = xB0 ∥xBtrigger1∥x
B
trigger2

.

(c) RB runs B on (xBtrigger, σB) to get an output bB.

(d) RB outputs bB ⊕ d.

7. Similarly,RC on receiving (cC , (xC0 , T
C)) as the challenge cipher text from Ch andK1,K2,K3, d, σC

from RA, does the following:

(a) RC generates the circuit QC which on any input x0 generates r ← T C(x0) and if the
output is ⊥ outputs ⊥, else computes DecPostProcess(cB, r) and if the outcome is 0,
output yC0 , else output yC1 . RC generates Q̃C ← iO(QC).

(b) RC constructs xCtrigger as follows. Let xCtrigger1 = F2(K2, x
C
0∥Q̃C) and xCtrigger2 = F3(K3, x

C
trigger1

).

Let xCtrigger = xC0∥xCtrigger1∥x
C
trigger2

.

(c) RC runs C on (xCtrigger, σC) to get an output bC .

(d) RC outputs bC ⊕ d.

Note that the functionality of QB and QC are the same as that of WB,W C in the ciphertexts
(xB0 ,W

B) and (xC0 ,W
C) obtained by running CLLZ.Enc(pk, ·) algorithm on yBb and yCb with xB0 and

xC0 as the randomness respectively. Note that in Hybrid3, B (and similarly, C) needs to distinguish
between the following two inputs: a random string yB along with either a triggered input xB

encoding yB which is also the view of the inside adversary in the reduction above in the event

b = d in the simulated experiment; or a triggered input xB encoding ỹB random string where ỹB
$←−

sampled independent of yB, which is the view of the inside adversary in the reduction above in the
event b ̸= d in the simulated experiment. Therefore, by the iO guarantees, the view of the inside
A,B, C is the same as that in Hybrid3.

Proof of Proposition 22. The proof is the same as the proof for Proposition 21 up to minor
changes.

We will start with a series of hybrids. The changes are marked in blue.

Hybrid0: Same as PreponedExpt(A,B,C),CP,DX
(
1λ
)
(see Game 7) where D = IdU (see the definition in

Definition 20) for the CLLZ copy-protection scheme see Figure 8.

36

1. Ch samplesK1 ← PRF.Gen(1λ) and generates ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P))← CLLZ.QKeyGen(K1),
and sends ρ to A. P has K1,K2,K3 hardcoded in it where K2,K3 are the secondary keys.

2. Ch generates x
$←− {0, 1}n, where x = x0∥x1∥x2 and computes y0 ← PRF.Eval(K1, x).

3. Ch also samples y1
$←− {0, 1}m.

4. Ch samples b
$←− {0, 1}, and sends A, (ρ, yb, yb).

5. A on receiving (ρ, yb, yb) produces a bipartite state σB,C .

6. Apply (B(x, ·)⊗ C(x, ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b, else 0.

Hybrid1: We modify the sampling procedure of the challenge input x.

1. Ch samplesK1 ← PRF.Gen(1λ) and generates ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P))← CLLZ.QKeyGen(K1),
and sends ρ to A. P has K1,K2,K3 hardcoded in it where K2,K3 are the secondary keys.

2. Ch generates x
$←− {0, 1}n, where x = x0∥x1∥x2 and computes y0 ← PRF.Eval(K1, x).

3. Ch also samples y1
$←− {0, 1}m.

4. Ch also computes xtrigger ← Gen-Trigger(x0, y0,K2,K3, {Aisi,s′i}i∈ℓ0).

5. Ch also samples y1
$←− {0, 1}m.

6. Ch samples b
$←− {0, 1}, and sends A, (ρ, yb, yb).

7. A on receiving (ρ, yb, yb) produces a bipartite state σB,C .

8. Apply (B(x xtrigger , ·)⊗ C(x xtrigger , ·))(σB,C) to obtain (bB, bC).

9. Output 1 if bB = bC = b, else 0.

Hybrid1 is computationally indistinguishable from Hybrid0 due to [CLLZ21, Lemma 7.17]. The
same arguments via [CLLZ21, Lemma 7.17] were made in showing the indistinguishability between
hybrids Hybrid0 and Hybrid1 in the proof of [CLLZ21, Theorem 7.12].

Claim 26. Assuming the security of PRF, hybrids Hybrid0 and Hybrid1 are computationally indis-
tinguishable.

Proof. The proof is identical to the proof of indistinguishability of Hybrid0 and Hybrid1 in the proof
of [CLLZ21, Theorem 7.12].

Hybrid2: We modify the generation of the outputs y0.

1. Ch samplesK1 ← PRF.Gen(1λ) and generates ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P))← CLLZ.QKeyGen(K1),
and sends ρ to A. P has K1,K2,K3 hardcoded in it where K2,K3 are the secondary keys.

37

2. Ch generates x
$←− {0, 1}n, where x = x0∥x1∥x2, and computes y←0 PRF.Eval(K1, x) samples

y0
$←− {0, 1}m.

3. Ch also computes xtrigger ← Gen-Trigger(x0, y0,K2,K3, {Aisi,s′i}i∈ℓ0).

4. Ch also samples y1
$←− {0, 1}m.

5. Ch samples b
$←− {0, 1} and sends A (ρ, yb, yb).

6. A on receiving (ρ, yb, yb) produces a bipartite state σB,C .

7. Apply (B(xtrigger, ·)⊗ C(xtrigger, ·))(σB,C) to obtain (bB, bC).

8. Output 1 if bB = bC = b, else 0.

Hybrid2 is statistically indistinguishable from Hybrid1 due to the extractor properties of the primary
PRF family. For more details, refer to the proof of see [CLLZ21, Theorem 7.12].

Claim 27. Assuming the extractor properties of PRF, hybrids Hybrid1 and Hybrid2 are statistically
indistinguishable.

Proof. The proof is identical to the proof of indistinguishability of Hybrid1 and Hybrid2 in the proof
of [CLLZ21, Theorem 7.12].

Hybrid3: This hybrid is a reformulation of Hybrid2.

1. Ch samples {Aisi,s′i}i∈ℓ0 and generates {|Aisi,s′i⟩}i∈ℓ0 , and treats it as the quantum decryption
key for the CLLZ single-decryptor encryption scheme (see fig. 4), where the secret key is
{Aisi,s′i}i∈ℓ0 . Ch also generates pk = {R0

i , R
1
i }i∈ℓ0 , where for every i ∈ [ℓ0], R

0
i = iO(Ai + si)

and R1
i = iO(A⊥i + s′i).

2. Ch generates x
$←− {0, 1}n, where x = x0∥x1∥x2 and samples y0

$←− {0, 1}m.

3. Ch also computes xtrigger ← Gen-Trigger(x0, y0,K2,K3, {Aisi,s′i}i∈ℓ0),

4. Ch also samples y1
$←− {0, 1}m.

5. Ch samples b
$←− {0, 1}, and generates x0, Q← CLLZ.Enc(pk, yb).

6. Ch samples keys K1,K2,K3 and constructs the program P which hardcodes K1,K2,K3. It
then prepares ρ = ({|Aisi,s′i⟩}i∈ℓ0 , iO(P)) and sends to A.

7. A on receiving (ρ, yb, yb) produces a bipartite state σB,C .

8. Ch then generates xtrigger ∈ {0, 1}n as follows: Let xtrigger1 = F2(K2, x0∥QB) and xtrigger2 =
F3(K3, xtrigger1). Let x

B
trigger = x0∥xtrigger1∥xtrigger2.

9. Apply (B(xBtrigger, ·)⊗ C(xCtrigger, ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b, else 0.

38

Claim 28. The output distributions of the hybrids Hybrid2 and Hybrid3 are identically distributed.

Proof. The proof is identical to the proof of indistinguishability of Hybrid2 and Hybrid3 in the proof
of [CLLZ21, Theorem 7.12].

Finally we give a reduction from Hybrid3 to the indistinguishability from random anti-piracy exper-
iment (fig. 36) for CLLZ post-processing single-decryptor encryption scheme, where CLLZ single
decryptor encryption is the one given in fig. 4, for more details see [CLLZ21, Construction 1, Sec-
tion 6.3, pg. 39]. Let (A,B, C) be an adversary in Hybrid3 above. Consider the following non-local
adversary (RA,RB,RC):

1. RA samples y0, y1
$←− {0, 1}m.

2. RA gets the quantum decryptor {|Aisi,s′i⟩}i∈ℓ0 and a public key pk = (R0
i , R

1
i) from Ch, the

challenger in the correlated challenge SDE anti-piracy experiment (see fig. 37) for the CLLZ
SDE scheme.

3. RA samples K1,K2,K3 and prepares the circuit P using R0
i , R

1
i and the keys K1,K2,K3. Let

ρ = {|Aisi,s′i⟩}i∈ℓ0 , iO(P)).

4. RA samples a bit d
$←− {0, 1}and runs A on (ρ, yd, yd) and gets back the output σB,C .

5. RA samples a random string s
$←− of appropriate length as required by B and C to run the iO

compiler.

6. RA sends (K1,K2,K3, d, s, σB) to RB and (K1,K2,K3, d, s, σC) to RC .

7. RB on receiving (c, (x0, T)) as the challenge cipher text from Ch as the challenge ciphertext
and K1,K2,K3, d, s, σB from RA, does the following:

(a) RB generates the circuit Q which on any input x0 generates r ← T (x0) and if the output
is ⊥ outputs ⊥, else computes DecPostProcess(c, r) and if the outcome is 0, output y0,
else output y1. RB generates Q̃← iO(Q; s).

(b) RB constructs xtrigger as follows. Let xtrigger1 = F2(K2, x0∥Q̃) and xtrigger2 = F3(K3, xtrigger1).
Let xtrigger = x0∥xtrigger1∥xtrigger2.

(c) RB runs B on (xtrigger, σB) to get an output bB.

(d) RB outputs bB ⊕ d.

8. Similarly,RC on receiving (c, (x0, T)) as the challenge cipher text from Ch andK1,K2,K3, d, s, σC
from RA, does the following:

(a) RC generates the circuit Q which on any input x0 generates r ← T (x0) and if the output
is ⊥ outputs ⊥, else computes DecPostProcess(c, r) and if the outcome is 0, output y0,
else output y1. RC generates Q̃← iO(Q; s).

(b) RC constructs xtrigger as follows. Let xtrigger1 = F2(K2, x0∥Q̃) and xtrigger2 = F3(K3, xtrigger1).
Let xtrigger = x0∥xtrigger1∥xtrigger2.

(c) RB runs B on (xtrigger, σB) to get an output bC .

39

(d) RC outputs bC ⊕ d.

Note that the functionality of Q is the same as that of W in the cipher text (x0,W) obtained
by running CLLZ.Enc(pk, ·) algorithm on yb with x0 as the randomness. Note that in Hybrid3, B
(and similarly, C) needs to distinguish between the following two inputs: a random string y along
with either a triggered input x encoding y which is also the view of the inside adversary in the
reduction above in the event b = d in the simulated experiment; or a triggered input x encoding ỹ

random string where ỹ
$←− sampled independent of y, which is the view of the inside adversary in the

reduction above in the event b ̸= d in the simulated experiment. Therefore, by the iO guarantees,
the view of the inside A,B, C is the same as that in Hybrid3.

5.3 UPO for Keyed Circuits from Copy-Protection with Preponed Security

Theorem 29. Assuming Conjecture 15, the existence of post-quantum sub-exponentially secure iO
and one-way functions, and the quantum hardness of Learning-with-errors problem (LWE), there
is a construction of unclonable puncturable obfuscation satisfying U-generalized UPO security (see
Definition 10), for any generalized keyed puncturable circuit class C in P/poly, see Section 3.1.1.

Proof. The proof follows by combining Lemma 31 and theorem 32.

Theorem 30. Assuming Conjecture 14, the existence of post-quantum sub-exponentially secure iO
and one-way functions, and the quantum hardness of Learning-with-errors problem (LWE), there is
a construction of unclonable puncturable obfuscation satisfying IdU -generalized UPO security (see
Definition 10), for any generalized keyed puncturable circuit class C in P/poly, see Section 3.1.1.

Proof. The proof follows by combining Lemma 31 and theorem 33.

The construction is as follows. In the construction given in Figure 10, the PRF family (KeyGen,Eval)
satisfies the requirements as in [CLLZ21] and has input length n(λ) and output length m; PRG is
a length-doubling injective pseudorandom generator with input length m.

Lemma 31. The construction given in Figure 10 satisfies (1 − negl)-UPO correctness for any
generalized puncturable keyed circuit class in P/poly for some negligible function negl.

Proof of Lemma 31. Let W be the circuit that is obfuscated, and let the resulting obfuscated
state be ρ = ({{|Aisi,s′i⟩}i}, C̃, iO(D)). We will show that for every input x = (x0, x1, x2), the
Eval algorithm on (ρ, x) outputs W (x) except with negligible probability. Let |ϕx⟩ be the state
obtained after running the Hadamard operation on {{|Aisi,s′i⟩}i} (see Item 2 of the Eval algorithm
in Figure 10). It is easy to check that for every input x, by the correctness of CLLZ copy-protection,
running C̃ that is generated as C̃ ← iO(C) on (x, |ϕx⟩ in superposition, and then measuring the
output register results in y which is equal to PRG(PRF.Eval(k, x)), except with negligible probability.
By the almost as good as new lemma [Aar16], this would mean that the resulting quantum state
σ which is negligibly close to |ψx⟩⟨ψx| in trace distance. Hence, running C on σ in Item 4 and
inside iO(D) in superposition and then checking if the output is equal to y in superposition (see
Item 4 of the Eval() algorithm in Figure 10), must succeed and iO(D) will outputW (x), except with
negligible probability. Therefore, except with negligible probability, Eval(ρ, x) outputs W (x).

40

Assumes: PRF family (KeyGen,Eval) with same properties as needed
in [CLLZ21], PRG, CLLZ copy-protection scheme (CopyProtect,Eval).

Obf(1λ,W):
1. Sample a random key k ← PRF.KeyGen(1λ).
2. Compute iO(P), {{|Aisi,s′i⟩}i} ← CLLZ.CopyProtect(k).

3. Compute C̃ ← iO(C) where C = PRG · iO(P).
4. Compute iO(D) where D takes as input x, v, y, and runs C on x, v

to get y′ and outputs ⊥ if y′ ̸= y or y′ = ⊥, else it runs the circuit
W on x to output W (x).

5. Output ρ = ({{|Aisi,s′i⟩}i}, C̃, iO(D)).

Eval(ρ, x)
1. Interprete ρ = ({{|Aisi,s′i⟩}i}, C̃, iO(D)).
2. Let x = x0∥x1∥x2, where x0 = ℓ0. For every i ∈ [ℓ0], if x0,i = 1

apply H⊗n on |Aisi,s′i⟩. Let the resulting state be |ψx⟩.
3. Run the circuit C̃ in superposition on the input registers (X,V)

with the initial state (x, |ψx⟩) and then measure the output register
to get an output y. Let the resulting state quantum state on
register V be σ.

4. Run iO(D) on the registersX,V, Y in superposition where registers
X,Y are initialized to classical values x, y and then measure the
output register to get an output z. Output z.

Figure 10: Construction of a UPO scheme.

Theorem 32. Assuming Conjecture 15, post-quantum sub-exponentially secure iO and one-way
functions, and the quantum hardness of Learning-with-errors problem (LWE), the construction given
in Figure 10 satisfies U-generalized unclonable puncturable obfuscation security (see Section 3.1.1)
for any generalized puncturable keyed circuit class in P/poly.

Proof. The proof follows by combining Lemma 34, Proposition 21, and theorem 16, and the obser-
vation that the quantum hardness of LWE implies post-quantum one-way functions.

Theorem 33. Assuming Conjecture 14, the existence of post-quantum sub-exponentially secure
iO and one-way functions, and the quantum hardness of Learning-with-errors problem (LWE), the
construction given in Figure 10 satisfies IdU -generalized unclonable puncturable obfuscation security
(see Section 3.1.1) for any generalized puncturable keyed circuit class in P/poly.

Proof. The proof follows by combining Lemma 35, Proposition 22, and theorem 17, and the obser-
vation that the quantum hardness of LWE implies post-quantum one-way functions.

Lemma 34. Assuming the existence of post-quantum iO, one-way functions, and that CLLZ copy
protection construction for PRFs given in Figure 8, satisfies U-preponed security (defined in Defi-

41

nition 20, the construction given in Figure 10 for W satisfies U-generalized UPO security guarantee
(see Section 3.1.1), for any puncturable keyed circuit class W = {{Ws}s∈Kλ

}λ in P/poly.

Lemma 35. Assuming the existence of post-quantum iO, one-way functions, and that CLLZ copy
protection construction for PRFs given in Figure 8, satisfies IdU -preponed security (defined in
Definition 20), the construction given in Figure 10 for W satisfies IdU -generalized UPO security
guarantee (see Section 3.1.1), for any puncturable keyed circuit class W = {{Ws}s∈Kλ

}λ in P/poly.

Proof of Lemma 31. Let W be the circuit that is obfuscated, and let the resulting obfuscated
state be ρ = ({{|Aisi,s′i⟩}i}, C̃, iO(D)). We will show that for every input x = (x0, x1, x2), the
Eval algorithm on (ρ, x) outputs W (x) except with negligible probability. Let |ϕx⟩ be the state
obtained after running the Hadamard operation on {{|Aisi,s′i⟩}i} (see Item 2 of the Eval algorithm
in Figure 10). It is easy to check that for every input x, by the correctness of CLLZ copy-protection,
running C̃ that is generated as C̃ ← iO(C) on (x, |ϕx⟩ in superposition, and then measuring the
output register results in y which is equal to PRG(PRF.Eval(k, x)), except with negligible probability.
By the almost as good as new lemma [Aar16], this would mean that the resulting quantum state
σ which is negligibly close to |ψx⟩⟨ψx| in trace distance. Hence, running C on σ in Item 4 and
inside iO(D) in superposition and then checking if the output is equal to y in superposition (see
Item 4 of the Eval() algorithm in Figure 10), must succeed and iO(D) will outputW (x), except with
negligible probability. Therefore, except with negligible probability, Eval(ρ, x) outputs W (x).

Proof of Lemma 34. Let (A,B, C) be a QPT adversary in the security experiment given in fig. 3
with DX = U as mentioned in the lemma. We mark the changes in blue.
Hybrid0:
Same as the security experiment given in fig. 3.

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and generates iO(P), {|Aisi,s′i⟩}i ← CLLZ.CopyProtect(1λ, k).

4. Ch constructs C̃ ← iO(C) where C = PRG · iO(P).

5. Ch constructs the circuit iO(D0), iO(D1) where D0, D1 are as depicted in figs. 12 and 13.

6. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

7. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

8. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

9. Output 1 if bB = bC = b.

Hybrid1:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and generates iO(P), {|Aisi,s′i⟩}i ← CLLZ.CopyProtect(1λ, k).

42

P :

Hardcoded keys K1,K2,K3, R
0
i , R

1
i for every i ∈ [ℓ0] On input x =

x0∥x1∥x2 and vectors v = v1, . . . vℓ0 .

1. If F3(K3, x1)⊕ x2 = x0∥Q and x1 = F2(K2, x0∥Q):

Hidden trigger mode: Treat Q as a classical circuit and output
Q(v).

2. Otherwise, check if the following holds: for all i ∈ ℓ0, Rx0,i(vi) = 1
(where x0,i is the i

th coordinate of x0).

Normal mode: If so, output F1(K1, x) where F1() = PRF.Eval()
is the primary pseudorandom function family that is being copy-
protected. Otherwise output ⊥.

Figure 11: Circuit P in Hybrid0.

D0:

Hardcoded keys Ws, C. On input: x, v, y.

1. Run y′ ← C(x, v).

2. If y′ ̸= y or y′ = ⊥ output ⊥.

3. If y = y′ ̸= ⊥, output Ws(x).

Figure 12: Circuit D0 in Hybrid0

4. Ch constructs C̃ ← iO(C) where C = PRG · iO(P).

5. Ch samples yB0 , y
C
1

$←− {0, 1}2m.

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in fig. 14 and
fig. 13, respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

43

D1:

Hardcoded keys Ws,xB,xC ,µB,µC ,C. On input: x, v, y.

1. Run y′ ← C(x, v).

2. If y′ ̸= y or y′ = ⊥ output ⊥.

3. If y = y′ ̸= ⊥, output Ws,xB,xC ,µB,µC(x).

Figure 13: Circuit D1 in Hybrid0

10. Output 1 if bB = bC = b.

D0:

Hardcoded keys Ws,µB, µC ,C. On input: x, v, y.

1. Run y′ ← C(x, v).

2. If y′ ̸= y or y′ = ⊥ output ⊥.

3. If y = y′ ̸= ⊥ and y ∈ {yB0 , yC0}:, output g(x).

(a) If y = yB0 output µB(x
B).

(b) If y = yC0 output µC(x
C).

4. If y = y′ ̸= ⊥ and y ̸∈ {yB0 , yC0}, output Ws(x).

Figure 14: Circuit D0 in Hybrid1

Hybrid2:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and generates iO(P), {|Aisi,s′i⟩}i ← CLLZ.CopyProtect(1λ, k).

4. Ch constructs C̃ ← iO(C) where C = PRG · iO(P).

5. Ch samples yB0 , y
C
1

$←− {0, 1}2m y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

44

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 13 and 14,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid3:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and generates iO(P), {|Aisi,s′i⟩}i ← CLLZ.CopyProtect(1λ, k).

4. Ch constructs C̃ ← iO(C) where C = PRG · iO(P).

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in fig. 14 and
fig. 15, respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid4:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and runs the CLLZ.CopyProtect(1λ, k) algorithm as follows:generates
iO(P), {|Aisi,s′i⟩}i ← CLLZ.CopyProtect(1λ, k).12

(a) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0
i = iO(Ai + si) and R

1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

(b) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with k to construct P , as given in fig. 11.

12There is no change in this line compared to Hybrid3, we only spell out the CLLZ.CopyProtect(1λ, k) explicitly in
order to use intermediate information in the next few steps.

45

D1:

Hardcoded keys f, g,C. On input: x, v, y.

1. Run y′ ← C(x, v)

2. If y′ ̸= y or y′ = ⊥ output ⊥.

3. If y = y′ ̸= ⊥, output Ws,xB,xC ,µB,µC(x).

4. If y = y′ ̸= ⊥ and x ∈ {xB, xC}:

(a) If x = xB output µB(x
B).

(b) If x = xC output µC(x
C).

5. If y = y′ ̸= ⊥ and x ̸∈ {xB, xC}, output Ws(x).

Figure 15: Circuit D1 in Hybrid3

4. Ch computes yB1 = PRG(PRF.Eval(k, xB)), yC1 = PRG(PRF.Eval(k, xC)), and uses yB1 , y
C
1 along

with R0
i , R

1
i , iO(P),PRG to construct C as depicted in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 15,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid5:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

46

C:

Hardcoded keys iO(P),PRG,xB, xC , yB1 , y
C
1 , kxB,xC1, R

0
i , R

1
i for all i ∈ ℓ0

(where ℓ0 is the number of coset states.). On input: x, v.

1. If x ∈ (xB, xC):

(a) Check if R
x0,i
i (vi) = 1 for all i ∈ ℓ0, and reject otherwise.

(b) If x = xB, output yB1 .

(c) If x = xC , output yC1 .

2. If x ̸∈ {xB, xC}, output PRG(iO(P)(x)).

Figure 16: Circuit C in Hybrid4

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC to construct P , as given in fig. 11.

4. Ch computes yB1 = PRG(PRF.Eval(k, xB)), yC1 = PRG(PRF.Eval(k, xC)) and uses yB1 , y
C
1 along

with R0
i , R

1
i , iO(P),PRG to construct C as depicted in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 15,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid6:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

47

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC to construct P , as given in fig. 11.

4. Ch samples uB, uC
$←− {0, 1}m and computes yB1 = PRG(uB), yC1 = PRG(uC) Ch computes

yB1 = PRF.Eval(k, xB), yC1 = PRF.Eval(k, xC) and uses yB1 , y
C
1 along with R0

i , R
1
i , iO(P),PRG to

construct C as depicted in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 15,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid7:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC to construct P , as given in fig. 11.

4. Ch samples yB1 , y
C
1

$←− {0, 1}2m Ch samples uB, uC
$←− {0, 1}m and computes yB1 = PRG(uB), yC1 = PRG(uC)

and uses yB1 , y
C
1 along with R0

i , R
1
i , iO(P),PRG to construct C as depicted in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 15,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

48

Hybrid8:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC to construct P .

4. Ch samples yB1 , y
C
1

$←− {0, 1}2m and uses yB1 , y
C
1 along with R0

i , R
1
i , iO(P),PRG to construct C

as depicted in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in fig. 14 and
fig. 17, respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid9:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC to construct P , as given in fig. 11.

4. Ch samples uB, uC
$←− {0, 1}m and computes yB1 = PRG(uB), yC1 = PRG(uC) Ch samples

yB1 , y
C
1

$←− {0, 1}2m and uses yB1 , y
C
1 along with R0

i , R
1
i , iO(P),PRG to construct C as depicted

in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

49

D1:

Hardcoded keys f, g,C. On input: x, v, y.

1. Run y′ ← C(x, v)

2. If y′ ̸= y or y′ = ⊥ output ⊥.

3. If y = y′ ̸= ⊥ and y ∈ {yB1 , yC1}x ∈ {xB, xC}:

(a) If y = yB1 x = xB output µB(x
B).

(b) If y = yC1 x = xC output µC(x
C).

4. If y = y′ ̸= ⊥ and y ̸∈ {yB1 , yC1}x ̸∈ {xB, xC}, output Ws(x).

Figure 17: Circuit D1 in Hybrid8

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 17,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid10:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC to construct P , as given in fig. 11.

4. Ch computes yB1 = PRG(PRF.Eval(k, xB)), yC1 = PRG(PRF.Eval(k, xC)) Ch samples uB, uC
$←− {0, 1}m

and computes yB1 = PRG(uB), yC1 = PRG(uC) and uses yB1 , y
C
1 along with R0

i , R
1
i , iO(P),PRG

to construct C as depicted in fig. 16.

50

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 17,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid11:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and does the following:

(a) Computes kxB,xC ← PRF.Puncture(k, {xB, xC}).
(b) Samples ℓ0 coset states |Aisi,s′i⟩i and construct R0

i = iO(Ai + si) and R
1
i = iO(Ai + s′i)

for every i ∈ [ℓ0].

(c) Samples keys K2,K3 from the respective secondary PRFs and use R0
i = iO(Ai + si) and

R1
i = iO(Ai + s′i) along with kxB,xC k to construct P , as given in fig. 11.

4. Ch computes yB1 = PRG(PRF.Eval(k, xB)), yC1 = PRG(PRF.Eval(k, xC)) and uses yB1 , y
C
1 along

with R0
i , R

1
i , iO(P),PRG to construct C as depicted in fig. 16.

5. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

6. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 17,
respectively.

7. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

8. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

9. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

10. Output 1 if bB = bC = b.

Hybrid12:

1. A sends a key s ∈ Kλ and functions µB and µC to Ch.

2. Ch samples xB, xC
$←− {0, 1}n.

3. Ch samples k ← KeyGen, and computes iO(P), |Aisi,s′i⟩i ← CLLZ.CopyProtect(k).

51

4. Ch computes yB1 = PRG(PRF.Eval(k, xB)), yC1 = PRG(PRF.Eval(k, xC)).

5. Ch constructs C = PRG · iO(P).

6. Ch samples y1, y2
$←− {0, 1}m, and computes yB0 ← PRG(y1), y

C
0 ← PRG(y2).

7. Ch constructs the circuit iO(D0), iO(D1) where D0 and D1 are as depicted in figs. 14 and 17,
respectively.

8. Ch samples b
$←− {0, 1} and sends (iO(C), {|Aisi,s′i⟩}i, iO(Db)) to A.

9. A(C̃, {|Aisi,s′i⟩}i, iO(Db)) outputs a bipartite state σB,C .

10. Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (bB, bC).

11. Output 1 if bB = bC = b.

Next, we give a reduction from Hybrid12 to the preponed security of the CLLZ copy-protection (for
the PRFs with the required property having the key-generation algorithm KeyGen as mentioned
above) to finish the proof.The reduction does the following.

1. RA runs A to get a circuit f and g.

2. RA on receiving the copy-protected PRF, iO(P), {|Aisi,s′i⟩}i and uB, uC , computes yB ←
PRG(uB) and yC = PRG(uC), and creates the circuit C̃ ← iO(C) where C = PRG · iO(P). RA
also creates iO(D) where D on input x, v, y runs C on x, v to get y′ and outputs ⊥ if y′ ̸= y
or y′ = ⊥, else if y′ ∈ {yB0 , yC} outputs g(x), else it runs the circuit Ws to output Ws(x). RA
runs A on ρk, iO(D) and gets an output σB,C , it then sends the corresponding registers of σB,C
to both RB and RC .

3. RB and RC receive x
B and xC from the challenger and run the adversaries B(xB, ·) and C(xC , ·)

respectively on σB,C , to get the outputs bB and bC respectively,. RB and RC output 1 − bB
and 1− bC , respectively.

Finally, we prove the indistinguishability of the hybrids to finish the proof.

Indistinguishability of hybrids

Claim 36. Assuming the security of iO, hybrids Hybrid0 and Hybrid1 are computationally indistin-
guishable.

Proof of Claim 36. For any function f , let If denote the image of f . Since IPRG is a negligible
fraction of {0, 1}2m and yB0 , y

C
0 were chosen uniformly at random, with overwhelming probability

yB0 , y
C
0 ̸∈ IPRG and hence not in IC . Therefore with overwhelming probability over the choice of

yB0 , y
C
0 , any (x, v, y) that satisfies this check also satisfies y ̸∈ {yB0 , yC0}. Hence with overwhelming

probability, if y′ = y ̸= ⊥, the penultimate check (item 3 in fig. 14) will always fail, and therefore,
D0 will always output Ws(x). Hence with overwhelming probability, D0 has the same functionality
in both the hybrids, and therefore by iO guarantees, the indistinguishability of the hybrids holds.

52

Claim 37. Assuming the pseudorandomness of PRG, hybrids Hybrid1 and Hybrid2 are computa-
tionally indistinguishable.

Proof of Claim 36. The proof is immediate.

Claim 38. Assuming the security of iO, hybrids Hybrid2 and Hybrid3 are computationally indistin-
guishable.

Proof of Claim 38. The modification did not change the functionality ofD1 in this hybrid compared
to the previous hybrid by the definition ofWs,xB,xC ,µB,µC and the Puncture algorithm associated with
W.Hence, the indistinguishability follows from the iO guarantees.

Claim 39. Assuming the security of iO, hybrids Hybrid3 and Hybrid4 are computationally indistin-
guishable.

Proof of Claim 39. The indistinguishability follows by the iO guarantees and the claim that with
overwhelming probability, the functionalities of PRG · iO(P) and C in this hybrid are the same. The
proof of the claim is as follows.

In the proof of correctness [CLLZ21, Lemma 7.13] of the CLLZ copy-protection scheme, it was
shown that the probability over the keys for the secondary pseudorandom functions, that xB, xC

are in the hidden triggers, is negligible. Hence, with overwhelming probability over the secondary
pseudorandom function keys, (xB, v) and (xC , v) will not satisfy the trigger condition for P and
therefore, not run in the hidden-trigger mode13. Hence with the same overwhelming probability,
the functionality of P will not change even if we skip the hidden trigger check for {xB, xC}. Note
that conditioned on the functionality does not change for P by skipping the check for {xB, xC}, the
functionality of C in Hybrid2 and Hybrid3 are the same. Hence, with overwhelming probability, the
functionality of C in Hybrid3 is the same as that of PRG · iO(P).

Claim 40. Assuming the security of iO, hybrids Hybrid4 and Hybrid5 are computationally indistin-
guishable.

Proof. The indistinguishability holds because P was hardcoded directly only in the circuit in the
circuit C in the previous hybrid, and in C, we never use the key P to evaluate on {xB, xC}, and
hence the functionality did not change even after we punctured the PRF key hardcoded inside P in
Hybrid5, due to the puncturing correctness of the PRF. Hence the indistinguishability follows from
the iO guarantee since we did not change the functionality of C.

Claim 41. Assuming the security of the pseudorandom function family PRF, hybrids Hybrid5 and
Hybrid6 are computationally indistinguishable.

Proof. The proof is immediate.

Claim 42. Assuming the pseudorandomness of PRG, hybrids Hybrid6 and Hybrid7 are computa-
tionally indistinguishable.

Proof. The proof is immediate.

13Note that this property depends only on the secondary keys k2 and k3. Since, over the hybrids, we only punctured
the primary key and not the two secondary keys, the same correctness guarantee holds in this hybrid as in the
unpunctured case of hybrid 0.

53

Claim 43. Assuming the security of iO, hybrids Hybrid7 and Hybrid8 are computationally indistin-
guishable.

Proof. We will show that the functionality of D1 did not change across the hybrids Hybrid7 and
Hybrid8 (see figs. 15 and 17), and hence indistinguishability of the hybrids follows from the iO
guarantees. Note that since C in Hybrid8 satisfies C(xB, vB) = yB and C(xC , vC) = yC ∀vB ∈ V B
and vC ∈ V C , where V B (respectively, V C) is the set of all v such that (xB, v) (respectively, (xC , v))
passes the coset check in the normal mode (see item 2), respectively. Moreover, the image of C
restricted to XC \

(
(xB, vB) ∪ (xC , vC)

)
, i.e.,

ICXC\(xB,vB)∪(xC ,vC)
⊂ IPRG({0,1}m),

where m is the output length of the PRF family, (xB, vB) (respectively, (xC , vC)) is the short hand
notation for {(xB, v) | w ∈ V B} (respectively, {(xC , v) | w ∈ V C}). Since IIPRG is a negligible
fraction of {0, 1}2m, ICXC\(xB,vB)∪(xC ,vC)

is also a negligible fraction of {0, 1}2m. Since yB1 , y
C
1 are

sampled uniformly at random independent of the set ICXC\(xB,vB)∪(xC ,vC)
, except with negligible

probability,
yB1 , y

C
1 ̸∈ ICXC\(xB,vB)∪(xC ,vC)

.

Note that we did not change the description of C after Hybrid3, hence as noted in Hybrid3,

C(xB, v) ∈ {yB1 ,⊥}, C(xC , v) ∈ {yC1 ,⊥}.

Therefore, combining the last two statements, except with negligible probability, the preimage(s)
of yB1 are of the form (xB, v), and the only non-⊥ image of xB is yB1 , and similarly for yC1 and xC .
Hence except with negligible probability, the check that y′ = y ̸= ⊥ and y ∈ {yB1 , yC1} is equivalent
to y′ = y ̸= ⊥ and x ∈ {xB, xC}. Therefore with overwhelming probability, the functionality of D1

in Hybrid7 (see fig. 15) and in Hybrid8 (see fig. 17) are the same.

Claim 44. Assuming the pseudorandomness of PRG, hybrids Hybrid8 and Hybrid9 are computa-
tionally indistinguishable.

Proof. The proof is immediate.

Claim 45. Assuming the puncturing security of the pseudorandom function family PRF, hybrids
Hybrid9 and Hybrid10 are computationally indistinguishable.

Proof. The proof is immediate.

Claim 46. Assuming the security of iO, hybrids Hybrid10 and Hybrid11 are computationally indis-
tinguishable.

Proof. The proof is the same as that of Claim 40.

Claim 47. Assuming the security of iO, hybrids Hybrid11 and Hybrid12 are computationally indis-
tinguishable.

Proof. The proof is the same as that of Claim 39.

54

Proof of Lemma 35. The proof is the same as that of Lemma 34 upto minor adaptations and
hence we omit the proof.

6 Construction from Quantum State iO

Recently, Coladangelo and Gunn [CG23] proposed the definition of quantum state iO and presented
a candidate construction of qsiO. In this section, we show how to construct UPO from qsiO. As
an intermediate tool, we consider a variant of private key unclonable encryption referred to as
leakage-resilient unclonable encryption (lrUE).

Leakage-resilient Unclonable Encryption. Consider the following experiment.

lrUE.Expt(f,A,B,C)
(
1λ
)
:

• A sends m0,m1.

• Ch samples sk← Gen(1λ) and computes y∗ = f(x).

• Ch sends y∗ to A.

• Ch picks a bit b uniformly at random. and generates ρct ←
Enc(sk,mb). It sends (ρct, f(sk)) to A.

• A produces a bipartite state σB,C .

• Apply (B(sk, ·)⊗ C(sk, ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Figure 18: Leakage-resilient unclonable indistinguishability

We say that a private key unclonable encryption scheme UE satisfies f -leakage-resilient unclonable
indistinguishability, for some function f : {0, 1}λ → {0, 1}poly(λ) and keyed circuit class W, if for
every QPT adversary (A,B, C), there exists a negligible function negl such that:

Pr
[
1← lrUE.Expt(f,A,B,C)

(
1λ
)]
≤ 1

2
+ negl(λ).

Note that the only difference between the leakage resilient unclonable indistinguishability exper-
iment in Figure 18 and the standard unclonable indistinguishability experiment is the leakage of
the additional information f(sk) to A.

55

UPO from qsiO. We consider the following tools:

• f -leakage-resilient UE scheme, denoted by UE = (Enc,Dec), for some injective one-way func-
tion f : {0, 1}λ → {0, 1}λ.

• Quantum state iO scheme, denoted by qsio = (Obf,Eval).

Theorem 48. Suppose there exists a post-quantum injective one-way function f , and a private key
unclonable encryption scheme UE that satisfies and f -leakage-resilient unclonable indistinguisha-
bility (see Figure 18). Then, any qsio scheme (Obf,Eval) is also a UPO scheme satisfying IdU -
generalized UPO security guarantee (see Section 3.1.1), for any puncturable keyed circuit class
W = {{Ws}s∈Kλ

}λ in P/poly.

Proof. The correctness follows immediately from the correctness of the qsio scheme.
Next, we prove security. Let (A,B, C) be a QPT adversary in the generalized UPO security

experiment given in fig. 3 with DX = IdU .
Hybrid1 : Same as the security experiment given in fig. 3.

1. A sends a key s ∈ Kλ and function µ14 to Ch.

2. Ch samples x∗
$←− {0, 1}n(λ), and a bit b

$←− {0, 1}.

3. Ch generates ρ̃0 ← Obf(1λ,Ws), and ρ̃1 ← Obf(1λ,Ws,x∗,µ), whereWs,x∗,µ ← GenPuncture(s, x∗, x∗, µ, µ).

4. Ch sends ρ̃b to A.

5. A(ρ̃b) outputs a bipartite state σB,C .

6. Apply (B(x∗, ·)⊗ C(x∗, ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b.

Hybrid2 :

1. A sends a key s ∈ Kλ and function µ15 to Ch.

2. Ch samples x∗
$←− {0, 1}n(λ), and a bit b

$←− {0, 1}.

3. Ch generates ρ̃0 ← Obf(1λ,Ws), and ρ̃1 ← Obf(1λ,Ws,x∗,µ), whereWs,x∗,µ ← GenPuncture(s, x∗, µ).
ρ̃b ← Obf(1λ, (Cy∗ , ρb)) where ρb ← UE.Enc(x∗, b) and Cy∗ is the circuit that on input x, first
checks if y = f(x). If y ̸= y∗, Cy∗ outputs Ws(x). Else, runs d ← UE.Dec(x, ρ) and if d = 0
outputs Ws(x) else outputs µ(x).

4. Ch sends ρ̃b to A.

5. A(ρ̃b) outputs a bipartite state σB,C .

14In the security experiment in fig. 3, A sends two functions µB, µC but since in the context of the proof, DX = IdU ,
the second function µC is redundant and do not play any part. Therefore for the sake of the proof, we can assume
without loss of generality, that A just sends a single function µ to the challenger.

15In the security experiment in fig. 3, A sends two functions µB, µC but since in the context of the proof, DX = IdU ,
the second function µC is redundant and do not play any part. Therefore for the sake of the proof, we can assume
without loss of generality, that A just sends a single function µ to the challenger.

56

6. Apply (B(x∗, ·)⊗ C(x∗, ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b.

Hybrids Hybrid1 and Hybrid2 are computationally indistinguishable since the implementations
Ws and Cy∗ , ρ0, as well as Ws,x∗,µ and Cy∗ , ρ1 are functionally equivalent, i.e., (1− negl(λ)) imple-
mentation of the same function for some negligible function negl (this in turn follows because f is
an injective function).

Next, we give a reduction (RA, RB, RC) from Hybrid2 to leakage resilient UE-indistinguishability
experiment with respect to the leakage function f (see Figure 18) for UE as follows.

• RA gives 0 and 1 as the challenge messages to the challenger.

• Challenger sends y∗ and a cipher ρ.

• RA computes Cy∗ using y∗ and then computes ρ̃← Obf(1λ, (Cy∗ , ρ)).

• RA feeds ρ̃ to A and gets a bipartite state σB,C .

• RB (respectively, RC) on receiving x from the challenger, runs B (respectively, C) on σB
(respectively, σC) and x, and the output the bit outputted by B (respectively, C).

It follows that the advantage of the QPT adversary (A,B, C) in breaking UPO security is within
negligible additive factor of the advantage of the QPT adversary in breaking the leakage resilient
unclonable indistinguishability of UE. This completes the proof of generalized UPO security for
(Obf,Eval).

Part II: Applications

7 Applications

We discuss the applications of unclonable puncturable obfuscation:

• We identify an interesting class of circuits and show that copy-protection for this class of
functionalities exist. We show this in Section 7.2.

• We generalize the result from bullet 1 to obtain an approach to copy-protect certain family
of cryptographic schemes. This is discussed in Section 7.3.

• We show how to copy-protect evasive functions in Section 7.6.

• We show how to construct public-key single-decryptor encryption from UPO in Section 7.4.

57

7.1 Notations for the applications

All the search-based applications (i.e., the security of which can be written as a cloning game with
trivial success probability negligible) are with respect to independent challenge distribution. By the
generic transformation in [AKL23], this implies the applications also achieve security with respect
to arbitrarily correlated challenge distribution.
A function class F = {Fλ}λ∈N is said to have a keyed circuit implementation C = {{Ck}k∈Kλ

}λ∈N
if for every f ∈ F , there is a circuit Ck in C that implements f , i.e., the canonical map Sλ mapping
a circuit C to its functionality when seen as a map Cλ 7→ Fλ, is surjective. In addition, if there
exists a distribution DF on F , and an efficiently samplable distribution DK on K such that

{Sλ(Ck)}k←DK(1λ) ≈ {f}f←DF (1λ),

then (DK,C) is called a keyed circuit implementation of (DF ,F). Since any circuit class can be
represented as a keyed circuit class using universal circuits, there is no loss of generality in our
definition of keyed circuit implementation.

7.2 Copy-Protection for Puncturable Function Classes

We identify a class of circuits associated with a security property defined below. We later show
that this class of circuits can be copy-protected.

Definition 49 (Puncturable Security). Let C = {Cλ}λ∈N be a puncturable keyed circuit class (as
defined in Section 3.1). Let Puncture be the puncturing algorithm and K be the key space associated
with C.

We say that (C,Puncture) satisfies DK-puncturable security, where DK is a distribution on K,
where n is the input length of the circuits in Cλ, if the following holds: for any quantum polynomial
time adversary A,

Pr

y = Ck(x1) :

k←DK(1λ)

(x1,x2)
$←−{0,1}2n

Gk∗←Puncture(k,x1,x2)

y←A(x1,Gk∗)

 ≤ 1

2m
+ negl(λ),

for some negligible function negl. In the above expression, Ck ∈ Cλ and n is the input length and
m is the output length of Ck.

Remark 50. A possible objection to the definition could be the inclusion of x2 in the definition.
The sole purpose of including x2 is to help in the proof.

Remark 51. We may abuse the notation and denote DK to be a distribution on C. Specifically,
circuit C is sampled from DK(1λ) as follows: first sample k ← Kλ and then set C = Ck.

Theorem 52. Suppose F = Fλλ∈N be a function class equipped with a distribution DF such that
there exists a keyed circuit implementation (see Section 7.1) (DK,C) satisfying the following:

1. C is a puncturable keyed circuit class associated with the puncturing algorithm Puncture and
key space K

58

2. C satisfies DK-puncturable security (Definition 49).

Suppose UPO = (Obf,Eval) is a secure unclonable puncturable obfuscation scheme for C associated
with distribution DX , where DX is defined to be a uniform distribution.

Then there exists a copy-protection scheme (CopyProtect,Eval) for F satisfying (DK,DX)-anti-
piracy, with respect to C as the keyed circuit implementation of F , and (DK,C) as the keyed circuit
implementation of (DF ,F).

Proof. We define the algorithms CP = (CopyProtect,Eval) as follows:

• CopyProtect(1λ, C): on input C ∈ Cλ with input length n(λ), it outputs ρC , where ρC ←
UPO.Obf(1λ, C).

• Eval(ρC , x): on input ρC , input x ∈ {0, 1}n, it outputs the result of UPO.Eval(ρC , x).

The correctness of the copy-protection scheme follows from the correctness of UPO.

Next, we prove (DK,DX)-anti-piracy with respect to the keyed circuit implementation (DK,C) (see
Appendix A.1). Let (A,B, C) be a non-local adversary in the anti-piracy experiment CP.Expt(A,B,C),DK,DX

(
1λ
)

defined in Figure 34. Consider the following adversary (RA,RB,RC) in the UPO security experi-
ment UPO.Expt(RA,RB,RC),DX ,C

(
1λ, ·

)
(Figure 2), defined as follows:

• RA samples k ← DK(1λ), and sends k to the challenger Ch in the UPO security experiment.

• RA runs A on the received obfuscated state ρ from Ch to get a bipartite state σB,C on registers
B and C.

• RA sends register B and key k to B. Similarly, RA sends register C and key k to C.

• Ch generates (xB, xC)← DX .

• RB on receiving the challenge xB, runs B on (k, σB, x
B) to obtain yB. RB outputs 0 if and

only if yB = CkB(x
B), otherwise outputs 1.

• RC receives the challenge xC and does the same as RB but on (k, σC , x
C).

Define the following quantities:

• pCP: probability that (B, C) simultaneously output (Ck(x
B), Ck(x

C)) in CP.Expt(A,B,C),DK,DX
(
1λ
)
.

• For b ∈ {0, 1}, pUPOb : probability that (RB,RC) simultaneously output b in UPO.Expt(RA,RB,RC),DX ,C
(
1λ, b

)
.

In order to prove the security of CP, we have to upper bound pCP. We have the following:

• From the description of (RA,RB,RC), pCP = pUPO0 .

• From the security of UPO, we have that 1
2p

UPO
0 + 1

2p
UPO
1 ≤ 1

2 + ν1(λ) for some negligible
function ν1(λ).

Combining the two, we have:
1

2
pCP +

1

2
pUPO1 ≤ 1

2
+ ν1(λ) (2)

59

Claim 53. Assuming DK-puncturable security of C, there exists a negligible function ν2(λ) such
that pUPO1 ≥ 1− ν2(λ).

Proof. Define the following quantities. Let qRB
1 (respectively, qRC

1) be the probability that RB
(respectively, RC) outputs 0. Hence, pUPO1 ≥ 1− qRB

1 − qRC
1 . We prove that qRB

1 ≤ ν3(λ), for some

negligible function ν3(λ) and symmetrically, it would follow that qRC
1 ≤ ν4(λ).

Suppose qRB
1 is not negligible. We design an adversary Apunc participating in the security

experiment of Definition 49. Adversary Apunc proceeds as follows:

• Apunc on receiving (x1, Gk∗), where Gk∗ ← Puncture(k, x1, x2), generates ρ← Obf(1λ, Gk∗).

• It then runs σBC ← RA(ρ), where σBC is defined on two registers B and C.

• Finally, it outputs the result of RB on the register B and x1.

By the above description, the event that Apunc wins exactly corresponds to the event that RB
outputs 0. That is, the probability that Apunc wins is qRB

1 . Since qRB
1 is not negligible, it follows

that Apunc breaks the puncturable security of C with non-negligible probability, a contradiction.

Thus, qRB
1 is negligible and symmetrically, qRC

1 is negligible.

From the above claim, we have:

1

2
pCP +

1

2
pUPO1 ≥ 1

2
pCP +

1

2
− 1

2
ν2(λ) (3)

Combining Equation (2) and Equation (3), we have:

pCP ≤ 2ν1(λ) + ν2(λ),

which concludes the theorem.

Instantiations. In the theorem below, we call a pseudorandom function (PRF) to be a 2-point
puncturable PRF if it can be punctured at 2 points. Such a function family can be instantiated, for
instance, from post-quantum one-way functions [BGI14, BW13]. We obtain the following corollary.

Corollary 54. Let F be a class of 2-point puncturable PRF with an evaluation circuit Eval and
keyspace {Kλ}λ, and let C = {{Eval(k, ·)}k∈Kλ

}λ. Assuming the existence of unclonable puncturable
obfuscation for C, there exists a copy-protection scheme for F .

Combined with Theorem 29, we can rephrase Theorem 52 in terms of concrete assumption as
follows.

Corollary 55. Suppose F be a function class satisfying all the properties as in Theorem 52, then
assuming Conjecture 15, the existence of post-quantum sub-exponentially secure iO and one-way
functions, and the quantum hardness of LWE, there exists a copy-protection scheme for F satisfying
anti-piracy with respect to the same circuit implementation and anti-piracy notion as mentioned in
Theorem 52.

In particular, under the above assumptions, there exists a copy-protection scheme for every class
of 2-point puncturable PRF.

60

7.3 Copy-Protection for Puncturable Cryptographic Schemes

We generalize the approach in the previous section to capture puncturable cryptographic schemes,
rather than just puncturable functionalities.

Syntax. A cryptographic primitive that is a tuple of probabilistic polynomial time algorithms
(Gen,Eval,Puncture,Verify) such that

• Gen(1λ): takes a security parameter and generates a secret key sk and a public auxiliary
information aux. We will assume without loss of generality that sk ∈ {0, 1}λ.

• Eval(sk, x): takes a secret key sk and an input x and outputs a output string y. This is a
deterministic algorithm.

• Puncture(sk, x1, x2): takes a secret key sk and a set of inputs (x1, x2) and outputs a circuit
Gsk,x1,x2 . This is a deterministic algorithm.

• Verify(sk, aux, x, y): takes a secret key sk, an auxiliary information aux, an input x and an
output y and either accepts or rejects.

Definition 56 (Puncturable cryptographic schemes). A cryptographic scheme (Gen,Eval,Puncture,
Verify) is a puncturable cryptographic scheme if it satisfies the following properties:

• Correctness: The correctness property states that for any input x, Verify(sk, aux, x,Eval(x))
accepts, where (sk, aux)← Gen(1λ).

• Correctness of Punctured Circuit: The correctness of punctured circuit states that for
any set of inputs {x1, x2}, and Gsk,x1,x2 ← Puncture(sk, x1, x2), where (sk, aux) ← Gen(1λ),
it holds that Gsk,x1,x2(x) = Eval(sk, x) for all x ̸∈ {x1, x2} and Gsk,x1,x2(x) outputs ⊥ if
x ∈ {x1, x2}.

• Security: We say that a puncturable cryptographic scheme (Gen,Eval,Puncture,Verify) sat-
isfies puncturable security if the following holds: for any quantum polynomial time adversary
A,

Pr

Verify(sk, aux, x1, y) = 1 :

(sk,aux)←Gen(1λ)

x1,x2
$←−{0,1}n

Gsk,x1,x2
←Puncture(sk,x1,x2)

y←A(x1,aux,Gsk,x1,x2
)

 ≤ negl(λ),

for some negligible function negl.

Remark 57. A possible objection to the definition could be the inclusion of m2 in the definition.
The sole purpose of including m2 is to help in the proof. Assuming iO and length-doubling PRG,
this added restriction does not rule out function classes further since, given iO and PRG, any
function class that satisfies the above definition without the additional puncture point has a circuit
representation that satisfies the puncturing security with this additional point of puncture m2.

61

PCS.Expt(A,B,C),
(
1λ
)
:

• Ch samples sk, aux ← Gen(1λ), and generates ρsk ←
UPO.Obf(1λ,Eval(sk, ·)) and sends (ρsk, aux) to A.

• A produces a bipartite state σB,C .

• Ch samples xB, xC
$←− {0, 1}n.

• Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if Verify(sk, aux, xB, yB) = 1 and Verify(sk, aux, xC , yC) =
1.

Figure 19: Anti-piracy experiment with uniform and independent challenge distribution:

Lemma 58. Suppose (Gen,Eval,Puncture,Verify) is a puncturable cryptographic scheme. Let UPO
be a unclonable puncturable obfuscation for the puncuturable keyed circuit class {Cλ = {Eval(sk, ·)}sk∈{0,1}λ
parametrized by the secret keys, equipped with Puncture as the puncturing algorithm. Then for every
QPT adversary (A,B, C), there exists a negligible function negl such that the following holds:

Pr
[
1← PCS.Expt(A,B,C)

(
1λ
)]
≤ negl(λ),

where PCS.Expt(A,B,C) is defined in Figure 19.

Proof of lemma 58. Let (A,B, C) be a non-local adversary in the anti-piracy experiment PCS.Expt(A,B,C)

(Figure 20). Consider the following adversary (RA,RB,RC) in the UPO security experiment
UPO.Expt(RA,RB,RC),DX ,C (Figure 2), defined as follows:

• RA samples (sk, aux) ← Gen(1λ), and sends sk to the challenger Ch in the UPO security
experiment.

• RA receives ρ from Ch and runs A on (ρ, aux) from Ch to get a bipartite state σB,C .

• RA outputs skB, skC , auxB, auxC , σB,C where skB = skC = sk and auxB = auxC = aux.

• RB receives the challenge xB from Ch and (skB, auxB, σB) from RA and runs B on σB to obtain
yB. RB outputs 0 if and only if Verify(sk, aux, xB, yB) = 1, otherwise outputs 1.

• RC does the same but on (auxC , σC) and the challenge xC .

Note that the view of (A,B, C) in Expt(RA,RB,RC),U×U ,C
(
1λ, 0

)
is identical to the UPO experiment,

and the event 1← Expt(RA,RB,RC),U×U ,C
(
1λ, 0

)
corresponds to 1← Expt(A,B,C),(Gen,Eval,Puncture,Verify),UPO

(
1λ
)
.

Let
pb ≡ Pr[b← Expt(RA,RB,RC),U×U ,C

(
1λ, b

)
],∀b ∈ {0, 1}.

62

Hence,

p0 =Pr[0← Expt(RA,RB,RC),U×U ,C
(
1λ, 0

)
] (4)

= Pr
[
1← Expt(A,B,C),(Gen,Eval,Puncture,Verify),UPO

(
1λ
)]

. (5)

Therefore, it is enough to show that p0 is negligible.
Note that by the UPO-security (see Definition 9) of the UPO scheme, there exists a negligible

function negl(λ) such that

Pr[b = 0]p0 + Pr[b = 1]p1 =
p0 + p1

2
≤ 1

2
+ negl(λ).

Hence,
p0 ≤ 1 + 2negl(λ)− p1. (6)

Let qRB
1 (respectively, qRC

1) be the probability that RB (RC) outputs 0, i.e., the inside adversary
B (respectively, C) passed verification, in the experiment Expt(RA,RB,RC),U×U ,C

(
1λ, 1

)
.

Note that the event 0← Expt(RA,RB,RC),U×U ,C
(
1λ, 1

)
corresponds to either RB outputs 0 or RC

outputs 0 in Expt(RA,RB,RC),U×U ,C
(
1λ, 1

)
. Hence,

Pr
[
0← Expt(RA,RB,RC),U×U ,C

(
1λ, 1

)]
≤ qRB

1 + qRC
1 .

Therefore,

p1 = 1− Pr
[
0← Expt(RA,RB,RC),U×U ,C

(
1λ, 1

)]
≥ 1− qRB

1 − qRC
1 .

Combining with Equation (6), we conclude

p0 ≤ 1 + 2negl(λ)− (1− qRB
1 − qRC

1) = qRB
1 + qRC

1 + 2negl(λ). (7)

Hence, it is enough to show that qRC
1 and qRB

1 are negligible.
Consider the adversary AA,B in the puncturing security experiment given in Definition 59 for

the puncturable signature scheme (Gen,Eval,Puncture,Verify).

• AA,B, on receiving x1, Gsk,x1,x2 generates ρ← Obf(1λ,Eval(Gsk,x1,x2 , ·)).

• Then, runs σB,C ← A(ρ).

• Finally, outputs B(σB).

It is easy to see that the event of AA,B winning the puncturing security experiment exactly corre-

sponds with the event of RB outputting 1 in Expt(RA,RB,RC),U×U ,C
(
1λ, 1

)
, where x1 corresponds to

xB. Therefore, by the puncturing security of (Gen,Eval,Puncture,Verify), there exists a negligible
function ϵ1(λ) such that,

qRB
1 = Pr

Verify(sk, aux, x1, sig) = 1 :

(sk,aux)←Gen(1λ)

x1,x2
$←−{0,1}n

Gsk,x1,x2
←Puncture(sk,{x1,x2})

sig←AA,B(x1,aux,Gsk,x1,x2
)

 ≤ ϵ1.
63

Similarly, by considering the adversary AA,C which is AA,B with the B replaced as C, we conclude
that there exists a negligible function ϵ2(λ) such that

qRC
1 = Pr

Verify(sk, aux, x1, sig) = 1 :

(sk,aux)←Gen(1λ)

x1,x2
$←−{0,1}n

Gsk,x1,x2
←Puncture(sk,{x1,x2})

sig←AA,C(x1,aux,Gsk,x1,x2
)

 ≤ ϵ2.
Therefore, we conclude that both qRC

1 and qRB
1 are negligible in λ, which in combination with

Equation (7) completes the proof of the anti-piracy.

7.3.1 Copy-Protection for Signatures

Definition 59 (Puncturable digital signatures [BSW16]). Suppose DS = (Gen, Sign,Verify) be a
digital signature with message length n = n(λ) and signature length s = s(λ). Let Puncture,Sign∗

be efficient polynomial time algorithms such that Puncture() takes as input a secret key and a
message (or a polynomial number of messages) (sk,m) and outputs skm, and Sign∗ is the signing
algorithm for punctured keys such that Sign∗(skm, ·) has the same functionality as Sign∗(skm, ·) on
all messagesm′ ̸= m and Sign∗(skm,m

′) outputs ⊥.
We say that a puncturable digital signature scheme (Gen,Sign,Puncture,Verify, Sign∗) satisfies

puncturable security if the following holds: for any quantum polynomial time adversary A,

Pr

Verify(vk, x1, sig) = 1 :

(sk,vk)←Gen(1λ)

m1,m2
$←−{0,1}n

skm1,m2←Puncture(sk,{m1,m2})

sig←A(m1,vk,skm1,m2)

 ≤ negl(λ),

for some negligible function negl().

Remark 60. A possible objection to the definition could be the inclusion of m2 in the definition.
The sole purpose of including m2 is to help in the proof. Assuming iO and length-doubling PRG,
this added restriction does not rule out function classes further since, given iO and PRG, it can
be shown that any function class that satisfies the above definition without the additional puncture
point has a circuit representation that satisfies the puncturing security with this additional point of
puncture m2.

In [BSW16], the authors constructed a puncturable digital signature scheme from one-way
functions and sub-exponentially secure indistinguishability obfuscation. We observe that their
construction when instantiated with a post-quantum one-way function, and post-quantum sub-
exponentially secure iO, satisfies post-quantum security.

Theorem 61 (Adapted from [BSW16, Theorem 3.1]). Assuming post-quantum one-way function,
and post-quantum sub-exponentially secure iO, there exists a post-quantum puncturable digital sig-
nature, see Definition 59

Definition 62 (Adapted from [LLQZ22]). A copy-protection scheme for a signature scheme with
message length n(λ and signature length s(λ) consists of the following algorithms:

64

• (sk, vk)← Gen(1λ) : on input a security parameter 1λ, returns a classical secret key sk and a
classical verification key vk.

• ρsk ← QKeyGen(sk) : takes a classical secret key sk and outputs a quantum signing key ρsk.

• sig← Sign(ρsk,m) : takes a quantum signing key ρsk and a message m for m ∈ {0, 1}n(λ), and
outputs a classical signature sig.

• b← Verify(vk,m, sig) takes a classical verification key vk, a message m and a classical signa-
ture sig, and outputs a bit b indicating accept (b = 1) or reject (b = 0).

Correctness For every message m ∈ {0, 1}n(λ), there exists a negligible function δ(λ), (also called
the correctness precision) such that

Pr[sk, vk← Gen(λ); ρsk ← QKeyGen(sk), sig← Sign(ρsk,m) : Verify(vk, sig) = 1] ≥ 1− δ(λ).

Expt(A,B,C),CP-DS
(
1λ
)
:

• Ch samples sk, vk ← Gen(1λ) and generates ρsk ← QKeyGen(sk)
and sends (ρsk, vk) to A.

• A produces a bipartite state σB,C .

• Ch samples mB,mC
$←− {0, 1}n.

• Apply (B(mB, ·)⊗ C(mC , ·))(σB,C) to obtain (sigB, sigC).

• Output 1 if Verify(vk,mB, sigB) = 1 and Verify(vk,mC , sigC) = 1.

Figure 20: Anti-piracy experiment with uniform and independent challenge distribution for copy-
protection of signatures.

Security We say that a copy-protection scheme for signatures CP-DS = (Gen,QKeyGen,Sign,Verify)
satisfies anti-piracy with respect to the product distribution U ⊗ U if for every efficient adversary
(A,B, C) in Experiment 20 there exists a negligible function negl() such that

Pr
[
1← Expt(A,B,C),CP-DS

(
1λ
)]
≤ negl(λ).

Theorem 63. Suppose DS = (Gen,Sign,Puncture,Verify, Sign∗) be a puncturable digital signature
with messge length n(λ) and signature length s(λ).

Given a unclonable puncturable obfuscation scheme (Obf,Eval) with UPO-security (see Defini-
tion 9) for F = {Fλ}λ where Fλ = {Sign(k, ·)}k∈Support(Gen(1λ)), equipped with Puncture as the

65

puncturing algorithm, with respect to DX = U ×U , there exists a copy-protection scheme for signa-
ture CP-DS = (Gen,QKeyGen, Sign,Verify) where the algorithms CP-DS.Gen,CP-DS.Verify are the
same as that of the puncturable signature scheme and CP-DS.QKeyGen(sk) = Obf(Sign(sk, ·)) and
the CP-DS.Sign() algorithm is the same as the Eval() algorithm of the UPO scheme.

Proof of Theorem 63. The correctness of the copy-protection of signatures scheme directly follows
from the UPO-correctness guarantees, see Section 3. Next, we prove anti-piracy. Let (A,B, C) be
a non-local adversary in the anti-piracy experiment Expt(A,B,C),CP-DS

(
1λ
)
given in Figure 20. By the

puncturing security and correctness of DS = (Gen, Sign,Puncture,Verify, Sign∗), (Gen, Sign,Puncture,Verify′)
is a puncturable cryptographic scheme where vk is the auxiliary information aux, the message
space is the input space, the signature is the output space, Gen = DS.Gen, Eval = DS.Sign,
Puncture = DS.Puncture and Verify′(sk, vk,m, sig) = DS.Verify(vk,m, sig).

Therefore, by Lemma 58, for any adversary (A,B, C) in the anti-piracy experiment
Expt(A,B,C),(Gen,Sign,Puncture,Verify),UPO

(
1λ
)
, there exists a negligible function negl() such that,

Pr
[
1← Expt(A,B,C),(Gen,Sign,Puncture,Verify),UPO

(
1λ
)]
≤ negl(λ).

However, Expt(A,B,C),(Gen,Sign,Puncture,Verify),UPO
(
1λ
)
and Expt(A,B,C),CP-DS

(
1λ
)
are the same experi-

ments and therefore, we conclude that anti-piracy holds for the CP-DS with respect to uniform and
independent challenge distribution.

Remark 64. By the same arguments as in the proof of theorem 63, it can be shown that any
unclonable puncturable obfuscation scheme (Obf,Eval) with IdU -UPO security (see Definition 9)
for any puncturable keyed circuit class in P/poly (see Section 3.1.1), is also a copy-protection
scheme (CopyProtect,Eval) for F = {Fλ}λ∈N with uniform and identical challenge distribution,
where CopyProtect() = Obf().

Since copy-protection for signatures implies public-key quantum money schemes, we get the
following corollary.

Corollary 65. Suppose DS = (Gen, Sign,Puncture,Verify,Sign∗) be a puncturable digital signature
with messge length n(λ) and signature length s(λ).

Given a unclonable puncturable obfuscation scheme (Obf,Eval) with UPO-security (see Defi-
nition 9) for F = {Fλ}λ where Fλ = {Sign(k, ·)}k∈Support(Gen(1λ)), equipped with Puncture as the
puncturing algorithm, with respect to DX = U×U , there exists a public-key quantum money scheme.

Combined with Theorem 29 and Theorem 61, we conclude the following feasibility results for
copy-protection scheme for signature and public quantum money from concrete assumptions.

Corollary 66. Suppose DS = (Gen, Sign,Puncture,Verify,Sign∗) be a puncturable digital signature
with messge length n(λ) and signature length s(λ).

Assuming Conjecture 15, the existence of post-quantum sub-exponentially secure iO and one-way
functions, and the quantum hardness of Learning-with-errors problem (LWE), there exists a copy-
protection scheme for signature scheme. Hence under the same assumption, a public-key quantum
money scheme exists.

66

7.4 Public-key Single-Decryptor Encryption

Construction Our construction is based on copy-protecting the decryption functionality of the
Sahai-Waters public-key encryption scheme based on iO, PRF (mapping n(λ) bits to n(λ) bits), and

PRG (mapping n(λ)
2 bits to n(λ) bits). We assume a unclonable puncturable obfuscation scheme

UPO = (Obf,Eval) satisfying U-generalized security (see Definition 10) for any generalized punc-
turable keyed circuit class in P/poly. In the security proofs, we will be considering the circuit
class C = {{PRF.Eval(k, ·)}k∈Supp(KeyGen(1λ))}λ equipped with the distribution PRF.Gen(1λ) on the
PRF keys, and a puncturing or a generalized puncturing algorithms, derived accordingly from the
PRF.Puncture algorithm.

Assumes: PRF family (Gen,Eval,Puncture), length-doubling PRG, iO,
UPO scheme (Obf,Eval).

Gen(1λ)
1. Sample a key k ← PRF.Gen(1λ).

2. Generate the circuit C that on input r ← {0, 1}
n(λ)
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs
(PRG(r),PRF.Eval(k,PRG(r))⊕m).

3. Compute C̃ ← iO(C).
4. Output (sk, pk) = (k, C̃).

QKeyGen(sk)
1. Compute F̃ ← iO(PRF.Eval(sk, ·)).
2. Output ρsk ← UPO.Obf(1λ, F̃)16.

Enc(pk,m)
1. Interprete pk = C̃

2. Sample r
$←− {0, 1}

n
2 .

3. Output ct = C̃(r,m).

Dec(ρsk, ct)
1. Interprete ct = y, z.
2. Output m = UPO.Eval(ρsk, y)⊕ z.

Figure 21: A construction of single decryptor encryption based on [SW14] public-key encryption.

Theorem 67. Assuming an indistinguishability obfuscation scheme iO for P/poly, a puncturable
pseudorandom function family PRF = (Gen,Eval,Puncture) and a generalized unclonable puncturable
obfuscation UPO for any generalized puncturable keyed circuit class in P/poly with respect to
DX = U×U , there exists a single decryptor encryption scheme given in Figure 21 that satisfies cor-

16We assume that it is possible to read off the security parameter from the secret key sk. For example, the secret
key could start with 1λ followed by a special symbol, and then followed by the actual key.

67

rectness, search anti-piracy with independent and uniform distribution and Diden-bit,ind-msg-selective
CPA-style anti-piracy (see Appendix A.2).

Proof. The proof follows by combining Lemma 68 and Propositions 69 and 71.

Lemma 68. The single decryptor encryption construction given in Figure 21 satisfies correctness
with the same correctness precision as the underlying UPO scheme.

The proof is immediate, so we omit the proof.

Proposition 69. The single decryptor encryption construction given in Figure 21 satisfies search
anti-piracy with independent and uniform distribution (see Appendix A.2) if the underlying UPO
scheme satisfies unclonable puncturable obfuscation security for any puncturable keyed circuit class
in P/poly.

We first identify a scheme (Gen,Eval,Verify,Puncture) (defined in Figure 22) based on the public-
key encryption scheme given in [SW14], and show that it is a puncturable cryptographic scheme, as
defined in Definition 56, see Lemma 70. This result would be required in the proof of Proposition 69
given on Page 70.

Assumes: PRF family (Gen,Eval,Puncture), length-doubling PRG, iO,
UPO scheme (Obf,Eval)

Gen(1λ): Generate (k, C̃) ← SDE.Gen(1λ) where SDE is the single
decryptor encryption given in Figure 21, and output (sk, aux) where
sk = k and aux = pk.

Eval(sk, x): Same as PRF.Eval(sk, x).

Verify(sk, aux, x, y): Check if PRF.Eval(sk, x) = y and if true outputs 1
else 0.

Puncture(sk, x1, x2): Generate skx1,x2 ← PRF.Puncture(sk, x1, x2) and
output PRF.Eval(skx1,x2 , ·).

Figure 22: A construction of puncturable cryptographic scheme based on [SW14] public-key en-
cryption.

Lemma 70. The scheme (Gen,Eval,Puncture,Verify) given in Figure 22 is a puncturable crypto-
graphic scheme, as defined in Definition 56.

Proof. The correctness and correctness of punctured circuit for (Gen,Eval,Puncture,Verify) is im-
mediate. Next, we prove the puncturable security.

Let A be an adversary in the puncturing experiment given in Definition 56 for the puncturable
cryptographic scheme (Gen,Eval,Puncture,Verify). Hybrid0:
Same as the puncturing security experiment given in Definition 56.

68

• Ch samples k ← PRF.Gen(1λ).

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch samples x1, x2
$←− {0, 1}n.

• Ch generates kx1,x2 ← PRF.Puncture(k, {x1, x2}).

• Ch sends (x1, kx1,x2 , C̃) to A and gets back y.

• Ch computes y1 ← PRF.Eval(k, x1).

• Output 1 if y = y1.

Hybrid1:

• Ch samples k ← PRF.Gen(1λ).

• Ch generates the circuit C̃ ← iO(C) where C has kkxB,xC hardcoded and on input r ← {0, 1}
n
2

(the input space of PRG) and a messagem ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(kkxB,xC ,PRG(r))⊕
m).

• Ch samples x1, x2
$←− {0, 1}n.

• Ch generates kx1,x2 ← PRF.Puncture(k, {x1, x2}).

• Ch sends (x1, kx1,x2 , C̃) to A and gets back y.

• Ch computes y1 ← PRF.Eval(k, x1).

• Output 1 if y = y1.

The proof of indistinguishability between Hybrid0 and Hybrid1 is as follows. Note that x1, x2
$←−

{0, 1}n and Supp(PRG) ⊂ {0, 1}n has size 2
n
2 , and hence is a negligible fraction of {0, 1}n. Hence,

with overwhelming probability x1, x2 ̸∈ Supp(PRG). Therefore with overwhelming probability, C
as in Hybrid0 never computes PRF.Eval(k, ·) on x1 or x2 on any input query. Hence, replacing k
with kx1,x2 inside C does not change the functionality of C, by the puncturing correctness of PRF.
Therefore, indistinguishability holds by the iO guarantee.
Hybrid2:

• Ch samples k ← PRF.Gen(1λ).

• Ch generates the circuit C̃ ← iO(C) where C has kkxB,xC hardcoded and on input r ← {0, 1}
n
2

(the input space of PRG) and a messagem ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(kkxB,xC ,PRG(r))⊕
m).

• Ch samples x1, x2
$←− {0, 1}n.

69

• Ch generates kx1,x2 ← PRF.Puncture(k, {x1, x2}).

• Ch sends (x1, kx1,x2 , C̃) to A and gets back y.

• Ch computes y1 ← PRF.Eval(k, x1) samples y1
$←− {0, 1}n.

• Output 1 if y = y1.

The indistinguishability holds because the view of A in Hybrid1 depends only on kx1,x2 and not

on k. Hence, A cannot distinguish between y1 ← PRF.Eval(k, x1) with y1
$←− {0, 1}n. Therefore,

checking if y, the response of A is equal to y1 when y1 ← PRF.Eval(k, x1) should be indistinguishable

from the same experiment but with y1
$←− {0, 1}n.

Finally, we argue that since y1 is sampled independent of y, the probability that y = y1, i.e.,
the output of Hybrid2 is 1, is exactly 1

2n , which is a negligible function of λ since n(λ) ∈ poly(λ).

Proof of Proposition 69. Let (A,B, C) be any adversary in Search.SDE.Expt(A,B,C),D
(
1λ
)
(see Fig-

ure 35). We will do a sequence of hybrids starting from the original anti-piracy experiment
Search.SDE.Expt(A,B,C),D

(
1λ
)
for the single decryptor encryption scheme given in Figure 21. The

changes are marked in blue.
Hybrid0:
Same as Search.SDE.Expt(A,B,C),D

(
1λ
)
given in Figure 35 for the single decryptor encryption scheme

in Figure 21.

• Ch samples k ← PRF.Gen(1λ).

• Ch samples rB, rC
$←− {0, 1}

n
2 and generates xB ← PRG(rB) and xC ← PRG(rC).

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples mB,mC
$←− {0, 1}n.

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = PRF.Eval(k, xB) ⊕ mB and
zC = PRF.Eval(k, xC)⊕mC .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if yB = mB and yC = mC .

Hybrid1:

• Ch samples k ← PRF.Gen(1λ).

70

• Ch samples rB, rC
$←− {0, 1}

n
2 and generates xB ← PRG(rB) and xC ← PRG(rC) xB, xC

$←−
{0, 1}n.

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples mB,mC
$←− {0, 1}n.

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = PRF.Eval(k, xB) ⊕ mB and
zC = PRF.Eval(k, xC)⊕mC .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if yB = mB and yC = mC .

The indistinguishability between Hybrid0 and Hybrid1 follows from the pseudorandomness of PRG.
Hybrid2:

• Ch samples k ← PRF.Gen(1λ).

• Ch samples xB, xC
$←− {0, 1}n.

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples mB,mC
$←− {0, 1}n zB, zC $←− {0, 1}n and computes mB = PRF.Eval(k, xB) ⊕ zB,

mC = PRF.Eval(k, xC)⊕ zC .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = PRF.Eval(k, xB)⊕mB and
zC = PRF.Eval(k, xC)⊕mC .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if yB = mB and yC = mC .

The overall distribution on (mB, zB) and (mC , zC) across the hybrids Hybrid1 and Hybrid2, and hence
the indistinguishability holds.
Hybrid3:

• Ch samples k ← PRF.Gen(1λ).

• Ch samples xB, xC
$←− {0, 1}n.

71

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) ρsk ← UPO′.Obf(1λ,PRF.Eval(k, ·))
and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples zB, zC
$←− {0, 1}n and computesmB = PRF.Eval(k, xB)⊕zB,mC = PRF.Eval(k, xC)⊕

zC .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC).

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if yB = mB and yC = mC .

Hybrid3 is just a rewriting of Hybrid2 in terms of the new unclonable puncturable obfuscation
scheme defined as:

• UPO′.Obf(1λ, C) = UPO.Obf(1λ, C̃) where C̃ ← iO(C), for every circuit C.

• UPO′.Eval = UPO.Eval.

Note that by Corollary 13, since UPO is a unclonable puncturable obfuscation for any general-
ized keyed circuit class in P/poly with respect to DX = U ×U , the product of uniform distribution,
so is UPO′.

Next, we give a reduction from Hybrid3 to an anti-piracy game with uniform and independent
challenge distribution (see Figure 19) for (Gen,Eval,Puncture,Verify) with respect to UPO′ where
Gen on input 1λ samples a key k ← PRF.Gen(1λ) and then constructs the circuit C̃ ← iO(C) where
C has k hardcoded and on input r ← {0, 1}

n
2 (the input space of PRG) and a message m ∈ {0, 1}n,

outputs (PRG(r),PRF.Eval(k,PRG(r)) ⊕ m), and finally outputs (sk, aux) = (k, C̃). Eval is the
same as PRF.Eval; the Verify() algorithm on input k, C̃, x, y checks if PRF.Eval(k, x) = y and if
true outputs 1 else 0. Finally, the Puncture() algorithm on input a key k and a set of input points
(x1, x2), generates kx1,x2 ← PRF.Puncture(k, x1, x2) and outputs PRF.Eval(kx1,x2 , ·).

Let (A,B, C) be an adversary in Hybrid2 above. Consider the following adversary (RA,RB,RC)
in Expt(RA,RB,RC),(Gen,Eval,Puncture,Verify)

(
1λ
)
(see Figure 19):

• RA on receiving (ρsk, C̃) from the challenger Ch in Expt(RA,RB,RC),(Gen,Eval,Puncture,Verify)
(
1λ
)

(see Figure 19), runs A on it to generate σB,C and sends the respective registers to RB and
RC .

• RB (respectively, RC) on receiving xB (respectively xC), samples zB
$←− {0, 1}n (respectively,

zC) and runs B (respectively, C) on ((zB, xB), σB) (respectively, ((zC , xC), σC)) to get mB

(respectively, mC). RB (respectively, RC) outputs mB ⊕ zB (respectively, mC ⊕ zC).

Clearly, the event 1 ← Expt(RA,RB,RC),(Gen,Eval,Puncture,Verify),UPO
′ (
1λ
)
(see Figure 19) exactly

corresponds to the event (A,B, C) winning the security experiment in Hybrid3.

72

By Lemma 70, we know that (Gen,Eval,Puncture,Verify) is a puncturable cryptographic scheme.
Hence by Lemma 58, for every adversary (A,B, C) in Figure 19 against (Gen,Eval,Puncture,Verify),
there exists a negligible function negl() such that

Pr
[
1← Expt(A,B,C),(Gen,Eval,Puncture,Verify),UPO

(
1λ
)]
≤ negl(λ).

Hence by the reduction, we conclude that (A,B, C) has negligible winning probability in the
security experiment in Hybrid3, which completes the proof.

Proposition 71. The single decryptor encryption construction given in Figure 21 satisfies Diden-bit,ind-msg-
selective CPA-style anti-piracy (see Appendix A.2).

Proof. Let UPO′ be a new unclonable puncturable obfuscation scheme defined as:

• UPO′.Obf(1λ, C) = UPO.Obf(1λ, C̃) where C̃ ← iO(C), for every circuit C.

• UPO′.Eval = UPO.Eval.

By Corollary 13, since UPO is a unclonable puncturable obfuscation for any generalized keyed
circuit class in P/poly with respect to the independent challenge distribution DX = U × U , UPO′
also satisfies the same security guarantees.

Let (A,B, C) be any adversary in SelCPA.SDE.Expt(A,B,C),Diden-bit,ind-msg
(
1λ
)
(see Figure 37) against

the single decryptor encryption construction in Figure 21. We will do a sequence of hybrids start-
ing from the original anti-piracy experiment SelCPA.SDE.Expt(A,B,C),D

(
1λ
)
for the single decryptor

encryption scheme given in Figure 21, and finally give a reduction to the generalized unclonable
puncturable obfuscation security game of UPO′ for F = {Fλ}, where Fλ = {PRF.Eval(k, ·)}k∈Supp(PRF.Gen(1λ))
with respect to the puncture algorithm GenPuncture defined as follows: the GenPuncture algorithm,
which takes as input (k, x1, x2, µ1, µ2) and does the following:

• Generates kx1,x2 ← PRF.Puncture(k, x1, x2).

• Constructs the circuit Gkx1,x2 ,x1,x2,µ1,µ2 which on input x, outputs PRF.Eval(kx1,x2 , x) if x ̸∈
{x1, x2}, and outputs µ1(x1) if x = x1 and µ2(x2) if x = x2.

• Output E.

The changes are marked in blue.
Hybrid0:
Same as SelCPA.SDE.Expt(A,B,C),Diden-bit,ind-msg

(
1λ
)
given in Figure 37 for the single decryptor encryption

scheme in Figure 21.

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples rB, rC
$←− {0, 1}

n
2 and generates xB ← PRG(rB) and xC ← PRG(rC) as well as

generates yB ← PRF.Eval(k, xB) and yC ← PRF.Eval(k, xC).

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

73

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1}.

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Hybrid1:
This is the same as Hybrid0 up to re-ordering some of the steps performed by the Ch without
affecting view of the adversary.

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples rB, rC
$←− {0, 1}

n
2 and generates xB ← PRG(rB) and xC ← PRG(rC) as well as

generates yB ← PRF.Eval(k, xB) and yC ← PRF.Eval(k, xC).

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1}.

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Hybrid2:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples rB, rC
$←− {0, 1}

n
2 and generates xB ← PRG(rB) and xC ← PRG(rC) xB, xC

$←−
{0, 1}n as well as generates yB ← PRF.Eval(k, xB) and yC ← PRF.Eval(k, xC).

74

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1}.

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The indistinguishability between Hybrid1 and Hybrid2 follows from the pseudorandomness of PRG.
Hybrid3:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n as well as generates yB ← PRF.Eval(k, xB) and yC ← PRF.Eval(k, xC).

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2 (the

input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).
where C is constructed depending on the bit b as follows. If b = 0 (respectively, b = 1),
C has k (respectively, kxB,xC) hardcoded and on input r ← {0, 1}

n
2 (the input space of

PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r)) ⊕m) (respectively,
(PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

• Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)) and sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The proof of indistinguishability between Hybrid2 and Hybrid3 is as follows. Note that xB, xC
$←−

{0, 1}n and Supp(PRG) ⊂ {0, 1}n has size 2
n
2 , and hence is a negligible fraction of {0, 1}n. Hence,

with overwhelming probability xB, xC ̸∈ Supp(PRG). Therefore with overwhelming probability, C
as in Hybrid0 never computes PRF.Eval(k, ·) on xB or xC on any input query. Hence, replacing k

75

with kx1,x2 inside C in the b = 1 case of the security experiment does not change the functionality of
C, by the puncturing correctness of PRF. Therefore, indistinguishability holds by the iO guarantee.
Hybrid4:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n as well as generates yB ← PRF.Eval(k, xB) and yC ← PRF.Eval(k, xC).

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and

on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs

(PRG(r),PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1,
generates ρsk ← UPO.Obf(1λ, W̃), where W̃ ← iO(W) and W is as depicted in Figure 23 and
sends (ρsk, C̃) to A.

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

W :

Hardcoded keys kxB,xC , y
B, yC . On input: x.

• If x = xB, output yB.

• Else if, x = xC , output yC .

• Else, run PRF.Eval(kxB,xC , x) and output the result.

Figure 23: Circuit W in Hybrid4

Clearly,W and PRF.Eval(k, ·) has the same functionality and therefore indistinguishability holds
by iO guarantees.
Hybrid5:

76

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n as well as generates yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC)

if b = 0; and yB
$←− {0, 1}n, and yC $←− {0, 1}n if b = 1.

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and

on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs

(PRG(r),PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1,
generates ρsk ← UPO.Obf(1λ, W̃), where W̃ ← iO(W) and W is as depicted in Figure 23 and
sends (ρsk, iO(C)) to A.

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Since the views of the adversary (A,B, C) in b = 1 case in hybrids Hybrid4 and Hybrid5 are only
dependent on kxB,xC , the indistinguishability between Hybrid4 and Hybrid5 holds by the puncturing
security of PRF.
Hybrid6:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n as well as generates yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC)

if b = 0; and yB
$←− {0, 1}n, and yC $←− {0, 1}n if b = 1.

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and

on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs

(PRG(r),PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

77

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1,
generates ρsk ← UPO.Obf(1λ, W̃), where W̃ ← iO(W) and W is as depicted in Figure 23 and
sends (ρsk, iO(C)) to A.

• If b = 1, Ch samples uB, uC
$←− {0, 1}n and computes yB = uB⊕mB0⊕mB1 and yC = uC⊕mC0⊕mC1 ,

else if b = 0, Ch generates yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC).

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mBb and zC = yC ⊕mCb
zB = yB ⊕ mB0 and zC = yC ⊕ mC0 if b = 0, and zB = yB ⊕ mB1 and zC = yC ⊕ mC1 if
b = 1.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The indistinguishability between Hybrid5 and Hybrid6 since we did not change the distribution on
yB, yC in both the cases b = 0 and b = 1, and hence we did not change the distribution on zB, zC

in both the b = 0 and the b = 1 cases across the hybrids Hybrid5 and Hybrid6.
Hybrid7:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n.

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and

on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs

(PRG(r),PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1,
generates ρsk ← UPO.Obf(1λ, W̃), where W̃ ← iO(W) and W is as depicted in Figure 24 and
sends (ρsk, iO(C)) to A.

• If b = 1, Ch samples uB, uC
$←− {0, 1}n and computes yB = uB ⊕mB0 ⊕mB1 and yC = uC ⊕mC0 ⊕mC1 ,

else if b = 0, Ch generates yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC).

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mB0 and zC = yC ⊕mC0 if
b = 0, and zB = yB ⊕mB1 and zC = yC ⊕mC1 zB = uB ⊕mB0 and zC = uC ⊕mC0 if b = 1.

78

W :

Hardcoded keys kxB,xCy
B, yC , uB ⊕mB0 ⊕mB1 , uC ⊕mC0 ⊕mC1 . On input:

x.

• If x = xB, output yB uB ⊕mB0 ⊕mB1 .

• Else if, x = xC , output yC uC ⊕mC0 ⊕mC1 .

• Else, run PRF.Eval(kxB,xC , x) and output the result.

Figure 24: Circuit W in Hybrid7

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The indistinguishability between Hybrid6 and Hybrid7 holds because, in Hybrid7, we just rewrote
yB and yC wherever it appeared in the b = 1 case of Hybrid6 in terms of uB and uC , respectively.
Hybrid8:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n.

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and

on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs

(PRG(r),PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1,
generates ρsk ← UPO.Obf(1λ, W̃), where W̃ ← iO(W) and W is as depicted in Figure 24 and
sends (ρsk, iO(C)) to A.

• If b = 1, Ch samples uB, uC
$←− {0, 1}n generates uB ← PRF.Eval(k, xB), uC ← PRF.Eval(k, xC),

else if b = 0, Ch generates yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC).

• A produces a bipartite state σB,C .

79

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mB0 and zC = yC ⊕mC0 if
b = 0, and zB = uB ⊕mB0 and zC = uC ⊕mC0 if b = 1.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Since the views of the adversary (A,B, C) in b = 1 case in hybrids Hybrid7 and Hybrid8 are only
dependent on kxB,xC , the indistinguishability between Hybrid7 and Hybrid8 holds by the puncturing
security of PRF.
Hybrid9:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n.

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and

on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs

(PRG(r),PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)).

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1, gen-
erates the circuits µk,mB

0⊕mB
1
and µk,mC

0⊕mC
1
which on any input x output PRF.Eval(k, x)⊕mB0⊕

mB1 and PRF.Eval(k, x) ⊕mC0 ⊕mC1 respectively, and also generates ρsk ← UPO.Obf(1λ, W̃),

where W̃ ← iO(W) and W is as depicted in Figure 25 and sends (ρsk, C̃) to A.

• If b = 1, Ch generates uB ← PRF.Eval(k, xB), uC ← PRF.Eval(k, xC), else if b = 0, Ch generates
yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC).

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mB0 and zC = yC ⊕mC0 if
b = 0, and zB = uB ⊕mB0 and zC = uC ⊕mC0 if b = 1.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The functionality of W did not change due to the changes made across hybrids Hybrid8 and
Hybrid9, and hence by iO guarantees, the indistinguishability between Hybrid8 and Hybrid9 holds.
Hybrid10:

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

80

W :

Hardcoded keys kxB,xC , u
B ⊕mB0 ⊕mB1 , uC ⊕mC0 ⊕mC1 ,µk,mB

0⊕mB
1
,µk,mC

0⊕mC
1
.

On input: x.

• If x = xB, output uB ⊕mB0 ⊕mB1 µk,mB
0⊕mB

1
(x).

• Else if, x = xC , output uC ⊕mC0 ⊕mC1 µk,mC
0⊕mC

1
(x).

• Else, run PRF.Eval(kxB,xC , x) and output the result.

Figure 25: Circuit W in Hybrid9

• Ch samples k ← PRF.Gen(1λ).

• Ch samples b
$←− {0, 1}.

• Ch samples xB, xC
$←− {0, 1}n.

• Ch generates kxB,xC ← PRF.Puncture(k, {xB, xC}).

• Ch generates the circuit C̃ ← iO(C) where C is constructed depending on the bit b as
follows. If b = 0 (respectively, b = 1), C has k (respectively, kxB,xC) hardcoded and on

input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),

PRF.Eval(k,PRG(r))⊕m) (respectively, (PRG(r),PRF.Eval(kxB,xC ,PRG(r))⊕m)). where C

has k hardcoded and on input r ← {0, 1}
n
2 (the input space of PRG) and a message m ∈

{0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕m).

• If b = 0, Ch generates ρsk ← UPO.Obf(1λ, F̃) where F̃ ← iO(PRF.Eval(k, ·)), else, if b = 1, gen-
erates the circuits µk,mB

0⊕mB
1
and µk,mC

0⊕mC
1
which on any input x output PRF.Eval(k, x)⊕mB0⊕

mB1 and PRF.Eval(k, x) ⊕mC0 ⊕mC1 respectively, and also generates ρsk ← UPO.Obf(1λ, W̃),
where W̃ ← iO(W) and W is as depicted in Figure 25 and sends (ρsk, C̃) to A.

• If b = 1, Ch generates uB ← PRF.Eval(k, xB), uC ← PRF.Eval(k, xC), else if b = 0, Ch generates
yB ← PRF.Eval(k, xB), yC ← PRF.Eval(k, xC). Ch generates uB ← PRF.Eval(k, xB), uC ←
PRF.Eval(k, xC).

• A produces a bipartite state σB,C .

• Ch computes ctB = (xB, zB) and ctC = (xC , zC) where zB = yB ⊕mB0 and zC = yC ⊕mC0 if
b = 0, and zB = uB ⊕mB0 and zC = uC ⊕mC0 if b = 1. Ch computes ctB = (xB, zB) and
ctC = (xC , zC) where zB = uB ⊕mB0 and zC = uC ⊕mC0 .

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

81

Note that yB and yC are defined only in the b = 0 case, and uB and uC are defined only in
the b = 1 case in Hybrid9. However, replacing yB, yC in the b = 0 by uB, uC (as defined in b = 1
case) does not change the global distribution of the experiment in b = 0 case. Therefore, replacing
yB, yC in b = 0 with uB, uC (as defined in the b = 1 case) in Hybrid9, does not change the security
experiment and hence, Hybrid9 and Hybrid10 have the same success probability.

Finally, we give a reduction from Hybrid10 to the generalized unclonable puncturable obfuscation
security experiment (see fig. 3) of UPO′ for C = {Cλ}, where Cλ = {PRF.Eval(k, ·)}k∈Supp(PRF.Gen(1λ))
with respect to the puncture algorithm GenPuncture defined at the begining of the proof.

Let (A,B, C) be an adversary in Hybrid10 above. Consider the following non-local adversary
(RA,RB,RC):

• RA gets a pair of messagesmB0 ,m
B
1 ,m

C
0 ,m

C
1 ← A(1λ) and samples a key k ← PRF.Gen(1λ) and

constructs the circuits µk,mB
0⊕mB

1
and µk,mC

0⊕mC
1
which on any input x outputs PRF.Eval(k, x)⊕

mB0 ⊕mB1 and PRF.Eval(k, x)⊕mC0 ⊕mC1 respectively, and sends k, µB, µC to Ch where µB =
µk,mB

0⊕mB
1
and µC = µk,mC

0⊕mC
1
.

• RA also constructs the circuit C̃ ← iO(C) where C has k hardcoded and on input r ← {0, 1}
n
2

(the input space of PRG) and a message m ∈ {0, 1}n, outputs (PRG(r),PRF.Eval(k,PRG(r))⊕
m).

• On getting ρ from Ch, RA feeds ρ, C̃ to A and gets back a state σB,C . RA then sends the
respective registers of σB,C to RB and RA, along with the key k.

• RB (respectively,RC) on receiving (σB, k) (respectively, (σC , k)) fromRA and xB (respectively,
xC) from Ch computes yB ← PRF.Eval(k, xB) (respectively, yC ← PRF.Eval(k, xC)) and ctB =
(xB, yB ⊕mB0) (respectively, ctC = (xC , yC ⊕mC0)) and runs B on ctB (respectively, C on ctC)
to get a bit bB (respectively, bC), and outputs bB (respectively, bC).

Remark 72. If we change the UPO security guarantee of the underlying UPO scheme from U-
generalized UPO security to IdU -generalized UPO security (see Section 3.1.1), then using the same
proof as in Proposition 71 upto minor corrections, we achieve Didentical-selective CPA anti-piracy
instead of Diden-bit,ind-msg-selective CPA anti-piracy as in Proposition 71 for the SDE scheme given
in Figure 21.

Theorem 73 (SDE lifting theorem). Assuming post-quantum indistinguishability obfuscation for
classical circuits and length-doubling injective pseudorandom generators, there is a generic lift that
takes a Diden-bit,ind-msg-selective CPA secure SDE scheme and outputs a new SDE that is full-blown
Diden-bit,ind-msg-CPA secure (see Appendix A.2).

Proof. Let (Gen,QKeyGen,Enc,Dec) be a selectively CPA secure SDE, and let iO be an indistin-
guishability obfuscation. Consider the SDE scheme (Gen′,QKeyGen′,Enc′,Dec′) given in Figure 26.

The correctness of (Gen′,QKeyGen′,Enc′,Dec′) follows directly from the correctness of (Gen,QKeyGen,
Enc,Dec).

82

Assumes: SDE scheme (Gen,QKeyGen,Enc,Dec), post-quantum indis-
tinguishability obfuscation iO.

Gen′(1λ): Same as Gen().

QKeyGen′(sk): Same as QKeyGen().

Enc′(pk,m):

1. Sample r
$←− {0, 1}n.

2. Generate c = Enc(pk, r).
3. Output ct = (C̃, c), where C̃ ← iO(C) and C is the circuit that on

input r outputs m and outputs ⊥ on all other inputs.

Dec′(ρsk, ct)
1. Interprete ct = C̃, c.
2. Run r ← Dec(ρsk, c).
3. Output m = C̃(r).

Figure 26: A construction of CPA-secure single decryptor encryption from a selectively CPA-secure
single decryptor encryption.

CPA anti-piracy of (Gen′,QKeyGen′,Enc′,Dec′) from selective security of (Gen,QKeyGen,Enc,Dec).
Let (A,B, C) be an adversary against the full-blown CPA security experiment for the CPA.SDE.Expt(A,B,C)

(
1λ
)

(see Figure 38). We will do a sequence of hybrids starting from the original anti-piracy experiment
CPA.SDE.Expt(A,B,C)

(
1λ
)
for the single decryptor encryption scheme given in Figure 26, and then

conclude with a reduction from the final to. The changes are marked in blue.
Hybrid0:
Same as CPA.SDE.Expt(A,B,C)

(
1λ
)
given in Figure 38 for the single decryptor encryption scheme in

Figure 26.

• Ch samples sk, pk← Gen(1λ) and generates ρsk ← QKeyGen(sk) and sends (ρsk, pk) to A.

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1} and generates cB ← Enc(pk,mBb) and c

C ← Enc(pk,mCb).

• A samples rB0 , r
B
1 , r
C
0 , r
C
1

$←− {0, 1}n and computes ctB = (iO(CB), cB) and ctC = (iO(CC), cC),
where CB and CC are the circuits that on input rBb and rCb respectively, outputs mBb and mCb ,
respectively. CB and CC on all inputs except rBb and rCb respectively, outputs ⊥.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

83

Hybrid1:

• Ch samples sk, pk← Gen(1λ) and generates ρsk ← QKeyGen(sk) and sends (ρsk, pk) to A.

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1} and generates cB ← Enc(pk,mBb) and c

C ← Enc(pk,mCb).

• A samples rB0 , r
B
1 , r
C
0 , r
C
1

$←− {0, 1}n, yB, yC $←− {0, 1}n, and computes ctB = (iO(CB), cB) and
ctC = (iO(CC), cC), where CB and CC are the circuits that on input rB and rC respectively,
outputs mB and mC , respectively. CB and CC on all inputs except rB and rC respectively,
outputs ⊥. are as depicted in Figures 27 and 28, respectively.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The indistinguishability between hybrids Hybrid0 and Hybrid1 holds because of the following.
Since the PRG is a length-doubling, except with negligible probability, the functionality of circuits
CB and CC did not change across the hybrids Hybrid0 and Hybrid1. Therefore the computational
indistinguishability between Hybrid0 and Hybrid1 follows from the security guarantees of iO.

CB:

Hardcoded keys rBb ,m
B
b ,m

B
1−b, y

B. On input: r.

• If r = rBb , output m
B
b .

• If PRG(r) = yB, output mB1−b.

• Otherwise, output ⊥.

Figure 27: Circuit CB in Hybrid1

Hybrid2:

• Ch samples sk, pk← Gen(1λ) and generates ρsk ← QKeyGen(sk) and sends (ρsk, pk) to A.

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1} and generates cB ← Enc(pk,mBb) and c

C ← Enc(pk,mCb).

84

CC :

Hardcoded keys rCb ,m
C
b ,m

B
1−b, y

B. On input: r.

• If r = rCb , output m
C
b .

• If PRG(r) = yC , output mC1−b.

• Otherwise, output ⊥.

Figure 28: Circuit CC in Hybrid1

• A samples rB, rC
$←− {0, 1}n, yB, yC $←− {0, 1}n, yB ← PRG(rB1−b), y

C ← PRG(rC1− b) and

computes ctB = (iO(CB), cB) and ctC = (iO(CC), cC), where CB and CC are the circuits are
as depicted in Figures 27 and 28, respectively.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The indistinguishability between Hybrid1 and Hybrid2 holds due to pseudorandomness of PRG.
Hybrid3:

• Ch samples sk, pk← Gen(1λ) and generates ρsk ← QKeyGen(sk) and sends (ρsk, pk) to A.

• A sends two same-length message pairs (mB0 ,m
B
1 ,m

C
0 ,m

C
1).

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1} and generates cB ← Enc(pk,mBb) and c

C ← Enc(pk,mCb).

• A samples rB, rC
$←− {0, 1}n, yB ← PRG(rB1−b), y

C ← PRG(rC1− b) and computes ctB =

(iO(CB), cB) and ctC = (iO(CC), cC), where CB and CC are the circuits are as depicted in
Figures 29 and 30, respectively.

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

The indistinguishability between Hybrid2 and Hybrid3 holds immediately by the iO guarantees since
we did not change the functionality of CB and CC across the hybrids Hybrid2 and Hybrid3.
Finally we give a reduction from Hybrid3 to the selective-CPA anti-piracy game for (Gen,QKeyGen,
Enc,Dec) given in Figure 37. Let (A,B, C) be an adversary in Hybrid3 above. Consider the following
non-local adversary (RA,RB,RC):

85

CB:

Hardcoded keys rBb ,m
B
0 ,m

B
1 ,y
B,rB1−b. On input: r.

• If r = rBb , output m
B
b .

• If PRG(r) = yB, output mB1−b. If r = rB1−b, output m
B
1−b.

• Otherwise, output ⊥.

Figure 29: Circuit CB in Hybrid3

CC :

Hardcoded keys rCb ,m
B,mC ,yCrC1−b. On input: r.

• If r = rCb , output m
C
b .

• If PRG(r) = yC , output mC1−b. If r = rC1−b, output m
C
1−b.

• Otherwise, output ⊥.

Figure 30: Circuit CC in Hybrid3

• RA samples rB0 , r
B
1 , r
C
0 , r
C
1

$←− {0, 1}n, and sends (rB0 , r
B
1) and (rC0 , r

C
1) as the challenge messages

to Ch, the challenger for the selective-CPA anti-piracy game for (Gen,QKeyGen,Enc,Dec)
given in Figure 37.

• RA on receiving the decryptor and the public key (ρ, pk) from Ch runs A on (ρ, pk) to gets
back the output, two pairs of messages (mB0 ,m

B
1) and (mC0 ,m

C
1) and a bipartite state σB,C .

• RA constructs the circuit iO(CB) and iO(CC) where CB and CC are the circuits are as depicted
in Figures 27 and 28, respectively.

• RA sends iO(CB), σB to RB and iO(CC), σC to RC .

• RB on receiving cB from Ch and (iO(CB), σB) from RA, runs bB ← B(σB, (iO(CB), cB)) and
outputs bB.

• RC on receiving cC from Ch and (iO(CC), σC) from RA, runs bC ← C(σC , (iO(CC), cC)) and
outputs bC .

86

CB:

Hardcoded keys rBb ,m
B
0 ,m

B
1 ,y
B,rB1−b. On input: r.

• If r = rBb , output m
B
b .

• If r = rB1−b, output m
B
1−b.

• Otherwise, output ⊥.

Figure 31: Circuit CB

CC :

Hardcoded keys rCb ,m
B,mC ,yCrC1−b. On input: r.

• If r = rCb , output m
C
b .

• If r = rC1−b, output m
C
1−b.

• Otherwise, output ⊥.

Figure 32: Circuit CC

Remark 74. The proof of theorem 73 can be adapted to prove the same construction lifts a SDE
with Didentical-selective CPA anti-piracy to Didentical-CPA anti-piracy.

Remarks 72 and 74 together gives us the following corollary.

Corollary 75. Assuming an indistinguishability obfuscation scheme iO for P/poly, a puncturable
pseudorandom function family PRF = (Gen,Eval,Puncture), and a IdU -generalized UPO scheme for
any generalized puncturable keyed circuit class in P/poly (see Section 3.1.1 for the formal definition
of IdU), there exists a secure public-key unclonable encryption for multiple bits (see Appendix A.3
for the definition).

Proof. By [GZ20], a SDE scheme for multiple-bit messages satisfying Didentical-selective CPA anti-
piracy, implies private-key unclonable encryption for multiple bits. Then the result of [AK21] shows
that there exists a transformation from one-time unclonable encryption to public-key unclonable
encryption assuming post-quantum secure public-key encryption, which in turn can be instantiated
using iO and puncturable pseudorandom functions [SW14].

Combining Corollary 75 with Theorem 30, we get the following feasibility result for unclonable
encryptions from concrete assumptions.

87

Corollary 76. Assuming Conjecture 14, the existence of post-quantum sub-exponentially secure
iO and one-way functions, and the quantum hardness of Learning-with-errors problem (LWE),
there exists a secure public-key unclonable encryption for multiple bits (see Appendix A.3 for the
definition).

Similarly, combining Proposition 71, theorem 73, and Lemma 68, with Theorem 29, we get the
following feasibility result for single decryptor encryption from concrete assumptions.

Corollary 77. Assuming Conjecture 15, the existence of post-quantum sub-exponentially secure iO
and one-way functions, and the quantum hardness of Learning-with-errors problem (LWE), there ex-
ists a Diden-bit,ind-msg-CPA secure single decryptor encryption encryption scheme (see Appendix A.2
for the definition).

7.5 Unclonable Encryption

We next present a direct construction of unclonable secret key encryption for bits from UPO. Let
0⃗λ be the circuit denoting the all-zero function on input length λ. Similarly, for x ∈ {0, 1}λ, let 1⃗x
be the circuit implementing a point function with point x and input length λ.

Assumes: UPO, a unclonable puncturable obfuscation for the IdU -
generalized puncturable keyed circuit class {{⃗0λ}}λ, with the trivial
GenPuncture algorithm and keyspace {{0λ}}λ (since there is only one
key or one circuit for a fixed input length).

KeyGen(1λ): Sample k
$←− {0, 1}λ, and output k. Enc(k, b):

1. If b = 0, construct the all-zero circuit C = 0⃗ and if b = 1, construct
the circuit C ← GenPuncture(0, k, k, 1⃗, 1⃗).

2. Output ρ← UPO.Obf(C).

Dec(k, ρ): Output b′ ← UPO.Eval(ρ, k).

Figure 33: CLLZ copy-protection for PRFs.

Theorem 78. The unclonable encryption scheme in Figure 33 satisfies correctness and unclonable
indistinguishability security.

Proof. The proof of correctness follows directly from the correctness of the underlying unclonable
puncturable obfuscation, UPO. For unclonable indistinguishable security, let (A,B, C) be an ad-
versary in the unclonable indistinguishability security game. Next, we give the following reduction
(RA,RB,RC) to IdU -generalized unclonable puncturable obfuscation security of UPO, to complete
the proof of security.

1. RA sends the key 0 and circuits 1⃗, 1⃗ to challenger.

2. RA on receiving ρ from Ch, runs A on ρ, and gets as output a bipartite state σB,C .

3. RB and RC are the same as B and C respetively.

88

Clearly, for every b ∈ {0, 1}, the view of (A,B, C) when the challenge message is b is the same as
the view of (RA,RB,RC) when the challenge bit is b. Therefore, (RA,RB,RC) and (A,B, C) have
the same advantage of winning in their respective indistinguishability game.

7.6 Copy-Protection for Evasive Functions

We start by recalling the definition of evasive function classes.

Definition 79. A class of keyed boolean-valued functions with input-length n = n(λ) F = {Fλ}λ∈N
is evasive with respect to an efficiently samplable distribution DF on F , if for every fixed input
point x, there exists a negligible function negl() such that

Pr[f ← DF (1λ) : f(x) = 1] = negl(λ).

Challenges in constructing copy-protection for evasive functions: The copy-protection of
evasive functions though similar in many ways have key syntactic differences with the UPO security
experiment GenUPO.Expt (see Figure 3). In particular, the objective of the adversary (A,B, C) in
GenUPO.Expt is to guess whether the obfuscated circuit given to A is punctured or not at a point
x revealed later to B and C, which is the opposite of the syntax in the copy-protection experiment,
where A always gets the same copy-protected circuit for the function and B and C get a challenge
input x and they need to guess the boolean output of the function on x. In order to construct
copy-protection of evasive functions, we need to bridge this gap, for which we consider the following
subclass of evasive functions.

Definition 80 (preimage-samplable evasive functions). An evasive function class F = {Fλ}λ∈N
equipped with a distribution DF on K is a preimage-samplable evasive function class if

1. There exists a keyed circuit implementation (D,CF) of (DF ,F) where CF = {CFk }k∈K.

2. There exists an auxiliary generalized puncturable keyed circuit class C = {Ck′}k′∈K′ with
Evasive-GenPuncture as the generalized puncturing algorithm, (see Section 3.1.1), and equipped
with an efficiently samplable distribution D′ on its keyspace K′, such that

{CFk, x}
k←D(1λ),x

$←−CF
k

−1
(1)
≈c {Ck′,y,⃗1, y}Ck′,y,⃗1←Evasive-GenPuncture(k′,y,y,⃗1,⃗1),k′←D′(1λ),y

$←−{0,1}n ,

(8)
where 1⃗ is the constant-1 function, and Ck′,y,⃗1 is the same as the circuit Ck′,y,y,⃗1,⃗1.

In short, we call (DF ,F) preimage-samplable evasive if F equipped with a distribution DF on K
is a preimage-samplable evasive function class.

Explanation and usefulness of Definition 80: The preimage-samplable condition for an eva-
sive function class F broadly means that there is an auxiliary circuit class C such that sampling
a uniformly random function f from F represented as a circuit implementing it, along with a
uniformly random preimage of 1 under f is indistinguishable from (Cx, x) where x is sampled uni-
formly at random and Cx is generated by first sampling a uniformly random circuit from C and
then puncturing it at x. We will see in Theorem 85 that the preimage-samplable condition allows
us to rewrite the copy-protection experiment of an evasive function family, as an unclonable ex-
periment concerning the auxiliary circuit class but with a flipped syntax, which makes this new
unclonable experiment compatible with the syntax of GenUPO.Expt, thus making it possible to
construct copy-protection for preimage-samplable evasive functions.

89

Instantiations: We show that a large class of single-bit output evasive function classes that
includes point functions are preimage-samplable evasive. In particular, assuming post-quantum iO,
we show that Fr, the boolean-output function class consisting of functions with exactly r preimages
of 1 are preimage-samplable evasive, where the auxiliary circuit class consists of the obfuscation
of circuits that implement the function class Fr−1 defined analogously. Formally, we show the
following.

Theorem 81. For every t ∈ [2n], let F t = {F tλ} defined as F tλ = {f : {0, 1}n 7→ {0, 1} | |f−1(1)| =
t}, i.e, the set of all functions f on n-bit input and 1-bit output with exactly t preimages of 1.
Suppose for r = poly(λ), the following holds:

1. Fr is evasive with respect to UFr , the uniform distribution.

2. For every t ∈ {r − 1, r}17, there exists a keyed circuit implementation (Dt,Ct) for (UFt ,F t).

Then, assuming post-quantum indistinguishability obfuscation, (UFr ,Fr) is preimage-samplable eva-
sive.

Proof. Let r ∈ o(2n) as given in the theorem. Fix the circuit descriptions Cr and Cr−1 for Fr and
Fr−1 respectively, as mentioned in the theorem.

Note that for every circuit k ∈ Kr−1λ and set of inputs {x1, x2} and circuits {µ1, µ2}, there is
an efficient procedure to construct the circuit Ck,x1,x2,µ1,µ2 which on any input x′ first checks if
x′ = xi for some i ∈ [2] in which case it outputs µi(xi), otherwise it outputs Cr−1k (x). We call
this procedure GenPuncture. For x1 = x2 = y and µ1 = µ2 = µ, we will use Ck,y,µ as a shorthand
notation for Ck,x1,x2,µ1,µ2 .

We assume that for every λ ∈ N, and for every k ∈ Krλ, and for every k′ ∈ Kr−1λ , and x1, x2 ∈
{0, 1}n, circuit Crk ∈ Cr, Cr−1k′ ∈ Cr−1, and a punctured circuit Ck′,x1,x2,µ1,µ2 ← GenPuncture(k′, x1, x2,
µ1, µ2) have the same size. These conditions can be achieved by padding sufficiently many zeroes
to smaller circuits.

Let iO be a post-quantum indistinguishability obfuscation.
Next, we make the following claim

Claim 82.

{iO(Crk), x}
k←Dr(1λ),x

$←−Cr
k
−1(1)

≈c {iO(Ck′,y,⃗1), y}k′←Dr−1(1λ),y
$←−{0,1}n .

We first prove the theorem assuming Claim 82 as follows. Let a(λ) be the amount of randomness
iO uses to obfuscate the circuits in Cr and the punctured circuits obtained by puncturing circuits
in Cr−1 using the GenPuncture algorithm.

Fix a security parameter λ arbitrarily.
Let C̃r = {{iO(Crk ; t)}k∈Kr

λ,t∈{0,1}a(λ)
}λ be a keyed circuit class with keyspace Kr×{0, 1}a. Note

that by the correctness of iO, for every k ∈ Krλ, the circuit iO(Crk ; t) has the same functionality
as Crk for every t ∈ {0, 1}a(λ), i.e, Sλ(iO(Crk ; t)) = Sλ(C

r
k) where Sλ is the canonical circuit-to-

functionality map. Therefore, since Cr is a keyed implementation Fr, so is C̃r (see Section 7.1 for
the definition of keyed implementation). Moreover, since Sλ(iO(C

r
k ; t)) = Sλ(C

r
k), it holds that

{Sλ(Crk)}k←Dr(1λ) = {Sλ(iO(Crk ; t))}
k←Dr(1λ),t

$←−{0,1}a(λ) .

17This requirement might look odd. The reason we need it is that we want to use the preimage-samplable condition
(see Equation (8)) on Cr with Ct−1 as the auxiliary circuit class.

90

Therefore, since (Dr,Cr) is a keyed implementation of (UFr ,Fr), so is (D, C̃r) where D is defined

as (k, t) ← D(1λ) ≡ k ← Dr(1λ), t $←− {0, 1}a(λ) (see Section 7.1 for the definition of keyed imple-
mentation).

Similarly, (D′, C̃r−1) is a generalized circuit implementation of (UFr−1 ,Fr−1) where D′ is defined
as (k, t)← D′(1λ) ≡ k ← Dr−1(1λ), t $←− {0, 1}a(λ) and C̃r−1 = {{iO(Cr−1k ; t)}k∈Kr−1

λ ,t∈{0,1}a(λ)}λ.
Let Evasive-GenPuncture be an efficient algorithm that on input k′ ∈ Kr−1λ , t′ ∈ {0, 1}a, a set of

points y1, y2 and circuits µ1, µ2, generates Ck′,y1,y2,µ1,µ2 and outputs the circuit iO(Ck′,y1,y2,µ1,µ2 ; t
′).

Note that by definition of D,

{iO(Crk ; t), x}
(k,t)←D(1λ)x

$←−{Cr
k}−1(1)

= {iO(Crk), x}
k←Dr(1λ),x

$←−{Cr
k}−1(1)

,

which is the LHS of Claim 82, and,

{C̃k′,t′,y′ ,⃗1, y}C̃k′,t′,y′ ,⃗1←Evasive-GenPuncture((k′,t′),y,y,⃗1,⃗1),(k′,t′)←D′(1λ),y
$←−{0,1}n

= {iO(Ck′,y,⃗1; t
′), y}

Ck′,y,⃗1←GenPuncture(k′,y,y,⃗1,⃗1),(k′,t′)←D′(1λ),y
$←−{0,1}n By definition of Evasive-GenPuncture

= {iO(Ck′,y,⃗1), y}k′←Dr−1(1λ),y
$←−{0,1}n , By definition of D′

which is the RHS of Claim 82. Hence by Claim 82, we conclude that,

{iO(Crk ; t), x}
k,t←D(1λ)),x

$←−{Cr
k}−1(1)

≈c {C̃k′,t′,y′ ,⃗1, y}C̃k′,t′,y′ ,⃗1←Evasive-GenPuncture(k′,y,y,⃗1,⃗1),k′←D′(1λ),t′
$←−{0,1}a,y $←−{0,1}n ,

which is exactly the preimage-samplable condition for UFr ,Fr with the keyed circuit implementation,
(D, C̃r), the auxiliary generalized puncturable keyed circuit class C̃r−1 equipped with Evasive-GenPuncture,
and D′ as the corresponding distribution on the keyspace of C̃r−1.

Next, we give a proof of Claim 82 to complete the proof.

Proof of Claim 82 Fix λ arbitrarily. Since Fr is evasive, so is Fr−1. Hence, k′ ← Dr−1(1λ),
y

$←− {0, 1}n ≈s y
$←−
{
Cr−1k′

}−1
(0) and hence,

{iO(Ck′,y,⃗1), y}k′←Dr−1(1λ),y
$←−{0,1}n ≈s {iO(Ck,y,⃗1), y}k $←−Kr−1

λ ,y
$←−{Cr−1

k′ }
−1

(0)
.

Hence it is enough to show that

{iO(Crk), x}
k←Dr(1λ),x

$←−Cr
k
−1(1)

≈c {iO(Ck′,y,⃗1), y}k′←Dr−1(1λ),y
$←−{Cr−1

k′ }
−1

(0)
.

Recall the circuit-to-functionality map Sλ. Let Induced-Dr and Induced-Dr−1 be the distribution
that Dr and Dr−1 respectively induces on Frλ and Fr−1λ under Sλ. Since (Dr,Cr) and (Dr−1,Cr−1)
are keyed implementation of (UFr ,Fr) and (UFr−1 ,Fr−1) respectively, it holds that,

Induced-Dr ≈s UFr , and similarly, Induced-Dr−1 ≈s UFr−1 (9)

Since C̃r and C̃r−1 are keyed implementations of Fr and Fr−1 respectively, for every f ∈ Fr
and Gr−1 Dr and Dr−1 induce distributions Dr-Sf and Dr−1-Sg, on the class of circuits S−1λ (f) and

91

S−1λ (g), respectively. For every f ∈ Fr, g ∈ Fr−1, let kf and k′g be the lexicographically first key
in Kr and Kr−1 such that Crkf ∈ S

−1
λ (f) and Cr−1k′g

∈ S−1λ (g).

Note that by the security of iO, for every f ∈ Fr, and Crk ∈ S
−1
λ (f)

{iO(Crk ; t)}
t

$←−{0,1}a ≈c {iO(C
r
kf
; t)}

t
$←−{0,1}a .

Therefore it holds that, for every f ∈ Fr,

{iO(Crk)}k←Dr-Sf
= {iO(Crk ; t)}

k←Dr-Sf ,t
$←−{0,1}a ≈c {iO(C

r
kf
; t)}

t
$←−{0,1}a = {iO(Crkf)}. (10)

Next note that,

{iO(Crk), x}
k←Dr(1λ),x

$←−{Cr
k}−1(1)

= {iO(Crk), x}
k←Dr-Sf (1λ),f←Induced-Drx

$←−Cr
k
−1(1)

.

Therefore,

{iO(Crk), x}
k←Dr(1λ),x

$←−{Cr
k}−1(1)

= {iO(Crk), x}
k←Dr-Sf (1λ),f←Induced-Dr,x

$←−{iO(Cr
k)}−1(1)

≈s {iO(Crk), x}
k←Dr-Sf (1λ),f←UFr ,x

$←−Cr
k
−1(1)

By Equation (9)

≈c {iO(Crkf ; t), x}t $←−{0,1}a,f←UFr ,x
$←−{iO(Cr

kf
)}−1(1)

By Equation (10)

= {iO(Crkf ; t), x}t $←−{0,1}a,f←UFr ,x
$←−f−1(1)

.

Similarly, it can be shown that

{iO(Ck′,y,⃗1), y}k′←Dr−1(1λ),y
$←−{Cr−1

k′ }
−1

(0)
≈c {iO(Ck′g ,y,⃗1; t), x}t $←−{0,1}a,g←UFr−1 ,y

$←−g−1(0)
.

Therefore to conclude Claim 82, it is enough to prove that

{iO(Crkf ; t), x}t $←−{0,1}a,f←UFr ,x
$←−f−1(1)

≈c {iO(Ck′g ,y,⃗1; t), x}t $←−{0,1}a,g←UFr−1 ,y
$←−g−1(0)

.

This is the same as proving the following claim:

Claim 83.
{iO(Crkf), x}(f,x) $←−F0,r

λ

≈c {iO(Ck′g ,y,⃗1), y}(g,y) $←−F1,r−1
λ

,

where Fv,bλ = {(f, z) | f ∈ Fvλ , f(z) = b}, for every v ∈ N, b ∈ {0, 1}, s ∈ Ktλ.

Proof of Claim 83 Note that for every fixed pair (f∗, x∗) ∈ Fr,bλ , there exists a unique (g̃, ỹ) ∈
Fr−1,0λ , and vice versa, such that Ck′g̃ ,ỹ,⃗1 has the same functionality as Crkf and ỹ = x∗. In other

words, there is a bijection B : Fr,1λ 7→ Fr−1,0λ mapping (f∗, x∗) to (g̃, ỹ) such that Ck′g̃ ,ỹ,⃗1 has the

same functionality as Crf∗ and ỹ = x∗. In particular, ỹ = x∗ and g̃ is the unique function that
satisfies g̃(x∗) = 1 and g̃(x) = f∗(x) for every x ̸= x∗.

92

By iO guarantees, this implies that for every fixed pair (f∗, x∗) ∈ Fr,bλ , the image under the

bijection B, (g̃, ỹ) ∈ Fr−1,0λ , satisfies

iO(Crkf∗), x
∗ ≈c iO(Ck′g̃ ,ỹ,⃗1), y.

Therefore,

{iO(Crkf), x}(k,x) $←−Fr,1
λ

≈c {iO(Ck′g ,y,⃗1), y}(k′,y)=B(h,z),(h,z) $←−F0,k
λ

= {iO(Ck′g ,y,⃗1), y}(k′,y) $←−Fr−1,0
λ

,

where the last equality holds because B is a bijection.

Corollary 84. In particular, assuming post-quantum indistinguishability obfuscation, point func-
tions form a preimage-samplable evasive function class with respect to the uniform distribution, i.e.,
(UF1 ,F1) is preimage-samplable evasive.

Theorem 85. Let F = {Fλ}λ∈N equipped with a distribution DF be a preimage-samplable evasive
function class (see Definition 80) with input-length n = n(λ), and (D,CF) as the corresponding
keyed circuit implementation for the preimage-samplable condition (see Definition 80).

Assuming a IdU -generalized unclonable puncturable obfuscation UPO for any generalized punc-
turable keyed circuit class in P/poly (see Section 3.1.1), there is a copy-protection scheme for F that
satisfies (DF ,Didentical)-anti-piracy (see Appendix A.1) with respect to CF as the keyed circuit imple-
mentation of F , and (D,CF) as the keyed circuit implementation of (DF ,F), where CopyProtect()
is the same as UPO.Obf(), and the distribution Didentical on pairs of inputs is as follows:

• With probability 1
2 , output (x

B
0 , x

C
0) = (x, x), where x

$←− {0, 1}n.

• With probability 1
2 , output (x

B
1 , x

C
1) = (x, x), where x

$←− CFk
−1

(1), and CFk ∈ CF is the circuit
that is copy-protected.

Proof of Theorem 85. The correctness of the copy-protection scheme follows directly from the cor-
rectness of the UPO.

We fix the keyed circuit representation of (DF ,F) to be (D,CF). Let the keyspace of CF be
KF , i.e., CF = {{CFk}k∈KF

λ
}λ∈N.

Let C = {{Ck}k∈Kλ
}λ∈N be the auxiliary generalized puncturable keyed circuit class and D′

be the corresponding distribution on K with respect to which the preimage-samplable condition
(see Definition 80) holds for (DF ,F) equipped with the keyed circuit description (D,CF). Let
Evasive-GenPuncture be the generalized puncturing algorithm associated with C.

We give a reduction from the copy-protection security experiment to the generalized unclonable
puncturable obfuscation security experiment of UPO for the generalized puncturable keyed circuit
class C (see Figure 3). Let (A,B, C) be an adversary in the copy-protection security experiment.
We mark the changes in blue.

Hybrid0:
This is the same as the original copy-protection security experiment for the scheme (Obf,Eval).

• Ch samples a bit b
$←− {0, 1}.

• Ch samples k ← D(1λ) ρk ← UPO.Obf(1λ, CFk) and sends it to A.

93

• A produces a bipartite state σB,C .

• Ch samples x0
$←− {0, 1}n and x1

$←− CFk
−1

(1).

• Apply (B(xb, ·)⊗ C(xb, ·))(σB,C) to obtain (bB, bC).

• Output 1 if CFk (xb) = bB = bC .

Hybrid1:

• Ch samples a bit b
$←− {0, 1}.

• Ch samples k ← D(1λ) ρk ← UPO.Obf(1λ, CFk) and sends it to A.

• A produces a bipartite state σB,C .

• Ch samples x0
$←− {0, 1}n and x1

$←− {CFk }−1(1).

• Apply (B(xb, ·)⊗ C(xb, ·))(σB,C) to obtain (bB, bC).

• Output 1 if CFk (xb) = bB = bC b = bB = bC .

Since F is evasive with respect to D, with overwhelming probability CFk (x0) = 0. Hence, in the
b = 0 case outputting 1 if CFk (x0) = bB = bC is indistinguishable from 0 = bB = bC . Clearly, since

x1 ∈ CFk
−1

(1), in the b = 1 case, CFk (x1) = bB = bC is the same as 1 = bB = bC . Hence, the
indistinguishability between Hybrid0 and Hybrid1 holds.

Hybrid2:

• Ch samples a bit b
$←− {0, 1}.

• Ch samples k ← D(1λ) k′ ← D′(1λ), y $←− {0, 1}n and generates ρk ← UPO.Obf(1λ, Ck) ρk′,y ←
UPO.Obf(1λ, Ck′,y), where Ck′,y ← Evasive-GenPuncture(k′, y, y, 1⃗, 1⃗), and sends it to A.

• A produces a bipartite state σB,C .

• Ch samples x0
$←− {0, 1}n and x1

$←− CFk
−1

(1) set x1 = y.

• Apply (B(xb, ·)⊗ C(xb, ·))(σB,C) to obtain (bB, bC).

• Output 1 if b = bB = bC .

The indistinguishability between Hybrid1 and Hybrid2 holds by the preimage-samplable relation (in
particular, Equation (8) for the b = 1 and b = 0 cases) between F ,D and G,D′.

Hybrid3:

• Ch samples a bit b
$←− {0, 1}.

94

• Ch samples k′ ← D′(1λ), y $←− {0, 1}n and generates ρk′,y ← UPO.Obf(1λ, Ck′,y), where Ck′,y ←
Evasive-GenPuncture(k′, y, y, 1⃗, 1⃗), if b = 0 generates ρk′ ← Obf(1λ, Ck′) else if b = 1 generates
ρk′,y ← UPO.Obf(1λ, Ck′,y), where Ck′,y ← Evasive-GenPuncture(k′, y, y, 1⃗, 1⃗), and sends it to
A.

• A produces a bipartite state σB,C .

• Ch samples x0
$←− {0, 1}n and set x1 = y.

• Apply (B(xb, ·)⊗ C(xb, ·))(σB,C) to obtain (bB, bC).

• Output 1 if b = bB = bC .

The indistinguishability between Hybrid2 and Hybrid3 holds as follows. In the b = 0 case of
Hybrid2, the view of (A,B, C) only depends on UPO.Obf(1λ, Ck′,y), x0, but in the b = 0 case of

Hybrid3, the view depends on UPO.Obf(1λ, Ck′), x0 where x0
$←− {0, 1}n is sampled independent of

k′ and y. Hence it is enough to show that

{UPO.Obf(1λ, Ck′,y)}
k′←D′(1λ),y

$←−{0,1}n ≈c {UPO.Obf(1
λ, Ck′)}k′←D′(1λ), (11)

which is a necessary condition for the generalized unclonable puncturable obfuscation security of
UPO (otherwise A can itself distinguish between b = 0 and b = 1 case in the generalized unclonable
puncturable obfuscation security experiment given in Definition 10 for the keyed circuitclass C).
Therefore, Equation (11) holds by the generalized UPO security of UPO for the circuit class C.

Hybrid4:

• Ch samples a bit b
$←− {0, 1}.

• Ch samples k′ ← D′(1λ), y $←− {0, 1}n and if b = 0 generates ρk′ ← Obf(1λ, Ck′) else if b = 1
generates ρk′,y ← UPO.Obf(1λ, Ck′,y), where Ck′,y ← Evasive-GenPuncture(k′, y, y, 1⃗, 1⃗), and
sends it to A.

• A produces a bipartite state σB,C .

• Ch samples x0
$←− {0, 1}n and set x1 = y.

• Apply (B(xby, ·)⊗ C(xby, ·))(σB,C) to obtain (bB, bC).

• Output 1 if b = bB = bC .

The only change from Hybrid3 to Hybrid4 is replacing x0 with y in the b = 0 case and x1 with y in
the b = 1 case. The indistinguishability between Hybrid3 and Hybrid4 holds as follows. Note that
replacing x1 with y in Hybrid3 does not change anything since x1 was set to y in Hybrid3. Next, in

the b = 1 case, the view of (A,B, C) only depends on UPO.Obf(1λ, Ck′), x0 where x0
$←− {0, 1}n is

sampled independent of k′. Since y
$←− {0, 1}n is also sampled independent of k′,

{Ck′ , x0}
k′←D′(1λ),x0

$←−{0,1}n = {Ck′ , y}
k′←D′(1λ),y

$←−{0,1}n .

95

Hence,

{UPO.Obf(1λ, Ck′), x0}
k′←D′(1λ),x0

$←−{0,1}n
= {UPO.Obf(1λ, Ck′), y}

k′←D′(1λ),y
$←−{0,1}n .

Therefore, replacing UPO.Obf(1λ, Ck′), x0 with UPO.Obf(1λ, Ck′), y is indistinguishable and hence,
Hybrid3 and Hybrid4 are indistinguishable with respect to the adversary.

We next give a reduction (RA,RB,RC) from Hybrid4 to the IdU -generalized UPO security exper-
iment of UPO (Definition 10) for the generalized puncturable keyed circuitclass C = {{Ck′}k′∈Kλ

}λ
equipped with Evasive-GenPuncture as the generalized puncturing algorithm (see Appendix A.2).

• RA samples k′ ← D′(1λ), and sends k′ along with µB = µC = 1⃗, the constant 1 function.

• On receiving ρ from Ch, the challenger for the generalized unclonable puncturable obfuscation
experiment, RA runs A(ρ) to get a bipartite state σB,C , and sends σB, σC to RB and RC
respectively.

• RB (respectively, RC) runs B(xB, σB) (respectively, C(xC , σC)) on receiving xB and σB (re-
spectively xC and σC) from Ch and RA, respectively, and output the outcome.

Clearly, the view of (A,B, C) in the experiment (Figure 3) GenUPO.Expt(RA,RB,RC),IdU ,C
(
1λ, 0

)
(respectively, GenUPO.Expt(RA,RB,RC),IdU ,C

(
1λ, 1

)
) is exactly the same as that in the b = 0

(respectively, b = 1) case in Hybrid4, where IdU is as defined in Section 3.1.1. This completes the
reduction from the copy-protection security experiment to the generalized unclonable puncturable
obfuscation security experiment (Figure 3).

Corollary 86. Suppose r is such that the following holds:

1. Fr is evasive with respect to UFr , the uniform distribution.

2. There exists a keyed circuit implementation (Dr,Cr) for (UFr ,Fr), and similarly keyed circuit
implementation (Dr−1,Cr−1) for (UFr−1 ,Fr−1).

Then, assuming post-quantum indistinguishability obfuscation, a IdU -generalized unclonable punc-
turable obfuscation UPO for any generalized puncturable keyed circuit class in P/poly (see Sec-
tion 3.1.1), there is a copy-protection scheme for Fr that satisfies (UFr ,Didentical)-anti-piracy (see
Appendix A.1) with respect to some keyed circuit implementation (D,C) of (UFr ,F), where CopyProtect()
is the same as UPO.Obf(), and the distribution Didentical on pairs of inputs is as follows:

• With probability 1
2 , output (x

B
0 , x

C
0) = (x, x), where x

$←− {0, 1}n.

• With probability 1
2 , output (x

B
1 , x

C
1) = (x, x), where x

$←− Ck
−1(1), and Ck ∈ C is the circuit

that is copy-protected.

In particular, there exists a copy-protection for point functions that satisfies (U ,Didentical)-anti-
piracy, under the assumptions made above.

96

Combined with Theorem 30, Corollary 86 gives us the following feasibility result for a general-
ization of point functions, namely, single bit output evasive function classes that consist of functions
with a fixed number of preimages of 1 (see the formal definition in Theorem 81).

Corollary 87. Suppose r is such that the following holds:

1. Fr is evasive with respect to UFr , the uniform distribution.

2. There exists a keyed circuit implementation (Dr,Cr) for (UFr ,Fr), and similarly keyed circuit
implementation (Dr−1,Cr−1) for (UFr−1 ,Fr−1).

Then, assuming Conjecture 14, the existence of post-quantum sub-exponentially secure iO and
one-way functions, and the quantum hardness of Learning-with-errors problem (LWE), there is a
copy-protection scheme for Fr that satisfies (UFr ,Didentical)-anti-piracy (see Appendix A.1) with
respect to some keyed circuit implementation (D,C) of (UFr ,F), where CopyProtect() is the same
as UPO.Obf(), and the distribution Didentical on pairs of inputs is as defined in Corollary 86. In
particular, there exists a copy-protection for point functions that satisfies (U ,Didentical)-anti-piracy,
under the assumptions made above.

Acknowledgements

We thank Supartha Podder for discussions during the early stages of the project.

References

[Aar05] Scott Aaronson. “Quantum Computing, Postselection, and Probabilistic Polynomial-
Time”. In: Proceedings: Mathematical, Physical and Engineering Sciences 461.2063
(2005), pp. 3473–3482. issn: 13645021. JSTOR: 30047928 (cit. on p. 3).

[Aar09] Scott Aaronson. “Quantum copy-protection and quantum money”. In: 2009 24th An-
nual IEEE Conference on Computational Complexity. IEEE. 2009, pp. 229–242 (cit.
on pp. 3, 107).

[Aar16] Scott Aaronson. The Complexity of Quantum States and Transformations: From Quan-
tum Money to Black Holes. 2016. arXiv: 1607.05256 [quant-ph] (cit. on pp. 17, 40,
42).

[AC12] Scott Aaronson and Paul Christiano. “Quantum Money from Hidden Subspaces”. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing.
STOC ’12. New York, New York, USA: Association for Computing Machinery, 2012,
pp. 41–60. isbn: 9781450312455. doi: 10.1145/2213977.2213983. url: https://
doi.org/10.1145/2213977.2213983 (cit. on pp. 3, 107).

[AK21] Prabhanjan Ananth and Fatih Kaleoglu. “Unclonable Encryption, Revisited”. In: The-
ory of Cryptography Conference. Springer. 2021, pp. 299–329 (cit. on pp. 9, 87, 108).

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. “A note on copy-protection from random
oracles”. In: arXiv preprint arXiv:2208.12884 (2022) (cit. on p. 107).

[AKL+22] Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry.
“On the feasibility of unclonable encryption, and more”. In: Annual International
Cryptology Conference. Springer. 2022, pp. 212–241 (cit. on pp. 9, 108).

97

http://www.jstor.org/stable/30047928
https://arxiv.org/abs/1607.05256
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1145/2213977.2213983

[AKL23] Prabhanjan Ananth, Fatih Kaleoglu, and Qipeng Liu. “Cloning Games: A General
Framework for Unclonable Primitives”. In: arXiv preprint arXiv:2302.01874 (2023)
(cit. on pp. 6, 9, 10, 22, 31, 58, 102, 108).

[AL21] Prabhanjan Ananth and Rolando L. La Placa. “Secure Software Leasing”. In: Ad-
vances in Cryptology – EUROCRYPT 2021. Ed. by Anne Canteaut and François-
Xavier Standaert. Cham: Springer International Publishing, 2021, pp. 501–530. isbn:
978-3-030-77886-6 (cit. on pp. 3, 8, 107).

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. “New
Approaches for Quantum Copy-Protection”. In: Advances in Cryptology – CRYPTO
2021. Ed. by Tal Malkin and Chris Peikert. Cham: Springer International Publishing,
2021, pp. 526–555. isbn: 978-3-030-84242-0 (cit. on p. 107).

[BBV24] James Bartusek, Zvika Brakerski, and Vinod Vaikuntanathan. “Quantum State Ob-
fuscation from Classical Oracles”. In: arXiv preprint arXiv:2401.10200 (2024) (cit. on
p. 10).

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. “On the (im) possibility of obfuscating programs”. In: Annual
international cryptology conference. Springer. 2001, pp. 1–18 (cit. on pp. 3, 14, 20,
109).

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. “Functional signatures and pseudo-
random functions”. In: International workshop on public key cryptography. Springer.
2014, pp. 501–519 (cit. on pp. 7, 60).

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. “Quantum one-time programs”.
In: Annual Cryptology Conference. Springer. 2013, pp. 344–360 (cit. on p. 3).

[BI20] Anne Broadbent and Rabib Islam. “Quantum Encryption with Certified Deletion”.
In: Theory of Cryptography. Springer International Publishing, 2020, pp. 92–122. doi:
10.1007/978-3-030-64381-2_4. url: https://doi.org/10.1007%2F978-3-030-
64381-2_4 (cit. on p. 108).

[BKL23] Anne Broadbent, Martti Karvonen, and Sébastien Lord. “Uncloneable Quantum Ad-
vice”. In: arXiv preprint arXiv:2309.05155 (2023) (cit. on p. 3).

[BL20] Anne Broadbent and Sébastien Lord. “Uncloneable Quantum Encryption via Ora-
cles”. en. In: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/
LIPICS.TQC.2020.4. url: https://drops.dagstuhl.de/opus/volltexte/2020/
12063/ (cit. on pp. 3, 9, 108).

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. “On the cryptographic hardness of
finding a Nash equilibrium”. In: 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science. IEEE. 2015, pp. 1480–1498 (cit. on p. 3).

[BS16] Shalev Ben-David and Or Sattath. Quantum Tokens for Digital Signatures. 2016. doi:
10.48550/ARXIV.1609.09047. url: https://arxiv.org/abs/1609.09047 (cit. on
p. 3).

[BS20] Amit Behera and Or Sattath. “Almost public quantum coins”. In: arXiv preprint
arXiv:2002.12438 (2020) (cit. on p. 3).

98

https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007%2F978-3-030-64381-2_4
https://doi.org/10.1007%2F978-3-030-64381-2_4
https://doi.org/10.4230/LIPICS.TQC.2020.4
https://doi.org/10.4230/LIPICS.TQC.2020.4
https://drops.dagstuhl.de/opus/volltexte/2020/12063/
https://drops.dagstuhl.de/opus/volltexte/2020/12063/
https://doi.org/10.48550/ARXIV.1609.09047
https://arxiv.org/abs/1609.09047

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. “New Negative Results on Differing-
Inputs Obfuscation”. In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Ed. by Marc Fischlin and
Jean-Sébastien Coron. Vol. 9666. Lecture Notes in Computer Science. Springer, 2016,
pp. 792–821. doi: 10.1007/978-3-662-49896-5_28. url: https://doi.org/10.
1007/978-3-662-49896-5%5C_28 (cit. on p. 64).

[BW13] Dan Boneh and Brent Waters. “Constrained pseudorandom functions and their ap-
plications”. In: Advances in Cryptology-ASIACRYPT 2013: 19th International Con-
ference on the Theory and Application of Cryptology and Information Security, Ben-
galuru, India, December 1-5, 2013, Proceedings, Part II 19. Springer. 2013, pp. 280–
300 (cit. on pp. 7, 60).

[BZ17] Dan Boneh and Mark Zhandry. “Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation”. In: Algorithmica 79 (2017), pp. 1233–1285
(cit. on p. 3).

[CG23] Andrea Coladangelo and Sam Gunn. “How to Use Quantum Indistinguishability Ob-
fuscation”. In: arXiv preprint arXiv:2311.07794 (2023) (cit. on pp. 10, 55).

[CHV23] Céline Chevalier, Paul Hermouet, and Quoc-Huy Vu. “Semi-Quantum Copy-Protection
and More”. In: Cryptology ePrint Archive (2023) (cit. on pp. 8, 108).

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. “Hidden Cosets and
Applications to Unclonable Cryptography”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part I. Ed. by Tal Malkin and Chris Peik-
ert. Vol. 12825. Lecture Notes in Computer Science. Springer, 2021, pp. 556–584. doi:
10.1007/978-3-030-84242-0_20. url: https://doi.org/10.1007/978-3-030-
84242-0%5C_20 (cit. on pp. 3, 4, 6–8, 14, 15, 23, 24, 27, 31, 32, 34, 35, 37–41, 53, 103,
107, 108).

[Die82] DGBJ Dieks. “Communication by EPR devices”. In: Physics Letters A 92.6 (1982),
pp. 271–272 (cit. on p. 3).

[Gao15] Jingliang Gao. “Quantum union bounds for sequential projective measurements”. In:
Physical Review A 92.5 (2015), p. 052331 (cit. on p. 17).

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. “Candidate indistinguishability obfuscation and functional encryption for all
circuits”. In: SIAM Journal on Computing 45.3 (2016), pp. 882–929 (cit. on p. 3).

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. “Two-round secure
MPC from indistinguishability obfuscation”. In: Theory of Cryptography Conference.
Springer. 2014, pp. 74–94 (cit. on p. 3).

[GMR23] Vipul Goyal, Giulio Malavolta, and Justin Raizes. “Unclonable Commitments and
Proofs”. In: Cryptology ePrint Archive (2023) (cit. on p. 3).

[Got02] Daniel Gottesman. “Uncloneable Encryption”. In: (2002). doi: 10.48550/ARXIV.
QUANT-PH/0210062. url: https://arxiv.org/abs/quant-ph/0210062 (cit. on p. 3).

99

https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-662-49896-5%5C_28
https://doi.org/10.1007/978-3-662-49896-5%5C_28
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0%5C_20
https://doi.org/10.1007/978-3-030-84242-0%5C_20
https://doi.org/10.48550/ARXIV.QUANT-PH/0210062
https://doi.org/10.48550/ARXIV.QUANT-PH/0210062
https://arxiv.org/abs/quant-ph/0210062

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable Decryption Keys. 2020. IACR Cryp-
tol. ePrint Arch. https://eprint.iacr.org/2020/877 (cit. on pp. 3, 8, 23, 87, 105,
106, 108).

[JK23] Ruta Jawale and Dakshita Khurana. “Unclonable Non-Interactive Zero-Knowledge”.
In: arXiv preprint arXiv:2310.07118 (2023) (cit. on p. 3).

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation from well-
founded assumptions”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing. 2021, pp. 60–73 (cit. on p. 5).

[KN23] Fuyuki Kitagawa and Ryo Nishimaki. “One-out-of-Many Unclonable Cryptography:
Definitions, Constructions, and More”. In: arXiv preprint arXiv:2302.09836 (2023)
(cit. on pp. 3, 108).

[KT22] Srijita Kundu and Ernest Y-Z Tan. “Device-independent uncloneable encryption”. In:
arXiv preprint arXiv:2210.01058 (2022) (cit. on pp. 10, 22).

[LLQZ22] Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry. “Collusion Resistant Copy-
Protection for Watermarkable Functionalities”. In: Theory of Cryptography - 20th In-
ternational Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceed-
ings, Part I. Ed. by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747. Lecture Notes
in Computer Science. Springer, 2022, pp. 294–323. doi: 10.1007/978-3-031-22318-
1_11. url: https://doi.org/10.1007/978-3-031-22318-1%5C_11 (cit. on pp. 4,
6, 7, 64, 108).

[LMZ23] Jiahui Liu, Hart Montgomery, and Mark Zhandry. “Another Round of Breaking and
Making Quantum Money: How to Not Build It from Lattices, and More”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2023, pp. 611–638 (cit. on pp. 3, 9, 107).

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010. doi: 10.1017/
CBO9780511976667 (cit. on p. 15).

[RS19] Roy Radian and Or Sattath. “Semi-quantum money”. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies. 2019, pp. 132–146 (cit. on p. 3).

[RZ21] Bhaskar Roberts and Mark Zhandry. “Franchised quantum money”. In: Advances
in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 6–10, 2021,
Proceedings, Part I 27. Springer. 2021, pp. 549–574 (cit. on p. 3).

[Shm22] Omri Shmueli. “Public-key Quantum money with a classical bank”. In: Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing. 2022, pp. 790–
803 (cit. on pp. 3, 107).

[SW14] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation: deniable
encryption, and more”. In: Proceedings of the forty-sixth annual ACM symposium on
Theory of computing. 2014, pp. 475–484 (cit. on pp. 3, 4, 7, 13, 67, 68, 87).

[SW22] Or Sattath and Shai Wyborski. Uncloneable Decryptors from Quantum Copy-Protection.
2022. arXiv: 2203.05866 (cit. on p. 106).

100

https://eprint.iacr.org/2020/877
https://doi.org/10.1007/978-3-031-22318-1_11
https://doi.org/10.1007/978-3-031-22318-1_11
https://doi.org/10.1007/978-3-031-22318-1%5C_11
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://arxiv.org/abs/2203.05866

[Wie83] Stephen Wiesner. “Conjugate coding”. In: ACM Sigact News 15.1 (1983), pp. 78–88
(cit. on pp. 3, 107).

[WZ82] William K Wootters and Wojciech H Zurek. “A single quantum cannot be cloned”.
In: Nature 299.5886 (1982), pp. 802–803 (cit. on p. 3).

[Zha19] Mark Zhandry. “Quantum Lightning Never Strikes the Same State Twice”. In: Ad-
vances in Cryptology – EUROCRYPT 2019. Ed. by Yuval Ishai and Vincent Rijmen.
Cham: Springer International Publishing, 2019, pp. 408–438. isbn: 978-3-030-17659-4
(cit. on pp. 3, 9, 107).

[Zha23] Mark Zhandry. “Quantum Money from Abelian Group Actions”. In: arXiv preprint
arXiv:2307.12120 (2023) (cit. on pp. 9, 107).

101

A Unclonable Cryptography: Definitions

A.1 Quantum Copy-Protection

Consider a function class F with keyed circuit implementation C = {Cλ}λ∈N, where Fλ (respectively,
Cλ) consists of functions (respectively, circuits) with input length n(λ) and output length m(λ). A
copy-protection scheme is a pair of QPT algorithms (CopyProtect,Eval) defined as follows:

• CopyProtect(1λ, C): on input a security parameter λ and a circuit C ∈ Cλ, it outputs a
quantum state ρC .

• Eval(ρk, x): on input a quantum state ρC and an input x ∈ Xλ, it outputs (ρ′C , y).

Correctness. A copy-protection scheme (CopyProtect,Eval) for a function class F with keyed
circuit implementation C = {Cλ}λ∈N is δ-correct, if for every C ∈ Cλ, for every x ∈ {0, 1}n(λ), there
exists a negligible function δ(λ) such that:

Pr

[
C(x) = y |

ρC←CopyProtect(1λ,C)

(ρ′C ,y)←Eval(ρC ,x)

]
≥ 1− δ(λ)

CP.Expt(A,B,C),DK,DX
(
1λ
)
:

• Ch samples k ← DK(1λ) and generates ρk ← CopyProtect(1λ, Ck)
and sends ρk to A.

• A produces a bipartite state σB,C .

• Ch samples (xB, xC)← DX 18.

• Apply (B(xB, ·)⊗ C(xC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if yB = C(xB) and yC = Ck(x
C), else 0.

Figure 34: (DK,DX)-anti-piracy experiment of copy-protection.

(DK,DX)-anti-piracy. Consider the experiment in Figure 34. We define ptriv = max{pB, pC},
where pB is the maximum probability that the experiment outputs 1 when A gives ρC to B and C
outputs its best guess and pC is defined symmetrically. We refer to [AKL23] for a formal definition
of trivial success probability.

Suppose DX is a distribution on {0, 1}n(λ) × {0, 1}n(λ), and DF is a distribution on F .
18DX may potentially depend on the circuit Ck.

102

We say that a copy-protection scheme (CopyProtect,Eval) for F satisfies (DF ,DX)-anti-piracy
if there exists a keyed circuit implementation (see Section 7.1) of the form (DK,C)19 for (DF ,F)
such that for every tuple of QPT adversaries (A,B, C) there exists a negligible function negl(λ) such
that:

Pr
[
1← CP.Expt(A,B,C),DK,DX

(
1λ
)]
≤ ptriv + negl(λ)

If DX is a uniform distribution on {0, 1}n(λ) × {0, 1}n(λ) then we simply refer to this definition as
DK-anti-piracy.

A.2 Public-Key Single-Decryptor Encryption

We adopt the following definition of public-key single-decryptor encryption from [CLLZ21].
A public-key single-decryptor encryption scheme with message length n(λ and ciphertext length

c(λ) consists of the QPT algorithms SDE = (Gen,QKeyGen,Enc,Dec) defined below:

• (sk, pk)← Gen(1λ) : on input a security parameter 1λ, returns a classical secret key sk and a
classical public key pk.

• ρsk ← QKeyGen(sk) : takes a classical secret key sk and outputs a quantum decryptor key ρsk.

• ct← Enc(pk,m) takes a classical public key pk, a message m ∈ {0, 1}n and outputs a classical
ciphertext ct.

• m ← Dec(ρsk, ct) : takes a quantum decryptor key ρsk and a ciphertext ct, and outputs a
message m ∈ {0, 1}n.

Correctness For every message m ∈ {0, 1}n(λ), there exists a negligible function δ(λ) such that:

Pr

[
Dec(ρsk, ct) = m

∣∣∣∣∣
(sk,pk)←Gen(λ)

ρsk←QKeyGen(sk)

ct←Enc(pk,m)

]
≥ 1− δ(λ).

Search Anti-Piracy We say that a single-decryptor encryption scheme SDE satisfies D-search
anti-piracy if for every QPT adversary (A,B, C) in Figure 35 if there exists a negligible function
negl such that:

Pr
[
1← Search.SDE.Expt(A,B,C)

(
1λ
)]
≤ negl(λ).

The two instantiations of D are U and IdU , as defined in section 3.1.1.

Indistinguishability from random Anti-Piracy We say that a single-decryptor encryption
scheme SDE satisfies Dct-indistinguishability from random anti-piracy if for every QPT adversary
(A,B, C) in Figure 35 if there exists a negligible function negl such that:

Pr
[
1← Ind-random.SDE.Expt(A,B,C),Dct

(
1λ
)]
≤ negl(λ).

The two instantiations of Dct are as follows:

19It is crucial that C is the same circuit class as the keyed implementation of F that we fixed before for correctness.

103

Search.SDE.Expt(A,B,C),D
(
1λ
)
:

• Ch samples (sk, pk) ← Gen(1λ). It then generates ρsk ←
QKeyGen(sk) and sends (ρsk, pk) to A.

• A produces a bipartite state σB,C .

• Ch samples (mB,mC) ← D(1λ) and generates ctB ← Enc(pk,mB)
and ctC ← Enc(pk,mC).

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (yB, yC).

• Output 1 if yB = mB and yC = mC .

Figure 35: Search anti-piracy.

Ind-random.SDE.Expt(A,B,C),Dct
(
1λ
)
:

• Ch samples (sk, pk) ← Gen(1λ). It then generates ρsk ←
QKeyGen(sk) and sends (ρsk, pk) to A.

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1}, and generates (ctBb , ct

C
b)← Dct(1

λ, b, pk).

• Apply (B(ctBb , ·)⊗ C(ctCb , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Figure 36: Indistinguishability from random anti-piracy.

1. Dind-msg(1
λ, b, pk):

(a) Sample mB,mC
$←− {0, 1}q, where q(λ) is the message length.

(b) Generate ctBb ← Enc(pk,mBb) and ctCb ← Enc(pk,mCb), where m
B
0 = mC0 = 0, mB1 = mB

and mC1 = mC .

(c) Output ctBb , ct
C
b .

2. Didentical-cipher(1
λ, b, pk):

104

(a) Sample m
$←− {0, 1}q, where q(λ) is the message length.

(b) Generate ctb ← Enc(pk,mb) where m0 = 0, and m1 = m.

(c) Set ctBb = ctCb = ctb.

(d) Output ctBb , ct
C
b .

SelCPA.SDE.Expt(A,B,C),D
(
1λ
)
:

1. A(ρk) outputs (mB0 ,m
B
1 ,m

C
0 ,m

C
1), such that |mB0 | = |mB1 | and

|mC0 | = |mC1 |.

2. Ch samples (ρk, pk)← KeyGen(1λ) and sends (ρk, pk) to A.

3. A(ρk) outputs a bipartite state σB,C .

4. Ch samples b
$←− {0, 1}.

5. Let ctB, ctC ← D(1λ, b, pk).

6. Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

7. Output 1 if bB = bC = b.

Figure 37: Selective D-CPA anti-piracy.

Selective CPA Anti-piracy We say that a single-decryptor encryption scheme SDE satisfies
D-selective CPA anti-piracy, for a distribution D on {0, 1}n × {0, 1}n, if for every QPT adversary
(A,B, C) in Figure 37, there exists a negligible function negl such that:

Pr
[
1← SelCPA.SDE.Expt(A,B,C),D

(
1λ
)]
≤ 1

2
+ negl(λ).

The two instantiations of D are:

1. Diden-bit,ind-msg(1
λ, b, pk): outputs (ctB, ctC) where ctB ← Enc(pk,mBb) and ctC ← Enc(pk,mCb).

2. Didentical(1
λ, b, pk) outputs (ct, ct) where ct← Enc(pk,mBb)

20.

This notion of selective Didentical-CPA security is equivalent to the selective CPA-security in [GZ20].

20Ideally, in the identical challenge setting, there should be just two challenge messages m0,m1 and not
mB

0 ,m
B
1 ,m

C
0 ,m

C
1 , but we chose to have this redundancy in order to unify the syntax for the identical and corre-

lated challenge settings.

105

CPA.SDE.Expt(A,B,C),D
(
1λ
)
:

• Ch samples (sk, pk) ← Gen(1λ) and generates ρsk ← QKeyGen(sk)
and sends (ρsk, pk) to A.

• A sends two pairs of same-length messages ((mB0 ,m
B
1), (m

C
0 ,m

C
1)).

• A produces a bipartite state σB,C .

• Ch samples b
$←− {0, 1}.

• Let ctB, ctC ← D(1λ, b, pk).

• Apply (B(ctB, ·)⊗ C(ctC , ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = b0 and bC = b1.

Figure 38: D-CPA anti-piracy

CPA anti-piracy We say that a single-decryptor encryption scheme SDE satisfies CPA D-anti-
piracy if for every QPT adversary (A,B, C) in Experiment 38, there exists a negligible function negl
such that

Pr
[
1← CPA.SDE.Expt(A,B,C),D

(
1λ
)]
≤ 1

2
+ negl(λ).

The two instantiations of D are Diden-bit,ind-msg and Didentical, defined in the selective CPA anti-
piracy definition in the previous paragraph.
The definition of Diden-bit,ind-msg-CPA anti-piracy is the same as the correlated version of the 1-2
variant of UD − CPA anti-piracy defined in [SW22] and the definition IdU -CPA anti-piracy is the
same as the secret-key CPA secure defined in [GZ20].

A.3 Unclonable Encryption

An unclonable encryption scheme is a triple of QPT algorithms UE = (Gen,Enc,Dec) given below:

• Gen(1λ) : sk on input a security parameter 1λ, returns a classical key sk.

• Enc(sk,m) : ρct takes the key sk, a message m ∈ {0, 1}n(λ) and outputs a quantum ciphertext
ρct.

• Dec(sk, ρct) : ρm takes a secret key sk, a quantum ciphertext ρct and outputs a message m′.

Correctness. The following must hold for the encryption scheme. For every m ∈ {0, 1}n(λ), the
following holds:

Pr

[
m← Dec(sk, ρct)

∣∣∣∣ sk←Gen(1λ)

ρct←Enc(sk,m)

]
≥ 1− negl(λ)

106

CPA security. We say that an unclonable encryption scheme UE satisfies CPA security if for
every QPT adversary (A,B, C), there exists a negligible function negl such that

Pr
[
1← UE.Expt(A,B,C)

(
1λ
)]
≤ 1

2
+ negl(λ).

UE.Expt(A,B,C)
(
1λ
)
:

• Ch samples sk← Gen(1λ).

• A sends a pair of messages (m0,m1).

• Ch picks a bit b uniformly at random. Ch generates ρct ←
Enc(sk,mb).

• A produces a bipartite state σB,C .

• Apply (B(sk, ·)⊗ C(sk, ·))(σB,C) to obtain (bB, bC).

• Output 1 if bB = bC = b.

Figure 39: CPA security

B Related Work

Unclonable cryptography is an emerging area in quantum cryptography. The origins of this area
date back to 1980s when Weisner [Wie83] first conceived the idea of quantum money which leverages
the no-cloning principle to design money states that cannot be counterfeited. Designing quantum
money has been an active and an important research direction [Aar09, AC12, Zha19, Shm22,
LMZ23, Zha23]. Since the inception of quantum money, there have been numerous unclonable
primitives proposed and studied. We briefly discuss the most relevant ones to our work below.

Copy-Protection. Aaronson [Aar09] conceived the notion of quantum copy-protection. Roughly
speaking, in a quantum copy-protection scheme, a quantum state is associated with functionality
such that given this state, we can still evaluate the functionality while on the other hand, it should
be hard to replicate this state and send this to many parties. Understanding the feasibility of
copy-protection for unlearnable functionalities has been an intriguing direction. Copy-protecting
arbitrary unlearnable functions is known to be impossible in the plain model [AL21] assuming cryp-
tographic assumptions. Even in the quantum random oracle model, the existence of a restricted
class of copy-protection schemes have been ruled out [AK22]. This was complemented by [ALL+21]
who showed that any class of unlearnable functions can be copy-protected in the presence of a clas-
sical oracle. The breakthrough work of [CLLZ21] showed for the first time that copy-protection for

107

interesting classes of unlearnable functions exists in the plain model. This was followed by the work
of [LLQZ22] who identified some watermarkable functions that can be copy-protected. Notably,
both [CLLZ21] and [LLQZ22] only focus on copy-protecting specific functionalities whereas we iden-
tify a broader class of functionalities that can be copy-protected. Finally, a recent work [CHV23]
shows how to copy-protect point functions in the plain model. The same work also shows how to
de-quantize communication in copy-protection schemes.

Unclonable and Single-Decryptor Encryption. Associating encryption schemes with un-
clonability properties were studied in the works of [BL20, BI20, GZ20]. In an encryption scheme,
either we can protect the decryption key or the ciphertext from being cloned, resulting in two
different notions.

In an unclonable encryption scheme, introduced by [BL20], given one copy of a ciphertext, it
should be infeasible to produce many copies of the ciphertext. There are two ways to formalize
the security of an unclonable encryption scheme. Roughly speaking, search security is defined as
follows: if the adversary can produce two copies from one copy then it should be infeasible for two
non-communicating adversaries B and C, who receive a copy each, to simultaneously recover the
entire message. Specifically, the security notion does not prevent both B and C from learning a
few bits of the message. On the other hand, indistinguishability security is a stronger notion that
disallows B and C to simultaneously determine which of m0 or m1, for two adversarially chosen
messages (m0,m1), were encrypted. [BL20] showed that unclonable encryption with search security
for long messages exists. Achieving indistinguishability security in the plain model has been left
as an important open problem. A couple of recent works [AKL+22, AKL23] shows how to achieve
indistinguishability security in the quantum random oracle model. Both [AKL+22, AKL23] achieve
unclonable encryption in the one-time secret-key setting and this can be upgraded to a public-key
scheme using the compiler of [AK21].

In a single-decryptor encryption scheme, introduced by [GZ20], the decryption key is associated
with a quantum state such that given this quantum state, we can still perform decryption but
on the other hand, it should be infeasible for an adversary who receives one copy of the state to
produce two states, each given to B and C, such that B and C independently have the ability to de-
crypt. As before, we can consider both search and indistinguishability security; for the rest of the
discussion, we focus on indistinguishability security. [CLLZ21] first constructed single-decryptor
encryption in the public-key setting assuming indistinguishability obfuscation (iO) and learning
with errors. Recent works [AKL23] and [KN23] present information-theoretic constructions and
constructions based on learning with errors in the one-time setting. The challenge distribution
in the security of single-decryptor encryption is an important parameter to consider. In the se-
curity experiment, B and C each respectively receive ciphertexts ctB and ctC , where (ctB, ctC) is
drawn from a distribution referred to as challenge distribution. Most of the existing results focus
on the setting when the challenge distribution is a product distribution, referred to as indepen-
dent challenge distribution. Typically, achieving independent challenge distribution is easier than
achieving identical distribution, which corresponds to the case when both B and C receive as input
the same ciphertext. Indeed, there is a reason for this: single-decryptor encryption with security
against identical challenge distribution implies unclonable encryption. In this work, we show how
to achieve public-key single-decryptor encryption under identical challenge distribution.

108

C Additional Preliminaries

C.1 Indistinguishability Obfuscation (IO)

An obfuscation scheme associated with a class of circuit C = {Cλ}λ∈N consists of two probabilistic
polynomial-time algorithms iO = (Obf,Eval) defined below.

• Obfuscate, C ′ ← Obf(1λ, C): takes as input security parameter λ, a circuit C ∈ Cλ and
outputs an obfuscation of C, C ′.

• Evaluation, y ← Eval(C ′, x): a deterministic algorithm that takes as input an obfuscated
circuit C ′, an input x ∈ {0, 1}λ and outputs y.

Definition 88 ([BGI+01]). An obfuscation scheme iO = (Obf,Eval) is a post-quantum secure
indistinguishability obfuscator for a class of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size
poly(λ), if it satisfies the following properties:

• Perfect correctness: For every C : {0, 1}λ → {0, 1} ∈ Cλ, x ∈ {0, 1}λ it holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

]
= 1 .

• Polynomial Slowdown: For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the running time of
Obf on input (1λ, C) to be poly(|C|, λ). Similarly, we have the running time of Eval on input
(C ′, x) is poly(|C ′|, λ)

• Security: For every QPT adversary A, there exists a negligible function µ(·), such that for
every sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ {0, 1}λ
and |C0| = |C1|, we have:∣∣∣Pr [A(Obf(1λ, C0), C0, C1

)
= 1

]
− Pr

[
A
(
Obf(1λ, C1), C0, C1

)
= 1

]∣∣∣ ≤ µ(λ) .

109

	Introduction
	Our Contributions in a Nutshell
	Our Contributions
	Technical Overview

	Preliminaries
	Quantum Algorithms

	Unclonable Puncturable Obfuscation: Definition
	Security
	Composition Theorem

	Conjectures
	Part I: Constructions of Unclonable Puncturable Obfuscation
	Direct Construction
	A New Public-Key Single-Decryptor Encryption Scheme
	Copy-Protection for PRFs with Preponed Security
	UPO for Keyed Circuits from Copy-Protection with Preponed Security

	Construction from Quantum State iO
	Part II: Applications
	Applications
	Notations for the applications
	Copy-Protection for Puncturable Function Classes
	Copy-Protection for Puncturable Cryptographic Schemes
	Public-key Single-Decryptor Encryption
	Unclonable Encryption
	Copy-Protection for Evasive Functions

	Unclonable Cryptography: Definitions
	Quantum Copy-Protection
	Public-Key Single-Decryptor Encryption
	Unclonable Encryption

	Related Work
	Additional Preliminaries
	Indistinguishability Obfuscation (IO)

