
A Framework for Resilient, Transparent, High-throughput and Privacy-enabled
Central Bank Digital Currencies

E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, A. Filios, L. Funaro,
Y. Manevich, S. Natarajan, M. Sethi

IBM Research

Abstract—Central bank digital currencies refer to the digi-
tization of central bank money in a way that satisfies the
classical requirements of privacy and regulation compliance,
in addition to first-of-a-kind requirements of transparency,
interoperability, and resilience that extends beyond failures.

In this paper, we introduce a novel framework for central-
bank digital currency settlement that yields a trusted system
of record with high performance and resilience against partial
compromise. This system of record acts as a truth anchor
serving the purposes of interoperation, dispute resolution,
and fraud detection. Our framework is also agnostic to the
transaction validation logic running on top, in particular, to the
cryptographic protocols used to meet the objectives of privacy,
compliance and transparency.

We evaluated the performance of our framework using
an enhanced version of Hyperledger Fabric with Byzantine-
fault tolerance, and observed throughput that is comparable to
crash-fault tolerant systems. Our results show how transaction
validation scales horizontally and how a throughput of more
than 100, 000 transactions per second can be achieved even
with computation-heavy privacy-preserving protocols.

1. Introduction

In recent years, Central Bank Digital Currency (CBDC
for short) has been positioned as a viable approach to ad-
dress the current inefficiencies in financial markets and pay-
ment systems. In particular, wholesale CBDC is anticipated
to significantly reduce settlement delays, drastically decrease
counter-party risk, and speed up cross-border payments.
Retail CBDC is expected to reduce transaction fees, break
the existing monopoly of today’s payment service providers,
enhance financial inclusion, and trigger innovation in digital
payments. In light of these advantages, more than 130
central banks started exploring CBDC and publishing peri-
odic reports on the requirements and evolving architectural
considerations of a CBDC system [1], [2], together with the
outcomes of their experimentations. Moreover, a handful of
central banks have launched CBDC pilots [2], while the
European central bank has launched a legislation proposal
for the adoption of the digital euro [3].

While CBDC systems will be regulated differently de-
pending on the jurisdiction, they all agree on the following
aspects. First of all, the critical impact of CBDC infras-

tructure on the money supply mandates that its governance
be in the hands of the central bank only (i.e., centralized).
Despite the centralized governance of CBDC systems, they
are nonetheless required to operate in a highly robust and
resilient manner. That is, to function properly even if parts
of the system crash or get compromised due to a successful
cyber or insider attacks. Given the critical nature of CBDC,
this is a reasonable requirement that imposes a distributed
if not a decentralized deployment of the system.

In addition, there is the need for interoperation and
programmability. In terms of interoperation, a CBDC system
should interoperate with existing payment and settlement
infrastructure, other CBDC systems, and the emerging digi-
tal asset landscape. In terms of programmability, the system
should offer enough flexibility to add new capabilities as the
needs of the financial ecosystem evolves. Programmability
is to be understood as a stepping stone to “foster innovation
in payments” within CBDC systems.

Then there is regulatory compliance, which requires effi-
cient dispute resolution, fraud detection and auditability. For
example, Anti Money Laundering (AML) and Combating
the Financing of Terrorism (CFT) regulations stipulate that
suspicious payment transactions be detected, attributed to
their origin and reported to the relevant authorities, while
PSD2 [4] emphasizes the importance of fraud detection and
dispute resolution, which in turn, further accentuate the im-
portance of accountability. Accountability ensures that the
various CBDC participants cannot repudiate their actions.
This includes CBDC consumers, which should not be able
to repudiate their payments, and CBDC providers, which
should not be able to repudiate their decisions. Furthermore,
dispute resolution and interoperation also call for trans-
parency regarding both decision making and transaction
processing. Transparency is optimally served by a (trusted)
ledger of (processed) transactions that acts as a single point
of reference and truth.

As important is the privacy of payment transactions in
both retail and wholesale settings. Privacy refers to the right
of data owners to control who accesses their transactional
information. For example, PSD2 states that the processing
of personal information must comply with the GDPR and its
principles of data minimization, which restricts the collec-
tion of personal information to what is necessary for trans-
action processing. This can be interpreted in various ways:
a conservative approach to data minimization will ensure

that payment transactions are processed without leaking any
information about the transacting parties or the values of the
transactions. This, however, renders transaction monitoring
and audit more difficult. A permissive approach will, on the
other hand, reveal the value of the payments, and potentially,
the identities of the payer and payee. A forward-looking
CBDC system should accommodate different privacy levels.
Note that as CBDC technology evolves, so will privacy
regulations and requirements, and agility should be built in.
However, guaranteeing privacy should not be at the detri-
ment of the other requirements, for example, accountability
and fraud detection.

Finally, retail CBDC systems should be able to compete
with existing payment solutions and accommodate transac-
tions of millions of users. This translates into processing
tens of thousands of transactions per second at peak time.

Prominent efforts to address the CBDC requirements [5],
[6] focused on achieving high throughput in an architecture
where both governance and transaction processing are cen-
tralized, resulting in systems that are vulnerable to single
points of compromise. These solutions assume that the enti-
ties processing transactions will never arbitrarily misbehave,
i.e., they are crash tolerant but not fault tolerant. Given
the critical nature of CBDC and the potential geographic
distribution of its transaction processing, its correct opera-
tion in the event of compromise becomes mandatory. Notice
that often data centres located in different geographic areas
belong to different trust domains.

To circumvent single points of control, financial insti-
tutions [7] and the research community (e.g., [8]) have
been exploring decentralized consensus-based transaction
processing systems such as distributed ledger technol-
ogy (DLT). In fact, DLTs can facilitate building a trusted
system of record, and supporting programmability. Unfor-
tunately, current DLT implementations penalize throughput.
Work-arounds based on off-chain exchanges, which are only
occasionally anchored on-chain, have become popular in
DLT systems (a.k.a layer-2 solutions), yet, they fall short
in the context of CBDC, as they lack fast finality and full
transparency for all payment transactions.

In this paper, we introduce a transaction processing
framework for (fungible) financial assets, and more specif-
ically, CBDCs, that addresses the aforementioned require-
ments. We show that permissioned DLTs are advantageous
with respect to transparency and resilience to compromised
nodes–even with a centralized governance model–and can
meet the CBDC performance and scalability requirements
without significant overhead compared to centralized sys-
tems of record. In particular, we propose a system architec-
ture and protocols within, exhibiting:

• Strongly accountable and transparent transaction
processing by employing strong identity manage-
ment and a system-wide, transaction ledger called
system ledger.

• Resilience to compromised nodes by extending Hy-
perledger Fabric DLT to support byzantine fault
tolerance in all phases of transaction processing.

• Pluggable transaction format and transaction secu-
rity checks that decouple application-related logic
from the DLT layer that builds and maintains the
system ledger. This is a byproduct of DLT smart
contracts that allow easy integration of different pri-
vacy mechanisms and functionalities into the system.

• Throughput and latency comparable to the through-
put and latency observed in today’s (ledger-enabled)
centralized solutions (e.g., [6]). This is accomplished
thanks to (i) the execute-order-validate transaction
processing model introduced by Hyperledger Fabric
1.0 [9], (ii) a highly-performant byzantine fault tol-
erant consensus protocol (similar to [10]) for order,
and (iii) leveraging 2-phase commit principles.

• Horizontal scalability of all application-specific
logic introduced in transaction processing. This is
particularly important for applications that employ
zero-knowledge proofs to offer privacy.

We provide a prototype implementation of our frame-
work as an evolved version of Hyperledger Fabric [9],
coupled with four transactional privacy models: (i) UTXO
support using standard PKI and no privacy; (ii) UTXO sup-
port with accountable pseudonymity/anonymity, (iii) UTXO
support with anonymity and exchanged amount confidential-
ity, and (ii) unlinkable UTXO utilizing the cryptographic
mechanisms in [11] for full privacy (with accountability).
We further evaluate our system’s performance using three
consensus protocols: (i) a crash fault tolerant consensus pro-
tocol, i.e., Raft [12], (ii) a byzantine fault tolerant consensus
protocol in the wild, i.e., BFTSmart [13] and (iii) a new
byzantine-fault tolerant architecture inspired by [10] with
state of the art performance and scalability.

Our results show that for the standard UTXO
pseudonymity model, our prototype can process up to
80, 000 transactions per second (TPS) in the case of Raft and
BFTSmart and more than 150, 000 TPS in the case of the
new BFT consensus. Our results further show that the same
numbers can be reached with stronger privacy guarantees
(unlinkability) if more powerful equipment is available.

Layout. The paper is organized as follows. Section 2 de-
scribes the system entities, its trust assumptions and re-
quirements. In Section 3, we extend Hyperledger Fabric
to meet the demands of the (retail) CBDC use-case. Sec-
tion 4 briefly presents UTXO-based token systems and
their various privacy models, whereas Section 5 describes
our framework that builds on our extension to Hyperledger
Fabric and the UTXO model. Section 6 benchmarks our
system’s performance and Section 7 covers the related work.
Finally, Section 8 concludes the paper.

2. System Overview

A CBDC system involves a central bank, which decides
the monetary policy, manages the overall liquidity, and
validates CBDC operations via a settlement engine. It also
involves users, who hold CBDC and exchange it for goods

and services. Each user is equipped with a digital wallet to
store her secret key, track her CBDC holdings and authorize
CBDC operations. Intermediated CBDC comprises, in addi-
tion, intermediaries, which correspond to the commercial
banks, usually tasked with Know-Your-Customer (KYC)
checks and the management of user accounts, both deposits
and CBDC.

The central bank issues new CBDC upon withdrawal
requests from the users1. Now equipped with CBDC, the
users issue payment requests, which are, for compliance
purposes, subjected to AML and CFT checks. The checks
detect suspicious operations and hold the originators ac-
countable. Each user is consequently provided with a long-
term identity that binds her physical identity to a public key.
The corresponding secret key is stored in the user’s wallet
to authenticate and authorize subsequent CBDC operations.
This process is facilitated by a trusted registration author-
ity that guarantees the correctness of the mapping between
the physical identity and the digital identity.

If privacy against the central bank is desired, then ac-
cess to payment data should be restricted. In particular,
the central bank and the settlement engine should vali-
date CBDC payments without learning their value or the
identities of the parties involved. This complicates AML
and CFT checks whose accuracy hinges upon the access
to payment information. To meet both the privacy and the
compliance requirements, we introduce auditors, which are
entities independent of the central bank, that are authorized
to inspect withdrawal and payment requests and judge their
compliance based on historic data. An example of such
auditors are the intermediaries.

For simplicity, we restrict the description to non-
intermediated CBDC, in which users submit their requests
directly to the central bank.

2.1. System Participants

Now we describe the participants of a typical CBDC
system. The registration authority produces and registers
the credentials of the users. During user onboarding, the
authority first runs KYC checks on the user to validate
her physical identity. If the checks are successful, then it
verifies if the user knows the secret key sk underlying
the advertised public key pk. The authority then maps the
physical identity to a unique enrollment identifier eid, and
produces a credential cred that binds eid to pk, and returns
to the user the pair (eid, cred). Note that the registration
authority can be operated by the central bank with the help
of the commercial banks to perform KYC.

The users hold CBDC and issue withdrawal and pay-
ment requests. A user maintains a wallet that stores her se-
cret key sk matching her credential cred, tracks her holdings,
and authorize CBDC operations.

The central bank issues new CBDC following valid
withdrawal requests and runs the settlement engine.

1. The withdrawal request is submitted to the central bank via the
intermediary in intermediated CBDC.

The settlement engine validates the issuance of new
CBDC and settles user payments against the global state
maintained in a ledger and pre-defined system rules (e.g.,
issuance is only valid if initiated by the central bank). Each
valid issuance and payment result in updates in the global
state. Given the criticality of this component, we recommend
its distribution/decentralization to withstand failures and
attacks. In this paper, we base its implementation on an
extension of Hyperledger Fabric [9], on which we further
expand in Sections 3 and 5.

Auditors monitor user transactions and determine their
compliance. We say that an auditor is active if it inspects
CBDC operations prior to their validation by the settlement
engine, and passive otherwise.

2.2. Trust Assumptions

The central bank is trusted to issue CBDC only upon
a valid withdrawal request, and in accordance with its
monetary policies. Trust in the central bank can be relaxed
through its distribution. For example, the signing key that
authorizes central bank operations, can be shared among
relevant and independent stakeholders, which now must
reach agreement on central bank operations before executing
them. Users, on the other hand, are not trusted, as they
are incentivized to increase their holdings unlawfully and/or
spend CBDC they do not own. We trust the registration
authority to assign each user a unique enrollment identifier
and a unique credential; this trust though can be distributed.
Finally, the settlement engine is distributed and trusted as
a whole, in that it will operate correctly in the presence of a
dishonest minority. We consider two failure models for the
participants of the settlement engine: Crash and Byzantine.
The former implies that the dishonest minority may only
crash and not respond, whereas the latter entails that this
minority may behave arbitrarily.

When user privacy is a concern, the settlement engine
only accesses the information necessary for correct transac-
tion processing. The central bank is only privy to issuance
information, whereas the auditors are trusted not to share
the information they learn with third parties, unless required
by the law. However, all participants (excluding the auditors)
may collude to undermine the privacy of honest users.

2.3. Requirements

Security. A CBDC system is said to be secure if it meets
the following requirements:
Transaction Authorization. The settlement engine accepts a
CBDC operation only if it originates from lawful parties: the
owner of the funds being transferred in case of payments,
and the authorized issuer(s) in case of issuance.
Balance Preservation. A payment should preserve the total
amount of CBDC in circulation. In other words, the holdings
of the payee must be increased by the same amount by
which the holdings of the payer are decreased.
Resilience. The CBDC system must correctly operate and
provide expected services even in the face of errors, failures,

and cyber-attacks. Resilience often requires redundancy,
replication, backup and recovery strategies, load balancing,
and automated failover mechanisms. It can also leverage
distribution of trust to reduce infrastructure cost.

Privacy. The privacy requirements of CBDC vary depending
on the jurisdiction, but are usually covered by the following:
Anonymity. A CBDC operation is anonymous if the identities
of the involved parties are unknown to all others. As we only
consider CBDC systems with one central bank, the identity
of the central bank need not be anonymized during issuance.
Confidentiality. This refers to the confidentiality of the con-
tent of the CBDC operations (i.e., currency/value) against
all participants except the transacting parties.
Unlinkability. Unlinkability ensures that, excluding the au-
ditors, no one can tell if two CBDC operations involve the
same user, either as an issue beneficiary, a payer or a payee.

Note that anonymity does not imply confidentiality and
vice versa, whereas unlinkability implies both.

Auditability/Regulation Compliance. Authorized auditors
should be able to access the transactional information of the
users falling under their jurisdiction. This access is governed
by AML/CFT regulations that determine the information
auditors should monitor to successfully flag suspicious trans-
actions. In the presence of a single auditor, the latter inspects
the content of all transactions. In multi-auditor settings, audit
policies will define which transactions an auditor can access.

Performance. To accommodate retail payments CBDC
should enjoy the same (or better) performances as existing
payment solutions. According to various ECB reports [14],
a retail CBDC system must serve a few tens of thousands
transactions per second (TPS) in the first years of its oper-
ation, and gradually scale to 150, 000 TPS, whereas latency
must vary between 3 and 5 seconds, not to impact the user
experience at points of sale. Note that wholesale CBDC is
characterized by more flexible performance requirements.

2.4. Interactions Overview

A user first engages in an on-boarding process with
the registration authority. A successful onboarding sees the
user assigned a unique enrollment identifier eid and a cre-
dential cred binding eid to the user’s public key pk. The
corresponding secret key sk is stored in the user’s wallet to
authorize and authenticate future CBDC operations.

A user receives CBDC by instructing her wallet to send a
withdrawal request to the central bank. In turn, if the central
bank approves the request, it submits an issuance request
to the settlement engine to finalize the creation of the new
CBDC. If the settlement engine accepts the issuance request,
the user’s wallet updates the user’s holdings accordingly.
The user can also receive CBDC as a result of a CBDC
payment, where the user is the payee. In this case, the
payer instructs their wallet with the payment information
(i.e., value, payee) and the wallet prepares and sends the
payment request to the settlement engine for validation. If

Figure 1: Transaction Lifecycle in Hyperledger Fabric.

the settlement engine accepts the payment, then the wallets
of the payer and the payee are updated correspondingly.

In the case of active audit, the user wallets seek ad-
ditional approval from the auditors before submitting the
CBDC requests. In the case of passive audit, no additional
approvals are needed.

3. Extending Hyperledger Fabric

Hyperledger Fabric (HLF) is a permissioned Dis-
tributed Ledger Technology (DLT) system emphasizing ro-
bust identity management and built-in mechanisms for non-
repudiation and accountability. It introduces an innovative
execute-order-validate [9] model for transaction processing,
departing from the traditional order-execute paradigm. In the
execute-order-validate model, transactions can be specula-
tively executed before ordering. Stale data during speculative
execution leads to rejection during the validate phase. This
model enables parallel execution for higher throughput and
allows developers to write the execute phase code in their
language of choice, providing flexibility.

Figure 1 depicts HLF’s transaction flow involving chain-
codes, smart contracts in traditional languages, executed
during the execute phase. Each chaincode has endorsers,
a subset of network participants tasked with execution.
Chaincodes are assigned a namespace indicating the ledger
partition they can update, governed by an endorsement
policy for validation. A client triggers chaincode execution
by proposing a transaction to endorsers. Endorsers specu-
latively execute, producing a read-set (dependencies) and a
write-set (changes). These form the read-write set, signed
and sent to the client, whose submission to orderers includes
endorser signatures. Orderers, authorized network partic-
ipants, manage the order phase, agreeing on transaction
order, batching into blocks, and delivering to committers.
Committers, a subset of nodes, validate transactions against
ledger state and chaincode endorsement policies. Valid trans-
actions update the ledger, and in HLF, endorsers also serve
as committers, known as Fabric peers.

3.1. HLF Relevance and Limitations for CBDC

The HLF architecture provides a foundation for CBDC
settlement due to the following. A chaincode can handle

CBDC issuance/transfer and security/validity checks in the
execute phase, with horizontally scalable execution. Scal-
ability allows independent addition of nodes for load bal-
ancing. Avoiding single control points is achieved through
an endorsement policy, requiring sign-offs from multiple
parties. Chaincodes are adaptable to evolving CBDC ecosys-
tems, enabling transparent upgrades based on a specified
chaincode administration policy (multi or single-party).

Transaction ordering, essential for dispute resolution, is
facilitated by the adaptable ordering service in HLF. The
modular architecture allows easy adjustments to the system’s
threat model and scalability requirements. For instance,
switching between Crash Fault Tolerant (CFT) and Byzan-
tine Fault Tolerant (BFT) protocols can be done seamlessly
without altering other system components.

All layers of transaction processing can tolerate byzan-
tine behavior by an upper bound of nodes. This is achieved
by the appropriate choice of chaincode administration and
endorsement policies, the use of BFT consensus for order-
ing, and the validate phase that takes place in a deterministic
manner on any committer independently.

Transaction validation can be performed by any member
of the network that has access to the output of the ordering
phase, strengthening the transparency and resilience of the
overall system. Indeed, a new party that joins the network
can easily replay the history of transactions and be assured
of the correctness of the reported system state.

Unfortunately, the current HLF implementation fails to
meet performance and scalability requirements of CBDC
systems for the following reasons. The endorser and com-
mitter roles are tightly coupled within each peer node, which
results in performance limitations. The concurrent execution
of transaction endorsement and commitment on a single
node leads to a competition for CPU resources, where the
performance is constrained by the available cores. Addition-
ally, the committer’s sequential validation of transactions
and the subsequent commit process introduce overhead due
to non-pipelined execution. Further constraints emerge from
the disk write bandwidth on a single node, impacting the
committer’s performance. The exclusive access requirement
to the ledger state intensifies the competition between the
endorser and committer, as transaction execution and state
access/writing operations are mutually exclusive, driven by
limited concurrency control in the system’s state database.

The endorser functionality has limited flexibility. Trans-
actions with multiple signatures create a complex format
and storage overhead, impacting the ordering service perfor-
mance due to consensus protocol sensitivity to communica-
tion bandwidth. The default HLF endorser enforces consis-
tent logic across endorsers, limiting the use of chaincode and
endorser-specific secrets. Departing from this default allows
endorsers to use application-specific secrets, communicate
directly, and submit transactions to orderers independently.

HLF utilizes a consensus protocol in the order phase
for transaction ledger output. Traditional byzantine fault
tolerant consensus protocols are designed to resist arbitrary
behavior in a subset of participants. However, they exhibit

(a) (b)

Figure 2: Transaction format in current and new version of Hyperledger
Fabric: (a) HLF nested transaction format: Gray indicates a protobuf mes-
sage encoded as opaque bytes; (b) New transaction format: Each transaction
contains several namespaces, where each namespace can contain reads,
writes or read-writes.

low transaction throughput with an increasing number of
nodes. Leader-based consensus protocols, such as [15], [16],
[17], [18], face saturation of the primary’s egress bandwidth
due to block broadcasting.

3.2. Optimising HLF for CBDC applications

As current instances of HLF [19] do not meet the
performance and message flow needs of retail CBDC, we
enhanced HLF in four ways as described in this section.

Simplifying Transaction Format. The current HLF trans-
action employs a nested data schema using serialized proto-
buf messages (refer to Figure 2a), allowing for extensibility
but incurring computational overhead. To address this, we
introduce a flat transaction format (refer to Figure 2b),
eliminating nested deserialization, enabling direct access to
transaction elements, and reducing the overall transaction
size. The new format includes a unique identifier, endorse-
ments’ signatures, and multiple read-write sets organized
by namespace. Each namespace corresponds to a ledger
partition for reading and/or updating during validation. The
read sets define entries with keys and version numbers for
validation, while successful commits persist key-value pairs
present in write-set to the corresponding namespace.

Reworking the HLF Endorser. Figure 4 depicts the new
endorser architecture. The new endorser can host and exe-
cute multiple chaincodes, whereby, each chaincode is asso-
ciated with a signing key, which is stored within a key man-
agement component. This component maps the chaincode to
its key and ensures that the key is available to the signer
component, which in turn, signs the result of the chaincode
execution. The endorser also comes with a coordinator that
receives transaction proposals from clients and dispatches
them to the right chaincode for execution.

The new endorser extendeds the original HLF endorser
with the following features. Peer-to-peer communication
to accommodate interactions between endorsers when ap-
plications demands it. An off-chain database that records
application-specific data required for chaincode execution
but never stored in the ledger. Threshold signing, thanks to

Block Tx. Read Set
(key, version)

Write Set
(key, value)

Valid

B1

T1 (k6, 1) (k1, v1) ✓

T2 (k1, 2) (k6, v6) ✗

T3 (k3, 1) (k6, v7) ✓

T4 - (k5, v5) ✓

B2
T1 (k5, nil) (k7, v1) ✗

T2 (k4, 3) (k4, v4) ✓

TABLE 1: The read-write set of transactions present in block B1 and B2.

which, a transaction will cary only one signature per chain-
code execution, as opposed to a multi-signature; reducing
hence, its size and the number of signature verifications to
be performed at time of its validation. The new endorser
supports three threshold signature algorithms BLS [20],
ECDSA [21], and EdDSA [22].

Increasing concurrency control in HLF Committer.
To address the limitations of HLF discussed in 3.1, we
have proposed a new committer architecture composed of
various services spanning several nodes. The new committer
architecture is depicted in Figure 4. To have high degree of
parallelism in validation of signatures against the endorse-
ment policy, we introduced a new service called signature
validator, whose sole purpose is to utilize all available
CPU cores to validate signatures. Further, to optimize disk
read and write bandwidth utilization for both committer
and endorsers, we have introduced a new service called
shard server. Each shard server maintains a partition of the
ledger state, validates read-set freshness, applies write-set
to the ledger, and also directly provides query service to
the endorser. Finally, we introduced a coordinator which is
responsible for processing transactions by communicating
with signature validators and shard servers. The coordinator
and shard servers execute a two-phase commit protocol [23]
between them to perform distributed validation and commit-
ment of transactions.

Furthermore, to increase the degree of parallelism in
checking the freshness of the read-set, we introduced trans-
action dependency analysis in the coordinator. In existing
committer, each transactions read-set is validated sequen-
tially because the validity of a prior transaction may affect
the validity of a later transaction. Let’s consider an example
to understand the necessity of serial validation of read-set.
Consider two blocks of transactions, as shown in Table 1.
The table shows states read by each transaction under Read
Set column and states written by each transaction under
Write Set column. Note that the version is a monotonically
increasing number associated with each state and is updated
whenever the state is modified. The transaction T1 being
valid would render T2 invalid. This is becaues T2 read the
state k1 at version 2, while the T1 updates the state k1 to
new version. Consequently, read-set freshness check for T2

would fail. If we were to process both T1 and T2 in parallel,
it is possible to get T2 as valid and T1 as invalid or to get
both transactions as valid, thereby violating serializability.
However, T1 and T4 are independent of each other and can

T1 T2

T3
T4

T1

T2

wr (k6)
rw (k1)

wr (k
6) ww (k

6) rw (k 5
)

Block B1 Block B2
Figure 3: Dependency graph of transactions in Table 1.

be processed in parallel. To ensure correctness, the existing
committer processes each transaction sequentially.

In the new committer architecture, we track dependency
between transactions using a dependency graph and process
independent transactions in parallel. This graph contains a
node per transaction. We use the term node and transaction
interchangeably. Let’s assume we have two transactions, Ti

and Tj , with Ti appearing in a block before Tj (where Tj

can be in the same block or any subsequent block). An edge
from Tj to Ti denotes that the transaction Ti’s read-set must
be validated before validating Tj’s read-set. The following
are the three types of dependencies that can create an edge
from Tj to Ti, where i < j:

• read-write dependency (Ti
rw(k)←−−−− Tj): Ti writes a

new value to state k and updates its version. Tj reads
the previous version of state k. If Ti is valid, Tj must
be invalid because the read version is not the latest
version. This read-write dependency is also called
fate dependency as the fate of Tj is decided by Ti.

• write-read dependency (Ti
wr(k)←−−−− Tj): Tj writes

a new value to state k and updates its version. Ti

reads the previous version of state k. Regardless of
the validity of Ti, Tj can be validated. We use this
dependency to ensure Tj is not committed before Ti.
Otherwise, Ti can be marked invalid as it reads the
previous version of state k.

• write-write dependency (Ti
ww(k)←−−−− Tj): Both Ti

and Tj write to the same state k. Regardless of
the validity of Ti, Tj can be validated. We use this
dependency to ensure Tj is not committed before
Ti. Otherwise, the write made by Tj would be lost
forever.

Note that an edge can only go from a newer transaction
to an older transaction, i.e., if Ti ←− Tj then i < j,
because the commit order is determined in the ordering
phase. Thus, there are no cycles in the dependency graph.
The dependency graph of transactions in Table 1 is shown
in Figure 3. The transactions T1, T4 in block B1 and T2 in
block B2 are dependency-free and can be processed in par-
allel. Other transactions have to wait for their dependencies
to be validated and committed or aborted.

Transaction Flow. Blocks that arrive from the ordering
service first reach the coordinator, which verifies the signa-
ture of the orderers on each block, and inserts the ordered
set of transactions into its transaction dependency graph.
Transactions which do not depend on any other transactions

Figure 4: Architecture and transaction flow of Hyperledger Fabric with
the new endorser and committer. (1) Client submits a transaction proposal
to the endorsers of the chaincode to be invoked; the endorsers trigger
the corresponding chaincode’s execution (1a), by accessing an off-chain
state database (1b) and/or the ledger state (1c); after the read/write set
is compiled, the chaincode results are signed by the endorser using the
endorser’s key manager (1c), while depending on the endorser’s config-
uration, this could trigger communications with other endorsers, e.g., for
a collaborative threshold signature generation; notice that the ledger state
can be implemented as a replica of the actual system’s ledger (that would
require endorser to run a committer), or via a mechanism that connects
to a committer, and only retrieves (endorser/chaincode-relevant) parts of
the ledger’s state. (2) Transaction is submitted to the ordering service for
ordering and from there (3) the transaction is delivered within a block to
the committer’s coordinator component; the coordinator exchanges with
the signature verifiers and the shards to ensure validity of the signatures
and read-set freshness (3.a/3/b), to finally commit state updates (3.c) and
respond to the client (4).

are processed in parallel, and once the validation of a trans-
action concludes (either by having the transaction committed
or rejected), the transaction is removed from the graph and
dependents of this transaction are updated. If there are any
transaction that have fate dependency, i.e., rw-dependency,
on the committed transaction, they are marked as invalid
and removed from the graph.

More specifically, the coordinator sends the ordered
transactions to one of the signature validators, which verifies
in a stateless manner whether the transaction complies with
the endorsement policies of the namespaces identified in
the transaction. The failure to pass these checks results in
the early the rejection of the transaction. Meanwhile, the 2-
phase commit protocol is executed between the coordinator
and shard servers. The coordinator dispatches the transaction
to the relevant shard servers to check the freshness of the
read-sets in the transaction against the (committed) ledger
state. That is, for each key in the read-sets, the coordina-
tor calls the associated shard server in parallel, whereas
upon call, each shard server checks if their assigned read-
set entries are fresh or not. If that is the case, the shard
server sends back OK; else, it returns NOK. If one of the
shard servers responds with NOK, the coordinator marks
the transaction as invalid. Concurrently, the coordinator
sends each entry in the write sets to its respective shard
server, while also verifying if the transaction has passed the
signature validation. If the signature validation succeeds,
the coordinator considers the transaction valid; otherwise,
invalid. Finally, if the transaction is valid, the coordinator
notifies the shard servers with the write-sets to apply the

updates, and we say that the transaction is committed. Else,
the shard servers are asked to discard the updates.

Reworking HLF ordering service. To order transactions,
we leverage an improved version of the Narwhal and Tusk
BFT consensus [10], called ARMA. ARMA (as Narwhal
and Tusk) replicates transaction batches in parallel and uses
a BFT protocol to order the headers of the corresponding
transaction batches, instead of the transactions themselves.
Since the size of the headers is much smaller than the size
of the batch of the transactions (it is in the order of a few
hundreds of bytes per transaction batch), ARMA (just like
its predecessor [10]), overcomes the network bandwidth bot-
tleneck described in Section 3.1. Further distinguishing itself
from closely-related work like [10], ARMA is censorship
resistant. That is, it ensures that any transaction originating
from an honest participant will be eventually ordered.

4. Token Systems for CBDC

In this paper, a token is a digital representation of a
fungible financial asset (e.g., CBDC), and defined as a triple
(owner, type, value). In systems with a single asset type, a
token is a pair (owner, value). For simplicity, we restrict the
paper to token systems with a single type.

The state of a token is maintained in a ledger, which
can be updated using two operations. An Issue operation
creates new tokens in the system and a Transfer operation
changes the owner of a token. The ledger receives these
operations as transactions, and we conflate the transaction
with the operation it carries, for e.g., a transaction with an
Issue operation is called an Issue transaction. In this paper,
these transactions follow the Unspent Transaction Output
(UTXO) model, as it offers better privacy and concurrency
control [6] than the account model.

4.1. UTXO-based Token Transactions

A UTXO-based transaction is defined by a set of inputs
and a set of outputs. The inputs are references to tokens in
the ledger, whereas the outputs are new tokens to be created.
Valid UTXO transactions result in deleting the inputs, and
adding to the ledger the outputs, now ready to be used in
subsequent transactions.

Assume that user A wishes to transfer a token of value
v to user B. To that end, A builds a Transfer transac-
tion as follows: (1) she selects from her tokens a subset
(τ0, ..., τn−1) whose sum value v∗ ≥ v; (2) defines the
inputs of the transaction as key0, ..., keyn−1, where keyi
is the key of τi in the ledger; (3) computes a token τB of
value v whose owner is B, and a second token τA intended
for A whose value is v∗ − v; (4) sets the outputs of the
transaction to τB and τA.

To guarantee that only the owner of a token can spend it,
the Transfer transaction must be signed by the owners of its
inputs. Considering the previous example, user A signs the
Transfer transaction prior to submitting it for validation,

during which the Transfer transaction is subjected to the
following validity checks:

1) The inputs of the transaction already exist in the
ledger. This checks for double spending.

2) The sum value of the inputs equals the sum value of
the outputs. This checks for balance preservation.

3) The rightful owners of the inputs signed the trans-
action. This checks authorization.

If all checks succeed, then the transaction is accepted and
the state of the ledger is updated. Namely, the inputs of
the transaction are deleted, and each transaction output is
assigned a unique key in the ledger. This key is usually
computed as a function of the unique identifier of the
transaction and the index of the output in the transaction.

Prior to any Transfer, tokens must be first created via
an Issue transaction. In the UTXO model, an Issue is a
transaction without inputs, and the sum value of its outputs
stands for the value being injected into the system. The
validation of an Issue verifies if it was signed by one of
the parties authorized to create the tokens. If the transaction
is accepted, then its outputs are added to the ledger.

4.2. Privacy-preserving Token Systems

UTXO-based token systems can accommodate varying
degrees of transaction privacy: starting from systems that
only achieve user anonymity, to systems that also ensure
transaction confidentiality, concluding with systems that
guarantee transaction unlinkability. We recall that transac-
tion confidentiality refers to the property that a transac-
tion does not leak the values of the inputs and the out-
puts, whereas transaction unlinkability refers to the property
that no one can link two transactions together (i.e., link
the input of one transaction to the output of a previous
one). Both transaction confidentiality and unlinkability are
achieved using zero-knowledge proofs, whereas transaction
anonymity can be guaranteed using one-time keys, however,
for accountability purposes, anonymous credentials [24] are
preferred. These allow users to sign transaction using their
long-term identities without leaking any information about
who they are. Due to space limitations, we defer the detailed
description of these token systems to Appendix B.

4.3. Audit in Token Systems

Financial applications often require audit capabilities,
and token systems are no exception. Token systems without
privacy protections support audit by default: anyone with ac-
cess to the ledger can check the identities of the transacting
parties and the values of the transactions. In contrast, token
systems that preserve user privacy make it impossible for
auditors to inspect transactions just by crawling the ledger,
which now depending on the implementation, only contains
partially or fully obfuscated transactional information. Audit
in such a setting is facilitated by one of two approaches:

Active Audit: The initiator of a transaction, be it an
Issue or Transfer, provides the information of the transac-
tion to the auditors in the clear. The auditors then check if
the transaction information matches the transaction and if
it complies with the audit rules. If both checks succeed,
then the auditors sign off the transaction and return the
signature to the transaction initiator. When the transaction is
submitted for validation, it undergoes an additional signature
verification that ascertains if the auditors inspected and
accepted it.

Passive Audit: A transaction in this approach contains
ciphertexts that can be decrypted only by the authorized
auditors. To guarantee that the auditors successfully re-
trieve the transactional information without external help,
the ciphertexts carry additional proofs that confirm that they
encrypt the correct information.

We omit audit functionalities in what follows, however,
we note that the transaction model and the architecture we
introduce next can be easily enhanced with audit.

5. Scalable Architecture for CBDC

Our CBDC architecture involves two main components:
the user wallets and the settlement engine. A user wallet
could be held by an issuer, a payer or a payee, and is
tasked with translating the instructions of its holder into
transactions, which are validated by the settlement engine.
The latter builds on HLF in the following way:

A chaincode, that we call the token chaincode, im-
plements the validity checks as described in Section 4.1.
The token chaincode verifies the signature(s) of the issuers
and/or the token owners, and the zero-knowledge proofs
whenever transaction privacy is supported. These checks
are performed with minimal access to the ledger state: the
chaincode only reads the chaincode version or the system
configuration (e.g., identity rules), which seldom change.

Upon receiving a transaction, the endorsers of the token
chaincode, referred to as token endorsers, output the results
of the transaction execution in the form of read-write sets,
such that: (1) the read-sets describe the read-dependencies
of the transaction, including the most recent versions of
the system configuration; and (2) the write-sets reflect the
state updates that the transaction applies to the ledger if
committed. The token endorsers then sign the transaction’s
execution results using their (threshold) signing key. They
can additionally be configured to deliver the endorsed trans-
action to the ordering service on behalf of the user wallets,
playing hence the role of an HLF client.

The ordering service totally orders the endorsed trans-
actions and batches them into a sequence of signed blocks.

The committers validate the transactions against the en-
dorsement policy of the token chaincode and the content of
the ledger, and update the state of the latter accordingly. It is
at this stage that double-spending attempts are caught, and
system upgrades are enforced.

The settlement engine also includes a query service that
responds to user queries on the results of the processed
transactions. The query service can be built either on top

Figure 5: Scalable CBDC Architecture. (1) The wallet submits a client transaction to the settlement engine; (2) the token endorsers, through a front-end
component called the coordinator, receive the client transaction (1.a) and execute the token chaincode, which occasionally accesses the ledger state (1.b); the
token endorsers then produce and sign the settlement transaction (1.c), store the client transaction in a dedicated database referred to a transaction metadata
database (1.d), and finally submit via the coordinator the signed settlement transaction to the ordering service (1.e & 2); the ordering service delivers the
transaction in an ordered block to the committers for validation (3); if the settlement transaction is valid, the committers apply the corresponding state
updates, and send back the final status of the transaction (committed or not) to the transaction submitter (4). When transaction unlinkability is supported,
users request the certification of their tokens (5) by invoking the query/certification chaincode (5.a); if the tokens exist in the ledger (5.b), the chaincode’s
endorsers certify the requested tokens (5.c) and return the result (5.d & 6).

of the token chaincode, or in a dedicated chaincode with its
own endorsement policy.

5.1. Transaction Model and Lifecycle

In our architecture, there are two types of transactions,
Issue and Transfer, and they come in two forms: client
transactions and settlement transactions. The client transac-
tion is the message submitted to the settlement engine by a
user wallet, and whose content depends on the type of the
transaction (Issue vs. Transfer) and the underlying token
exchange (e.g., anonymous vs. confidential). According to
HLF, the client transaction is the proposal, whereas the user
wallet is the HLF client. The settlement transaction, on the
other hand, is a compact version of the client transaction,
submitted by the token endorsers directly to the ordering
service of the settlement engine. This is the HLF transac-
tion, which includes the read-write sets and the signatures
of the endorsers. After ordering, the settlement transaction
is handed over to the committers, which following the logic
described in Section 3.2, validate the settlement transaction
and commit its write-set if valid. This concludes the lifecycle
of a transaction in our architecture.

For clarity, we distinguish between token systems with
transaction unlinkability (i.e., full privacy) and those with-
out. Due to space limitations, we only describe here token
systems with unlinkability. We defer the description of token
systems without unlinkability to Appendix C.

5.2. Token Systems with Transaction Unlinkability

Token systems that assure unlinkability hide the relation
between the inputs and the outputs of transactions in the
ledger. This is achieved by ensuring transaction anonymity
and confidentiality, and enabling payers to spend inputs in

a Transfer transaction without revealing their identifiers in
the ledger. The main challenge here is to show that the input
of a transaction (1) is actually the output of a previously-
committed transaction; and (2) hasn’t been spent before,
without disclosing its identifier. Similar to [9], we rely on
signature-based zero-knowledge proofs of membership to
implement (1). More specifically, we introduce the certifiers,
which are tasked with producing threshold signatures that
certify that a token exists in the ledger. These signatures
will be used subsequently, to produce the relevant zero-
knowledge proofs. To achieve (2), we assign each transac-
tion output a unique serial number, which is revealed only
at time of spending.

Transaction Model. In the case of an Issue transaction,
the client transaction comprises the outputs and the signa-
ture of the issuer. The corresponding settlement transaction
contains a write-set that includes the issued outputs as
⟨out_key, ser_out⟩. The key out_key is the unique identifier
of the output in the ledger, defined as the concatenation of
the transaction’s unique identifier and the index of the output
in the transaction, and ser_out is its serialization. In the case
of a Transfer transaction, each output of a client transaction
is a token, while each input is the randomization of a token
in the ledger, and the serial number of that token. The client
transaction also contains the signatures of the token owners
and the following zero-knowledge proofs, whose details are
in Appendix B.3.

• ΠBal proves that the sum value of the tokens in the
inputs equals the sum value of the outputs;

• ΠExist shows that the token in each input is the
randomization of a token that was signed by the
certifiers;

• ΠSN ascertains that the serial numbers in the inputs
are computed correctly.

The associated settlement transaction carries a read-set
where for each serial number sn in the client transac-
tion, there is an entry ⟨sn,nil⟩ signaling that, at the time
of transaction commitment, entry with key sn should be
empty. The transaction also contains a write-set with en-
tries ⟨out_key, ser_out⟩ writing the outputs, and entries
⟨sn, spent⟩ indicating that the serial numbers should be
marked as spent, when the transaction is committed. This
enforces that a token can only be spent once at time of
validation. In fact, two transactions that spend the same
token will result in a conflict. Either the first gets committed
and the second gets rejected on the ground that one of the
entries ⟨sn,nil⟩ in the read-set is no longer empty, or vice-
versa.

User Wallets. A token τ in a system with transaction un-
linkability is defined as a commitment Commit(eid, v, r, t),
where eid is the unique identifier of the owner, v is the value,
r is the randomness used to compute the serial number
of the token, and t is the randomness of the commitment.
Furthermore, to be able to spend τ , its owner must have
access to the threshold signature γ of the certifiers on τ .

Consequently, the wallet securely stores the user’s long-
term identity (eid, sk,K, cred), whereby eid is the unique
identifier of the user, sk her secret key, K is a PRF secret
key dedicated to computing the serial numbers, and cred
is the signature from the registration authority on vector
(eid, sk,K). The user wallet also stores for each token
τ , the information that enables its spending, i.e., entry
⟨τ, (v, r, t, γ)⟩.

Assume that the user instructs the wallet to transfer value
v′ to payee with identifier eid′. The user wallet assembles
the corresponding client transaction as follows:

• Select the first entries ⟨τi, (vi, ri, ti), γi⟩ such
that

∑
vi ≥ v′. Let ⟨τ0, (v0, r0, t0), γ0⟩ and

⟨τ1, (v1, r1, t1), γ1⟩ be the selected entries and τ ′0
and τ ′1 their randomization.

• Create two outputs out0 = Commit(eid′, v′, r′0, t
′
0)

and out1 = Commit(eid, v0 + v1 − v′, r′1, t
′
1).

• Compute sn0 = PRF(K, r0) and sn1 =
PRF(K, r1).

• Let µ = (in0, in1, out0, out1,ΠBal,ΠSN,ΠExist),
where in0 = (sn0, τ

′
0), in1 = (sn1, τ

′
1), and

(ΠBal,ΠSN,ΠExist) are the zero-knowledge proofs
previously described, and compute TxID as the hash
of µ.

• Compute two anonymous signatures σ0 and σ1 on
(TxID, µ) (note that the signatures can also be
computed only on TxID) and construct the client
transaction (TxID, µ, σ0, σ1).

• Communicate to the payee the opening of output
out0 (i.e., (eid′, v′, r′0, t

′
0)), together with transaction

identifier TxID. This identifier allows the payee to
track the status of the transaction in the ledger.

• Finally, submit the client transaction to the settle-
ment engine through token endorsers.

Settlement Engine. In this section, we expand on the
components of the settlement engine.

Token Endorser and the Token Chaincode. On re-
ceiving the client transaction, the token endorsers verify
if the zero-knowledge proofs and the signatures within
the transaction are valid. If so, then the token endorsers
create (1) read-set entries that indicate that ledger entries
with keys sn0 and sn1 in the ledger must be empty, (2)
write-set entries that write out0 and out1, and (3) write-
set entries that mark sn0 and sn1 as spent, cf. Section 5.2,
and assembles a settlement transaction with identifier TxID
using the produced read-write sets. Note that the token
chaincode execution does not require reading any state to
check whether the transaction inputs are stored in the ledger.
Instead, it only relies on the content of the client transaction.

After producing the content of the settlement transaction,
the token endorsers leverage a threshold signature to jointly
sign the settlement transaction. By using threshold signa-
tures, we reduce the number of signatures to be verified at
the committers. The token endorsers then submit the signed
settlement transaction to the ordering service and listen for
a confirmation, which indicates whether the transaction has
been successfully committed or not. If the endorsers do not
receive the confirmation after a timeout, they resubmit the
transaction.

Committers. After ordering, the settlement transac-
tion reaches the committers, which validate it according
to the description in Section 3.2. Thanks to the way we
encode the serial numbers in the read-write sets, transactions
attempting to double spend a token will always yield a read
conflict, and consequently, be rejected.

Certifiers. Once a settlement transaction is commit-
ted, its outputs are ready to be signed by the certifiers, which
each runs a dedicated application on top of the committer’s
logic. The application continuously tracks ledger updates,
and produces threshold signatures for the new outputs. The
signatures are then stored by the certifiers, to be retrieved
later by the user wallets upon request.

Alternatively, the certification functionality can be pro-
vided by a dedicated chaincode, whose endorsers correspond
to the certifiers. Each certifier leverages the chaincode to
(1) confirm the existence of the outputs in the ledger, and
(2) compute a threshold signature for the confirmed outputs
with the other certifiers. Notice that in contrast with token
endorsers whose response is used to update the ledger state,
the certifiers treat execution requests as queries.

5.3. Dispute Resolution – Reconciling Client Trans-
actions

To improve the performance of the overall system,
the settlement transaction only includes the information
necessary for validation: read-write sets and the signature
of the endorsers. This makes the settlement transactions
compact and yields bandwidth gains, and therefore, better
performances at the orderers. On the downside, this hinders
dispute resolution mechanisms, an example of which is

holding the token endorsers accountable for the transactions
they endorse.

It is important thus to make client transactions available
to the settlement engine (even if asynchronously). To that
end, we (1) extend the token endorser application to store
the client transaction in a transaction metadata database,
right after they complete the chaincode execution; and (2)
implement a reconciliation service on top of the committers,
which will monitor freshly-committed settlement transac-
tions and query the endorsers for the corresponding client
transactions. Since the settlement transaction identifier in-
cludes the hash of the client transaction, the reconciliation
service can easily verify if the client transaction it is given
is the right one.

6. Experimental Evaluation

In this section we evaluate the performance characteris-
tics of our system’s architecture as described in Section 5.
We benchmark and analyze the various phases of transaction
settlement in terms of transaction throughput and latency,
with respect to the requirements presented in Section 2.3.

More specifically, in Section 6.1 we evaluate the transac-
tion execute phase capturing stateless checks of transaction
validity for different privacy configurations. As the execute
phase scales horizontally, we focus its performance evalu-
ation on the introduced latency. We proceed in Section 6.2
with the performance evaluation of the order phase with
three different consensus algorithms. Finally, in Section 6.3
we evaluate the validate phase with our enhanced HLF com-
mitters, as well as the certification phase that applies solely
in the case where privacy-preserving protocols presented
in [11] are adopted.

Experimental Setup. We implemented the user wallets,
the endorsers, and the certifiers using the Fabric Smart
Client [25] and Token SDK [26], and extended the HLF
ordering service [27] to support the ARMA consensus proto-
col. We implemented the committers as a distributed service
in Go [28] using GRPC [29] for network communication,
and yugabyteDB [30] as shard database to persist committed
transactions. To evaluate various aspects of the settlement
engine, we implemented a workload generator that can
produce synthetic workloads to simulate millions of users
and stress individual components of the settlement engine.

Performance metrics (i.e., throughput and 99th percentile
latency) are collected via Prometheus [31] with a sample
rate of one second. Each reported data point is the average
of at least two minutes (120 samples) running time after a
warm-up phase. Error bars report the standard deviation.

Finally, we deployed the components of the settle-
ment engine on IBM Cloud [32] in three different regions,
namely, London, Paris, and Milan. The bare-metal servers
are equipped with dual 48 core CPUs (Intel(R) Xeon(R)
8260 CPU @ 2.40 GHz), 64 GB RAM, 1 TB SSD (Raid 0),
and 10 Gbps network with Ubuntu Linux 20.04 LTS Server.

6.1. Transaction Execution

In this section we analyze the transaction latency ob-
served at the token endorser when a variety of privacy-
preserving token exchange techniques are utilized. Notice
that as the operations performed in this phase are stateless
and thus horizontally scaleable, throughput can be amortized
as per the utilized compute resources.

Table 2 summarizes our results for the execution latency
of the endorsement for different privacy configurations, in-
cluding the ZKP verification checks where applicable and
the threshold signature generation by a single endorser
employing the techniques described in Section 4. For our
experiments we considered the combination of (t = 3, 5, 10)
endorser shares using threshold BLS [20] signing.

Our results show that, even when ZKPs are utilised for
anonymity and unlinkability in payment transactions, the
execute phase does not go above 20 milliseconds, while la-
tency is brought down to a few milliseconds where account-
able (Section 4.2) anonymity techniques are being leveraged.
Notice that the impact of threshold signing mechanisms is
negligible to the overall execute phase latency, even for
thresholds that go above a few tens of nodes.

6.2. Transaction Ordering

Next, we investigate the settlement engine’s order-
ing efficiency using three different consensus algorithms,
RAFT [12], SmartBFT [17] and ARMA (variant of [10]).

SmartBFT as well as Raft are integrated in the official
open source Hyperledger Fabric release, and slight modi-
fications were made to it to accommodate our customized
transaction format. The SmartBFT protocol can be thought
of as a non-pipelined version of the seminal PBFT [15]
protocol, where each consensus round carries a single batch
of transactions. ARMA is similar in its architecture to the
Narwhal-HotStuff version of [10], but substitutes HotStuff
with SmartBFT [17].

Figure 6 illustrates the throughput and latency of dif-
ferent consensus protocols instantiated with varying num-
ber of orderer nodes (supporting up to f node failures),
which are deployed across the regions of our testbed. For
our experiments, we colocated a workload generator in
the same region as the leader node, and used blocks of
3500 settlement transactions, where each transaction con-
tains two serial numbers (SNs) and two outputs. In contrast
to classical Fabric transactions, which require a size of
approximately 3.5 KB, the compact form of the settlement
transaction only requires less than 300 B to perform the
same operation, thereby reducing the network load by a
factor of 10.

SmartBFT. The maximum throughput we observe is
27, 000 tx/s with four nodes (f = 1), and up to 9, 000 tx/s
with 16 nodes (f = 5). The latency is about 0.7 seconds
with four nodes before saturation, whereas with 10 and 16
nodes the latency goes up to two seconds before saturation.
Other works [17] reported comparable numbers of around

Number of Endorsers No Privacy Anonymous Anonymous & Confidential Exchange Unlinkable Signing Aggregation
t = 3 0.3 ±2% 4.2 ±1% 13.6 ±0% 19.7 ±0% 0.147 ±4% 0.124 ±0%

t = 5 0.3 ±2% 4.2 ±1% 13.6 ±0% 19.7 ±0% 0.147 ±4% 0.241 ±1%

t = 10 0.3 ±2% 4.2 ±1% 13.6 ±0% 19.7 ±0% 0.147 ±4% 0.624 ±1%

TABLE 2: Transaction execution latency breakdown of various ZKP verifications: No Privacy, Anonymous (Section B.1), Confidential Exchange (Section
B.2), Unlinkable (Section B.3), the endorser’s threshold signing (Signing) and signature share aggregation (Aggregation).

0 25K 50K 75K 100K 125K 150K 175K
Throughput (tx/s)

0

2

4

6

8

10

La
te

nc
y

(s
)

SmartBFT, n=4, f=1
SmartBFT, n=10, f=3
SmartBFT, n=16, f=5

Raft, n=3, f=1
Raft, n=7, f=3
Raft, n=11, f=5
Raft, n=21, f=10

Arma, n=4, f=1
Arma, n=10, f=3
Arma, n=16, f=5
Arma, n=31, f=10

Figure 6: Ordering service throughput-latency for different consensus
protocols, namely, SmartBFT, Raft, and ARMA.

2, 000 tx/s with four nodes (f = 1) and a block size of 1 MB
comprising 250 transactions each size of 4 KB. This shows
that the transaction size directly impacts the throughput of
the ordering service as the network load is reduced.

RAFT. In contrast to SmartBFT, we observe much more
stable latency with varying number of orderer nodes around
200 ms before saturation. In fact, the latency decreases
slightly until saturation. The maximum throughout we ob-
serve is 80, 000 tx/s with three nodes (f = 1) and up to
65, 000 tx/s with 21 nodes (f = 10). Even though Raft
performs better than SmartBFT, recall Raft only supports
crash faults. For this reason, we were able to modify the
implementation of the Fabric ordering service to authen-
ticate the submitting client already during the TLS hand-
shake and disabled signature validation on the transactions
submitted by the client. This modification and the com-
pact settlement transaction size help to improve the overall
performance compared to the upstream implementation as
reported in [17].

ARMA. We observe the best throughput up to 165, 000 tx/s
with a latency below two seconds with four orderer nodes
(f = 1). With 21 nodes (f = 10), we still achieve up
to 80, 000 tx/s. Interestingly, we observe that the latency
increases linear with higher load whereas we had expected
a stable latency before saturation. Additionally, it is unclear
why ARMA with 16 nodes (f = 5) saturates before the
deployment with 10 nodes (f = 3). We did not further
investigate this unusual behavior since the current code is
considered to be prototype and under active development.
Updates to this report will present the new results we obtain.

6.3. Transaction Validation

We evaluate the validation phase using a prototype
implementation of our enhanced committer, as outlined in
Section 3.2. Our evaluation focuses on different paramaters,
such as transaction size, invalid signatures, and double
spend, impacting the transaction throughput and latency.

We deployed the components of the committer and the
workload generator on multiple servers within the same re-
gion. Unless otherwise specified, we deployed the committer
with four signature validators, six shards, and one coordi-
nator. Throughout all experiments, we shaped the workload
to keep the latency below one second. Note that when we
overload the committer beyond its capacity, a queue begins
to form, leading to an increase in latency.

Impact of transaction size. To evaluate the impact of
transaction size, we conducted an experiment where we
submitted transactions with varying numbers of inputs and
outputs to the coordinator. Figure 7a shows that as the
number of inputs and outputs in transactions increased, we
observed a decrease in transaction throughput, declining
from 345, 000 tx/s to 160, 000 tx/s. This can be attributed to
the growing complexity of the dependency graph maintained
by the coordinator. With more inputs and outputs, the num-
ber of nodes in the graph increases, leading to longer times
for constructing and updating the dependency graph. Addi-
tionally, the data structure employed to store the dependency
graph is protected by a synchronization primitive, preventing
concurrent access. This safeguard, while crucial for data
integrity, contributes to the reduction in overall throughput.
Thus, we can conclude that the throughput of the committer
is limited by the performance of the coordinator service.

To validate this claim, we conducted additional experi-
ments to understand the performance characteristics of the
shards and signature validators, both components running
in isolation. We found that increasing the number of shards
or signature validators resulted in a scalable increase in
the throughput of the respective components, surpassing
450, 000 tx/s. We conclude that the bottleneck is not with
the shards or signature validators but with the coordinator.

Impact of faulty transactions. To analyze the performance
of the committer when handling faulty transactions, we
conducted two experiments, focusing on the submission of
a mix of valid and invalid transactions. Our objective was to
investigate how this mix influenced transaction throughput
and latency. All transactions included in these experiments
had two inputs and two outputs. We varied the percentage
of invalid transactions from 0% to 30%.

0K

50K

100K

150K

200K

250K

300K

350K

400K

In=1
Out=1

In=2
Out=1

In=2
Out=2

In=3
Out=2

In=4
Out=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y
 (
s
)

#Inputs and #Outputs in Each Transaction

Throughput
99th %ile Latency

(a)

0K

50K

100K

150K

200K

250K

300K

350K

400K

0 10 20 30 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y
 (
s
)

Percentage of Transactions With Invalid Signature

Total Throughput
Valid Tx. Throughput

Invalid Tx. Throughput

99th %ile Valid Tx. Latency
99th %ile Invalid Tx. Latency

(b)

0K

50K

100K

150K

200K

250K

300K

350K

400K

0 10 20 30 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y
 (
s
)

Percentage of Transactions Doing Double Spend

Total Throughput
Valid Tx. Throughput

Invalid Tx. Throughput

99th %ile Valid Tx. Latency
99th %ile Invalid Tx. Latency

(c)

Figure 7: Impact on transaction throughput and latency of (a) varying number of inputs and outputs per transactions; (b) varying mix of valid and
invalid transaction signatures; and (c) varying number of double spend transactions.

Invalid signatures. In the first scenario, we examined
the impact of invalid threshold signatures, which occur
when a settlement transaction lacks the necessary endorse-
ments or has malformed content. Figure 7b illustrates the
changes in throughput and latency as we varying the mix
of invalid transactions. Notably, we observed an intriguing
trend: the overall throughput increased from 213, 000 tx/s
to 296, 000 tx/s as the percentage of invalid transactions
rose from 0% to 30%. This increase can be attributed to
the sooner rejection of transactions with invalid signatures
by the signature validators as opposed to valid transaction.
Consequently, the coordinator did not consider these trans-
actions for inclusion in the dependency graph. As a result,
other transactions were processed in their place, leading to
the overall throughput boost. However, it’s worth noting
that the throughput of valid transactions experienced a slight
decrease, dropping from 213, 000 tx/s to 207, 000 tx/s over
the same range.

Double spendings. In the second scenario involving
faulty transactions, we delved into the consequences of
double spend incidents. These occure when a transaction
is submitted with inputs that have already been recorded in
the ledger, meaning that the input has already been spent.
Figure 7c shows the impact of double spending on the
throughput and latency of the committer. It became evident
that the overall throughput decreased compared to the pre-
vious exeriment considering invalid transaction signatures.
This effect can be attributed to the higher load imposed on
the committer. When a transaction doesn’t involve double
spending, the read-set freshness check doesn’t entail reading
any data from the disk since the relevant input doesn’t
exist in the ledger. Conversely, in cases where a double
spend occurs, the input is indeed present in the ledger,
necessitating the verifier to read specific bytes from the disk.
Consequently, this additional workload causes a reduction in
the overall throughput, amounting to an 27% decrease.

6.4. Transaction Certification

We evaluate the transaction certification phase as de-
scribed in Section B.3. As mentioned earlier, transaction
certifiers confirm the existence of a token in the ledger
by collaboratively generating a threshold signature on the
token. In our prototype, a user sends to the certifiers a cer-

tification request, which identifies a token in the ledger and
carries some auxiliary information that allows the certifier to
sign the token data (i.e., owner’s enrollment id, value, type
and serial number) without accessing them. This process is
referred to in the literature as blind signature. Each certifier
then checks if the token exists in the ledger and blindly
threshold signs it. The user receives the blind signature
shares, un-blinds and combines them to get the certifiers’
signatures.

We focus on the execution throughput and latency of
the blind signature, which in the prototype corresponds
to Pointcheval-Sanders’ [33], [34]. We follow its threshold
variation described in [35], [11]. Our prototype implemen-
tation uses [36]. With a single certifier node, we observed
a maximum throughput up to 13, 300 certifications per
seconds with stable latency around 7.69 milliseconds. The
overall throughput of the certifier scales horizontally with
the number of available compute resources.

7. Related Work

Central-bank digital currency. The architecture in [37]
is one of earliest efforts to design centrally-governed cryp-
tocurrencies, which are similar to CBDC. The proposed
architecture, however, trusts the central bank to preserve
transaction confidentiality. Hamilton Project [6] is a promi-
nent solution for high-throughput CBDC settlement that
introduces two CBDC architectures, only one of which,
called Atomizer, yields a system of record. Although Hamil-
ton is distributed, it is not decentralized, and thus not re-
silient to partial system compromise. Moreover, Hamilton’s
privacy is limited to user pseudonymity. In contrast, our
decentralized framework reaches performances comparable
to Hamitlon’s Atomizer, while accommodating various pri-
vacy levels. In [38], Wüst et al. describe Platypus which
couples the transaction processing model of e-cash with
account-based transactions. Platypus addresses compliance
requirements by enforcing holding and receiving limits,
also and protects user privacy. On the downside, it does
not support parallel transactions: a user cannot receive and
send payments simultaneously. Recently, Kiayias et al. [39]
introduced a framework for privacy-preserving CBDC, with
elements of byzantine fault tolerance. Although the authors
claim their system outperforms existing solutions, this is

not confirmed experimentally. By contrast, our benchmarks
demonstrate that our framework is amenable to horizontal
scaling regardless of the privacy mechanisms used.

Privacy-preserving transparent payments. Miers et
al. [40] introduced Zerocoin, which is a privacy-preserving
extension of Bitcoin whose aim is to break the link be-
tween the inputs and the outputs of Bitcoin transactions.
Zerocoin does not hide the transaction values, though. Poel-
stra et al. [41] leverages Pedersen commitments and zero-
knowledge proofs to hide the value and type of UTXO
transactions. Monero enhances the privacy of [41] by par-
tially obfuscating the relation between transaction inputs
and outputs using anonymity sets. In [42], Bünz et al.
presented Zether, a privacy-preserving payment system tai-
lored for Ethereum. Like Monero, it uses anonymity sets
to partially hide the transaction graph. Zerocash [43] is
the first fully privacy-preserving token management system.
Notably, Zerocash guarantees that a transaction does not leak
any information about the transacting parties, the transaction
information, or the inputs being used in the transaction.
By design Zerocash allows users to deny their participation
in a transaction. This is clearly against the compliance
requirements of CBDC. To address this, Androulaki et al. [9]
exploit the properties of permissioned blockchains to build
a more efficient and fully privacy-preserving token system
with audit support. More specifically, the transactions in [9]
verifiable ciphertexts that encrypt transaction information for
the legitimate auditors. In this paper, we rely on the insights
in [9] to build our framework.

8. Conclusion

In this paper, we described a distributed and privacy-
preserving transaction processing framework suited for re-
tail CBDC. We evaluated the framework using four token
exchange protocols with varying degrees of privacy. Our re-
sults show that for a token system with only anonymity, our
prototype implementation reaches a throughput of 80, 000
TPS in the case of Raft and SmartBFT, and 150, 000 TPS
with our tailored consensus mechanism. Our results fur-
ther demonstrate that thanks to the horizontal scaling of
transaction processing compute, we can achieve comparable
throughput numbers for token systems with stronger privacy
guarantees.

References

[1] Gaining momentum – results of the 2021 bis survey on central bank
digital currencies. https://www.bis.org/publ/bppdf/bispap125.pdf.

[2] https://cbdctracker.org/.

[3] European Central Bank EuroSystem. Ecb welcomes european
commission legislative proposals on digital euro and cash,
2023. https://www.ecb.europa.eu/press/pr/date/2023/html/
ecb.pr230628~e76738d851.en.html#:~:text=The\%20European\
%20Commission\%20has\%20published,as\%20a\%20means\%20of\
%20payment.

[4] Second payment services directive. https://edpb.europa.
eu/sites/default/files/files/file1/edpb_guidelines_202006_psd2_
afterpublicconsultation_en.pdf.

[5] The people’s republic of china’s digital yuan: Its environment, design,
and implications. https://www.adb.org/sites/default/files/publication/
772316/adb-wp1306.pdf.

[6] James Lovejoy, Madars Virza, Cory Fields, Kevin Karwaski, Anders
Brownworth, and Neha Narula. Hamilton: A High-Performance trans-
action processor for central bank digital currencies. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 901–915, Boston, MA, April 2023. USENIX Association.

[7] Wholesale central bank digital currency experiments with the banque
de france. https://www.banque-france.fr/sites/default/files/media/
2021/11/09/821338_rapport_mnbc-04.pdf.

[8] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy
Gueta, Benny Pinkas, and Avishay Yanai. Utt: Decentralized ecash
with accountable privacy. Cryptology ePrint Archive, Paper 2022/452,
2022. https://eprint.iacr.org/2022/452.

[9] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Mu-
ralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric:
A distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[10] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and
Alexander Spiegelman. Narwhal and tusk: A dag-based mempool and
efficient bft consensus. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, pages 34–50, New
York, NY, USA, 2022. Association for Computing Machinery.

[11] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovit-
skaya, Kaoutar Elkhiyaoui, and Björn Tackmann. Privacy-preserving
auditable token payments in a permissioned blockchain system. In
Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, AFT ’20, pages 255–267, New York, NY, USA, 2020.
Association for Computing Machinery.

[12] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319, Philadelphia, PA, June 2014.
USENIX Association.

[13] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State
machine replication for the masses with bft-smart. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 355–362, 2014.

[14] Publications on central bank digital currencies (cbdc).
https://www.ecb.europa.eu/home/search/html/central_bank_digital_
currencies_cbdc.en.html.

[15] Miguel Castro. Practical byzantine fault tolerance. 04 2001.
[16] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State

machine replication for the masses with bft-smart. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 355–362, 2014.

[17] Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. A
byzantine fault-tolerant consensus library for hyperledger fabric. In
IEEE International Conference on Blockchain and Cryptocurrency,
ICBC 2021, Sydney, Australia, May 3-6, 2021, pages 1–9, 05 2021.

[18] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319, Philadelphia, PA, June 2014.
USENIX Association.

[19] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance
benchmarking and optimizing hyperledger fabric blockchain platform.
In 2018 IEEE 26th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MAS-
COTS), pages 264–276, 2018.

[20] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. J. Cryptol., 17(4):297–319, sep 2004.

[21] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic
curve digital signature algorithm (ecdsa). International Journal of
Information Security, 1(1):36–63, Aug 2001.

[22] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering, 2(2):77–89, Sep 2012.

[23] Philip A. Bernstein and Nathan Goodman. Concurrency control in
distributed database systems. ACM Comput. Surv., 13(2):185–221,
jun 1981.

[24] Jan Camenisch and Els Van Herreweghen. Design and implementa-
tion of the idemix anonymous credential system. In ACM CCS, pages
21–30. ACM, 2002.

[25] https://github.com/hyperledger-labs/fabric-smart-client.

[26] https://github.com/hyperledger-labs/fabric-token-sdk.

[27] https://github.com/hyperledger/fabric.

[28] https://go.dev/doc/devel/release\#go1.20.

[29] https://grpc.io.

[30] https://github.com/yugabyte/yugabyte-db.

[31] https://prometheus.io.

[32] https://www.ibm.com/cloud.

[33] David Pointcheval and Olivier Sanders. Short randomizable signa-
tures. In Kazue Sako, editor, Topics in Cryptology - CT-RSA 2016,
pages 111–126, Cham, 2016. Springer International Publishing.

[34] David Pointcheval and Olivier Sanders. Reassessing security of ran-
domizable signatures. In Nigel P. Smart, editor, Topics in Cryptology
– CT-RSA 2018, pages 319–338, Cham, 2018. Springer International
Publishing.

[35] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, and George
Danezis. Coconut: Threshold issuance selective disclosure credentials
with applications to distributed ledgers. ArXiv, abs/1802.07344, 2018.

[36] Threshold signature scheme library. https://github.com/IBM/TSS/.

[37] George Danezis and Sara Meklejohn. Centrally banked cryptocurren-
cies. In Network and Distributed System Security Conference, 2016.

[38] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. Platy-
pus: A central bank digital currency with unlinkable transactions
and privacy-preserving regulation. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 2947–2960, New York, NY, USA, 2022. Association
for Computing Machinery.

[39] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh.
Peredi: Privacy-enhanced, regulated and distributed central bank dig-
ital currencies. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’22, page
1739–1752, New York, NY, USA, 2022. Association for Computing
Machinery.

[40] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin.
Zerocoin: Anonymous distributed e-cash from bitcoin. In 2013 IEEE
Symposium on Security and Privacy, pages 397–411, 2013.

[41] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell,
and Pieter Wuille. Confidential assets. In Aviv Zohar, Ittay Eyal,
Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore,
and Massimiliano Sala, editors, Financial Cryptography and Data
Security, pages 43–63, Berlin, Heidelberg, 2019. Springer Berlin
Heidelberg.

[42] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world. In Joseph
Bonneau and Nadia Heninger, editors, Financial Cryptography and
Data Security, pages 423–443, Cham, 2020. Springer International
Publishing.

[43] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decen-
tralized anonymous payments from bitcoin. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014, pages 459–474. IEEE Computer Society, 2014.

[44] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and
Markulf Kohlweiss. Composable and modular anonymous creden-
tials: Definitions and practical constructions. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT,
volume 9453 of LNCS, pages 262–288. Springer, 2015.

A. Proof Of Consistency Across Scalable Com-
mitters

In guaranteeing the uniformity of individual committers
deployed across diverse organizations, it is imperative to ver-
ify the consistent validation and sequencing of transactions.
This becomes particularly critical when transactions conflict
with each other. The focal point is to establish and enforce
two essential conditions between every pair of transactions
Ti and Tj , where Ti precedes Tj in the overall transaction
order:

1) Condition 1. For the validation of a transaction Tj

that reads a state k, a prerequisite is processing, i.e.,
validating and committing/aborting, all transactions
Ti (where i < j) that modified k.

2) Condition 2. The application of writes to each
state must adhere to the correct chronological order.
In other words, if transactions Ti and Tj (where
i < j) both write to a state k, any subsequent
transaction reading k should exclusively observe
the write from Tj .

Utilizing "rw," "ww," and "wr" dependencies, the depen-
dency graph guarantees the fulfillment of the aforemen-
tioned conditions, thereby ensuring consistency across com-
mitters.

Meeting Condition 1. When Tj’s is added to the de-
pendency graph, edges, i.e., "rw" dependency, are created
from Tj to each Ti that writes to any state k read by
Tj . Whenever the coordinator queries for dependency free
transactions, Tj will not be returned until it has no out-edges.
Thus, Tj will not be validated until every transaction Ti it
depends upon is removed from the graph. It is important
to note that a transaction is only removed from the graph
when it is processed, i.e., validation followed by a commit
or abort. Therefore, by the time Tj becomes dependency
free, all transactions writing to states it reads would have
been validated.

Meeting Condition 2. When Tj is introduced to the
dependency graph, edges are established from Tj to each
Ti that either reads or writes to any state k modified by Tj .
The "ww" dependencies guarantee the correct sequencing
of writes to any state k. The transaction Tj remains bound
by dependencies until Ti is removed from the graph, a
process that unfolds only after the database incorporates
the writes made by Ti. Similarly, the "wr" dependencies
ensure that until all preceding transactions Ti that have read
k are validated, Tj remains constrained by dependencies.

Consequently, the updates initiated by Tj are withheld from
application to the database until this validation is complete.
As a result, no transaction Ti will perceive the writes from
a subsequent transaction Tj .

B. Token Systems for CBDC

For the sake of simplicity, we only consider token
systems with a single issuer. A generalization to systems
with multiple issuers is straightforward. The validation of
Issue transactions, in the single-issuer settings is the same2

regardless of the privacy protections in place, thus we omit
it in the following and only focus on Transfer transactions.

B.1. Anonymous Token Systems

In the UTXO model, an anonymous Transfer hides the
long-term identities of the owners of the inputs and the out-
puts. In permissionless systems like Bitcoin, anonymity is
achieved by having as token owners ephemeral public keys
that are not tied to any real-world identity. In permissioned
systems where only registered users are allowed to transact,
ephemeral public keys are not suitable. Instead, anonymous
credentials [24], [44] are recommended. More specifically, a
registration authority grants each enrolled user a credential
that binds their unique enrollment identifier eid ∈ Zp with
their secret key sk ∈ Zp. Zp is the set {0, 1, ..., p − 1},
where p is prime. Roughly speaking, the user credential
cred is a signature of the registration authority on the pair
(sk, eid). If pkR denotes the public key of the registration
authority and Verify the algorithm to verify its signatures,
then Verify(pkR, cred, (sk, eid)) = 1.

A token τ is consequently defined as a pair (c, v)3, with
c = Commit(eid, t) is the hiding commitment of the en-
rollment identifier of the owner eid using some randomness
t ∈ Zp, and v ∈ Z is the value of the token. This assures
that the identity of the owner of τ is not leaked to those
with access to the ledger.

Let ttx = (in0, in1, out0, out1) be the Transfer transac-
tion that spends token τ0 = (c0, v0) and token τ1 = (c1, v1),
i.e, in0 (resp. in1) identifies τ0 (resp. τ1) in the ledger. To
sign ttx anonymously, the owner of τ0 and τ1 produces two
signatures of knowledge σ0 and σ1 on ttx such that each
σb, b ∈ {0, 1} proves the following statement:

∃ credb, skb, eidb, tb s.t.
cb = Commit(eidb, tb)

1 = Verify(pkR, credb, (skb, eidb))

We recall that a signature of knowledge is a non-interactive
zero-knowledge proof that can also be used to sign mes-
sages.

The user then submits for validation the signed transac-
tion

ttx = (in0, in1, out0, out1, σ0, σ1).

2. An Issue is valid if it was signed by the authorized issuer.
3. In systems without any privacy, τ is pair (eid, v), i.e., the token

reveals the identity of its owner and its value.

Validation of Anonymous Transfer Transactions.
ttx is validated by checking that (1) the tokens τ0 and τ1
identified by in0 and in1 exist in the ledger, (2) the sum
value of τ0 and τ1 equals the sum value of out0 and out1,
and (3) σ0 and σ1 are valid signatures of knowledge relative
to tokens τ0 and τ1 and the public key pkR of the registration
authority. If ttx passes all the checks, then τ0 and τ1 are
deleted, while out0 and out1 are added to the ledger.

Now that we showed how anonymity is achieved when
users are compelled to use their long-term identities to au-
thorize Transfer transactions, we describe next how to hide
the values of the inputs and the outputs of the transactions.

B.2. Anonymous and Confidential Token Systems

In [41], Poelstra et al. show how to hide the values
and still enable the balance preservation check. A token
τ in [41] is a hiding commitment to pair (eid, v), i.e,
τ = Commit(eid, v, t)4 for v ∈ Zp and some randomly-
chosen t ∈ Zp.

Let ttx = (in0, in1, out0, out1) be the Transfer trans-
action that spends token τ0 and token τ1.

Since the values of the inputs and outputs are now
hidden, ttx contains a zero-knowledge ΠBal that proves that
the sum of the inputs equals the sum of the outputs. That
is:

∀b ∈ {0, 1} : ∃ eidin,b, vin,b, eidout,n, vout,b, tin,b, tout,b s.t.
τb = Commit(eidin,b, vin,b, tin,b)

outb = Commit(eidout,b, vout,b, tout,b)

vin,0 + vin,1 = vout,0 + vout,1 mod p

vout,b < max.

max refers here to the maximum value a token can hold. By
restricting the range of the individual values of the outputs to
[0,max(, where max << p, we ensure that there is no field
wrap-arounds when one adds up the values of the outputs.

Finally, to authorize ttx, the owner of τ0 and τ1
produces two signatures of knowledge σ0 and σ1 on
(in0, in1, out0, out1,ΠBal) such that each σb, b ∈ {0, 1},
proves the following:

∃ credb, skb, eidb, vb, tb s.t.
τb = Commit(eidb, vb, tb)

1 = Verify(pkR, credb, (skb, eidb))

The user then submits for validation

ttx = (in0, in1, out0, out1,ΠBal, σ0, σ1).

Validation of Anonymous and Confidential Transfer
Transactions. ttx is validated by checking that (1) the tokens
τ0 and τ1 identified by in0 and in1 exist in the ledger, (2)
ΠBal is a valid zero-knowledge proof that proves that the
sum value of τ0 and τ1 equal the sum value of out0 and
out1, and (3) σ0 and σ1 are valid signatures of knowledge

4. If anonymity is not required, then the token τ can be defined as pair
(eid, c), where c = Commit(v, t).

relative to tokens τ0 and τ1, and the public key pkR of
the registration authority. If ttx passes all the checks, then
τ0 and τ1 are deleted, and out0 and out1 are added to the
ledger.

Following these steps, one can produce Transfer trans-
actions that are both anonymous and confidential. Next, we
describe how these transactions can be made unlinkable.

B.3. Unlinkable Token Systems

In order to prevent double spending attacks, token trans-
actions identify the inputs, and when deemed valid, result
in the deletion of said inputs. This however, undermines
transaction unlinkability, and with user privacy. In particular,
by revealing the inputs of a transaction, anyone with access
to the ledger can infer that the owner of an output in one
transaction (whether Issue or Transfer) is the initiator of
the Transfer spending that output.

Hence, to guarantee transaction unlinkability, it is crucial
not to reveal the tokens being spent in a Transfer. The
challenge in this case is to show that an input to a Transfer
(1) is actually the output of a valid transaction; and (2) hasn’t
been spent before.

In Zerocash [43], Bensasson et al. demonstrated how
to efficiently achieve both goals. The first is realized by
relying on zero-knowledge proofs of membership, which
are leveraged to prove that a token is in the ledger without
revealing the location of the token. The second is met
by assigning unique serial numbers to tokens, which are
revealed at time of spending.

We now describe how to enhance anonymous and con-
fidential transactions with unlinkability.

We start from the credential cred given to a user in the
system. cred is now defined as a signature by the registration
authority on triple (sk,K, eid), where K is a secret key
for a pseudo-random function PRF. Moreover, a token τ
becomes a hiding commitment Commit(eid, v, r, t), with
r and t being two random numbers in Zp. A Transfer
that spends τ , includes as input a pair in = (τ ′, sn).
τ ′ = Commit(eid, v, r, t′) is a randomization of τ and sn
is τ ’s serial number, computed as sn = PRF(K, r).

Let ttx be the transfer transaction that spends two to-
kens (τ0, τ1) and creates two outputs out0, out1. ttx, cor-
respondingly, carries tuple (in0, in1, out0, out1) such that
in0 = (τ ′0, sn0) and in1 = (τ ′1, sn1). ttx also carries the
zero-knowledge proof ΠBal that proves that out0 and out1
sum up to the same value as in0 and in1, i.e, ΠBal shows
that:

∀b ∈ {0, 1} :
∃ eidin,b, vin,b, eidout,b,vout,b, rin,b, rout,b, tin,b, tout,b s.t.
τb = Commit(eidin,b,vin,b, rin,b, tin,b)

outb = Commit(eidout,b,vout,b, rin,b, tout,b)

vin,0 + vin,1 = vout,0+vout,1 mod p

vout,b < max.

ttx also includes a zero-knowledge proof ΠSN that shows
that sn0 and sn1 were computed correctly as a function of
τ ′0 and τ ′1. Namely, ΠSN ascertains that:

∀b ∈{0, 1} : ∃ credb, skb,Kb, eidb, vb, rb, t
′
b s.t.

τ ′b = Commit(eidb, vb, rb, t
′
b)

snb = PRF(Kb, rb)

1 = Verify(pkR, credb, (skb,Kb, eidb))

So far ttx only shows that the sum of inputs matches
the sum of outputs and that sn0 and sn1 are computed
correctly with respect to the information encoded in τ ′0 and
τ ′1. ttx does not guarantee, however, that τ ′0 and τ ′1 are
the randomization of two tokens that already exist in the
ledger. To tackle this issue, we leverage zero-knowledge
membership proofs. These are proofs that allow one to prove
that an element is in a set without revealing any information
about the said element. These proofs can be implemented
using various techniques including Merkle trees, accumula-
tors, or signatures. For efficiency purposes and similar to
[11], we rely on signature-based membership proofs. More
specifically:

• We introduce certifiers whose majority is assumed to
be honest. The certifiers crawl the ledger, and upon
users’ requests jointly sign the outputs of valid trans-
actions, using threshold signatures. We call such an
operation a certification of an output. The certifiers
store the resulting signatures and return them upon
query.
We denote hereafter pkC the public key associated
with the threshold signature and γ the output of an
execution of the threshold signature.

• A user then fetches the signatures of the tokens they
own, and stores them for later use. We call tokens
that are signed by the certifiers, certified tokens.

• ttx is enhanced with a third zero-knowledge proof
ΠExist that proves the following:

∀b ∈{0, 1} : ∃ γb, eidb, vb, rb, tb, t
′
b s.t.

τ ′b = Commit(eidb, vb, rb, t
′
b)

τb = Commit(eidb, vb, rb, tb)

1 = Verify(pkC , γb, τb)

At this point, ttx =
(in0, in1, out0, out1,ΠBal,Πsn,ΠExist), and the owner(s)
of τ0 and τ1 generate two signatures of knowledge (σ0, σ1)
on ttx for the following statement:

∀b ∈ {0, 1} : ∃ credb, skb,Kb, eidb, rb, tb s.t.
τ ′b = Commit(eidb, vb, rb, t

′
b)

1 = Verify(pkR, credb, (skb,Kb, eidb))

The resulting transaction

ttx = (in0, in1, out0, out1,ΠBal,Πsn,ΠExist, σ0, σ1), where
in0 = (τ ′0, sn0) ; in1 = (τ ′1, sn1)

is then submitted for validation.

Validation of Unlinkable Transfer Transactions. ttx
is validated by checking that (1) sn0 and sn1 do not appear
in ledger, (2) ΠExist is a valid zero-knowledge proof that
τ ′0 and τ ′1 are the randomization of certified tokens, (3)
Πsn is a valid zero-knowledge that shows that sn0 and sn1

were correctly computed, (4) ΠBal is a valid zero-knowledge
proof that shows that τ ′0 and τ ′1 sum up to the same value
as out0 and out1, and (5) σ0 and σ1 are valid signatures
of knowledge by the owner(s) encoded in τ ′0 and τ ′1. If ttx
passes all the checks, then (sn0, sn1, out0, out1) are added
to the ledger.

C. Token Systems without Transaction Unlink-
ability

Transactions in systems without unlinkability identify
the tokens to be spent, revealing what we call the transaction
graph (i.e. the relation between the inputs and the outputs
in the ledger). However, depending on the desired privacy
level, the transactions can

1) reveal all the transaction information (zero privacy);
2) hide the identities of the transacting parties

(anonymity), using for example anonymous creden-
tials;

3) hide the values of the transactions (confidentiality);
4) hide both (anonymity and confidentiality).

C.1. Transaction Model

In systems without transaction unlinkability, the client
transaction is a standard UTXO transaction, with inputs
and outputs, and the signatures of the issuer or the input
owners. When transaction confidentiality is desired, the
client transaction will additionally carry a zero-knowledge
proof that shows that the sum of transaction’s inputs equals
the sum of its outputs.

A client transaction is then translated into a settlement
transaction as follows. The settlement transaction of an
Issue consists of a write-set in which, there are entries
⟨out_key, ser_out⟩ corresponding to the transaction outputs.
The key out_key is the unique identifier of the output in the
ledger, which is set to the concatenation of the transaction’s
unique identifier, the hash of the output, and the index of
the output in the transaction, and ser_out is its serialization.
Similarly, the settlement transaction of a Transfer carries
a write-set with two types of entries: the first contains
the outputs of the transaction ⟨out_key, ser_out⟩, and the
second the delete instructions of the inputs represented by
⟨in_key, isDelete = true⟩, where in_key is the key of the
input in the ledger. Furthermore, the settlement transaction
contains a read-set with entries ⟨in_key, 0⟩. This guaran-
tees that at time of transaction validation, double spending
attempts are thwarted. Actually, if two transactions try to
spend the same input, this will generate a version conflict
in the read-sets. Committing one of these transactions results
in deleting the input and incrementing the version of its key

from 0 to 1. This leads the other transaction to fail due to
an outdated read-set entry.

Next, we explain the functionalities of the components
of our architecture focusing on Transfer transactions. Issue
transactions adopt a similar processing flow.

C.2. User Wallets

The wallet securely stores the user’s long-term identity
defined by triple (eid, sk, cred), whereby eid is the unique
identifier of the user, sk her secret key, and cred is the
signature from the registration authority on pair (eid, sk).
The user wallet also stores for each token τi, the information
that enables its spending. For example, in a token system
without any privacy protections, τi = (eid, vi) and the wallet
stores ⟨τi, in_keyi⟩, where in_keyi is the key of τi in the
ledger. In a token system with anonymity, τi = (ci, vi),
where ci = Commit(eid, ti) is a hiding commitment of
eid computed with randomness ti, and the wallet stores
⟨τ, ti, in_keyi⟩. Finally, in a system with transaction confi-
dentiality, τi = Commit(eid, vi, ti) is a hiding commitment
to pair (eid, vi) using randomness ti, and the wallet stores
⟨τi, vi, ti, in_keyi⟩.

Assume that the user instructs its wallet to transfer a
token of value v′ to a payee identified by eid′. The user
wallet correspondingly assembles the client transaction as
follows:

• Select tokens τi such that the sum value of these
tokens exceed v′. Let τ0 and τ1 denote the selected
tokens.

• Create two outputs out0 and out1, such that out0
is intended for the payee with value v′, and out1 is
the change to be returned to the payer, and hence,
of value v0 + v1 − v′.

• Produce tuple (in0, in1, out0, out1), where in0 =
(τ0, in_key0) and in1 = (τ1, in_key1).

• When transaction confidentiality is required, com-
pute a zero-knowledge proof ΠBal to prove that out0
and out1 sum up to the same value as τ0 and τ1. Let
µ = (in0, in1, out0, out1,ΠBal).

• Compute the unique transaction identifier TxID as
the concatenation of the hash of µ and some ran-
domness. The randomness is only necessary if the
token system offers no privacy protections.

• Subsequently, compute two signatures σ0 and σ1 on
(TxID, µ) and define the client transaction as tuple
ctx = (TxID, µ, σ1, σ0).

• Then communicate to the payee the identifier TxID
of the transaction. In anonymous token systems, the
payer also communicates the randomness used to
compute out0. When transaction confidentiality is
supported, the payer additionally transmits v′.

• Finally, submit ctx to the token endorsers.

C.3. Settlement Engine

In this section, we expand on the components of the
settlement engine.

Token Endorsers & Token Chaincode. Upon receiving a
client transaction, the token endorsers run the token chain-
code, which checks if:

• TxID contains the hash of
(in0, in1, out0, out1,ΠBal);

• in0 = (in_key0, τ0) and in1 = (in_key1, τ1), and
in_key0 and in_key1 include the hash of τ0 and τ1
respectively;

• ΠBal is a valid zero-knowledge proof;
• σ0 and σ1 are valid signatures by the owners of τ0

and τ1 over (TxID, in0, in1, out0, out1,ΠBal).

If any of these checks fail, then the chaincode rejects. Oth-
erwise, it produces a read-write set as described in Section
C.1, and assembles a settlement transaction with identifier
TxID using the produced read-write sets and submits the
result to the ordering service.

Committers. Committers validate the ordered transactions
as described in Section 3.2. Notice that thanks to the way
we define the read-write sets (see Section C.1), any attempts
to double spend a token will result in a read conflict,
invalidating the double-spending transaction.

