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Abstract
Syndrome-based early epidemic warning plays a vital role in
preventing and controlling unknown epidemic outbreaks. It
monitors the frequency of each syndrome, issues a warning if
some frequency is aberrant, identifies potential epidemic out-
breaks, and alerts governments as early as possible. Existing
systems adopt a cloud-assisted paradigm to achieve cross-
facility statistics on the syndrome frequencies. However, in
these systems, all symptom data would be directly leaked to
the cloud, which causes critical security and privacy issues.

In this paper, we first analyze syndrome-based early epi-
demic warning systems and formalize two security notions,
i.e., symptom confidentiality and frequency confidentiality,
according to the inherent security requirements. We propose
EpiOracle, a cross-facility early warning scheme for unknown
epidemics. EpiOracle ensures that the contents and frequen-
cies of syndromes will not be leaked to any unrelated parties;
moreover, our construction uses only a symmetric-key en-
cryption algorithm and cryptographic hash functions (e.g.,
[CBC]AES and SHA-3), making it highly efficient. We for-
mally prove the security of EpiOracle in the random oracle
model. We also implement an EpiOracle prototype and evalu-
ate its performance using a set of real-world symptom lists.
The evaluation results demonstrate its practical efficiency.

1 Introduction

In human history, epidemic outbreaks have occurred on more
than one occasion and have caused significant damage around
the globe almost every single time. In 2009, the outbreak
of H1N1 caused over 20 thousand deaths [3]. Since 2020,
the COVID-19 outbreak has caused over 6 million deaths
and exerted a significant adverse influence on the globe [17].
This leads us to reflect on how to reduce the damage using
information technology (IT) when the next outbreak occurs.

Emerging IT architectures and systems have played a vital
role in fighting against epidemic outbreaks in recent years.
One prominent example is early epidemic warning, which

identifies potential outbreaks and alerts governments as early
as possible. Most existing early epidemic warning systems
utilize patients’ diagnosis results (i.e. their diseases) as the
key evidence to identify potential epidemic outbreaks. Typi-
cal examples include the National Outbreak Report System
(NORS) [13] and China Infectious Diseases Automated-Alert
and Response System (CIDARS) [60]. Such disease-based
systems have accurately warned the outbreaks of well-studied
diseases (e.g., monkeypox [51]). However, they are inade-
quate for unknown epidemics, since the diagnosis results for
an epidemic in its “nascent stage” are always erroneous.

To address the above problem, syndrome-based early warn-
ing systems are developed, where the frequencies of patients’
syndromes are monitored and aberrant frequencies of syn-
dromes (rather than diseases) serve as a trigger of epidemics’
warning. Typical systems include the National Syndromic
Surveillance Program (NSSP) [14, 39] and ProMED-mail
[15]. Existing syndrome-based systems adopt a cloud-assisted
paradigm (e.g., BioSense in NSSP) to achieve cross-facility
statistics on the syndrome frequencies for early epidemic
warning. Specifically, the cloud server collects healthcare
records (including a set of symptom lists) from all the par-
ticipating healthcare facilities. It then groups each symptom
list and its similar ones, such that this group of the symptom
lists essentially corresponds to one disease, compiles cross-
facility statistics on the frequency of the group and launches
a warning if the frequency is aberrant [57]. The syndrome-
based systems gain a significant advantage in early unknown
epidemic warning over the disease-based ones since patients’
syndromes for unknown diseases can be quickly identified.

Security issues. Despite the advantages of the aforementioned
paradigm, critical security and privacy issues arise.
• Symptom leakage: In many existing systems (e.g., NSSP),

all the symptom contents are available to the cloud server
in plaintext after removing the personal identity information
(PII). However, simply removing the PII is insufficient to
protect the patient’s privacy when the symptom contents and
other auxiliary information are known. For example, in NSSP,
when a symptom list is uploaded to the cloud server, some
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social information about the corresponding patient (e.g., age,
race, insurance group id, and discharge date, etc.) is required
along with the symptom data [6]. With the social informa-
tion, the adversary can link the symptom list and the patient,
identify the patient’s needs and target the patient with specific
advertisements to gain profits.
• Frequency leakage: The frequencies of symptom lists

are the primary metric to generate an epidemic warning. We
notice that the consequence of frequency leakage went un-
heeded in the past. Actually, the frequencies are derived from
sensitive data generated by healthcare facilities and have sig-
nificant economic value, which incentivizes some enterprises
to collude with the cloud server to obtain the frequencies for
(illegal) profits. This not only violates the healthcare facili-
ties’ interests, but also causes panic among the public. One
notable example is inciting panic buying: as the public is sen-
sitive to the information about public health, with symptom
frequencies, it is easy for enterprises to incite the public to
buy their products (such as medicines and masks in COVID-
19 outbreak [8, 9]), making profits from the market turmoil,
e.g., preparing for the subsequent huge demand for certain
products in advance and monopolizing the market. Moreover,
when the frequency of a symptom list is relatively high (but
not yet to the actual alert threshold), panic would occur among
people once the frequency is leaked to the public. This prob-
lem could be further exacerbated by the fact that people’s
behavior in a panic could disturb the social order and cause
negative effects on their health [5].

Despite the existence of strict policies such as HIPAA serv-
ing as reactive measures for healthcare information leakage
prevention, intentional and unintentional leakages still ex-
ist [4,11]. Thus, technical mechanisms are required to provide
proactive protections for symptoms and their frequencies.

1.1 Goals and partial solutions

Based on the above discussions about existing early warning
systems, we summarize the following goals that a practical
and privacy-preserving early warning system for unknown
epidemics should achieve.
• Fuzzy detection. In practice, patients suffering from the

same epidemic tend to have similar but not exactly identical
symptom lists. Consequently, early warning systems should
be able to perform fuzzy detection, i.e. detect similar symptom
lists to monitor the frequency of each list and its similar ones.
• No symptom content or frequency leakage. As discussed

before, before the frequency of a symptom list exceeds a
threshold, the symptom list and its frequency should not be
leaked to the cloud (or the healthcare facilities that have not
generated the list or its similar ones).
• Low latency. The early warning system serves as the first

line of the detection of potential outbreaks. If a warning is
triggered in the system, further analyses on the target symp-
tom data are initiated. It is desirable to complete this detection

quickly so as to take subsequent measures as early as possible.
Therefore, the early warning system should be low-latency,
even when handling a substantial volume of lists.

Several techniques, including homomorphic encryption,
local differential privacy, private heavy hitters, and trusted
hardware, can be deployed in early warning systems for pri-
vacy preservation. We briefly discuss them below and present
a detailed analysis in Section 2.

Homomorphic encryption. Homomorphic encryption is
a viable approach to determine the similarity between two
lists generated by different facilities without symptom leak-
age [36, 49]. However, a critical question arises regarding
the ownership of the decryption key required to obtain the
result of this fuzzy detection. Additionally, a practical chal-
lenge emerges as each symptom list necessitates comparison
with all others to obtain the frequency, particularly given the
substantial number of symptom lists in reality.

Local differential privacy. Local differential privacy is
an emerging privacy-preserving technique for data analyt-
ics [63, 66]. However, it is unsatisfactory in the context of
early warning as it would lead to a non-negligible amount of
symptom and frequency information leakage.

Private heavy hitters. The solutions for the private heavy-
hitters problem enable the identification of popular ones in a
set of private strings [21,27]. However, they cannot be slightly
tweaked to support fuzzy detection. They also fail to achieve
privacy preservation with respect to frequencies.

Trusted hardware. Hardware can be utilized to reach both
the functionality and privacy goals [19,42,56]. Whereas, these
solutions make a strong assumption about the trusted hard-
ware. Moreover, the expensive page swaps in the hardware
would slowdown the entire system.

To the best of our knowledge, there is no feasible solution to
achieve the aforementioned goals simultaneously, even when
putting the goal of low latency aside.

1.2 Our contributions

In this work, we take a step towards privacy-preserving early
warning for unknown epidemics by constructing EpiOracle
to simultaneously achieve fuzzy detection, no symptom or
frequency leakage, and low latency.

Fuzzy detection. In EpiOracle, similar symptom lists are de-
tected and mapped to one same tag, and the frequency statis-
tics are compiled by counting the number of these tags.

No symptom or frequency leakage. To prevent symptoms from
leakage, EpiOracle enables the fuzzy detection on the cipher-
texts of symptom lists. To prevent frequencies from leakage,
EpiOracle ensures that the status of each tag’s counter is kept
private from the cloud and all facilities that have not generated
the corresponding symptom lists.

Low latency. EpiOracle solely relies on standard symmetric-
key primitives, i.e., AES and SHA-3, and thereby is highly
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Fuzzy detection
without symptom leakage No frequency leakage Symmetric-key

cryptographic primitives only
Homomorphic encryption [36, 49] Yes Yes No
Local differential privacy [63, 66] No No -1

Private heavy hitters [21, 27] No No Yes
Trusted hardware [19, 42, 56] Yes Yes No

EpiOracle Yes Yes Yes

Table 1: Comparisons between EpiOracle and partial solutions.

efficient without requirement on the underlying hardware.
Comparisons between previous works and EpiOracle can

be found in Table 1. Our contributions are summarized below.
•We investigate the security in existing syndrome-based

early warning systems and point out their inherent security
requirements. We then formalize two security notions, i.e.,
symptom confidentiality and frequency confidentiality, for
these systems, which we believe might be of independent
interest to other eHealth systems.
•We construct EpiOracle, a syndrome-based early warn-

ing scheme for unknown epidemics, where the cross-facility
statistics on the frequencies of symptom lists are compiled
using only standard symmetric-key cryptographic primitives
while neither symptom content nor frequency is leaked to
unrelated parties. We further formally prove the security of
EpiOracle in the random oracle model.
•We also implement an EpiOracle prototype and evaluate

its performance using real-world COVID-19 syndrome data2

as well as larger synthesized samples. The evaluation results
demonstrate that EpiOracle is practical and efficient. In partic-
ular, approximately 70% of real-world COVID-19 symptom
lists are detected as similar in our experiments.

1.3 Limitation discussions
One security-efficiency trade-off we chose for EpiOracle is
that it allows healthcare facilities to obtain the frequencies
of the symptom lists that they have generated. A corrupted
facility may make those information public.

This leakage is somewhat unavoidable when we insist on
no interaction between facilities in EpiOracle. Addressing
this limitation (reducing further the leakage) would inherently
require additional interactions among facilities to achieve that
taking their symptom lists as input, only a result of whether
a warning should be triggered is output. This could place a

1Instead of cryptographic primitives, differential privacy is based on math-
ematical operations and statistical algorithms such as adding Laplace noise.

2We have obtained consent from the healthcare facility to use the data for
research purposes. Before being shared with us, the data has been processed
by the facility to preserve patients’ privacy. Personal information has been
thoroughly removed, and the data only contains symptoms, ensuring that no
data can be linked to patients. We have also followed academic conventions
regarding this issue (e.g., Ref. [61] leverages real-world data while ensuring
the utmost respect for privacy and ethical standards) to carefully release
experimental results, ensuring that no patient privacy would be leaked.

considerable burden on facilities, particularly when the num-
ber of participating entities and the volume of symptom lists
are large (e.g., a partial solution could be that employing
the secure comparison technique to compare a private fre-
quency with a threshold without leaking any additional in-
formation [35, 36, 49], which requires intensive interactions
among facilities). Some facilities in remote regions may not
have an advanced communication infrastructure.

In this work, we aim to design an early warning system
that remains practical and accessible for a wide range of facil-
ities, including those with varying levels of communication
abilities. It is impractical to expect facilities with limited
communication resources to engage in intensive interactions.
Therefore, we choose to adopt the non-interactive paradigm
while accepting a certain degree of additional information
leakage as a trade-off. It would be certainly interesting to
explore other trade-offs in future works.

We also stress that any early warning system encounters
certain non-technical limitations. Both our scheme and practi-
cal solutions [14, 15] for epidemic warnings are probabilistic,
if the warning is not triggered, no outbreak occurs; if the
warning is triggered, it only indicates the potential occurrence
of an epidemic outbreak with a high probability.

1.4 Roadmap
We review the related works in Section 2 and state the problem
in Section 3. We present the system model and definitions
of EpiOracle in Section 4. We provide the construction of
EpiOracle in Section 5, discuss practical considerations in
Section 6, give formal proofs of the security in Section 7, and
present the implementation details and evaluation results in
Section 8. Finally, we draw the conclusions and outlook the
future work in Section 9.

2 Related Work

2.1 Early epidemic warning
Early epidemic warning serves as the first line of defense
against outbreaks and enables governments to gain more
time to prepare for fighting against epidemics. Existing warn-
ing systems can be categorized into disease-based ones and
syndrome-based ones.
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Typical disease-based early warning systems include
NORS [13] and CIDARS [60]. In these systems, the target dis-
eases are specified, and a warning is triggered by confirmed
cases of these diseases. Specifically, some notifiable diseases
are listed by the government (the CDC in NORS, and China
CDC in CIDARS), once a patient is diagnosed with a notifi-
able disease, a doctor reports the case in the system through
the corresponding facility, and the CDC judges whether there
is an outbreak by analyzing the reported data.

The disease-based paradigm can accurately identify the
potential outbreaks of easily diagnosable diseases with a
well-established history. However, its effectiveness dimin-
ishes when the detection of an etiology requires specialized
equipment. Facilities lacking such equipment or detection ca-
pabilities must transport collected specimens to more distant
facilities, resulting in delays in outbreak control. This issue
is exacerbated when pathogens can only be detected within
a narrow time frame after illness onset [37]. Additionally,
disease-based early warning systems encounter challenges in
recognizing outbreaks of unknown epidemics. Newly emerg-
ing diseases may be misdiagnosed as existing ones that do
not typically trigger outbreaks. Consequently, early detection
of outbreaks becomes challenging or, in some cases, fails to
occur altogether.

In 2003, the CDC initiated NSSP [14], a syndrome-
based early warning system. NSSP employs a cloud server,
BioSense [39], to aggregate symptom information from all
healthcare facilities. Early warning is facilitated by monitor-
ing the frequencies of symptom lists. The underlying principle
is that abnormally high frequencies of similar symptoms may
indicate an epidemic outbreak. For instance, during the ini-
tial stages of the COVID-19 outbreak in January 2020, with
approximately 15,000 confirmed cases, the vast majority ex-
hibited symptoms such as fever, dry cough, and fatigue [17].
The cloud server, through the analysis of symptom informa-
tion and tracking the frequency of similar symptom lists, can
effectively detect the onset of a COVID-19 outbreak.

In contrast to disease-based systems, the syndrome-based
ones such as NSSP [14] and ProMED-mail [15] enjoy a sig-
nificant advantage in early warning for unknown epidemics,
where the syndrome information serves as the key evidence
for warnings. However, such a paradigm suffers from critical
security issues regarding the symptom information due to the
deployment of the cloud server [46, 53]. There exists a poten-
tial risk of the cloud server attempting to access and exploit
sensitive symptom contents for personal gain [31]. Further-
more, the frequencies themselves hold significant value [32],
and collusion between companies and the cloud server may
lead to the exploitation of frequencies for financial gain.

2.2 Statistics over private strings

The key idea behind the privacy-preserving early unknown
epidemic warning is to compile statistics on the frequencies

of private data. There have been several techniques that can
be deployed for the frequency statistics, and we analyze them
one by one below.

Homomorphic encryption. Homomorphic encryption is a
powerful primitive, which enables the performance of crypto-
graphic operations on plaintexts through computations on cor-
responding ciphertexts [41,64]. It can be utilized to determine
the similarity between two private strings, e.g., computing the
Hamming distance between their ciphertexts using bit-wise
encryptions [36, 49]. However, deploying it in early warning
suffers from several issues: 1) a private key is required for
decryption to obtain the comparison result, which raises an
immediate problem of which entity should hold the private
key. One potential solution is to share the key among rele-
vant facilities, which becomes cumbersome as the number of
facilities increases; 2) when a symptom list is generated, all
other lists should be checked, making it impractical due to
the substantial number of symptom lists in practice.

Local differential privacy. Previous research has explored
the use of local differential privacy to analyze private data
[22, 54, 55, 63, 66], which could be adopted in early epidemic
warning. Specifically, each healthcare facility individually
collects its own frequencies of each symptom list3, introduces
some noise to the frequencies and then uploads the perturbed
data to a central aggregator for aggregation. This approach
thwarts the leakage of the frequencies owned by each facility.
However, it inadvertently discloses the "global" frequencies
of all lists to the aggregator. Furthermore, it leaks a non-
negligible amount of information about symptom content.

Private heavy hitters. General-purpose private heavy hit-
ters can also be used for early epidemic warning, where each
healthcare facility holds a private symptom list, and an ad-
ditional entity such as a cloud acquires popular lists with-
out learning any additional information about any facility’s
list [21,27]. While this approach has the benefit of preventing
the leakage of the symptom content, the resulting protocols
cannot be directly adapted to support statistics on the fre-
quencies of similar symptom lists in early epidemic warnings.
Additionally, an entity (e.g., the cloud) is required to keep
track of the frequency of the heavy hitters, i.e. the popular
lists, which leaks the frequencies to the entity.

Hardware-based solutions. An alternative solution is to
rely on trusted hardware (e.g., Intel SGX [50]) for frequen-
cies statistics, where the frequencies of all symptom lists are
computed in a secure enclave [19, 42, 56]. Such a paradigm
allows for the compilation of frequency statistics on similar
lists over plaintext without symptom or frequency leakage.
However, it has some inherent limitations. It makes strong
security assumptions on the underlying hardware, making

3Given the substantial size of the potential space of symptom lists, practi-
cal implementations may employ techniques such as locality-sensitive hash-
ing to reduce the space size [66]. In this context, each facility maps similar
lists to the same string, utilizing the frequencies of these strings as input for
the local differential privacy mechanism.
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Figure 1: System model of the basic scheme.

it vulnerable to emerging attacks such as side-channel at-
tacks [40,47,58,59]. Additionally, in cases where the volume
of list data is substantial, the system may experience slow-
downs due to the costly page swaps resulting from limited
enclave memory [34]. In contrast, EpiOracle operates with-
out assumptions about trusted hardware, offering a distinct
advantage in security considerations.

In this paper, we develop EpiOracle, a cross-facility privacy-
preserving early warning system for unknown epidemics
based on symmetric-key cryptographic primitives.

3 Problem Statement

3.1 Background

Notations. We denote by s1||s2 the concatenation of two
strings s1 and s2, by m[i] the i-th byte of the string m, by
−→v [i] the i-th component of a vector −→v , by F(k,m) the eval-
uation of a keyed function F with the key key and the input

m, by r $← S randomly choosing a element r from a set S,
by {ai}k

i=1 the set {a1,a2, ...,ak}, and by
(n

m

)
the number of

n-combinations of an m-set, i.e.,
(n

m

)
= m!/n!(m−n)!.

Symptom encoding. Currently, there are some encoding
standards including SNOMED CT [16], MedDRA [12], and
ICD [10]. With the deployment of one standard, different
descriptions for the same symptom can be mapped to the
same code. For instance, dry cough and non-productive cough
are encoded as 11833005 using SNOMED CT.

Same symptom and similar symptom lists. For a patient,
one disease would usually cause multiple symptoms. All
these symptoms form a set called a symptom list. Moreover,
different patients would have different symptom lists even if
they are diagnosed with the same disease. However, for one
disease, the symptom lists of different patients are similar but
not exactly the same. For example, the patients would suffer
from symptoms including fever, cough, and so on [33]. This
implies that if two different patients are diagnosed with the
same disease, the Hamming distance between their (encoded)
symptom lists is small.

In this paper, all symptoms are encoded using the same
standard, and the similarity of two symptom lists is estimated
using their Hamming distance.

3.2 Basic early epidemic warning scheme

We introduce a basic scheme to show how early warning is
achieved in existing syndrome-based systems (e.g., NSSP [14]
and ProMED-mail [15]). As shown in Fig. 1, all participating
healthcare facilities send the encoded symptom lists of their
patients to a cloud server. The cloud server groups all the
symptom lists, such that the Hamming distance between any
two lists in a group is smaller than a threshold, and compiles
the statistics on the frequency of each disease by counting
each group of the symptom lists. If some count is aberrant,
the cloud server reports this aberration to an authority (e.g.,
CDC) to trigger a warning for a potential outbreak.

This scheme essentially utilizes a cross-facility paradigm:
the cloud server collects symptom lists from multiple health-
care facilities and monitors the frequency of each list. This
makes the epidemic warning more precise and timely (com-
pared with the single-facility paradigm), since the statistics
on the frequencies of lists are more general and accurate due
to the basis of numerous and different-source data.

3.3 Security goals and challenges

The above basic scheme suffers from several critical security
issues: it requires the cloud server to detect similar symptom
lists, which implies that all symptom contents and frequencies
are accessible to the cloud server. As discussed in Introduc-
tion, the symptom contents and frequencies should not be
leaked to the cloud server. These concerns correspond to the
following security goals that the basic scheme fails to achieve.
• Symptom confidentiality. For a symptom list, anyone

who does not generate it or its similar ones, cannot obtain the
content of the symptom list.
• Frequency confidentiality. Before a warning is launched

by the frequency of a symptom list, anyone who does not gen-
erate the list or its similar ones, cannot obtain the frequency.

In this paper, we target to construct a cross-facility early
warning scheme for unknown epidemics while achieving the
above security goals, in which the following challenges exist:
• Fuzzy detection with symptom confidentiality. A natu-

ral approach to achieve symptom confidentiality is to utilize
an encrypt-then-outsource paradigm: a healthcare facility en-
crypts a symptom list and then outsources the ciphertext to
the cloud server. However, due to the inherent security of an
encryption algorithm, different (even similar) lists will yield
different ciphertexts. This fails to enable the cloud server to
determine whether two lists are similar and thereby precludes
statistics on the frequencies of the lists. Therefore, how to
detect similar lists over ciphertexts is the first challenge.
• Ensuring frequency confidentiality. To achieve the cross-

facility early warning, the cloud server needs to maintain a
counter for each group of the symptom lists. After a list is col-
lected from a healthcare facility, the corresponding counter is
incremented. The cloud server can directly obtain the frequen-
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cies of lists from the counters. This suggests an immediate
solution where the counter is encrypted using homomorphic
encryption, and the healthcare facility interacts with the cloud
server to increase the counter, which prevents the cloud server
from extracting the frequency of the symptom lists by access-
ing the counter. However, the access pattern of the facility’s
updates to counters leaks information to the cloud server by
revealing the increment histogram. Therefore, how to ensure
the confidentiality of frequencies is also a challenge.

3.4 Technical overview

We overview EpiOracle, focusing on the challenges addressed
in this paper.

Traditional encryption ensures symptom confidentiality but
precludes early warning. A natural approach to achieve con-
fidentiality of the symptoms is to utilize an encrypt-then-
outsource paradigm: after generating a symptom list, a health-
care facility encrypts the list and outsources the corresponding
ciphertext to the cloud server. Directly deploying traditional
encryption algorithms (e.g., [CTR]AES) in the early warning
systems ensures the confidentiality of symptoms. However,
due to the inherent randomness of the encryption4, the cloud
server cannot determine whether the underlying symptoms of
two ciphertexts are similar. This makes the statistics on the
frequencies of symptom lists impossible.

Detecting same plaintexts over encrypted symptom lists.
Inspired by encrypted data deduplication, we may utilize
message-locked-encryption (MLE) [24], where the encryp-
tion/decryption key is derived from the plaintext itself, to pro-
tect the symptom contents against leakage while supporting
the statistics on symptom frequencies. By doing so, identical
symptom lists are mapped to identical ciphertexts, which en-
ables the cloud server to monitor the frequency of the same
lists using only their ciphertexts.

Unsatisfactory for early warning. Nevertheless, straight-
forward utilizing MLE for the statistics on the frequencies
cannot achieve the functionality of early warning in actual
eHealth systems. As a reminder, in Section 3.1 we have in-
troduced that, for the same disease, different patients would
have different symptom lists. As such, the statistics on the
frequency of only one symptom list will be far less than the
number of patients with the corresponding disease, which
cannot accurately reflect a potential outbreak.

Fuzzy detection. We address the above issue by using an
extract-then-encrypt mechanism [30]. As shown in Fig. 2a,
for a symptom list and its similar ones, a unique feature that
can be extracted from them is encrypted under itself. By doing
so, similar lists will generate an identical ciphertext, and the
ciphertext can be outsourced to the cloud for fuzzy detection.
As such, the cloud server can maintain a counter for each
ciphertext to monitor the frequencies of (similar) lists.

4We stress that any CPA-secure encryption scheme would be randomized.
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Figure 2: Extract-then-encrypt mechanism.

Ensuring frequency confidentiality. There is still a subtle
security issue: the above paradigm inherently requires the
cloud server to detect similar symptom lists and further count
each list as well as its similar ones. This inevitably allows
the cloud server to extract the frequency information. To re-
solve this deadlock, we utilize a facility-increased counting
mechanism, where
• the fuzzy detection is migrated from the cloud server side

to the facility side, and
• a facility increases the count of a symptom list with the

aid of the cloud server in an oblivious way.
By oblivious, we mean that after each increment to the

count of a symptom list, the cloud server cannot determine
which symptom list’s count is increased.

To achieve the fuzzy detection on the facility side, we im-
prove the extract-then-encrypt mechanism introduced before.
As shown in Fig. 2b, for a symptom list and its similar ones,
we require the healthcare facility that generates the first one
of them to map the symptom list to a tag (which is a random
string), derives a key from the feature, encrypts the tag under
the key, and outsources the ciphertext to the cloud server as
a helper parameter for subsequent fuzzy detection. Anytime
another facility generates a similar list, it first decrypts the ci-
phertext using a key derived from the newly-extracted feature.
If and only if the feature extracted from the symptom list is
the same as the one used in encryption, can the decryption
succeed and the facility obtain the tag. Finally, to hide the fact
that a similar list has been generated before and pass along the
same tag, each subsequent facility also generates a (different)
helper parameter and outsources it to the cloud server.

The oblivious increment is achieved by utilizing a variant
of Bloom Filter [48]. Specifically, the cloud server maintains a
Bloom Filter to count all symptom lists. To increase the count
of a symptom list as well as its similar ones, a healthcare
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Figure 3: System model of EpiOracle.

facility randomly fills a slot of the Bloom Filter in the corre-
sponding tag’s item set5. The security of the variant of Bloom
Filter ensures that given two increments, the cloud server can-
not distinguish whether they correspond to similar symptom
lists. Therefore, with this variant, in the view of the cloud
server, increasing the count of a symptom list is essentially
filling a random slot and nothing about the frequency can
be extracted. After being increased multiple times, the count
of a tag can be retrieved by computing the number of filled
slots in the tag’s item set. This yields EpiOracle, achieving
the security goals presented in Section 3.3.

Feasibility of facility-triggered paradigm. EpiOracle adopts
a facility-triggered paradigm, where the frequency of a symp-
tom list remains private to all entities except the facilities that
have generated the list or its similar ones. This raises concerns
regarding the potential for facilities to conceal abnormal fre-
quencies and maliciously trigger false warnings for arbitrary
symptom lists without being detected.

However, the issues of cover-ups and false warnings can
be easily addressed. Specifically, the aberrant frequency of a
symptom list signifies that multiple facilities have generated
the list. In such instances, even if a facility withholds the aber-
rant frequency, other facilities would report it. Additionally,
the validity of warnings is verifiable. When a facility triggers
a warning based on a frequency, it is obliged to publish the
corresponding symptom list along with its tag. With the symp-
tom list and the tag, anyone can compute the frequency of the
list using the Bloom filter maintained by the cloud and further
verify the validity of the warning.

4 Framework of EpiOracle

4.1 System model
As shown in Fig. 3, EpiOracle involves two entities: healthcare
facilities and a cloud server. Each healthcare facility generates
symptom lists, maps each list as well as its similar ones to
the same tag, generates a helper parameter using the tag for
subsequent fuzzy detection, outsources the helper parameter
to the cloud server, and increases the count of the list by
inserting the tag into a Bloom Filter. The facility can also
compute the frequency of a list according to the Bloom Filter.

5The detailed elaboration of the variant of Bloom Filter is provided in
Appendix A.

4.2 Syntax
Definition 1. EpiOracle is a tuple of five algorithms: (Setup,
FuzDet, HelParGen, Increase, Warning).〈

sp,
−→
BF
〉
← Setup(1`). The Setup algorithm takes a secu-

rity parameter ` as input and outputs a set of system parame-
ters sp along with an empty Bloom Filter

−→
BF . sp is implicitly

input to the subsequent algorithms.
〈τ〉 ← FuzDet({p1, p2, ...},m). After generating a symp-

tom list m, a healthcare facility and the cloud server run the
FuzDet algorithm to check whether some symptom lists simi-
lar to m has been generated before. It takes as input the helper
parameters {p1, p2, ...} maintained by the cloud server and m,
and output m’s tag τ. Helper parameters are generated by the
following algorithm.
〈p = (c,z)〉 ←HelParGen(m,τ). The HelParGen algo-

rithm is run by a healthcare facility to generate a helper
parameter p for subsequent fuzzy detection. It takes as in-
put a tag τ of m, and outputs a helper parameter p consisting
of τ and auxiliary information z. p is then outsourced to the
cloud server.〈−→

BF ′
〉
← Increase(τ,−→BF). The Increase algorithm is exe-

cuted by a healthcare facility and the cloud server to increment
a tag τ’s count recorded in the Bloom Filter

−→
BF . It takes as

input τ and
−→
BF , and outputs the updated Bloom Filter

−→
BF ′, in

which the count of τ has been incremented.
〈1/0〉 ←Warning(τ, t,−→BF ′). The Warning algorithm is

run by a healthcare facility and the cloud server to count τ

and assess the frequency of the corresponding symptom list.
It takes as input τ, a warning threshold t, and the Bloom Filter−→
BF ′ recording all counts of the lists, outputs 1 if the count is
larger than t and 0 otherwise.

4.3 Security definitions
A security definition consists of two distinct components:
security goal and threat model. We have discussed the security
goals (i.e., symptom and frequency confidentiality) in Section
3.2. Now we discuss the threat model and present formal
security definitions of them one by one.

Symptom confidentiality. Loosely speaking, for a symptom
list, ensuring its confidentiality requires that the cloud server
cannot learn any additional information about its content from
the information obtained by it. All information about the
content of a symptom list that the cloud server can obtain is a
helper parameter, which contains a tag’s ciphertexts that are
generated using the keys derived from the symptom list. This
implies that the cloud server should not be able to distinguish
the ciphertexts from random strings.

We begin with the most general chosen-plaintext-attack
(CPA) model, in which the cloud server selects an arbitrary
symptom list and sends it to an oracle. The oracle, in turn,
selects a tag, executes HelParGen, and returns the resulting

7



IND$-CDAA ,M (`)

1 : sp← Setup(1`)

2 : m $←M
3 : τ

$←{0,1}`

4 : b $←{0,1}
5 : p1 = (c1,z)←

HelParGen(m,τ)

6 : c0
$←{0,1}|c1|

7 : b′← A(sp,cb,z)
8 : Return (b = b′)

RORA ′,Π(`)

1 : m← A ′E(1`)

2 : b $←{0,1}
3 : If b = 1
4 : For i = 1, ..., l
5 : ki← Gen(1`)
6 : ci = E(ki,m)

7 : Else
8 : For i = 1, ..., l

9 : ci
$←{0,1}|E(ki,m)|

10 : b′← A ′(1`,{ci}l
i=1)

11 : Return (b = b′)

Figure 4: Game defining IND$-CDA and ROR-security.

helper parameter or a random string of the same length to the
cloud server. The goal of the cloud server is to correctly guess
whether the returned string is a helper parameter or a random
string. In this CPA game, the cloud server can always guess
correctly. Since given a symptom list and a helper parameter,
the cloud server can tell whether there is a correlation between
them by recovering a key from the symptom list and further
decrypting the ciphertext contained in the helper parameter.

Therefore, instead of CPA, we use the chosen-distribution-
attack (CDA) model defined in [24] for symptom confiden-
tiality. As depicted in Fig. 4, the adversarial cloud server A
obtains the distribution of the symptom lists, rather than the
challenge list’s content. A formal definition of the symptom
confidentiality is presented below.

Definition 2. (Symptom confidentiality.) EpiOracle is IND$-
CDA secure if, for a β-entropy l-samples source M , a proba-
bilistic polynomial-time (PPT) adversary A ,

AdvIND$-CDA
A ,M (`)≤ 2 ·AdvROR

A ′,Π(`)+
ql
2β

,

where AdvROR
E,A ′ (`) is the advantage of a PPT adversary A ′

in the real-or-random game of a symmetric-key encryption
Π = (Gen,E,D) defined in Fig. 4, TA ′ ≤ TA +con ·q, TA ′ and
TA are the running time of A ′ and A , respectively, con is a
small constant, and q = q(`) is a polynomial6.

Frequency confidentiality. Frequency confidentiality asserts
the property that the count of a tag cannot be obtained by the
cloud server until it reaches a predetermined warning thresh-
old. In the threat model, we allow the cloud server to com-
promise some facilities to retrieve the frequency information.
Our security goal is that the adversarial cloud server cannot

6The confidentiality of symptom inherently requires that β is large enough.
If β is small, the scheme is vulnerable to dictionary-guessing attacks (DGA).
This vulnerability is not considered in this section. We discuss it and detail a
countermeasure in Section 7.

IND-RTAA ,M (`)

1 : sp← Setup(1`)

2 : m1
$←M ,τ1

$←{0,1}∗
3 : p1←HelParGen(m1,τ1)

4 : b $←{0,1}
5 : If b = 1
6 : m2

$←M , s.t. dis(m1,m2)≤ d,τ2 = τ1

7 : If b = 0
8 : m2

$←M , s.t. dis(m1,m2)> d, |m2|= |m1|
9 : τ2

$←{0,1}∗
10 : e← Increase(τ2)

11 : p2←HelParGen(m2,τ2)

12 : b′← A(sp, p1, p2,e)
13 : Return (b = b′)

Figure 5: Game defining IND-RTA.

obtain the frequency of a symptom list that has not been gen-
erated by the compromised facilities. The main reason why
we define such a security goal is as follows.

The facility-triggered paradigm would allow a healthcare
facility to obtain the frequency information of the symptom
lists it generates. If an adversary compromises the facility,
the latter could directly send all the information it has to the
former, and thereby no security on the symptom lists from the
facility is guaranteed. We therefore ask for the strongest pos-
sible security: preventing the leakage of symptom frequency
against the healthcare facility that does not generate the cor-
responding symptom lists before. Consequently, instead of
requiring all counts to be oblivious to the cloud server, we re-
lax the definition of the frequency confidentiality to state that
the cloud server cannot compute the count of a tag correspond-
ing to a randomly chosen list. This implies that the adversary
is not able to tell whether two insertions are performed on the
same (unknown) tag.

We illustrate this property in the game shown in Fig. 5:
if b = 0, two insertions are performed on one (random) tag,
else, insertions are performed on two different tags. After
the insertions, the corresponding positions and the generated
helper parameters are given to the adversary A . The goal of
A is to output the correct value of b, i.e., determine whether
two insertions are made on the same tag. We provide a formal
definition of frequency confidentiality below.

Definition 3. (Frequency confidentiality.) EpiOracle is IND-
RTA secure if, for any PPT adversaries A and A ′,

AdvIND-RTA
A ,M (`)≤ 2 ·AdvIND$-CDA

A ′ (`),

where TA ′ ≤ TA +con, TA ′ and TA are the running time of A ′
and A , respectively, and con is a small constant.
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5 Concrete Construction of EpiOracle

A cloud server CS and a set of healthcare facilities
{H1,H2, ...,HN} are involved in EpiOracle.

Assumption. We assume that for each i ∈ [1,N], there is a
secure channel between Hi and CS for communication. The
messages transmitted through these channels are authenti-
cated and cannot be tampered with.

Setup. With the security parameter `, the system parameter
sp = {−→BF ,L, t, l,α,P,h1, ...,hs,H,Π} is determined, where
−→
BF is an L-bit vector initialized as an empty Bloom Fil-
ter, t is the warning threshold, l is the number of rounds in
helper parameter generation, α is the number of positions
sampled from a symptom list, P ∈ {0,1}` is a random value,
h1, ...,hs−1 : {0,1}∗→{0,1}L,H : {0,1}∗→{0,1}` are hash
functions, Π = (Gen, E, D) is a symmetric-key encryption
scheme, E(K,M) is encrypting M under K, and D(K,C) is
decrypting the ciphertext C using the decryption algorithm.

FuzDet. After generating some symptom lists, Hi first
checks whether they are similar over the plaintexts, clusters
similar lists, and chooses one from each cluster to run this
algorithm. For the sake of brevity, we assume Hi chooses
mi from a cluster contained ε lists and show how Hi checks
whether mi is similar to mi′ that has been generated before7.

• For existing help parameters p j of m j, ∀ j ∈ [1, i], public
stored on CS , Hi checks if there is a pi′ of mi′ (i′ ∈ [1, i])
such that mi′ is similar to mi by invoking Algorithm 1.

• If returned τi′ =⊥, Hi randomly chooses τi ∈ {0,1}` as
the tag of mi, otherwise, sets τi = τi′ .

HelParGen. Hi generates a help parameter pi of mi for
subsequent similar lists by invoking Algorithm 2.

Increase. In this algorithm, Hi increases the count of τi by
inserting it into the Bloom Filter

−→
BF as follows.

• Hi computes the set of τi’s slots as Vi = {hk(τi),∀k ∈
[1,s]}, randomly chooses e∈Vi such that

−→
BF [e] is empty,

sends it to CS (If no element meets this condition, Hi
aborts).

• After receiving e, CS checks whether
−→
BF [e] are empty,

if it is, CS updates
−→
BF to

−→
BF ′ by setting

−→
BF [e] to 1.

Otherwise, CS asks Hi to choose another element.

In the above description, we detail the process that Hi incre-
ments the count of τi by 1 by filling one slot. Hi can increment
the count by a large number by filling multiple slots.

Warning. In this algorithm, Hi can launch an early warning
for mi by computing its approximate frequency.

7The smaller the Hamming distance between two symptom lists, the more
likely they are to be detected as similar, but the Hamming distance does not
appear explicitly in the scheme.

Algorithm 1: FuzDet

Input: {p j}i−1
j=1: all existing helper parameters

mi: the symptom list to be checked
Output: τi′ : the tag of mi′ similar to mi

1 for j = 1 to i−1 do
2 parse p j = {p j,1, p j,2, ..., p j,l};
3 for k = 1 to l do
4 parse p j,k = {c j,k, ind(1)

j,k , ..., ind(α)
j,k };

5 seed j,k = mi[ind(1)
j,k ]|| · · · ||mi[ind(α)

j,k ];
6 key j,k = H(P||seed j,k);

7 parse c j,k = {c
(1)
j,k ,c

(2)
j,k};

8 if D(c(2)j,k ⊕ key j,k,c
(1)
jk ) 6=⊥ then

9 return τi′ = D(c(2)j,k ⊕ key j,k,c
(1)
jk );

10 end
11 end
12 end
13 return τi′ =⊥;

Algorithm 2: HelParGen
Input: mi = mi[1]|| · · ·mi[b]: a symptom list

τi: a corresponding tag
Output: pi: a corresponding help parameter

1 for k = 1 to l do
2 randomly choose ind(1)

i,k , ..., ind(α)
i,k ∈ [1,b];

3 seedi,k = mi[ind(1)
i,k ]|| · · · ||mi[ind(α)

i,k ];
4 keyi,k = H(P||seedi,k);
5 randomly choose ri,k ∈ {0,1}`;
6 c(1)i,k = E(ri,k,τi),c

(2)
i,k = ri,k⊕ keyi,k;

7 ci,k = {c
(1)
i,k ,c

(2)
i,k }, pi,k = {ci,k, ind(1)

i,k , ..., ind(α)
i,k };

8 end
9 return pi = {pi,1, ..., pi,l};

• Compute Vi = {hk(τi),∀k ∈ [1,s]} and set count = 0.
For each vi ∈ V , check whether

−→
BF [vi] = 1, if it is, set

count = count +1.

• If count ≥ T (the expected number of filled elements
of Vi after inserting mi into

−→
BF t times, which is com-

puted using t and other system parameters, the comput-
ing method is detailed in Theorem 1), there might be a
potential outbreak. Then, Hi triggers a warning.

We also illustrate the workflow of EpiOracle and its instan-
tiation in Figure 6.

Value of T . When computing the frequency of a tag, the
number of insertions performed on the tag may be different
from the number of its filled slots due to the inherent approxi-
mate nature of Bloom Filters. We present how to compute the
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helper

parameter

…𝑐…ciphertext
…𝑖! , … , 𝑖"#$…indexes

Figure 6: Workflow and an instantiation of EpiOracle.

explicit threshold T , which is the expected number of filled
slots of a tag τ after t insertions performed on τ.

Theorem 1. Given a tag τ, let ι denote the number of the
insertions performed on other tags8, w denote the number of
unfilled positions of

−→
BF in τ’s item set, then

T = s−
s

∑
w=t+1

s!(L− s)!ι!(L− ι)!
w!(s−w)!(L− ι−w)!L!

(w− t).

Proof. Define pw to be the probability that w slots of τ are
unfilled after ι insertions performed on other tags, then

pw =

(
s

s−w

)
·
(

L− s
ι− s+w

)
(

L
ι

) .

Define Rw,u to be the number of unfilled slots of τ after u
insertions performed on τ when originally w slots of τ are
unfilled, then we have

Rw,u =

 0, w = 0
w, u = 0
w−u, w,u≥ 1

,

8ι can be computed by CS as follows: CS maintains a counter for the
total number of insertions and subtracts t from the total number of insertions.

this can be simplified to

Rw,u =

{
0, w≤ u
w−u, w > u .

After t insertions are performed on τ and ι insertions are
performed on all tags, the expected count of τ is

T = s−
s

∑
w=0

pw,tRw,t .

This concludes the proof.

6 Practical Considerations

There are some practical considerations for the deployment
of EpiOracle in reality. We discuss them in the following.

Use frequencies for early warning. The early warning pro-
vided by EpiOracle is compatible with the analyses provided
by experts. Any early warning system is the first line of fight
potential outbreaks. A triggered warning serves more as a
signal that further analyses should be conducted, rather than a
definitive assertion of an emerging epidemic outbreak. More-
over, EpiOracle essentially counts the symptom lists for fre-
quency monitoring and can be trivially extended to support
more complex statistics algorithms (e.g., CUSUM [20]) ap-
plied in real-world detection systems such as EARS [43].

Setting system parameters. In EpiOracle, t (the threshold)
and α (the number of positions sampled from a symptom list)
should be set carefully to ensure accuracy of early warning.

Value of t. Setting the warning threshold t has been well
studied in the medical field [1]. It is computed according to
the frequencies in the historical time period when no outbreak
occurs and can be determined by infectious medical experts.

Value of α. In the generation of pi in HelParGen, each
seed is derived from the concatenation of random α positions
of the corresponding symptom list mi. To determine the simi-
larity between mi and a subsequently generated list mi′ using
pi, these α positions of mi′ must match those of mi exactly.
The value of α is crucial to the accuracy of the early warning
and should be determined based on the length of symptom
lists. For example, if α is much smaller than the length of mi,
there is a high probability of false similarity, which occurs
when two lists with a large Hamming distance are incorrectly
detected as similar and have the same tag.

However, the length of a patient’s symptom list during
an outbreak is unpredictable. This unpredictability makes it
challenging to preselect an appropriate value for α. A solution
to this issue is to compute a specific α for each symptom list
after it is generated. Specifically, in the setup of EpiOracle,
we set a deterministic ratio SimRatio ∈ (0,1] instead of the
number of chosen bytes. After mi is generated, the number
of its positions used to generate the keys is computed as α =
SimRatio · |mi|. This approach ensures that α is proportional
to the length of mi and compatible with lists of all lengths.
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Different orders of symptoms. The smaller the Hamming
distance between two symptom lists, the more likely they are
to have the same tag. However, defining similarity based on
Hamming distance may be too rigid. Consider two symptom
lists: s1 = “Dry cough, Fever, Chill” and s2 = “Headache,
Dry cough, Fever”. From an early earning perspective, these
two lists are similar and should have the same tag. Whereas,
the Hamming distance between their codes is relatively long.

The reason for this conflict is that two symptom lists with
the same symptoms but different orders have a large Ham-
ming distance. To eliminate this conflict, we not only compare
the original symptom lists but also all possible permutations
of the symptoms. After re-ordering s2 to “Dry cough, Fever,
Headache”, the Hamming distance between the codes of these
two symptom lists is only 6. Although considering all per-
mutations increases the computation costs, it is feasible in
practice since the number of symptoms in each list is small,
and the number of permutations is not too large. The improved
accuracy justifies the added computation costs for facilities.

Geographic area. In reality, epidemic early warning neces-
sarily requires the frequencies in a specific area, since people
are much more likely to contract a disease if they are ex-
posed to each other. EpiOracle can be directly extended to
support specific-area frequency monitoring as follows. The
cloud server maintains a Bloom Filter for each specific area,
and the count of symptom lists from an area is increased using
the corresponding Bloom Filter.

When EpiOracle is deployed nationwide, it seems that the
computation and communication costs on the healthcare facil-
ity side would be significantly high. Since all symptom lists
nationwide are uploaded to a cloud, and a facility has to detect
similarities between lots of lists. However, even if EpiOracle
is deployed nationwide, e.g., all healthcare facilities in the
U.S. using EpiOracle, a facility only needs to perform the
fuzzy detection on the lists generated in a relatively small
geographic area. Furthermore, early warning is time-sensitive,
only the lists generated in a short period remain in the system
for tallying. This further reduces the number of symptom lists
that the facility needs to process.

Verifying the validity of the recovered tag. For a symptom
list with a helper parameter, a healthcare facility holding an-
other one checks whether these two symptom lists are similar
by decrypting each ciphertext of the tag in the helper param-
eter. To perform fuzzy detection, the facility needs to tell
whether the decryption succeeds. However, in the view of the
facility, a wrong decryption result may be indistinguishable
from the correct tag due to the randomness of the tag. As a
result, the facility may not be able to determine whether the
two symptom lists are similar.

This issue can be addressed by padding the tag using a spec-
ified standard such as PKCS#5 [44]. After a tag is padded,
whether the decryption of the encrypted tag is valid can be
verified by checking the correctness of the padding. If the
padding pattern is inconsistent with the preset one, the health-

care facility can observe that the decryption fails. Moreover,
in the practical implementation, if a block cipher is used as
the symmetric-key encryption algorithm to encrypt the tag,
the tag is required to be padded by the algorithm. When the
length of a tag to be encrypted is not a multiple of the block
length of the encryption algorithm, the tag will be padded by
the encryption algorithm and no additional padding is needed.
When the length of the tag is a multiple of the block length,
padding is still required.

Number of recovered tags. In FuzDet, after recovering one
correct tag, a healthcare facility increases the count of only
this tag and stops performing similarity checks using other
helper parameters. In practice, multiple symptom lists would
be similar to the one held by the facility. This one-success-
then-stop paradigm is efficient in terms of the computation
costs on the facility side. However, it may cause inaccuracy
in the counts of other similar symptom lists.

An alternative paradigm is to require the facility to per-
form similarity checking using all helper parameters and to
increase the counts of all recovered tags. This will cause more
computation costs on the facility side, but the accuracy of
fuzzy detection would be improved significantly. Actually,
a threshold can be set to balance the trade-off between effi-
ciency and accuracy: after recovering the threshold number
of tags successfully, the facility stops detecting.

System refresh. In EpiOracle, the tags of symptom lists are
inserted into a variant of Bloom Filter. The variant of Bloom
Filter can be full after too many insertions are performed, and
the counts of symptom lists could not be increased.

This will not impact the practicability of EpiOracle since
counting the symptom lists generated recently is an inherent
requirement of epidemic early warning systems. This implies
that in the practical application of EpiOracle, only the inser-
tions performed in a short period of time are needed (for
COVID-19, 3 weeks is enough [62]). Otherwise, the count of
a symptom list will increase over time, and it will always reach
the warning threshold. Therefore, the Bloom Filter would be
refreshed before it is full.

7 Security Analysis

Theorem 2. If H is modeled as a random oracle HO, EpiOr-
acle is IND$-CDA secure for symptom content.

Proof. To prove Theorem 2, we first introduce 6 games pre-
sented in Fig. 7 and elaborate on them below.

Let (seed1,seed2, ...,seedl ,z)
$← S(1`) denote a

polynomial-time algorithm that generates l seeds us-
ing a random symptom list chosen from M . This algorithm
on input ` returns l random seeds and some auxiliary
information z (i.e., the indexes in helper parameters), then G1
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G1

1 : Q = /0

2 : (seed1, ...,seedl ,z)
$← S(1`)

3 : τ
$←{0,1}∗

4 : For i = 1, ..., l

5 : ri
$←{0,1}`,ci,1 = E(ri,τ)

6 : keyi
$←{0,1}`,Q[seedi] = keyi

7 : ci,2 = ri⊕ keyi,ci = ci,1||ci,2

8 : c = {c1, ...,cl}
9 : b′← AHO(c,z)
10 : Return b′

HO(X)

1 : If Q[X ] 6=⊥
2 : Return Q[X ]

3 : Y $←{0,1}`

4 : Q[X ] = Y
5 : Return Y

G2 G3

1 : Q = /0

2 : (seed1, ...,seedl ,z)
$← S(1`)

3 : τ
$←{0,1}∗

4 : For i = 1, ..., l

5 : ri
$←{0,1}`,ci,1 = E(ri,τ)

6 : keyi
$←{0,1}`

7 : ci,2 = ri⊕ keyi,ci = ci,1||ci,2

8 : c = {c1, ...,cl}
9 : b′← AHO(c,z)
10 : Return b′

HO(X)

1 : For i = 1, ..., l
2 : If X = seedi

3 : flag = 1
Return keyi

4 : If Q[X ] 6=⊥
5 : Return Q[X ]

6 : Y $←{0,1}`

7 : Q[X ] = Y
8 : Return Y

G4

1 : Q = /0

2 : (seed1, ...,seedl ,z)
$← S(1`)

3 : τ
$←{0,1}∗

4 : For i = 1, ..., l

5 : ri
$←{0,1}`,ci,1 = E(ri,τ)

6 : ci,2
$←{0,1}`

7 : keyi = ri⊕ ci,2

8 : ci = ci,1||ci,2

9 : c = {c1, ...,cl}
10 : b′← AHO(c,z)
11 : Return b′

HO(X)

1 : For i = 1, ..., l
2 : If X = seedi

3 : flag = 1
4 : If Q[X ] 6=⊥
5 : Return Q[X ]

6 : Y $←{0,1}`

7 : Q[X ] = Y
8 : Return Y

G5 G6

1 : Q = /0

2 : (seed1, ...,seedl ,z)
$← S(1`)

3 : τ
$←{0,1}∗

4 : For i = 1, ..., l

5 : ri
$←{0,1}`

6 : ci,1
$←{0,1}|E(ri,τ)|

ci,1 = E(ri,τ)

7 : ci,2
$←{0,1}`,ci = ci,1||ci,2

8 : c = {c1, ...,cl}
9 : b′← AHO(c,z)
10 : For i = 1, ..., l
11 : keyi = ri⊕ ci,2

12 : If seedi ∈ Q flag = 1 Return b′

HO(X)

1 : If Q[X ] 6=⊥
2 : Return Q[X ]

3 : Y $←{0,1}`

4 : Q[X ] = Y
5 : Return Y

Figure 7: Game used in the proof of Theorem 2.

is identical with IND$-CDAb=1
M ,A . Therefore, we have

Pr[IND$-CDAA ,M ⇒ 1|b = 1] = Pr[G1⇒ 1].

G2 is identical with G1 except that the former does not
update Q with regards to seedi and keyi until A queries seedi
to HO. Since this deferment is invisible to A , we have

Pr[G1⇒ 1] = Pr[G2⇒ 1].

In G3, when there is a query on seedi to HO, a flag is set
to 1 and a newly chosen random string rather than keyi is
returned. G3 and G2 are identical-until-flag. With the funda-
mental lemma of game-playing (Lemma 1 in [25]), we have

Pr[G2⇒ 1]≤ Pr[G3⇒ 1]+Pr[flag = 1 in G3].

In G4, ci,2 is replaced with a random string and keyi =
ci,2⊕ ri. By doing so, c is random and thereby independent

of the symmetric keys {r1, ...,rl}. We have

Pr[G3⇒ 1] = Pr[G4⇒ 1],
Pr[flag = 1 in G3] = Pr[flag = 1 in G4].

G5 is identical with G4 except that the computation of keyi
and the setting of flag are deferred after A outputs b′ in G5.
Since c is independent of {r1, ...,rl}, we have

Pr[G4⇒ 1] = Pr[G5⇒ 1],
Pr[flag = 1 in G4] = Pr[flag = 1 in G5].

In G6, ci,1 is replaced with a random string.
Now we prove that

Pr[G5⇒ 1]+Pr[flag = 1 in G5]

=Pr[G6⇒ 1]+Pr[flag = 1 in G6]+2 ·AdvROR
A ′,Π(`),

12



G7

1 : Q = /0

2 : m1
$←M ,τ1

$←{0,1}`
3 : For x = 1,2
4 : For i = 1, ..., l

5 : zx,i = {ind( j)
x,i } j∈[1,α]

$← [1, |m1|]

6 : seedx,i = m1[ind(1)
x,i ]|| · · · ||m1[ind(α)

x,i ]

7 : rx,i
$←{0,1}`,c(1)x,i = E(rx,i,τ1)

8 : keyx,i
$←{0,1}`,Q[seedx,i] = keyx,i

9 : c(2)x,i = rx,i⊕ keyx,i,cx,i = c(1)x,i ||c
(2)
x,i

10 : cx = {cx,1, ...,cx,l},zx = {zx,1, ...,zx,l}
11 : b′← AHO(c1,z1,c2,z2)

HO(X)

1 : If Q[X ] 6=⊥ Return Q[X ]

2 : Y $←{0,1}`,Q[X ] = Y Return Y

G8

1 : Q = /0

2 : m1
$←M ,τ1

$←{0,1}`
3 : For i = 1, ..., l

4 : z1,i = {ind( j)
1,i } j∈[1,α]

$← [1, |m1|]

5 : z2,i = {ind( j)
2,i } j∈[2,α]

$← [1, |m1|]

6 : seed1,i = m1[ind(1)
1,i ]|| · · · ||m1[ind(α)

1,i ]

7 : r1,i
$←{0,1}`,c(1)1,i = E(r1,i,τ1)

8 : key1,i
$←{0,1}`,Q[seed1,i] = key1,i

9 : c(2)1,i = r1,i⊕ key1,i,c1,i = c(1)1,i ||c
(2)
1,i

10 : c1 = {c1,1, ...,c1,l},c2
$←{0,1}|c1|

11 : z1 = {z1,1, ...,z1,l},z2 = {z2,1, ...,z2,l}
12 : b′← AHO(c1,z1,c2,z2)

HO(X)

1 : If Q[X ] 6=⊥ Return Q[X ]

2 : Y $←{0,1}`,Q[X ] = Y Return Y

G9

1 : Q = /0

2 : m1,m2
$←M ,s.t. m1 6= m2, |m1|= |m2|

3 : τ1,τ2
$←{0,1}∗

4 : For x = 1,2
5 : For i = 1, ..., l

6 : zx,i = {ind( j)
x,i } j∈[1,α]

$← [1, |m1|]

7 : seedx,i = mx[ind(1)
x,i ]|| · · · ||mx[ind(α)

x,i ]

8 : rx,i
$←{0,1}`,c(1)x,i = E(rx,i,τ1)

9 : keyx,i
$←{0,1}`,Q[seedx,i] = keyx,i

10 : c(2)x,i = rx,i⊕ keyx,i,cx,i = c(1)x,i ||c
(2)
x,i

11 : cx = {cx,1, ...,cx,l}

G9

12 : zx = {zx,1, ...,zx,l}
13 : b′← AHO(c1,z1,c2,z2)

HO(X)

1 : If Q[X ] 6=⊥ Return Q[X ]

2 : Y $←{0,1}`,Q[X ] = Y Return Y

Figure 8: Game used in the proof of Theorem 3.
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where AdvROR
A ′,Π(`) is the advantage of a PPT adversary A ′ in

the real-or-random (ROR) game for π defined in Fig. 4 of
Section 4.3.

A ′ is given oracle access to some function O, and its goal is
to determine whether the returned string is randomly chosen
or generated by E of Π.

In detail: A ′ is given input ` and access to an oracle O.

1. Initialize Q = /0, run S(1`) to obtain {seed1, ...,seedl ,z},
choose τ

$←{0,1}`.

2. Query O on seed1, ...,seedl . O chooses b? $← {0,1}. If

b? = 1, O computes ci,1 = E(ri,τ), where ri
$←{0,1}`. If

b? = 0, O sets ci,1
$←{0,1}|E(ri,τ)|. O returns {ci,1,∀ i ∈

[1, l]}.

3. Choose ci,2
$←,∀ i ∈ [1, l], set ci = ci,1||ci,2 and c =

{c1, ...,cl}, and send c to A .

4. Whenever A queries HO on X , choose Y $←{0,1}`, set
Q[X ] = Y and return Y . If seedi ∈ Q, set flag = 1.

5. Choose o $←{0,1}. Output flag if o= 1 and b′ otherwise.

The view of A when run as a subroutine by A ′ in the above
procedure is identical with the view of A in G5 (when o = 1)
and G6 (when o = 0). Therefore,

Pr[RORb?=1
A ′,Π ⇒ 1|o = 0]−Pr[RORb?=0

A ′,Π ⇒ 1|o = 0]

=Pr[G5⇒ 1]−Pr[G6⇒ 1],

Pr[RORb?=1
A ′,Π ⇒ 1|o = 1]−Pr[RORb?=0

A ′,Π ⇒ 1|o = 1]

=Pr[flag = 1 in G5]−Pr[flag = 1 in G6].

Furthermore, we have

AdvROR
A ′,Π(`)

=
1
2
(Pr[RORb?=1

A ′,Π ⇒ 1|o = 1]−Pr[RORb?=1
A ′,Π ⇒ 1|o = 0])

+
1
2
(Pr[RORb?=0

A ′,Π ⇒ 1|o = 1]−Pr[RORb?=0
A ′,Π ⇒ 1|o = 0])

=
1
2
(Pr[G5⇒ 1]+Pr[flag = 1 in G5])

−1
2
(Pr[G6⇒ 1]+Pr[flag = 1 in G6]).

Then, we prove that Pr[flag = 1 in G6]≤ ql
2β
.

M is a source with β-entropy α-samples, Pr[X = seedi|z]≤
1/2β holds for each i ∈ [1, l]. Therefore,

Pr[flag = 1 in G6]≤ ql ·Pr[X = seedi|z]≤
ql
2β

.

This concludes the proof.

Theorem 3. If EpiOracle is IND$-CDA secure for symptom
content, it is IND-RTA secure for symptom frequency.

Proof. We note that in IND-RTA, d = 0 provides the eas-
iest case for A to tell whether b = 0 or b = 1. Therefore,
Pr[IND-RTAA ⇒ 1]≤ Pr[IND-RTAA ⇒ 1|d = 0]. Moreover,
G7 shown in Fig. 8 is identical with IND-RTAd=0,b=1

A , then

Pr[IND-RTAA ⇒ 1|d = 0,b = 1] = Pr[G7⇒ 1].

In G8, c2 is a random string with the same length of c1,
then we have

Pr[G8⇒ 1] = Pr[G7⇒ 1]+AdvIND-$CDA
A ′ (`),

where A ′ is a PPT adversary.
G9 is identical with G8, except that c2 is replaced with a

ciphertext of m2 6= m1 instead of a random string in G9, then
we have

Pr[G9⇒ 1] = Pr[G8⇒ 1]+AdvIND-$CDA
A ′ (`).

Actually, G9 is identical with IND-RTAd=0,b=0
A . Therefore,

AdvIND-RTA
A (`)≤ Pr[G9⇒ 1]−Pr[G7⇒ 1]

= 2 ·AdvIND-$CDA
A ′ (`).

This concludes the proof.

Security enhancement. DGA is a potential threat towards
EpiOracle if an adversary can narrow down the space of symp-
tom lists significantly and try every possible symptom list,
he can break the confidentiality of symptom and frequency.
We also propose a server-aided scheme [45] to resist such an
adversary as follows.

As shown in Fig. 9, to resist DGA, the seeds used to gen-
erate the encryption keys are hardened by a key server K S
(which holds a server-side secret key sk), and the interactions
between K S and Hi are oblivious such that no information
about the symptoms would be revealed to K S . Specifically,
after generating a symptom list mi = mi[1]|| · · · ||mi[b], for
each k ∈ [1, l], a facility Hi randomly chooses α bytes of mi,
concatenates them as a seed seedi,k, requests a signature σi,k
on seedi,k under K S ’s secret key sk in an oblivious way, de-
rives a key keyi,k using σi,k, and encrypts the tag taui using
keyi,k to obtain ci,k. Finally, pi contains all indexes of chosen
bytes and ciphertexts.

Later, when a healthcare facility H j generates a symptom
lists m j, it checks whether m j is similar to mi using pi as
follows. For each ciphertext ci,k and the corresponding in-
dexes ind(1)

i,k , ..., ind(α)
i,k , k ∈ [1, l] contained in pi, H j computes

seed′i,k as m j[ind(1)
i,k ]|| · · · ||m j[ind(α)

i,k ], obtains key′i,k following
the same steps as that Hi obtains keyi,k, and further decrypts
ci,k using key′i,k. If key′i,k = keyi,k, H j can successfully decrypt
ci,k and recover τi.
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Hi (p,mi = mi[1]|| · · · ||mi[b],τi)

For k = 1, ..., l

ind(1)
i,k , ..., ind(α)

i,k
$← [1,b]

seedi,k = mi[ind(1)
i,k ]|| · · · ||mi[ind(α)

i,k ]

rdi,k
$← Zp

seed∗i,k = rdi,k ·H(seedi,k)

seed∗i,k−−−→
σ∗i,k←−−−

σi,k = rd−1
i,k ·σ∗i,k

keyi,k = H ′(P||σi,k)

ri,k
$←{0,1}`

c(1)i,k = E(ri,k,τi),c
(2)
i,k = ri,k⊕ keyi,k

ci,k = {c
(1)
i,k ,c

(2)
i,k }

pi,k = {ci,k, ind(1)
i,k , ..., ind(α)

i,k }
pi = {pi,1, ..., pi,l}

K S(sk)

σ∗i,k = sk · seed∗i,k

Figure 9: Server-aided helper parameter generation.

By doing so, even if the adversary guesses exact mi, he can
only obtain the valid decryption key in a negligible probability
without interacting with K S . Moreover, before requesting a
hardened seed from K S , healthcare facilities blind the seed
using a fresh randomness. Therefore, K S cannot obtain any
information about the symptom lists.

In this server-aided paradigm, K S is a single point of fail-
ure: once K S misbehaves, DGA still works. To address the
single-point-of-failure problem, the above method can be ex-
tended to a multi-servers paradigm, i.e., instead of relying on
a single key server K S , a group of key servers K S 1, ...,K S v
sharing a server-side secret key in a threshold way are em-
ployed to collaboratively harden the seeds. By doing so, DGA
is resisted even if several key servers are compromised (the
number of compromised key servers does not exceed the
threshold). The details can be found in [18, 23, 65] and we do
not repeat here to avoid redundancy.

With this enhancement, EpiOracle is able to resist DGA.
Whereas we have to accept that non-trivial costs in terms of
computation and communication would be introduced due to
the employment of public-key cryptographic primitives, e.g.,
oblivious pseudorandom functions [28, 29, 38].

8 Implementation and Evaluation

8.1 Implementation
We implement an EpiOracle prototype in Java with JPBC
library [2], and the source code is available at https://

anonymous.4open.science/r/EpiOracle-BB20.
In the implementation, we choose [CTR]AES with 256-bit

key length as the symmetric-key encryption Π, SHA-256 to
implement the hash functions H,h1, ...,hs, and the data struc-
ture BitSet to implement the Bloom Filter

−→
BF . Moreover, we

set α in a length-dependent way, i.e., for a symptom list mi,
the number of positions chosen from a symptom list to gener-
ate the encryption keys is computed as SimRatio · |mi|. In the
implementation of fuzzy detection, not only the symptom lists
themselves but their all possible permutations are compared.

8.2 Evaluation method and setting
We simulate the scenario of the COVID-19 epidemic and
conduct experiments on our prototype with various system
parameters of EpiOracle for the evaluation in the aspects of
accuracy and efficiency. We evaluate the accuracy of Epi-
Oracle in terms of fuzzy detection and insertion count, we
also evaluate its efficiency in terms of computation costs and
communication costs.

To evaluate the accuracy of the fuzzy detection, we first
use a real-world dataset consisting of 200 symptom lists asso-
ciated with COVID-19. Each list is processed with FuzDet
and HelParGen to generate a tag, and the maximum number
of lists with the same tag was calculated and compared with
the ideal value, i.e. the total number of lists. In additional, we
evaluate the accuracy of fuzzy detection using a larger sam-
ple of synthesized lists. We also generated lists comprising
different symptoms to simulate “noisy” data that could occur
with other diseases and conducted experiments on this dataset
in the same manner.

To evaluate the accuracy of insertion count, we generate
a set of 32-bit random tags and insert them into the Bloom
Filter using the method described in Increase. We ensure
that one tag, denoted as τ, is inserted the threshold number
(denoted as t) of times while others are inserted less than t
times. We then count the occurrences of τ based on the Bloom
Filter, and compute the explicit threshold of each tag (i.e., the
expected number of filled slots of a tag after the threshold
number of insertions performed on the tag) using Theorem
1, and compare the count with the explicit threshold.

Now we present how we synthesize the symptom lists used
for evaluation. According to the statistical proportions of the
symptoms reported by WHO [7], we generate 2000 symp-
tom lists associated with COVID-19 and encode them using
SNOMED CT. We initialize 2000 empty lists and, for each
symptom and its proportion p, randomly insert the symp-
tom and its corresponding code into p · 2000 lists. We also
generated 2000 noisy lists comprising some common symp-
toms such as Stomachache (33.4%), Hypothermia (87.9%),
Dirty sputum (14.8%), Angina (18.6%), and Genus herpestes
(38.1%). All experiments are performed on a laptop equipped
with an Intel Core i5 CPU and 16 GB LPDDR4X RAM.
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Figure 10: Results of fuzzy detection.

8.3 Accuracy
Fuzzy detection. We first conducted experiments on the 200
real-world symptom lists with varying values of (l,SimRatio),
where l denotes the number of ciphertexts in each helper pa-
rameter and SimRatio denotes the ratio of the number of bytes
selected from a symptom list for the generation of encryption
keys to the length of the corresponding symptom list. The ex-
perimental results are presented in Table 2. From the results,
we observed that the accuracy of fuzzy detection of EpiOracle
is around 70% when (l,SimRatio) = (10,0.8).

Subsequently, we conduct experiments using the synthe-
sized lists with l = 1 and SimRatio= 0.6. We vary the number
of symptom lists (denoted by Sym_Num) of COVID-19. We
also set l = 10, Sym_Num = 2000, and vary SimRatio and the
number of noisy symptom lists (denoted by Noi_Num). The
results are presented in Fig. 10.

The results reveal that the accuracy of EpiOracle decreases
with an increase in SimRatio in the absence of noise. However,
in practical scenarios, symptom lists of other diseases are also
present, and a smaller SimRatio can lead to a higher likelihood
of detecting disparate symptom lists as similar. Moreover, the
impact of noise on the accuracy of EpiOracle decreases with
an increase in SimRatio. For instance, when SimRatio = 0.6
and 2000 symptom lists of COVID-19 are provided, EpiOracle
detects around 1350 similar lists. With the addition of 2000
noisy lists, the number of similar lists detected by EpiOracle
increases to about 1450.

SimRatio l
Number of similar lists detected

by EpiOracle

0.6
1 136 109 92 57 75
5 123 130 86 89 125

10 97 131 85 123 131

0.7
1 77 93 83 85 142
5 144 161 142 136 69

10 146 142 141 141 141

0.8
1 75 64 107 64 78
5 141 142 138 142 145

10 140 144 141 141 141

Table 2: Experimental results of fuzzy detection based on 200
real-world symptom lists.

Increment count. The count of a tag is increased by in-
serting the tag into the Bloom Filter, i.e., randomly choosing
an unfilled slot of the tag’s item set and setting the slot to
1. The number of slots in an item set, denoted by s, and the
number of slots of the Bloom Filter, denoted by L, along with
the number of insertions performed on the target tag, denoted
by t, and the number of the insertions performed on other
tags, denoted by ι, can impact the accuracy of the increment
count. To evaluate this impact, we vary the values of (s,L, t, ι),
compute the corresponding T , which we present in Table 3,
and conduct the following experiments.

We conduct experiments to evaluate the accuracy of incre-
ment count by varying the number of insertions performed
on a target tag (300 ≤ t ≤ 1200) and on other tags (600 ≤
ι≤ 2400), the number of slots in an item set (211 ≤ s≤ 212),
and the number of slots in the Bloom Filter (212 ≤ L≤ 216).
The results, presented in Fig. 11, demonstrate that using T as
the explicit threshold instead of t can significantly improve
the accuracy of increment count. When the total number of
insertions exceeds 1500, T and the actual counting result are
almost the same. For 3600 insertions, EpiOracle achieves a
relatively high accuracy of increment count by setting L = 216

and s = 212, resulting in an 8 KB Bloom Filter size.

8.4 Efficiency
Computation costs. We evaluate the impact of parameters l,
α, L, and s on the computation costs incurred by the facility
side. We conduct 2000 experiments with different (l,α,L,s)

t

T ι
600 1200 1800 2400

300 600 900 1200 1500
600 900 1200 1500 1800
900 1200 1500 1800 2047

1200 1500 1800 2048 2048

(a) L = 212,s = 211.

t

T ι
600 1200 1800 2400

300 375 450 506 575
600 719 781 818 879
900 975 1050 1125 1200

1200 1275 1350 1425 1500

(b) L = 214,s = 211.

t

T ι
600 1200 1800 2400

300 344 365 413 450
600 638 675 712 750
900 938 975 1013 1050

1200 1238 1275 1313 1350

(c) L = 216,s = 212.

Table 3: Explicit threshold (T ).
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Figure 11: Evaluation results of increment count.
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Figure 13: Communication costs between a facility and cloud.
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Figure 12: Computation delay on the facility side.

configurations and present the average computation delay in
Fig. 12. Notably, when (l,α,L,s)= (10,27,216,212), the aver-
age computation delay is around 12.4 ms, which is considered
acceptable for the facilities.

Communication costs. In terms of communication costs,
we measure the costs incurred by obtaining the Bloom Filter
and outsourced helper parameters from the cloud server, and
sending helper parameters and hash values of tags to the cloud
server for count increase. We set L = 220 (resulting in a 32
KB Bloom Filter), and conduct experiments with different l
and L. The results are presented in Fig. 13. We observe that
when L = 221 and 100 similarity checks are performed, the
communication costs on the facility side are less than 40 KB,
which is highly efficient.

9 Conclusion

In this paper, we have analyzed the security of syndrome-
based early epidemic warning systems and formalized two
security notions: symptom confidentiality and frequency con-
fidentiality. We have developed EpiOracle, a cross-facility
syndrome-based early unknown epidemic warning scheme
with privacy preservation. We have formally proved that Epi-
Oracle is secure in the random oracle model. We have imple-
mented an EpiOracle prototype and evaluated its performance.
The evaluation results demonstrate the practicality and ef-
ficiency of EpiOracle. For future work, we will investigate
how to detect similar symptom lists using other similarity
measurements such as edit distance and set difference.
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A Preliminaries

Bloom filter. A Bloom Filter is essentially a bit vector initial-
ized to 0 [26]. After inserting a set of elements into a Bloom
Filter, it is efficient to check whether an element is a member
of the set using the Bloom Filter approximately.

Fix a Bloom Filter−→v with randomly selected k independent
hash functions {hi}k

i=1, given a set S, an element a ∈ S is
inserted into −→v by setting all slots in a’s item (i.e., the hi(a)-
th component of −→v for each i ∈ [1,k]) to 1.

After inserting all elements in S into−→v , the membership of
an element a can be verified by checking whether−→v [hi(a)] =
1,∀i ∈ [1,k]. If not, a /∈ S. Otherwise, there are two cases: (1)
a ∈ S, or (2) a false positive occurs, i.e., a /∈ S, and all slots in
a’s item set are set to 1 when inserting other elements.

The variant used in this paper. Fix a Bloom Filter −→v with
randomly selected k independent hash functions {hi}k

i=1, the
tally of an element a is increased by 1 via setting a random
slot in a’s item where the bit is 0 (i.e., the hi(a)-th component
of −→v for random i ∈ [1,k] and −→v [hi(a)] = 0) to 1.

After being increased multiple times, a can be tallied by
computing the number of slots set to 1 in a’s item. Specifically,
let num denote the tally of a and initialized to 0, for each
i ∈ [1,k], if −→v [hi(a)] = 1, num = num+1.

Hamming distance. Given two strings s1,s2 of length n over
some arbitrary alphabet Z, the Hamming distance between s1
and s2 represents the number of positions where are different
[52], which can be mathematically denoted by dis(s1,s2) =
|D|, where D = {x|s1[x] 6= s2[x],∀x ∈ [1,n]}.
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Min-entropy and high-entropy samples. Given a variable
X = X [1]|| · · · ||X [n] of length n over some arbitrary alphabet
Z and a particular outcome x, its min-entropy is

H∞(X) =− log(max
x

Pr[X = x]),

the average min-entropy of X given another variable Y is

H̃∞(X |Y ) =− log(Ey∈Y max
x

Pr[X = x|Y = y]),

and for some parameters α, β, and uniformly chosen indexes
{1≤ i j ≤ n}α

j=1, X is a variable with β-entropy α-samples if

H̃∞(Xi1 ,Xi2 , · · ·Xiα |i1, i2, ..., iα)≥ β,

which is defined in [30].

B Artifact

Abstract
Our artifact consists of an EpiOracle prototype and

a database storing the data set used in our experiments.
EpiOracle is a syndrome-based early warning system for
unknown epidemics. It supports fuzzy detection over the
ciphertexts of the symptom lists and the statistics on the
frequency of each list as well as its similar ones. The data set
is generated according to the symptom information published
by WHO.

Scope
Our artifact can be used to prove the correctness and the

feasibility of EpiOracle. It can also be used to evaluate the
performance of EpiOracle. Specifically, it demonstrates that
EpiOracle can be deployed in practice and function well. It
can be used to evaluate the computation and communication
costs, the accuracy of fuzzy detection and the increment count.
It can also be used to validate the evaluation results presented
in Section 8.
Content

The artifact comprises the following sub-directories:
• ./EpiOracle, which contains the sourcecode of the EpiOr-

acle prototype.
• ./DataSet, which contains the data set used in the experi-

ments detailed in Section 8.
• Additionally, a README file is included to introduce

the build instructions and usage.
Requirements

We developed and evaluated our artifact on a laptop with
macOS Monterey 12.5.1, an Intel Core i5 CPU, and 16
GB LPDDR4X of RAM. The prototype is implemented
in JAVA with the JPBC library. Moreover, to run the pro-
totype correctly, some basic packages including jna, jpbc-
api, jpbc-benchmark, jpbc-crypto, jpbc-mm, jpbc-pbc, jpbc-
plaf, c3p0, commons-codec, and mysql-connector-java are
required. The versions of these tools are detailed in the
README file (https://anonymous.4open.science/r/
EpiOracle-BB20/README.md).
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