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Abstract. Several key exchange protocols based on tropical circulant matri-

ces were proposed in the last two years. In this paper, we show that protocols
offered by M. Durcheva [11], by B. Amutha and R. Perumal [2], and by H.

Huang, C. Li, and L. Deng [15] are insecure.

1. Introduction

The Diffie–Hellman key exchange algorithm [8] was the first widely used method
of exchanging keys safely over an insecure channel. The original implementation
of the protocol uses the multiplicative group of integers modulo p. Sidelnikov,
Cherepnev, and Yaschenko [31] proposed the following key exchange method based
on non-commutative semigroups. Let G be a non-commutative semigroup, H and
R be commutative subsemigroups of G, and W P G. These objects are public.

(1) Alice chooses two elements PA P H and QA P R as her secret key. She
computes KA “ PA ¨ W ¨ QA and sends it to Bob.

(2) Bob chooses two elements PB P H and QB P R as his secret key. He
computes KB “ PB ¨ W ¨ QB and sends it to Alice.

(3) Alice computes the common secret key KAB “ PA ¨ KB ¨ QA.
(4) Bob computes the common secret key KBA “ PB ¨ KA ¨ QB .

They share the same key because PA ¨pPB ¨W ¨QBq¨QA “ PB ¨pPA ¨W ¨QAq¨QB .
Also, a similar idea of using non-abelian groups was offered by Stickel [32].
The success of this method is determined by the choice of G,H, and R. Some

examples of groups were analyzed by Sidelnikov, Cherepnev, and Yaschenko [31].
Also, a general analysis in the case of groups was done by Miasnikov and Ro-
man’kov [25, 29].

Grigoriev and Shpilrain [13] suggested using tropical semigroups. There are
two reasons for this choice. First, it helps avoid linear algebra attacks. Second,
operations can be performed quickly and efficiently. The following G,H, and R
were offered in their paper. G is the tropical semiring of square matrices of order
n over the min-plus semiring Zmin,`, W “ In, H “ tppAq | ppxq P Zmin,`rxsu, and
R “ tqpBq | qpxq P Zmin,`rxsu, where A and B are two non-commuting matrices
over Zmin,`. Kotov and Ushakov [20] analyzed this protocol and suggested an
attack on it. The key point of their method is the fact that sequences of powers of
tropical matrices over the min-plus algebra often display some patterns.

Muanalifah and Sergeev [22] considered protocols with other G,H, and R and
analyzed some attacks on them. In one of the protocols, they used the semiring
of square matrices of order n over Rmax,` as G, and sets of quasi-polynomials of
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Jones matrices [19] as H and R. In the other protocol, they used the same G and
sets of Linde–De la Puente matrices [21] as H and R.

Durcheva [10] proposed a protocol where G is a matrix semiring over the max-
plus semiring, H “ tppAqm | ppxq P Rmax,`rxsu, and R “ tppAqk | ppxq P

Rmax,`rxsu. The matrix A and the integers m and k are public. Also, Durheva
and Trendafilov [12] used the same G, H “ tAn | n P Nu, and R “ tBm | m P Nu.
Ahmed, Pal, and Mohan [1] showed that these protocols are insecure.

Another interesting class of commuting matrices is circulant matrices. Recently,
a few protocols based on these matrices were offered. Huang, Li, and Deng [15] of-
fered a key exchange protocol based on tropical upper-t-circulant matrices. Amutha
and Perumal [2] proposed protocols based on tropical lower-t-circulant matrices and
tropical anti-t-p-circulant matrices. In this paper, we modify the attack from [20]
and [22] and show that these protocols are insecure.

Durcheva [11] offered a new key exchange protocol employing circulant matrices.
Jiang, Huang, and Pan [18] demonstrated that this protocol is not secure. This
paper shows that it is also insecure when degrees of polynomials are not fixed.

For the sake of completeness, it is worthy of note that another key exchange
protocol based on tropical matrix algebras was proposed by Grigoriev and Shpil-
rain [14]. They suggested using semidirect products to destroy patterns of sequences
of powers of matrices which were exploited in the attacks on their first protocol.
This protocol was thoroughly analyzed by Isaac and Kahrobaei [17], Muanalifah
and Sergeev[23], and Rudy and Monico [30]. Also, Durcheva [9] proposed a key
exchange protocol that uses pairs of dual tropical structures. It was shown that
this protocol is also insecure by Ahmed, Pal, and Mohan [1] and by Kotov, Treier,
and Buchinskiy [4].

For more information on using non-commutative algebraic structures in cryptog-
raphy, see [24, 26, 28, 29].

The remainder of this paper is structured into four parts. In Section 2, tropical
algebras, matrices, and other constructions over tropical algebras are discussed. In
Section 3, the description of the protocols that we analyze is given. In Section 4,
an attack on the protocols is introduced, and the results of our experiments are
presented. The final section offers a conclusion of the work.

2. Tropical algebras

In this section, the tropical algebras, tropical matrices, tropical polynomials, and
some other tropical constructions are defined.

The max-plus algebra Rmax,` is the set RY t´8u equipped with the operations
x ‘ y “ maxpx, yq and x b y “ x ` y. The min-plus algebra Rmin,` is the set
R Y t8u equipped with the operations x ‘ y “ minpx, yq and x b y “ x ` y. These
two algebras are known as tropical algebras. These algebras are semirings, which
means they are similar to rings but without the requirement that each element
must have an additive inverse. Moreover, they are idempotent and commutative.
We denote the unit for ‘ as o, and the unit for b as e: o “ 8 and e “ 0 for the
min-plus semiring and o “ ´8 and e “ 0 for the max-plus semiring.

Sometimes Z instead of R is used. We denote the corresponding algebras as
Zmax,` and Zmin,`. The tropical algebras have been widely studied and have many
applications. For more information, we refer the reader to [5].
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Let S be a semiring. The set of all n ˆ n matrices MatnpSq with entries in S
can be equipped with addition ‘ and multiplication b as well:

paijq ‘ pbijq “ paij ‘ bijq,

paijq b pbijq “ pai1 b b1j ‘ ¨ ¨ ¨ ‘ ain b bnjq.

The obtained set of matrices is also an idempotent semiring.
The identity matrix I has e on the diagonal and o elsewhere, whereas a scalar

matrix is a matrix that has c P S on the diagonal and o elsewhere. Multiplying a
matrix by a scalar is just multiplying by the corresponding scalar matrix.

A circulant matrix is a matrix of the form
¨

˚

˚

˚

˚

˚

˝

a0 an´1 an´2 ¨ ¨ ¨ a1
a1 a0 an´1 ¨ ¨ ¨ a2
a2 a1 a0 ¨ ¨ ¨ a3
...

...
...

. . .
...

an´1 an´2 an´3 ¨ ¨ ¨ a0

˛

‹

‹

‹

‹

‹

‚

. (1)

It is easy to show that all the circulant matrices of order n form a commutative
algebra because the sum and the product of two circulant matrices are circulant,
and A b B “ B b A.

Let t be an integer. A matrix of the form
¨

˚

˚

˚

˚

˚

˝

a0 an´1 b t an´2 b t ¨ ¨ ¨ a1 b t
a1 a0 an´1 b t ¨ ¨ ¨ a2 b t
a2 a1 a0 ¨ ¨ ¨ a3 b t
...

...
...

. . .
...

an´1 an´2 an´3 ¨ ¨ ¨ a0

˛

‹

‹

‹

‹

‹

‚

(2)

is called an upper-t-circulant matrix of order n [15]. Lower-t-circulant matrices are
defined similarly. Let t be an integer. A matrix of the form

¨

˚

˚

˚

˚

˚

˝

a0 an´1 an´2 ¨ ¨ ¨ a1
a1 b t a0 an´1 ¨ ¨ ¨ a2
a2 b t a1 b t a0 ¨ ¨ ¨ a3
...

...
...

. . .
...

an´1 b t an´2 b t an´3 b t ¨ ¨ ¨ a0

˛

‹

‹

‹

‹

‹

‚

is called a lower-t-circulant matrix of order n [2].
Let p and t be integers. A matrix of the form

¨

˚

˚

˚

˚

˚

˝

a0 b t an´1 b t ¨ ¨ ¨ a2 b t a1
a1 b t a0 b t ¨ ¨ ¨ a3 a2 b t
...

...
. . .

...
...

an´2 b t an´3 ¨ ¨ ¨ a0 b t an´1 b t
an´1 an´2 b t ¨ ¨ ¨ a1 b t a0 b t

˛

‹

‹

‹

‹

‹

‚

is called an anti-t-p-circulant matrix if ak ´ ak`1 “ p for each k [2].
It is possible to show that all the upper-t-circulant matrices of order n form

a commutative semiring. The same is true for lower-t-circulant matrices and for
anti-t-p-circulant matrices.

We use the following notation: MatnpSq is the set of all square matrices of
order n over S, CnpSq is the set of all circulant matrices of order n, UCnpS, tq is
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the set of all upper-t-circulant matrices of order n, LCnpS, tq is the set of all lower-
t-circulant matrces of order n, and ACnpS, p, tq is the set of all anti-t-p-circulant
matrices of order n.

We denote an element of the semiring a raised to the n-th power by abn. It
is possible to define the set of polynomials over S. Also, let A P MatnpSq and

ppxq “
Àd

i“0 pi b xbi, then we can define ppAq in the usual way
Àd

i“0 pi b Abi.

Remark 1. Any circulant matrix (1) can be presented as

a0 b I ‘ a1 b P ‘ ¨ ¨ ¨ ‘ an´1 b Pbn´1, (3)

where

P “

¨

˚

˚

˚

˚

˚

˝

o o o ¨ ¨ ¨ o e
e o o ¨ ¨ ¨ o o
o e o ¨ ¨ ¨ o o
...

...
...

. . .
...

...
o o o ¨ ¨ ¨ e o

˛

‹

‹

‹

‹

‹

‚

.

Remark 2. Any upper-t-circulant matrix (2) can be presented as (3), where

P “

¨

˚

˚

˚

˚

˚

˝

o o o ¨ ¨ ¨ o t
e o o ¨ ¨ ¨ o o
o e o ¨ ¨ ¨ o o
...

...
...

. . .
...

...
o o o ¨ ¨ ¨ e o

˛

‹

‹

‹

‹

‹

‚

.

Remark 3. And any lower-t-circulant matrix (2) can be presented as (3), where

P “

¨

˚

˚

˚

˚

˚

˝

o e o ¨ ¨ ¨ o o
o o e ¨ ¨ ¨ o o
o o o ¨ ¨ ¨ o o
...

...
...

. . .
...

...
t o o ¨ ¨ ¨ o o

˛

‹

‹

‹

‹

‹

‚

.

Remark 4. Now consider an anti-t-p-circlulant matrix (2). From the definition,
we have ak “ a0 b pbk for every k. Thus, we have

¨

˚

˚

˚

˚

˚

˚

˚

˝

t b a0 t b a0 b pbn´1 ¨ ¨ ¨ t b a0 b pb2 a0 b p
t b a0 b p t b a0 ¨ ¨ ¨ a0 b pb3 t b a0 b pb2

t b a0 b pb2 t b a0 b p ¨ ¨ ¨ t b a0 b pb4 t b a0 b pb3

...
...

. . .
...

...
t b a0 b pbn´2 a0 b pbn´3 ¨ ¨ ¨ t b a0 t b a0 b pbn´1

a0 b pbn´1 t b a0 b pbn´2 ¨ ¨ ¨ t b a0 b p t b a0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Therefore, every matrix M P ACnpR, p, tq can be presented as a0 b P , where

P “

¨

˚

˚

˚

˚

˚

˚

˚

˝

t t b pbn´1 ¨ ¨ ¨ t b pb2 p
t b p t ¨ ¨ ¨ pb3 t b pb2

t b pb2 t b p ¨ ¨ ¨ t b pb4 t b pb3

...
...

. . .
...

...
t b pbn´2 pbn´3 ¨ ¨ ¨ t t b pbn´1

pbn´1 t b pbn´2 ¨ ¨ ¨ t b p t

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Let A “ paijq and B “ pbijq be two matrices. The matrix power function is
defined in the following way [11]:

AB “

˜

n
ÿ

k“1

aikbkj

¸

ij

.

It is easy to show that if A and B are circulant matrices, then AB is a circulant
matrix as well [11].

3. Protocols

In this section, we give descriptions of the protocols proposed in [11], [2] and [15].

3.1. Huang, Li, and Deng’s protocol. Huang, Li, and Deng [15] offered the
following key exchange protocol based on tropical upper-t-circulant matrices.

Let R be the min-plus semiring, n, s, t P Zą0, and Y P MatnpRqzpUCnpR, sq Y

UCnpR, tqq. These numbers, semiring, and matrix are public.

(1) Alice chooses two matrices P1 P UCnpR, sq and Q1 P UCnpR, tq. She
computes her public key KA “ P1 b Y b Q1 and sends it to Bob.

(2) Bob chooses two matrices P2 P UCnpR, sq and Q2 P UCnpR, tq. He com-
putes his public key KB “ P2 b Y b Q2 and sends it to Alice.

(3) Alice computes her secret key KAB “ P1 b KB b Q1.
(4) Bob computes his secret key KBA “ P2 b KA b Q2.

Alice and Bob end up with the same key KAB “ KBA “ K, which can serve as
the secret key.

3.2. Amutha and Perumal’s protocol 1. B. Amutha and R. Perumal [2] sug-
gested a similar protocol based on lower-t-circulant matrices.

Let R be the min-plus semiring, n P Zą0, s, t P Z, and Y P MnpRq.

(1) Alice chooses two matrices P1 P LCnpR, sq and Q1 P LCnpR, tq. She com-
putes her public key KA “ P1 b Y b Q1 and sends it to Bob.

(2) Bob chooses two matrices P2 P LCnpR, sq and Q2 P LCnpR, tq. He com-
putes his public key KB “ P2 b Y b Q2 and sends it to Alice.

(3) Alice computes her secret key KAB “ P1 b KB b Q1.
(4) Bob computes his secret key KBA “ P2 b KA b Q2.

Then, Alice and Bob share the same key KAB “ KBA “ K.

3.3. Amutha and Perumal’s protocol 2. Also, B. Amutha and R. Perumal [2]
suggested another protocol based on anti-p-t-circulant matrices.

Let R be the min-plus semiring, n P Zą0, s, t, p P Z, and Y P MnpRq.

(1) Alice chooses two matrices P1 P ACnpR, p, sq and Q1 P ACnpR, p, tq. She
computes her public key KA “ P1 b Y b Q1 and sends it to Bob.

(2) Bob chooses two matrices P2 P ACnpR, p, sq and Q2 P ACnpR, p, tq. He
computes his public key KB “ P2 b Y b Q2 and sends it to Alice.

(3) Alice computes her secret key KAB “ P1 b KB b Q1.
(4) Bob computes his secret key KBA “ P2 b KA b Q2.

It is possible to show that Alice and Bob share the same key KAB “ KBA “ K.
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3.4. Durcheva’s protocol. In [11] M. Durcheva suggested the following key ex-
change protocol. Let R be the max-plus or min-plus semiring, Q1, Q2 P CnpRq and
M P MatnpRq be public matrices.

The key exchange protocol is as follows.

(1) The first key-exchange phase:
(a) Alice chooses two matrices A1, A2 P CnpRq as her secret key. She

calculates her public key KA “
A1Q1 b

A2Q2 bM and sends it to Bob.
(b) Bob chooses two circulant matrices B1 and B2 as his secret key. He

calculates his public key KB “
B1Q1b

B2Q2bM and sends it to Alice.

(c) Alice computes the common secret key KAB “
A1Q1 b

A2Q2 b KB “
A1Q1 b

A2Q2 b
B1Q1 b

B2Q2 b M .

(d) Bob computes the common secret key KBA “
B1Q1 b

B2Q2 b KA “
B1Q1 b

B2Q2 b
A1Q1 b

A2Q2 b M .
(2) The second key-exchange phase:

(a) Alice chooses two polynomials ppxq, tpxq P Rrxs. She computes her
public matrix LA “ ppMq b KAB b tpMq and sends it to Bob.

(b) Bob chooses two polynomials dpxq, epxq P Rrxs. He computes his pub-
lic matrix LB “ dpMq b KBA b epMq and sends it to Alice.

(c) Alice computes her secret key LAB “ ppMq b LB b tpMq “ ppMq b

dpMq b KBA b epMq b tpMq.
(d) Bob computes his secret key LBA “ dpMq b LA b epMq “ dpMq b

ppMq b KAB b tpMq b epMq.

It is easy to verify that they share the same keys LAB “ LBA “ L.

4. Attacks

In this section, we recall the attack from [20] and improvements to this attack
made by Muanalifah and Sergeev [22]. After that, we show how it can be used to
break the protocols described above. In the final subsection, we will present the
results of our experiments.

4.1. The general attack. To break Grigoriev and Shpilrain’s protocol described
in the introduction, for an eavesdropper, it is sufficient to find a solution to the
following system of equations:

X b A “ A b X, Y b B “ B b Y, X b Y “ KA. (4)

Let X “
ÀD

i“0 xi b Abi and Y “
ÂD

j“0 yj b Bbj . For such matrices, the first

and the second equation in (4) are satisfied. Therefore, we need to solve

D
à

i“0,j“0

xi b yj b Abi b Bbj “ KA.

Denoting T ij “ Abi b Bbj ´ KA, we can rewrite this equation as

D
â

i“0,j“0

xi b yj b T ij “ E,

where E is the matrix of the corresponding size with all entries equal to 0.
Therefore, we have the following system of equations:

min
ij

pxi ` xj ` T ij
kl q “ 0 for each k, l P t1, . . . , nu. (5)
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Solving this system is the main goal of the attack. Compute mij “ mink,l T
ij
kl

and Pij “ argmink,l T
ij
kl .

It is possible to show [22] that, to solve (5), we need to find a subset C of
t0, . . . , Du ˆ t0, . . . , Du such that

Ť

pi,jqPC Pij “ t1, . . . , nu ˆ t1, . . . , nu and values

xi, yi, i, j P t0, . . . , Du, satisfying
"

xi ` yj “ ´mij if pi, jq P C,
xi ` yj ě ´mij otherwise.

(6)

Hence, in order to solve the system (5), we can enumerate the minimal covers
and then choose that cover that defines the consistent system of equations and
inequalities (6).

It is known that finding a minimal set cover problem is one of Karp’s 21 problems
shown to be NP-complete in 1972. Nevertheless, using some heuristics is sufficient
to check a small portion of the covers.

The heuristics are to sort covers using their sizes and to sort covers of the same
size using the value of |ti | Dj pi, jq P Cu| ¨ |tj | Di pi, jq P Cu|. It helps to reduce the
number of tested covers significantly.

Also, note that many Pij often coincide or have no intersections. This fact helps
to enumerate all minimal covers by a simple recursive procedure.

Muanalifah and Sergeev [22] noticed that this attack can be applied in the fol-
lowing general situation when the equation is

X b W b Y “ KA,

X P H can be presented as a finite sum X “
À

i xi b Bi, and Y P R can be
presented as a finite sum Y “

À

j yj b Cj .
Then we have

˜

D1
à

i“1

xi b Bi

¸

b W b

˜

D1
à

j“1

yj b Cj

¸

“ KA

.
Denoting T ij “ Bi b W b Cj ´ KA, we obtain

à

i,j

pxi b yjq b T ij “ E.

Therefore, this system of equations has a similar structure and can be solved
similarly.

As we can see, the most challenging part is to enumerate covers because the
number of covers is usually enormous. We need to enumerate them in order to find
a solution at the beginning of our process. We found that the following heuristics
and tricks help.

First, as we noticed earlier, many Pij coincide or have no intersections. Thus,
we can use a simple recursive procedure to enumerate all the minimal covers C Ď

tPijui,j .
Second, we sort the covers by size and start from the smallest.
Third, for each cover pPi1j1 , Pi2j2 , . . . , Pikjkq, we build the tuple of sets of pairs

pT1, T2, . . . , Tkq, where Tl “ tpi, jq | Pij “ Piljlu.
Fourth, if |Tl| “ 1, then the only pair of this set must be chosen. We form the

set of such mandatory pairs M . For the rest, we test each pair pi, jq if M Y tpi, jqu

defines a consistent system of equations and inequalities and throw away unsuitable
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pairs. If we have Tl such that |Tl| ą 1, then we sort this set using the following
weight function

wppi, jqq “ ´

˜

ÿ

m‰l

ř

pp,qqPTm
rp “ is

|Tm|
` 1

¸

¨

˜

ÿ

m‰l

ř

pp,qqPTm
rq “ js

|Tm|
` 1

¸

,

where r¨s is the Iverson bracket.
Fifth, we lazily enumerate elements of the Cartesian product of the sorted and

filtered Tl, l P 1, . . . , k. For this, we use a procedure that attempts to yield lighter
tuples sooner. We generate chunks of covers and add them to a priority queue Q
using the following weight function:

wpSq “ ´
ÿ

pi,jqPS

˜

´

ÿ

pp,qqPS

ri “ ps

¯

¨

´

ÿ

pp,qqPS

rj “ qs

¯

¸2

.

Sixth, we take the top element of the priority queue Q and build the corre-
sponding system (6). Finally, the simplex method can be used to determine if this
system is consistent. We use the function optimize.linprog from the SciPy li-
brary. This function is a wrapper of the C++ implementation of the dual revised
simplex method [16].

4.2. Analysis of Huang, Li, and Deng’s protocol and Amutha and Peru-
mal’s protocols. Using Remarks 2, 3, and 4, we find that the attack described
above is applicable to Huang, Li, and Deng’s protocol and Amutha and Perumal’s
protocols.

4.3. Analysis of Durcheva’s protocol. An analysis of this protocol was done
by Jiang, Huang, and Pan [18]. Here, we want to present some improvements to
their attack. Recall the main steps of their attack. For an eavesdropper to break
the protocol means to compute L based on Q1, Q2, M , KA, KB , LA, and LB . It
can be found in two steps. In the first step, K will be computed. In the second
step, L will be computed using K.

An eavesdropper does not have to find A1 and A2 in order to compute K, it is
sufficient to find a matrix A1 satisfying the following conditions

KA “ A1 b M,

A1 b p
B1Q1 b

B2Q2q “ p
B1Q1 b

B2Q2q b A1,

or to solve a similar system for Bob’s public key. If A1 satisfies the conditions above,
then the product A1 b KB equals A.

The second condition is true automatically if A1 is a circulant matrix. The first
one is a linear system, and a solution to this system can be easily found [5].

The second key exchange phase can be analyzed as follows. Any polynomial of
a matrix A is a finite sum of the powers of the matrix A, but we do not have any
upper bound for these powers. So, the attack from [20] cannot be applied here
directly. Let us recall the following definition. A sequence of matrices tAiu

8
i“0 is

called almost linear periodic if there exist a period ρ, a factor c, and a defect δ such
that for all i ą δ the following equation holds:

Ai`ρ “ pcq ` Ai.

For sequences of powers of a matrix over tropical algebras, this property has been
well studied [3, 6, 7, 27]. Therefore, if A has this property, then we can consider
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only powers of the matrix A from 0 to ρ ` δ to present all the matrices in tppAq |

ppxq P Zmin,`rxsu. Thus, first, we try to compute the defect and period of the
matrix M . Second, if it was done, we use the attack described in 4.1.

4.4. Experiments. The described attack was implemented in Python 1. We used
the following parameters for our experiments. We ran our experiments for matrices
of sizes 5, 10, 25, and 50. The number of tests for each size is 100. For Durcheva’s
and Grigoriev and Shpilrain’s protocols, elements of randomly generated matrices
are in r0, 105s. For the other protocols, elements of circulant matrices and param-
eters are in r´105, 105s. The degrees of the generated polynomials are in r5, 15s,
and the coefficients are in r´105, 105s. The upper bound used in the attack on
Durcheva’s protocol is 20.

The parameters of the system we used are Python 3.10, Windows 10 Pro 64-bit,
12th Gen Intel(R) Core(TM) i7-12700H 2.70 GHz, 16.0 GB RAM. The success rate
is 100% for all the experiments. The running time can be found in Table 1.

Protocol n “ 5 n “ 10 n “ 25 n “ 50
Amutha and Perumal’s protocol 1 0.38 0.38 0.69 7.16
Amutha and Perumal’s protocol 2 0.36 0.34 0.40 0.69

Durcheva’s protocol, the second phase 0.37 0.53 2.37 20.75
Grigoriev and Shpilrain’s protocol 0.32 0.41 1.71 13.87
Huang, Li, and Deng’s protocol 0.29 0.30 0.63 6.63

Table 1. Experimental results of the attack (time in seconds)

5. Conclusion

This paper showed that the protocols described in [11, 2, 15] are insecure. We
showed that the attacks from [20] and [22] with some changes can be applied here
successfully. The success rate of our attack is 100%. Our analysis can further be
used to analyze other protocols based on tropical matrix algebras.
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