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Abstract. In 2012, Ding, Xie and Lin designed a key exchange proto-
col based on Ring-LWE problem, called the DXL key exchange protocol,
which can be seen as an extended version of the Diffie-Hellman key ex-
change. In this protocol, Ding et al. achieved key exchange between the
communicating parties according to the associativity of matrix multipli-
cations, that is, (xT ·A) · y = xT · (A · y), where x, y are column vectors
and A is a square matrix. However, the DXL key exchange protocol can-
not resist key reuse attacks. At ESORICS 2022, Qin et al. proposed a
method that an adversary can recover the reused private key after forg-
ing the public keys for several times. Nevertheless, Qin et al.’s method
leads to a lot of redundant operations. In this paper, we improve Qin et
al.’s method to a more general case and propose an effective approach to
combine signal leakage attacks with depth first search. Compared with
state-of-the-art result appeared at ESORICS 2022, the number of reused
private key have been decreased from 29 to 10. In other words, if the
number of reuses exceeds 10, the private key will be restored. Moreover,
we validate the effectiveness of the results through experiments.

Keywords: DXL Key Exchange Protocol · Key Reuse Attack · Signal
Leakage Attack · Depth First Search

1 Introduction

1.1 Background

The development of quantum computers is progressing rapidly in recent years, it
has become very significant to find public key cryptographic schemes that can re-
sist quantum computer attacks [33]. These public key cryptographic schemes can
be divided into the following types: lattice-based schemes [6,8,18,7], codes-based
schemes [2,4,16], multivariate-based schemes [13], supersingular isogeny schemes
[21], and hash-based schemes [5]. Among these different types of cryptographic
schemes, lattice-based schemes are considered to be the most promising schemes.
In 2022, NIST [25] selected four standardized cryptographic schemes, three of
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which are lattice-based schemes, namely, Kyber [6], Dilithium [7], Falcon [18].
Therefore, the study of lattice-based cryptography is very important.

In lattice-based cryptography, there are two important classes of difficulty
problems: Small Integer Solution (SIS) problem and Learning With Error (LWE)
problem. The LWE problem is briefly defined as follows. Given a uniform random
matrix A ∈ Zn×m

q and a vector b = AT · s+ e ∈ Zm
q , where s ∈ Zn

q and e ∈ Zm
q

are unknowns. The adversary cannot recover s from (A, b = AT · s + e). The
LWE problem and its variants [23,24] are widely used in the design of various
cryptographic schemes. Among them, Ding et al. proposed a Ring-LWE-based
key exchange protocol for the first time in 2012 [15], called the DXL key exchange
(DXL-KE) protocol, which can be regarded as an extended version of Diffie-
Hellman key exchange (DHKE) protocol [10]. The DHKE protocol process is
described as follows. The communication parties Alice and Bob need to share
some public parameters beforehand. These parameters include a prime number
q and a primitive root g. Then, Alice randomly selects a, calculates public key
A = ga mod q and sends the public key A to Bob. On the other hand, Bob
randomly chooses b, computes public key B = gb mod q and sends the public
key B to Alice. Finally, Alice calculates skA = Ba mod q and Bob computes
skB = Ab mod q. In this way, Alice and Bob can get the shared key sk =
gab mod q.

For the case of the LWE problem, Alice calculates public key pA = A ·
sA + eA mod q and sends pA to Bob; Bob computes public key pB = A · sB +
eB mod q and sends pB to Alice. Due to the existence of the error terms eA, eB ,
therefore, pB · sA ≈ pA · sB . In order to negotiate the same shared key, Ding
et al. presented an error elimination mechanism in [15]. Roughly speaking, Bob
sends an additional signal ωB after sending the public key pB . In this way, Alice
and Bob can negotiate a shared key.

Key reuse attacks are a common security threat, which refers to the scenario
where users use the same private key for a long time. NIST [1] pointed out that
cryptographic schemes should be designed to resist key reuse attacks. There
are two important types of key reuse attacks: key mismatch attacks and signal
leakage attacks. Key mismatch attack on lattice-based schemes is first proposed
by Ding, Fluhrer, Saraswathy [29]. This attack has been used to analyze Kyber
[29,30], Saber [30] and NewHope [28]. The signal leakage attack is first proposed
by Fluhrer [17]. This attack has been used to attack DXL-KE [15] and DBS-KE
[12] key exchange protocols [17,11,9,31]. Moreover, there are other types of key
reuse attacks appeared in [14,20,36,26,35]. In order to resist existing key reuse
attacks on the DXL-KE protocol, several schemes have been proposed [19,34,27].

In [11], Ding et al. first used the signal leakage attack to analyze the DXL-KE
protocol. The key of their attack is as follows. Alice and Bob are the communi-
cation parties, where Alice is an adversary who wants to recover Bob’s reused
private key sB . The procedure of recovering the private key can be divided into
two parts. The first part is to determine the value of each |sB [i]|(0 ≤ i ≤ n− 1)
(called absolute values recovery), and the second part is to determine the sign of
each sB [i] (called relative signs recovery). For the first part, Alice forges public
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keys pA = k for k = 0, 1, · · · , q− 1 and sends them to Bob. The involved modu-
lus q is public. After receiving the public keys pA from Alice, Bob will honestly
execute the DXL-KE protocol and send public key and signal (pB , ωB) to Alice.
Therefore, Alice can get q times public keys and signals. As k increases from 0 to

q−1, each ω
(k)
B [i] of the signals will change as 0 → · · · → 1 → · · · → 0 → · · · . By

the number of times the signal ωB [i] flips, Alice can determine the value of each
|sB [i]|(0 ≤ i ≤ n−1). Subsequently, in order to further determine the sign of each
sB [i], Alice needs to continue forging public keys pA = (1+x) ·k and sends them
to Bob, where the value of k increases from 0 to q − 1. Then, Alice recovers the
pairs |sB [0]+ sB [1]|, |sB [1]+ sB [2]|, · · · , |sB [n− 2]+ sB [n− 1]|, |sB [n− 1]− s[0]|.
Finally, based on the values of |sB [i]| and these pairs, the value of the corre-
sponding sB [i] is determined. In Ding et al.’s work, the number of forged public
keys is q+ q = 32770. Note that the times of forged public keys are equal to the
times of key reuses.

In 2021, Bindel et al. [9] improved Ding et al.’s attack and proposed a sparse
signal collection method. This method can also be divided into two parts, namely,
absolute values recovery part and relative signs recovery part. Based on this
method, for the first part, Alice needs forge public keys pA = k 36α times to
recover |sB [i]|, where k is select from some special values rather than all values
from {0, 1, · · · , q − 1}, where α = 3.197 is the standard deviation in DXL-KE
protocol. For the second part, Alice forges pA = (1 + x) · k′ to recover the
pairs |sB [0] + sB [1]|, |sB [1] + sB [2]|, · · · , |sB [n − 2] + sB [n − 1]|, |sB [n − 1] −
s[0]|, however, since one or more consecutive 0s in private key sB , which will
prevent determining the relative signs, in order to eliminate this case, Bindel et
al. recommended Alice should reset pA = (1 + xt) · k′, 1 ≤ t ≤ z to determine
relative signs, where k′ is select from several special values rather than all values
from {0, 1, · · · , q−1}, where z (generally, 1 ≤ z ≤ 4) is the maximum number of
consecutive zeros in the private key. For the second part, Alice should forge 72·zα
times public keys. Therefore, the number of forged public keys is approximately
reduced to 36α + 72 · zα = 36(1 + 2z)α. In this case, 36(1 + 2z)α ≈ 824. It
means that the number of forged public keys in the work of Bindel et al. is 824
on average.

At ESORICS 2022, Qin et al. [31] further improved the results in Bindel et
al.’s work. The signal leakage attack was converted into a coding problem. In
the process of the absolute values recovery, Alice needs to forge her public keys
⌈log 16⌉ (= 4) times to recover |sB [i]| for i = 0, 1, · · · , n − 1. In the process of
relative signs recovery, in order to solve the problem that one or more consecutive
0s in private key sB , Alice needs to forge (1+ z) · ⌈log 31⌉ public keys to recover
the relative signs. It is worth noting that in the work of Qin et al., the values of
k1, k2 selected are different from those of Bindel et al., therefore, the number of
forged public keys is reduced to ⌈log 16⌉+ (1 + z) · ⌈log 31⌉ = 29.

From an attacker’s perspective, we expect the attack to still work even with
the lowest possible number of reusable private keys, namely, the attacker can
recover the reused private key by forging fewer public keys.



4 Zhiwei Li , Jun Xu, and Lei Hu

1.2 Our Contribution

In this paper, we propose an efficient attack method to recover the reused private

key sB of Bob. In this method, Alice recovers multiple coefficients |
λ−1∑
j=0

sB [i+ j]|

rather than two coefficients |sB [i]+sB [i+1]| by forging public keys ⌈log(15 · λ+ 1)⌉
times, where the parameter λ is an integer satisfying 3 ≤ λ ≤ 8. This is a more
general approach to previous work [11,9,31], and will reduce the times of forged
public keys in relative signs recovery. To be specific, Alice forges ⌈log(15 · λ+ 1)⌉
times public keys rather than (1 + z) · ⌈log 31⌉. Therefore, for different λ, the
total number of forged public keys is 10 or 11 instead of 29. On the other hand,
we have reduced the running time required to complete key recovery (based on
the same platform).

We verify the effectiveness of results through experiments, and give the num-
ber of forged public keys and the time needed to complete the recovery of sB .
Compared with the previous best results, the number of forged public keys in
our work is reduced by 60%, Alice only needs to forge the public keys 10 or 11
times to complete the key recovery, and the time required to complete the key
recovery is reduced by about 50%. In this paper, we only need 0.24s to recover
the whole private key sB .

1.3 Technical overview

The new algorithm can also be divided into two parts: absolute values recovery
and relative signs recovery. For absolute values recovery, the process is the same
as that of Qin et al., that is, Alice needs to forge public keys pA 4 times to
recover the absolute values of all coefficients of the private key sB , i.e. the values
of |sB [i]|, i = 0, 1, · · · , n− 1.

The relative signs recovery is divided into Step A and Step B. In Step A, Alice

forges public keys pA to recover the values of |
λ−1∑
j=0

sB [i+ j]|, i = 0, 1, · · · , n− λ.

In Step B, according to the values of |sB [i]| and |
λ−1∑
j=0

sB [i + j]| and the depth

first search, Alice recovers the signs of sB [i], i = 0, 1, · · · , n − 1. For ease of
understanding, we describe Algorithm 1 at a high level.

The detailed description of Algorithm 1 will be introduced in Section 5.

1.4 Organization

The rest of this paper is organized as follows. We give preliminaries in Section
2. Section 3 presents the DXL-KE protocol, and Section 4 introduces the state-
of-the-art attack on DXL-KE protocol. In Section 5, an efficient approach was
proposed to reduce the number of forged public keys, Section 6 is experimental
results and Section 7 is conclusion.
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Algorithm 1 The high level description of the algorithm. Here, sumi =

|
λ−1∑
j=0

sB [i + j]| and SET = (sum0, sum1, · · · , sumn−λ). The predicate τ(s
(t)
B )

is used to simplify the check stage, where τ(s
(t)
B ) returns 1 if s

(t)
B is Bob’s reused

private key sB , and 0 otherwise.

Input: The forged public keys pA.
Output: The reused private key sB .
1: Recover |sB [i]| (i.e. absolute values recovery)
2: Recover SET (corresponding to Step A)

3: t = 0, s
(t)
B ← DFS(|sB |, SET )

4: while τ(s
(t)
B ) ̸= 1, do

5: t← t+ 1, s
(t)
B ← DFS(|sB |, SET ) (3-5 corresponds to Step B)

6: end
7: sB = s

(t)
B

8: return sB

2 Preliminaries

2.1 Notation

In this paper, we define Zq to represent the integer ring of module q, Zq[x]
to represent the polynomial ring of module q and the coefficient range of any
polynomial in Zq[x] is in the set {− q−1

2 , · · · , q−1
2 }. Polynomials that appear in

this paper are elements of the polynomial ring Rq = Zq[x]/(x
n + 1), where

polynomials are represented by lowercase letters. For any polynomial f(x) =
f0+f1x+...+fn−1x

n−1 in Rq = Zq[x]/(x
n+1), the polynomial can be expressed

as the corresponding vector form f(x) = (f0, f1, ..., fn−1). We use bold capital
letters to represent matrices such as A ∈ Rn×n

q . For a fixed matrix A, the

corresponding transpose is AT . The symbol χα is defined as a discrete Gaussian
distribution, where the standard deviation is α. For a polynomial f(x), if f(x) is
sampled from the discrete Gaussian distribution, then each coefficient fi(0 ≤ i ≤
n−1) of the polynomial f(x) is selected based on discrete Gaussian distribution.
The symbol ⌈a⌉ indicates that the least integer greater than or equal to a. The
base-2 logarithm is denoted by log(·).

2.2 Encryption based on the LWE problem

LWE problem is an important kind of difficult problem. We take the Regev’s
encryption [32] as an example to show how to encrypt a message using LWE
problem: Alice selects sA ∈ Zn

q , eA ∈ Zn
q ,A ∈ Zn×m

q , where sA is the private key,

then Alice computes public key pA = AT ·sA+eA mod q and sends pA,A to Bob,
Bob selects private key sB ∈ Zm

q , and calculates c1 = A·sB mod q and encrypts

a message c2 = pTA · sB + m⌊q/2⌋ mod q, then Bob sends ciphertext (c1, c2)
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to Alice. Finally, Alice decrypts the ciphertext (c1, c2) and gets the decrypted
message m′ = c2 − sTA · c1 mod q.

In the above encryption, Alice needs to send a matrixA to Bob, however, this
matrix is very large and will affect the efficiency of the cryptography schemes.
Therefore, as a structured LWE problem, the Ring-LWE problem has received
widespread attention. In Ring-LWE problem, Alice selects A, s ∈ Rq, e ∈ χα,
where A, s, e are polynomials and χα is the error/noise distribution. Specificlly,
χα denotes the discrete Gaussian distribution on Rq with standard deviation α.
In Ring-LWE problem, the polynomials s, e are usually sampled from the same
error/noise distribution χα [3]. As an important error/noise distribution, the
discrete Gaussian distribution is defined as follows:

Definition 1. For any positive real α ∈ R, and vectors c ∈ Rn, the continuous
Gaussian distribution over Rn with standard deviation centered at c is defined

by the probability function ρα,c(x) = ( 1√
2πα2

)nexp(−∥x−c∥2

2α2 ). For integer vectors

c ∈ Rn, let ρα,c(Zn) =
∑
x∈Zn

ρα,c(x). Then, we define the discrete Gaussian

distribution over Zn as DZn,α,c(x) =
ρα,c(x)
ρα,c(Zn) , where x ∈ Zn. The subscripts s

and c are taken to be 1 and 0 (respectively) when omitted.

2.3 Depth First Search

In this section, we recall the depth-first search (DFS) algorithm. Please refer to
[22] for more details.

DFS is an algorithm for searching a graph or tree data structure. The algo-
rithm starts at the root (top) node of a tree and goes as far as it can down a
given branch (path), then backtracks until it finds an unexplored path, and then
explores it. The algorithm does this until the entire graph has been explored.
This algorithm uses a stack in order to keep track of visited nodes, as the last
node seen is the next one to be visited and the rest are stored to be visited later.

Algorithm 2 The pseudocode of Depth First Search [22], where S is an empty
stack for storing nodes and for each node u, define u.visited to be false.

1: Push the root (first node to be visited) onto S.
2: While S is not empty, do
3: u = S.pop()
4: If u.visited = false, then:
5: u.visited = true
6: for each unvisited neighbor w of u:
7: Push w into S.
8: end
9: End process when all nodes have been visited.



Signal Leakage Attack Meets Depth First Search 7

For ease of understanding, we present an example in Fig. 1 for the DFS
process.

Fig. 1: The procedure of Depth First Search (DFS).

In Section 5, we will propose a new approach by combining with the signal
leakage attack and depth first search, which makes the number of forged public
keys fewer.

3 The DXL-KE protocol

In this section, we briefly introduce the DXL-KE protocol in [15], which can be
divided into three parts: the initialization part, the response part and the finish
part.

Initialization part: Alice chooses polynomials a ∈ Rq, sA, eA ∈ χα and com-
putes pA = a · sA + 2 · eA ∈ Rq and sends (a, pA) to Bob.

Response part: After receiving pA sent by Alice, Bob selects sB , eB , gB ∈
Rq. Then, Bob needs to compute pB = a·sB+2·eB ∈ Rq, kB = pA ·sB+2·gA ∈
Rq, ωB = Sig(kB) and sends (pB , ωB) to Alice. Finally, Bob obtains the shared
key skB = Mod2(kB , ωB).

Finish part: After receiving (pB , ωB) sent by Bob, Alice chooses gA ∈ χα

and calculates kA = pB · sA + 2 · gA ∈ Rq. Finally, Alice gets the shared key
skA = Mod2(kA, ωB).

We depict the details of DXL-KE in Algorithm 3.
In DXL-KE protocol, the parameters are n = 1024, q = 214 + 1, α = 3.197

and E = {−
⌊
q
4

⌋
+ r, · · · ,

⌊
q
4

⌉
+ r}, where r selects uniformly from {0, 1}, the

signal function is defined as follows:

Sig(x) =

{
0 if x ∈ E,
1 otherwise.

(1)

For any polynomial f(x) = (f0, f1, · · · , fn−1), the following equation holds
ωB = Sig(f(x)) = (Sig(f0), Sig(f1), · · · , Sig(fn−1)). In DXL-KE protocol, the
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Algorithm 3 The DXL-KE protocol [15]

Alice
Sample a ∈ Rq, sA ∈ χα, eA ∈ χα

pA = a · sA + 2 · eA ∈ Rq

Send (a, pA) to Bob

Sample gA ∈ χα

kA = pB · sA + 2 · gA ∈ Rq

skA = Mod2(kA, ωB)

Bob

Sample sB ∈ χα, eB ∈ χα, gB ∈ χα

pB = a · sB + 2 · eB ∈ Rq

kB = pA · sB + 2 · gB ∈ Rq

ωB = Sig(kB)
skB = Mod2(kB , ωB)
Send (pB , ωB) to Alice.

significant unit is an robust extractor Mod2(x, ω), which enables Alice and Bob
extract an identical information:

Mod2(x, ω) = (x+ ω · q − 1

2
) mod q mod 2. (2)

In the DXL-KE protocol, the coefficients of the private key sB are sampled
from the discrete Gaussian distribution χα, and the standard deviation of the
discrete Gaussian distribution is α = 3.197, therefore, for i = 0, 1, · · · , n− 1, the
probability of |sB [i]| < 5 · α = 15.985 is 99.9999%, the coefficients of eB , gB are
also sampled from the same discrete Gaussian distribution, so we know that the
ranges of these coefficients are |eB [i]| ≤ 15 and |gB [i]| ≤ 15 respectively.

4 Attacks at ESORICS 2022 against DXL-KE

For the scenario where Bob’s private key sB is reused in the DXL-KE protocol,
since Bob will send signals ωB to Alice, the adversary impersonates as Alice to
recover Bob’s private key according to the signals sent by Bob. The signal leakage
attacks can be used to recover Bob’s reused private key sB . In this section, we
review the state-of-the-art attack proposed by Qin et al. in [31]. Please refer to
[31] for more details.

Alice forges pA = k1 = 550 and sends it to Bob. After receiving pA, Bob
computes pB = a · sB + 2 · eB , kB = pA · sB + 2 · gA, ωB = Sig(kB), where
ωB = (ω0, ω1, · · · , ωn−1) and ωi = Sig(kB [i]), i = 0, 1, · · · , n − 1. Alice saves
the signals ωB sent by Bob. Similarly, for different k1, k2, k3, k4 Alice can save
four different signals sent by Bob. Then, for different values of kt, 1 ≤ t ≤ 4,
Alice constructs Table 1, which provides a map from the integer in {0, · · · , 15}
to the corresponding binary code-word, namely, the binary code for each column
is called a binary code-word.
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For the sake of discussion, four different signals ωB returned by Bob are
respectively defined as ωt

B = (ωt
0, ω

t
1, · · · , ωt

n−1), t = 1, 2, 3, 4, where ωt
B is the

involved signal of the t-th time. For example, if the value of (ω1
0 , ω

2
0 , ω

3
0 , ω

4
0) equals

the binary code-word (1,0,1,0), then Alice can determine |sB [0]| = 14 according
to Table 1. In other words, Alice checks which of the collected signals matches
the value in Table 1, which can recover the corresponding value of |sB [i]|, 0 ≤
i ≤ n− 1. In this step, the number of forged public keys is ⌈log(15 + 1)⌉ = 4.

Table 1: Signals ωB for different kj and |sB [i]| in DXL-KE with i ∈ [0, n− 1]

|sB [i]| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k1 = 550 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
k2 = 1050 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
k3 = 4000 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
k4 = 8192 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

In order to recover the values of sB [i] for 0 ≤ i ≤ n−1, Alice forges the public
keys pA = ki ·(1+x), where ki is selected from the set {260, 525, 1050, 4000, 8192}
in ascending order, Alice sends them to Bob, Bob honestly executes according to
the DXL-KE protocol, and sends (pB , ωB) to Alice, for 5 different forged public
keys, Alice saved 5 different signals ωB . Based on these cases, Alice can build
Table 2. It is easy to see that Table 2 presents an encoding of |sB [i]+sB [i+1]|, 0 ≤
i ≤ n− 1. Therefore, Alice could obtain the values of |sB [i] + sB [i+ 1]|, 0 ≤ i ≤
n − 1 by checking Table 2. In the step, the number of forged public keys is
⌈log(30 + 1)⌉ = 5.

Table 2: Signals ωB for different kj and s[i] = |sB [i]+sB [i+1]| in DXL-KE with
i ∈ [0, n− 1]

s[i] 0 1 2 ... 14 15 ... 29 30

k1 = 260 0 0 0 ... 0 0 ... 1 1
k2 = 525 0 0 0 ... 1 1 ... 0 0
k3 = 1050 0 0 0 ... 0 0 ... 0 0
k4 = 4000 0 0 1 ... 1 1 ... 1 1
k5 = 8192 0 1 0 ... 0 1 ... 0 1

Note that (|sB [i] + sB [i+ 1]|)2 = s2B [i] + s2B [i+ 1] + 2sB [i] · sB [i+ 1]. Hence,
after knowing the values of |sB [i] + sB [i+1]|, |sB [i]| and |sB [i+1]|, the value of
sB [i] · sB [i+1] will be determined. Furthermore, the positive and negative signs
of sB [i] · sB [i+1] can be obtained if sB [i] and sB [i+1] are both not equal to 0.
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However, there are one or more consecutive zero cases in the private key
sB . In these cases, Alice cannot recover all bits in the reused private key sB .
To overcome this problem, Alice needs to forge additional public keys pA =
(1 + xt+1) · ki for all 1 ≤ t ≤ z, where z is the maximum number of consecutive
zeros in private key sB . (z ≤ 4 is sufficient to successfully launch the attack
according to the analysis in [31]). In this step, the number of forged public keys
is z · ⌈log(30 + 1)⌉ = 5z.

To sum up, the number of forged public keys is 4+ 5(z+1), which equals 29
by taking z = 4.

Note that the number of forged public keys is equal to the number of reusing
the private key sB of Bob. It means that, if the number of reusing sB will be
greater than 4+5(z+1), the private key sB will be revealed. Therefore, from the
attacker’s perspective, we expect the attack to still work even with the lowest
possible number of reusable private keys.

5 New attack against DXL-KE protocol

In this section, we propose a new algorithm to reduce the number of public
key forgeries, that is, the number of times Bob’s private key sB is reused. This
algorithm can also be divided to two parts: absolute values recovery and relative
signs recovery. For absolute values recovery, the process is the same as that of
Qin et al., therefore, for simplicity, we no longer describe the details of absolute
value recovery, but by default Alice has obtained |sB [i]| by forging the public
key 4 times, where sB [i] (0 ≤ i ≤ n− 1) is the i-th coefficient of private key sB .
Please refer to Section 4 for more details.

For relative signs recovery, we divide this procedure into the following two
steps for the sake of description. In this section, we assume that Alice is an
adversary who want to recover Bob’s reused private key sB .

5.1 Step A: Recovering the values of |
λ−1∑
j=0

sB[i + j]|

In this step, Alice recovers the values of sumi,λ := |
λ−1∑
j=0

sB [i+j]|, i = 0, 1, · · · , n−

λ rather than |sB [i] + sB [i + 1]| in the Qin et al.’s attack, where λ > 2 is an
integer chosen by Alice.

In order to recover the values of sumi,λ, Alice needs to forge her own public
key in the following way:

pA,t = (1− xn−1 − · · · − xn−λ+1) · kt. (3)

Here pA,t is the t-th forged public key and |kt| ≤ q−1
2 for t = 1, · · · ,m, where m

is the number of times public keys of Alice have been forged.
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Notice that |sB [i+ j]| ≤ 15 with an overwhelming probability for 0 ≤ i+ j ≤

n− 1. According to the triangle inequality, we get |
λ−1∑
j=0

sB [i+ j]| ≤ 15λ, namely,

sumi,λ ≤ 15λ. We can construct a one-to-one mapping from every integer I in the
set {0, · · · , 15λ} to the corresponding binary code-word. It is not hard to see that
the least m equals ⌈log(15 · λ+ 1)⌉. Hence, we can take m = ⌈log(15 · λ+ 1)⌉.
It means that m = 6 for 3 ≤ λ ≤ 4, and m = 7 for 5 ≤ λ ≤ 8. As λ increases, m
will increase. It implies that the number of forged public keys will increase and
it becomes difficult to forge the appropriate public keys. Here, we consider the
case of 3 ≤ λ ≤ 8.

Remark 1. For a given i, the range of sumi,λ is [0, 45] and [0, 60], when λ = 3
and 4, respectively. Note that [0, 45] ⊂ [0, 60]. Hence, the range of sumi,3 is a
part of range of sumi,4. Similar to the above analysis, we can get that ranges of
sumi,5, sumi,6, sumi,7 are all a part of the range of sumi,8.

According to the remark, we only present two cases for λ = 4 and 8. Next,
we focus on the case of λ = 4.

Finding kt in expression (3). For λ = 4, the involved m = 6. Bob will
calculate

kB = pA · sB + 2 · gB ,

where pA = (1 − xn−1 − xn−2 − xn−3) · kt for 1 ≤ t ≤ 6 and |kt| ≤ q−1
2 .

Therefore, kB [i] = kt · (
3∑

j=0

sB [i+ j]) + 2 · gB [i] for i = 0, 1, · · · , n− 4. Note that

sumi,4 =

3∑
j=0

sB [i+ j]. Thus we have

kB [i] = kt · sumi,4 + 2 · gB [i] for i = 0, 1, · · · , n− 4.

For sake of description, we assum that kt > 0. According to the triangle inequal-
ity, we get

kt · |sumi,4| − 2 · |gB [i]| ≤ |kB [i]| ≤ kt · |sumi,4|+ 2 · |gB [i]|. (4)

Further, there is the following relation

kt ·(min
i

|sumi,4|)−2·(max
i

|gB [i]|) ≤ |kB [i]| ≤ kt ·(max
i

|sumi,4|)+2·(max
i

|gB [i]|).
(5)

Next, we review the signal function which is defined as Sig(x) = 0, if x ∈ E,
otherwise, Sig(x) = 1. Here, the set E = {−

⌊
q
4

⌋
+ r, · · · ,

⌊
q
4

⌉
+ r}, where r

selects uniformly from {0, 1}.
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Fig. 2: The signal function

Therefore, for two integers α1 and α2, the following equation holds, if −
⌊
q
4

⌋
+ 1 + α1 · q ≤ |kB [i]| ≤

⌊
q
4

⌋
+ α1 · q, Sig(kB [i]) = 0,

if
⌈
q
4

⌉
+ 1 + α2 · q ≤ |kB [i]| ≤

⌊
3
4 ∗ q

⌋
+ α2 · q, Sig(kB [i]) = 1.

(6)

We start with the first signal, namely, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

1. If 0 ≤ |sumi,4| ≤ 15, then −
⌊
q
4

⌋
+ 1 ≤ |kB [i]| ≤

⌊
q
4

⌋
. It means that

Sig(kB [i]) = 0.
2. If 16 ≤ |sumi,4| ≤ 47, then

⌈
q
4

⌉
+ 1 ≤ |kB [i]| ≤

⌊
3
4 ∗ q

⌋
. It implies that

Sig(kB [i]) = 1.
3. If 48 ≤ |sumi,4| ≤ 60, then

⌈
3
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
5
4 ∗ q

⌋
. It leads to

Sig(kB [i]) = 0.

If conditions 1, 2, and 3 are satisfied, then the first targeted signal can be
realized.

For 0 ≤ |sumi,4| ≤ 15, according to the expression (5), if the relation

k1 ≤
⌊
q
4

⌋
− 30

15
(7)

is satisfied, then −
⌊
q
4

⌋
+ 1 ≤ |kB [i]| ≤

⌊
q
4

⌋
. That is, the condition 1 holds.

For 16 ≤ |sumi,4| ≤ 47, from the expression (5), if the relation

k1 ≤
⌊
3
4 ∗ q

⌋
− 30

47
, k1 ≥

⌈
q
4

⌉
+ 1 + 30

16
(8)

is satisfied, then
⌈
q
4

⌉
+ 1 ≤ |kB [i]| ≤

⌊
3
4 ∗ q

⌋
. Namely, the condition 2 holds.

For 48 ≤ |sumi,4| ≤ 60, based on the expression (5), if the relation

k1 ≤
⌊
5
4 ∗ q

⌋
− 30

60
, k1 ≥

⌈
3
4 ∗ q

⌉
+ 1 + 30

48
. (9)
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is satisfied, then
⌈
3
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
5
4 ∗ q

⌋
. I.e., the condition 3 holds.

From the expressions (7), (8), (9), the range of k1 is⌈
q
4

⌉
+ 1 + 30

16
≤ k1 ≤

⌊
3
4 ∗ q

⌋
− 30

47
. (10)

We construct the second targeted signal, namely, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0].

1. If 0 ≤ |sumi,4| ≤ 7, the condition −
⌊
q
4

⌋
+ 1 ≤ |kB [i]| ≤

⌊
q
4

⌋
holds, which

makes Sig(kB [i]) = 0.
2. If 8 ≤ |sumi,4| ≤ 23, the condition

⌈
q
4

⌉
+ 1 ≤ |kB [i]| ≤

⌊
3
4 ∗ q

⌋
holds, which

lets Sig(kB [i]) = 1.
3. If 24 ≤ |sumi,4| ≤ 39, the condition

⌈
3
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
5
4 ∗ q

⌋
holds,

which leads to Sig(kB [i]) = 0.
4. If 40 ≤ |sumi,4| ≤ 55, the condition

⌈
5
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
7
4 ∗ q

⌋
holds,

which happens Sig(kB [i]) = 1.
5. If 56 ≤ |sumi,4| ≤ 60, the condition

⌈
7
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
9
4 ∗ q

⌋
holds,

which occurs Sig(kB [i]) = 0.

If the above conditions are satisfied, then the second targeted signal can be
realized.

From these conditions, we can get the range of k2 is⌈
q
4

⌉
+ 1 + 30

8
≤ k2 ≤

⌊
7
4 ∗ q

⌋
− 30

55
. (11)

Similarly, we obtain that the ranges of k3, k4, k5, k6 are as follows:⌈
q
4

⌉
+ 1 + 30

4
≤ k3 ≤

⌊
15
4 ∗ q

⌋
− 30

59
. (12)

⌈
q
4

⌉
+ 1 + 30

2
≤ k4 ≤

⌊
29
4 ∗ q

⌋
− 30

57
. (13)

⌈
q
4

⌉
+ 1 + 30

1
≤ k5 ≤

⌊
61
4 ∗ q

⌋
− 30

60
. (14)

⌈
119
4 ∗ q

⌉
+ 1 + 30

60
≤ k6 ≤

⌊
121
4 ∗ q

⌋
− 30

60
. (15)

For DXL-KE parameters, this means concretely

k1 ∈ [258.00, 260.80], k2 ∈ [516.00, 520.78], k3 ∈ [1032.00, 1040.89],

k4 ∈ [2064.00, 2083.52], k5 ∈ [4128.00, 4164.01], k6 ∈ [8124.75, 8260.26].
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Table 3: Signals ω
(t)
i for different kt, t = 1, 2, · · · , 6 and the range of sumi,4

satisfying 0 ≤ sumi,4 ≤ 60, where the vector corresponding to each col-
umn is called a binary code-word. For example, if the binary code-word is

(ω
(1)
i , ω

(2)
i , ω

(3)
i , ω

(4)
i , ω

(5)
i , ω

(6)
i )T = (0, 1, 0, 0, 0, 1)T , it means that sumi,λ = 15

.

0 · · · 7 8 · · · 15 16 · · · 23 24 · · · 39 40 · · · 47 · · · 55 56 · · · 60
k1 = 258 0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1 · · · 0 0 · · · 0
k2 = 516 0 · · · 0 1 · · · 1 1 · · · 1 0 · · · 0 1 · · · 1 · · · 1 0 · · · 0
k3 = 1033 0 · · · 1 1 · · · 0 0 · · · 1 1 · · · 1 1 · · · 0 · · · 1 1 · · · 0
k4 = 2067 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 1
k5 = 4061 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0
k6 = 8192 0 · · · 1 0 · · · 1 0 · · · 1 0 · · · 1 0 · · · 1 · · · 1 0 · · · 0

Table 4: Signals ω
(t)
i for different kt, t = 1, 2, · · · , 7 and the range of sumi,8

satisfying 0 ≤ sumi,8 ≤ 120

0 1 2 · · · 59 60 · · · 119 120

k1 = 129 0 0 0 · · · 1 1 · · · 0 0
k2 = 258 0 0 0 · · · 0 0 · · · 0 0
k3 = 516 0 0 0 · · · 0 0 · · · 1 0
k4 = 1032 0 0 0 · · · 1 0 · · · 1 1
k5 = 2065 0 0 1 · · · 1 1 · · · 0 0
k6 = 4130 0 1 1 · · · 0 0 · · · 1 0
k7 = 8192 0 1 0 · · · 1 0 · · · 1 0
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Therefore, based on the assumption that 0 < kt ≤ q−1
2 , we can select

k1 = 258, k2 = 516, k3 = 1033, k4 = 2067, k5 = 4164, k6 = 8192.

Using the above method, different values of k1, k2, k3, k4, k5, k6 will generate
different targeted signals. These signals will construct the following Table 3.

To sum up, for the case of λ = 4, Alice forges public keys 6 times to recover
the value of sumi,λ by checking which binary code-word uniquely matches this
value.

The analysis for the case of λ = 8 is similar to that of λ = 4. We omit the
detailed process and only present Table 4.

5.2 Step B: Recovering the value of sB

According to the analysis in Step A, Alice can obtain the values of sumi,λ for
every i = 0, 1, · · · , n − λ. Moreover, in the process of absolute values recovery,
Alice has recovered the absolute values |sB [i]|, i = 0, 1, · · · , n − 1. Next, Alice
will show how to reveal the sign of sB [i]. The specific recovery procedure is as
follows:

For the sake of simplicity, we ignore the subscript λ in the notation sumi,λ

and only write sumi, i.e. sumi = |
λ−1∑
j=0

sB [i + j]| for i = 0, 1, · · · , n − λ. Note

that Alice has obtained the absolute values |sB [i]|. In order to determine the
first λ − 1 coefficients sB [0], · · · , sB [λ − 2], Alice needs to guess their signs.
Therefore, Alice can get the correct signs by guessing at most 2λ−1 times. For
each guess, Alice knows the sum sB [0] + sB [1] + · · · + sB [λ − 2]. Denote cnti
as sB [i] + sB [i + 1] + · · · + sB [i + λ − 2] for 0 ≤ i ≤ n − λ. Here, cnt0 =

sB [0] + sB [1] + · · ·+ sB [λ− 2]. Therefore, we can rewrite sumi = |
λ−1∑
j=0

sB [i+ j]|

as
sumi = |cnti + sB [i+ λ− 1]| (16)

for 0 ≤ i ≤ n − λ. Alice already knows the values of sum0, cnt0, |sB [λ − 1]|, in
order to determine the sign of sB [λ− 1], Alice checks whether

sum0 = |cnt0 + |sB [λ− 1]||

or
sum0 = |cnt0 − |sB [λ− 1]||

is correct. The following predicates P1(·) and P2(·) simplify this process:
The inputs for predicates P1(·) and P2(·) are sumi, cnti and |sB [i+ λ− 1]|.

The corresponding outputs are as follows:

P1(·) =

{
1 if sumi = |cnti + |sB [i+ λ− 1]||,
0 if sumi ̸= |cnti + |sB [i+ λ− 1]||.

(17)
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P2(·) =

{
1 if sumi = |cnti − |sB [i+ λ− 1]||,
0 if sumi ̸= |cnti − |sB [i+ λ− 1]||.

(18)

The outputs of predicates P1(·) and P2(·) have four cases:

Case 1: The outputs of predicates P1(·) and P2(·) are (1,0).

Case 2: The outputs of predicates P1(·) and P2(·) are (0,1).

Case 3: The outputs of predicates P1(·) and P2(·) are (0,0).

Case 4: The outputs of predicates P1(·) and P2(·) are (1,1).

In the process of determining the sign of sB [λ− 1], i.e. i = 0, the inputs for
predicates P1(·) and P2(·) are sum0, cnt0, |sB [λ−1]|. If Case 1 occurs, the sign
of sB [λ − 1] is positive. If Case 2 occurs, the sign of sB [λ − 1] is negative. If
Case 3 occurs, the value of cnt0 is incorrect, Alice should guess another value
for cnt0. If Case 4 occurs, it means that cnt0 = 0 or |sB [λ− 1]| = 0.

For Case 4, if |sB [λ − 1]| = 0, then Alice determines sB [λ − 1] = 0, and if
cnt0 = 0, Alice can not determine sB [λ−1] > 0 or sB [λ−1] < 0, but Alice already
knows the absolute value |sB [λ− 1]|. Therefore, Alice chooses sB [λ− 1] < 0 (or
sB [λ−1] > 0) and stores the location of sB [λ−1] in memory. After knowing the
value of sB [λ−1], then Alice obtains the values of sum1, cnt1, |sB [λ]|. Therefore,
Alice could recover the value of sB [λ]. In the process of recovering the remaining
signs, the inputs for the predicates P1(·) and P2(·) are sumi, cnti, |sB [i+λ−1]|.
Using the same approach, Alice could recover all private key coefficients.

It is worth noting that cnti = 0 may occur several times when Alice recovers
the private key coefficient, and the memory stores multiple locations. If the
Case 3 occurs while recovering the sign of sB [t] and the memory is not empty,
Alice needs to extract the position pos that is closest to t in memory, and reset
sB [pos] > 0 (or sB [pos] < 0), finally, Alice deletes pos from the stored memory.
In addition, if the memory is empty, then Alice needs to guess another value of
cnt0. This approach can be seen as the depth first search (DFS). In following Fig.
3, we show that the depth first search is utilized to recover the reused private
key sB .

Remark 2. The Case 3 will occur several times and it filters out the redundant
operations, so we can complete the key recovery in a very short time.
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Fig. 3: The DFS process in recovering sB , where (1), (2), (3) and (4) represent
Case 1, Case 2, Case 3, and Case 4, respectively.

Remark 3. Case 4 will generate two branches and Case 3 will abort the im-
possible branches. Here, we propose an open problem: are there any methods to
predict the number of occurrences of Case 3 and Case 4?

Based on a combination of signal leakage attack and depth first search, several

candidate private keys s
(t)
B may be recovered. Then it is necessary to determine

the real private key sB . In Algorithm 1, we use the predicate τ(s
(t)
B ) to simplify

the check stage. Next we explain how to determine whether a recovered private

key s
(t)
B is the real private key sB .

Since Alice can obtain the recovered private key s
(t)
B and know the polyno-

mials a ∈ Rq and pB ∈ Rq, Alice computes 2 · e = pB − a · s(t)B and ||2 · e||∞,
where ||2 · e||∞ := maxn−1

i=0 {2 · |ei|}. In the DXL-KE protocol, the equation
2 ·eB = pB −a ·sB holds, and the ranges of these coefficients satisfy |eB [i]| ≤ 15.
Hence, ||2 · eB ||∞ ≤ 30.

The specific process of predicate τ(s
(t)
B ) is that Alice checks whether ||e||∞

satisfies ||2 · e||∞ ≤ 30. If ||2 · e||∞ ≤ 30 is satisfied, the predicate τ(s
(t)
B ) outputs

1, namely, the recovered private key s
(t)
B is the real private key sB . Conversely,

if ||2 · e||∞ ≤ 30 is not satisfied, the predicate τ(s
(t)
B ) outputs 0, the recovered

private key s
(t)
B is not the real private key sB .

It is worth noting that there may be many candidate private keys, and in-
correct candidate private keys can be filtered out through the checking stage.

5.3 A simple example

We give a simple example to illustrate the above attack process. In this example,
we take λ = 8.
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Fig. 4: The simple example. The first line is the subscripts and the second line
shows Bob’s private key sB . The next two lines are |sB | and sumi that Alice has
obtained. The remaining lines show the process of Alice recovering sB .

In Fig. 4, blue (−,+) indicates the sign of the first seven coefficients that
Alice guesses, and red (−,+) presents the case where cnti = 0, Alice needs
to guess sB [i + 7] > 0 or sB [i + 7] < 0, green (−,+) said Alice determined
sB [i + 7] > 0 or sB [i + 7] < 0 according to the predicates P1(·) and P2(·), ⊥
means an error that occurred during the recovery process.

For the first position, from the value of |sB [7]| = 0, Alice can quickly deter-
mine sB [7] = 0.

For the second position, since cnt1 = 0, |sB [8]| = 1, and sum1 = 1, the
outputs of the predicates P1(·) and P2(·) are (1,1), Alice cannot get the sign of
sB [8]. So Alice randomly select sB [8] < 0, namely, sB [8] = −1, and store the
location 8 in memory {8}.

For the third position, since cnt2 = −3, |sB [9]| = 1 and sum2 = 0, the
outputs of the predicates P1(·) and P2(·) are (0,0) and the memory {8} is not
empty, it means that Alice selected the sign of sB [8] is wrong. Thus, Alice should
set sB [8] > 0, namely sB [8] = 1, and delete the position 8 from the stored
memory. Then, Alice can determine that cnt2 = −1, |sB [9]| = 1 and sum2 = 0,
the outputs of predicates P1(·) and P2(·) are (1,0). Therefore, Alice obtains
sB [9] = 1.

For the fourth position, cnt3 = 2, |sB [10]| = 2 and sum3 = 4, the outputs of
the predicates P1(·) and P2(·) are (1,0). Hence, Alice knows sB [10] = 2.

For the fifth position, cnt4 = 7, |sB [11]| = 5 and sum4 = 2, the outputs of
the predicates P1(·) and P2(·) are (0,1). Therefore, Alice gets sB [11] = −5.

Using the same operation, Alice will get the whole private key sB one position
after another.

Remark 4. The above recovery process is an instance of Figure 3.

6 Experiments

The experimental environment is running on a personal computer with 2.40GHz
Intel(R) Core(TM) I5-10200h CPU and 16GB RAM, and the operating system
is Ubuntu 18.04.6LTS. For different λ values, we tested DXL-KE protocol for
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1000 times, and obtained the average number of forged public keys and the time
required to complete the attack as follows:

Table 5: Comparison of the experimental results on DXL-KE, Ours1 is the case
of λ = 3, Ours2 shows the results of λ = 4 and so on. #Queries presents
the number of forged public keys, Time is the time required to complete key
recovery.

Protocol Attacks n α q
Average

#Queries Time

DXL-KE

Signal Leakage Attack [11]

1024 3.197 214 + 1

32770 3.8h
Sparse Signal Attack [9] 824.13 24.14s

Previous Best [31] 24.23 0.67s
Ours1 10 ∞
Ours2 10 0.36s
Ours3 11 0.24s
Ours4 11 0.24s
Ours5 11 0.24s
Ours6 11 0.24s

7 Conclusion

In this paper, we proposed a more efficient key recovery method for the case
of key reuse in DXL-KE protocol, which combines with signal leakage attack
and depth first search. This method requires fewer public keys to be forged and
the private key can be recovered in a shorter time. Compared with previous
attacks, our results show that in terms of the number of forged public keys, our
work is about 60% lower, and our work is about 50% lower in the time it takes
to complete the whole key recovery. More specifically, Alice needs to forge the
public keys 10 or 11 times to recover Bob’s reused private key in 0.36 seconds
or 0.24 seconds.
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A The choices of k in relative signs recovery

We show how to get the value of k to match the corresponding signals in Table
4.

A.1 The choices of k for λ = 8

For the case of λ = 8, the process of obtaining the ranges of k1, k2, · · · , k7 is
similar to the case of λ = 4. We take k1 as an example to analyze the range of
k1, and we no longer give specific details but only the ranges of k2, · · · , k7.

We start with the first signal in Table 4, namely, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

1. If 0 ≤ |sumi,8| ≤ 31, then −
⌊
q
4

⌋
+ 1 ≤ |kB [i]| ≤

⌊
q
4

⌋
. It means that

Sig(kB [i]) = 0.
2. If 32 ≤ |sumi,8| ≤ 95, then

⌈
q
4

⌉
+ 1 ≤ |kB [i]| ≤

⌊
3
4 ∗ q

⌋
. It implies that

Sig(kB [i]) = 1.
3. If 96 ≤ |sumi,8| ≤ 120, then

⌈
3
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
5
4 ∗ q

⌋
. It leads to

Sig(kB [i]) = 0.

If conditions 1, 2, and 3 are satisfied, then the first targeted signal can be realized.

For 0 ≤ |sumi,8| ≤ 31, according to the expression (5), if the relation

k1 ≤
⌊
q
4

⌋
− 30

31
(19)

is satisfied, then −
⌊
q
4

⌋
+ 1 ≤ |kB [i]| ≤

⌊
q
4

⌋
. That is, the condition 1 holds.

For 32 ≤ |sumi,8| ≤ 95, from the expression (5), if the relation

k1 ≤
⌊
3
4 ∗ q

⌋
− 30

95
, k1 ≥

⌈
q
4

⌉
+ 1 + 30

32
(20)

is satisfied, then
⌈
q
4

⌉
+ 1 ≤ |kB [i]| ≤

⌊
3
4 ∗ q

⌋
. Namely, the condition 2 holds.

For 96 ≤ |sumi,8| ≤ 120, based on the expression (5), if the relation

k1 ≤
⌊
5
4 ∗ q

⌋
− 30

120
, k1 ≥

⌈
3
4 ∗ q

⌉
+ 1 + 30

96
. (21)

is satisfied, then
⌈
3
4 ∗ q

⌉
+ 1 ≤ |kB [i]| ≤

⌊
5
4 ∗ q

⌋
. I.e., the condition 3 holds.

From the expressions (19), (20), (21), the range of k1 is⌈
q
4

⌉
+ 1 + 30

32
≤ k1 ≤

⌊
3
4 ∗ q

⌋
− 30

95
. (22)
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Similarly, the ranges of k2, k3, k4, k5, k6, k7 are as follows:⌈
q
4

⌉
+ 1 + 30

16
≤ k2 ≤

⌊
7
4 ∗ q

⌋
− 30

111
(23)

⌈
q
4

⌉
+ 1 + 30

8
≤ k3 ≤

⌊
15
4 ∗ q

⌋
− 30

119
(24)

⌈
q
4

⌉
+ 1 + 30

4
≤ k4 ≤

⌊
29
4 ∗ q

⌋
− 30

115
(25)

⌈
q
4

⌉
+ 1 + 30

2
≤ k5 ≤

⌊
59
4 ∗ q

⌋
− 30

117
(26)

⌈
q
4

⌉
+ 1 + 30

1
≤ k6 ≤

⌊
121
4 ∗ q

⌋
− 30

120
(27)

⌈
239
4 ∗ q

⌉
+ 1 + 30

120
≤ k7 ≤

⌊
241
4 ∗ q

⌋
− 30

120
(28)

For DXL-KE parameters, this means concretely
k1 ∈ [129.00, 129.03], k2 ∈ [258.00, 258.04], k3 ∈ [516.00, 516.07],
k4 ∈ [1032.00, 1032.70], k5 ∈ [2064.00, 2065.36], k6 ∈ [4128.00, 4130.13],
k7 ∈ [8158.62, 8226.38].
Therefore, we can select k1 = 129, k2 = 258, k3 = 516, k4 = 1032, k5 =

2065, k6 = 4130, k7 = 8192.
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