Fault Attacks Sensitivity of Public Parameters in
the Dilithium Verification

Andersson Calle Viera'?, Alexandre Berzati', and Karine Heydemann'-?
! Thales DIS, France
andersson.calle-viera, alexandre.berzati,
karine.heydemann@thalesgroup.com

2 Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France

Keywords: Dilithium - Digital signature - Fault Attacks - Side-channel
attacks - Post-quantum cryptography - Lattice-based cryptography

Abstract. This paper presents a comprehensive analysis of the verifica-
tion algorithm of the CRYSTALS-Dilithium, focusing on a C reference
implementation. Limited research has been conducted on its susceptibility
to fault attacks, despite its critical role in ensuring the scheme’s security.
To fill this gap, we investigate three distinct fault models - randomizing
faults, zeroizing faults, and skipping faults - to identify vulnerabilities
within the verification process. Based on our analysis, we propose a
methodology for forging CRYSTALS-Dilithium signatures without knowl-
edge of the secret key. Instead, we leverage specific types of faults during
the verification phase and some properties about public parameters to
make these signatures accepted. Additionally, we compared different at-
tack scenarios after identifying sensitive operations within the verification
algorithm. The most effective requires potentially fewer fault injections
than targeting the verification check itself. Finally, we introduce a set of
countermeasures designed to thwart all the identified scenarios rendering
the verification algorithm intrinsically resistant to the presented attacks.

1 Introduction

Shor’s algorithm [34], capable of breaking current cryptosystems [32I12], has un-
derscored the urgency for post-quantum cryptography (PQC). As the third round
of the National Institute of Standards and Technology (NIST) has concluded [IJ,
four new post-quantum public key schemes are set to be standardized by 2024.
Although estimates on the availability of sufficiently large quantum computers
remain uncertain, there is a concerted effort by academia and industry to be
ready when these algorithms are standardized. It is noteworthy that of the three
digital signature schemes chosen, two are based on hard problems over structured
lattices. This work focuses on CRYSTALS-Dilithium [3], hereafter referred to as
Dilithium, which is the NIST recommended standard for quantum-safe digital
signatures [1].

2 Calle Viera et al.

The effective and secure implementation of cryptographic algorithms on
current hardware platforms poses a challenge, as it might be vulnerable to fault
attacks (FA) and side-channel attacks (SCA). Securing embedded cryptographic
applications against such attacks is essential but complex. It requires not only to
consider a large set of attacks but also the potential impact on performances of
the deployed protections. Although Dilithium has been designed to be resistant
to timing attacks, recent work showed that its implementations are likely to
leak secret informations [I525I301232I21129]. Fault attacks significantly threaten
the security of cryptographic systems, potentially undermining the integrity
and confidentiality of sensitive data. In this paper, we focus on the analysis of
Dilithium’s verification algorithm - a crucial component of signature schemes
- with a particular emphasis on its sensitivity to fault attacks. Unlike well-
established signatures, like RSA or DSA and their variants, the verification
algorithm of Dilithium has yet to be precisely analyzed [33127/7]. By exploring
theoretical attack vectors on the verification algorithm, we aim to provide a
comprehensive understanding of the vulnerabilities associated with this procedure.

Our Contributions. In this work, we present three properties allowing the genera-
tion of forged Dilithium signatures that, when combined with appropriate faults,
can bypass the verification without requiring the knowledge of the secret key.
To facilitate a deeper understanding of the verification algorithm’s sensitivity to
fault attacks, we meticulously investigate each identified operation and assess its
susceptibility to four common theoretical fault models. From this investigation,
we detail three scenarios, the most realistic ones, but we also discuss other po-
tential locations. We comprehensively summarize the analyzed locations and the
required corresponding fault models in Tab.[I] In addition, we present a set of
relevant dedicated countermeasures aiming at mitigating the different scenarios.

2 Preliminaries

In this section, we present the essential background on Dilithium to better
understand the various attack paths presented. We also give a short summary of
existing fault attacks and signature forgery methods relative to Dilithium.

Notations: Let us note Z, the ring of integers modulo ¢ and Z,[X] = (Z/qZ)[X]
the set of polynomials with integer coefficients modulo gq. We define R =
Z[X]/(X™+1) the ring of polynomials with integer coefficients, reduced by
the cyclotomic polynomial X™ + 1 and R, = Z4[X]/ (X™ + 1) when considering
integer coefficients modulo ¢. Elements in R, are denoted by lowercase letters,
while elements in R’; or Rfl are denoted by bold lowercase letters. Matrices
with coefficients in R, are denoted by bold uppercase letters. In this context,
implementations such as [I3[17] represent a € R, as a structure of n integers,
often named poly, while an element a € Rf (resp. b € R) is represented as a
structure of k (resp. l) poly and is commonly named polyveck (resp. polyvecl).
In the remainder, we perform polynomial operations in R, unless otherwise noted.

For an even (resp. odd) positive integer «, we define 1o = rmod*a to be the
unique element 7’ in the range —§ <’ < § (resp. —C‘Tfl <r' < ”‘7*1) such that

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 3

r = rmoda. For a € N, we define ' = rmod™ « to be the unique element 7’ in
the range 0 <7/ < «.
For an element w € Z,, we define ||w]|o as |wmod®¢|. For an element w € R,
ie, w=wo+wi X +...+w, 1 X" ! we define ||w||s as max |w;||c and we
i

define [lw] = v/Jwoll% + w1l + - + w1]

Let S, = {w € R: |[w||o <7} and S, the set {wmod*2: w € R}.

For A € Z4 and an element h of k vectors of n coefficients. We define [h|;, =
as the total number of coefficients of h equal to .

[op] represents the boolean evaluation of the operation op.

2.1 Presentation of Dilithium

In 2022 Dilithium [3] was selected alongside Falcon [35] and SPHINCS™ [4], yet
it is the recommended PQC signature scheme for most use cases. Dilithium is a
lattice-based signature scheme based on the Fiat-Shamir with aborts principle [22]
and proposed by the “Cryptographic Suite for Algebraic Lattices” (CRYSTALS)
team. Its security is derived from the hardness of solving the module learning with
errors (M-LWE) [3], and SelfTargetMSIS [I8] problems. For a given (k, [) € N,
it operates over the module R’;Xl, with fixed ¢ = 8380417, a 23-bit integer and
n = 256. There are three security levels, from NIST level 1 to level 5, with changes
essentially in the (k, [) chosen for the module RF*!. There are also two variants of
the signing algorithm, one deterministic and one randomized, the only difference
being how the randomness is sampled. For efficiency, the scheme makes use of
rounding sub-functions such as Power2Round, Decompose, HighBits, LowBits,
MakeHint, UseHint whose latest specification can be found in [3]. To reduce
memory storage, polynomials are stored as a byte stream, using packing and
unpacking functions specified in [3].

Algorithm 1 KeyGen

Output: pk = (p, t1), sk = (p, K, tr, s1, s2, to)

¢« {0,1125¢

(p,p',KC) € {0,1}2%¢ x {0,1}*1% x {0,1}%*%5 := H(¢)> H instantiated as SHAKE-256
A e RZXl := ExpandA(p) > A is generated and stored in NTT Representation as A
(s1, s2) € S}, x SF := ExpandS(p’)

t:=As; +s2 > Compute As; as NTTﬁl(A NTT(s1))
(t1, to) := Power2Round,(t, d)

tr € {0,1}*°% := H(p|| t1)

return pk = (p, t1), sk = (p, K, tr, s1, s2, to)

DU W N =

N &

oo

Key Generation. The key generation in Algo. expands a matrix A € Rl;Xl from
a public seed p via a function ExpandA [3]. It then samples random secret vectors
s1 and s,. Elements of these vectors belong to R, with small coefficients of size
at most 7, a small integer. The second part of the public key, denoted pk, is
computed as t = A sy + sy but, for efficiency, only the higher bits t; are made

4 Calle Viera et al.

public while the lower part tq is kept secret. Finally, ¢r is the hash of the pk and
is added to the secret key, sk.

Algorithm 2 Sign

Input : sk = (p, K, tr, s1, s2, to)

Output: o = (¢,z,h)
I A € RF*! .= ExpandA(p) > A is generated and stored in NTT representation as A
2 p€{0,1}°2 .= H(tr || M)
3 k:=0, (z,h) =1
4 p' € 40,1} .= H(K||) (or p’ < {0,1}°'? for randomized signing)
5 while (z,h) =L do > Pre-compute §; := NTT(s;), §2 := NTT(s2) and to := NTT(to)
6 y € S‘fn := ExpandMask(p’, &) > k is increased by 1 at each call
7 wi=Ay > w = NTT (A - NTT(y))
8 Wi = HighBitsq(W, 272)
9 € {0,135 := H(p || w1)

10 ¢ € B, := SampleInBall(¢) > Store ¢ in NTT representation as é = NTT(c)
11 z:=y-+cs: > Compute cs; as NTTfl(é - 81)
12 ro := LowBitsy(w — cs2, 22) > Compute csz as NTTil(é - 82)
13 if ||2||cc > 71 — B or ||ro]|ec > 72 — 5 then

14 (z,h) =1

15 else

16 h := MakeHint,(—cto, w — cs2 + cto, 22) > Compute cto as NTTﬁl(é . ‘Eo)
17 if |[cto|lcc > 2 or |h|n;=1 > w then

18 (z,h) =1

19 return o = (¢, z,h)

Signature. The signature, described in Algo.[2] consists of a rejection sampling
loop, generating a new signature until it satisfies some security and correctness
properties. The rejection loop starts by generating a masking vector yﬂwith
coefficients below ;. Then, the signer computes w = Ay and compresses it into
high-order bits w; and low-order bits wy. The message is hashed with w; to
sample a specific ternary challenge ¢ with fixed weight 7 and the rest 0’s. The
potential signature is computed, using s; as z = y +c¢s;. Because the verifier does
not know tg, the signature includes a vector h that keeps track of the coefficients
that overflow onto the high part of wj. Checks are performed in lines 13 and 17
to ensure that no information about the secret key leaks and for correctness.

If any of these checks fails, a new signature candidate is generated.

Signature Verification. The verification algorithm, described in Algo.[3] involves
computing the high-order bits of A z — c¢t; 2¢ using the signature and the public
key, pk. The result is then corrected by the hint vector h. If the signature is
correct, this is equal to wy, which allows to recompute the challenge c. To verify
a signature, a final check ensures that all the coefficients of z are less than y; — 3
and that the number of hints in h are less than w.

! This vector is essentially used as a random mask of the secret s; line 11 in Algo.

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 5

Algorithm 3 Verify
Input :pk = (p, t1), 0 = (¢,z,h)
Output: True or False
I A € RF*! .= ExpandA(p)
2w € {0,151 = H(H(p| 1) || M)
3 ¢:= SampleInBall(¢)
4 w) := UseHint,(h, Az — ct; 2%, 272)
5 return [|[aoc < 71 — A and [¢ = H(u|| wh)] and [l < o]

2.2 Fault Models

Over the past two decades, fault injection attacks have emerged as a powerful
method of compromising devices, even secured ones [39]. These attacks use a
variety of techniques, including laser beam and electromagnetic (EM) pulse,
which allow precise control over space and time. Extensive research has focused
on characterizing the effects of fault injection in order to identify fault models at
a given abstraction (circuit level, hardware logical level, assembly code, source
code). Such models serve as a framework for categorizing and studying the
potential fault attacks on systems and sub-systems such as cryptographic ones.
A fault model at hardware logical level includes the width of the fault (mono-
bit, multi-bits, byte, or word) and the induced change (bit set, bit reset, bit-flip,
random changes). The feasibility and cost of a fault model are related to the
required equipment, the time, and the level of expertise needed. At software
level, faults impact the data and computations, the control flow and executed
instructions, or both. At this level, common fault models cover effects such as
instruction skipping or conditional branch inversion. A threat (or attacker) model
defines both the fault models and the number of faults needed to study the
security of a system. Note that achieving a precise fault multiple times generally
requires a strong attacker and means increased difficulty in real-life scenarios.
In this paper, we consider four fault models at C level, two on instruction flow
and two on data, namely skipping faults, test inversion faults, randomization
faults, and zeroizing faults. For each we explain how they can be achieved.

Skipping fault involves deliberately skipping selected lines of code within the
execution of a program. It amounts to not executing specific program instruc-
tions or intentionally manipulating the program counter. Skipping faults can
be achieved with many fault injection techniques such as CPU clock or voltage
glitching [T9/36/40], EM pulse injection [24] or laser beam [I4]. Skipping faults
can have severe consequences, such as bypassing critical security checks or essen-
tial cryptographic steps. The practical demonstration of higher-order skipping
faults has recently underscored the significance of this type of fault attack [9],
highlighting the potential security risks they pose.

Test inversion fault corresponds to the inversion of a conditional branch outcome
(if-then or if-then-else constructs). It can be achieved by inverting the condition
in the corresponding conditional jump instruction or by corrupting an instruction
involved in the condition’s computation, all of which can be achieved by several

6 Calle Viera et al.

injection means [20/11126]. It can also be the result of skipping the branch
instruction. Test inversion enables bypassing security verification.

Zeroizing fault assumes that the attacker can set a variable, a constant or a portion
thereof, to zero. While the realism of this attack scenario has been questioned,
instances of zeroizing faults have been successfully executed in practice as it
amounts to resetting or flipping some bits [6]. State-of-the-art fault injection
allows controlling the fault affecting up to a dozen bits [I0]. Therefore, zeroing
less than a dozen bits can be considered as realistic. Zeroizing faults can also be
a consequence of skipping faults, or instruction or operand corruption [26/37].

Randomization fault introduces random changes to data or computations within
a targeted program, causing unexpected behavior. This means that after the
injection, the attacker remains unaware of the exact result of the computation,
but gains an advantage by knowing that it has been altered within a specific
range. Randomization faults can lead to incorrect output, bypassing security
checks, or compromising the integrity of the cryptographic operation.

In the remainder, we only consider the type and number of faults for each
scenarios from which one can deduce the corresponding attacker model.

2.3 Related Works

In this section, we first give an overview of the state of the art in fault attacks on
Dilithium. Then, we explain how one can forge signatures with partial information
about the secret key.

Fault Attacks on Dilithium For its PQC competition, NIST put an emphasis
on security against side-channel and fault attacks. In this regard, Dilithium already
has some constant-time properties to an extent. Still, several practical fault
injection attacks leading to the key recovery have already been published. Among
them, Bruinderink and Pessl [§] demonstrated the applicability of differential
fault attacks on the deterministic Dilithium through multiple paths.

In contrast to the extensive research on fault injection attacks on the signature
algorithm, the verification process has received less attention. The main reason
is that only public information are handled during the verification process. Fault
attacks on the verification procedure primarily target the comparison in line 5
of Algo.[3] which is usually carefully implemented on secure devices to prevent
acceptance of corrupted signatures. The algebraic parts of the verification process
are often considered less sensitive, given the difficulty of forging a signature.
Nonetheless, exploitable vulnerabilities can make these algebraic parts an at-
tractive attack surface for fault injection. It is the case for the RSA signature
scheme where manipulating the modulus NV, which is sensitive to faults, allows
an attacker to pass the verification with false signatures [33].

Although there have been efforts to explore fault injection attacks in the
context of the verification procedure, such research remains scarce.

One notable study conducted by Bindel et al. [5] highlighted the potential

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 7

consequences of zeroizing the challenge ¢ within the verification process of other
lattice-based signature schemes. They demonstrated that such zeroization could
enable successful verification of invalid signatures for any message, all without
needing the secret key. Furthermore, they showed that skipping the correctness
check or the size check on z in line 5 of Algo.[3| could have the same effect.

Achieving zeroization in practice is not a trivial task, and concerns have
been raised regarding the practicality of this specific theoretical attack scenario.
However, recently, Ravi et al. [31] presented the first practical zeroization fault
attack on an implementation of the Dilithium signature verification. They showed
that zeroizing the twiddle constants, a fixed table of coefficients, in the NTT
reduces its entropy, thus achieving the same effect as Bindel et al. who zeroized
the challenge c¢. They practically demonstrated this by noticing that zeroizing
the starting address of the the twiddle constant’s table is sufficient to set them
all to zero.

Given the critical role of the verification algorithm in upholding the security
of digital systems, it is essential to dedicate more attention to comprehensively
evaluating its susceptibility to fault injection attacks.

Dilithium Signature Forgery In the following, we present how to forge
Dilithium signatures, assuming that only the s; part of the secret key is known.

The verification algorithm essentially recomputes the value of w; using only
public information to accept a signature. To sign a message, the sk used is
composed of (p, K, tr, s1, 82, tg). The seed p needed to expand the matrix A is
also part of the public key and ¢r is the hash of pk, so they can be both retrieved
from public information. The nonce K is used to generate the vector y, but no
check on the verification allows to determine if this particular value was used.
Thus, it can be replaced by a random value. The sy part of the secret key is only
used for rejection checks and in intermediate values. Regarding tg, the security
proof considers it as public [3], but in practice it remains secret.

In the signing algorithm, if we assume that y is randomly chosen, as in the
randomized version of Dilithium, then, with the knowledge of the public key and
s1, an attacker can proceed up to the computation of z, in line 11 of Algo.[2}
From this step, there are basically two different methods to forge a signature.

Bruinderink and Pessl [8] presented a modified signing procedure to perform
signature forgery with only public information and the knowledge of s;. They
first compute with known values the value u := A sy —t; 24 = ¢y — s9. Given sq’s
small coefficients, the quantity u approximates tq. It allows them to compute an
alternative h with u. They cannot check the rejections based on ss and tg, so
they remove them because this will not impact the correctness of the signature
with high probability.

Ravi et al. [30] also showed an alternative signature forgery procedure. They
start in the same way as Bruinderink and Pessl up to line 11 of Algo.[2] They
showed that the UseHint procedure can be inverted and used to compute the
high bits of w — ¢s,. But, because ||[LowBitsy(A z — ¢s2, 272)|l0c < 2 — with
probability very close to 1, they can be sure to recompute the correct wy.

8 Calle Viera et al.

3 Public parameters sensitivity analysis of Verify

In this section, we present the main idea allowing the acceptance of random
signatures by Algo.[3|through the exploitation of specific faults. Then, we conduct
a comprehensive analysis of one implementation of the verification algorithm.
The goal is to identify sensitive operations and explain how to forge signatures
that would be accepted, in the presence of the corresponding fault. To our
knowledge, this is the first extensive study of the verification algorithm. Finally,
we summarize the sensitivity of each location regarding our fault models.

3.1 Main Idea

The attacker’s goal, here, is to produce a message-signature pair that will be
accepted by Algo.[3] The main idea behind the signature verification of Dilithium
is that computing the value A z— ct; 2% will be equal to the high bits of A y plus
some bounded small values. These small values can sometimes slightly overflow
onto the high part wq, so the signing algorithm computes a specific vector h of
hints that will be used to compensate for this effect. Given this hint, one can
retrieve the same wy as in the signing procedure but with only public values.

Let us remember that a Dilithium signature is composed of (¢, z,h), given
that z =y + c¢s; and t = A's; + s5, we have

Az —ct=Ay—cso. (1)
By replacing w = Ay and t = t; 2¢ + tn Equation [1} we get
Az —cty2¢ —ctg =w —csg,
and by rewriting this equation, we obtain
Az—ct129=w—csy+cty. (2)
Equation [2]is exactly the quantity computed for the verification line 4 of Algo.[3]

Remember that h = MakeHint,(—ctg, w — ¢sa + cto, 272).
Then, from Lemma 1.1 in [3], we know that

UseHint,(h, w — c¢sz + cto, 272) = HighBits (W — csg, 272). (3)

Since ||csallec < B and ||LowBitsy(w — cs2, 272)|lec < 72 — ﬂﬂ, according to
Lemma 2 [3] we have

HighBits (W — csg, 272) = HighBits (W,272) = Wy, (4)

which shows how to retrieve the value w; from the public key and the signature.

From line [4 in Algo.[3]and the equations above, we can see that, at the top
level, wy is only dependant on A, z, ¢, t; and h which are known. The matrix
A can be considered as a fixed value, like the constant d. The values z and h
are essentially random values on their respective intervals, and an attacker can
choose them freely.

2 The vector w is computed line 7 in Algo. and t is computed line 5 in Algo.
3 If ¢ is a valid signature then we know that this condition is fulfilled thanks to the
check on rg on line 13 of Algo.@

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 9

Given this information, we show how to bound the value ct; 2¢ so that it
doesn’t impact too much the high bits of A z.

Proposition 1. Let z € 5’3176 be a random vector. If at least one of the following
conditions is satisfied:

Pl ct;2¢=0

P2. |lct; 2% o < B and |LowBits,(Az—ct 29 279 loo < v2 — BB

P3. |lct; 24|00 < 72 and b = MakeHint,(ct; 2%, Az—ct;2¢ 2)

Then, HighBits (Az—ct 24 27) = HighBits (A z272).

Proof.

P1. If ¢ty 2% = 0, the result is straightforward.

P2. Direct application of Lemma 2 in [3].

P3. If |lct 2 o < 72 then from Lemma 1.1 in [3], we know that
UseHint, (MakeHintq(ctl 29 Az —ct12% 2,), Az —cty 29, 272)
:HighBitsq(Az—ctl 29 4 ct1 27, 2,). O

If we can fault some operations of Algo.[3]and have one of these three conditions,
then we can carefully construct signatures that will pass the verification.

— Even though at first glance [P1] seems like a strong hypothesis to realize, Ravi
et al. [31] recently showed the practical realization of a fault attack involving
the challenge ¢ that has the same effect.

— [P2]is perhaps the hardest hypothesis to use because we need both conditions
for the fault to have the desired effect.

— [P3] seems convenient because the hint vector h is part of the signature, and
72 is not too small.

To illustrate the sensitivity analysis, we use the C implementation of Dilithium
from the PQclean library [I7], which is identical to the reference one [I3] but
more portable. The code structure is also reused in other implementations [16].
The function PQCLEAN_DILITHIUM2 CLEAN crypto_sign verify will be referred
to as verify to simplify notations and is given in Fig.[I] In the following, we
describe three relevant scenarios resulting from the analysis of the C code. For
each scenario, we identify which fault model, as presented in Sec. [2.2] allows us to
exploit propositions [P1] and [P3] to forge a signature. We provide two algorithms
Algo.[] for and Algo.[5 for to forge signatures given the corresponding
faults. Each algorithm has been implemented in SageMath. We have verified that
such carefully forged signatures using these algorithms, paired with specific fault
effects, enable us to pass the verification.

3.2 Preliminary Analysis

A natural target is the corruption of the value returned by the verification
process. An attacker must then force the return value to 0, corresponding to a
valid signature. However, zeroizing 32 bits may be relatively hard for an attacker
to accomplish in practice. Alternatively, the attacker can try to pass all of the
three checks lines 14, 16, and 54 of verify in Fig. [I} necessitating three test

10 Calle Viera et al.

1 int verify(const uint8_t #*sig, size_t siglen, const uint8_t *m, size_t mlen,
2 const uint8_t *pk) {

3 unsigned int i;

4 uint8_t buf [K * POLYW1_PACKEDBYTES], rho[SEEDBYTES], mu[CRHBYTES];

5 uint8_t c[SEEDBYTES], c2[SEEDBYTES];

6 poly cp;

7 polyvecl mat[K], z;

8 polyveck t1, wil, h;

9 shake256incctx state;

10 if (siglen != CRYPTO_BYTES)

11 return -1;

12

13 unpack_pk(rho, &tl, pk);

14 if (unpack_sig(c, &z, &h, sig))

15 return -1;
16 if (polyvecl_chknorm(&z, GAMMA1 - BETA))

17 return -1;

18

19 /* Compute CRH(H(rho, t1), msg) */

20 shake256 (mu, SEEDBYTES, pk, CRYPTO_PUBLICKEYBYTES);
21 shake256_init (&state);

22 shake256_absorb (&state, mu, SEEDBYTES);

23 shake256_absorb (&state, m, mlen);

24 shake256_finalize(&state);

2

5 shake256_squeeze (mu, CRHBYTES, &state);

27 /% Matriz-vector multiplication; compute Az - c2 dtl */
28 poly_challenge (&cp, c);

29 polyvec_matrix_expand(mat, rho);

30

31 polyvecl_ntt (&z);

32 polyvec_matrix_pointwise_montgomery (&wl, mat, &z);
33

34 poly_ntt (&cp); Scenario 1: Sampling of

35 polyveck_shiftl (&t1); cenario 2: Shift by

36 polyveck_ntt (&t1);

37 polyveck_pointwise_poly_montgomery (&tl, &cp, &tl);

39 polyveck_sub(&wl, &wil, &t1); [Scenario 3: Subtractionl
40 polyveck_reduce (&wl);
41 polyveck_invntt_tomont (&wl);

43 /% Reconstruct wil */

44 polyveck_caddq (&wl);

45 polyveck_use_hint (&wl, &wl, &h);

46 polyveck_pack_wil (buf, &wl);

a7

48 /* Call random oracle and verify challenge */
49 shake256_init (&state);

50 shake256_absorb (&state, mu, CRHBYTES);

1 shake256_absorb (&state, buf, K * POLYW1_PACKEDBYTES);
52 shake256_finalize (&state);

53 shake256_squeeze (c2, SEEDBYTES, &state);

55 if (c[il '= c2[i1) {

56 return -1;
57 ¥
58 ¥

5
5
5
5
54 for (i = 0; i < SEEDBYTES; ++i) {
5
5
5
5
59 return O;

Fig. 1: PQClean Dilithium verify code snippet.

inversion faults at minimum. These sensitive tests are typically hardened in
secure applications [38], making such fault effects potentially hard to achieve.
The analysis below focuses on arithmetic parts that might be less carefully
implemented since they do not handle secure parameters.

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 11

1 void unpack_pk(uint8_t rho [SEEDBYTES], polyveck *ti,

2 const uint8_t pk[CRYPTO_PUBLICKEYBYTES]) {
3 unsigned int ij;

4 for (i = 0; i < SEEDBYTES; ++i) {

5 rho[i] = pkl[i];

6 }

7 pk += SEEDBYTES;

8 for (i = 0; i < K; ++i) {

9 polytl_unpack(&ti->vec[i], pk + i * POLYT1_PACKEDBYTES);
10 }

Fig. 2: PQClean unpack pk code snippet

1 void polytl_unpack(poly *r, const uint8_t *a) {

2 unsigned int ij;
for (i = 0; i < N / 4; ++i) {
r->coeffs[4*xi + 0] = ((a[bxi + 0] >> 0) | ((uint32_t)al[b*xi + 1] << 8)) &
r->coeffs[4*%i + 1] = ((a[5*xi + 1] >> 2) | ((uint32_t)al[5xi + 2] << 6)) &
r->coeffs[4*%i + 2] = ((a[5*xi + 2] >> 4) | ((uint32_t)al[bxi + 3] << 4)) &
r->coeffs[4%i + 3] = ((a[5%xi + 3] >> 6) | ((uint32_t)al[bxi + 4] << 2)) &

Fig. 3: PQClean unpack t1 code snippet

For instance, the unpacking of t; is a potential location for fault injection. To
avoid affecting other public variables, such as A, the only feasible target is the
constant 0x3FF lines 4 to 7 of the function polytl_unpack Fig.[3] Zeroizing this
constant sets every coefficient of t1 to zero and we can use [P1] through Algo.[]
detailed in Scenario 1. However, this approach requires a total of K x N repeated
faults, which can be challenging in practice. Yet, it is worth noting that t; could
be sensitive if declared as a global variable. Then, as by default it is initialized
to 0, faulting the call to the function polyt1_unpack, line 9 in Fig.[2] could set
t1 to 0 with just K repeated faults. Alternatively, one test inversion fault, line 8
Fig.[2| can force zero iterations of the loop.

1
2
3

4
5

void invntt_tomont(int32_t al[N]) {

unsigned int start, len, j, k;
int32_t t, zeta;
const int32_t f = 41978; // mont "2/256

k = 256;
for (len = 1; len < N; len <<= 1) {
for (start = 0; start < N; start = j + len) {
zeta = -zetas[--k];
for (j = start; j < start + len; ++j) {
t = aljl;

aljl =t + alj + lenl;
alj + len]l = t - al[j + lenl;
al[j + len] = montgomery_reduce ((int64_t)zeta * al[j + lenl);

}
}
}
for (j = 0; j < N; ++j)
al[j] = montgomery_reduce ((int64_t)f *x aljl);

Fig. 4: PQClean NTT ! code snippet

Our attention also turns to lines 34, 36, and 41 of Fig. [I]involving the NTT and
NTT~! conversions, given in Fig. . Notably, Ravi et al. [31] already cover the
conversion of ¢ in line 34. At the end of the inverse conversion of A z—ct; 2% each

0x3FF;
0x3FF;
0x3FF;
0x3FF;

12 Calle Viera et al.

coefficient undergoes multiplication by the squared Montgomery factor divided
by 256 in a for loop, line 18 Fig.[d] This 32-bit integer constant plays a critical
role. It is used at each of the N iterations so it can potentially be stored in
a register. Zeroizing this value once can set all polynomial Az — ct; 2¢ to 0.
However, this fault must be repeated K times, once for each polynomial of the
vector processed by the NTT~!. We can exploit this fault to sample the challenge
¢ with wy = 0 and forge valid signatures with Algo.[d] We notice that even if we
first perform the NTT~! of A z and ct; 2¢ separately, and then subtract the two,
it would also be vulnerable. This is because we can apply the same fault to the
NTT! of ct; 2% to zeroize the result, enabling the exploitation of

3.3 Scenario 1: Sampling of ¢

1 void poly_challenge(poly *c, const uint8_t seed [SEEDBYTES]) {
unsigned int i, b, pos;

uint64_t signs;

4 uint8_t buf [SHAKE256_RATE];

5 shake256incctx state;

6 shake256_init (&state);

7 shake256_absorb (&state, seed, SEEDBYTES);

8 shake256_finalize (&state);

9 shake256_squeeze (buf , sizeof buf, &state);
10 signs = 0;

11 for (i = 0; i < 8; ++i)

12 signs |= (uint64_t)buf[i] << 8 * ij;

13 pos = 8;

14 for (i = 0; i < N; ++1i)

15 c->coeffs[i]l = 0;

16 for (i = N - TAU; i < N; ++i) {

17 do {

18 if (pos >= SHAKE256_RATE) {

19 shake256_squeeze (buf , sizeof buf, &state);
20 pos = 0;

21 ¥

22 b = buf [pos++];
3 } while (b > i);
24 c->coeffs[i] c->coeffs[b];
5 c->coeffs[b] 1 - 2 % (signs & 1);
26 signs >>= 1;
27 ¥

28 shake256_release (&state);

Fig. 5: PQClean sampling of ¢ code snippet

For efficiency, the verification algorithm only compares the recomputed seed
¢ with the one from the signature, line 54 Fig.[I} In our investigation, we identify
the procedure, in Fig. [f] for sampling the challenge ¢ from its seed ¢ as sensitive.
This process involves setting all IV coefficients of the challenge to zero using a
first for loop, followed by another for loop setting 7 coefficients as 1 or —1.

By exploiting skipping or test-inversion faults, an attacker can target the for
loop, line 16 Fig. bl abort it prematurely, and zeroize all coefficients of ¢ with
just one correctly targeted fault.

Similarly, the same effect can be achieved by faulting the loop’s termination
condition, such as zeroizing the constant TAU.

Suppose the challenge ¢ has been successfully manipulated to be zero. We
present an algorithm enabling an attacker to exploit this effect, resulting in the
acceptance of false signatures without needing the secret key.

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 13

Algorithm 4 Sign based on [P]]
Input : pk = (p, t1)

Output: o = (¢,z,h)

A e R’;Xl := ExpandA(p) »> A is generated and stored in NTT representation A
p € {0,1}°" == H(H(p|| t1) || M)
z€e S’ln—ﬁ

w:=Az

h := SampleInBall ()

w1 = UseHintq(h, w, 2v2)

£ € {0,112 := H(u || wn)
return o = (¢,z, h)

N =

T W

&

o g o

Algo. utilizes the fact that if ¢ = 0, then ct; 2¢ = 0, therefore leveraging

[PI] We begin by sampling the vector z within the appropriate range. Similar to
[31], our algorithm generates a random h satisfying its corresponding condition.
Using the UseHint function, we compute the corresponding w; to sample the
resulting ¢. As observed earlier, we exploit faults that set ¢ to 0 in the verification
algorithm, meaning that the same seed ¢ is sampled as in Algo. Unlike [31],
we don’t perform a rejection on the first coefficient of ¢ because the fault in the
verification does not use this condition.
As a variation of Algo.[d] we can directly set h to zero and use only the high bits
of A z to derive the seed ¢. It is worth noting that while h being completely null
is a situation that could arise in practice, its probability is negligible. In current
versions of Dilithium, this check is neither specified nor implemented. A thorough
analysis is required to determine if adding the h = 0 check to the verification
algorithm would reject valid signatures. Furthermore, this scenario relies on the
ability to set all coefficients of ¢ to zero. Whereas, the challenge ¢ should have
precisely 7 coefficients equal to 1 or —1. However, there are no checks in place to
verify this in practice.

3.4 Scenario 2: Shift by d

I void polyveck_shiftl(polyveck *v) { 1 void poly_shiftl(poly *v) {
2 unsigned int i; 2 unsigned int i;

3 for (i = 0; i <K; ++i) 3 for (i = 0; i <N; ++i)

4 poly_shiftl (&v->vec[il]); 1 a->coeffs[i] <<= D;

} }

Fig. 6: PQClean polyvec shift code snippet Fig. 7: PQClean poly code snippet

In this scenario, we focus on line 35 of verify given in Fig.[I] At this point,
t1 has been unpacked, and the challenge ¢ has been sampled from the seed ¢.
Faulting either the shift of t; by d or the multiplication of ¢ with t; can influence
the magnitude of the product ct; 2. It is important to note that the result of
the multiplication of ¢ with t; 2¢, stored in the same location as t; 2¢, already
contains coefficients outside the exploitable range of Proposition[I} Thus, faulting
this operation does not yield usable outcomes.

14 Calle Viera et al.

Now, let us analyze the multiplication of t; by 2¢. By considering skipping
faults, an attacker can target the call to the polyveck_shiftl function on line
35 of verify by skipping the corresponding jump instruction with one fault.

Another potential target is line 3 of Fig.[6] where faulting the loop counter
terminates the function prematurely. Alternatively, the call to poly_shiftl on
line 4 can be targeted during each of the K iterations. However, this approach
requires K repeated faults and can be more challenging to achieve.

The loop line 3 of Fig.[7] can be a potential target for a single fault. Similarly,
we can target line 4 but this approach also requires K repeated faults.

Regarding zeroization faults, the constant d can be targeted to zeroize a bit
or a byte of its value. It is worth noting that, in practice, for all versions of
Dilithium, d = 13 = 0b1101, which is 3 bits to set to zero.

Considering randomization faults on d, the difference is that this time there
is no control over the value d’ so most of the random faults are not usable.

Our aim is to determine the suitable d’ such that [|ct; 2% (o < 72 which
allows us to utilize Let us compute such a d’ by bounding the product

le 129 oo < 2% lell1 [[61 o, (5)
since ||c[j; = 7 and [[t1]|o < 210 — lﬂ
<29 7 (210 —1).

We want 2% 7 (219 — 1) < 5. Therefore d’ < log, (7(217)21)>

Example: For Dilithium-2 we have d’ = 1, while for Dilithium-3 and 5 we have
d’ = 2. In practice, however, the maximum erroneous d’ tolerated for any version
is 3. This is explained by the fact that we have analyzed the worst possible case,
and so in practice the bound can be tightened.

Algorithm 5 Sign based on [P3]
Input : pk = (p, t1)
Output: o = (¢,z,h)
1 A € RF*!:=ExpandA(p) © A is generated and stored in NTT representation A
2 e {0,112 = H(H(p||t:) || M), (b) i=L
3 while (h) =1 do
4 z € 541,5
5 w:=Az

6 wi = HighBitsq(W, 272)

7 e {0,135 := H(p || w1)

8 ¢ € B, := SampleInBall(c)

9 h := MakeHintq(—ct 2"1/7 w4+ cty 2‘1/, 272)
10 if |h|h]:1 > w then
11 (h):=L

12 return o = (¢,z,h)

4 We must have this condition fulfilled in Sign for a signature to be valid.

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 15

Assuming we have effectively manipulated t; 2¢ so that ||ct; 2d’ oo < 72, we
present an algorithm, Algo. [f| enabling an attacker to exploit this with [P3]and
achieve the acceptance of false signatures without requiring the secret key.

Algo.[5] closely resembles the correct signing algorithm employed in Dilithium,
although lacking some rejection checks that we can’t verify. It operates with
the vector z sampled within the appropriate range and leverages the hint vector
computed using ct;2%. Using supposing we managed to produce the corre-
sponding fault, we can assure that ct; 2¢ remains sufficiently small to prevent
excessive overflow into the higher bits. However, we still need to keep the rejec-
tion criterion based on the maximum value of non-zero coefficients within h for
successful verification of such signatures. Our practical implementation of this
algorithm, using SageMath library, has demonstrated low rejection rate for every
security level of Dilithium, with no more than 3 on average.

3.5 Scenario 3: Subtraction

1 void polyveck_sub(polyveck *w, const polyveck *u, const polyveck *v) {
2 unsigned int i;

for (i = 0; i <K; ++i)
1 poly_sub(&w->vec[il, &u->vec[il, &v->vec[il]);

Fig. 8: PQClean polyveck_sub code snippet

1 void poly_sub(poly *c, const poly *a, const poly *b) {
2 unsigned int i;

for (i = 0; i <N; ++i) {
4 c->coeffs[i] = a->coeffs[i] - b->coeffs[i];

Fig. 9: PQClean poly_sub code snippet

To conclude our analysis, we direct our attention to line 39 of verify in
Fig.[[] Notably, in current implementations, the result of the subtraction of A z by
ct1 24 is stored in the same variable as A z. Introducing a fault in the subtraction,
allows us to exploit this observation and leverage [P1]

First, one can skip the call to the function polyveck_sub on line 39 of verify,
Fig.[I] to fault the subtraction. Similarly, line 3 of Fig.[§ can be targeted to exit the
for loop early. Since the result is stored in the same location as the first operand,
skipping the call to poly_sub on line 4 of Fig.[§at each of the K iterations yields
the same outcome. However, this approach necessitates K repeated faults, which
can be harder to do.

Within the poly_sub function given in Fig.[0] we can focus on skipping the
loop on line 3. Alternatively, we can target line 4 of Fig.[0} although this requires
K x N repeated faults.

In this scenario, once we achieved to fault the subtraction, we leverage [P]]
and Algo.[d] remains applicable. It allows an attacker to produce a valid message-
signature pair for verification. It is important to note that targeting this location
has the same outcome as zeroizing the t;or zeroizing the challenge ¢ in Scenario 1.

16 Calle Viera et al.

3.6 Experimental validation

Our primary objective is to evaluate the functionality of Algo.[dland Algo.[5] under
the conditions specified by and respectively. To achieve this, we have
chosen to model faults exclusively at the algorithmic level. This decision is based
on the following reasons:

— Within the C code, there are multiple potential locations and various types
of exploitable faults that can lead to the three scenarios discussed in sections
B3 B4 and B3]

— As outlined in Sec.2.2] there are numerous ways to achieve the desired
outcomes.

— The specific faults required will depend heavily on the target platform and
binary code, which depends on the source code, and both the compiler and
compilation options used.

Therefore, to cover a broad range of possible faults, we have developed three
modified versions of Dilithium in Python that correspond to each scenario, and
ensure the desired algorithmic effects.

— Version 1 for [Scenario 1} where we arbitrarily set ¢ to 0.
— Version 2 for [Scenario 2| where we set d to match the value of d'.
— Version 3 for [Scenario 3] where we removed the subtraction operation entirely.

We have validated that the signatures generated by Algo.[] are accepted when
using the versions 1 and 3. Likewise, we have verified that the signatures generated
by Algo.[5] are accepted when using version 2.

4 Countermeasures

It is essential to implement the scheme thoughtfully, to minimize potential
attacks, identifying and securing vulnerable operations within it. We outline
several countermeasures to address the sensitive locations identified in this section.

For example, line 39 of storing the result of A z minus ct; 2% in the
same memory location as ct; 2¢ prevents the exploitation of this subtraction in
Even if an attacker attempts to fault the subtraction, the subsequent
computation of the high bits of ct; 27 at line 45 of renders them unusable
for accepting false signatures. Thus protecting this location with no extra cost.

Proposition relies on the fact that all K x N coefficients of ct; 2¢ are
smaller than they should be. Therefore, if we can prevent even a single coefficient
from being changed in size, the presented scenarios will not work.

A first set of commonly used countermeasures aims to make it more difficult for
the attacker to induce faults or reproduce them [38]. There are also mechanisms
that can detect and prevent fault injections targeting loops [28]. This can ensure
data is handled correctly throughout the process. However, these countermeasures
are fragile and complex to deploy, as we must ensure their presence in the final
code.

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 17

Consequently, it is more advantageous to have a Dilithium verification algo-
rithm that is intrinsically resistant to propositions [P1] and [P3] Let us introduce
specific countermeasures tailored for the identified sensitive operations.

Distribution Check of the value ct; 2¢ before the subtraction. By verifying if it
is the expected one, we can effectively detect the faults used in Scenario 1 and 2.
However, in practice, this means computing some statistical test on the values
which can be computationally expensive

Verify d. Alternatively, we can check the correctness of the value d before using it.
One way to do this verification is by first noticing that (2¢)~! =1 — 2! mod g,
which can be computed easily and only with shift operations. Therefore, checking
that 2¢ x (29)~! =1 mod ¢ before using the value d could ensure that it is the
correct one used. However, this method only detects the faults of Scenario 2.

Split d. Another equivalent implementation would be to do the multiplication
by 2% in two times, with little overhead. If we set d; > 3 and ds > 3 such that
d = dy + d3, we can ensure that even if we fault one of the intermediate d, the
result will be too big to use [P3]in Scenario 2.

Alternative implementation. We can remark that by computing z’ := z (2¢)~!, at
the beginning of the verification, we can write A z—ct; 2¢ = (A z (24)71 fctl) 24,
This time, the signatures will always be invalid if an attacker can skip the
multiplication by (24)~! or by 2¢ thus completely preventing Scenario 2. We give
in Algo.[f] a possible implementation of this countermeasure.

Algorithm 6 Verify Alternative
Input :pk = (p, t1), o = (¢, z,h)
Output: True or False

I A € RF*! .= ExpandA(p)

2 e {0,152 := H(H(p || t1) || M)
3

1

5

¢ := SampleInBall(?)
4 7 =z (29)
5 tempy := Az’
6 temps 1= —cty
7 tempsz := tempa + temp1
8 w := UseHint,(h, temps 2%, 272)
9 return [||z||c <y — 8] and [¢ = H(p || w1)] and [|h|n;=1 < o]

Norm Check. One last possible countermeasure would be to only accept a sig-
nature as valid if the check ||ct; 2¢||o > 2 passes. The idea behind this check
we introduce is that all three possibilities for Proposition [I] are based on the
fact that ct; 2% is smaller than it should be. By verifying if it is not too small,
one can completely prevent its use. One thing to note is that the probability for
every of the K x N coefficients to be naturally less than s is negligible. Thus, it

18 Calle Viera et al.

should not change the verification algorithm of Dilithium. If this check doesn’t
affect the verification, it could prevent the faults used in Scenario 1 and 2.

Here, we give a summary of the previous two sections in the form of a table
with the different scenarios, the type of fault that can be exploited for each, and
the countermeasure associated.

Versions Skipping Test-Inv Randomization Zeroizing Countermeasures
Sconario 1 for v v - Distribution Check,
TAU - - v Norm Check
Sc o2 polyvec for v v - Distribution Check,
ehario poly for v v - Norm Check,
d v - v Verify d, Split d
n polyvec for v v - Alternative
poly for v v - implementation
function call v - -

Table 1: Summary of the vulnerable locations of the verification algorithm to the
corresponding fault models. (v: easy exploitation, «: possible exploitable, -: not
applicable), together with the applicable countermeasures

5 Conclusion

This works aims at proving that, similarly to RSA, Dilithium verification shall be
implemented carefully even if it does not handle secret data. Hence, we presented
a comprehensive analysis of the verification algorithm of Dilithium, focusing
on a common implementation in C and considering four common fault models:
skipping faults, test inversion faults, randomization faults, and zeroizing faults.
For each of them we establish a methodology for forging Dilithium signatures
based on the specific type of fault employed during the verification process.
Furthermore, our analysis provides valuable insights into the vulnerabilities and
sensitive operations within the Dilithium verification algorithm. Building upon
these findings, we propose a set of novel countermeasures covering the various
scenarios introduced, and designed to mitigate the risks associated with these
sensitive operations.

References

1. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Miller, C., Moody,
D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D., Liu, Y.K.: Status report
on the third round of the NIST post-quantum cryptography standardization process
(2022)

2. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,
J., Schneider, T., Schonauer, M., Standaert, F.X., van Vredendaal, C.: Protecting
dilithium against leakage: Revisited sensitivity analysis and improved implementa-
tions. In: CHES (2023)

3. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS — Dilithium: Digital signatures from module lattices

Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification 19

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

Bernstein, D., Hiilsing, A., Kolbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS+ signature framework. In: CCS (2019)

Bindel, N., Buchmann, J., Kramer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: FDTC (2016)

Breier, J., Hou, X.: How practical are fault injection attacks, really? IEEE Access
10, 113122-113130 (2022)

Brier, E., Chevallier-Mames, B., Ciet, M., Clavier, C.: Why one should also secure
RSA public key elements. In: CHES (2006)

. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice

signatures. CHES 2018(3), 21-43 (Aug 2018)

Claudepierre, L., Péneau, P., Hardy, D., Rohou, E.: TRAITOR: A low-cost evalua-
tion platform for multifault injection. In: ASSS (2021)

Colombier, B., Bossuet, L., Grandamme, P., Vernay, J., Chanavat, E., de Laulanié,
L., Chassagne, B.: Multi-spot Laser Fault Injection Setup: New Possibilities for
Fault Injection Attacks. In: CARDIS (2021)

Colombier, B., Menu, A., Dutertre, J., Moéllic, P., Rigaud, J., Danger, J.: Laser-
induced single-bit faults in flash memory: Instructions corruption on a 32-bit
microcontroller. In: IEEE HOST (2019)

Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644-654 (1976)

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Seiler, G., Schwabe, P., Stehlé,
D.: PQ-CRYSTALS, Dilithium (2022), gitHub repository. Accessed: 2022-12-15
Dutertre, J., Riom, T., Potin, O., Rigaud, J.: Experimental analysis of the laser-
induced instruction skip fault model. In: NordSec (2019)

Islam, S., Mus, K., Singh, R., Schaumont, P., Sunar, B.: Signature correction attack
on dilithium signature scheme. In: EuroS&P (2022)

Kannwischer, M., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-
quantum crypto library for the ARM Cortex-M4, accessed: 2022-12-15
Kannwischer, M., Schwabe, P., Stebila, D., Wiggers, T.: Pqclean

Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In: EUROCRYPT (2018)
Korak, T., Hoefler, M.: On the effects of clock and power supply tampering on two
microcontroller platforms. In: FDTC (2014)

Kumar, D., Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth
and black-box characterization of the effects of laser pulses on atmega328p. In:
CARDIS (2019)

Liu, Y., Zhou, Y., Sun, S., Wang, T., Zhang, R., Ming, J.: On the security of
lattice-based Fiat-Shamir signatures in the presence of randomness leakage. IEEE
Trans. Inf. Forensics Secur. 16 (2021)

Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: ASTACRYPT (2009)

Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.: Profiling side-channel attacks
on dilithium: A small bit-fiddling leak breaks it all. ePrint (2022)

Menu, A., Dutertre, J., Potin, O., Rigaud, J., Danger, J.: Experimental analysis of
the electromagnetic instruction skip fault model. In: DTIS (2020)

Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.A.: Masking dilithium. In: ACNS
(2019)

Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: Towards a fault model on a 32-bit microcontroller. In: FDTC
(2013)

20

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Calle Viera et al.

Muir, A.: Seifert’s RSA fault attack: Simplified analysis and generalizations

Proy, J., Heydemann, K., Berzati, A., Cohen, A.: Compiler-assisted loop hardening
against fault attacks. ACM 2017 (2017)

Qiao, Z., Liu, Y., Zhou, Y., Ming, J., Jin, C., Li, H.: Practical public template
attack attacks on CRYSTALS-Dilithium with randomness leakages. IEEE Trans.
Inf. Forensics Secur. (2023)

Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Side-channel
assisted existential forgery attack on dilithium - a NIST PQC candidate. ePrint
Ravi, P., Yang, B., Bhasin, S., Zhang, F., Chattopadhyay, A.: Fiddling the twiddle
constants - fault injection analysis of the number theoretic transform. CHES (2023)
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM (1978)

Seifert, J.P.: On authenticated computing and rsa-based authentication. In: CCS
(2005)

Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: FOCS (1994)

Soni, D., Basu, K., Nabeel, M., Aaraj, N., Manzano, M., Karri, R.: FALCON, pp.
31-41. Springer International Publishing, Cham (2021)

Timmers, N., Spruyt, A., Witteman, M.: Controlling pc on arm using fault injection.
In: FDTC (2016)

Trouchkine, T., Bouffard, G., Clédiére, J.: EM fault model characterization on socs:
From different architectures to the same fault model. In: FDTC (2021)
Witteman, M.: Secure application programming in the presence of side channel
attacks

Yuce, B., Schaumont, P., Witteman, M.: Fault attacks on secure embedded software:
Threats, design and evaluation. CoRR (2020)

Zussa, L., Dutertre, J.M., Clédiere, J., Robisson, B., Tria, A.: Investigation of
timing constraints violation as a fault injection means. In: DCIS (2012)

	Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification

