
1

A Comprehensive Survey on Non-Invasive Fault
Injection Attacks

Amit Mazumder Shuvo, Graduate Student Member, IEEE, Tao Zhang, Graduate Student Member, IEEE,
Farimah Farahmandi, Member, IEEE, and Mark Tehranipoor, Fellow, IEEE

Abstract—Non-invasive fault injection attacks have emerged
as significant threats to a spectrum of microelectronic systems
ranging from commodity devices to high-end customized proces-
sors. Unlike their invasive counterparts, these attacks are more
affordable and can exploit system vulnerabilities without altering
the hardware physically. Furthermore, certain non-invasive fault
injection strategies allow for remote vulnerability exploitation
without the requirement of physical proximity. However, existing
studies lack extensive investigation into these attacks across di-
verse target platforms, threat models, emerging attack strategies,
assessment frameworks, and mitigation approaches. In this paper,
we provide a comprehensive overview of contemporary research
on non-invasive fault injection attacks. Our objective is to
consolidate and scrutinize the various techniques, methodologies,
target systems susceptible to the attacks, and existing mitigation
mechanisms advanced by the research community. Besides, we
categorize attack strategies based on several aspects, present a
detailed comparison among the categories, and highlight research
challenges with future direction. By underlining and discussing
the landscape of cutting-edge, non-invasive fault injection, we
hope more researchers, designers, and security professionals ex-
amine the attacks further and take such threats into consideration
while developing effective countermeasures.

Index Terms—Non-invasive attacks, fault injection, threat
model, security, assessment, target system, mitigation techniques.

I. INTRODUCTION

W ith the increasing reliance on computing systems for
critical applications, ensuring their security and relia-

bility has become an urgent and paramount concern. Among
the emerging threats in hardware security, fault injection
attacks have garnered significant attention. These attacks can
introduce faults or errors into system-level security-critical
operations, intending to compromise their confidentiality, in-
tegrity, and/or availability [1], [2]. Fault injection attacks have
been carried out using invasive or semi-invasive methods,
where adversaries have to physically modify or manipulate
the hardware or software components of the targeted system
through sample preparation (e.g., chip depackaging) in most
laser and micro-probing fault injections [3]–[6]. Such invasive
or semi-invasive techniques, albeit sometimes extremely ef-
fective, are often cumbersome, calling for costly setup with
direct access to the system. Besides, the physical damage/al-
tering renders perceptible footprints, making these invasive
solutions less promising options when stealthy intrusions are
prioritized [7]–[9]. In contrast, non-invasive fault injection
techniques can eliminate mandatory physical modification
by exploiting inherent vulnerabilities of system operations
through clock [10], voltage [11], or electromagnetic (EM) [12]
glitches, enabling security compromise more covertly without
sacrificing effectiveness. On top of that, quite a few emerging
non-invasive techniques are proposed and demonstrated to

Amit Mazumder Shuvo, Tao Zhang, Farimah Farahmandi, and Mark
Tehranipoor are with the Department of Electrical and Computer Engineering,
University of Florida (email: amazumdershuvo@ufl.edu, tao.zhang@ufl.edu,
farimah@ece.ufl.edu, and tehranipoor@ece.ufl.edu)

cause disturbance on target platforms remotely through run-
time overclocking [13] and undervolting [14], [15] within a
device.

Although non-invasive fault injection attacks manifest ex-
cellent capabilities and the potential to subvert the security of
crucial infrastructure, the majority of academia and leading
industry, unfortunately, may not raise sufficient awareness on
such issues. The rapid development of cutting-edge attacks
and countermeasures in the landscape of non-invasive fault
injection research also motivates us to present a comprehensive
survey to close the gap in the following aspects.
• A wide range of target systems vulnerable to non-invasive

fault injection attacks are investigated in the literature. These
systems include Internet of Things (IoT) devices, crypto-
graphic circuits, microcontrollers, microprocessors, FPGAs,
and cloud computing infrastructures [16]–[20]. However,
there is a lack of comprehensive research on characterizing
the impacts of different microelectronic platforms on the
effectiveness of particular fault injection attack strategies.

• There are emerging non-invasive attack techniques that
appear to be more threatening, e.g., being stealthier, more
effective, and easier to launch than their conventional
counterparts, with an extensive set of security threats and
threat models [13]–[15], [21]. These novel attacks call
for dedicated introduction, investigation, and discussions
to understand their working principles for countermeasure
development,

• Countermeasures have also been proposed against fault
injection adversaries, including approaches such as fault de-
tection and fault mitigation. Fault detection aims to catch the
induced errors, while fault mitigation can minimize the neg-
ative impacts of injected faults (e.g., hardware redundancy,
software-based/algorithm-based mitigation, etc.) [22]–[27].
Unfortunately, extant surveys did not review, organize, and
discuss these countermeasures systematically based on their
benefits, limitations, and the types of attacks they are
designed to counter.

• In addition to countermeasures, quite a few pre-silicon fault
injection assessment frameworks have been developed to
evaluate the vulnerability of a hardware design prior to
tape-out using modern electronic design automation (EDA)
tools [28], [29]. Their applications for assessing the via-
bility of fault injection attack strategies remain relatively
unexplored and require more elaboration.

Although existing literature portrays some surveys on fault
injection attacks concentrating on different implementation
platforms and attack strategies, most of them lack state-of-
the-art non-invasive fault injection attacks [30]. Furthermore,
recent surveys overlook exploring these techniques within the
context of threat models, fault injection methodologies, assess-
ment frameworks, and countermeasures [31]. Consequently,
the existing fault injection attack classifications presented
in the literature lack a comprehensive taxonomy specifically
addressing the non-invasive techniques while considering the



2

abovementioned criteria.
To address these limitations, we investigate and analyze the

state-of-the-art non-invasive fault injection techniques, steps
and strategies of the attacks, associated threats with target
devices, assessment frameworks to evaluate the vulnerability,
and countermeasures to thwart the attacks. We also categorize
both the attack strategies and countermeasures based on our
comprehensive investigation. To the best of our knowledge,
this is the first attempt to explore the differences and simi-
larities among several non-invasive fault injection techniques,
providing helpful insights on effective defenses against emerg-
ing threats and inspiring further research in this field. Our main
contributions in this paper are summarized as follows.

• We explore the target devices of the attacker, attack
vectors, and the related threat models in detail.

• We propose a taxonomy of the non-invasive fault injection
attacks by investigating various variants, such as physical
and non-physical attacks on hardware and software-based
platforms.

• We discuss simulation-based assessment frameworks of
the non-invasive attacks and their objectives. In addition,
we discuss existing mitigation strategies and countermea-
sures against non-invasive fault injection attacks.

• We identify open research challenges and future direc-
tions to enhance the resilience of systems against non-
invasive fault injection attacks.

The rest of this paper is organized as follows. Section II
provides objectives and characteristics of non-invasive fault
injection attacks with their differences from semi-invasive and
invasive attacks, Section III describes potential threats and
target devices of these attacks, Section IV provides a detailed
taxonomy of non-invasive fault injection attacks, Section V
describes assessment frameworks, Section VI discusses mitiga-
tion techniques to counter these attacks, Section VII provides
open research challenges with future research direction and
Section VIII concludes the survey.

II. OVERVIEW OF NON-INVASIVE FAULT INJECTION
ATTACKS

A. Objective
A non-invasive fault injection attack aims to compromise a

targeted device’s confidentiality, integrity, and/or availability
by leveraging the implementation weakness. By manipulat-
ing the system’s functionality through controlled injection of
faults, an adversary seeks to steal cryptographic keys, private
information, configuration bits, device’s firmware, modify re-
stricted memory contents, and potentially gain unauthorized
access or control. In general, the adversary discovers the po-
tentially vulnerable locations by analyzing a design’s hardware
and injects faults with precise control over timing and locations
using non-invasive techniques.

B. Characteristics
A non-invasive fault injection attack requires minimal cost

to set up the target device since one is assumed to intercept
the device’s communication traffic or connect it to a test
circuit for in-depth analysis of system functionality and timing.
Once correctly discovered, fault injection attacks can be easily
reproduced at a negligible cost. Additionally, these attacks
leave no detectable traces, making them a formidable threat to
the security of various devices [1]. Moreover, these attacks are
active in nature, which means run-time manipulation of signals
directed toward the device and malicious modification on the
benign system behaviors, rendering static countermeasures less

useful. Therefore, detecting such attacks on specific devices
often demands substantial time and effort, involving activities
like reverse engineering through software disassembly or com-
prehending intricate hardware designs. This underscores the
need for an in-depth understanding of the chip architecture and
associated software for devising effective non-invasive fault
injection attacks.

Target Hardware Target Software

Malicious Code

Bug

Direct
Physical
Access

Physical
Proximity

Target Device

Local Attacker Local Attacker Remote Attacker

Faulty
Configuration

HW/SW
Interface

Fig. 1: Various non-invasive fault injection techniques

Note that most of these attacks are physical attacks since
they require direct physical access or proximity to the target
devices. However, an unprivileged adversary can leverage
software or hardware-software interface to conduct specific
non-invasive fault injection attacks remotely without requiring
physical access. Figure 1 illustrates a very high-level overview
of these non-invasive fault techniques with both local and
remote attackers. We present a detailed discussion on several
non-invasive fault injection techniques afterward (see Sec-
tion IV).

C. Difference From Invasive and Semi-Invasive Fault Injection
Attacks

Besides non-invasive fault injection, there are two other
important categories in this landscape, i.e., invasive and semi-
invasive attacks. We compare and contrast them with non-
invasive attacks as follows, with a summary of the comparison
illustrated in Table I.

Invasive Fault Injection Attacks: Invasive fault injection
attacks mandate direct entry into a device’s internal compo-
nents after removing and destroying chip packaging [32]. Typ-
ically, these attacks can be very effective as they can directly
access and read the internal signals physically. Meanwhile,
they demand costly setups equipped with micro-probing and
focused ion beam (FIB) facilities [33], [34]. It is also expertise-
intensive to maneuver the high-end equipment precisely for
these attacks. Nonetheless, initiating such attacks necessitates
a minimal preliminary understanding of the functional behav-
iors of both the chip and software, often involving consistent
methods across various products [1].

Semi-invasive Fault Injection Attacks: There exist sig-
nificant contrasts between non-invasive and invasive attacks,
giving potential for semi-invasive attacks that share character-
istics of both [35]. Although both semi-invasive and invasive
attacks need to process the chip packaging (e.g., removal),
semi-invasive approaches maintain the chip’s passivation layer
intact without establishing connections with internal lines [1].
As such, like non-invasive ones, semi-invasive techniques can
be more affordable and easier to reproduce than invasive
solutions by using physical measures such as laser or optical
illuminations [36], [37].



3

TABLE I: List of Differences Among Non-invasive, Semi-
invasive and Invasive Fault Injection Attacks

Non-invasive
Attacks

Semi-invasive
Attacks

Invasive
Attacks

Cost
of

attacks
Low Medium High

Level of
physical

tampering
required

Low Medium High

Level of
knowledge
required

of the target
functionality

High Medium Low

Type
of

attacks

Physical
and

non-physical
Only Physical Only Physical

Examples
of

techniques

Clock and voltage
glitching,

overheating,
EM fault,

software fault,
remote hardware

faults, etc.

Laser and
optical

fault injection
attacks

Micro-
probing,
reverse

engineering,
IC

modification,
etc.

III. THREAT MODELS AND TARGET DEVICES

Several well-known threats introduced by non-invasive fault
injection attacks and the associated threat models have been
covered in the literature. These attacks are performed in
various manners (see Section IV) to induce hardware bit-flips,
bit-set-resets, and software faults to compromise system-level
security. Diverse target platforms adhere to their specific archi-
tectures and operational principles, resulting in a wide range
of potential targets for non-invasive fault injection attacks.
These targets may include instructions within microcontrollers
or the security-sensitive register values in FPGA or ASIC im-
plementations. In essence, this rich diversity of target options
is a source of inspiration for skilled adversaries to develop
versatile and adaptable attack strategies that can be tailored to
exploit the unique characteristics of each platform. Therefore,
it is imperative to discuss particular threats related to different
target devices. We elaborate on this topic as follows.

A. Microprocessor and Microcontroller-Based Systems
A single or multi-bit fault can threaten the security of

a CPU or an embedded processor. Generally, the processor
instructions can be classified into three groups according to the
specific architectural components in which they are executed,
i.e., arithmetic/logical operations, memory writing/reading,
and branch instructions [20]. An attacker can introduce a fault
during the instruction fetch stage by either altering the opcode
or arguments of the instruction that cause the instruction to
be substituted by another instruction. In addition, faulting
branch instructions can maliciously modify the control flow
of programs since their configuration determines branch desti-
nations [20]. As such, an adversary can leverage non-invasive
fault injection attacks to effectively compromise both the data
and control flow integrity during the run-time microelectronic
operations [19]. Consequently, a computational error by exe-
cuting faulty instructions or modified control flow may leak
sensitive information and pose a security threat to the overall

system. Moreover, faults induced by non-invasive techniques
can result in erroneous data within the memory, causing an
unauthorized modification of the sensitive information (e.g.,
Data integrity violation) [38].

B. FPGA
The primary goal of attacking an FPGA-based system

includes corrupting the configuration bitstream or maliciously
altering the functionality of the implemented design. An
attacker can violate the system’s integrity by introducing bit-
flip or bit-set reset faults into the configuration bits of a
running FPGA [39]–[41]. Similarly, injecting bit-flip faults
into the configurable logic blocks (CLBs) may bypass the
built-in security mechanism of an implemented design (e.g.,
crypto modules) or violate data confidentiality [17]. Recent
investigations have unveiled hardware-based fault injection
techniques applicable to shared cloud FPGAs (multi-tenant
model). These tactics revolve around the manipulation and
subsequent overloading of the shared power distribution sys-
tem (PDS), leading to the induction of voltage drooping. By
deliberately timing these malicious voltage drops, attackers
can induce timing violations that slow down the transmission
of deep neural network (DNN) weight packages between off-
chip memory and on-chip buffer and result in a faulty package
capture at the receiving end (adversarial weight duplication
attack). As a result, these faulty packages can lead to the
duplication of DNN weight parameters, negatively affecting
the performance of the DNN [42]. Recent strides have also
been made in developing software-based fault injection strate-
gies targeting FPGAs. These strategies highlight the potential
for a spatially and logically segregated attacker within one
FPGA fabric region to inject faults into a victim tenant in a
separate region. By exploiting the creation of supply voltage
drops through deliberate malicious switching activity, these
tactics manifest as software-initiated fault attacks on multi-
tenant FPGAs [43].

C. Hardware Accelerators
A recently developed form of non-invasive GPU fault injec-

tion attack, known as the overdrive attack, exploits vulnerable
software interfaces to the GPU driver [44]. This enables
customization of GPU hardware settings, including dynamic
voltage and frequency scaling (DVFS). By capitalizing on
this capability, researchers have introduced random faults
during the execution of GPU kernels, consequently inducing
occurrences of silent data corruption (SDC). By exploiting
this SDC-triggering fault injection, an investigation involved
the injection of faults into a GPU-accelerated kernel running
the AES (Advanced Encryption Standard). Remarkably, this
approach facilitated the recovery of all encryption keys [45].

Moreover, the Rowhammer attack [46], which enables
attackers to corrupt data in adjacent memory locations by
iteratively accessing a row within modern DRAM chips, is
not limited to solely CPU-based homogeneous systems. The
landscape of integrated CPU-GPU heterogeneous systems in
mobile system-on-chip (SoC) has given rise to a web-based
GPU-accelerated Rowhammer attack on shared memory [47],
[48]. These integrated configurations share The memory sub-
system between the CPU and GPU. The study demonstrated
the GPU’s potential to amplify the Rowhammer attack. By
exploiting bit flips from Rowhammer, the researchers managed
to escape the confines of the Firefox sandbox. This escape
enabled them to breach address space layout randomization
(ASLR), originally intended to secure arbitrary read and write



4

Non-Invasive Fault
Injection Attacks

Physical Attacks Non-Physical
Attacks

Hardware-Based
Attacks

Emulation-Based
Attacks

Contact-Based
Attacks

Contact-Less
Attacks

Software
Faults

Software-Induced
Hardware Faults

Remote Memory
Attacks

Remote Timing-
Fault Attacks

Simulation-Based
Attacks

Fig. 2: Taxonomy of non-invasive fault injection attacks.

capabilities of remote code execution. The modern GPU’s
extensive parallelism and high memory bandwidth introduce a
potential vulnerability to attacks like Rowhammer, primarily
because these GPUs can generate memory accesses signifi-
cantly faster than CPUs. Apart from these, modern ML/AI
accelerators or other ASIC accelerators are also vulnerable to
the aforementioned fault-injection attacks.

D. Application Specific Integrated Circuits (ASIC)
Since a modern SoC consists of a wide range of compo-

nents, including the functional blocks of intellectual properties
(IPs), bus protocols, interconnects, memory blocks, power
management units, etc., several non-invasive fault injection
attacks targeting these components are also very common.
An attacker tries to generate corrupted and/or prematurely en-
crypted output through non-invasive fault injection techniques
on the cryptographic IPs (e.g., AES, RSA, MAC, ECC, etc.).
These fault injection techniques can be paired with advanced
fault analysis techniques such as differential fault analysis
(DFA), differential fault intensity analysis (DFIA), and fault
sensitivity analysis (FSA) to extract the secret keys [49]–
[51]. In addition, premature results can either undermine the
security levels of cryptographic implementations or bypass the
security features. Several hardware and software fault injection
techniques induce bit-flips into the configuration bits of a
functional block within a chip, ultimately compromising the
system’s security [52], [53].

Various software-driven fault-injection attacks have demon-
strated the capability to substantially reduce the supply voltage
during software computations executed on a CPU within
an integrated CPU-FPGA SoC [54]. Furthermore, instances
of Rowhammer attacks have been orchestrated, originating
from the FPGA component, resulting in the corruption of
the host system’s main memory within integrated CPU-FPGA
setups [55]. Moreover, distinct implementations and method-
ologies for exploitation have been devised to take advantage of
this vulnerability within native environments. It has led to the
attainment of kernel privileges by initiating bit flips on page
table entries. Such actions have been carried out in diverse
scenarios, encompassing web browsers where the objective
has been to defeat the constraints of the JavaScript sandbox.
Additionally, these techniques have been extended to virtual
machines within cloud computing environments [45].

Each component of modern SoC can be interconnected with
others or interfaced with system memory via physical inter-
connects. Bus protocols with specialized designs have been

created and adopted (e.g., advanced peripheral bus (APB),
advanced extensible interface (AXI), peripheral component
interconnect express (PCIe), etc.) to facilitate reliable data
exchange through interconnections among these diverse SoC
components [56]–[58]. The hardware constituents associated
with these protocol layers are susceptible to various non-
invasive fault injection techniques [45]. Recent research also
underscores the ability of software-based attacks to circumvent
secure communication channels established between ASIC
components. In this case, the primary goal of an adversary
is to induce bit-flip faults and maliciously alter the desired
flow of data transactions. These scenarios may potentially lead
to denial of service (DoS) attacks and prevent secure data
availability at the desired time.

IV. TAXONOMY OF NON-INVASIVE FAULT INJECTION
ATTACKS

This section presents an all-encompassing classification
of non-invasive fault injection attacks. This classification is
structured around a set of characterizations, including the
types of threats posed, the specific targets of these attacks,
the diverse attack vectors employed, and the fault injection
techniques utilized. Figure 2 illustrates the taxonomy of these
attacks. Note that any non-invasive fault injection attack can
be classified into two major categories: physical and non-
physical attacks based on the availability of physical proximity.
We elaborate on each category and sub-category with their
comparison in the following subsections.

A. Physical Attacks
When a non-invasive fault injection attack requires physical

access or physical proximity to the target devices, it is then
categorized as a physical attack. In such scenarios, the attacker
must introduce the fault into the device via accessible pins like
clock input and power supply or through mediums such as
thermal or electromagnetic radiation. These entry points allow
the attacker to affect the device physically from the external
environment. Although the level of access and interaction with
the target device vary depending on the attacker’s skill set
and fault-injection setup, this hands-on access can potentially
amplify the attack’s impact as the attacker gains more control
over the injection process.

By leveraging a physical fault injection technique, an adver-
sary can directly target a hardware device running a security-
sensitive operation to violate confidentiality or integrity. On
the other hand, it is also possible to emulate the fault injection



5

attacks in an emulator or generate a simulation-based attacking
environment using commercial EDA tools. These approaches
allow an attacker to observe the attack’s impact on the emu-
lated hardware or in the simulation result before attacking the
original target device. In addition, emulation and/or simulation
also allow the reproduction of the attack scenarios with
different attack intensities for further research. Therefore, a
physical attack can be further classified into hardware-based
attacks, emulation-based attacks, and simulation-based attacks
as depicted in Figure 2. Note that an emulation/simulation-
based attack is a pre-analysis or preparation for in-field attacks
instead of an actual attack. It signifies that the principal goal
of these attacks is to assess the feasibility and challenges
associated with fault injection techniques prior to executing
the authentic attacks on a hardware device. Therefore, in
an emulation/simulation-based attack, the attacker applies the
same fault injection techniques they intend to employ on the
physical device during a hardware-based attack.

Target Hardware

External Pins

Pin-level Access

Hardware Setup for
Fault Injection and

Monitoring

External
Energy Sources

Fig. 3: Hardware-based fault injection approach into target hardware.

1) Hardware-Based Attacks: The approaches used in
hardware-based fault injection attacks involve augmenting the
targeted system by incorporating specialized hardware compo-
nents. This augmentation facilitates the deliberate introduction
of faults into the system, enabling subsequent observation
of their consequences [30]. However, this external hardware
setup may be a bit expensive in some cases. Hardware-based
fault injection techniques can be executed using either contact-
based methods, where the external interface of the integrated
circuit is disrupted (e.g., using active probes at the pin level
or engaging in tampering), or contact-less methods, which
involve directing external energy resources towards specific
design components. Figure 3 illustrates the high-level diagram
of a hardware-based fault injection technique, including an
external setup for fault injection and attack monitoring. In the
latter approach, certain segments of the hardware design are
subjected to external influences such as electromagnetic sig-
nals or thermal waves, thereby corrupting the functionality of
the digital elements within the hardware. We briefly describe
different hardware-based attacks as follows.

a) Contact-Based Attacks: Contact-based fault injection
methodologies typically utilize pin-level tools to introduce
faults. These tools encompass active probes that are directly
connected to the pins of integrated circuits, such as processor
chips [31]. This technique grants users complete control over
the location of fault injection and fault timing, enabling a
consistent and continuous injection as required. For instance,
an adversary can manipulate the clock pin of a device during
a security-critical operation, thereby instigating clock glitches
within the system’s clock. Consequently, the timing window
available for capturing input data diminishes, potentially re-
sulting in a flip-flop violating its setup-time constraint. This
violation forces the flip-flop into a metastable state, which in
turn can trigger a bit-flip fault at the flip-flop’s output (see

Setup-time Hold-time

Glitchy Clock

Launching Flop's Output

Capturing Flop's Input

Capturing Flop's Output

Clock-to-q Delay

logic propagation delay

Metastability

(a)

Metastability

Clock

Launching Flop's Output

Clock-to-q Delay

Capturing Flop's Input

Capturing Flop's Output

Increased logic propagation delay

Setup-time Hold-time

(b)

Fig. 4: Setup-time violations cause timing faults to hardware registers
by (a) shortening the clock period and (b) decreasing supply voltage.

Figure 4a). Similarly, an attacker can induce drastic voltage
glitches on the power supply pins to increase logic propagation
delays along the timing paths. Consequently, metastability may
arise, resulting in compromised security due to the eventual
induction of bit-flip timing faults within the system (see
Figure 4b).

b) Contact-Less Attacks: In contrast, the contact-less
physical approach to fault injection involves using an external
device capable of emitting high-energy radiation or waves,
which can disrupt the regular operations of a hardware cir-
cuit [31]. These energy emissions encompass electromagnetic
radiation and excessive heat. Typically, attackers deploy active
probes to generate electromagnetic (EM) radiation, leading to
the induction of eddy currents within the loop interconnects
(e.g., ring stripes in the on-chip power network) of the running
device. Consequently, this process triggers a localized IR drop
within the circuit, thereby increasing logic propagation delays
and eventually provoking transient faults. Furthermore, over-
heating also contributes to the increase of logic propagation
delays within the targeted hardware, subsequently giving rise
to transient faults. Notably, it is crucial to exercise precise
control over both the physical proximity and the intensity of
the energy source to prevent accidental impairment or even
irreversible damage to the target devices.

2) Emulation-Based Attacks: Fault emulation techniques
combine the performance of hardware-based approaches with
the precision of software-based controls. As a result, their
implementation encompasses both software and hardware
phases [31]. A notable advantage of the emulation-based ap-
proach is its unrestricted flexibility in selecting fault locations.
Moreover, these techniques eliminate the need for a physical
rendition of the component dedicated to fault injection and
reliability evaluations.

This approach synthesizes and implements an emulated



6

Test Vector 

Hardware
Description
Language

Bit File GenerationPin Assignment

20 11

21 10

22 9

1

19

2

18

3

17

4

16

5

15

6

14

7

13

8

12

FPGA

Selected Location For Fault Injection

Host Computer

(a)

Design
Specification

Design Abstracts
(RTL, Gate-level,

Layout-level
Designs)

EDA Tool

Testbench

Simulation Environment

(b)

Fig. 5: (a) Emulation-based fault injection approach. (b) Simulation-based fault injection approach

version of the target device on programmable hardware, such
as FPGAs. The process involves a software-driven workflow
that generates a bit file using the source hardware description
language (HDL) representation of the target device [31].
Subsequently, this bit file is employed to configure the FPGA.
Following this, an attacker adheres to the same flow to
designate specific segments of the FPGA for fault injection.
The fault injection process involves applying testbenches
with faulty test vectors. Note that the master software on a
host computer manages the entire process, including FPGA
programming and flow coordination. Additionally, the host
scrutinizes the consequences of the fault injections, thereby
enabling a comprehensive analysis of their effects. The high-
level flow of the emulation-based fault injection attack is
illustrated in Figure 5a.

It is essential to recognize that while FPGAs are often
employed for emulating target hardware, substantial disparities
exist between FPGA and ASIC implementations across various
dimensions, such as design complexities, design adaptability,
power consumption, timing, area, etc. These discrepancies
imply that the hardware emulated on an FPGA may not
accurately mirror the characteristics of the original target
hardware due to differences in the underlying implementation
platforms [59], [60]. Consequently, the susceptibility of the tar-
get hardware to fault injection may vary depending on where it
is instantiated. Hence, a designer must take into account these
differences between original and emulated hardware while
analyzing the design’s susceptibility to emulation-based fault
injection attacks.

3) Simulation-Based Attacks: Unlike the emulation-based
counterpart, the method of simulation-based fault injection
creates a simulation model replicating the system being ex-
amined [30]. The process also involves the development of
a detailed simulation model of the fault injection techniques
employed. The construction of these simulation models is
facilitated through commercial EDA tools specifically devel-
oped to design and validate hardware components at the pre-
silicon stage. It is worth mentioning that a simulation-based
fault injection technique is an integral part of the pre-silicon
security verification of a chip to reduce the cost of post-silicon
validation [61]. Recent research suggests that several assess-
ment frameworks are established that utilize simulation-based
frameworks to analyze and quantify a design’s susceptibility
to potential fault injection attacks [28], [29], [62].

With a simulation-based fault injection framework, faults

can be deliberately introduced into diverse design abstractions
of the intended target, spanning various pre-silicon levels such
as register transfer level (RTL), gate level, or physical layout
level. Specially developed testbenches within the simulation
environment feed the target design with necessary stimuli to
inject and excite the desired fault locations on time. After that,
a designer utilizes EDA tools (Xcelium from Cadence, Z01X
from Synopsis, etc.) to simulate the design with the injected
faults [63], [64]. The same simulation environment is also har-
nessed for assessing and analyzing the simulation outcomes.
Generally, the EDA tools are deployed on a server accessible
via a host computer. This setup facilitates the orchestration
of the simulation processes and the subsequent evaluation of
results within a controlled and systematic environment. The
high-level flow of the simulation-based fault injection attack
is illustrated in Figure 5b.

Note that the accuracy of pre-silicon assessment obtained
from a simulation-based framework depends on the character-
ization of fault injection techniques using EDA tools and the
differences between the pre-silicon and post-silicon phases of
a design concerning design parameters and specifications [65].
These differences are the key reason for the deviation between
a simulation-based attack and a hardware-based actual attack.
Therefore, a designer must consider the unpredictable factors
(e.g., on-chip process variation, temperature, noise, fluctua-
tions in supply voltage, etc.) causing these differences that
emerge during chip fabrication or in-field operation [28].

B. Non-Physical Attacks

In cybersecurity, a non-physical attack represents a distinc-
tive breed that operates independently of physical access or
proximity to the target device. In this context, the primary
intent of attackers is to manipulate the software or firmware
embedded within the operational device, employing tactics that
jeopardize the overall system’s confidentiality and integrity.
Furthermore, malicious adversaries can exploit this avenue
to install untrusted software or firmware, thereby procuring
unauthorized access or facilitating the escalation of privileges.
An intriguing facet of non-physical attacks is the transition
they affect in the threat model. Departing from conventional
local attackers who require physical presence, non-physical
attacks usher the possibility of remote attackers equipped
solely to execute code locally. Attackers can infiltrate device



7

DataCode
Component
Interfaces,

System Calls

Source Code

Compilers or
Linkers

Faulty Software Component

Malicious code
with bugs

Software
Components

Error propagates through
the interface and corrupt other

software components

Bug is activated
to introduce code and data

errors in software

Fig. 6: Software fault injection and propagation into software components

locations that elude physical access with complex hardware
setups by harnessing non-physical fault injection techniques.

While pinpointing fault locations and determining optimal
timings in the context of non-physical attacks face challenges,
these exploits offer the notable advantage of obviating the need
for resource-intensive hardware setup. The execution of non-
physical attacks mandates only deploying dedicated malicious
software or specialized attack code instead of understanding
in-depth hardware details. In terms of objectives and motiva-
tions, non-physical attacks can be launched in two different
forms, i.e., software faults and software-induced hardware
faults. Software faults focus on exploiting vulnerabilities in-
trinsic to the software architecture of the target system while
software-induced hardware faults delve into software-triggered
attacks capitalizing on alteration of the functional behavior of
hardware circuitry. We discuss these two categories in detail
in the following subsections.

1) Software Faults: In general, the software fault injection
process can be categorized into three main phases: (1) making
a malicious alteration to the source code, (2) activating the bug
to impact the targeted software component, and (3) allowing
the error to spread through the interface, potentially corrupting
other connected software components. Figure 6 illustrates the
high-level overview of these three phases. The first phase is
initiated by replacing a subset of program instructions with
alternative instructions (e.g., code error). These alterations
might include instructions with distinct operands or nop (No-
operation) commands. Such manipulations are strategically
designed based on prevalent software errors found within real
microprocessors or embedded systems [66]. These malicious
modifications are introduced into the program code either at
the source code level or within the binary executable. The
selection of code location to inject a fault depends on the
intention of the type of fault. For example, to impact variable
assignments, faults are placed in code segments involving
variable assignments. Alternatively, target locations can be
selected based on susceptibility, as indicated by software
complexity metrics [67].

The second phase begins with the flow of the faults induced
by malicious codes through the compilers and linkers to the
target code. To emulate the permanent nature of software
errors, an attacker should inject these faults into the target
code before its execution begins. However, there is also a
chance of synchronously introducing software faults at the
execution time of the relevant code. In recent investigations,
this constraint has been relaxed, allowing asynchronous injec-
tion of code alterations during runtime [66]. By triggering the
failures at a specific or random time, this strategy simplifies
the implementation and execution of fault injection experi-

ments, especially in scenarios where the system operates in a
stable state. Depending on initialization, variable assignment,
checking, and function definition, threat models adopted by
software faults can be described as follows [68].

• Faulty Initialization: The initial value is substituted with
a faulty value, or alternatively, the relevant instructions
are altered to nops in the absence of an initial value.

• Erroneous Assignment: The erroneous assignment in-
volves either assigning an incorrect value to the destina-
tion with the correct destination remaining unassigned or
the assignment itself is omitted (achieved by substituting
the relevant instructions with no-operation commands,
nops).

• Faulty Condition Checking: The branch instruction is sub-
stituted with a nop when a condition check is absent, or
alternatively, the condition check is modified incorrectly,
deviating from the intended branching.

• Modified Function: An original user-defined sequence of
instructions is substituted with an alternative user-defined
sequence of instructions, assuming that the defective
instructions must fit within the spatial confines of the
original instructions.

It is important to note that software-based fault injection
can be extended to manipulating individual bits, bytes, or
words within memory locations or registers of a device (e.g.,
data error). In certain instances, attackers might endeavor to
emulate the impact of hardware malfunctions (e.g., CPU, bus,
or memory faults) by introducing disruptions into memory or
hardware registers through software interventions [66].

In the final phase, the disruptions of the victim codes have
the potential to propagate through software interfaces, result-
ing in the corruption of other software elements and ultimately
leading to operational malfunctions. Moreover, the injection
of software errors commonly focuses on software components
that furnish a generalized application programming interface
(API). Due to unexpected interactions among components and
incorrect utilization of the API (e.g., interface error), software
faults can emerge within these components, which are not
solely developed for specific systems [66], [69]. For instance,
an operating system (OS) providing an API for device drivers
is exposed to third-party suppliers to incorporate support for
new devices and is vulnerable to software faults.

2) Software-Induced Hardware Faults: In addition to non-
invasive fault injection attacks targeting software components,
it is also likely that a remote attacker possesses privileged
software to access the elements within the target hardware
components (e.g., functional logic or memory cells) through
the utilization of hardware-software interfaces. These specific
attacks are recognized as software-induced hardware faults.



8

Untrusted CodeTrusted Code
Execution

Voltage and Frequency Regulators

Shared Power Domain

Trusted Region
(Secure)

Untrusted Region
(Insecure)

HW/SW Interface for
Regulators

Hardware-enforced Isolation

Overclocking or
Undervolting

Timing
Faults

(a)

Untrusted Code
Trusted Code

Execution

Shared Power Domain

Trusted Region
(Secure)

Untrusted Region
(Insecure)

Hardware-enforced Isolation

Overclocking or
Undervolting

Timing
Faults

Activating
Circuits

(b)

Fig. 7: Remote timing fault-injection techniques to corrupt a trusted code execution (a) by configuring the HW/SW interface and (b) by
activating malicious power-hungry circuits.

It is essential to recognize that, like hardware-based fault
injection attacks, the core objective of these attacks is to
introduce timing faults into the hardware registers, deliberately
distorting functional behavior and violating the system’s confi-
dentiality and integrity. Moreover, attackers seek to manipulate
memory content through forceful reads and writes to specific
memory addresses. According to the victim targets, we classify
these attacks into two main categories, i.e., remote timing-fault
attacks and remote memory attacks. We discuss them in detail
as follows.

a) Remote Timing-Fault Attacks: Recent investigations
indicate that a privileged adversary can exploit the DVFS
feature [70] to compromise a hardware device through remote
fault injection [13], [14], [21]. Prominent processor manu-
facturers such as Intel and AMD have developed contem-
porary processors that furnish privileged software interfaces,
allowing for the dynamic regulation of runtime frequency
and operational voltage [71]. This dynamic regulation en-
sures that voltage and frequency are seamlessly adjusted in
accordance with the instantaneous current demand. Although
modern SoCs compartmentalize hardware components into
distinct trusted and untrusted regions, the power management
system remains a shared resource across all regions. As a
result, it becomes feasible for an untrusted entity to remotely
manipulate the frequency and voltage regulators beyond the
limits stipulated by the vendor. Sometimes, attackers may
remotely activate some malicious circuits from an untrusted
region that draw significant power from the shared PDN and
reduce the supply voltage. These manipulations can potentially
breach the contents of trusted hardware boundaries, which
host security-sensitive computations. Generally, these remote
hardware attacks manifest as undervolting or overclocking
actions, introducing software-induced timing faults within the
secure region of the targeted hardware. Figure 7a and Figure
7b depict these two common remote timing-fault injection
techniques from an untrusted region and their intrusions on
the trusted region.

The literature presents numerous examples of attack sce-
narios against ARMv7 TrustZone [72] and Intel SGX [73] by
exploiting DVFS features. In these attacks, remote attackers

have set their sights on various objectives, such as extracting
cryptographic keys, compromising RSA signature chain au-
thentication by introducing self-signed untrusted applications,
tampering with memory safety mechanisms (e.g., through in-
correct array indexing or flawed dynamic memory allocation),
inducing faults in key derivation processes, etc. We present
some of the representative instances as follows.

• CLKSCREW Attack: In this attack, a malicious ker-
nel driver is developed to attack a code in the ARM
TrustZone at a higher privilege than the kernel. This
rogue kernel driver improperly configures the frequency
regulator, surpassing the vendor’s recommended limits,
effectively overclocking the CPU, and deliberately in-
troducing timing faults [13]. Throughout the attack, the
attacker meticulously manages the fault timing to enable
precise injection into the victim thread such that the fault
only affects the target program segments as intended,
avoiding any undesired corruption of attacking code or
non-targeted code.

• Plundervolt Attack: This attack allows a highly privileged
adversary to access the hardware-software interface of
the voltage regulator and decrease the CPU voltage
beyond vendor-specified limits during a security-sensitive
compilation in the Intel CPU’s SGX enclave [14]. Similar
to the CLKSCREW attack, the adversary lowers the CPU
voltage to cause timing faults using malicious software
code. In addition, the attacker can fine-tune the under-
volting parameters to ensure that all other codes, except
for the victim code, remain unaffected during the attack.

• DeepStrike Attack: In addition to targeting an ASIC, a
remotely orchestrated attack can employ power glitching
to compromise a DNN running on a cloud-based FPGA
[74]. Initially, an attacker utilizes time-to-digital converter
(TDC) sensors to capture distinct patterns of voltage
fluctuations associated with the execution of various
DNN layers (e.g., side-channel leakage) and infer the
precise timing of an attack (attack scheduler). Afterward,
he injects glitches using a controllable power-hungry
circuit (power striker) in the shared power distribution
network of the cloud-FPGA to induce timing violations



9

and data loading faults. Consequently, these faults disrupt
the FPGA DSP kernel and misclassify the victim DNN
application. Note that, without utilizing the DVFS fea-
ture, this attack uses programmable logic on the FPGA
to implement the power striker and to generate power
glitches.

• DFaulted Attack: This attack triggers software errors
within the CPU due to undervolting attacks guided by an
FPGA on a combined FPGA-CPU system. The primary
objective of this attack is to activate a power plundering
circuit, such as a ring oscillator deployed on the FPGA, to
generate power disturbances in the shared power distribu-
tion network. As a result, these power disruptions lead to
timing faults during the execution of security-sensitive
computations within the processing system, ultimately
undermining the system’s security [75].

• Lightning Attack: Apart from targeting general-purpose
CPUs, remote adversaries can leverage DVFS faults to
launch attacks on GPU accelerators. An example of such
an attack is the Lightning attack, which strategically
targets the sensitive elements of a DNN model using
hardware-induced transient faults facilitated by the DVFS
feature [76]. To enhance the efficacy of this attack, attack-
ers devise a sensitive target search algorithm to identify
vulnerabilities in DNN models and utilize a genetic
algorithm to determine the necessary DVFS parameters.
Recent investigations on Nvidia GPU demonstrate that
the attack substantially diminishes the accuracy of various
convolutional neural networks (CNN).

In addition to the previously mentioned attacks, recent
research has shown the occurrence of software-induced timing
fault-injection attacks on various hardware targets [15], [21],
[43]. These attacks can be categorized further depending on
the attacker’s target, resulting in distinctions between remote
timing-fault attacks on CPUs and remote timing-fault attacks
on FPGAs.

b) Remote Memory Attacks: Due to the high density of
memory cells in modern semiconductor devices, electromag-
netic coupling exists between the capacitors of neighboring
dynamic random access memory (DRAM) cells. This inter-
cell crosstalk can be exploited to alter the bits stored in a
DRAM cell by aggressively accessing adjacent cells [77]–
[79]. Recent investigations suggest that a user-level program
developed by a remote attacker can repeatedly access a specific
memory address, leading to voltage fluctuations along the
row of DRAM cells. When there are numerous activations
in the same row, they cause the wordline to switch on and
off rapidly. These voltage fluctuations along a row’s wordline
disrupt nearby rows, causing some of their cells to discharge
at an accelerated rate. If a cell loses too much charge before
being restored to its original state, it experiences a bit-flip
fault [46]. It’s important to note that the attacker only requires
the ability to execute software code on the target device and
doesn’t need physical access to the DRAM cells to carry out
this attack [47]. While more advanced attacks demand a deeper
understanding of computer architecture, this approach allows
the attacker to exploit the physical characteristics of DRAM
to compromise the system’s security.

C. Comparison Among Different Non-Invasive Fault Injection
Techniques

In this section, we outline the distinctions and similarities
observed among the non-invasive fault injection techniques
discussed in the preceding sections (see Section IV-A and
Section IV-B). A comprehensive overview of this comparative

analysis, organized according to various factors, is presented
in Table II. In the context of fault injection attacks, it is
evident that contact-based physical attacks offer a high level of
control over fault timing and the ability to observe the impact
of the fault. However, they come with significant drawbacks,
including a heightened risk of damaging the target hardware,
low attack reproducibility, limited control over fault timing,
and high development costs. Contact-less attacks share many
of these characteristics with contact-based attacks, with the
main distinction being relatively less control over fault timing
and location.

In contrast, emulation and simulation-based attacks provide
a highly reproducible approach, utilizing programmable or
software-guided environments. These methods offer several
advantages, including minimal additional hardware costs and
a low risk of damaging the target. Simulation-based attacks,
in particular, pose no risk of physical damage since they
operate on high-level models of actual hardware. They also
offer very high levels of observability and controllability in
fault injection.

Unlike physical attacks, all non-physical attacks are cost-
effective, require no physical access or proximity, and pose
minimal risk of target damage, making them attractive alterna-
tives. However, they do have limitations in terms of controlling
fault injection and observing the impact of faults compared to
physical attacks. It is important to note that software faults are
entirely permanent, while all others are primarily transient.

Given the current trends in the semiconductor industry, the
costly setups required for physical attacks are becoming less
relevant and less attractive to skilled attackers. Consequently,
researchers and designers are increasingly focusing on the
emulation or simulation of physical attacks for early design
analysis. On the other hand, non-physical attacks are gaining
attention due to their stealthy, dangerous, and easily repro-
ducible nature. Remote timing-fault attacks, in particular, can
impact interconnected processors equipped with DVFS fea-
tures. Furthermore, developing mitigation techniques against
emerging non-physical attacks requires further investigation.
As a result, these non-physical attacks are becoming prominent
areas of interest for future exploration among researchers,
designers, and potential attackers.

V. ASSESSMENT FRAMEWORKS

Assessing the security of post-silicon devices against poten-
tial fault-injection attacks is both challenging and expensive.
Researchers propose pre-silicon assessment frameworks for
evaluating a design’s susceptibility to such threats to address
this issue. During the pre-silicon design and verification phase,
these frameworks are developed using EDA tools at various
abstraction levels (such as RTL, gate level, and layout level).
The key reasons for developing and researching these assess-
ment frameworks are briefly described as follows.
1) Since physical hardware is unavailable at the pre-silicon

stage, designers rely on simulation-based fault injection
attacks for assessments. These early evaluations yield vul-
nerability metrics that quantitatively express the feasibility
of an attack with reduced cost [28], [62], [80]. In contrast,
post-silicon assessments of non-invasive fault injection
attacks are too late and impractical because identifying
bugs at this stage makes it costly to deploy the mitigation
techniques [81].

2) Defenses against non-invasive attacks that rely on spatial
and temporal redundancy come with additional power,
performance, and area (PPA) overheads [22]–[24]. These
countermeasures are often implemented at a global scale



10

TABLE II: A Comprehensive Comparison Among Several Non-invasive Fault Injection Techniques

Factors
Physical Attacks Non-Physical Attacks

Contact-Based
Attacks

Contact-Less
Attacks

Emulation-
Based Attacks

Simulation-
Based Attacks

Software Fault
Attacks

Remote Timing-
Fault Attacks

Remote Mem-
ory Attacks

Physical access
needed?

Yes No No No No No No

Physical
proximity needed?

No Yes No No No No No

Cost of extra
hardware

Medium High Low Very Low Very Low Very Low Very Low

EDA Tool
Required

No No Yes Yes No No No

Risk of damaging
the target

High High Low No Low Low Low

Actual fault
injected?

Yes Yes No No Yes Yes Yes

Attack modelling
required?

No No Yes Yes No No No

Reproducibility of
attack

Low Low Very High Very High High High High

Complexity of
attack

High High Medium Medium Low Low Low

Cost of attack
development

High High Medium Medium Low Low Low

Control on fault
timing

High Medium High Very High Medium Medium Medium

Control on fault
location

Low Medium Medium Very High Medium Low Medium

Observability of
impact

High High Medium Very High Low Low Low

Target of attack Hardware Hardware Hardware Software Model Software Hardware Hardware

Generator of
attack

Hardware Hardware Hardware Software Software Software Software

Fault duration Transient Transient Transient Transient or
Permanent

Permanent Transient Transient

HW/SW interface
required?

No No No No No Yes No

Type of Attacker Local Local Local Local Local or
Remote

Remote Remote

without precise identification of the specific vulnerability to
fault attacks. However, pre-silicon assessment frameworks
can pinpoint vulnerabilities and propose localized counter-
measures with minimal PPA overhead [28].

This survey takes these reasons into account and examines the
following assessment frameworks that utilize simulation-based
methodologies to assess physical non-invasive fault injection
attacks.

• TVVF: Introducing setup-time violations in hardware
registers through non-invasive techniques can seriously
threaten a system’s confidentiality and integrity. This con-
cern necessitates a framework that offers a metric known
as the TVVF (Timing Violation Vulnerability Factor),
which assesses how susceptible a hardware structure is to
deliberate fault injection attacks that result in setup time
violations. To calculate the probabilistic metric TVVF,
the gate-level netlist of a hardware design is analyzed
using EDA tools. It is important to note that TVVF
comprises two distinct components: firstly, the likelihood
of introducing a specific fault into the hardware structure,
and secondly, the likelihood of this fault propagating to
the observable output of the structure [80].

• AVFSM: Modern hardware devices utilize Finite State
Machines (FSM) to control the flow of the system’s
operation. However, an adversary can inject faults and
force an FSM state to transit to an unauthorized state
accessible to him. This scenario can potentially help the
adversary violate the system’s confidentiality or integrity.
To address and evaluate this vulnerability of FSMs to
fault-injection attacks, the AVFSM framework is pro-
posed. This framework focuses on detecting susceptibility
to fault injection attacks in FSMs arising during the gate-
level synthesis process conducted by Electronic Design
Automation (EDA) tools. It employs an ATPG (Auto-
matic Test Pattern Generation)-based assessment tech-
nique to extract the state transition graph from the gate-
level netlist of a design. Finally, this assessment quantifies
the vulnerability of each individual state transition and
the overall susceptibility of an FSM to fault injection
attacks [62].

• SoFI: To evaluate a system’s susceptibility to fault-
injection attacks properly, a set of design-specific security
rules must be defined. This set of rules is termed security
properties, and violation of each property under an attack



11

signifies the violation of the system’s security. The SoFI
framework is developed and proposed to evaluate the
susceptibilities of integrated circuits to fault-injection
attacks depending on the security properties inherent to
a design [82]. Considering these design-specific security
properties, SoFI examines a gate-level netlist, identifies
security-sensitive locations (e.g., potential targets for an
attacker to exploit and compromise security properties),
and assesses the feasibility of fault injection in these
locations using setup time violations.

• LDTFI: Accurately evaluating non-invasive hardware-
based timing faults necessitates proper timing analyses
and the consideration of signal latency in dynamic timing
simulations. Traditional assessment frameworks devel-
oped at the RTL or gate-level abstraction do not account
for timing variations incurred during the generation of
the physical layout. As a solution, a framework, namely
LDTFI, is proposed to conduct a layout-aware evaluation
of cryptographic modules (e.g., AES) concerning fault-
injection attacks paired with DFA. Through post-layout
static timing analysis and post-layout timing simulations,
LDTFI provides a probabilistic metric indicating the like-
lihood of a timing fault causing the leakage of AES secret
keys [28]. Unlike the previously mentioned approaches,
this framework leverages precise timing data from the
physical design to assess its vulnerability to timing faults
induced by clock glitches.

• FISHI: Instead of using a traditional monolithic de-
vice, an untrusted entity can potentially insert malicious
chiplets into a (SiP) [83]. This scenario can lead to both
internal and remote power fault injection attacks, made
possible by the inherent opacity of the semiconductor
supply chain. Recent research has proposed a frame-
work named FISHI, which aims to incorporate a root-
of-trust chiplet within the SiP. This chiplet enables real-
time monitoring of power-noise variations at the system
level and facilitates near-sensor Machine-learning (ML)
inference to detect anomalies caused by attacks [81].
FISHI utilizes a time-to-digital converter (TDC) sensor
solely developed to collect power profiles from specific
applications, serving as a reference database for regular
operation. Subsequently, the framework incorporates a
dedicated hardware (ML) engine that measures the dis-
parities between the power fluctuations observed during
runtime and the fault-free reference databases, thus aiding
in the detection of potential fault-injection attacks.

As previously noted, these simulation-based frameworks are
limited to analyzing physical fault injection attacks. Moreover,
there is a lack of advanced methodologies for assessing a
system’s susceptibility to non-physical fault injection attacks
initiated through software. While specific tools can emulate
or inject software faults into a system, they cannot effectively
quantify its vulnerability to software-induced fault injection
attacks [67], [84], [85].

VI. COUNTERMEASURES AGAINST NON-INVASIVE FAULT
INJECTION ATTACKS

Scientists and researchers have proposed numerous coun-
termeasures to safeguard against confidentiality and integrity
breaches resulting from fault injection attacks. However, it is
essential to note that not all of these mitigation approaches
are suitable for addressing non-invasive attacks. It implies that
some of these approaches solely focus on semi-invasive or
invasive attacks. Traditional countermeasures primarily involve
detecting fault injection or abnormalities within the targeted

circuit. These countermeasures aim to monitor and assess
the outcomes of intrusion or error detection, subsequently
rectifying any faulty outputs as needed. According to their im-
plementations, these countermeasures can be broadly classified
into two major groups: Hardware-level countermeasures and
Software-level countermeasures. The following subsections
will provide concise descriptions of these countermeasures.

A. Hardware-Level Countermeasures
As their name implies, these countermeasures are integrated

as hardware elements to identify or mitigate the impact of
non-invasive fault injection attacks. The primary objective of
these countermeasures is to protect a system against attacks on
hardware components. This survey presents specific instances
of hardware-level countermeasures as outlined below.

• Standard Cell Hardening: A combinational or sequential
cell can be hardened against fault injection attacks by
implementing redundant (e.g., duplication or triplication)
logic [86]–[89]. The main objective of these techniques is
to detect faults by comparing the original and redundant
output. After fault detection, dedicated error correction
techniques must be applied to nullify the impact of the
fault. However, these techniques suffer from significant
PPA overheads due to the additional circuitry for fault
detection and error correction [87], [90].

• Time Redundancy: This countermeasure is applied to
cryptographic circuits, where it involves performing an
initial encryption followed by a redundant encryption
[22]. Its primary purpose is to enable the simultaneous
detection of errors when encountering DFA, achieved
through repeated rounds and comparing the original and
redundant results. This technique can be implemented at
either the RTL or gate level but introduces performance
overhead due to the redundancy it entails. Furthermore,
it’s worth noting that the biased fault model resulting
from DFIA can potentially compromise the effectiveness
of this countermeasure, as it can inject faults into both
the original and redundant components with a high prob-
ability of success.

• Clock-Check Block (CCB): To mitigate the risks associ-
ated with fault sensitivity analysis, one can utilize a clock-
check block as a potent countermeasure. This block can
identify any undesirable deviations in the clock signal
and adjust the cipher accordingly, as demonstrated in
[24]. This approach comes with a drawback, namely, the
need for additional logic circuits, which increases area
utilization and resource overhead.

• Configurable Delay Block (CDB): The primary goals
of CDB include identifying setup timing violations and
eliminating the relationship between fault sensitivity and
confidential data to thwart DFA and FSA attacks [23].
It is achieved by utilizing a sequence of configurable
delay elements, such as inverters, to examine irregularities
in the clock signal or any increments in critical path
delays. Although this approach remains applicable at both
RTL and gate levels, it suffers from area and resource
overheads.

• Security-Aware FSM: A strategy can be employed to
address and mitigate the susceptibility of FSMs (Finite
State Machines) to timing faults arising from using EDA
tools during synthesis. This approach considers vulnera-
bilities during the early stages of design. Nevertheless, it
relies on RTL and gate-level abstractions for FSM analy-
sis and countermeasure implementation without directly
considering physical-level vulnerabilities. Furthermore,



12

to implement this countermeasure, additional circuitry
is necessary to manage state transitions, ensuring the
transition from an authorized state to a protected state,
as ensured by security-aware encoding [91].

• Disabling HW/SW Interface: When the interface between
hardware regulators and software drivers is deactivated,
it becomes impossible for an unauthorized entity to ma-
nipulate the operating voltage and frequency maliciously.
Recent research illustrates that Intel employs this method
to safeguard against potential exploitation of the DVFS
feature. However, while effective in its specific context,
this approach is considered ad-hoc and does not address
the fundamental causes of remote timing-fault attacks.
Additionally, it does not protect against non-invasive
physical attacks, as discussed in [14].

• Isolated Power Domain: Hardware components located
in both trusted and untrusted regions can be functionally
isolated by utilizing distinct power domains. This coun-
termeasure is implemented to thwart remote attackers
from exploiting a shared power domain. Nonetheless, this
approach demands the management of separate regula-
tors, which is intricate and costly [13].

• Limit-Checking For Voltage and Frequency: Additional
limit-verification circuitry can be introduced to enforce
strict voltage or frequency regulation boundaries. These
rigid limits safeguard against remote attackers, confining
their actions within the vendor’s predefined thresholds.
However, this approach necessitates early decisions dur-
ing the hardware design stage, and manufacturing process
variations can alter the operational limits of the regu-
lators. Moreover, imposing specific limits can limit the
regulator’s adaptability across various devices [13].

• Layout-Aware Path Adjustments: Instead of adding sup-
plementary hardware elements, innovative layout-aware
countermeasures are suggested to hinder attackers from
taking advantage of the consequences of fault injection
attacks. A physical design engineer can manipulate the
timing path within the fan-in cone of security-critical reg-
isters by altering the physical layout’s components (such
as resizing logic gates, incorporating pairs of inverters
as buffers, adjusting placement and routing, etc.) [28].
These modifications introduce multiple faults and induce
undesired changes in functional behavior, rendering an
attacker’s controlled fault injection attack uncontrollable.
It is worth noting that these countermeasures result in
minimal power, performance, and area overhead.

• Sensor-Based Fault Detection: The presence of non-
invasive fault injection attempts can be identified by
utilizing digital sensors seamlessly integrated into the
functional logic of a device. Recent research highlights
the efficacy of sensors employing an FTC (Faults-to-
Time Conversion) mechanism, which relies on a dual line
of buffer chains constructed with HVT (High-Threshold
Voltage) and LVT (Low-Threshold Voltage) cells [92],
[93]. This sensor is designed to detect alterations in
logic propagation delays within the buffer chains, which
occur when a fault injection attack is initiated. It is
important to emphasize that this sensor is effective in
detecting not only non-invasive but also invasive or semi-
invasive fault injection attempts. However, it comes with
the drawback of increased power consumption and more
significant physical space requirements, primarily due to
the additional hardware components necessary to post-
process sensor outputs.

B. Software-Level Countermeasures
These countermeasures are incorporated either within the

software or at the algorithmic level, primarily aimed at ad-
dressing software-related vulnerabilities. Some notable exam-
ples of software-level countermeasures are further elaborated
on as follows.

• Redundant Computation: Countermeasures against fault
injection attacks can be implemented in the software
execution of a design by utilizing methods like recalcula-
tion, redundant computation, instruction duplication, and
eventually error correction, as outlined in [94]. Neverthe-
less, this approach is not a practical solution for ASIC
hardware and is only viable for implementations based
on microprocessors or microcontrollers. Incorporating
redundancy and recalculations introduces a notable design
overhead, which is a significant concern associated with
this approach.

• Fault-Resistant Crypto Algorithm: It has been a good
practice to adjust a cryptographic algorithm to enhance
its resistance against fault-injection attacks. Nonetheless,
these fault-tolerant approaches are limited in scope, as
they are primarily suitable for cryptographic applications.
In addition, they are susceptible to statistical attacks and
come with a notable drawback in terms of performance,
as they introduce significant overhead [14].

• Randomization of Instruction Execution: Incorporating
randomization, achieved through inserting nop loops into
the runtime execution of the target code, can effectively
thwart remote attackers from achieving precise timing
control for an attack. Nevertheless, this countermea-
sure has limitations, particularly regarding safeguarding
against attacks relying on runtime profiling for precise
timing synchronization [13].

• Application and Compiler Hardening: Specific standard
library functions can be strengthened by incorporating
validation checks for arithmetic operations and corre-
sponding reciprocal operations (e.g., multiplication fol-
lowed by a division). Recent research indicates that
this fortification method has been integrated into the
software development kit of the Intel SGX enclave to
counter remote fault injection attacks [14]. Moreover,
incorporating checksum integrity verification during code
compilation and running sensitive code multiple times
can offer software-level safeguards against remote fault
injection attacks, as mentioned in [13]. However, these
methods come at the cost of performance overhead,
primarily due to the added validation steps, and they can
have a detrimental effect on energy efficiency.

• Rowhammer Pattern Detection: Recent studies suggest
that several defense techniques have been created to
safeguard DRAM against Rowhammer attacks. Software-
based protections commonly concentrate on detecting
the Rowhammer pattern using the PMU (Performance
Monitor Unit) to identify anomalies in cache activities
as indicative of a Rowhammer attack [78]. When a high
cache miss rate is identified, further analysis of the mem-
ory access pattern is conducted to ascertain the presence
of a Rowhammer attack [79]. Nonetheless, this software-
based protection mechanism is intricate and challenging
to implement.

VII. CHALLENGES AND FUTURE RESEARCH

Despite extensive research and investigations into the fea-
sibility of non-invasive fault injection attacks, the successful
execution of such attacks remains a formidable challenge.



13

Firstly, acquiring a post-silicon hardware device for physical
attacks is often financially expensive. Even when a target
device is accessible, the attacker requires an expensive setup
and specialized equipment to gain physical access or prox-
imity to the target devices. For example, tampering with
clock ports or power supply voltages and generating clock or
voltage glitches necessitates additional hardware circuitry. In
addition, local fault injection techniques like electromagnetic
(EM) faults or overheating demand the precise generation of
electromagnetic or thermal energy, with meticulous control
over proximity (e.g., distance from the target device) and
localization (e.g., specific target location within a device). As
a result, researchers frequently opt for pre-silicon assessments
instead of evaluating susceptibility to such attacks on post-
silicon devices. They endeavor to model various fault injection
techniques and characterize attack parameters (e.g., fault types,
injection timing, injection location, etc.) to assess non-invasive
attack vulnerabilities during the pre-silicon phase. However,
our survey finds the inherent complexity and challenges associ-
ated with developing assessment frameworks at the pre-silicon
stage. While commercial sign-off tools for ASIC design can
effectively profile non-invasive fault injection attack param-
eters, their accuracy may be compromised by unpredictable
post-silicon device factors such as circuit noise, environmental
changes, on-chip process variations, etc [28]. Hence, these
frameworks must be improved or re-designed by considering
these factors.

Secondly, executing software-based non-physical attacks
presents its own set of significant challenges and limitations.
Injecting software faults into locations inaccessible to software
is practically impossible. Even when specific locations are
partially accessible, controllability and observability limita-
tions hinder in-depth analysis of the impact of fault injection
attacks [30]. Furthermore, if access to the source code execut-
ing the attack is restricted, injecting software-induced faults
into the system becomes infeasible. Beyond these constraints,
conducting remote software-based attacks on hardware devices
introduces unique challenges compared to traditional physical
attacks. The attacker must exercise precise control over the
timing of fault injection and uphold high timing accuracy
throughout the attack. Typically, preventing unintended alter-
ations in non-targeted code within a noisy and intricate target
device is challenging [13]. Nevertheless, ensuring that only
the victim codes are affected without impacting other code
segments during the attack is crucial. Additionally, controlling
regulator operating limits and maintaining parameters like
undervolting or overclocking involves heuristic and iterative
methodologies.

Our comprehensive survey underscores a notable lack of
assessments concerning the feasibility of software-based re-
mote fault injection attacks. Furthermore, like 2D Systems-
on-Chip (SoCs), non-invasive attacks pose a significant secu-
rity threat in 2.5D or 3D heterogeneous System-in-Package
(SiPs) [83]. Therefore, researchers in the field of hardware se-
curity must concentrate on developing assessment frameworks
and methodologies to evaluate the potential for fault injection
attacks on SiPs.

VIII. CONCLUSION

In conclusion, this paper thoroughly examines various
non-invasive fault injection techniques, encompassing both
hardware-based and software-based platforms. Our compre-
hensive survey systematically categorized these techniques
according to threat models, target devices, and attackers’

objectives. Furthermore, we delve into assessing attack vul-
nerabilities on target devices, utilizing EDA tool-based frame-
works, and exploring the deployment of countermeasures to
mitigate these threats. In summary, the insights and findings
presented in this survey serve as a valuable resource and
pave the way for further advancements in this domain by
providing a deep understanding of non-invasive fault injection
techniques.

REFERENCES

[1] M. Tehranipoor and C. Wang, Introduction to hardware security and
trust. Springer Science & Business Media, 2011.

[2] S. Bhunia and M. M. Tehranipoor, Hardware security: a hands-on
learning approach. Morgan Kaufmann, 2018.

[3] S. Tajik, H. Lohrke, F. Ganji, J.-P. Seifert, and C. Boit, “Laser fault
attack on physically unclonable functions,” in 2015 workshop on fault
diagnosis and tolerance in cryptography (FDTC). IEEE, 2015, pp.
85–96.

[4] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and
J.-P. Seifert, “Breaking and entering through the silicon,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 733–744.

[5] C. Boit, C. Helfmeier, and U. Kerst, “Security risks posed by modern ic
debug and diagnosis tools,” in 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, 2013, pp. 3–11.

[6] M. T. Rahman, M. S. Rahman, H. Wang, S. Tajik, W. Khalil, F. Farah-
mandi, D. Forte, N. Asadizanjani, and M. Tehranipoor, “Defense-in-
depth: A recipe for logic locking to prevail,” Integration, vol. 72, pp.
39–57, 2020.

[7] J.-M. Dutertre, V. Beroulle, P. Candelier, S. De Castro, L.-B. Faber, M.-
L. Flottes, P. Gendrier, D. Hély, R. Leveugle, P. Maistri et al., “Laser
fault injection at the cmos 28 nm technology node: an analysis of the
fault model,” in 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). IEEE, 2018, pp. 1–6.

[8] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical
optical fault injection on secure microcontrollers,” in 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography. IEEE, 2011, pp.
91–99.

[9] H. Wang, Q. Shi, D. Forte, and M. M. Tehranipoor, “Probing assessment
framework and evaluation of antiprobing solutions,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 6, pp.
1239–1252, 2019.

[10] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria,
“When clocks fail: On critical paths and clock faults,” in Interna-
tional conference on smart card research and advanced applications.
Springer, 2010, pp. 182–193.

[11] L. Zussa, J.-M. Dutertre, J. Clediere, and A. Tria, “Power supply glitch
induced faults on fpga: An in-depth analysis of the injection mecha-
nism,” in 2013 IEEE 19th International On-Line Testing Symposium
(IOLTS). IEEE, 2013, pp. 110–115.

[12] M. Dumont, M. Lisart, and P. Maurine, “Electromagnetic fault injection:
How faults occur,” in 2019 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2019, pp. 9–16.

[13] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Clkscrew: Exposing the
perils of security-oblivious energy management.” in USENIX Security
Symposium, vol. 2, 2017, pp. 1057–1074.

[14] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1466–1482.

[15] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “Voltjockey: Breaching trustzone by
software-controlled voltage manipulation over multi-core frequencies,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 195–209.

[16] T. Bonny and Q. Nasir, “Clock glitch fault injection attack on an fpga-
based non-autonomous chaotic oscillator,” Nonlinear Dynamics, vol. 96,
no. 3, pp. 2087–2101, 2019.

[17] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Re-
naudin, “Glitch and laser fault attacks onto a secure aes implementation
on a sram-based fpga,” Journal of cryptology, vol. 24, no. 2, pp. 247–
268, 2011.

[18] C. O’Flynn, “Fault injection using crowbars on embedded systems.”
IACR Cryptol. ePrint Arch., vol. 2016, p. 810, 2016.

[19] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus,”
in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography.
IEEE, 2011, pp. 105–114.

[20] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pelliccioli, and G. Pelosi,
“Injection technologies for fault attacks on microprocessors,” Fault
Analysis in Cryptography, pp. 275–293, 2012.



14

[21] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D.
Garcia, “{VoltPillager}: Hardware-based fault injection attacks against
intel {SGX} enclaves using the {SVID} voltage scaling interface,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
699–716.

[22] S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay, “A
biased fault attack on the time redundancy countermeasure for aes,” in
International workshop on constructive side-channel analysis and secure
design. Springer, 2015, pp. 189–203.

[23] S. Endo, Y. Li, N. Homma, K. Sakiyama, K. Ohta, D. Fujimoto,
M. Nagata, T. Katashita, J.-L. Danger, and T. Aoki, “A silicon-level
countermeasure against fault sensitivity analysis and its evaluation,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 8, pp. 1429–1438, 2014.

[24] J. Zhang, N. Wu, F. Ge, F. Zhou, and X. Zhang, “Countermeasure against
fault sensitivity analysis based on clock check block,” IEICE Electronics
Express, vol. 15, no. 11, pp. 20 180 433–20 180 433, 2018.

[25] B. Gierlichs, J.-M. Schmidt, and M. Tunstall, “Infective computation
and dummy rounds: Fault protection for block ciphers without check-
before-output,” in Progress in Cryptology–LATINCRYPT 2012: 2nd
International Conference on Cryptology and Information Security in
Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2.
Springer, 2012, pp. 305–321.

[26] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, 2006.

[27] M. H. Tehranipoor, N. Pundir, N. Vashistha, and F. Farahmandi, Hard-
ware Security Primitives. Springer, 2023.

[28] A. Mazumder Shuvo, N. Pundir, J. Park, F. Farahmandi, and M. Tehra-
nipoor, “LDTFI: Layout-aware timing fault-injection attack assessment
against differential fault analysis,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2022.

[29] N. Pundir, H. Li, L. Lin, N. Chang, F. Farahmandi, and M. Tehranipoor,
“SPILL:security properties and machine-learning assisted pre-silicon
laser fault injection assessment,” in ISTFA 2022. ASM International,
2022, pp. 225–236.

[30] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on fault injection
techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004.

[31] M. Eslami, B. Ghavami, M. Raji, and A. Mahani, “A survey on fault
injection methods of digital integrated circuits,” Integration, vol. 71, pp.
154–163, 2020.

[32] N. Asadizanjani, M. T. Rahman, and M. Tehranipoor, “Physical assur-
ance,” Cham Switzerland: Springer Nature Switzerland AG, 2021.

[33] Q. Shi, N. Asadizanjani, D. Forte, and M. M. Tehranipoor, “A layout-
driven framework to assess vulnerability of ics to microprobing attacks,”
in 2016 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2016, pp. 155–160.

[34] F. Farahmandi, M. R. Muttaki, H. M. Kamali, and M. Tehranipoor,
“PALLET: Protecting analog devices using a last-level edit technique,”
in IEEE International Conference on Physical Assurance and Inspection
of Electronics (PAINE). IEEE, 2023.

[35] S. P. Skorobogatov, “Semi-invasive attacks–a new approach to hardware
security analysis,” University of Cambridge, Computer Laboratory, Tech.
Rep., 2005.

[36] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in Cryptographic Hardware and Embedded Systems-CHES 2002: 4th
International Workshop Redwood Shores, CA, USA, August 13–15, 2002
Revised Papers 4. Springer, 2003, pp. 2–12.

[37] M. Tehranipoor, N. Nalla Anandakumar, and F. Farahmandi, “Laser
fault injection attack (fia),” in Hardware Security Training, Hands-on!
Springer, 2023, pp. 235–257.

[38] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in
storage: Techniques and applications,” in Proceedings of the 2005 ACM
workshop on Storage security and survivability, 2005, pp. 26–36.

[39] A. Duncan, F. Rahman, A. Lukefahr, F. Farahmandi, and M. Tehranipoor,
“Fpga bitstream security: a day in the life,” in 2019 IEEE International
Test Conference (ITC). IEEE, 2019, pp. 1–10.

[40] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on fpgas using valid bitstreams,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2017, pp. 1–7.

[41] G. L. Nazar and L. Carro, “Fast single-fpga fault injection platform,”
in 2012 IEEE international symposium on defect and fault tolerance in
VLSI and nanotechnology systems (DFT). IEEE, 2012, pp. 152–157.

[42] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “{Deep-Dup}: An adversarial
weight duplication attack framework to crush deep neural network
in {Multi-Tenant}{FPGA},” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1919–1936.

[43] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Fpgahammer: Remote
voltage fault attacks on shared fpgas, suitable for dfa on aes,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
44–68, 2018.

[44] M. Sabbagh, Y. Fei, and D. Kaeli, “A novel gpu overdrive fault attack,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1–6.

[45] H. Naghibijouybari, E. M. Koruyeh, and N. Abu-Ghazaleh, “Microarchi-
tectural attacks in heterogeneous systems: A survey,” ACM Computing
Surveys, vol. 55, no. 7, pp. 1–40, 2022.

[46] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1555–1571, 2019.

[47] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[48] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the gpu,” in 2018 IEEE
Symposium on Security and Privacy (sp). IEEE, 2018, pp. 195–210.

[49] M. Joye and M. Tunstall, Fault analysis in cryptography. Springer,
2012, vol. 147.

[50] N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault
intensity analysis,” in 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, 2014, pp. 49–58.

[51] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2010, pp.
320–334.

[52] J. Breier and X. Hou, “How practical are fault injection attacks, really?”
IEEE Access, vol. 10, pp. 113 122–113 130, 2022.

[53] K. M. Abdellatif and O. Hériveaux, “Silicontoaster: A cheap and
programmable em injector for extracting secrets,” in 2020 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC). IEEE,
2020, pp. 35–40.

[54] D. G. Mahmoud, S. Hussein, V. Lenders, and M. Stojilović, “Fpga-to-
cpu undervolting attacks,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 999–1004.

[55] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and
B. Sunar, “Jackhammer: Efficient rowhammer on heterogeneous fpga-
cpu platforms,” arXiv preprint arXiv:1912.11523, 2019.

[56] “AMBA APB Protocol Specification,” [Online], https://developer.arm.
com/documentation/ihi0024/latest/, Accessed on 11/06/2023.

[57] “Learn the architecture - An introduction to AMBA AXI,”
[Online], https://developer.arm.com/documentation/102202/0300/
AXI-protocol-overview, Accessed on 11/06/2023.

[58] “PCI Express* Architecture,” [Online], https://www.intel.com/content/
www/us/en/io/pci-express/pci-express-architecture-devnet-resources.
html, Accessed on 11/06/2023.

[59] I. Kuon and J. Rose, Quantifying and exploring the gap between FPGAs
and ASICs. Springer Science & Business Media, 2010.

[60] S. Y. Neyaz, I. Saxena, N. Alam, and S. A. Rahman, “Fpga and asic
implementation and comparison of multipliers,” in 2020 International
Symposium on Devices, Circuits and Systems (ISDCS). IEEE, 2020,
pp. 1–4.

[61] S. Dey, J. Park, N. Pundir, D. Saha, A. M. Shuvo, D. Mehta, N. Asadi,
F. Rahman, F. Farahmandi, and M. Tehranipoor, “Secure physical
design,” Cryptology ePrint Archive, 2022.

[62] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
“AVFSM: A framework for identifying and mitigating vulnerabilities in
fsms,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 2016, pp. 1–6.

[63] “Xcelium Logic Simulator — Cadence,” [Online], https:
//www.cadence.com/en US/home/tools/system-design-and-verification/
simulation-and-testbench-verification/xcelium-simulator.html, Accessed
on 11/06/2023.

[64] “Z01X Functional Safety Assurance,” [Online], https://www.synopsys.
com/verification/simulation/z01x-functional-safety.html, Accessed on
11/06/2023.

[65] L. Wu, G. Ribera, N. Beringuier-Boher, and S. Picek, “A fast character-
ization method for semi-invasive fault injection attacks,” in Cryptogra-
phers’ Track at the RSA Conference. Springer, 2020, pp. 146–170.

[66] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys
(CSUR), vol. 48, no. 3, pp. 1–55, 2016.

[67] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in Proceeding International Confer-
ence on Dependable Systems and Networks. DSN 2000. IEEE, 2000,
pp. 417–426.

[68] W.-I. Kao, R. K. Iyer, and D. Tang, “Fine: A fault injection and
monitoring environment for tracing the unix system behavior under
faults,” IEEE Transactions on Software Engineering, vol. 19, no. 11,
pp. 1105–1118, 1993.

[69] A. Johansson and N. Suri, “Error propagation profiling of operating
systems,” in 2005 International Conference on Dependable Systems and
Networks (DSN’05). IEEE, 2005, pp. 86–95.

[70] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The
laws of diminishing returns,” in Proceedings of the 2010 international
conference on Power aware computing and systems, 2010, pp. 1–8.

[71] R. Hebbar and A. Milenković, “Pmu-events-driven dvfs techniques for
improving energy efficiency of modern processors,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems, vol. 7,
no. 1, pp. 1–31, 2022.

https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html
https://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html
https://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html


15

[72] “TrustZone for Cortex-M – Arm®,” [Online], https://www.arm.com/
technologies/trustzone-for-cortex-m, Accessed on 11/06/2023.

[73] “Intel® Software Guard Extensions,” [Online], https://www.intel.
com/content/www/us/en/developer/tools/software-guard-extensions/
overview.html, Accessed on 11/06/2023.

[74] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “Deepstrike: Remotely-guided
fault injection attacks on dnn accelerator in cloud-fpga,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
295–300.

[75] D. G. Mahmoud, D. Dervishi, S. Hussein, V. Lenders, and M. Stojilović,
“Dfaulted: Analyzing and exploiting cpu software faults caused by fpga-
driven undervolting attacks,” IEEE Access, vol. 10, pp. 134 199–134 216,
2022.

[76] R. sun, P. Qiu, Y. Lyu, J. Dong, H. Wang, D. Wang, and G. Qu, “Light-
ning: Leveraging DVFS-induced transient fault injection to attack deep
learning accelerator of gpus,” ACM Transactions on Design Automation
of Electronic Systems.

[77] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,” in
2016 IEEE international symposium on hardware oriented security and
trust (HOST). IEEE, 2016, pp. 161–166.

[78] Y. Jiang, H. Zhu, H. Shan, X. Guo, X. Zhang, and Y. Jin, “Trrscope:
Understanding target row refresh mechanism for modern ddr protection,”
in 2021 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2021, pp. 239–247.

[79] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–
755, 2016.

[80] B. Yuce, N. F. Ghalaty, and P. Schaumont, “TVVF: Estimating the vul-
nerability of hardware cryptosystems against timing violation attacks,”
in 2015 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2015, pp. 72–77.

[81] T. Zhang, M. L. Rahman, H. M. Kamali, K. Z. Azar, M. Tehranipoor, and
F. Farahmandi, “Fishi: Fault injection detection in secure heterogeneous
integration via power noise variation,” in 2023 IEEE 73rd Electronic
Components and Technology Conference (ECTC). IEEE, 2023, pp.
2188–2195.

[82] H. Wang, H. Li, F. Rahman, M. M. Tehranipoor, and F. Farahmandi,
“SoFI: Security property-driven vulnerability assessments of ics against
fault-injection attacks,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2021.

[83] N. Vashistha, M. L. Rahman, M. S. U. Haque, A. Uddin, M. S.
U. I. Sami, A. M. Shuvo, P. Calzada, F. Farahmandi, N. Asadizanjani,
F. Rahman et al., “Toshi-towards secure heterogeneous integration:
Security risks, threat assessment, and assurance,” Cryptology ePrint
Archive, 2022.

[84] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” Ieee transactions on software
engineering, vol. 32, no. 11, pp. 849–867, 2006.

[85] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Goofi: Generic
object-oriented fault injection tool,” in 2001 International Conference
on Dependable Systems and Networks. IEEE, 2001, pp. 83–88.

[86] Y. Aguiar, F. Wrobel, S. Guagliardo, J.-L. Autran, P. Leroux, F. Saigné,
A. Touboul, and V. Pouget, “Radiation hardening efficiency of gate
sizing and transistor stacking based on standard cells,” Microelectronics
Reliability, vol. 100, p. 113457, 2019.

[87] J. Teifel, “Self-voting dual-modular-redundancy circuits for single-event-
transient mitigation,” IEEE Transactions on Nuclear Science, vol. 55,
no. 6, pp. 3435–3439, 2008.

[88] Y. Li, A. Breitenreiter, M. Andjelkovic, J. Chen, M. Babic, and
M. Krstic, “Double cell upsets mitigation through triple modular re-
dundancy,” Microelectronics Journal, vol. 96, p. 104683, 2020.

[89] V. Petrovic and M. Krstic, “Design flow for radhard tmr flip-flops,” in
2015 IEEE 18th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems. IEEE, 2015, pp. 203–208.

[90] H. Zhengfeng and L. Huaguo, “A novel radiation hardened by design
latch,” Journal of Semiconductors, vol. 30, no. 3, p. 035007, 2009.

[91] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and M. Tehranipoor,
“Security-aware fsm design flow for identifying and mitigating vulner-
abilities to fault attacks,” IEEE Transactions on Computer-aided design
of integrated circuits and systems, vol. 38, no. 6, pp. 1003–1016, 2018.

[92] M. R. Muttaki, T. Zhang, M. Tehranipoor, and F. Farahmandi, “FTC:
A universal sensor for fault injection attack detection,” in 2022 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2022, pp. 117–120.

[93] M. R. Muttaki, B. T. Barker, M. Tehranipoor, and F. Farahmandi,
“FTC—A universal low-overhead fault injection attack detection solu-
tion,” in ISTFA 2022. ASM International, 2022, pp. 386–391.

[94] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni, “Low-
cost software countermeasures against fault attacks: implementation and
performances trade offs,” in Proceedings of 5th Workshop on Embedded
Systems Security-WESS. Citeseer, 2010.

AMIT MAZUMDER SHUVO received his BSc
in Electrical and Electronics Engineering from
Bangladesh University of Engineering and Tech-
nology in 2017. He is currently a 3rd year Ph.D.
student and a graduate research assistant at the
Florida Institute for Cybersecurity Research (FICS)
within the Electrical and Computer Engineering
(ECE) Department at the University of Florida. His
research focuses on fault injection attack assessment,
property-driven security assurance, tamper detection,
and secure heterogeneous integration.

TAO ZHANG received the B.S. and M.S. degrees
from Northwest University and University of Elec-
tronic Science and Technology of China, in 2016 and
2019, respectively. He is currently a Ph.D. candidate
at the Department of Electrical and Computer Engi-
neering, University of Florida. His research focuses
on side-channel security, FPGA security, and hetero-
geneous integration security. He published 10+ peer-
reviewed publications in premier venues, including
the Design Automation Conference (DAC), IEEE
Electronic Components and Technology Conference
(ECTC), and the European Test Symposium (ETS).

He is a recipient of the DAC Young Fellowship in 2020 and 2021 and serves
as a reviewer of multiple renowned IEEE/ACM journals and conferences.

FARIMAH FARAHMANDI received the B.S. and
M.S. degrees from the Department of Electrical and
Computer Engineering, University of Tehran, Iran, in
2010 and 2013, respectively, and the Ph.D. degree
from the Department of Computer and Information
Science and Engineering, University of Florida, in
2018. She is an Assistant Professor at the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Florida. Her research has been sponsored
by SRC, AFRL, DARPA, and Cisco. Her research
interests include design automation of System-on-
Chips and energy-efficient systems, formal verifi-

cation, hardware security validation, and post-silicon validation and debug.
Her research has resulted in two books, seven book chapters, and several
publications in premier ACM/IEEE journals and conferences, including IEEE
Transactions on Computers, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Design Automation Conference (DAC), and
Design Automation and Test in Europe (DATE). She is a member of ACM.
Her research has been recognized by several awards, including IEEE System
Validation and Debug Technology Committee Student Research Award, the
Gartner Group Info-Tech Scholarship, a nomination for the Best Paper Award
in ASPDAC 2017, and the DAC Richard Newton Young Student Fellowship.
She is currently serving as the Founding Director for the Florida Institute for
Cybersecurity Research (FICS). She has served on many technical program
committees as well as organizing committees of premier ACM and IEEE
conferences.

MARK TEHRANIPOOR is currently the Intel
Charles E. Young Preeminence Endowed Chair
Professor of cybersecurity with the University of
Florida, where he is currently serving as the Chair
for the Department of Electrical and Computer Engi-
neering (ECE). His current research interests include
hardware security and trust, supply chain security,
IoT security, VLSI design, and test and reliability.
He is a fellow of ACM, a Golden Core Member of
IEEE CS, and a member of ACM SIGDA. He was
a recipient of a dozen of the Best Paper Awards and
nominations, as well as the 2008 IEEE Computer

Society (CS) Meritorious Service Award, the 2012 IEEE CS Outstanding
Contribution, the 2009 NSF CAREER Award, and the 2014 AFOSR MURI
Award. He received the 2020 the University of Florida Innovation of the year
as well as the Teacher/Scholar of the Year Awards. He co-founded the IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST)
and IEEE International Conference on Physical Assurance and Inspection of
Electronics (PAINE). He serves on the program committee of more than a
dozen leading conferences and workshops. He has also served as the Program
and General Chair for a number of IEEE and ACM-sponsored conferences
and workshops (HOST, ITC, DFT, D3T, DBT, NATW, and more). He served
as an Associate Editor for IEEE Transactions on Computers, JETTA, JOLPE,
TODAES, IEEE Design & Test Magazine, and IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. He is currently serving as a founding
Editor-in-Chief for the Journal on Hardware and Systems Security (HaSS).

https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

	Introduction
	Overview of Non-invasive Fault Injection Attacks
	Objective
	Characteristics
	Difference From Invasive and Semi-Invasive Fault Injection Attacks

	Threat Models and Target Devices
	Microprocessor and Microcontroller-Based Systems
	FPGA
	Hardware Accelerators
	Application Specific Integrated Circuits (ASIC)

	Taxonomy of Non-invasive Fault Injection Attacks
	Physical Attacks
	Hardware-Based Attacks
	Emulation-Based Attacks
	Simulation-Based Attacks

	Non-Physical Attacks
	Software Faults
	Software-Induced Hardware Faults

	Comparison Among Different Non-Invasive Fault Injection Techniques

	Assessment Frameworks
	Countermeasures Against Non-Invasive Fault Injection Attacks
	Hardware-Level Countermeasures
	Software-Level Countermeasures

	Challenges and Future Research
	Conclusion
	References
	Biographies
	AMIT MAZUMDER SHUVO
	TAO ZHANG
	FARIMAH FARAHMANDI
	MARK TEHRANIPOOR


