
High-assurance zeroization
Santiago Arranz Olmos1, Gilles Barthe1,2, Ruben Gonzalez1,6, Benjamin
Grégoire3, Vincent Laporte4, Jean-Christophe Léchenet3, Tiago Oliveira1

and Peter Schwabe1,5

1 MPI-SP, Bochum, Germany
2 IMDEA Software Institute, Madrid, Spain

3 Inria, Sophia-Antipolis, France
4 Inria, Nancy, France

5 Radboud University, Nijmegen, The Netherlands
6 Neodyme AG, Munich, Germany

Abstract. In this paper, we revisit the problem of erasing sensitive data from memory
and registers when returning from a cryptographic routine. While the problem and
related attacker model are fairly easy to phrase, it turns out to be surprisingly hard
to guarantee security in this model when implementing cryptography in common
languages such as C/C++ or Rust. We revisit the issues surrounding zeroization and
then present a principled solution in the sense that it guarantees that sensitive data
is erased and it clearly defines when this happens. We implement our solution as an
extension to the formally verified Jasmin compiler and extend the correctness proof
of the compiler to cover zeroization. We show that the approach seamlessly integrates
with state-of-the-art protections against microarchitectural attacks by integrating
zeroization into Libjade, a cryptographic library written in Jasmin with systematic
protections against timing and Spectre-v1 attacks. We present benchmarks showing
that, in many cases, the overhead of zeroization is barely measurable and stays below
2% except for highly optimized symmetric crypto routines on short inputs.

Keywords: Secret erasure, clear stack memory, defense in depth, high-assurance
cryptography

1 Introduction
Essentially all cryptographic software uses memory to temporarily store sensitive data
during execution. Usually this memory is allocated on the stack, which means that when
a cryptographic routine terminates and returns control to the caller, the memory becomes
“invalid,” but the sensitive contents remain. It is often mandated that such sensitive data
in memory is erased or zeroized once it is no longer used. While overwriting data with
zeroes seems like an easy task, it turns out that there are multiple failure modes and
that many popular open-source crypto libraries actually do not have a sound approach to
memory zeroization and in some cases can be shown to leave content in stack memory that
allows trivial key recovery. This failure to perform zeroization has been noticed for specific
libraries before; in this paper, we systematize this observation by considering multiple
libraries. The conclusion of our systematization is that unsound zeroization is a pervasive
problem.

One might ask if this is an actual problem and what the reasons are to mandate
zeroization—after all the memory is “invalid” after return. There are three reasons to
consider an attacker who obtains the stack contents after a cryptographic routine returns:

2 High-assurance zeroization

Certification. Certification of cryptographic software (or more generally “cryptographic
modules”) often requires zeroization of sensitive data. For example, the implementa-
tion guidance for FIPS 140-3 [oSTfCS20] states in Section 9.7.A:

“A cryptographic module shall provide methods to zeroize all plaintext
secret and private cryptographic keys and CSPs within the module.”

Here, CSP stands for “critical security parameter.” Similarly, the Common Criteria
mandate in FCS_CKM_EXT.4(a) (Cryptographic Key and Key Material Destruc-
tion) that

“the TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method [selection: For volatile memory,
the destruction shall be executed by a single direct overwrite [selection:
consisting of a pseudo-random pattern using the TSF’s RBG, consisting of
a pseudo-random pattern using the host environment’s RBG, consisting of
zeroes] following by a read-verify[...]],”

where TSF stands for the security functionality of the product under evaluation and
RBG stands for “random bit generator.”

Defense in depth. Cryptographic libraries are used by a plethora of applications and the
application-level code is typically not under control of the library programmer. Bugs
in the application that allow out-of-bound reads of memory may be used to obtain
memory content from the whole address space of the application, including, of course,
all stack content. The most prominent example for such a bug is HeartBleed [Syn14,
CVE14]. While this bug was part of the OpenSSL library (and not some application),
it was not a bug in any of the cryptographic components. Zeroization helps to limit
the damage that an attacker can do when exploiting such a vulnerability.

Forward secrecy. Finally, and most importantly, a principled approach to zeroization is
required to guarantee forward secrecy. Many modern cryptographic protocols are
built in such a way that compromise of long-term keys does not allow an attacker to
recover plaintext of messages sent in the past; see, e.g., [Don17, Per, Res18]. This is
achieved by using only ephemeral keys to ensure confidentiality, which means that
implementations need to ensure that those keys—and all information that allows
recovery of these keys or plaintext encrypted under those keys—are erased from
memory when they are no longer used. In other words, implementations need to
ensure that keys are as ephemeral as specified in the protocol design.

For the remainder of this paper we assume that there are good reasons to mandate
memory zeroization. Specifically, we consider the following attacker model induced by
mandating zeroization.

Attacker model. Throughout this paper we consider an attacker who obtains leakage from
a cryptographic computation. This leakage contains (possibly among other information)
the content of all stack memory used by the cryptographic routine right after the routine
returns control to the caller. We additionally include in the leakage the content of all
registers and flags at the point of return from the cryptographic routine. We define a
cryptographic routine to be an API function of a cryptographic library. This API function
may call subroutines, but stack and register content is not leaked to the attacker every
time such a subroutine returns. This reflects the idea that cryptographic computations
need to “clean up” only when they return to a caller outside their control.

Note that this attacker model focuses on the core problem of zeroization and excludes
several additional attack vectors that need to be addressed to prevent leakage of ephemeral

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 3

sensitive data when a device is compromised. The most obvious attack vector is leakage
through microarchitectural side channels. We will return to this later in the paper and show
that zeroization composes seamlessly with state-of-the art (speculative) timing-leakage
protection. In addition, arguments to cryptographic routines like encryption keys or
plaintext are commonly owned by the caller and so it is the caller’s responsibility to zeroize
those arguments once they are no longer used. This is out of scope of our approach, which
is focused on protecting cryptographic libraries rather than application code. Finally, while
stack (and register) zeroization is essential to prevent data from being written to disk as
part of swapping or hibernation (aka “suspend to disk”), further measures are typically
needed on system level to address this problem. For example, the mlock system call under
Linux prevents memory regions from being swapped to disk and security-critical systems
will probably want to disable hibernation altogether.

Contributions and organization of this paper. In Section 2 we first motivate why
zeroization is not as easy as one might think by identifying 3 different failure modes
(plus the approach of explicitly excluding leakage of architectural state from the attacker
model). We investigate how zeroization is handled in 11 popular open-source cryptographic
libraries written in C or Rust. None of those libraries actually address the issue of memory
zeroization with a principled and sound approach. We show that, for example, routines in
libsodium and OpenSSL allow trivial key-recovery in our attacker model, despite attempts
to perform some stack zeroization.

We then, in Section 3, review possible solutions both on the caller’s side and on the
callee side and discuss why those solutions are not widely implemented and used.

The main contribution of this paper is presented in Section 4. We describe our
principled approach to stack (and register) zeroization for the Jasmin framework for
high-assurance cryptography [ABB+17, ABB+20]. The three main components of the
Jasmin framework are its programming language, which can be used for writing high-speed
implementations using the “assembly in the head” paradigm, its compiler, which comes
with formal proofs of functional correctness and of preservation of side-channel protection
(specifically preservation of constant-time), and its verification infrastructure, which can
be used to prove functional correctness, constant-timeness, and reductionist security via an
embedding to EasyCrypt. The Jasmin framework has been used for writing efficient and
formally verified implementations of several key cryptographic primitives; in particular, it
has been used to develop the Libjade library for post-quantum cryptography.

In this work, we use two main properties of Jasmin. First, Jasmin programs have a
well-defined interface to outside callers (through export functions). Second, the Jasmin
compiler can predict the stack usage of Jasmin programs at compile time. The latter
is possible because, on the one hand, Jasmin programs are compiled as a whole, and
on the other hand, for our applications, i.e., cryptographic primitives, programs do not
use recursion. We use these two properties to leverage a compiler-based solution, which
remains compatible with the global guarantees offered by Jasmin. In particular, we show
that our modified compiler preserves correctness. In addition, we prove that zeroization
integrates seamlessly with existing guarantees for constant-time and speculative constant-
time [SBG+22].

In Section 5 we show that the overhead of our protections is very small. Specifically, we
extend Spectre-v1 protected Libjade [For23] from [SBG+22] with our protections against
architectural-state leakage and present benchmarks showing that the cost is, for many
routines, barely measurable, and remains solidly below 2% for all primitives except for
highly optimized symmetric crypto routines on very short inputs.

We conclude the paper with a discussion of directions for future work in Section 6.

4 High-assurance zeroization

Related work. Multiple earlier works consider zeroization of sensitive information from
different angles. Already in 2005, Chow, Pfaff, Garfinkel, and Rosenblum showed that it is
generally not safe to rely on the fact that data will eventually be overwritten [CPGR05].
Their experiments show that “data can remain in memory for days or weeks, even persisting
across reboots.” They introduce the “data lifetime” cycle:

“The span from first write to last read is the ideal lifetime. The data must
exist in the system at least this long. The span from first write to deallocation
is the secure deallocation lifetime. The span from first write to the first write
of the next allocation is the natural lifetime. Because programs often rely on
reallocation and overwrite to eliminate sensitive data, the natural lifetime is
the expected data lifetime in systems without secure deallocation.”

Our attacker model roughly corresponds to the secure deallocation lifetime. Several
similar discussions are found in the literature. In particular, Percival [Per14] reports on
the challenges and shortcomings of tricking a compiler into zeroizing buffers and stacks.
Chapman [Cha17] provides another thorough discussion of why systematic zeroization
is hard and proposes a path forward mostly in the context of the Ada and SPARK
programming languages. Parts of the paper are akin to our discussion in Section 2 and also
come to similar conclusions. Unlike our work, [Cha17] emphasizes the task of identifying
what data in a program is sensitive; the approach we present here does not require this
analysis and hence we only briefly discuss this in Section 6. None of these works presents
an implementation of a solution to systematic zeroization.

Yang, Johannesmeyer, Olesen, Lerner, and Levchenko [YJO+17] provide a detailed
analysis of the issue of dead-store elimination and of some popular scrubbing techniques;
their analysis can be seen as much more in-depth review of what we briefly recall in Sec-
tion 2.1. In addition, they provide a scrubbing function secure_memzero that combines
different scrubbing techniques, and evaluated the use of the function with GCC, LLVM,
and Visual C. Last, they implement a scrubbing safe dead-store elimination option in
LLVM.

Our work is most closely related to [SCA18]. In that work, Simon, Chisnall, and An-
derson first investigate how mainstream compilers make it actively hard to achieve certain
security-related properties including zeroization. They then propose three approaches to
perform zeroization in the LLVM compilers—all approaches are implemented and pub-
licly available from https://github.com/lmrs2/zerostack. The first approach, coined
function based, applies zeroization to all sensitive functions. The second approach, coined
stack-based, avoids zeroizing the same stack area repeatedly. Their last approach, called
call graph-based (CGB), is similar to what we have proposed for the Jasmin compiler.
In particular, it does not support programs with unbounded recursion. As far as we
know, their solution has unfortunately never been integrated into mainline LLVM. The
main difference of our work is that we embed our solution into the Jasmin framework
for high-assurance cryptography and are able to provide a formal proof of our approach.
We briefly comment on the pros and cons of integrating zeroization in mainstream versus
dedicated compilers in the conclusion.

Several works consider the challenges of memory scrubbing in the broader context of
compiler-induced security bugs (CISB). These are discussed e.g., in [DPS15, XLD+23].

The problem of memory scrubbing has also been studied in the context of language-
based security. Chong and Myers [CM05] propose a general language-based approach to
let programmers express what data needs to be erased and a type system with multiple
levels of confidentiality together with declassification and erasure operators. Hunt and
Sands [HS08] study erasure as a noninterference property, and proposes a type system to
check that erasure is performed, similar to [CM05]. Daniel, Bardin, and Rezk [DBR22]
present a tool to analyze binaries, among other properties, for zeroization of sensitive data.
These works do not consider the interactions between erasure and compilation.

https://github.com/lmrs2/zerostack

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 5

Finally, there is a large body of work that formalizes the interactions between com-
pilation and security. Many of these works focus on the theoretical underpinnings of
these interactions, see e.g., [PAC19, ABC+21] for recent overviews. Other works focus on
preservation or mitigation of specific properties, notably constant-time [CSJ+19, BGLP21].

Responsible disclosure. We informed the maintainers of libsodium and OpenSSL about
our findings presented in Section 2.2. Both replied within a day acknowledging our
findings and stating that they do not consider the findings a vulnerability, because neither
library makes any claims about security in the attacker model we consider in this paper.
Consequently they also did not request an embargo. OpenSSL considers the finding a “real
security problem (at least on some platforms/compilers/architectures)” in the form of “a
missing security hardening,” for which they would be “likely to accept a patch.”

Artifact. A software artifact that enables readers to reproduce the benchmarks we present
in Section 5 and the key-recovery from libsodium’s ChaCha20 implementation we discuss in
Section 2.2 is available at https://artifacts.formosa-crypto.org/data/clearstack.
tar.bz2.

2 Failure modes
One might think that overwriting used stack space and erasing values in registers before
returning from a cryptographic routine should not be a difficult thing to do. Unfortunately,
this is not the case in many programming languages. In this section we look into different
failure modes when attempting to protect cryptographic software in the attacker model
we introduced in Section 1. We investigate approaches for stack zeroization taken by 9
popular open-source crypto libraries written in C/C++ (possibly with assembly), namely
BearSSL 0.6 [Por23], GnuTLS 3.6.12 [Gnu23], libsodium 1.0.18 [Lib23], mbedtls 3.3
[Mbe23], NSS 3.91 [NSS23], OpenSSL 3.1.1 [Ope23], TinyDTLS 0.9 [Tin23], and WolfSSL
5.6.3 [Wol23]. We also consider two libraries written in Rust, namely ring 0.17 [Smi23]
and Dalek 2.0 (RC3) [Dal23].

While many of these libraries make an attempt to zeroize sensitive data, none of them
explicitly claims security in the attacker model we use in this paper. It should thus not
surprise that none of the libraries is actually secure in this attacker model. In his reply to
our disclosure e-mail, Denis, maintainer of libsodium, describes their approach as follows:

“Overwriting all secrets after use is not a goal of libsodium. It’s silently done
in a couple places where it’s simple and cheap to do, but this is not a guarantee
documented anywhere, and not something that’s planned to be become one.”

In the subsequent subsections, we build up a hierarchy of failure modes and explain
why languages like C/C++ or Rust and existing mainstream compilers make it close to
impossible to not hit at least one of them.

2.0 Perform no zeroization
A common technique of implementers is to ignore or shift the problem of memory scrubbing.
The BearSSL crypto library, for example, recommends to overwrite the stack with garbage
data after BearSSL was used. This shifts the responsibility of memory scrubbing to the
application developer employing BearSSL. Unfortunately, this is not at all apparent to users
of the library. Besides, even if an application developer was aware of their responsibility
to zeroize the stack, they would probably fail to do so. This is simply because on a source
code level it is completely unclear how much stack space was used by BearSSL.

https://artifacts.formosa-crypto.org/data/clearstack.tar.bz2
https://artifacts.formosa-crypto.org/data/clearstack.tar.bz2

6 High-assurance zeroization

The popular ring implementation of cryptographic primitives employs the same ap-
proach, and does not wipe sensitive data from memory either. Even though it is written
in the memory-safe language Rust, it can be employed by C/C++ programs. A memory-
corruption in the C/C++ application using ring can therefore also leak sensitive data
previously processed within the library. This shows that writing cryptography in a
memory-safe language does not eliminate the need for memory scrubbing.

2.1 Zeroization falling prey to compiler optimizations
A straightforward way to overwrite memory in C/C++ programs is to overwrite the desired
memory region in a loop or by calling the memset function. Both approaches are inherently
flawed when it comes to zeroization of sensitive data. The reason is that compilers will
commonly apply an optimization called dead-store elimination (DSE), i.e., removing stores
of variables that will not be read anymore during their life time. Since zeroization occurs
precisely once sensitive data is no longer needed, it is a textbook target for DSE.

From the libraries we investigated, TinyDTLS and NSS contain examples of attempts
to zeroize sensitive data using memset. TinyDTLS calls memset directly to scrub memory
from sensitive data, such as key material. NSS calls the macro PORT_Memset, which
expands to memset on all platforms and, as demonstrated by [YJO+17], is eliminated by
common compilers.

2.2 Zeroization in API functions only
Libraries that perform zeroization and put effort into avoiding the DSE pitfall typically use
volatile function pointers to memset (OpenSSL), declare volatile memory regions (WolfSSL),
or employ memory barriers (Libsodium). See also the detailed discussion in [YJO+17]. A
more unified approach for zeroization in C is in principle offered by the memset_s function,
which is guaranteed to not be eliminated by the compiler. However, since memset_s
is part of the optional C17 appendix K [Int17], it does not have to be supported by a
standard-compliant compiler. At the time of writing, no mainstream compiler supports
memset_s.

Unfortunately, employing a zeroization routine that does not fall prey to DSE is by
itself not sufficient to erase all sensitive data. All remaining libraries we investigated
(i.e., those not listed in Sections 2.0 and 2.1) applied zeroization to sensitive data only
selectively; typically only to secret data in the stack frame of API functions. Sensitive data
derived from this secret data and contained in stack frames further down the call stack is
not erased. An example of this scenario can be found in the ChaCha20 implementation of
libsodium (and very similar in the ChaCha20 implementation of OpenSSL). The body of
libsodium’s ChaCha20 API function looks like this:

chacha_keysetup(&ctx, k);
chacha_ivsetup(&ctx, n, NULL);
memset(c, 0, clen);
chacha20_encrypt_bytes(&ctx, c, c, clen);
sodium_memzero(&ctx, sizeof ctx)

We can see that after the call to chacha20_encrypt_bytes, the local variable ctx
containing the key is erased using the (carefully implemented) sodium_memzero routine.
However, inside chacha20_encrypt_bytes, the entire context, including the encryption
key, is copied onto the stack:

...
uint32_t j0, j1, j2, j3, j4, j5, j6, j7, \

j8, j9, j10, j11, j12, j13, j14, j15;

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 7

...
j0 = ctx->input[0];
j1 = ctx->input[1];
...
j15 = ctx->input[15];

So even though the developer was actively zeroizing sensitive data in memory, the
stack still contains a full copy of the secret key after libsodium returns control to the
caller. To show that this is indeed an exploitable behavior, we developed a small example
program with a memory-corruption bug that employs libsodium and leaks secret keys.1
The implementation of ChaCha20 in OpenSSL suffers from the exact same behavior.

The difficulties developers face by trying to identify all variables containing sensitive
data is best described by the following commit message of Brian Smith, maintainer of the
ring library [Smi23].

“Apart from that, by inspection, it is clear that there are many places in the
code that don’t call OPENSSL_cleanse where they “should.” It would be difficult
to find all the places where a call to OPENSSL_cleanse “should” be inserted.
It is unlikely we’ll ever get it right. Actually, it’s basically impossible to get it
right using this coding pattern.”

2.3 Zeroization on source level
Given the failure modes described in the previous subsections, one might think that
zeroizing (potentially) sensitive data at the end of all functions, not just API functions, or
zeroizing whenever a variable goes out of scope, might result in a sound solution. In Rust,
there exist crates to implement this approach; most notably, the zeroize [Rus23b] and
the clear_on_drop [Bar23] crates. The former one being used, e.g., by Dalek [Dal23].

Unfortunately, even this approach is insufficient when implemented on source (e.g.,
C, C++, or Rust) level. The reason is that not all data that is placed on the stack
by the compiler is visible on source level. The most obvious example for data that is
written on the stack and that is not visible on source level are callee-save registers that
are spilled to the stack at the beginning of a function and restored to their original values
before returning. More generally, the compiler is free to spill temporary variables on the
stack as part of optimization and as a consequence it is largely out of the programmer’s
control what sensitive data is actually stored on the stack. For example, consider the
crypto_scalarmult routine of the “ref10“ implementation of X25519 [Ber06] included
in the SUPERCOP benchmarking framework and shown in Listing 1. The source-visible
variables declared at the beginning of the function account for a total of 328 bytes when
compiled for AMD64 (7 variables of type fe account for a total of 7 · 40 = 280 bytes, the
array e uses 32 bytes, and the 4 int variables take a total of 16 bytes). However, compiling
this code with GCC 10.2 and flags -O3 -fstack-usage computes a (worst-case) stack
usage of 464 bytes. Some of the extra 136 bytes are simply padding for alignment, but most
are used for source-level invisible data stored on the stack. Note that the -fstack-usage
flag computes worst-case stack usage on a per-function granularity—it does not take into
account stack space used by the functions called by crypto_scalarmult. We expand on
this in Section 3.

Like others before us [Per14, SCA18, YJO+17] we conclude that it is impossible
to protect against the attacker we consider in this paper by zeroizing variables inside
cryptographic routines on source level in commonly used languages such as C/C++ or
Rust. It is thus not surprising that while many crypto libraries include some “best effort”
stack zeroization, no library makes any claims about protecting against attackers who
obtain residual stack data or content of registers after a crypto routine returns.

1https://github.com/rugo/chacha20-demo

8 High-assurance zeroization

Listing 1 Source code of crypto_scalarmult from the ref10 implementation of X25519.
typedef crypto_int32 fe[10];

int crypto_scalarmult(unsigned char *q,
const unsigned char *n,
const unsigned char *p)

{
unsigned char e[32];
fe x1, x2, z2, x3, z3, tmp0, tmp1;
int pos;
unsigned int i, swap, b;

for (i = 0;i < 32;++i) e[i] = n[i];
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
fe_frombytes(x1,p);
fe_1(x2);
fe_0(z2);
fe_copy(x3,x1);
fe_1(z3);

swap = 0;
for (pos = 254;pos >= 0;--pos) {

b = e[pos / 8] >> (pos & 7);
b &= 1;
swap ^= b;
fe_cswap(x2,x3,swap);
fe_cswap(z2,z3,swap);
swap = b;
fe_sub(tmp0,x3,z3);
fe_sub(tmp1,x2,z2);
fe_add(x2,x2,z2);
fe_add(z2,x3,z3);
fe_mul(z3,tmp0,x2);
fe_mul(z2,z2,tmp1);
fe_sq(tmp0,tmp1);
fe_sq(tmp1,x2);
fe_add(x3,z3,z2);
fe_sub(z2,z3,z2);
fe_mul(x2,tmp1,tmp0);
fe_sub(tmp1,tmp1,tmp0);
fe_sq(z2,z2);
fe_mul121666(z3,tmp1);
fe_sq(x3,x3);
fe_add(tmp0,tmp0,z3);
fe_mul(z3,x1,z2);
fe_mul(z2,tmp1,tmp0);

}
fe_cswap(x2,x3,swap);
fe_cswap(z2,z3,swap);

fe_invert(z2,z2);
fe_mul(x2,x2,z2);
fe_tobytes(q,x2);
return 0;

}

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 9

3 Possible solutions
As it is impossible to offer a principled solution to zeroization inside the crypto routine at
source level, we have two options: we either perform zeroization outside the crypto routine,
i.e., on the caller side, or we work on lower than source level. We discuss these two options
in the following.

3.1 Caller-side zeroization
Popular libraries such as BearSSL [Por23] recommend overwriting the stack after the call
to API functions and offer routines to perform such zeroization on the caller side. The
main limitation of this approach is that the caller has no information about how much
stack space has been used by the crypto routine and thus needs to estimate stack usage.
This is problematic, as too low an estimate could lead to secret data remaining on the
stack and one that is too high could violate stack size limits or even overwrite data in
other segments, especially in an embedded setting. In principle, it might be possible to
compute the worst-case stack usage through per-function static analysis combined with
call-graph analysis and forward that information from the build system. Both GCC and
LLVM provide support for stack-usage analysis [GCC23, Rus23a], but we are not aware of
any library using these features in their build system for zeroization. Furthermore, this
approach does not take care of zeroizing registers.

An elegant approach in a similar spirit is to allocate a new memory segment prior
to entering a cryptography library’s code. This segment is then used as stack space and
completely wiped once the library returns control to the program. An implementation of
this approach in Rust is provided by the Eraser crate [Spr22]. However, the caller would
again have to make a guess about how much stack space is used in the library. Additionally,
allocating a new memory segment and moving the stack to that segment requires platform
and operating-system dependent subroutines. These low-level subroutines need to be
written in platform-specific assembly to directly manipulate the stack-pointer register.

3.2 Callee-side zeroization
If we want to implement zeroization on the callee side, i.e., “clean up before we return,” we
need to either implement the complete crypto routine, including zeroization, in assembly,
or we require compiler support for zeroization of stack and registers. The first approach
comes with the usual limitations of writing code in assembly: code is hard to maintain and
error-prone, in particular when it comes to features like zeroization that are not covered
by functional testing.

Consequently, the only remaining option for systematic zeroization is implementation
in the compiler. Unsurprisingly, zeroization passes in mainstream compilers have been
proposed before. GCC contributors discussed including a clear_stack function attribute
for certain eligible functions and a security_sensitive attribute for variables [Gut16].
Similar work has been proposed for the LLVM compiler backend by Simon, Chisnall,
and Anderson [SCA18]. Their work introduces a __zero_on_return function attribute
that instructs the clang compiler to add a stack and register zeroization routine before
a function’s exit. In contrast to GCCs clear_stack proposal, this __zero_on_return
approach also has an implementation employing the library’s call graph. One thing these
approaches have in common is that they still leave the developer in charge of deciding
where zeroization happens by annotating what functions are “sensitive.” More importantly
though, these proposals for stack zeroization have unfortunately never been adopted in the
mainline compilers and are thus not widely available to developers. Both GCC and clang
however do support zeroizing registers on function return with the zero-call-used-reg

10 High-assurance zeroization

.jazz Parse Preprocess Type-check Jasmin

Array copyAdd initInliningFunction
pruning

Constant
prop.DCEUnrolling

Live-range
splitting

Remove
init

Reference
arguments

Reg. array
expansion

Live-range
splitting Globals Instruction

selection

Inline
prop.

Stack
allocationStackRemove

ret. ptr.
Register

allocationDCEOne
varmap

Lineariz. Linear Tunnel. Asm. gen. ASM Pretty-
printing .s

Trusted step
Proved step
Validated step

Intermediate representation

Checker
Transformation

Figure 1: Program transformations in the Jasmin compiler

compiler option. This is possible as zeroizing registers is a much simpler problem than
zeroizing the dynamically growing stack.

4 A principled solution in the compiler
In this section, we describe our principled approach for zeroizing the stack. Our approach
is integrated in the Jasmin compiler, and comes with formal guarantees of correctness and
security. For completeness, we start by providing background on the Jasmin language.

4.1 Background on Jasmin
Jasmin [ABB+17, ABB+20] is a programming framework for developing efficient, high-
assurance cryptography. The framework is built around the Jasmin programming language,
which lets programmers write efficient and readable code using “assembly in the head.”
Informally, Jasmin is an assembly-like language with structured control flow; in other words,
it provides explicit access to assembly instructions (except GOTOs) for the architecture the
developer is targeting, and has the usual control flow constructs if, while and function calls,
as well as unrolled loops (denoted by for). Jasmin also supports zero-cost abstractions that
increase readability and are predictably translated to assembly. One example of zero-cost
abstraction is variables. A variable in a Jasmin program is an n-bit word that has either the
reg or stack storage class, determining its storage (variables are not spilled by the compiler).
One key benefit of the Jasmin language is that it comes with a rigorous semantics that
specifies the behavior of Jasmin programs, written in the Coq proof assistant.

Jasmin programs are compiled using the Jasmin compiler. Currently, the compiler
targets the AMD64 (aka x86-64) architecture and has experimental support for ARMv7-M.
The compiler consists of around 30 passes, summarized in Figure 1. We now describe the
most relevant passes for our purposes. The initial passes are source-to-source transforma-
tions. For instance, the Inlining pass removes inline functions by inserting their bodies at
their call sites. The Unrolling pass removes for loops by unrolling them. The Lowering pass

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 11

replaces high-level assignments with specific assembly instructions, e.g., x += y with ADD
x, y in x86-64. The Stack Allocation pass replaces stack variables by memory accesses
relative to the stack pointer; it is in this pass that we can compute the amount of stack
needed for the program. The Register Allocation pass assigns variables to architectural
registers. The Linearization pass replaces structured control flow with GOTOs and labels,
translating the program into the Linear intermediate representation. We insert our new
stack and register zeroization passes after Linearization and before Tunneling, Assembly
Generation and Pretty-printing.

To the exception of the parsing, preprocessing, type checking and pretty-printing, each
pass of the Jasmin compiler is certified in Coq. Following common practice in certified
compilation, each pass is either implemented and verified in Coq, or it is implemented
in an external language (OCaml) and its results are validated using a checker which is
implemented and verified in Coq. By combining the correctness results of each individual
pass, we can prove that the Jasmin compiler is correct, i.e., it preserves the behavior of
(safe) programs. This entails that functional correctness and reductionist security carry
from source programs to the generated assembly.

In addition, the Jasmin framework provides a back-end to the EasyCrypt proof as-
sistant [BGHZ11, BDG+14], which can be used for proving functional correctness and
reductionist security. Last, the Jasmin framework provides guarantees about side-channel
protections. In particular, there exist type systems for proving that Jasmin source programs
are constant-time—the gold standard for protection against cache-based timing attacks in
absence of speculation—and speculative constant-time—an enhancement of constant-time
to protect against Spectre v1 attacks [KHF+19]. For details see [SBG+22].

The Jasmin framework has been used to develop efficient implementations of key
cryptographic routines. In particular, Jasmin is the main medium used by the Libjade
library, which provides formally verified implementations of post-quantum cryptographic
algorithms [For23].

4.2 Design choices
Any sound approach to zeroization must make four design choices: when should it be
applied, what precision should it achieve, how should it be implemented, and where in the
compilation chain should it be performed. We comment on each design choice in turn.

When to zeroize? In order to achieve the best trade-offs between security and perfor-
mance, the ideal compromise is to apply zeroization at the interface between cryptographic
routines and application-level code. Conveniently, Jasmin offers a clean interface between
cryptographic code and the caller. Specifically, Jasmin programs contain export functions
and internal functions. Internal functions cannot be called from the outside. On the
contrary, export functions are the entry point of the programs, and the exit of the export
function is the point where we exit the Jasmin world and return to the outside world. This
is a natural place to introduce the zeroization code. However, this does not mean that
we do not zeroize the memory used by the internal functions! At the end of the export
function, the code injected by the compiler zeroizes the entire stack used during the call of
that function, that is, not only the stack frame of the export function, but also the stack
space used by the internal functions it transitively calls.

What precisely to zeroize? Any approach to zeroization must decide between precision
and simplicity. On the one hand, minimizing the number of memory writes could potentially
minimize overhead. On the other hand, a complex approach may be more difficult to
implement, even more so because the Jasmin compiler is verified, without necessarily
bringing any significant performance improvement over a naive approach.

12 High-assurance zeroization

We choose to implement a simple and systematic approach, where the injected code
blindly zeroizes all used stack space and auxiliary registers, with the hope that the
zeroization will be cheap anyway. This hope is also motivated by the fact that stack
allocation in the Jasmin carefully minimizes overall stack usage by re-using space when
stack arrays go out of scope. Our benchmarks confirm this, see Section 5.

How to implement zeroization? The natural implementation of stack zeroization is using
a loop, repeatedly zeroizing the stack one chunk at a time. But since the bound on the
stack size is known at compile time, we can also unroll this loop and generate sequential
code performing zeroization. The first approach has the advantage of keeping the code size
overhead small, the second one should typically be faster. We can also imagine mixing
both approaches, i.e., use a partially unrolled loop. However, we choose to implement only
these two strategies, that we call loop and unrolled, respectively.

Another design choice is the zeroizing instruction that is used at each step. We simply
use MOV and VMOV to write zeros. As for what size to zeroize at each step, here again we
choose the simple approach. All the instructions introduced zeroize the same number of
bits, which means that we can zeroize only a size that is a multiple of this number. If
the stack size is not, we round up and zeroize the next largest multiple of stack bytes.
This means that enabling the zeroization has an impact on the analysis mentioned in the
previous paragraph. Details are given in the Analysis paragraph in Section 4.3. The user
can select the size zeroized at each step, either 8, 16, 32, 64, 128 or 256 bits. If this is less
than or equal to 64 bits we use MOV, and otherwise we use VMOV. There is also a default
value which is the stack alignment of the export function.

Where in the compiler should zeroization be performed? The insertion of the zeroization
pass in the compiler chain involves several considerations. First, zeroization can only
be performed once the compiler has fixed the stack space used by the export function
and all functions further down the call stack. In the Jasmin compiler, this done during
Stack Allocation, so we must insert the Zeroization pass after it. We choose to perform
Zeroization after Linearization, although it could go at any point after Register Allocation.

4.3 Implementation overview
Implementing zeroization in the compiler comprises two main tasks: computing what
to zeroize (which regions of memory need zeroizing) and generating the corresponding
assembly instructions.

Analysis. During the Stack Allocation pass, the compiler computes two pieces of infor-
mation for each function (whether it is export or internal): the size of the stack frame used
and the minimal stack alignment required. For the frame size, the compiler determines a
frame layout, trying to share stack memory for local variables (meaning that if a stack
variable is dead, then it tries to reuse that stack region), and then it deduces the amount
of stack needed by the function. The stack alignment is deduced from the writes to the
stack. It is the minimum alignment required so that all writes to the stack are aligned.

The compiler does this for each function, and then propagates the information to
account for function calls, from the callees to the callers, summing the stack frame sizes
and taking the maximal alignment. Each function must indeed take into account the
stack used by the functions it calls, directly or transitively. Since Jasmin does not support
recursive functions, the call graph is acyclic and this propagation is not difficult. The
result is an upper bound on the amount of stack used and an alignment for each function,
taking function calls into account. It is an upper rather than an exact bound because,
for instance, the function might call some other function conditionally with respect to a

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 13

run time value, so the analysis must be conservative. The same reasoning with respect to
conditional calls applies to the alignment.

When we enable stack zeroization, the analysis changes in three ways. First, if the
size to be zeroized at each step is greater than the alignment of the export function, the
alignment is increased so that both match. This is needed so that the writes introduced
by zeroization are aligned. Second, the frame size of the export function is rounded up, so
that it is a multiple of the alignment, meaning that some padding is inserted in the frame.
To explain that point, we must give some details about the code generated by the Jasmin
compiler for export functions. To allocate the frame of an export function on the stack, the
stack pointer is first decreased by the size of the stack frame, then aligned to the alignment
of the function. In the zeroization code, we start by aligning the stack pointer. Roughly
speaking, we need the decrease and the alignment to commute, and one way to achieve
that is having the frame size be a multiple of the alignment. Third, the bound on the
stack size is rounded up, so that it is a multiple of the size of the zeroization step. This is
to take into account that, as mentioned in Section 4.2, we can zeroize only a size that is a
multiple of the size of the zeroization step.

Transformation. The compiler injects zeroization code at the end of export functions. At
that point, the stack pointer is already restored to its initial value. For that reason, the
zeroization code has to redo the alignment performed at the entry of export functions. It
copies the stack pointer to another register and computes the alignment. Then it introduces
a loop or a sequential code, depending whether the strategy is loop or unrolled.

Interestingly, some modification to the compiler was required for implementing the
transformation. In particular, the formal development was modified to support compilation
passes which introduce new labels in the Linear IR.

Illustrative example. Let us consider the schematic Jasmin program shown in Listing 2,
on the left and let us first illustrate the analysis on it. Function f uses 1 byte of stack,
but actually it also has to save the return address on the stack, which requires 8 bytes,
so 9 bytes in total. The alignment is 64 bits, because of the 64-bit return address. For
alignment reasons, the frame size of internal functions are rounded up to a multiple of
the alignment, so the final frame size is 16 bytes. Function main uses 4 bytes of stack
for itself, and calls f. This results in 20 bytes being used by main. As for the alignment,
main inherits the alignment of f, 64 bits.

Let us assume that the user applies the stack zeroization feature with the default
zeroization step size, 64 bits, corresponding to the alignment of main. The alignment of
main is unchanged, but the frame size is rounded up and becomes 8 bytes. f still uses 16
bytes of stack. The stack size used by main is thus 24 bytes. This is already a multiple of
the zeroization step size, 64 bits, so it does not need to be rounded up.

The resulting assembly for strategies loop and unrolled is shown in Figure 2, in the
middle and on the right, respectively. We can observe that in both cases, the zeroization
code start aligning the stack pointer, mimicking the initial alignment at the start of main.
In the loop strategy, a counter is set up before entering the loop. The counter is decreasing,
the loop exits when it reaches 0. Written this way, it is enough to check the flags set
by addq, there is no need to call a comparison operator. In the unrolled case, the code
consists in as many zeroization instructions as needed—In this example, we need 3.

4.4 Register and flag zeroization
The compiler also offers to developers the possibility to zeroize registers, flags or XMM
registers, or a combination of these. No analysis is needed in this case, since the targets of
zeroization are known.

14 High-assurance zeroization

Listing 2 A schematic Jasmin program (a) and the assembly produced with a zeroization
step of 64 bits, for strategies loop (b) and unrolled (c).

(a) Jasmin program

1 fn f () −→ reg u64 {
2 stack u8 s;
3 ...
4 return r;
5 }
6
7 export fn main () −→ reg u64 {
8 stack u32 s;
9 ...

10 r = f ();
11 return r;
12 }

(b) Code produced with loop strategy

main:
movq %rsp, %rsi // Save the SP.
leaq -8(%rsp), %rsp // Allocate a word.
andq $-8, %rsp // Align.
...
... // Code.
...
movq %rsi, %rsp // Restore SP.
andq $-8, %rsp // Align.
subq $16, %rsp // Point at max stack.
movq $16, %rdi // Set up counter.

zloop:
subq $8, %rdi
movq $0, (%rsp,%rdi) // Zeroize.
jne zloop
movq %rsi, %rsp // Restore SP.
ret

(c) Code produced with unroll strategy

main:
movq %rsp, %rsi // Save the SP.
leaq -8(%rsp), %rsp // Allocate a word.
andq $-8, %rsp // Align.
...
... // Code.
...
movq %rsi, %rsp // Restore SP.
andq $-8, %rsp // Align.
subq $16, %rsp // Point at max stack.
movq $0, 8(%rsp) // Zeroize
movq $0, (%rsp) // Zeroize
movq %rsi, %rsp // Restore SP.
ret

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 15

σs σ′
s

σt σ′
t

≡

fs

ft

• Correctness: σ′
s ≡ σ′

t

• Security: ¬ valid(σs, p) =⇒ σ′
t [p] = σt [p] ∨ σ′

t [p] = 0

where ≡ is a relation between source and assembly states and ¬ valid(σs, p) says that p is
not a valid address w.r.t. source state σs.

Figure 2: Correctness and security of zeroization.

4.5 Correctness and security
We have proved that the Jasmin compiler with the zeroization pass achieves correctness
and security. Both statements are stated as end-to-end results, i.e., as relations between
source code and assembly code. The (simplified) statements of correctness and security
are displayed in Figure 2.

The correctness result is a classic simulation, stating that if an export function fs from
the source program transforms state σs into state σ′

s, and its compilation ft in the compiled
program transforms σt into σ′

t, and if σs is equivalent to σt, then σ′
s is equivalent to σ′

t,
where ≡ is a relation between source states and target states. End-to-end correctness of
the compiler follows from correctness of each individual pass. The correctness statement
of other passes could be reused.

The security result states that under the assumptions above, all memory locations
in σ′

t whose addresses are undefined in σs either retain their value from σt or contain
zeros (see Figure 2). The compiler only writes stack data to memory addresses that are
invalid in σs, so it follows that everything an adversary learns about the stack from σ′

t was
present in σt already. In fact, our security statement considers a more refined attacker
model than previously discussed: when an export function returns, the attacker acquires
the memory contents between sp and sp − n, together with registers and flags, where sp is
the stack pointer before the function executed and n the amount of extra stack memory
needed by the compiler. Our transformation ensures that all the memory given to the
adversary is either valid and originates from the client code, or is equal to 0. Note that
in this model the attacker learns the amount of used stack, but this is public since it’s
statically determined from the program.

The proof of security is done for the zeroization pass. Then, one proves that the
security property is preserved by all subsequent passes. However, in order to establish our
end-to-end statement, it has also been necessary to prove that passes before zeroization do
not introduce arbitrary writes. For instance, we have proved that stack allocation respects
stack usage predicted by the compiler, i.e. it does not write outside of the region of the
stack that the compiler predicted to use. The zeroization property for the entire compiler
is as follows: If an export function fs from the source program transforms state σs into
state σ′

s, and its compilation ft in the compiled program transforms σt into σ′
t, and if σs is

equivalent to σt, then memory locations in σ′
t whose addresses are undefined in σs either

retain their value from σt or contain zeros.

4.6 Combining leakage models
As stated in the introduction, our threat model so far is limited to an attacker that can
observe the contents of the registers and flags upon return of the cryptographic routine, as

16 High-assurance zeroization

well as the contents of the stack used by the cryptographic routine. This threat model is
orthogonal to threat models for micro-architectural attacks, including cache attacks, or
speculative attacks like Spectre. In this section, we sketch how our countermeasure can
soundly be combined with existing approaches to protect against this type of side-channel
attacks. For completeness, we briefly review the prominent models for cache-based timing
attacks, without and with speculative execution.

The constant-time policy. In absence of speculative execution, the baseline for side-
channel protection is (cryptographic) constant-time. Informally, the constant-time policy
considers a leakage model where program execution leaks all control flow decisions and
all addresses (not values) of memory accesses. The constant-time property states that
an attacker cannot learn any secret information from leakage. Formally, the property is
stated relative to a notion of indistinguishability between states, where two states are
indistinguishable if they coincide on the fragment of the memory that can be accessed
directly by the attacker. Then, we say that a program is constant-time if leakage cannot
separate between any two executions starting from indistinguishable states.

We can now combine the two threat models, and consider an attacker that can observe
both the constant-time leakage and the contents of the stack, registers and flags after
program execution does not learn anything about secrets. For lack of a classic name,
we call this model stack constant-time. It is not too hard to observe that zeroization
transforms a constant-time program into a stack constant-time program. Informally, this
is a consequence of the correctness of stack zeroizing, and of the following two observations.
First, the zeroized part of the stack is determined statically and independently of the
values held in memory. Second, zeroizing the same part of the stack preserves state
indistinguishability.

The speculative constant-time policy. The baseline for side-channel protection in pres-
ence of speculative execution is speculative constant-time. The leakage model is similar
to the one of constant-time. However, the attacker can now actively influence all control
flow decisions, and the addresses of unsafe memory reads and writes carried during mis-
speculation. More formally, the operational semantics of programs is extended with a
set of directives that are controlled by the attacker and determine the control flow of the
program. Then, a program is speculative constant-time if, for every choice of the attacker
at control flow points, leakage cannot separate between any two speculative executions
starting from indistinguishable states.

Similar to the previous case, we can define a notion of stack speculative constant-
time. However, in this case one cannot prove that our zeroization procedure using loops
transforms a speculative constant-time program into a stack speculative constant-time
program. This is because the transformation does not prevent early abort attacks, and so
an attacker with control over the branch predictor can force the whole zeroization to be
skipped [SBB+22]. To avoid this attack, we offer a compiler flag to add a fence at the end
of the zeroization loop. Note that the attack does not work on the variant of zeroization
using an unrolled loop. So, in both cases, we can prove that zeroization transforms a
speculative constant-time program into a stack speculative constant-time program.

Integration with the Jasmin compiler. Note that in contrast with the correctness and
security results of the previous section, the claims of this paragraph are not machine-
checked in the proof assistant, and they are not limited to the zeroization pass. Formalizing
the results in the Coq proof assistant would be possible with reasonable effort. However,
there are some main obstacles to extend them to end-to-end results. We discuss these
obstacles below.

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 17

In the case of constant-time, the end-to-end result would state that the Jasmin compiler
with zeroization transforms a constant-time source program into a stack constant-time
program. A prerequisite for proving this end-to-end result would be to prove that the Jasmin
compiler preserves constant-time. Indeed, such a preservation result exists. Unfortunately,
it has been proved for a previous version of the Jasmin compiler [BGLP21] and the proof
has not yet been merged into the latest state in the main branch.

In the case of speculative constant-time, there is currently no formal guarantee that the
compiler preserves speculative constant-time (for Spectre v1). This remains an exciting
direction for future research.

5 Benchmarks and validation
This section evaluates the cost of zeroization. As a starting point, we use the artifact
from [SBG+22], which protects cryptographic implementations from Libjade [For23] against
Spectre v1. We produced the data in this section with a machine with Linux Debian
5.10.0-21-amd64, GCC 10.2.1, and equipped with an Intel Core i7-10700K (Comet Lake)
with hyperthreading and TurboBoost disabled.

Table 1 reports the cycle counts for six cryptographic primitives and nine implementa-
tions. For implementations with variable input length, such as ChaCha20 and Poly1305, we
include the measurements for 128, 1024, and 16384 bytes. Each reported value in Table 1
corresponds to a median of 10000 executions. Given that the overhead of zeroization from
our approach is small (from an absolute perspective), we repeated the experiment a total
of eleven times, and included in the table the median of these (which can be interpreted as
an approximation of the median of 110000 executions).

The fourth column from Table 1, Baseline, corresponds to the results of our exper-
iments performing no zeroization. The fifth column, Loop, presents the cycle counts
when we perform a complete stack zeroization using a loop with a fence instruction
after it, to prevent early-abort speculative execution attacks (with the compiler flag
-stack-zeroization loopSCT). In addition to the stack zeroization, for reference im-
plementations (ref in the table) we zeroize all 64-bit registers that might leak, and for
vectorized implementations, we also set the 256-bit registers to zero. The overhead of
the Loop setup (compared to the Baseline) is shown in the next column. The highest
overhead in this column is 32.56%, corresponding to the vectorized version of Poly1305
when operating on 128 bytes of input data: the cost of zeroization is fixed, and for this
particular case, the average expected overhead is just 56 CPU cycles. This cost is quickly
amortized for larger inputs and converges to overheads close to zero, demonstrated by the
1.09% overhead for the same implementation and an input length of 16 KiB.

The CPU cycles reported in column Unroll correspond to a straight-line code zeroiza-
tion (option -stack-zeroization unrolled). The register zeroizing is performed in the
same way as in Loop. Generally, the overhead of zeroizing the stack using the straight-line
code is lower when compared to zeroization using a loop. Both overhead columns show a
negative value for the scalar multiplication of X25519, -0.02% and -0.04%, for the loop
and unrolled variants, respectively. We suspect this result to be due to different code
alignment resulting from zeroization and will continue to investigate the matter. The
computation overhead for zeroizing the state in all Kyber’s operations is small and below
2% for all reported measurements except one, Kyber512 decapsulation. Kyber768 avx2
implementation uses 15392, 18432, and 19552 bytes of the stack in keypair, enc, and dec,
respectively, and if we consider that cost of zeroizing the stack lies between 400 and 600
CPU cycles, on average, roughly 32 bytes of stack are zeroized each CPU cycle.

In the context of code size, the assembly file produced by the Jasmin compiler for
Kyber768 avx2 has 33761 lines for the Baseline version. For the Loop and Unroll
variants, this increases to 33869 and 35519, respectively. In Unroll, one instruction is

18 High-assurance zeroization

Table 1: Benchmark results on an Intel Core i7-10700K (Comet Lake) CPU.
Primitive Impl. Op. Baseline Loop overh. [%] Unroll overh. [%]

ChaCha20

avx2 128 B 372 458 23.12 398 6.99
ref 128 B 796 840 5.53 810 1.76
avx2 1 KiB 1254 1304 3.99 1256 0.16
ref 1 KiB 5996 6038 0.70 6008 0.20
avx2 16 KiB 19076 19104 0.15 19144 0.36
ref 16 KiB 94618 94646 0.03 94660 0.04

Poly1305

avx2 128 B 172 228 32.56 184 6.98
ref 128 B 172 212 23.26 176 2.33
avx2 1 KiB 684 744 8.77 702 2.63
ref 1 KiB 1044 1080 3.45 1052 0.77
avx2 16 KiB 8422 8514 1.09 8468 0.55
ref 16 KiB 15932 15964 0.20 15970 0.24

secretbox

avx2 128 B 1244 1342 7.88 1282 3.05
ref 128 B 1702 1760 3.41 1710 0.47
avx2 1 KiB 3110 3216 3.41 3158 1.54
ref 1 KiB 8006 8052 0.57 8028 0.27
avx2 16 KiB 31342 31434 0.29 31450 0.34
ref 16 KiB 115402 115426 0.02 115496 0.08

X25519 mulx smult 98334 98432 0.10 98304 -0.03

Kyber512
avx2 keypair 25884 26256 1.44 26282 1.54
avx2 enc 35416 35860 1.25 36024 1.72
avx2 dec 27984 28886 3.22 28470 1.74

Kyber768
avx2 keypair 43096 43402 0.71 43352 0.59
avx2 enc 55134 55490 0.65 55268 0.24
avx2 dec 44294 44938 1.45 44756 1.04

issued for every 32 stack bytes: in the particular case of dec, which uses 19552, this
corresponds to 611 instructions.

Overall, Table 1 shows that the overhead is very small and in many cases barely
measurable for both variants, so in scenarios where code size is a concern and stack space
usage is intensive, using the Loop option is recommended; otherwise, the Unroll option
performs better on average.

Validation. To validate the effectiveness of stack zeroization code, we call each function
from the Libjade API in a C wrapper that reads the region of memory that the function
used as stack. More specifically, we implement a test case for each library function, where
we first fill the memory region that the function will use as stack with the output of a
PRF. Then, we call the Libjade function and subsequently assert that the memory region
we filled with the PRF was zeroized (recall that in our current implementation this means
overwritten with zeros). On the other hand, for register zeroization we inspected the
assembly output of the compiler and ensured each register was being overwritten with
zeros.

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 19

6 Discussion and future work

The solution to zeroization we present in this paper offers many desirable properties: it is
principled in the sense that it is guaranteed that sensitive data on the stack and in registers
is zeroized and it is well defined when this happens. As we showed in Section 5, the
cost for zeroization is typically very small. Integration into the Jasmin compiler releases
library developers from the error-prone task of taking care of zeroization and ensures that
zeroization takes place on the callee side, where the responsibility naturally resides.

There are also some drawbacks to our solution, most obviously that it requires writing
cryptography in the Jasmin programming language. This may not be an option for
various reasons, most notably that, so far, the Jasmin compiler only targets the AMD64
(and, experimentally, ARMv7-M) architectures. However, for projects that can integrate
assembly code generated by the Jasmin compiler, switching to Jasmin implementations
comes with additional benefits like certified compilation, timing-attack and Spectre-
v1 protection [SBG+22], and an interface to EasyCrypt [BGHZ11] proofs of functional
correctness and reductionist proofs of security. One obvious line of future work is to
extend Jasmin’s set of supported target architectures, including the zeroization support
we presented here.

Furthermore, recall that our proposed approach erases all data and does so only
when returning from an export function. One can imagine investigating more fine-grained
approaches in two different senses: First, as Jasmin features a information-flow type system,
one could decide to erase secret data only. While the information about secrecy is in
principle available, it is not trivial to decide at the end of an export function for each address
in the used stack space, if the last write contained secret data or not. Not only would
this approach add considerable complexity and in most cases offer only small benefits,
it would also create a performance conflict with Spectre v1 protection: For the selective
SLH countermeasures implemented in [SBG+22], it is beneficial to declare data as “secret”
whenever this data is not used as address or branch condition, even if it not secret from
a cryptographic point of view. This approach of declaring as much data as possible as
“secret” would, for most cryptographic routines, mean that anyway almost all stack data
needs to be zeroized. Distinguishing “truly secret” and “additional secret” data in the type
system would probably be possible, but again add complexity in both the compiler and
Jasmin implementations. Second, one could decide to implement more frequent zeroization,
for example at the end of every (also Jasmin-internal) function or even whenever a variable
goes out of scope. Again, given on our benchmarks of fast functions on short inputs, we
expect such an approach to be quite expensive in terms of performance.

The Jasmin compiler is an ideal context for developing security-aware compilation
techniques, for three reasons. First, Jasmin is primarily targeted to cryptographic software,
which mandates the use of these transformations. Second, the Jasmin compiler is arguably
simpler than a mainstream compiler, making the implementation and integration of these
transformations much simpler. Last, the overarching goal of the Jasmin/EasyCrypt
approach to high-assurance cryptography is to derive assembly-level guarantees against
implementation adversaries. As noted by Percival, proving properties such as forward
secrecy at assembly-level mandates the use of a formally verified zeroizing compiler, so
there is a very strong motivation to adopt and maintain zeroization in the Jasmin compiler.
Nevertheless, we express our hope that eventually also mainstream compilers will offer a
clean approach to memory zeroization, for example, by adopting the solution proposed
in [SCA18] for LLVM.

20 High-assurance zeroization

Acknowledgements
This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German
research Foundation) as part of the Excellence Strategy of the German Federal and
State Governments – EXC 2092 CASA - 390781972; the German Federal Ministry of
Education and Research (BMBF) in the course of the 6GEM research hub under grant
number 16KISK038; the European Commission through the ERC Starting Grant 805031
(EPOQUE); and the Agence Nationale de la Recherche (ANR, French National Research
Agency) as part of the France 2030 programme – ANR-22-PECY-0006.

References
[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 1807–1823, Dallas, TX, USA, October 31 – November 2, 2017.
ACM Press.

[ABB+20] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The
last mile: High-assurance and high-speed cryptographic implementations. In
2020 IEEE Symposium on Security and Privacy, pages 965–982, San Francisco,
CA, USA, May 18–21, 2020. IEEE Computer Society Press.

[ABC+21] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg,
Catalin Hritcu, Marco Patrignani, Éric Tanter, and Jérémy Thibault. An
extended account of trace-relating compiler correctness and secure compilation.
ACM Trans. Program. Lang. Syst., 43(4):14:1–14:48, 2021.

[Bar23] Cesar Eduardo Barros. Clear On Drop Source Code, 2023. https://github.
com/cesarb/clear_on_drop (accessed 2023-07-15).

[BDG+14] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial. In Alessandro Aldini,
Javier Lopez, and Fabio Martinelli, editors, Foundations of Security Analysis
and Design VII, volume 8604 of Lecture Notes in Computer Science, pages
146–166. Springer International Publishing, 2014.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006:
9th International Conference on Theory and Practice of Public Key Cryptogra-
phy, volume 3958 of Lecture Notes in Computer Science, pages 207–228, New
York, NY, USA, April 24–26, 2006. Springer, Heidelberg, Germany.

[BGHZ11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer. In
Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 71–90, Santa Barbara, CA,
USA, August 14–18, 2011. Springer, Heidelberg, Germany.

[BGLP21] Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. Struc-
tured leakage and applications to cryptographic constant-time and cost. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference

https://github.com/cesarb/clear_on_drop
https://github.com/cesarb/clear_on_drop

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 21

on Computer and Communications Security, pages 462–476, Virtual Event,
Republic of Korea, November 15–19, 2021. ACM Press.

[Cha17] Roderick Chapman. Sanitizing sensitive data: How to get it right (or at least
less wrong. . .). In Johann Blieberger and Markus Bader, editors, Reliable
Software Technologies – Ada-Europe 2017, volume 10300 of Lecture Notes in
Computer Science, pages 37–52. Springer International Publishing, 2017.

[CM05] S. Chong and A.C. Myers. Language-based information erasure. In 18th IEEE
Computer Security Foundations Workshop (CSFW’05), pages 241–254, 2005.
https://people.seas.harvard.edu/~chong/pubs/csfw05_erasure.pdf.

[CPGR05] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding your
garbage: Reducing data lifetime through secure deallocation. In Patrick D.
McDaniel, editor, USENIX Security 2005: 14th USENIX Security Symposium,
Baltimore, MD, USA, July 31 – August 5, 2005. USENIX Association.

[CSJ+19] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S.
Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and
Deian Stefan. Fact: a DSL for timing-sensitive computation. In Kathryn S.
McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 174–189. ACM, 2019.

[CVE14] CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-0160., 2014.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160 (ac-
cessed 2023-07-15).

[Dal23] Dalek Authors. Dalek x25519 Source Code, 2023. https:
//github.com/dalek-cryptography/x25519-dalek/blob/2.0.0-rc.
3/src/x25519.rs#L73 (accessed 2023-07-15).

[DBR22] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/Rel: Symbolic
Binary Analyzer for Security with Applications to Constant-Time and Secret-
Erasure. ACM Transactions on Privacy and Security, 26(2), 2022. https:
//binsec.github.io/assets/publications/papers/2022-tops.pdf.

[Don17] Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel. In
ISOC Network and Distributed System Security Symposium – NDSS 2017,
San Diego, CA, USA, February 26 – March 1, 2017. The Internet Society.

[DPS15] Vijay D’Silva, Mathias Payer, and Dawn Xiaodong Song. The correctness-
security gap in compiler optimization. In 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, San Jose, CA, USA, May 21-22, 2015,
pages 73–87. IEEE Computer Society, 2015.

[For23] Formosa Crypto Team. Libjade, 2023. https://github.com/
formosa-crypto/libjade (accessed 2023-07-15).

[GCC23] GCC Authors. The GCC Documentation – Static Stack Us-
age Analysis, 2023. https://gcc.gnu.org/onlinedocs/gnat_ugn/
Static-Stack-Usage-Analysis.html (accessed 2023-07-13).

[Gnu23] GnuTLS Authors. GnuTLS Source Code, 2023. https://github.com/
gnutls/gnutls/blob/gnutls_3_6_12/lib/safe-memfuncs.c (accessed
2023-07-15).

https://people.seas.harvard.edu/~chong/pubs/csfw05_erasure.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://github.com/dalek-cryptography/x25519-dalek/blob/2.0.0-rc.3/src/x25519.rs#L73
https://github.com/dalek-cryptography/x25519-dalek/blob/2.0.0-rc.3/src/x25519.rs#L73
https://github.com/dalek-cryptography/x25519-dalek/blob/2.0.0-rc.3/src/x25519.rs#L73
https://binsec.github.io/assets/publications/papers/2022-tops.pdf
https://binsec.github.io/assets/publications/papers/2022-tops.pdf
https://github.com/formosa-crypto/libjade
https://github.com/formosa-crypto/libjade
https://gcc.gnu.org/onlinedocs/gnat_ugn/Static-Stack-Usage-Analysis.html
https://gcc.gnu.org/onlinedocs/gnat_ugn/Static-Stack-Usage-Analysis.html
https://github.com/gnutls/gnutls/blob/gnutls_3_6_12/lib/safe-memfuncs.c
https://github.com/gnutls/gnutls/blob/gnutls_3_6_12/lib/safe-memfuncs.c

22 High-assurance zeroization

[Gut16] Daniel Gutson. Proposal: Zero the local stack on function exit, 2016. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=69976 (accessed 2023-07-23).

[HS08] Sebastian Hunt and David Sands. Just forget it – the semantics and enforce-
ment of information erasure. In Sophia Drossopoulou, editor, Programming
Languages and Systems, volume 4960 of Lecture Notes in Computer Science,
pages 239–253. Springer, 2008.

[Int17] International Organization for Standardization. The C17 Programming Lan-
guage Standard, 2017. https://www.open-std.org/jtc1/sc22/wg14/www/
docs/n2310.pdf.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy, pages 1–19, San Francisco,
CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[Lib23] Libsodium Authors. Libsodium Source Code, 2023. https:
//github.com/jedisct1/libsodium/blob/master/src/libsodium/
sodium/utils.c#L125 (accessed 2023-07-15).

[Mbe23] MbedTLS Authors. MbedTLS Documentation, 2023. https://github.
com/Mbed-TLS/mbedtls/blob/v3.3.0/library/platform_util.c#L65 (ac-
cessed 2023-07-15).

[NSS23] NSS Authors. NSS Source Code, 2023. https://hg.mozilla.org/projects/
nss/file/b7888f994479307ea70bfbd5c2b1bb4cd6c36a55/lib/softoken/
pkcs11c.c#l738 (accessed 2023-15-07).

[Ope23] OpenSSL Authors. OpenSSL Source Code, 2023. https://github.com/
openssl/openssl/blob/0e9725bcb90770d967351b977407b174bbd91869/
crypto/mem_clr.c (accessed 2023-07-15).

[oSTfCS20] National Institute of Standards, Technology, and Canadian Centre
for Cyber Security. Implementation guidance for fips 140-3 and
the cryptographic module validation program, 2020. last updated
on March 17, 2023. https://csrc.nist.gov/CSRC/media/Projects/
cryptographic-module-validation-program/documents/fips%20140-3/
FIPS%20140-3%20IG.pdf (accessed 2023-07-15).

[PAC19] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to
secure compilation: A survey of fully abstract compilation and related work.
ACM Comput. Surv., 51(6):125:1–125:36, 2019.

[Per] Trevor Perrin. Noise protocol framework. https://noiseprotocol.org/
noise.pdf (Revision 34 vom 2018-07-11).

[Per14] Colin Percival. Zeroing buffers is insufficient. Post on on the Dae-
monic Dispatches blog, 2014. https://www.daemonology.net/blog/
2014-09-06-zeroing-buffers-is-insufficient.html (accessed 2023-07-
16).

[Por23] Thomas Pornin. BearSSL API Overview – Memory Wiping, 2023. https:
//www.bearssl.org/api1.html#memory-wiping (accessed 2023-07-13).

[Res18] Eric Rescorla. The transport layer security (TLS) protocol version 1.3. IETF
RFC 8446, 2018. https://rfc-editor.org/rfc/rfc8446.txt.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69976
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69976
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf
https://github.com/jedisct1/libsodium/blob/master/src/libsodium/sodium/utils.c#L125
https://github.com/jedisct1/libsodium/blob/master/src/libsodium/sodium/utils.c#L125
https://github.com/jedisct1/libsodium/blob/master/src/libsodium/sodium/utils.c#L125
https://github.com/Mbed-TLS/mbedtls/blob/v3.3.0/library/platform_util.c#L65
https://github.com/Mbed-TLS/mbedtls/blob/v3.3.0/library/platform_util.c#L65
https://hg.mozilla.org/projects/nss/file/b7888f994479307ea70bfbd5c2b1bb4cd6c36a55/lib/softoken/pkcs11c.c#l738
https://hg.mozilla.org/projects/nss/file/b7888f994479307ea70bfbd5c2b1bb4cd6c36a55/lib/softoken/pkcs11c.c#l738
https://hg.mozilla.org/projects/nss/file/b7888f994479307ea70bfbd5c2b1bb4cd6c36a55/lib/softoken/pkcs11c.c#l738
https://github.com/openssl/openssl/blob/0e9725bcb90770d967351b977407b174bbd91869/crypto/mem_clr.c
https://github.com/openssl/openssl/blob/0e9725bcb90770d967351b977407b174bbd91869/crypto/mem_clr.c
https://github.com/openssl/openssl/blob/0e9725bcb90770d967351b977407b174bbd91869/crypto/mem_clr.c
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
https://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
https://www.bearssl.org/api1.html#memory-wiping
https://www.bearssl.org/api1.html#memory-wiping
https://rfc-editor.org/rfc/rfc8446.txt

Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira and Peter Schwabe 23

[Rus23a] Rust Authors. Rust’s emit-stack-sizes, 2023. https://doc.rust-lang.org/
unstable-book/compiler-flags/emit-stack-sizes.html (accessed 2023-
07-13).

[Rus23b] RustCrypto Project Developers. Zeroize Source Code, 2023. https://github.
com/RustCrypto/utils/tree/master/zeroize (accessed 2023-07-15).

[SBB+22] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay
Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell, Peter
Schwabe, Rui Qi Sim, and Yuval Yarom. Spectre declassified: Reading from
the right place at the wrong time. Cryptology ePrint Archive, Report 2022/426,
2022. https://eprint.iacr.org/2022/426.

[SBG+22] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas
Tabary-Maujean. Typing high-speed cryptography against spectre v1. Cryp-
tology ePrint Archive, Report 2022/1270, 2022. https://eprint.iacr.org/
2022/1270.

[SCA18] Laurent Simon, David Chisnall, and Ross Anderson. What You Get is What
You C: Controlling Side Effects in Mainstream C Compilers. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 1–15, 2018.
https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf.

[Smi23] Brian Smith. ring Source Code, 2023. https://github.com/briansmith/
ring/commit/b76f52c03a667c2ac6793ff566b55ad060421759 (accessed
2023-07-15).

[Spr22] Amber Sprenkels. Eraser, 2022. https://github.com/dsprenkels/eraser
(accessed 2023-07-15).

[Syn14] Synopsys Inc. The Heartbleed Bug, 2014. https://heartbleed.com/ (ac-
cessed 2023-15-07).

[Tin23] TinyDTLS Authors. TinyDTLS Source Code, 2023. https://github.com/
eclipse/tinydtls/blob/004aba8f7a1f7b70eb1a43dfa9fc4be644daa4ca/
crypto.c#L254 (accessed 2023-07-15).

[Wol23] WolfSSL Authors. WolfSSL Source Code, 2023. https://github.com/
wolfSSL/wolfssl/blob/e2424e67444a360eab615b53fd5649ff355ad68b/
wolfcrypt/src/misc.c#L349 (accessed 2023-07-15).

[XLD+23] Jianhao Xu, Kangjie Lu, Zhengjie Du, Zhu Ding, Linke Li, Qiushi Wu, Mathias
Payer, and Bing Mao. Silent bugs matter: A study of compiler-introduced
security bugs. In Proceedings of USENIX Security Symposium, 2023. USENIX,
2023.

[YJO+17] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin Lerner, and
Kirill Levchenko. Dead store elimination (still) considered harmful. In Engin
Kirda and Thomas Ristenpart, editors, USENIX Security 2017: 26th USENIX
Security Symposium, pages 1025–1040, Vancouver, BC, Canada, August 16–18,
2017. USENIX Association.

https://doc.rust-lang.org/unstable-book/compiler-flags/emit-stack-sizes.html
https://doc.rust-lang.org/unstable-book/compiler-flags/emit-stack-sizes.html
https://github.com/RustCrypto/utils/tree/master/zeroize
https://github.com/RustCrypto/utils/tree/master/zeroize
https://eprint.iacr.org/2022/426
https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270
https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf
https://github.com/briansmith/ring/commit/b76f52c03a667c2ac6793ff566b55ad060421759
https://github.com/briansmith/ring/commit/b76f52c03a667c2ac6793ff566b55ad060421759
https://github.com/dsprenkels/eraser
https://heartbleed.com/
https://github.com/eclipse/tinydtls/blob/004aba8f7a1f7b70eb1a43dfa9fc4be644daa4ca/crypto.c#L254
https://github.com/eclipse/tinydtls/blob/004aba8f7a1f7b70eb1a43dfa9fc4be644daa4ca/crypto.c#L254
https://github.com/eclipse/tinydtls/blob/004aba8f7a1f7b70eb1a43dfa9fc4be644daa4ca/crypto.c#L254
https://github.com/wolfSSL/wolfssl/blob/e2424e67444a360eab615b53fd5649ff355ad68b/wolfcrypt/src/misc.c#L349
https://github.com/wolfSSL/wolfssl/blob/e2424e67444a360eab615b53fd5649ff355ad68b/wolfcrypt/src/misc.c#L349
https://github.com/wolfSSL/wolfssl/blob/e2424e67444a360eab615b53fd5649ff355ad68b/wolfcrypt/src/misc.c#L349

	Introduction
	Failure modes
	Perform no zeroization
	Zeroization falling prey to compiler optimizations
	Zeroization in API functions only
	Zeroization on source level

	Possible solutions
	Caller-side zeroization
	Callee-side zeroization

	A principled solution in the compiler
	Background on Jasmin
	Design choices
	Implementation overview
	Register and flag zeroization
	Correctness and security
	Combining leakage models

	Benchmarks and validation
	Discussion and future work

