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Abstract. The LowMC family of SPN block cipher proposed by Albrecht et al. was
designed specifically for MPC-/FHE-/ZKP-friendly use cases. It is especially used as
the underlying block cipher of PICNIC, one of the alternate third-round candidate
digital signature algorithms for NIST post-quantum cryptography standardization.
The security of PICNIC is highly related to the difficulty of recovering the secret key
of LowMC from a given plaintext/ciphertext pair, which raises new challenges for
security evaluation under extremely low data complexity.
In this paper, we improve the attacks on LowMC under low data complexity, i.e. 1
or 2 chosen plaintext/ciphertext pairs. For the difference enumeration attack with 2
chosen plaintexts, we propose new algebraic methods to better exploit the nonlinear
relation inside the introduced variables based on the attack framework proposed
by Liu et al. at ASIACRYPT 2022. With this technique, we significantly extend
the number of attack rounds for LowMC with partial nonlinear layers and improve
the success probability from around 0.5 to over 0.9. The security margin of some
instances can be reduced to only 3/4 rounds. For the key-recovery attack using
a single plaintext, we adopt a different linearization strategy to reduce the huge
memory consumption caused by the polynomial methods for solving multivariate
equation systems. The memory complexity reduces drastically for all 5-/6-round
LowMC instances with full nonlinear layers at the sacrifice of a small factor of time
complexity. For 5-round LowMC instances with a block size of 129, the memory
complexity decreases from 286.46 bits to 248.18 bits while the time complexity even
slightly reduces. Our results indicate that the security for different instances of
LowMC under extremely low data complexity still needs further exploration.
Keywords: LowMC · PICNIC · linearization · algebraic attack · key recovery ·
crossbred algorithm · polynomial method

1 Introduction
The new progress of advanced cryptographic protocols has motivated a range of symmetric-
key primitives dedicated to multi-party computation (MPC), fully homomorphic encryption
(FHE), and zero-knowledge proofs (ZKP). As the pioneering work of this direction, LowMC,
a family of SPN block ciphers proposed by Albrecht et al. [ARS+15], has attracted lots
of attention. It uses partial or complete Sbox layers consisting of m 3-bit S-boxes of
degree 2 to minimize the multiplicative complexity. Such a trend has led to several
unconventional designs including MiMC [AGR+16], FLIP [MJSC16], Kreyvrium [CCF+18],
Rasta [DEG+18], Ciminion [DGGK21] and Poseidon [GKR+21].
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Recently, LowMC has been utilized as the underlying block cipher of the digital sig-
nature algorithm PICNIC [CDG+17, KZ20], which is one of the third-round alternate
candidates for NIST post-quantum cryptography standardization. Let c = EK(p) be the
LowMC encryption of plaintext p under the key K. The plaintext/ciphertext (p, c) is used
as the public key of PICNIC, and K is used as the secret key. The security of PICNIC is
directly related to the difficulty of recovering K from a single plaintext/ciphertext (p, c).

Previous work. The exploration of reducing the number of multiplications has prompted
cryptanalysts to analyze LowMC. The interpolation attack [DLMW15] and higher-order
differential attack [DEM16] directly made LowMC move to LowMCv2. As mentioned in
PICNIC specification [CDG+17], LowMC instances should be secure with 1 or 2 plain-
text/ciphertext pairs, which raises new challenges for security evaluation under extremely
low data complexity.

In FSE 2018, Rechberger et al. proposed the difference enumeration attack [RST18] to
analyze the security of LowMCv2 with partial nonlinear layers using 3 or slightly more
chosen plaintext/ciphertext pairs. Its powerfulness was undoubtedly demonstrated by the
break of several instances of LowMCv2 and LowMC was further updated to LowMCv3.
For the rest of this paper, we refer to LowMCv3 as LowMC for simplicity.

The difference enumeration attack mainly has two phases: the difference enumeration
phase and the key-recovery phase. In the difference enumeration phase, the compact
differential trails are recovered, which can be exploited to retrieve the full key in the
key-recovery phase. However, the original difference enumeration attack is not quite
efficient for the vast memory consumption to store the pre-computed differences and the
strong constraints on the number of recovered differential trails. So Liu et al. revisited
the difference enumeration attack and developed the algebraic techniques at CRYPTO
2021 [LIM21]. Based on some observations on the 3-bit S-box of degree 2, the problem
of recovering the compact differential trails/retrieving the full key can be reduced to
solving linear equation systems by introducing intermediate variables. Some important
LowMC instances can be successfully broken with only 2 chosen plaintext/ciphertext pairs.
Recently, Liu et al. [LSW+22] pointed out that the introduced intermediate variables
are not independent and there are nonlinear relations inside them. So they developed an
MITM strategy to enumerate the compact differential trails, i.e. utilizing the nonlinear
relation of the variables to build tables in the offline phase and then enumerating the
remaining variables in the online phase. In the key recovery phase, they introduced
quadratic equations and solved them using linearization techniques. By exploiting the
above techniques, they further improved the number of attack rounds on LowMC instances
with a success probability of around 0.5.

On the other hand, the LowMC team launched a public challenge1 for LowMC key-
recovery in PICNIC use cases under only 1 chosen plaintext/ciphertext pair. The first
successful key recovery was proposed by Banik et al. [BBDV20]. The core idea is to linearize
the LowMC S-box by guessing a balanced quadratic equation on the input bits of the
S-box. Following this work, Banik et al. [BBVY21] proposed a 2-stage MITM method and
extended the number of attack rounds for LowMC with partial nonlinear layer to ⌊n/m⌋
rounds. In EUROCRYPT 2021, Dinur presented an advanced method of finding roots for
a multivariate Boolean equation equation system [Din21]. This attack works quite well for
low-degree systems and successfully broke 2-/3-/4- or 5-round LowMC with full nonlinear
layer. However, the polynomial method requires vast memory. So Liu et al. [LMSI22]
adopted a better time-memory trade-off method and further reduced the memory complex-
ity for 3-/4-round LowMC at a sacrifice of a smaller factor of time complexity. In addition,
Banik et al. [BBCV22] also combined the linearization technique [BBDV20, BBVY21] and
the polynomial methods in [Din21]. The memory complexity reduces drastically and the

1https://lowmcchallenge.github.io/

https://lowmcchallenge.github.io/
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number of attacked rounds can be extended to 6 rounds.

Our contributions. This paper is based on the attack against LowMC under extremely
low data complexity, i.e. 1 or 2 chosen plaintext/ciphertext pairs. We aim to give a more
comprehensive analysis of the security margin of LowMC with state-of-the-art techniques.
All the results are summarized in Table 1 and Table 2.

For the difference enumeration attack, we observe that the nonlinear relations inside
the free variables can be used in a more fine-grained way to benefit the equation solving in
the difference enumeration phase. Specifically, we introduce nonlinear equations of degree
3 for the unknown variables in the online phase instead of enumerating them in [LSW+22]
and then solve the equation system effectively utilizing Dinur’s algorithm [Din21]. In the
key recovery phase, we introduce quadratic equations and use a simple version of the
crossbred algorithm [BDT22, LMSI22] to solve an over-defined quadratic equation system,
which successfully reduces the time complexity and relaxes the constraints on the number
of active S-boxes caused by the linearization technique. In this way, we significantly extend
the number of rounds for the difference enumeration attack on LowMC and improve the
success probability from 0.5 to over 0.9. The time complexity decreases quickly and the
memory complexity also reduces rapidly when m = 1. Some LowMC instances have only
3/4 rounds of security margin.

For attacks on LowMC with a single plaintext/ciphertext pair, we perform the guess
strategy in [LMSI22] to partition the key space into 22n/3 disjoint partial space, i.e. guess
2 input bits instead of 1 quadratic polynomial in [BBDV20]. Then we can find roots
by the interpolation and evaluation of the so-called black-box function [Din21, BBCV22]
in a partial space of around n/3 variables and achieve better time-memory trade-offs.
The memory complexity reduces drastically at the sacrifice of a smaller factor of time
complexity. In some special cases, the time complexity is even slightly reduced.

Outline. The rest of the paper is organized as follows. In Section 2, we introduce some
background knowledge needed in this paper. In Section 3, we show our improvements on
difference enumeration attacks against LowMC with 2 plaintext-ciphertext pairs. Then,
we present our low-memory attacks on LowMC with a single plaintext/ciphertext pair
in Section 4, The experimental results are described in Section 5. Finally, the paper is
concluded in Section 6.

2 Preliminaries
2.1 Notation
Due to the various parameters of LowMC [ARS+15], we use n, k, m, and R to represent
block size in bits, key size in bits, the number of S-boxes per round, and the total number
of rounds, respectively. The following notations will be used throughout this paper.

1. M0||M1 represents the composition of two matrices M0 and M1 of the same number
of rows.

2. V = (a0, a1, · · · , ai−1)T represents an i-bit vector. To number the elements in V ,
we start the index from 0, i.e. V [j] represents the j-th bit in V , 0 ≤ j ≤ i− 1. For
example, V [0] represents the bit a0.

3. V [a : b] represents the a-th bit to the b-th bit of V , 0 ≤ a < b ≤ i− 1. For example,
V [0 : 1] represents the two bits V [0] and V [1] of V .

4. V0|V1 represents the composition of two vectors V0 and V1.
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Table 1: Summary of the attacks on LowMC with two chosen plaintexts in Section
3. Where T , M , Pro. and R − r represent the log2 time/memory complexity, success
probability and security margin, respectively. D represents the data complexity. T and M
are given in the number of LowMC encryptions and bits respectively.

n k m D R r0 r1 r2 r T M Pro. R− r Ref.

128 128 1 2 182
42 68 67 177 125.38 122.76 0.56 5 [LSW+22]
42 67 68 177 123.21 117.18 0.90 5 Ours
42 69 68 179 126.91 120.90 0.90 3 Ours

128 128 10 2 20 4 7 6 17 125.2 98.58 0.56 3 [LSW+22]
4 7 6 17 117.59 106.02 0.90 3 Ours

192 192 1 2 273
64 101 102 267 189.72 182.28 0.51 6 [LSW+22]
64 101 102 267 186.12 178.56 0.95 6 Ours
64 104 102 270 191.68 184.14 0.95 3 Ours

192 192 10 2 30
6 9 10 25 189.72 124.62 0.51 5 [LSW+22]
6 10 9 25 165.38 159.96 0.95 5 Ours
6 11 9 26 183.93 178.56 0.95 4 Ours

256 256 1 2 363
85 136 136 357 253.34 247.38 0.54 6 [LSW+22]
85 135 137 357 250.46 241.8 0.97 6 Ours
85 138 137 360 255.44 249.24 0.97 3 Ours

256 256 10 2 38
8 13 13 34 253.82 187.86 0.54 4 [LSW+22]
8 13 13 34 231.08 217.62 0.97 4 Ours
8 14 13 35 249.63 236.22 0.97 3 Ours

5.
(

u
≤d

)
=

∑d
i=0

(
u
i

)
, where

(
u
i

)
represents the binomial coefficient.

2.2 Description of LowMC
LowMC [ARS+15] is a family of SPN block ciphers proposed in EUROCRYPT 2015. A
notable characteristic of LowMC is that it has multiple parameters to choose from for
different use cases. Denote the input and output state of the (i + 1)-th round by A(i) and
A(i+1), respectively. The (i + 1)-th (0 ≤ i ≤ R− 1) round function of LowMC consists of
the following operations:

- SboxLayer (SB): An 3-bit S-box has Algebraic Normal Form (ANF): S(x0, x1, x2) =
(z0, z1, z2), where z0, z1, z2 defined as

z0 = x0 ⊕ x1x2, z1 = x0 ⊕ x1 ⊕ x0x2, z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1, (1)

The same 3-bit S-box is applied to the first 3m bits of the internal state in parallel,
while the remaining n− 3m bits undergo identity mapping.

- LinearLayer (L): The n-bit internal state is multiplied with an invertible matrix
Li ∈ Fn×n

2 . The matrix Li is chosen independently and uniformly at random from
all invertible binary matrices.

- ConstantAddition (AC): An n-bit round constant Ci is XORed with the n-bit
internal state. Ci is randomly generated.

- KeyAddition (AK): An n-bit round key Ki+1 is XORed with the n-bit internal
state, where Ki+1 = Ui+1 ·K. K denotes the k-bit master key and Ui+1 denotes a
full-rank matrix of size n× k. Ui+1 is randomly generated.
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Table 2: Summary of the attacks on LowMC with a single plaintext/ciphertext pair in Section 4.
T and M represent the log2 time/memory complexity respectively, and are given in bits. n1, l
are the parameters used in the attack with N = 4 as explained in Section 4. The complexity of
exhaustive search is given in the number of bit operations. We further compare our results with
the Gray code assisted exhaustive search technique proposed in [BCC+10].

r n k m N n1 l T M Gray Code Exh.Search Ref.

5 129 129 43 4 9 7 134.43 86.46 136 146 [BBCV22]
3 2 133.87 45.00 Ours

5 192 192 64 4
/ / 192 173

199 210
[Din21]

9 7 196.39 125.38 [BBCV22]
9 4 196.78 65.00 Ours

5 255 255 85 4
/ / 251 228

262 274
[Din21]

15 11 256.74 165.52 [BBCV22]
15 6 258.92 84.59 Ours

6 192 192 64 4 6 5 197.96 128.4 199 211 [BBCV22]
6 3 197.52 65.59 Ours

6 255 255 85 4 12 9 259.62 167.28 262 275 [BBCV22]
9 4 260.54 86.00 Ours

Notice that there is a whitening key (WK) K0 before the first round function, where
K0 = U0 ·K and U0 is also a full rank matrix of size n× k.

Following the notation of [LIM21], the difference of the (i + 1)-th input state of SB
is denoted by ∆i and the difference of the corresponding output state is denoted by ∆S

i .
The difference of plaintexts is denoted by ∆p, i.e. ∆p = ∆0. In our attacks, ∆i and ∆S

i

will be viewed as n-bit vectors.

∆p
W K−→ ∆0

SB−→ ∆S
0

L−→ AC−→AK−→ ∆1 −→ · · · −→ ∆R−1
SB−→ ∆S

R−1
L−→ AC−→AK−→ ∆R.

The compact differential trail is defined as below:

Definition 1. [LIM21] A differential trail ∆0 −→ ∆1 −→ · · · −→ ∆r is called a r-round
compact differential trail when all (∆j , ∆S

j ) (0 ≤ j ≤ r − 1) and ∆r are known.

2.3 The Difference Enumeration Attack
The difference enumeration attack was proposed by Rechberger et al. in FSE 2018 [RST18]
to analyze the security of LowMCv2 under extremely low data complexity. The difference
enumeration attack consists of two phases. The first phase is to enumerate all the
possible differential trails to recover the compact differential trails, called the difference
enumeration phase. The second phase is to retrieve the full key from the recovered
differential trails, called the key-recovery phase. However, the original difference
enumeration attack is not quite efficient for the vast memory consumption to store the
pre-computed differences and the strong constraint on the number of recovered differential
trails. So Liu et al. [LIM21] revisited the difference enumeration attack and developed
the algebraic techniques at CRYPTO 2021. The core idea is to convert the problem of
recovering compact differential trails/retrieving the key into solving a linear equation
system by introducing intermediate variables. Some important LowMC instances can be
successfully broken with only 2 chosen plaintext/ciphertext pairs.
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Recently, at ASIACRTPT 2022, Liu et al. [LSW+22] further improved the attack
framework in [LIM21] by exploiting the nonlinear relations inside these variables to
construct and solve the equation system. In the following, we will briefly introduce the
attack framework in [LSW+22]. Throughout the paper, we will use Td and Tk to represent
the complexity of the difference enumeration phase and the complexity of the key-recovery
phase, respectively. Nd represents the number of potentially correct compact differential
trails after the difference enumeration phase.

2.3.1 Difference Enumeration Phase

As shown in Figure 1, in the difference enumeration phase, we can split the r rounds
into three parts: the first r0 rounds, the middle r1 rounds and the last r2 rounds, i.e.
r = r0 + r1 + r2. Then, the linear equation system can be constructed as follows:

A
(0)
1 A

(r0)
1 A

(r0+r1)
1 A

(r)
1

A
(0)
2 A

(r0)
2 A

(r0+r1)
2 A

(r)
2

r0 rounds r1 rounds r2 rounds

∆0 ∆r0 ∆r0+r1 ∆r

∆0 ∆r0 ∆r0+r1 ∆r
No active S-boxes Offline Online Enumeration

Figure 1: The algebraic MITM attack framework.

1. Choose an input difference ∆0 such that there will be no active S-boxes in the first r0
rounds. In this way, ∆r0 is uniquely determined. Therefore, we have r0 = ⌊n/3m⌋.

2. Encrypt a plaintext pair whose XOR difference is ∆0 for r rounds and obtain the
corresponding XOR difference ∆r of the ciphertexts.

3. Enumerate the state differences backwards from ∆r for r2 rounds and obtain the state
difference ∆r0+r1 . For each ∆r0+r1 , ∆S

r0+r1−1 is obtained by applying the inverse of
a linear transformation to ∆r0+r1 . We have γ = ∆r0+r1−1[0 : 3e− 1]|∆r0+r1−1[3m :
n− 1], where ∆r0+r1−1[0 : 3e− 1] is derived by enumerating the input differences
of the first e S-boxes of ∆S

r0+r1−1 and ∆r0+r1−1[3m : n− 1] = ∆S
r0+r1−1[3m : n− 1]

due to the partial nonlinear layer.

4. Introduce 3mℓ variables U = (u0, u1, · · · , u3mℓ−1) to represent the output difference
of the mℓ S-boxes in the first r1 − 1 round of the middle r1 round (see Figure 2),
ℓ = r1 − 1. Then γ can be written into linear equations in these 3mℓ variables as

γ = M · (u0, u1, · · · , u3mℓ−1)T ⊕ α, (2)

where M ∈ F(n−3m+3e)×3mℓ
2 and α ∈ Fn−3m+3e

2 are fixed.

Hence, enumerating the solutions of Equation 2 is equivalent to solving n− 3m + 3e
linear equations in 3mℓ variables. When the equation system is over-determined, i.e.
3mℓ ≤ n− 3m + 3e, we can expect at most one solution of the equation system. Then all
the 3mℓ variables are known and we can easily verify the correctness of the differential
trails by the differential distribution table (DDT).

When r1 increases, the equation system becomes under-determined, i.e. 3mℓ >
n− 3m + 3e. If we still assume that these variables are independent, the time complexity
to enumerate these variables grows exponentially due to the increased number of variables.
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∆r0 ∆r0+1 ∆r0+r1−2 γ ∆r0+r1

S

· · ·

S

S

· · ·
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u0

u1

u2

u3m−3

u3m−2

u3m−1

u3m

u3m+1

u3m+2

u6m−3

u6m−2

u6m−1

M M M M

· · ·

S

· · ·

S

S

· · ·

S

u3m(r1−2)

u3m(r1−2)+1

u3m(r1−2)+2

u3m(r1−1)−3

u3m(r1−1)−2

u3m(r1−1)−1

Figure 2: Introduce variables to represent the output differences of the S-boxes.

Notice that since 3mℓ variables denote the output difference of the mℓ S-boxes, they only
take values from a constrained space2. To handle this under-determined linear equation
system, we first perform Gaussian elimination on Equation 2 to reduce the linear equation
system and the 3mℓ variables are split into two parts3 as follows:

γ
′

= M
′

1 · (u0, u1, · · · , u3t−1)T ⊕M
′

2(u3t, u3t+1, · · · , u3mℓ−1)T ⊕ α
′
,

where M ′
2 is in reduced row echelon form and the last ω = n− 3m + 3e− rank(M ′

2) rows
are all zeros.

So we can easily obtain ω linear equations only involving (u0, u1, · · · , u3t−1) as:

γ
′′

= M
′′

1 · (u0, u1, · · · , u3t−1)T ⊕ α
′′
, (3)

where M
′′

1 is the submatrix of M
′

1 representing the last ω rows of M
′

1 and

γ
′′

= γ
′
[n− 3m + 3e− ω : n− 3m + 3e− 1],

α
′′

= α
′
[n− 3m + 3e− ω : n− 3m + 3e− 1].

Then [LSW+22] use a time-memory trade-off method to efficiently solve the equation
system. The method consists of two phases, i.e. the offline phase and the online phase.

The offline phase. Enumerate the state difference ∆r0 forwards and then we can
obtain all the 21.86t possible solutions of (u0, u1, · · · , u3t−1). For each solution, compute
γ

′′ via Equation 3 and insert the tuple (u0, u1, · · · , u3t−1, γ
′′) into a table denoted by Du.

Hence, for each γ
′′ , there are around 21.86t/2ω corresponding solutions of (u0, u1, · · · , u3t−1).

After all the solutions are traversed, sort the table Du according to γ
′′ .

The online phase. Based on each γ computed backward, we can obtain γ
′′ and

sort Du to collect the corresponding values of the tuple (u0, u1, · · · , u3t−1). For each
(u0, u1, · · · , u3t−1), we can perform Gaussian elimination on Equation 2 and solve for
(u3t, u3t+1, · · · , u3mℓ−1) by enumerating all the free variables. The correctness can be
checked via DDT.

Complexity evaluation. For the offline phase, the time and memory complexity are both
21.86t. For the online phase, there are in total 2(3mℓ−3t)−(n−3m+3e−ω) × 21.86t−ω solutions
of (u0, u1, · · · , u3mℓ−1) for each γ′′. So the time complexity is

max(21.86(mr2+e), 21.86(mr2+e)+3mr1−n−3e−1.14t).
2The average number of reachable output differences over the S-box for a uniformly randomly chosen

input difference is around 21.86 [RST18].
3More details can be referred to [LSW+22].
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2.3.2 Key-Recovery Phase

In the key-recovery phase, we show how to retrieve the full key from the recovered compact
differential trails. Following the attack framework, there is no active S-box in the first r0
rounds. So we target the last h S-boxes in the last ⌈h/m⌉ ≤ r1 + r2 rounds.

For each active S-box, we can obtain 2 linear equations of the key and intermediate
variables according to the following observations.

Observation 1. [LIM21] For each valid non-zero difference transition (∆x0, ∆x1, ∆x2)→
(∆z0, ∆z1, ∆z2), the inputs conforming to such a difference transition will form an affine
space of dimension 1. In addition, (z0, z1, z2) becomes linear in (x0, x1, x2), i.e. the
S-box is freely linearized for a valid non-zero difference transition. A similar property also
applies to the inverse of the S-box.

For each inactive S-box, we can introduce 3 intermediate variables to represent its input
and obtain 14 quadratic equations in terms of the input bits and output bits as below:

z0 = x0 ⊕ x1x2, z1 = x0 ⊕ x1 ⊕ x0x2, z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1, x0 = z0 ⊕ z1 ⊕ z1z2,

x1 = z1 ⊕ z0z2, x2 = z0 ⊕ z1 ⊕ z2 ⊕ z0z1, z0x1 = x0x1 ⊕ x1x2, z0x2 = x0x2 ⊕ x1x2,

z1x0 = x0 ⊕ x0x1 ⊕ x0x2, z1x2 = x1x2, z3x0 = x0 ⊕ x0x2, z2x1 = x1 ⊕ x1x2,

z0x0 ⊕ x0 = z1x1 ⊕ x0x1 ⊕ x1, z1x1 ⊕ x0x1 ⊕ x1 = z2x2 ⊕ x0x2 ⊕ x1x2 ⊕ x2.

If we denote the number of active S-boxes and the number of inactive S-boxes by a and
b, respectively, we can obtain 2a linear equations and 14b quadratic equations in terms of
k + 3b variables. If 2a ≥ k + 3b, the equation system can be easily solved. If 2a < k + 3b,
after performing Gaussian elimination on the 2a linear equations, there are k + 3b− 2a
free variables in 14b quadratic equations. Then the quadratic equation can be solved using
the linearization technique by treating all quadratic terms as new variables. If

14b ≥ (k + 3b− 2a) + (k + 3b− 2a)(k + 3b− 2a− 1)/2,

we can expect at most one solution for the full key, and the correctness can be checked via
a single plaintext/ciphertext pair. However, this creates a strong constraint on the value
of a mainly due to the number of independent variables introduced in the linearization
technique. To achieve a high success probability of about 0.5, the lower bound of a is
around amin = ⌈(7h)/8⌉. If a < amin, the attack fails.

2.4 Methods for Solving Multivariate Equation Systems
Consider a system of m Boolean equations in u variables denoted by E(x) as:

E(x) : E0(x) = E1(x) = · · · = Em−1(x) = 0, (4)

where the algebraic degree of each Ei is bounded by deg(Ei) ≤ d and x = (x0, x1, · · · , xu−1) ∈
Fu

2 . The problem of solving the equation system is known to be an NP-hard problem. In
this subsection, we revisit two of the current state-of-the-art methods of solving multivari-
ate Boolean equation systems, i.e. the crossbred algorithm for d = 2 [BDT22] and Dinur’s
algorithm for d ≥ 2 [Din21]. This will benefit our difference enumeration attack since more
degrees of freedom could be saved.

2.4.1 The Crossbred Algorithm for Quadratic Equations

In our attack, we will use a simple version of the crossbred algorithm for an over-
defined quadratic equation system, which is described in [BDT22, LMSI22]. Suppose
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E(x) is a quadratic Boolean equation system, i.e. d = 2. The u variables can be parti-
tioned into two disjoint sets and considered independently, i.e. y ∈ Fu−u1

2 and z ∈ Fu1
2 ,

where y = (y0, y1, · · · , yu−u1−1) = (xu1 , xu1+1, · · · , xu−1) and z = (z0, z1, · · · , zu1−1) =
(x0, x1, · · · , xu1−1). If we view the polynomials of y0, y1, · · · , yu−u1−1 as the coefficients of
the monomials z0z1, z0z2, · · · , zu1−2zu1−1, z0, z1, · · · , zu1−1, the quadratic Boolean equa-
tions can be rewritten as:

M · (z0z1, z0z2, · · · , zu1−2zu1−1, z0, z1, · · · , zu1−1)T = B,

where the coefficient matrix M only depends on y and has a size of m× (u1(u1−1)/2+u1).
B is a vector of size m. Since E is a quadratic Boolean equation system, the first
u1(u1 − 1)/2 columns of M takes value from {0, 1} and the last u1 columns are all linear
functions of y. Then, we perform the Gaussian elimination on M ||B such that the first
u1(u1 − 1)/2 columns of M ||B become reduced row echelon form. Denote the matrix
after Gaussian elimination by M ′||B′. Since the first u1(u1 − 1)/2 columns of the last
m− u1(u1 − 1)/2 rows of M ′ are all zeros, we can deduce the following equations:

M
′′
· (z0, z1, · · · , zu1−1)T = B′′, (5)

where M
′′ is a matrix of size (m − u1(u1 − 1)/2) × u1 and B′′ is a vector of size (m −

u1(u1 − 1)/2). Note that each element in M
′′ is a linear polynomial in y and each element

in B
′′ is a quadratic polynomial in y. We then use Gray code to exhaust all 2u−u1 possible

values of y. For each possible y, compute M ′′ and B′′ and solve the Equation 5 . If there
is a solution, check the correctness by verifying the remaining equations in the system.

According to [LMSI22], to solve the quadratic equation system effectively, the Equation 5
required to be slightly over-determined, i.e.

ϵ + u1 = m− u1(u1 − 1)/2, ϵ > 0.

The total time complexity is estimated as

m2 ·
(

u
≤ 2

)
+ 2u−u1 · (u1 + ϵ) · (u2

1 + u1 · ϵ + u) (6)

bit operations.

2.4.2 Dinur’s Algorithm

In [Din21], Dinur proposed an ingenious method of finding roots for a multivariate Boolean
equation system of degree d ≥ 2. Let E(x) be a polynomial system of degree d over F2.
Consider the equivalent representation

A(x) =
m−1∏
i=0

(Ei(x)⊕ 1), (7)

then A(x̂) = 1 if and only if x̂ is a solution of E(x). Split the u variables in E(x) into
two disjoint sets, i.e. x = (y, z) = (y0, y1, · · · , yu−u1−1, z0, z1, · · · , zu1−1). [Din21] observes
that E(x) has an isolated solution with high probability when u1 ≪ m holds. u1 ≪ m is
satisfied in all our instances.

Definition 2 (Isolated Solution [Din21]). A solution x̂ = (ŷ, ẑ) to E(y, z) is called
isolated (with respect to the variable partition (y, z)) if for all ẑ′ ̸= ẑ, (ŷ, ẑ′) is not a
solution to E.
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In order to recover (ŷ, ẑ), we first randomly take l = u1 + 1 different equations from
E(x) and construct the new equation system Ẽ(x) and the corresponding equivalent
representation Ã(x). It is obvious that a solution of E must be a solution of Ẽ. But a
solution of Ẽ is not always a solution of E. We choose to enumerate isolated solutions of
Ẽ instead of E and then verify them by E to take advantage of the low degree of Ã(x).
Then we can efficiently compute all u1 + 1 partial sums to recover the isolated solutions.
More details can be found in [Din21].

To reduce the cost of testing solutions, we perform four different choices for the equation
system Ẽ(x). The total time complexity can be estimated as

4 · (2 · d · log2(u) · 2u1 ·
(

u− u1
≤ dÃ − u1 + 1

)
) + 4 · (u1 + 1) · (u− u1) · 2u−u1 (8)

bit operations, where dÃ = (u1 + 1) · d.
To store the solution obtained from the exhaustive search of Ẽ(y, z), the memory

complexity can be estimated as M1 = 4 · 1
2 ·

(
u−u1

≤dÃ−u1+1

)
bits. Using Dinur’s memory

efficient Möbius transform, the memory complexity of polynomial evaluation can be reduced
to M2 = 8 · (u1 + 1)·

(
u−u1

≤dÃ−u1+1

)
bits. So the total memory complexity is M = M1 + M2.

3 The New Difference Enumeration Attack
As mentioned in [LIM21, LSW+22], the problem of enumerating compact differential
trails/retrieving the full key can be reduced to solving a linear equation system with
non-independent variables. In this section, we show that the nonlinear relations inside the
variables can be utilized in a more fine-grained way to benefit the equation solving.

3.1 Difference Enumeration Phase
In Section 2.3.1, the 3mℓ introduced variables are split into two parts, i.e. (u0, u1, · · · , u3t−1)
and (u3t, u3t+1, · · · , u3mℓ−1) and solved in a time-memory trade-off way. That is, we
construct the table Du based on the nonlinear relations inside (u0, u1, · · · , u3t−1) and then
enumerate the remaining 3mr1−3t−n−3e+ω free variables based on table Du. However,
when the number of attacked rounds increases, the time complexity to enumerate all the
free variables grows since we still assume them all independent variables. This inspires us
to exploit the inherent relations of these free variables to solve the equation system more
efficiently. An overview of the new attack framework is depicted in 3.

A
(0)
1 A

(r0)
1 A

(r0+r1)
1 A

(r)
1

A
(0)
2 A

(r0)
2 A

(r0+r1)
2 A

(r)
2

r0 rounds r1 rounds r2 rounds

∆0 ∆r0 ∆r0+r1 ∆r

∆0 ∆r0 ∆r0+r1 ∆r
No active S-boxes Enumeration Solve cubic equations Enumeration

Figure 3: The new difference enumeration attack framework.

In the difference enumeration phase, we still split the r-round LowMC into three parts
r0, r1, r2. The general procedure to construct the linear equation system is similar to
Section 2.3.1. Since the number of equations becomes smaller than the number of variables
as the number of attacked rounds grows, we only consider the case when the equation
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system is under-determined. After introducing 3mℓ variables U = (u0, u1, · · · , u3mℓ−1) to
represent the output difference of the mℓ S-boxes in the first r1 − 1 round of the middle r1
round and performing Gaussian elimination on Equation 2 to split the 3mℓ variables, we
have the following linear equations:

γ′ = M ′
1 · (u0, u1, · · · , u3t−1)T ⊕M ′

2(u3t, u3t+1, · · · , u3mℓ−1)T ⊕ α′, (9)

where M ′
2 is in reduced row echelon form of size (n− 3m + 3e)× (3mℓ− 3t) and the last

ω = n− 3m + 3e− rank(M ′
2) rows are all zeros.

Let

ω′ = n− 3m + 3e− (3mℓ− 3t)
= n− 3mr1 + 3e + 3t.

We now only focus on the last ω′ rows of M ′
2. Then, the last ω′ rows of M ′

2 are all zeros
since rank(M ′

2) ≤ 3mℓ− 3t and ω′ ≤ ω. This will require

n− 3mr1 + 3e + 3t > 0, 3mℓ− 3t > 0.

Then, we can immediately obtain ω′ linear equations involving 3t variables as:

γ
′′′

= M
′′′

1 · (u0, u1, · · · , u3t−1)T ⊕ α
′′′

, (10)

where M
′′′

1 is the submatrix of M
′

1 representing the last ω′ rows of M
′

1 and

γ
′′′

= γ
′
[n− 3m + 3e− ω′ : n− 3m + 3e− 1],

α
′′′

= α
′
[n− 3m + 3e− ω′ : n− 3m + 3e− 1].

Then we construct the table D′
u based on Equation 10 as the offline phase of Section 2.3.1.

In this way, there are around 21.86t/2ω′ corresponding solutions of (u0, u1, · · · , u3t−1)
for each γ′′′, and we can easily retrieve them from D′

u once γ′′′ is determined. Then,
only (u3t, u3t+1, · · · , u3mℓ−1) are remain unknown. Since all the input difference and
output difference of the S-boxes from the ∆r0+r1−2-th round backwards involved can be
represented by the 3mℓ− 3t variables, we introduce equations of degree 3 for g S-boxes
using Observation 2. Then we obtain 2g equations of degree 3 in 3m(r1 − 1)− 3t variables
which can be solved efficiently using Dinur’s algorithm [Din21].

Observation 2. [LSW+22] Denote the input difference and output difference of the 3-bit
LowMC S-box by (∆x0, ∆x1, ∆x2) and (∆z0, ∆z1, ∆z2), respectively. The following 2 cubic
equations are sufficient to describe its DDT:

(1⊕∆x0)(1⊕∆x1)(1⊕∆x2) = (1⊕∆z0)(1⊕∆z1)(1⊕∆z2),
(1⊕∆x0)(1⊕∆x1)(1⊕∆x2) = ∆x0∆z0 ⊕∆x1∆z1 ⊕∆x2∆z2 ⊕ 1.

In the following, we give the whole process of solving Equation 9. The attack consists
of two phases, i.e. the offline phase and the online phase.

The offline phase. In the offline phase, we construct the table D′
u according to Equa-

tion 10.

Step 1: Enumerate the state difference ∆r0 forwards to obtain all the 21.86t solutions
of (u0, u1, · · · , u3t−1). For each solution, move to Step 2. After all solutions are
traversed, move to Step 3.

Step 2: Focus on the last ω′ rows of M ′
2 and obtain Equation 10. Compute γ

′′′ via
Equation 10 and insert the tuple (u0, u1, · · · , u3t−1, γ

′′′) into a table denoted by
D′

u. Each γ′′′ will average correspond to 21.86t/2ω′ solutions of (u0, u1, · · · , u3t−1).
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Step 3: Sort the table D′
u according to γ

′′′ .

The online phase. For each γ = ∆r0+r1−1[0 : 3e − 1]|∆r0+r1−1[3m : n − 1] computed
backwards, we need to find solutions of (u0, u1, · · · , u3mℓ−1)

Step 1: Compute γ′′′ according to the value of γ.

Step 2: For the computed γ
′′′ , retrieve from D′

u the corresponding values of the tuple
(u0, u1, · · · , u3t−1) and move to Step 3.

Step 3: Once (u0, u1, · · · , u3t−1) are uniquely determined, we use the remaining 3m(r1 −
1) − 3t variables to represent the input difference and output difference of g
S-boxes from the ∆r0+r1−2-th round backwards and obtain 2g equations of degree
3 based on Observation 2. Then, we perform Dinur’s algorithm on them and
find the solution of (u3t, u3t+1, · · · , u3mℓ−1). For each solution, the correctness
can be checked via DDT. If it is correct, a potentially correct compact r-round
differential trail is found.

Complexity evaluation. For the offline phase, the time complexity is T1 = 21.86t. In
the online phase, the time complexity of Dinur’s algorithm can be estimated as

T2 = 4 · (2 · 3 · log2(3m(r1 − 1)− 3t) · 2u1 ·
(

3m(r1 − 1)− 3t− u1
≤ dÃ − u1 + 1

)
)

+ 4 · (u1 + 1) · (3m(r1 − 1)− 3t− u1) · 23m(r1−1)−3t−u1

bit operations, where dÃ = 3 · (u1 + 1). We choose the parameters (u1, t, e, g) such that

n− 3mr1 + 3e + 3t > 0, 3mℓ− 3t > 0, 4(u1 + 1) = 2g,

3m(r1 − 1)− 3t > u1 > 0, 3m(r1 − 1)− 3t− u1 ≥ dÃ − u1 + 1.

The parameter selection is shown in Table 3. If we estimate a single encryption of r-round
LowMC encryption as 2rn2 bit operations as in [BBVY21], the total complexity of the
difference enumeration phase can be estimated as

Td = max(21.86(mr2+e)+1.86t−ω′
× T2/2rn2, 21.86(mr2+e)) + 21.86t

times of LowMC encryptions, which implies

1.86(mr2 + e) < k, 1.86t < k.

For the offline phase, the memory complexity is M11 = 21.86t. In Dinur’s algorithm, the
memory complexity is estimated as

M12 = 4 · 1
2 ·

(
3m(r1 − 1)− 3t− u1
≤ dÃ − u1 + 1

)
+ 8 · (u1 + 1) ·

(
3m(r1 − 1)− 3t− u1
≤ dÃ − u1 + 1 .

)
The total memory complexity is Md = M11 + M12.

3.2 Key-recovery Phase
Based on the above strategy, we can increase the number of rounds for the compact
differential trails. As r1 + r2 increases, there will be much more potentially correct r-
round compact differential trails left, i.e. Nd = 21.86m(r1+r2)−n. To keep NdTk < 2k, it
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Table 3: Choices for (u1, t, e, g) for different (n, k, m, r)

n k m r (u1, t, e, g)

128 128
1 177 (1,63,0,4)
1 179 (1,65,0,4)
10 17 (1,57,8,4)

192 192
1 267 (2,96,1,6)
1 270 (2,99,1,6)
10 25 (2,86,10,6)
10 26 (2,96,10,6)

256 256
1 357 (2,130,0,6)
1 360 (1,134,0,4)
10 34 (1,117,7,4)
10 35 (1,127,7,4)

becomes crucial to further optimize Tk. Instead of using the linearization technique to add
new independent variables for quadratic monomials, we choose to use the crossbred-like
algorithm [BDT22] to solve these over-defined quadratic equations, which successfully
reduces the time complexity of Tk. In addition, the crossbred-like algorithm relaxes the
strong constraints on the number of active S-boxes a. This will significantly improve the
success probability of the key-recovery phase to over 0.9. Denote the number of the S-boxes
we used in the attack by h and ⌈h/m⌉ ≤ r1 + r2. The attack procedure can be described
as follows.

Step 1: Set two counters a and b and initialize them by 0. Choose a threshold amin.

Step 2: If there are fewer than amin active S-boxes in these h S-boxes, exit and return
Failure. Otherwise, move to Step 3.

Step 3: Starting from a ciphertext, check the S-boxes in the backward direction round by
round and one by one.

1) If the S-box is active, increase a by 1. According to Observation 1, we can
obtain 2 linear equations in terms of the key and the intermediate variables.

2) If the S-box is inactive, increase b by 1. For each of its three input bits, we
introduce 3 intermediate variables.

3) If
2a ≥ 3b + k, (11)

we only need to solve 2a linear equations to uniquely determine the k-bit key
and move to Step 5. Otherwise, we still check the S-boxes until a + b = h.
Then move to Step 4.

Step 4: Applying Gaussian elimination on the first 2a linear equations will allow us to
obtain 3b + k − 2a = 3h− 5a + k free variables. For the first λ inactive S-boxes,
we can construct 14λ quadratic equations in these free variables, 1 ≤ λ ≤ b. In
other words, the problem is now reduced to solving 14λ quadratic equations in
3h− 5a + k variables. We use the crossbred-like algorithm for this problem.

Step 5: The correctness of the solution can be easily verified via a plaintext/ciphertext
pair. If it is the correct key, output it and return Success.
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If 2a ≥ 3(h − a) + k, we only need to solve 2a linear equations.If 2a < 3(h − a) + k,
there will be k − 5a + 3h variables. The quadratic equation system in Step 4 must be
slightly overdefined. Hence, we constrain that

h− a ≥ 1

and there exists λ, uu1, ϵ such that

14λ− uu1(uu1 − 1)/2 = ϵ + uu1,

ϵ > 0, 0 < uu1 < 3(h− a) + k,

1 ≤ λ ≤ (h− a).

Then, for any a, the crossbred-like algorithm can be adopted to successfully solve the
quadratic equation system in Step 4 and the time complexity can be estimated according
to Equation 6.
Choice of the threshold. Since the time complexity of the key-recovery phase is affected
by the number of active S-boxes a and the choose of λ, uu1, we choose the threshold amin

such that a = amin is the worst case, i.e., when a > amin, the time complexity will not be
higher. To ensure a success rate of around 0.9, we choose the threshold amin = ⌈(67h)/81⌉
based on the well-known statistical property

Pr[a′ ≥ amin] =
h∑

i=amin

(
h
i

)
×

(
7
8

)i

×
(

1
8

)h−i

≈ 0.9.

However, when a < amin, we can still recover the key with the crossbred algorithm.
In Table 4, we select the best (h, amin) for different key sizes. For example, when

k = 128, the best choice is (h, amin) = (98, 82). For the worst case a′ = 82 ≥ amin, we
need to solve 164 linear equations and 28 quadratic equations and the success rate is
around 0.9. If we estimate a single encryption of r-round LowMC encryption as 2rn2 bit
operations, the total cost is 222.22/(2rn2) times of r-round LowMC encryptions.

Table 4: Choices for different parameters for different key sizes

k h amin (λ, uu1, ϵ) Pro. Linear Quadratic Cost (Tk)
128 98 82 (2,6,7) 0.90 164 28 222.22/(2rn2)
192 150 125 (4,10,1) 0.95 250 56 224.05/(2rn2)
256 207 172 (4,10,1) 0.97 344 56 225.37/(2rn2)

4 Low-Memory Attacks against LowMC with Single-Data
Complexity

In this section, we focus on LowMC instances with the full S-box layer using only a single
plaintext/ciphertext pair. The main idea is to combine the linearization techniques of
[LMSI22] and the equation-solving methods of [Din21, BBCV22] to reduce the memory
complexity when solving the key. Denote the key variables by K = (k0, k1, · · · , kn−1),
where n = k. Without loss of generality, we fix the plaintext to all-zero strings and the
input of the S-boxes in the first round is exactly the corresponding key variables.
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4.1 Construct the Equation System Using Linearization Technique
Obviously, the problem of key recovery attacks for LowMC with a given plaintext/ciphertext
pair can be reduced to solving a system of equations E(K) as

E(K) : E0(K) = E1(K) = · · · = En−1(K) = 0.

To reduce the algebraic degree of the polynomials, we begin by linearizing the S-boxes of
the first round based on the guessing strategy in [LMSI22]. Consider the LowMC S-box
S(x0, x1, x2) = (z0, z1, z2), if we guess the two input bits of the S-box, (z0, z1, z2) can be
rewritten as linear expressions of (x0, x1, x2) as:

z0 = x0 ⊕ x∗
1x∗

2, z1 = x0 ⊕ x∗
1 ⊕ x0x∗

2, z2 = x0 ⊕ x∗
1 ⊕ x∗

2 ⊕ x0x∗
1.

Then, the input of the second round can be expressed as affine polynomials of the key
bits due to the linear key schedule and we can construct the equation system with a
meet-in-the-middle method as below.

Odd number of rounds. For an odd number of rounds r = 2ρ + 1, we first guess 2m
input bits in the first round to linearize it. Consider the rounds 2 to ρ + 1, the output
state of (ρ + 1)-th round A(ρ+1) can be expressed by an equation system of degree 2ρ in
key variables. Similarly, consider rounds 2ρ + 1 to ρ + 2, A(ρ+1) can also be expressed
as an equation system of degree 2ρ in key variables. Then we can obtain n equations of
degree 2ρ in n variables by simply equating the two sets of equations.

Even number of rounds. For an even number of rounds r = 2ρ, we guess 2m input bits in
the first round to linearize it. Consider the rounds 2 to ρ, the input state of (ρ+1)-th round
A(ρ) can be expressed by an equation system of degree 2ρ−1 in key variables. Similarly,
consider rounds 2ρ to ρ + 2, the output state of (ρ + 1)-th round A(ρ+1) can also be
expressed as an equation system of degree 2ρ−1 in key variables. Since the algebraic degree
of the round function is 2, we can easily obtain n equations of degree 2ρ in n variables
by constructing polynomials according to the round function. Specifically, consider the
i-th S-box in the (ρ + 1)-th round, 0 ≤ i ≤ m − 1. We denote the input polynomials
by p3i(K), p3i+1(K), p3i+2(K) and the output polynomials by q3i(K), q3i+1(K), q3i+2(K),
respectively, and all polynomials are of degree 2ρ−1. Then we have

qi(K) + pi(K) + pi+1(K)pi+2(K) = 0
qi+1(K) + pi(K) + pi+1(K) + pi(K)pi+2(K) = 0

qi+2(K) + pi(K) + pi+1(K) + pi+2(K) + pi(K)pi+1(K) = 0

Although each polynomial is of degree 2ρ, if we multiply the 3 polynomials together, the
upper bound for the algebraic degree is 4× 2ρ−1 instead of 3× 2ρ as pointed out in [Din21].
Moreover, if we multiply 2 of these polynomials then the algebraic degree is 3 × 2ρ−1

instead of 2× 2ρ.

4.2 Black-Box Function over Partial Space
4.2.1 Partial Space and Associated Function

The guessing-and-determining strategy effectively divides the whole key space of E(K)
into several partial spaces. Specifically, consider the i-th S-box S(k3i, k3i+1, k3i+2) =
(z3i, z3i+1, z3i+2) in the first round, 0 ≤ i ≤ m− 1. Let yi = z3i. If we guess two input bits
as k3i+1 = g2i and k3i+2 = g2i+1, the 3-bit key variable takes value from the set

Bg2ig2i+1 = {(yi ⊕ g2ig2i+1, g2i, g2i+1) | yi ∈ {0, 1}},
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where g2i, g2i+1 ∈ {0, 1}. For example, consider the case when g2i = 0 and g2i+1 = 0, then
we have B00 = {(0, 0, 0), (1, 0, 0)}. Similarly, we have

B01 = {(0, 0, 1), (1, 0, 1)}, B10 = {(0, 1, 0), (1, 1, 0)}, B11 = {(1, 1, 1), (0, 1, 1)}.

Then, after guessing 2m bits G = (g0, g1, · · · , g2m−1) ∈ {0, 1}2m, we obtain n equations
of degree d = 2ρ for 2ρ/2ρ + 1 round LowMC instance over the partial space K ∈
BG = Bg0g1 × · · · × Bg2m−2g2m−1 . Denote the equation system by EG(K). Obviously,
for any given G = (g0, g1, · · · , g2m−1), there is a one-to-one correspondence between
K = (k0, k1, · · · , k3m−1) ∈ BG and Y = (y0, y1, · · · , ym−1), i.e.

Ei(K) = EG,i(K) = EG,i(Y ), 0 ≤ i ≤ n− 1,

where for any 0 ≤ j ≤ m− 1 we have

k3j = yj ⊕ g2jg2j+1, k3j+1 = g2j , k3j+2 = g2j+1, yj ∈ {0, 1}.

We call EG,i the associated function of EG,i and Y the associated vector of K.

4.2.2 Find the Black-Box Function FG, F̃G

Then we are interested in finding roots of EG for a given G = (g0, g1, · · · , g2m−1) ∈ {0, 1}2m.
To solve the equation system effectively, we first partition the 3m-bit key variables
K = (k0, k1, · · · , k3m−1) into two subsets K1 = (k0, k1, · · · , k3m−3m1−1) and K2 =
(k3m−3m1 , k3m−3m1+1, · · · , k3m−1) of size n−n1 = 3m−3m1 and n1 = 3m1. The partition
of the key variables naturally indicates a partition of G into G1 = (g0, g1, · · · , g2m−2m1−1)
and G2 = (g2m−2m1 , g2m−2m1+1, · · · , g2m−1) of size 2m− 2m1 and 2m1. Let EG(K1, K2)
denote the equation system after guessing G ∈ {0, 1}2m as

EG(K1, K2) : EG,0(K1, K2) = EG,1(K1, K2) = · · · = EG,n−1(K1, K2) = 0.

Following the core idea of [Din21], we construct the equivalent representation of EG

as AG(K1, K2) =
∏n−1

i=0 (EG,i(K1, K2) ⊕ 1). Let FG(K1) =
⊕

K2∈BG2 AG(K1, K2). If
K∗ = (K∗

1 , K∗
2 ) is a common root of all EG,i, then we have AG(K∗) = 1. Otherwise,

AG(K∗) = 0. Hence, assume that (K∗
1 , K∗

2 ) is an isolated solution of EG(K) over BG, we
have

FG(K∗
1 ) =

⊕
K2∈BG2

AG(K∗
1 , K2) = 1. (12)

Then, we randomly select l equations from the n equations and denote the new equation
system as:

ẼG(K1, K2) : RG,0(K1, K2) = RG,1(K1, K2) = · · · = RG,l−1(K1, K2) = 0.

So we have ÃG(K1, K2) =
∏l−1

i=0(RG,i(K1, K2)⊕ 1) and F̃G(K1) =
⊕

K2∈BG2 ÃG(K1, K2).
Note that a solution of EG must be a solution of ẼG, but a solution of ẼG is not always a
solution of EG. We choose to enumerate solutions of ẼG and then verify them by EG in
order to benefit from the low degree of ÃG.

The following lemma proves the probability that the root is isolated in ÃG.

Lemma 1. Assuming that the underlying LowMC encryption admits a unique root K∗ =
(K∗

1 , K∗
2 ) ∈ BG∗ , then we have the probability that the root is isolated in the system

identified by ÃG is around 1− 2n1/3−l.
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Proof. Any K ∈ BG is a root of any EG,i can be considered to be around 1/2 for i ∈ [0, n−1].
For G ̸= G∗, K1 = K∗

1 but K2 ̸= K∗
2 , the probability that any K ∈ BG is a common root

of l equations is thus approximately 2−l. So, we have that Pr[ÃG(K∗
1 , K2) = 0] ≈ 1− 2−l

for all K2 ̸= K∗
2 . For G = G∗, K1 = K∗

1 but K2 ̸= K∗
2 , the probability that any

K ∈ BG is a common root of l equations is thus approximately 2−l, too. So, we have that
Pr[ÃG∗(K∗

1 , K2) = 0] ≈ 1− 2−l for all K2 ̸= K∗
2 . By union bound over all K2 ∈ BG2 that

are not equal to K∗
2 we have the result. For l = n1/3 + 1, this probability is around 1

2 .

Let ÃG, F̃ G denotes the associated function of ÃG and F̃G, respectively, and Y =
(Y1, Y2) denotes the associated vector of K = (K1, K2) under BG, we can easily deduce
that

F̃ G(Y1) =
⊕

Y2∈{0,1}m1

Ã(Y1, Y2).

and
F̃ G,i[0](Y1) =

⊕
Y2∈{0,1}m1 ,ym−m1+i=0

Ã(Y1, Y2), for i ∈ [0, m1 − 1].

Proposition 1. Assume (K∗
1 , K∗

2 ) to be an isolated solution of ẼG and (Y ∗
1 , Y ∗

2 ) to be
the associated vector of (K∗

1 , K∗
2 ). If Y ∗

2 = (y∗
m−m1

, y∗
m−m1+1, · · · , y∗

m−1), then we have
F̃G(Y ∗

1 ) = 1 and F̃G,i[0](Y ∗
1 ) = y∗

m−m1+i + 1 for i ∈ [0, m1 − 1].

Proof. Since (K∗
1 , K∗

2 ) is an isolated solution, we have F̃G(K∗
1 ) = 1 and thus F̃ G(Y ∗

1 ) = 1.
If Y ∗

2 [i] = 0, we have F̃ G,i[0](Y ∗
1 ) = 1. Otherwise, we have F̃ G,i[0](Y ∗

1 ) = 0. Hence,
F̃ G,i[0](Y ∗

1 ) = y∗
m−m1+i ⊕ 1 for i ∈ [0, m1 − 1].

4.2.3 Interpolation and Evaluation of FG, F̃G over BG

Under the assumption of the isolated solutions, the problem of recovering K = (K1, K2)
under G can be reduced to finding the roots of F G(Y1) = 1 or F̃ G(Y1) = 1 and then
recover Y2 bit-by-bit according to Proposition 1. To find the roots of F G(Y1)/F̃ G(Y1), we
need to find the ANF of them and then evaluate them. Let us take a closer look at FG

and we have

FG(K1) =
⊕

K2∈BG2

AG(K1, K2)

=
⊕

K2∈{0,1}3m1

AG(K1, K2)
m−1∏

i=m−m1

(g2i ⊕ 1⊕ k3i+1)(g2i+1 ⊕ 1⊕ k3i+2).

Obviously, the algebraic degree of AG is dn. Since FG(K1) takes a cube of dimension 3m1,
it is a function of degree at most dn + 2m1 − 3m1 = dn −m1 = dn − n1/3 over n − n1
variables. Similarly, F̃G(K1) is of degree at most dl − n1/3 over n− n1 variables.

Then we show how to evaluate and interpolate F G/F̃ G, i.e. the associated function
of FG/F̃G over BG. Obviously, functions F̃ G and F̃ G,i[0] are both functions of degree at
most D = dl − n1/3 over (n− n1)/3 variables. Computing the whole truth table of F̃ G is
equivalent to calculating all possible values of F̃G over BG. For the interpolation, we need
a total of J(Nu, D) =

(
Nu

≤D

)
evaluations of F̃ G, where Nu = (n− n1)/3. Once we obtain

the algebraic expression of F̃ G, we can proceed with its evaluation over BG.
When performing interpolation and evaluation of F̃ G over BG, we adopt the algorithm

described in [[BBCV22], Appendix A] and the total time complexity for generating the
algebraic expression for F̃ G and the truth table is

T (Nu, D) = Nu ·
D−1∑
i=0

(
Nu−1

i

)
+ D · 2Nu , (13)
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The total space required is around

M(Nu, D) = Nu · J(Nu, D) · log2 J(Nu, D) + 2Nu ≈ 2Nu . (14)

4.3 Details of the Algorithm 1
The pseudo-code of our new attack algorithm is given in Algorithm 1. We now describe it
in detail and then analyze its complexity.

The initial partition of key is chosen as K = (u, v) where u ∈ Fn−n1
2 and v ∈ Fn1

2 ,
n1 = 3m1. For r = 2ρ/2ρ + 1 rounds of LowMC, we first construct equation systems of
degree d = 2ρ by guessing G = (G1, G2) ∈ {0, 1}2m (with respect to the partition (u, v))
according to the Section 4.1. Let EG(u, v) denote the equation system after linearization
and l denote the number of equations to construct ÃG. We then perform the following
steps to recover the full key K∗.

1. Construct table TG: Set D = dl− n1/3, Nu = (n− n1)/3. In order to interpolate
F̃ G and F̃ G,i[0], we first pre-compute EG(u, v) for each of the J(Nu, D) points
u ∈ BG1 and each of the 2n1/3 points v ∈ BG2 and store them in table TG.

2. Recover potential solutions: The following steps iterate for N times.

2.1 Select l equations randomly from EG and construct the equation system
ẼG(u, v).

2.2 Let (U ′, V ′) be the associated vector of (u, v). For each of the J(Nu, D) points
u ∈ BG1 , we can calculate the value of F̃ G(U ′), F̃ G,i[0](U ′) by enumerating
the 2n1/3 points v ∈ BG2 and computing ÃG(u, v) based on TG.

2.3 Interpolate F̃ G, F̃ G,i[0] on J(Nu, D) points u ∈ BG1 and evaluate F̃ G, F̃ G,i[0]
on all the points in BG1 for i ∈ [0, m1 − 1].

2.4 Enumerate u ∈ BG1 and calculate the associate vector U . If F̃ G(U) = 1, then
we can recover V bit-by-bit using Proposition 1 and store W ∗ = (U, V ). If
W ∗ appears twice, we will take it as the potential solution and verify it via a
plaintext/ciphertext pair.

If we choose the most primitive method during the verification of the solution, we
validate by substituting the solved key into the encryption formula. Testing solutions this
way would require around 2(n−2n1)/3 · (2rn2) bit operations for each guess of G. However,
one can test the solution in batches, for instance based on their most significant bits as
described in [[Din21], Appendix B] which makes the amortized complexity negligible in
comparison to the solving complexity.

Complexity evaluation. The attack needs to repeat for 22n/3 times, once for each
guess of G. We choose N = 4, l = n1/3 + 1 and Nu = (n− n1)/3. For the odd number of
rounds R = 2ρ + 1, the algebraic degree of EG is d = 2ρ, and the algebraic degree of F̃G is
D = dl − n1/3. For the even number of rounds R = 2ρ, if l ≡ 0 mod 3, we can randomly
choose l/3 S-boxes in the (ρ + 1)-th round and construct the equations. This reduces the
algebraic degree of ÃG from 2ρ · l to 4 ·2ρ−1 · l/3 and D = 4 ·2ρ−1 · l/3−n1/3. If l ≡ 1 mod 3,
then we have to choose one additional equation, which makes D = 4 ·2ρ−1⌊l/3⌋+2ρ−n1/3.
If l ≡ 2 mod 3, then we need to choose 2 additional equations within the same S-box. In
this case, D = 4 · 2ρ−1⌊l/3⌋+ 3 · 2ρ−1 − n1/3.

In step 1, the time complexity to compute TG is

T1 = 22n/3 · J(Nu, D) · 2rn2 · 2n1/3.
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In step 2, the time complexity is estimated as

T2 = N · 22n/3 · (n1

3 + 1) · T (Nu, D).

Based on the above discussion, the complexity of verifying the correctness of the
potential solutions can be significantly smaller than the complexity of finding the solution
themselves, which can be ignored. So the total time complexity is T = T1 + T2.

The memory complexity required to store TG in step 1 is

M1 = J(Nu, D) · n · 2n1/3.

In step 2, the memory complexity for interpolation and evaluation is estimated as

M2 = N · (n1

3 + 1) ·M(Nu, D).

So the total memory complexity is M = M1 + M2.

5 Experiments
To verify the correctness of our difference enumeration attacks, we performed experiments
on concrete LowMC instances. These LowMC instances are generated with the official
reference code4. The source code of our experiments is available at https://github.com/
Momoqw/New-LowMC.git.

During the difference enumeration phase, we chose LowMC instances with parameters
(n, k, m, r) = (128, 128, 1, 103) for the purpose of efficiency. In this case, we have r0 =
128/3 = 42, r2 = 13, r1 = 48, and e = 0. In order to decrease the memory consumption of
storing D′

u, we set t = 13 and u1 = 4. Based on Section 3.1, we introduced 141 variables
(u0, u1, · · · , u140) to represent the output difference of the S-boxes. This allows us to
obtain ω′ = 23 linear equations in terms of (u0, · · · , u38). For the offline phase, the size
of the table D′

u is 17134432, which is close to our expected value 21.86t = 224.18. Each
23-bit γ′′′ corresponds to 21.86t/23 ≈ 21.05 value of (u0, · · · , u38) in D′

u. For the online
phase, we computed γ

′′′ according to Equation 10 for each computed γ and then retrieved
the corresponding (u0, u1, · · · , u38) using D′

u. Now, only (u39, u40, · · · , u140) remain
unknown and we used these 102 variables to construct cubic equations for the last g = 10
S-boxes from the 88-th round backwards. The length of the coefficient vector for each
cubic equation is 176953. In this way, we can construct an equation system of 20 cubic
equations in 102 variables, which can be solved effectively using Dinur’s algorithm. All the
possible compact differential trails can be recovered by solving the equation system.

In the key recovery phase, we chose LowMC instance with parameters (n, k, m, r) =
(128, 128, 1, 177). In this case, we have r0 = 42 and r1 + r2 = 135 > 98. For the actual
success probability, we randomly selected 8000 plaintext pairs with no active S-boxes
in the last 82 rounds. We recorded the corresponding differential trails after r rounds
of encryption and the number of active S-boxes in the last 98 rounds for each plaintext
pair. Denote the number of plaintext pairs that the active S-boxes in the last 98 rounds
is not smaller than 82 by N , we find that N ≈ 0.9, which confirms the correctness of
the theory. Furthermore, we successfully reproduced the crossbred algorithm. We chose
uu1 = 6, λ = 2, a = 82, which gave us an equation system of 28 quadratic equations
in 12 variables. We then used the crossbred algorithm to solve this system. Based on
the experimental results, we observed that once the guessed values of the 6 variables are
correct, the remaining 6 variables can also be accurately derived, leading to the successful
recovery of the whole key.

4https://github.com/LowMC/lowmc

https://github.com/Momoqw/New-LowMC.git
https://github.com/Momoqw/New-LowMC.git
https://github.com/LowMC/lowmc
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Algorithm 1 The algorithm for solving for the key
Input : (p, c), n1: Internal partition, l: #Equations to construct ÃG,

N : #Instances algorithm per guess of G, R: #LowMC rounds.
Output: The key K∗ such that EncK∗(p) = c.

1: for Each guess vector G = (G1, G2) do
2: Set D = dl − n1/3, m1 = n1/3, Nu = (n− n1)/3;
3: for Each of the J(Nu, D) points u ∈ BG1 do
4: for Each of the 2n1/3 points v ∈ BG2 do
5: Compute EG(u, v) and store in table TG;
6: end for
7: end for
8: for j = 0→ N − 1 do
9: Select l equations randomly from EG, denoted as RG,ℓ, where ℓ ∈ [0, l − 1].

10: for Each of the J(Nu, D) points u ∈ BG1 do
11: (U ′

, V
′)← Associated vector of (u, v);

12: Set F̃ G(U ′), F̃ G,i[0](U ′)← 0,∀i ∈ [0, m1 − 1];
13: Parse V

′ = [ym−m1 , ym−m1+1, · · · , ym−1];
14: for Each of the 2n1/3 points v ∈ BG2 do
15: for ℓ = 0→ l − 1 do
16: ÃG(u, v)← 1 if all RG,ℓ(u, v) = 0 else ÃG(u, v)← 0;
17: F̃ G(U ′)← F̃ G(U ′)⊕ ÃG(u, v);
18: for i = 0→ m1 − 1 do
19: if yi = 0 then
20: F̃ G,i[0](U ′)← F̃ G,i[0](U ′)⊕ ÃG(u, v);
21: end if
22: end for
23: end for
24: end for
25: end for
26: Interpolate F̃ G, F̃ G,i[0] on J(Nu, D) points u ∈ BG1 , i ∈ [0, m1 − 1];
27: Evaluate F̃ G, F̃ G,i[0] on all points in BG1 , i ∈ [0, m1 − 1];
28: for Each u ∈ BG1 do
29: U ← Associated vector of u;
30: if F̃ G(U) = 1 then
31: V ← (1⊕ F̃ G,0[0](U), · · · , 1⊕ F̃ G,m1−1[0](U));
32: W ∗ ← (U, 1 ⊕ F̃ G,0[0](U), · · · , 1 ⊕ F̃ G,m1−1[0](U)), W ∗ is the associated

vector of K∗;
33: PotentialSolutionsList[j][U ]← V ;
34: for j1 = 0→ j do
35: if V =PotentialSolutionsList[j1][U ] then
36: if EncK∗(p) = c then
37: return K∗;
38: end if
39: end if
40: end for
41: end if
42: end for
43: end for
44: end for
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6 Conclusion
We perform an in-depth study of the security strength of LowMC under 1 or 2 chosen
plaintext/ciphertext pairs. Benefiting from the parallel application of the 3-bit LowMC
S-box of degree 2, both the difference enumeration attacks and the problem of the key
recovery for a single plaintext/ciphertext pair can be effectively reduced to the problem
of solving a low-degree multivariate equation system. We then propose new algebraic
methods according to different equation systems to effectively solve them. For difference
enumeration attacks, we significantly push the security margin of difference instances of
LowMC with partial nonlinear layers to 3/4 rounds. For the picnic setting, we drastically
reduce the memory complexity for 5-/6-round LowMC instances with full nonlinear layers.
Our results seem to show that the security evaluation of different instances of LowMC
under extremely low data complexity has not yet come to an end.
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