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Abstract. Private Simultaneous Messages (PSM) is a minimal model
of secure computation, where the input players with shared randomness
send messages to the output player simultaneously and only once. In this
field, finding upper and lower bounds on communication complexity of
PSM protocols is important, and in particular, identifying the optimal
one where the upper and lower bounds coincide is the ultimate goal.
However, up until now, functions for which the optimal communication
complexity has been determined are few: An example of such a func-
tion is the two-input AND function where (2 log2 3)-bit communication
is optimal. In this paper, we provide new upper and lower bounds for sev-
eral concrete functions. For lower bounds, we introduce a novel approach
using combinatorial objects called abstract simplicial complexes to repre-
sent PSM protocols. Our method is suitable for obtaining non-asymptotic
explicit lower bounds for concrete functions. By deriving lower bounds
and constructing concrete protocols, we show that the optimal commu-
nication complexity for the equality and majority functions with three
input bits are 3 log2 3 bits and 6 bits, respectively. We also derive new
lower bounds for the n-input AND function, three-valued comparison
function, and multiplication over finite rings.

Keywords: secure multiparty computation; private simultaneous messages; com-
munication complexity; lower bounds; concrete functions

1 Introduction

1.1 Background

Private Simultaneous Messages (PSM) is a minimal model of secure computa-
tion, initially proposed by Feige, Kilian, and Naor (hereafter, FKN) [8] and later
generalized by Ishai and Kushilevitz [9]. A PSM protocol involves the input play-
ers P1, . . . , Pn and the output player called the referee. Each input player Pi with
input xi sends a message mi to the referee simultaneously and only once, and the
referee computes the output value y based on the received messages m1, . . . ,mn.



Here, all players share a randomness r in advance, which is independent of the
inputs and inaccessible to the referee, and each message mi is computed from
the input value xi and the randomness r only. For a function f to be computed,
a PSM protocol is said to be correct if y = f(x1, . . . , xn) holds with probability
1, and said to be secure if, when the output value y is fixed, the distribution of
the tuple of the messages is independent from the input distribution. The com-
munication complexity of a PSM protocol is defined as

∑n
i=1 log2 |Mi|, where

Mi denotes the i-th message space and | · | denotes the cardinality of the set.
It is important to determine the upper and lower bounds for communication

complexity of PSM protocols. So far, there is an exponential gap between these
bounds for general two-input functions f : {0, 1}k × {0, 1}k → {0, 1}: The best-
known upper bound is O(2k/2) from the PSM protocol constructed by Beimel,
Ishai, Kumaresan, and Kushilevitz [5], while the lower bound for a random f
is 3k − O(log k) by Applebaum, Holenstein, Mishra, and Shayevitz [1] (see also
Vaikuntanathan’s survey [11]). The situation is similar for general n-input func-

tions f : ({0, 1}k)n → {0, 1}: The best-known upper bound is O(poly(n) · 2nk
2 )

by Beimel, Kushilevitz, and Nissim [6], the upper bound for infinitely many n is

O(poly(n) ·2
(n−1)k

2 ) by Assouline and Liu [2], and the lower bound with n = ω(k)
for a random f is Ω(n2k/ log(nk)) by Ball and Randolph [4].

On the other hand, for concrete functions, various PSM protocols had been
proposed: the AND function [8], the three-valued comparison function [8], branch-
ing programs [9], symmetric functions [10], and so on. However, up until now,
there are only few functions for which the optimal communication complexity
has been determined. An example of such a function is the two-input AND func-
tion x1∧x2, where the optimal communication complexity is shown to be 2 log2 3
bits: The protocol is constructed by FKN [8], and the lower bound is given by
Data, Prabhakaran, and Prabhakaran (hereafter, DPP) [7]. Another example is
the multiplication x1x2 · · ·xn over a finite group G, where the optimal commu-
nication complexity is shown to be n log2 |G| bits: The protocol is constructed by
FKN [8], and the lower bound follows from the trivial bound, i.e., the communi-
cation complexity without security. As the latter result on the lower bound did
not concern the security, a new approach that fully utilizes the security condition
is demanded towards non-trivial lower bounds for other functions.

1.2 Our Contribution

In this paper, we derive new upper and lower bounds on communication com-
plexity of PSM protocols for several concrete functions, aiming to further iden-
tify the optimal communication complexity. The main technical contribution
of this paper is to introduce a novel approach for proving lower bounds using
combinatorial objects called abstract simplicial complexes (hereafter, simplicial
complexes) to represent PSM protocols. Based on this approach, we derive lower
bounds for the AND function, equality function, majority function, comparison
function, and multiplication over finite rings. At the same time, we also provide
upper bounds for the equality function, majority function, and multiplication
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Table 1. Summary of our results and existing results

upper/lower communication complexity condition
◦ AND: x1 ∧ · · · ∧ xn

FKN [8] construction |Mi| = p p > n: prime
DPP [7] lower bound |Mi| ≥ 3 n = 2
Sec. 4.2 lower bound |M1| = 3 ⇒ |Mi( ̸=1)| ≥ 6 n ≥ 3

◦ Equality: (x1 = · · · = xn)?
Sec. 4.3 construction |Mi| = p p ≥ n: prime
Sec. 4.3 lower bound |Mi| ≥ 3 –

◦ Majority: (x1 + · · ·+ xn ≥ dn/2e)?
Sec. 4.4 construction |Mi| = 4 n = 3
Sec. 4.4 lower bound |Mi| ≥ 4 –

◦ (k + 1)-valued comparison: (x1 > x2 or x1 = x2 or x1 < x2)?
FKN [8] construction |Mi| = 7 k = 2
Sec. 4.5 lower bound |Mi| ≥ 2k + 1 –
Sec. 4.5 lower bound |M1| ≥ 6 or |M2| ≥ 6 k = 2

◦ Multiplication over a finite ring S: x1 · x2

Beaver Triple construction |Mi| = |S|2 any S
Sec. 4.6 lower bound |Mi| ≥ 2q − 1 S = Fq

Sec. 4.6 lower bound |Mi| ≥
∑q

j=1 gcd(j, q) S = Z/qZ

over finite rings by constructing new protocols. As a result, we identify the opti-
mal communication complexity for the equality function and majority function
in the case of n = 3. Regarding the three-input AND function and three-valued
comparison function, we specify all possibilities (eight for each function) for the
optimal communication complexity. Our results are summarized in Table 1. In
the following, we explain the details of each item.

– For the AND function x1 ∧ · · · ∧ xn, FKN [8] proposed a PSM protocol
with |Mi| = p (1 ≤ i ≤ n), where p is any prime number satisfying p > n,
which currently provides the best-known upper bound. When n = 2, DPP [7]
showed a lower bound |Mi| ≥ 3 (i ∈ {1, 2}), which proves the optimality of
the FKN protocol for n = 2. Based on our new approach for proving lower
bounds, we provide an alternative proof for this result. When n ≥ 3, as a
new lower bound, we show that if |M1| = 3, then |Mi| ≥ 6 for all i 6= 1.
In particular, when n = 3, there are only eight possibilities of the tuple
(|M1|, |M2|, |M3|) (up to symmetry) for the protocol with the minimum value

of
∑3

i=1 log2 |Mi|; we specify them explicitly.
– For the equality function, we propose a PSM protocol with |Mi| = p, where

p is any prime number satisfying p ≥ n, and prove a lower bound of |Mi| ≥ 3
(1 ≤ i ≤ n). When n = 3, the upper and lower bounds coincide, hence, the
optimal communication complexity is determined as 3 log2 3 bits.

– For the majority function, we prove a lower bound of |Mi| ≥ 4 (1 ≤ i ≤
n). When n = 3, we propose a PSM protocol with |Mi| = 4 (1 ≤ i ≤
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3). In this case, the upper and lower bounds coincide, hence, the optimal
communication complexity for n = 3 is determined as 6 bits.

– For the (k+1)-valued comparison function f : {0, 1, . . . , k}×{0, 1, . . . , k} →
{−1, 0, 1}, we prove a lower bound of |Mi| ≥ 2k + 1 (i ∈ {1, 2}). When
k = 2, FKN [8] proposed a PSM protocol with |Mi| = 7 (i ∈ {1, 2}), which
currently provides the best-known upper bound. In this case, as a new lower
bound, we show that either |M1| ≥ 6 or |M2| ≥ 6, which implies that there
are only eight possibilities of (|M1|, |M2|) (up to symmetry) attaining the

minimum value of
∑2

i=1 log2 |Mi|; we specify them explicitly.
– For the multiplication function x1 ·x2 over a finite ring S, we propose a PSM

protocol with |Mi| = |S|2 (i ∈ {1, 2}) using the idea of Beaver multiplication
triples. As for lower bounds, we prove that |Mi| ≥ 2q − 1 if S is the field
of order q and |Mi| ≥ a(q) :=

∑q
j=1 gcd(j, q) if S is the integer residue ring

modulo q, where a(q) is known as the Pillai’s arithmetic function.

1.3 Technical Overview

Our new method of deriving lower bounds, which we call the embedding method,
is a multi-input generalization of the idea by FKN [8] using edge-colored bipartite
graphs. We start with recalling their idea. For a function f : {0, 1}k ×{0, 1}k →
{0, 1}, the bipartite graph Gf is constructed by joining vertices x1 and x2 with
a black edge if f(x1, x2) = 0, and with a red edge if f(x1, x2) = 1. Similarly,
the decoding function Dec : M1×M2 → {0, 1} of a PSM protocol is represented
by the bipartite graph GDec. In this context, a shared randomness of the PSM
protocol can be regarded as an embedding map from Gf to GDec that preserves
the coloring of edges. Based on this idea, FKN constructed PSM protocols and
proved lower bounds.

To extend the idea of FKN to n-input functions f : X1× · · · ×Xn → Y with
n ≥ 2, we needed, instead of an edge joining two elements x1 and x2, a “higher-
dimensional edge” joining n elements x1, . . . , xn. We found that a combinatorial
object called simplicial complexes (see Section 2.2) is suitable for the purpose.
In our setting, the simplicial complex ∆f representing the function f consists of
(n− 1)-dimensional faces {x1, . . . , xn} (called facets) having n vertices xi ∈ Xi

(and their subfaces {xi1 , . . . , xid}, i1 < · · · < id). Then a facet {x1, . . . , xn} of∆f

has color y ∈ Y if f(x1, . . . , xn) = y. The simplicial complex ∆Dec representing
the decoding function Dec is defined in the same way. Now similarly to the case of
n = 2, a key observation here is that any shared randomness can be interpreted
as an embedding map from ∆f to ∆Dec that preserves the coloring of facets.

In order to explain our idea, here we demonstrate an alternative proof for
DPP’s lower bound |Mi| ≥ 3 (i ∈ {1, 2}) for the two-input AND function
f(x1, x2) = x1 ∧ x2. First, as mentioned above, any shared randomness r =
(r1, r2) can be regarded as a pair of injections ri : Xi = {0, 1} →Mi (i ∈ {1, 2}).
Take a randomness r = (r1, r2) and write b̂ := ri(b) (b ∈ {0, 1}, i ∈ {1, 2}).
Here, the security of PSM protocols can be interpreted as stating that for any
edge ê of GDec, the probability that an edge e of Gf with the same color as ê
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is mapped to ê by some randomness is independent of e. Thus, since the black
edge e = (0, 0) in Gf is mapped to the black edge ê = (0̂, 0̂) in GDec, there must
exist another randomness r′ = (r′1, r

′
2) that maps another black edge e′ = (0, 1)

in Gf to ê. In this case, r′ maps a red edge e′′ = (1, 1) to ê′ = (r′1(1), 0̂), which

should be a red edge and hence be different from (0̂, 0̂) and (1̂, 0̂). Therefore, we
have r′1(1) 6= 0̂, 1̂ and hence M1 must have at least three distinct elements, i.e.,
|M1| ≥ 3. By symmetry, we have |M2| ≥ 3.

In a general case, we establish useful lemmas for proving lower bounds (Lem-
mas 3 and 4) which we call embedding lemmas. These two versions have a trade-
off that a strong version is only applicable to some restricted kind of functions
f while a weak version is applicable to any f . In the previous paragraph, we
derived the existence of a new embedding r′ from the fact “the vertex 0 in X1 is
joined to two black edges” and the existence of the red edge ê′ from the fact “the
vertex 1 in X2 is joined to both black and red edges.” The idea of embedding
lemmas is to derive a lower bound on the number of facets of ∆Dec around a
lower-dimensional face based on distributions of colors for facets in ∆f .

Basic notations. For an integer n ≥ 1, we write [n] := {1, 2, . . . , n}. For
any integer q ≥ 2, we write Zq := Z/qZ and Z×q := (Z/qZ)× identified with
{0, 1, . . . , q − 1} and {1, 2, . . . , q − 1}, respectively. For a set S, we denote by
|S| the cardinality of S. For a bit string m ∈ {0, 1}∗, we denote by |m| the bit
length of m. For two probability distributions X ,Y, we write X ≡ Y if they are
the same probability distribution.

2 PSM Protocols and Simplicial Complexes

2.1 PSM Protocols

Definition 1. Let n ≥ 2 be a positive integer. Let Xi, Mi, Ri (i ∈ [n]), and

Y be finite sets. Write X⃗ = X1 × · · · × Xn, M⃗ = M1 × · · · ×Mn, and R⃗ =
R1×· · ·×Rn. Let Enci : Xi×Ri →Mi (i ∈ [n]) be functions and Dec : M⃗ → Y be

a partial function. Let R = (R1, . . . ,Rn) be a random variable over R⃗. A private

simultaneous messages (PSM) protocol for a function f : X⃗ → Y is a tuple
Π = (n, (Xi)i∈[n], Y,R, (Mi)i∈[n], (Enci)i∈[n],Dec) with the following conditions:

– (Correctness) For any x = (x1, . . . , xn) ∈ X⃗,

Pr[ Dec(Enc1(x1,R1), . . . ,Encn(xn,Rn)) = f(x) ] = 1.

Note that the correctness also claims that the partial function Dec is defined
over the arguments on the left-hand side.

– (Security) For any x = (xi)i∈[n], x
′ = (x′i)i∈[n] ∈ X⃗ with f(x) = f(x′),

(Enc1(x1,R1), . . . ,Encn(xn,Rn)) ≡ (Enc1(x
′
1,R1), . . . ,Encn(x

′
n,Rn)).

We call n the number of players, Xi the i-th input set, Y the output set, Mi the
i-th message space, Ri the i-th randomness set, Enci the i-th encoding function,
and Dec the decoding function. We also define the effectiveness as follows:
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– A random number r ∈ R⃗ is said to be effective if Pr[r ← R] > 0. We will
denote by R the set of effective random numbers.

– A tuple of messages (mi0 , . . . ,mid) ∈Mi0×· · ·×Mid (1 ≤ i0 < · · · < id ≤ n)

is said to be effective if there exist an input (x1, . . . , xn) ∈ X⃗ and an effective
random number (r1, . . . , rn) ∈ R such that Encij (xij , rij ) = mij (0 ≤ j ≤ d).

That is, a random number or a tuple of messages is said to be effective if
it can appear during an execution of protocol Π. In Definition 1, an element
ri of Ri defines a function Xi → Mi that maps xi ∈ Xi to Enci(xi, ri) ∈ Mi.
This function is also denoted by ri. We assume without loss of generality that
any two elements ri 6= r′i of Ri define different functions, since otherwise the
correctness and security of the protocol are not affected by identifying ri with
r′i, hence reducing the size of Ri.

2.2 Simplicial Complexes

Let ∆ ⊆ 2S be a non-empty set of subsets of a finite set S. ∆ is said to be a
simplicial complex with underlying set S if A ∈ ∆ and B ⊆ A imply B ∈ ∆
for any A,B. An element of ∆ is called a face of ∆. The dimension of a face
A ∈ ∆ is defined by dim(A) := |A| − 1. A maximal element A of ∆ with respect
to inclusion is called a facet of ∆. The set of all facets is denoted by Facet(∆).
For a finite set C, a function color : Facet(∆)→ C is said to be a C-coloring of
∆, and color(F ) for a facet F is called the color of F .

Let (S1, . . . , Sn) be a partition of S. A simplicial complex ∆ is said to be n-
partite with respect to (S1, . . . , Sn) if |A∩Si| ≤ 1 for any A ∈ ∆ and 1 ≤ i ≤ n.
Moreover, ∆ is said to be the complete n-partite simplicial complex with respect
to (S1, . . . , Sn) if {a1, . . . , an} ∈ ∆ for any ai ∈ Si (1 ≤ i ≤ n). For an n-partite
simplicial complex ∆, a face {ai0 , ai1 , . . . , aid} ∈ ∆ (1 ≤ i0 < i1 < · · · < id ≤ n,
aij ∈ Sij ) is often represented by a sequence of length n formed by placing aij in
the ij-th position and the symbol ‘⊥’ in the remaining positions. For example,
when n = 5, a face {a1, a3, a4} is represented by (a1,⊥, a3, a4,⊥) or a1⊥a3a4⊥.

Let ∆ and ∆′ be n-partite simplicial complexes with respect to (S1, . . . , Sn)
and (S′1, . . . , S

′
n), respectively. Let ϕ = (ϕ1, . . . , ϕn) be a tuple of n functions

ϕi : Si → S′i (1 ≤ i ≤ n). For a face A = {ai0 , . . . , aid} (aij ∈ Sij ) of ∆, define
ϕ(A) := {ϕi0(ai0), . . . , ϕid(aid)}. We say that ϕ is a morphism from ∆ to ∆′,
denoted by ϕ : ∆ → ∆′, if dim(ϕ(A)) = dim(A) for any A ∈ Face(∆). If ϕ is
injective, ϕ is said to be an embedding of ∆ into ∆′. If ϕ is bijective, ϕ is said to
be an isomorphism from ∆ to ∆′. When each of ∆ and ∆′ has a C-coloring, we
consider only morphisms ϕ that are consistent with the coloring, that is, those
mapping a facet A of ∆ onto a facet of ∆′ with the same color as A.

2.3 Simplicial Complexes for PSM Protocols

Let f ′ : X ′1 × · · · ×X ′n → Y ′ be a partial function, and ∆ a Y ′-colored n-partite
simplicial complex with respect to a partition (X ′1, . . . , X

′
n). ∆ is said to be the

simplicial complex defined by f ′ if for any x′i ∈ X ′i (1 ≤ i ≤ n), A = {x′1, . . . , x′n}
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is a facet of ∆ if and only if f ′(x′1, . . . , x
′
n) is defined, and in this case, the color

of A coincides with f ′(x′1, . . . , x
′
n).

For a PSM protocol as in Definition 1, let ∆f and ∆Dec be the simplicial
complexes defined by f and Dec, respectively. Then we can observe that the
correctness of the PSM protocol is equivalent to the following condition:

For any effective randomness r = (r1, . . . , rn) ∈ R viewed as a tuple of
functions Xi →Mi, r is a (color-preserving) morphism from ∆f to ∆Dec.

Furthermore, the security of the PSM protocol can be rewritten as follows:

For any facets F, F ′ of ∆f with the same color and any facet F̂ of ∆Dec,
the following equation holds:

Pr
r←R

[r(F ) = F̂ ] = Pr
r←R

[r(F ′) = F̂ ].

We denote the left-hand side of the equation by Pr[F 7→ F̂ ] and the right-hand

side by Pr[F ′ 7→ F̂ ]. Note that we can remove any ineffective facets (and all faces
included in the removed facets only) from ∆Dec without affecting correctness or
security. From now on, throughout this paper, we assume that all facets (and
therefore all faces) of ∆Dec are effective. In particular, the following is satisfied:

Lemma 1. Let Π be a PSM protocol for a function f . Then for any facet F̂ of
∆Dec and any facet F of ∆f with the same color as F̂ , there exists an effective

randomness r ∈ R satisfying that r(F ) = F̂ .

Proof. Since F̂ is effective as mentioned above, there are a facet F ′ of ∆f and

an effective r′ ∈ R with r′(F ′) = F̂ , hence Pr[F ′ 7→ F̂ ] > 0. By the correctness

of Π, the color of F ′ is the same as that of F̂ , hence of F as well. Now by the
security of Π, we have Pr[F 7→ F̂ ] = Pr[F ′ 7→ F̂ ] > 0, implying the claim. □

3 Embedding Methods for Proving Lower Bounds

3.1 Injectivity of the Morphisms Defined by Randomness

In PSM protocols described by simplicial complexes, it is found that a morphism
defined by a random number typically results in an embedding of ∆f into ∆Dec.
To elaborate on this, we introduce the following definition.

Definition 2. A function f : X1 × · · · ×Xn → Y is said to have no redundant
inputs if for any i ∈ [n], there do not exist distinct xi, x

′
i ∈ Xi such that

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

for all xj ∈ Xj (j ∈ [n], j 6= i).

Note that we can remove any redundant inputs without affecting correctness
or security, hence, we will focus on functions having no redundant inputs.

We also define the following notation.
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Definition 3. The type type(Z) of a d-dimensional face Z of ∆f is defined as
the tuple of indices (i0, . . . , id) with 1 ≤ i0 < · · · < id ≤ n such that Z ∩Xij 6= ∅
for any 0 ≤ j ≤ d. The type of a face of ∆Dec is defined in the similar way.

Then the following lemma for the embedding holds.

Lemma 2. Let Π be a PSM protocol for a function f having no redundant in-
puts. Then for any effective r = (r1, . . . , rn) ∈ R, each ri : Xi →Mi is injective,
and r is an embedding from ∆f to ∆Dec.

Proof. First, we show that each ri is injective. Assume for contradiction that
ri(xi) = ri(x

′
i) for different xi, x

′
i ∈ Xi. From the correctness of Π, we have

f(x1, . . . , xi, . . . , xn) = Dec(r1(x1), . . . , ri(xi), . . . , rn(xn))

= Dec(r1(x1), . . . , ri(x
′
i), . . . , rn(xn))

= f(x1, . . . , x
′
i, . . . , xn)

for any xj ∈ Xj (j ∈ [n], j 6= i). This contradicts the assumption that f has no
redundant inputs. Therefore, ri is injective.

It remains to show that r(Z) 6= r(Z ′) for different faces Z,Z ′ ∈ ∆f of the
same type (i0, . . . , id). Since Z 6= Z ′, there is an index ij such that Z ∩ Xij 6=
Z ′∩Xij . Since rij : Xij →Mij is injective as above, it follows that r(Z)∩Mij 6=
r(Z ′) ∩Mij . Therefore, we have r(Z) 6= r(Z ′). □

3.2 Embedding Lemmas

Let ∆ be a simplicial complex with a C-coloring color. For any j ∈ C, we define
a function nj : ∆→ N≥0 by nj(Z) := |Facet(∆ | j, Z)|, where

Facet(∆ | j, Z) = {F ∈ Facet(∆) | Z ⊆ F, color(F ) = j}.

We define a function n : ∆→ (N≥0)|C| as follows:

n(Z) = (nj(Z))j∈C .

We refer to this vector as the color degree of the face Z.
Here, we use the same notations as in Section 2.3. Let Z ∈ ∆f . We define a

subset F(Z) of ∆f as the set of all Z ′ ∈ ∆f such that type(Z ′) = type(Z) and
there exists a color j ∈ C such that nj(Z) > 0 and nj(Z

′) > 0.

Lemma 3 (Embedding lemma (weak form)). Let Π be a PSM protocol for
a function f : X1 × · · · ×Xn → Y having no redundant inputs. For any face Z
of ∆f , there exists a face Ẑ of ∆Dec such that type(Ẑ) = type(Z) and for any
j ∈ Y , the following equation holds:

nj(Ẑ) ≥ Nj := max{nj(Z
′) | Z ′ ∈ F(Z)}.
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Proof. Let r ∈ R be an effective embedding and set Ẑ := r(Z). Let j ∈ Y . Fix
any face Z ′ ∈ F(Z). By the definition of F(Z), type(Z ′) = type(Z) and there
exists a color j′ ∈ Y such that nj′(Z) > 0 and nj′(Z

′) > 0, hence, there exist
facets F1, F2 ∈ Facet(∆f ) with Z ⊆ F1, Z ′ ⊆ F2 such that f(F1) = j′ = f(F2).

Writing F̂ := r(F1), we have Pr[F1 7→ F̂ ] > 0. From the security of Π, we

have Pr[F2 7→ F̂ ] > 0, i.e., there exists an effective embedding r′ ∈ R such that

r′(F2) = F̂ . Since type(Z ′) = type(Z) and Ẑ = r(Z) ⊆ r(F1) = F̂ , it must hold

r′(Z ′) = Ẑ. Since r′ is an embedding from ∆f to ∆Dec by Lemma 2, it gives an

injection from Facet(∆f | j, Z ′) to Facet(∆Dec | j, Ẑ), therefore nj(Ẑ) ≥ nj(Z
′).

Since Z ′ ∈ F(Z) is arbitrary, we have nj(Ẑ) ≥ Nj . □

Corollary 1. Under the same notations as Lemma 3, if type(Z) = (i0, . . . , id),
then the following equation holds:∏

a∈[n]\{i0,...,id}

|Ma| ≥
∑
j∈Y

Nj .

Proof. For the face Ẑ ∈ ∆Dec as in Lemma 3, the number of facets of ∆Dec con-
taining Ẑ is

∏
a∈[n]\{i0,...,id} |Ma|, and this value is also written as

∑
j∈Y nj(Ẑ).

This relation and Lemma 3 proves the claim. □

The following lemma is a strengthened version of Lemma 3, which holds for
a certain type of function f .

Lemma 4 (Embedding lemma (strong form)). Let Π be a PSM protocol
for a function f having no redundant inputs. Fix a type t of ∆f . Define

N∗j := max{nj(Z) | Z ∈ ∆f , type(Z) = t}

for j ∈ Y . Furthermore, assume that there exists a face Z ∈ ∆f of type t such

that all components of the color degree n(Z) are positive. Then, for any face Ẑ

of ∆Dec of type t, we have nj(Ẑ) ≥ N∗j (j ∈ Y ).

Proof. Fix a facet F̂1 of ∆Dec with color, say j1, containing Ẑ. From the as-
sumption on Z, there exists a facet F1 ∈ Facet(∆f | j1, Z). By Lemma 1, there

exists an effective morphism that maps F1 to F̂1, hence maps Z to Ẑ since
type(Ẑ) = type(Z). From the assumption that all components of n(Z) are posi-

tive, all components of n(Ẑ) are also positive. Now let Z ′ be any face of ∆f of

type t, and fix a facet F2 of∆f with color, say j2, containing Z
′. Since nj2(Ẑ) > 0

as above, there is a facet F̂2 ∈ Facet(∆Dec | j2, Ẑ). By Lemmas 1 and 2, there

exists an effective embedding that maps F2 to F̂2 (and hence Z ′ to Ẑ) and gives

an injection Facet(∆f | j, Z ′) → Facet(∆Dec | j, Ẑ) for any j ∈ Y , implying

nj(Ẑ) ≥ nj(Z
′). As Z ′ is arbitrary, nj(Ẑ) ≥ N∗j , which proves the claim. □
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4 Communication Complexity for Concrete Functions

In this section, using the embedding method from Section 3, we provide lower
bounds on the communication complexity for concrete functions. For some func-
tions, we also provide upper bounds on it by constructing PSM protocols.

Since the functions f below have no redundant inputs, Lemma 2 implies that
any PSM protocol for f must satisfy |Mi| ≥ |Xi| for each i (since there is an
injection Xi →Mi). Hereafter, we refer to this as the trivial lower bound.

4.1 Multiplication in Groups

For a finite groupG, let f : Gn → G be the multiplication function f(x1, . . . , xn) =
x1 · · ·xn. As already noted in Section 1.1, the optimal communication complex-
ity for f has been determined to n log2 |G|. Here, we give another proof of this
fact using the embedding method.

Since f has no redundant inputs (by setting the remaining input components
to be the identity element 1G), we have the trivial lower bound |Mi| ≥ |Xi| = |G|.
Since FKN [8] designed a PSM protocol for the function f with |Mi| = |G|, it is
optimal in terms of the communication complexity. For a special case, by letting
G = Z2 with the group operation ⊕ (XOR operation), we can construct a PSM
protocol for the n-input XOR function x1 ⊕ · · · ⊕ xn with |Mi| = 2 (i ∈ [n]),
which is optimal in terms of the communication complexity.

4.2 AND Function

Let f : {0, 1}n → {0, 1} be the AND function f(x1, . . . , xn) = x1 ∧ · · · ∧ xn. f
has no redundant inputs (by setting the remaining input components to be 1).
For n = 2, we gave in Section 1.3 another proof of the lower bound given by
DPP [7]. For n ≥ 3, by using the strong form of the embedding lemma (Lemma
4), we can derive a stronger lower bound in the following.

Theorem 1. Let n ≥ 3. For any PSM protocol computing the n-input AND
function f , we have |Mi| ≥ 3 for any i, and if |Mi| = 3 for some i ∈ [n], then
|Mi′ | ≥ 6 for any i′ 6= i.

Proof. As mentioned above, f has no redundant inputs. For any 1 ≤ i ≤ n and
any (n− 2)-dimensional face Z ∈ ∆f with Z ∩Xi = ∅, the coloring degree of Z
is (n0(Z), n1(Z)) = (1, 1) if all components of Z are 1 and (2, 0) otherwise. In
particular, f satisfies the assumptions of Lemma 4 with N∗0 = 2 and N∗1 = 1.
Hereafter, we will use Lemma 4 without explicit mention. Then the number |Mi|
of facets in ∆Dec including any given face of type (1, . . . , i− 1, i+ 1, . . . , n) is at
least N∗0 + N∗1 = 3, therefore the former claim holds. For the remaining claim,
since f is symmetric, it suffices to assume |M1| = 3 and |M2| ≤ 5 and derive a
contradiction. We denote the set of all facets of a simplicial complex ∆ of color
j by Facet(∆ | j).

By Lemma 2, we take an effective embedding (called “standard embedding”)
and denote its image of a vertex a ∈ Xi = {0, 1} (i ∈ [n]) by â ∈ Mi. Then,
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for any facet x1 · · ·xn of ∆f , x̂1 · · · x̂n is a facet of ∆Dec of the same color. We
specify the colors of the facets of ∆Dec. Here, an−2 := aa · · · a (n− 2 a’s).

(1). Take a face 0̂⊥0̂n−2 of ∆Dec. By the standard embedding, 0̂0̂0̂n−2, 0̂1̂0̂n−2 ∈
Facet(∆Dec | 0), hence there must exist another facet in Facet(∆Dec | 1)
including the face 0̂⊥0̂n−2 (since n1(0̂⊥0̂n−2) ≥ N∗1 = 1). Thus, there exists
2̂ ∈M2 \ {0̂, 1̂} such that 0̂2̂0̂n−2 ∈ Facet(∆Dec | 1).

(2). Take a face ⊥2̂0̂n−2 of ∆Dec. From (1), 0̂2̂0̂n−2 ∈ Facet(∆Dec | 1). Since
|M1| = 3 and n0(⊥2̂0̂n−2) ≥ N∗0 = 2, 1̂2̂0̂n−2, 2̂2̂0̂n−2 ∈ Facet(∆Dec | 0)
where we set M1 = {0̂, 1̂, 2̂}.

(3). Take two faces ⊥0̂0̂n−2 and ⊥1̂0̂n−2 of ∆Dec. By the standard embedding,
0̂0̂0̂n−2, 1̂0̂0̂n−2, 0̂1̂0̂n−2, 1̂1̂0̂n−2 ∈ Facet(∆Dec | 0). (Here, we used the condi-
tion n ≥ 3 for 1̂1̂0̂n−2.) Thus, 2̂0̂0̂n−2, 2̂1̂0̂n−2 ∈ Facet(∆Dec | 1).

(4). From (2), 1̂2̂0̂n−2 ∈ Facet(∆Dec | 0), hence by Lemmas 1 and 2, there exists
an effective r = (r1, . . . , rn) ∈ R such that r maps 000n−2 ∈ Facet(∆f | 0) to
1̂2̂0̂n−2. This r maps 100n−2 ∈ Facet(∆f | 0) to r1(1)2̂0̂

n−2 ∈ Facet(∆Dec | 0)
different from r(000n−2) = 1̂2̂0̂n−2. From (1), 0̂2̂0̂n−2 ∈ Facet(∆Dec | 1) and
r1(1) 6= 0̂, 1̂, hence, r1(1) = 2̂ and r(100n−2) = 2̂2̂0̂n−2.

(5). r maps 110n−2 ∈ Facet(∆f | 0) to 2̂r2(1)0̂
n−2 ∈ Facet(∆Dec | 0) different

from r(100n−2) = 2̂2̂0̂n−2. From (3), 2̂0̂0̂n−2, 2̂1̂0̂n−2 ∈ Facet(∆Dec | 1),
hence, r2(1) 6= 0̂, 1̂, 2̂. Thus, there exists 3̂ ∈M2\{0̂, 1̂, 2̂} such that r2(1) = 3̂.
Therefore, we have 2̂3̂0̂n−2 ∈ Facet(∆Dec | 0), and since r(000n−2) = 1̂2̂0̂n−2

as in (4), we have r(010n−2) = 1̂3̂0̂n−2 ∈ Facet(∆Dec | 0).
(6). Take a face ⊥3̂0̂n−2 of ∆Dec. From (5), 1̂3̂0̂n−2, 2̂3̂0̂n−2 ∈ Facet(∆Dec | 0),

hence, 0̂3̂0̂n−2 ∈ Facet(∆Dec | 1).
(7). Take a face 1̂⊥0̂n−2 of ∆Dec. From the standard embedding and (2) and (5),

we have 1̂0̂0̂n−2, 1̂1̂0̂n−2, 1̂2̂0̂n−2, 1̂3̂0̂n−2 ∈ Facet(∆Dec | 0). Thus, there exists
4̂ ∈ M2 \ {0̂, 1̂, 2̂, 3̂} such that 1̂4̂0̂n−2 ∈ Facet(∆Dec | 1). Since |M2| ≤ 5, we
have M2 = {0̂, 1̂, 2̂, 3̂, 4̂}.

(8). Take a face ⊥4̂0̂n−2 of ∆Dec. From (7), 1̂4̂0̂n−2 ∈ Facet(∆Dec | 1), hence,
0̂4̂0̂n−2, 2̂4̂0̂n−2 ∈ Facet(∆Dec | 0).

(9). From (8), 0̂4̂0̂n−2 ∈ Facet(∆Dec | 0), hence by Lemmas 1 and 2, there exists
an effective r′ = (r′1, . . . , r

′
n) ∈ R such that r′ maps 000n−2 ∈ Facet(∆f | 0)

to 0̂4̂0̂n−2. This r′ maps 100n−2 ∈ Facet(∆f | 0) to r′1(1)4̂0̂n−2 ∈ Facet(∆Dec |
0) different from r′(000n−2) = 0̂4̂0̂n−2. From (7), 1̂4̂0̂n−2 ∈ Facet(∆Dec | 1)
and r′1(1) 6= 0̂, 1̂, hence we have r′1(1) = 2̂.

(10). r′ maps 010n−2 ∈ Facet(∆f | 0) into 0̂r′2(1)0̂
n−2 ∈ Facet(∆Dec | 0) different

from r′(000n−2) = 0̂4̂0̂n−2. From (1) and (6), 0̂2̂0̂n−2, 0̂3̂0̂n−2 ∈ Facet(∆Dec |
1), hence, r′2(1) 6= 2̂, 3̂, 4̂ and r′2(1) ∈ {0̂, 1̂}. Thus, r′ maps 110n−2 ∈
Facet(∆f | 0) to 2̂r′2(1)0̂

n−2 ∈ Facet(∆Dec | 0), which must be either 2̂0̂0̂n−2

or 2̂1̂0̂n−2. However, from (3), we have 2̂0̂0̂n−2, 2̂1̂0̂n−2 ∈ Facet(∆Dec | 1),
yielding a contradiction.

This completes the proof. □
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Corollary 2. For the PSM protocol for the three-input AND with |M1| ≤ |M2| ≤
|M3| attaining the minimum value of

∑3
i=1 log2 |Mi|, (|M1|, |M2|, |M3|) is one

of (3, 6, 6), (4, 4, 4), (4, 4, 5), (4, 4, 6), (4, 4, 7), (4, 5, 5), (4, 5, 6), and (5, 5, 5).

Proof. Since the protocol in [8] satisfies |Mi| = 5 for any i, the optimal case

satisfies
∏3

i=1 |Mi| ≤ 53 = 125. Now the claim follows from Theorem 1. □

4.3 Equality Function

Let f : {0, 1}n → {0, 1} be the n-input equality function that outputs 1 if and
only if all bits are the same. From the embedding method, we obtain the following
lower bound for f .

Theorem 2. Any PSM protocol for the n-input equality function f satisfies
|Mi| ≥ 3 for any i ∈ [n].

Proof. By symmetry, it suffices to show that |Mn| ≥ 3. Similarly to Section
4.2, f has no redundant inputs. Now the color degrees of faces Z := 0n−1⊥ and
Z ′ := 0n−21⊥ of ∆f are n(Z) = (1, 1) and n(Z ′) = (2, 0), respectively. Therefore
Z,Z ′ ∈ F(Z) and we have N0 ≥ max{1, 2} = 2 and N1 ≥ max{1, 0} = 1 in
Corollary 1. Hence |Mn| ≥ N0 +N1 ≥ 3 by Corollary 1. □

Let p ≥ n be any prime number. We design a PSM protocol for the n-input
equality function as follows.

Shared randomness:
– ri = (b, ci) (i ∈ [n]), where b ∈ Z×p and c1, . . . , cn−1 ∈ Zp are chosen

uniformly at random and cn = −
∑n−1

i=1 ci ∈ Zp.
The protocol:

1. Pi, holding xi ∈ {0, 1}, computes mi = bxi + ci (mod p) for i ∈ [n− 1]
and mn = b(p− n+ 1)xn + cn (mod p), and sends it to the referee.

2. The referee outputs 1 if
∑n

i=1 mi = 0 (mod p) and 0 otherwise.
Communication complexity: |Mi| = p.

Proposition 1. The above protocol is a correct and secure PSM protocol for the
n-input equality function with |Mi| = p for any prime p ≥ n.

Proof. Let x :=
∑n−1

i=1 xi + (p − n + 1)xn ∈ Z. Then 0 ≤ x ≤ p, and we
have x = 0 (resp., p) if and only if all xi are 0 (resp., 1). Hence, since b ∈
Z×p is uniformly random,

∑n
i=1 mi = bx (mod p) is 0 if all xi are equal, and

is uniformly random over Z×p otherwise, implying the correctness. Moreover,
due to the uniform choices for the ci’s, (m1, . . . ,mn) is uniformly random over
all those tuples with

∑n
i=1 mi being 0 (resp., uniformly random over Z×p ) if

f(x1, . . . , xn) = 1 (resp., 0). This implies the security. □
Corollary 3. When n = 3, the protocol above with |Mi| = p := 3 is optimal in
terms of the communication complexity for the three-input equality function.

Proof. This follows from Theorem 2 and Proposition 1.
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4.4 Majority Function

Let f : {0, 1}n → {0, 1} be the n-input majority function that outputs 1 if and
only if

∑n
i=1 xi ≥ dn/2e. We obtain the following lower bound.

Theorem 3. Any PSM protocol for the n-input majority function f satisfies
|Mi| ≥ 4 for any i ∈ [n].

Proof. By symmetry, we focus on the case i = n. Set m := dn/2e. By considering
the inputs where except for xn, m − 1 bits are 1 and the others are 0, we see
that f has no redundant inputs. Then, the color degrees of Z := 0n−m1m−1⊥,
Z ′ := 0n−1⊥, and Z ′′ := 1n−1⊥ are (1, 1), (2, 0), and (0, 2), respectively. There-
fore, by applying Corollary 1 to this Z, since Z,Z ′, Z ′′ ∈ F(Z), we have N0 ≥
max{1, 2, 0} = 2 and N1 ≥ max{1, 0, 2} = 2, hence |Mn| ≥ N0 +N1 ≥ 4. □

We design a PSM protocol for the three-input majority function as follows.

Shared randomness:
– ri = (b, ci) (i ∈ [3]), where b ∈ {0, 1} and c1, c2 ∈ Z4 are chosen

uniformly at random and c3 = −c1 − c2 ∈ Z4.
The protocol:

1. If b = 0, Pi, holding xi ∈ {0, 1}, computes mi = xi + ci (mod 4). If
b = 1, P1 computes m1 = 1 − x1 + c1 (mod 4) and Pi (i ∈ {2, 3})
computes mi = −xi + ci. Each party Pi sends mi to the referee.

2. The referee computes m = m1 + m2 + m3 (mod 4) and outputs 0 if
m ∈ {0, 1} and 1 if m ∈ {2, 3}.

Proposition 2. The above protocol is a correct and secure PSM protocol for the
three-input majority function with |Mi| = 4 for i ∈ [3].

Proof. A direct calculation shows that when x :=
∑3

i=1 xi is 0, 1, 2, or 3, we
have m = 0, 1, 2, or 3 if b = 0, and m = 1, 0, 3, or 2 if b = 1, respectively. Then
by the uniformly random choices of b and (c1, c2, c3) with

∑3
i=1 ci = 0 (mod 4),

if x ≤ 1 (resp., x ≥ 2), the tuple (m1,m2,m3) is uniformly random over all those
satisfying m ∈ {0, 1} (resp., {2, 3}). This implies the claim. □

Corollary 4. The protocol above with |M1| = |M2| = |M3| = 4 is optimal in
terms of the communication complexity for the three-input majority function.

Proof. This follows from Theorem 3 and Proposition 2.

4.5 Comparison Function

Let k ≥ 2 be an integer. Let f : {0, 1, . . . , k}2 → {0, 1, 2} be the (k + 1)-valued
comparison function f(x1, x2) that outputs 0 if x1 < x2, 1 if x1 = x2, and
2 if x1 > x2. When k = 2, FKN [8] constructed a PSM protocol satisfying
|M1| = |M2| = 7. From the weak form of the embedding lemma (Lemma 3), we
obtain the following lower bound for any k ≥ 2.
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Theorem 4. Any PSM protocol for the (k + 1)-valued comparison function f
satisfies |Mi| ≥ 2k + 1 for any i ∈ [2].

Proof. By comparing inputs of the form (x, x) with (x′, x) where x 6= x′, we
see that f has no redundant inputs. The color degrees of Z := 0⊥, Z ′ := 1⊥,
and Z ′′ := k⊥ are n(Z) = (k, 1, 0), n(Z ′) = (1, 1, k − 1), and n(Z ′′) = (0, 1, k),
respectively. Therefore, by applying Corollary 1 to Z, since Z,Z ′, Z ′′ ∈ F(Z),
we have N0 ≥ max{k, 1, 0} = k, N1 ≥ max{1, 1, 1} = 1, and N2 ≥ max{0, k −
1, k} = k, hence |M2| ≥ N0 +N1 +N2 = 2k + 1. The case of M1 is similar.

When k = 2, by using the strong form of the embedding lemma (Lemma 4),
we can derive a stronger lower bound in the following.

Theorem 5. When k = 2, any PSM protocol for the three-valued comparison
function f satisfies either |M1| ≥ 6 or |M2| ≥ 6.

Proof. Assume for contradiction that |M1| = |M2| = 5. As in the proof of
Theorem 4, f has no redundant inputs. For ∆f , since n(0⊥) = (2, 1, 0), n(1⊥) =
(1, 1, 1), and n(2⊥) = (0, 1, 2), it satisfies the assumptions of Lemma 4 with
(N∗0 , N

∗
1 , N

∗
2 ) = (2, 1, 2). Thus, from |M2| = 5, it must hold that n(Z) = (2, 1, 2)

for any face Z of type (1). Similarly, we have n(Z) = (2, 1, 2) for any face Z of
type (2). We use the same notation Facet(∆ | j) as the proof of Theorem 1.

Similarly to the proof of Theorem 1, for each i ∈ [2], we write the image of
a ∈ Xi = {0, 1, 2} by a fixed (“standard”) effective embedding as â ∈ Mi. By
Lemmas 1 and 2, there exists an effective r = (r1, r2) ∈ R such that r maps
01 ∈ Facet(∆f | 0) to 0̂2̂ ∈ Facet(∆Dec | 0). This maps 11 ∈ Facet(∆f | 1) to

r1(1)2̂ ∈ Facet(∆Dec | 1). From n1(⊥2̂) = 1 as in the previous paragraph and
2̂2̂ ∈ Facet(∆Dec | 1), we have r1(1) = 2̂. Also, r maps 02 ∈ Facet(∆f | 0) to

0̂r2(2) ∈ Facet(∆Dec | 0), which is different from r(01) = 0̂2̂. From n0(0̂⊥) =
2, 0̂r2(2) must be 0̂1̂, i.e., r2(2) = 1̂. Then r maps 12 ∈ Facet(∆f | 0) to

r1(1)r2(2) = 2̂1̂ ∈ Facet(∆Dec | 2), a contradiction. This implies the claim. □

Corollary 5. For the PSM protocol for the three-valued comparison function
with |M1| ≤ |M2| attaining the minimum value of

∑2
i=1 log2 |Mi|, we have

(|M1|, |M2|) ∈ {(5, 6), (5, 7), (5, 8), (5, 9), (6, 6), (6, 7), (6, 8), (7, 7)}.

Proof. Since the protocol in [8] mentioned above satisfies |M1| = |M2| = 7,
the optimal case satisfies |M1| · |M2| ≤ 72 = 49. Now the claim follows from
Theorem 4 (with k = 2) and Theorem 5. □

4.6 Multiplication over Finite Rings

For any (not necessarily commutative) finite ring S, let f : S2 → S be the
multiplication function f(x1, x2) = x1x2. In the following, we design a PSM
protocol for f by using the idea of Beaver multiplication triples.

Shared randomness:
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– r1 = (a, b, c1), r2 = (a, b, c2), where a, b, c1 are uniformly random ele-
ments of S and c2 = −c1.

The protocol:
1. P1, holding x1 ∈ S, computesm1 = (m1,1,m1,2) = (x1−a, x1b−ab+c1).

P2, holding x2 ∈ S, computes m2 = (m2,1,m2,2) = (x2 − b, ax2 + c2).
Each party Pi sends mi to the referee.

2. The referee outputs m1,1m2,1 +m1,2 +m2,2 ∈ S.

Proposition 3. The above protocol is a correct and secure PSM protocol for the
multiplication function f over a finite ring S with |Mi| = |S|2 for i ∈ [2].

Proof. The correctness follows from the following computation:

m1,1m2,1 +m1,2 +m2,2 = (x1 − a)(x2 − b) + (x1b− ab+ c1) + (ax2 + c2)

= x1x2 − x1b− ax2 + ab+ x1b− ab+ c1 + ax2 + c2

= x1x2 + c1 + c2 = x1x2.

To prove the security, we compute the probability that given m′1,1, m
′
1,2,

m′2,1, m
′
2,2 ∈ S with m′1,1m

′
2,1 + m′1,2 + m′2,2 = x1x2, both m1 = (m′1,1,m

′
1,2)

and m2 = (m′2,1,m
′
2,2) hold. First, from m1,1 = m′1,1 and m2,1 = m′2,1, we must

have a = x1−m′1,1 and b = x2−m′2,1, which hold with probability |S|−2. Then,
under the condition that these a, b are chosen, we have

m1,2 = x1b− ab+ c1

= x1(x2 −m′2,1)− (x1 −m′1,1)(x2 −m′2,1) + c1

= x1x2 − x1m
′
2,1 − x1x2 + x1m

′
2,1 +m′1,1x2 −m′1,1m

′
2,1 + c1

= m′1,1x2 −m′1,1m
′
2,1 + c1,

m2,2 = ax2 + c2 = (x1 −m′1,1)x2 + c2 = x1x2 −m′1,1x2 + c2.

Therefore, from m1,2 = m′1,2 and m2,2 = m′2,2, we must have

c1 = m′1,2 −m′1,1x2 +m′1,1m
′
2,1 , c2 = m′2,2 − x1x2 +m′1,1x2.

Since they satisfy

c1 + c2 = m′1,1m
′
2,1 +m′1,2 +m′2,2 − x1x2 = 0,

the probability that these c1, c2 are chosen is |S|−1. In summary, the probability
that m1 = (m′1,1,m

′
1,2) and m2 = (m′2,1,m

′
2,2) is |S|−3, which does not depend

on the inputs (x1, x2). This proves the security. □

Let q ≥ 2 be a prime power. When S = Fq, the field of order q, we obtain
the following lower bound.

Theorem 6. Any PSM protocol for the multiplication function f over the finite
field Fq satisfies |M1|, |M2| ≥ 2q − 1.

15



Proof. The color degrees of faces Z := 1⊥ and Z ′ := 0⊥ of ∆f are n(Z) =
(1, 1, . . . , 1) and n(Z ′) = (q, 0, . . . , 0), respectively. From the strong version of
the embedding lemma, since N∗0 ≥ max{q, 1} = q and N∗j ≥ max{1, 0} = 1
(j 6= 0), we have |M2| ≥ q+ (q− 1) · 1 = 2q− 1. By symmetry, |M1| ≥ 2q− 1. □

Let q ≥ 2 be any integer. When S = Zq, the integer residue ring modulo q,
we obtain the following lower bound.

Theorem 7. Any PSM protocol for the multiplication function f over Zq sat-
isfies |M1|, |M2| ≥

∑q
i=1 gcd(i, q).

Proof. By symmetry, we focus on M2. For j ∈ Zq and a face x⊥ of ∆f with
x ∈ Zq, we have nj(x⊥) = |Aj,x| where Aj,x := {c ∈ Zq | c · x = j (mod q)}. In
particular, nj(1⊥) = 1 for any j. Hence by the strong version of the embedding
lemma, we have |M2| ≥

∑
j∈Zq

N∗j ≥
∑

j∈Zq
maxx∈Zq |Aj,x|. Therefore, it suffices

to show that gcd(j, q) = maxx∈Zq
|Aj,x| for any j ∈ Zq.

We write d := gcd(j, q) and δx := gcd(x, d). Then any c ∈ Aj,x satisfies
that c · x = 0 (mod d) and hence c · (x/δx) = 0 (mod d/δx), therefore c = 0
(mod d/δx) since gcd(d/δx, x/δx) = 1. Hence c 7→ c/(d/δx) gives an injection
Aj,x → Aj,x·d/δx , and d divides x · d/δx = d ·x/δx. Therefore, to show the claim,
it suffices to consider x ∈ Zq that is a multiple of d. Write q = dq0, j = dj0,
and x = dx0. Now c ∈ Zq belongs to Aj,x if and only if c · x0 = j0 (mod q0).
Since gcd(j0, q0) = 1 by the definition of d, the condition for c is equivalent to
gcd(x0, q0) = 1 and c = j0 · (x0)

−1 (mod q0) where (x0)
−1 is the inverse of x0

modulo q0. Hence we have maxx∈Zq
|Aj,x| = q/q0 = d = gcd(j, q), as desired. □
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