
Hermes: I/O-Efficient Forward-Secure Searchable
Symmetric Encryption

Brice Minaud∗ and Michael Reichle∗

∗DIENS, École normale supérieure, PSL University, CNRS, INRIA, 75005 Paris,
France.

Abstract. Dynamic Symmetric Searchable Encryption (SSE) enables a
user to outsource the storage of an encrypted database to an untrusted
server, while retaining the ability to privately search and update the
outsourced database. The performance bottleneck of SSE schemes typ-
ically comes from their I/O efficiency. Over the last few years, a line
of work has substantially improved that bottleneck. However, all exist-
ing I/O-efficient SSE schemes have a common limitation: they are not
forward-secure. Since the seminal work of Bost at CCS 2016, forward se-
curity has become a de facto standard in SSE. In the same article, Bost
conjectures that forward security and I/O efficiency are incompatible.
This explains the current status quo, where users are forced to make a
difficult choice between security and efficiency.
The central contribution of this paper it to show that, contrary to what
the status quo suggests, forward security and I/O efficiency can be re-
alized simultaneously. This result is enabled by two new key techniques.
First, we make use of a controlled amount of client buffering, combined
with a deterministic update schedule. Second, we introduce the notion of
SSE supporting dummy updates. In combination, those two techniques of-
fer a new path to realizing forward security, which is compatible with I/O
efficiency. Our new SSE scheme, Hermes, achieves sublogarithmic I/O ef-
ficiency Õ

(
log log N

p

)
, storage efficiency O(1), with standard leakage,

as well as backward and forward security. Practical experiments confirm
that Hermes achieves excellent performance.

1 Introduction

Encrypted databases are an attractive proposition. A business or hospital may
want to outsource its customer database for higher availability, scalablity, or
persistence, without entrusting plaintext data to an external service. An end-to-
end encrypted messaging service may want to store and search user messages,
without decrypting them. In a different direction, even if a sensitive database is
stored locally, a company may want to keep it encrypted to provide a layer of
protection against security breaches and data theft. The adoption by MongoDB
of searchable encryption techniques is another recent illustration of the growing
demand for encrypted databases [31].

When outsourcing the storage of an encrypted database, a minimal desirable
functionality is the ability to search the data. Powerful techniques such as Fully

Homomorphic Encryption and Multi-Party Computation allow arbitrary com-
putation on encrypted data, but those approaches incur large overheads, and
become prohibitive at scale. At the other end of the spectrum, efficient histori-
cal approaches based on structure-preserving or order-preserving encryption are
subject to severe attacks, due to the large amount of information leaked to the
server [32, 24]. In view of this situation, modern research on searchable encryp-
tion seeks to offer workable trade-offs between performance, functionality, and
security, suited for real-world deployment.

Searchable Symmetric Encryption (SSE). The promise of SSE is to allow a
client to outsource an encrypted database to an untrusted server, while retaining
the ability to search the data [35]. At minimum, the client is able to issue a search
query to retrieve all document identifiers that match a given keyword. In the case
of Dynamic SSE, the client is also able to modify the contents of the database by
issuing update queries, for example to insert or remove entries. The server must
be able to correctly process the queries, while learning as little information as
possible about the client’s data and queries. The security proof accompanying
an SSE scheme provides formal guarantess regarding what information is leaked
to the server during searches and updates. Typically, this information includes
the total size of the database, the repetition of queries, and an identifier (such
as the memory address) of the documents that match a query.

Forward Security. In short, forward security asks that updates should leak
no information to the server [36]. The first efficient forward-secure SSE was
proposed by Bost at CCS 2016 [9]. Since then, forward security has become a de
facto standard in SSE [34, 11, 27, 21, 18]. One motivation for forward security
cited in [9] is that it mitigates certain attacks: the more severe attacks from [38]
exploit update leakage, and fail on forward-secure schemes. Forward security is
also attractive in update-heavy workloads, for instance a private messaging app.
In that setting, the encrypted database is initially empty, and its entire contents
are added online through updates. Forward security guarantees that building
the database online leaks no information.

I/O Efficiency. Another important design goal for SSE that has emerged in
recent years is I/O efficiency [15]. For performance reasons, most SSE designs rely
exclusively on symmetric cryptographic primitives. The overhead of symmetric
encryption is very small on modern hardware. As a result, the main performance
bottleneck is instead determined by how quickly the data can be accessed on
disk [14, 9, 8]. In a nutshell, I/O efficiency asks that lists of identifiers matching
the same query should be stored close together in memory, at least at the page
level. This is because reading many disjoint locations on disk is much more
expensive in latency and throughput than contiguous reads.

The need to store related data in close proximity is not at all innocuous
for security. Asking that related data items should be stored in close proximity

2

creates a correlation between the location of an encrypted data item in memory,
and its contents. Since the server can observe the location of data it is asked to
retrieve, and we do not want the server to infer information about the contents of
that data, this creates a tension between security and efficiency. That is, security
asks that there is no correlation between the location of data and its content,
while I/O efficiency asks for the opposite.

This tension was captured in an impossibility result by Cash and Tessaro
at Eurocrypt 2014 [15]. To measure I/O efficiency, [15] introduces notions of
locality (number of non-adjacent memory locations accessed per query) and read
efficiency (ratio between the total amount of memory read by the server to
process a query, and the size of the plaintext answer). In brief, Cash and Tessaro
show that a secure SSE scheme with linear server storage cannot have both
constant locality, and constant read efficiency. This holds true even for static
SSE. In another seminal work, at STOC 2016, Asharov et al. build an SSE with
constant locality and Õ (logN) read efficiency — even Õ (log logN) with a mild
restriction on the input database [3].

A different measure of I/O efficiency, called page efficiency, was introduced by
Bossuat et al. at Crypto 2021 [8] (the same metric was implicit in prior work [29]).
Page efficiency is the ratio of memory pages read by the server to process a query,
divided by the number of pages necessary to hold the plaintext answer. From a
practical standpoint, page efficiency is a very good predictor of performance on
modern Solid State Drives (SSDs), whereas locality is mainly relevant for older
Hard Disk Drives [8]. From a theoretical standpoint, constant page efficiency is
a weaker requirement than the combination and constant locality and constant
read efficiency. Interestingly, this weaker requirement sidesteps the impossibility
result of Cash and Tessaro: Bossuat et al. build a scheme with linear server
storage and constant page efficiency [8].

Since the work of Cash and Tessaro [15], many I/O-efficient schemes have
been proposed. Of these, the vast majority hold in the static setting [15, 3, 4,
20, 19, 8], where the database is fixed at setup, and does not support updates.
To our knowledge, only two constructions have been proposed in the dynamic
setting, where the database can be updated. The first was presented by Miers
and Mohassel at NDSS 2017 under the name IO-DSSE [29]. The second is a
recent result presented by Minaud and Reichle at Crypto 2022 [30]. IO-DSSE
has non-standard leakage, and incurs a significant performance overhead due to
its reliance on an ORAM approach. Further, the security proof is flawed and we
give a concrete attack in this work. On the other hand, the main construction
of Minaud and Reichle is a theoretical feasibility result, with no instantiation.
Neither scheme is forward-secure.

1.1 Our Contributions

Both SSE design goals, I/O efficiency and forward security, date back to 2014
[15, 36]. Almost a decade later, there is no satisfactory solution to achieving both
at once. This is not a coincidence: the two goals seem to be fundamentally at

3

Table 1 – An overview of relevant dynamic SSE schemes. N is an upper bound
on database size, W is an upper bound on the number of keywords, p is the
page size.
SSE Page Efficiency Storage Efficiency Client Storage Forward Sec.

Σoφoς, Diana [9, 11] O(p) O(1) O(W) 3

Πpack, Π2lev [13] O(1) O(p) O(W) 7

IO-DSSE [29] O(logW) O
(
1 + p·W

N

)
O(W) 7

LayeredSSE [30] Õ
(
log log N

p

)
O(1) O(1) 7

Hermes Õ
(
log log N

p

)
O(1) O(W) 3

odds with each other (an explanation why will be given in Section 1.3). It was
conjectured in [9] that they are incompatible.

This state of affairs raises some troubling questions for SSE. Since I/O ef-
ficiency is the main performance bottleneck, if it is mutually exclusive with
forward security, then forward security comes at a heavy performance price —
hinting at a stronger form of Cash and Tessaro’s impossibility result when for-
ward security comes into play. It would also imply that the rich literature on
I/O-efficient SSE will have to remain confined to static SSE, or at least non-
forward-secure SSE. So far, the conjecture is supported by current work: [9]
conjectures that I/O efficiency and forward security are “irreconcilable notions”,
except via expensive constructions such as ORAM; [29] builds the only dynamic
I/O-efficient SSE scheme to date with low update leakage (although still not
quite forward-secure), but relies on ORAM; and the only other dynamic I/O-
efficient SSE in [30] justifies its high update leakage by stating that forward
security is likely expensive for I/O-efficient SSE.

As a first contribution, we give an explicit attack that contradicts the security
claim of IO-DSSE [29] (Section 7). Our attack leverages a subtle update leakage
in IO-DSSE, which was introduced through an optimization of the underlying
ORAM. This would seem to support the conjecture of [9].

As our main contribution, we go against the prevailing wisdom, and show
that the previous conjecture is incorrect. We build the first forward-secure SSE
scheme Hermes, with linear server storage and sublogarithmic page efficiency
Õ (log log(N/p)). A brief comparison with existing schemes is given in Table 1.
Hermes does not rely on ORAM, or any ORAM-like structure. Instead, it makes
use of two new technical ideas.

First, we introduce the notion of SSE schemes supporting dummy updates.
A dummy update can be triggered by the client at any time, and must look
indistinguishable from a real update in the server’s view. On the other hand,
we require that server storage should only grow with an upper bound N on
the number of real entries in the database: dummy updates create no storage
overhead. We present a simple framework to build an SSE scheme Dummy(Σ)

4

supporting dummy updates, based on an underlying suitable SSE scheme Σ.
The framework is based on an application of the two-choice allocation process.

The second main technical idea is a form of “deamortized” trivial ORAM.
An explanation of this technique is deferred to the technical overview below.
For now, we note that it involves buffering O(W) updates on the client side
before pushing them to the server, where W is an upper bound on the number
of searchable keywords. It was proved in [10] that single-round forward-secure
SSE requires Ω(W) client storage. As a consequence, the new buffer does not
increase client storage beyond a constant factor. Interestingly, it is is the use of
client storage that circumvents the proof sketched in [9] for the incompatibility
of forward security and I/O efficiency.

In Section 6, we run experiments to choose concrete parameters for Hermes.
Although our main contribution is qualitative (showing that forward security and
I/O efficiency are compatible), practical experiments show that Hermes performs
very well in practice, being outpaced only by purely static schemes.

1.2 Related Work

Several research directions are active within Searchable Encryption. Here, we fo-
cus on I/O efficiency. A brief overview of other directions is given in Appendix A.

The importance of I/O efficiency, and the relevant literature, were presented
in the introduction. We do not repeat them here. We simply recall that most
prior work on I/O-efficient SSE is limited to static SSE [15, 3, 4, 20, 19, 8],
where the database is known in advance and immutable. We are interested in
dynamic I/O-efficient SSE, which allows for updates to the database. Despite
the obvious practical importance of mutable databases, there is still very little
work in that area — likely owing to both recency and technical difficulty. We
are aware of only two constructions of dynamic I/O-efficient SSE. Since they are
directly comparable with this work, they deserve special attention.

The first construction of I/O-efficient Dynamic SSE was presented by Miers
and Mohassel at NDSS 2017, under the name IO-DSSE [29]. IO-DSSE opened the
way in a new area, but suffers from significant limitations. Intuitively, I/O effi-
ciency requires that document identifiers that match the same keyword should be
stored in close proximity. For that purpose, IO-DSSE groups identifiers matching
the same keyword into blocks of a fixed size p. Since the number of documents
matching a given keyword need not be a multiple of p, it is usually the case that
one of the blocks is incomplete, i.e. it contains less than p identifiers. As in other
works on I/O-efficient SSE, the main technical issue is how to efficiently handle
incomplete blocks. Especially, when a new document matching a given keyword
is added to the database, the document identifier needs to be appended to the
incomplete block associated with the keyword. In that process, it is unclear how
to hide to the server which incomplete block is being modified.

The solution proposed by IO-DSSE is to store incomplete blocks in an op-
timized Oblivious RAM (ORAM) construction. ORAM is a generic solution to
hide memory access patterns, but is notoriously expensive in practice. In IO-
DSSE, this approach is viable, because IO-DSSE focuses on use cases with few

5

searchable keywords: they target a messaging app scenario, and assume in their
experiments that no more than 350 keywords are searchable. Because the num-
ber of keywords is small, and there can be at most one incomplete block per
keyword, the ORAM overhead remains manageable. By contrast, if we were to
run IO-DSSE on the English Wikipedia database (a classic target in SSE lit-
erature), which contains millions of keywords, IO-DSSE blows up the size of
the database by a factor more than 100 (Section 6). A second limitation of IO-
DSSE is that its security claim is incorrect. It does not appear that the issue
can be fixed without a significant penalty in performance (cf. Section 7). A third
limitation of IO-DSSE is that, independently of the previous security issue, IO-
DSSE is not forward-secure. This puts it at odds with most of the rest of modern
(non-I/O-efficient) SSE literature, where forward security has become a standard
requirement [9, 34, 11, 27, 21, 18].

A recent work by Minaud and Reichle from Crypto 2022 also targets dynamic
I/O-efficient SSE [30]. Like IO-DSSE, [30] introduces useful techniques to build
I/O-efficient SSE. However, it is a theoretical work, which only considers asymp-
totic performance. It does not appear that the schemes were implemented, and
no practical evaluation is offered. Moreover, none of the constructions is forward-
secure. In practice, all the constructions of [30] directly leak which keyword is be-
ing updated, which is the worst case with regard to certain file-injection attacks
[38]. In contrast, Hermes is efficient in practice, and achieves forward security in
the strongest sense: updates leak no information to the server.

Before closing the section, we note that dynamic I/O-efficient SSE could in
principle be built using a folklore hierarchical construction, which generically
builds dynamic SSE from a static SSE scheme. That construction was sketched
in [36, 20], and studied in more detail in [18]. Following that approach, one could
theoretically build dynamic I/O-efficient SSE by using a static I/O-efficient SSE
as underlying static scheme. However, this quickly proves impractical. First,
the approach inherently incurs a logarithmic factor in both locality and page
efficiency, on top of the I/O cost of the underlying static SSE. As a result, it
cannot hope to match the page efficiency of Hermes, which is sublogarithmic.
The most natural candidate for the underlying static SSE is the Tethys scheme
from [8]: it is the only one to achieve constant page efficiency, hence the only
one that would not further deteriorate page efficiency beyond the log factor
inherent to the approach. However, Tethys has a quadratic O

(
N2
)
setup time.

This is problematic, because everyN insertions, the generic construction requires
building a fresh static SSE instance of size N . This implies that the average
computational cost of one update would be O

(
N2/N

)
= O(N). Last but not

least, the hierarchical approach requires periodically rebuilding a static SSE
scheme of size N . Generically, this implies storing the entire database on the
client side during the rebuilding phase.

1.3 Technical Overview

I/O efficiency and forward security are two important goals of SSE research,
but seemingly incompatible. On an intuitive level, this is because I/O efficiency

6

requires that identifiers matching the same keyword should be stored close to
each other, so that they can be read together efficiently when the keyword is
queried. Forward security requires that when a new identifier matching some
keyword is added, it cannot be stored close to previous identifiers for the same
keyword, since that would leak information about the new identifier to the server.
One way to resolve this apparent contradiciton is to use ORAM, as was suggested
in [9], and later realized in [29]. We start by sketching the ORAM approach,
which will serve to explain what Hermes does differently.

A natural way to build page-efficient SSE is to maintain an array of bins of
capacity one page each, one bin for each keyword. When the client wishes to
insert a new document identifier matching some keyword w, the new document
identifier is added to the bin associated with w. Once the bin for keyword w is
full, i.e. it contains a full page of identifiers matching w, the page of identifiers
is inserted into a separate SSE scheme Σ that only contains full pages, and the
bin is emptied. Because Σ only contains full pages, each page can be stored in an
arbitrary location, and the scheme remains page-efficient; hence page efficiency
is easy to realize. In order to search for the list of document identifiers that
match keyword w, the client needs only to fetch the bin associated with w, and
query Σ on w.

The problem with this naive approach is that it is not forward-secure: during
an update, the server can see which bin is accessed, hence which keyword is
being updated. A generic way to circumvent this leakage is to store the bins
in an ORAM, which completely hides access patterns. (Roughly speaking, this
approach is the one of IO-DSSE.) Despite the use of ORAM, the approach still
has two issues. First, it is still not forward-secure: when a page becomes full, the
server can observe that a new element is inserted into Σ, hence upates are not
leakage-free (this leakage suffices to break the security game of forward-secure
SSE). Second, ORAM incurs an Ω(logW) overhead, where W is the number of
searchable keywords, and is costly in practice.

Challenge 1: achieving forward security. To avoid leaking when a bin
becomes full, we could insert a new item in Σ for every client update, regard-
less of whether the bin is actually full. A bin becomes full after it receives p
client updates, where p is the page size (counted in number of memory words,
identified here with the size of a document identifier). Asymptotically, we would
have storage efficency O(p) instead of the desired O(1). In practice, for 64-bit
identifiers and 4kB memory pages, p = 512: blowing the size of Σ by a factor p
is not acceptable. Instead, we introduce the idea of SSE supporting dummy up-
dates. When a bin is full, the full page is inserted into Σ; when it is not full, the
client issues a dummy update to Σ. The promise of dummy updates is that they
should be indistinguishable from real updates in the server’s view. At the same
time, we arrange that they cost nothing in storage: in our actual construction
dummy updates do not alter the contents of the encrypted database.

Challenge 2: realizing dummy updates. At a high level, building SSE
with dummy updates comes down to building a key-value store that is amenable
to fake key queries. For that purpose, we use the two-choice allocation process. In

7

a two-choice process, n values are stored inm bins of fixed capacity c. Each value
for key k is stored in the bin H1(k) or H2(k), where H1, H2 are hash functions
mapping into [1,m]. We pad the bins to their full capacity c, and encrypt them
with an IND-CPA scheme. Intuitively, simulating a dummy query is simple: the
client fetches two uniformly random bins, re-encrypts them, and re-uploads them
to the server. Setting c = Õ (log log n), m = Õ (n/ log logn) suffices to ensure
a negligible probability of overflow, with constant storage efficiency. This idea
can be adapted to the SSE setting. We realize it as a framework that builds a
scheme Dummy(Σ) supporting dummy updates, based on an underlying suitable
forward-secure scheme Σ.

Challenge 3: dispensing with ORAM. Recall that our scheme uses W
bins, each of capacity one page. As noted in the introduction, single-round
forward-secure SSE requires Ω(W) client storage [10]. If we buffer W updates
on the client before pushing them to the server, we can afford to scan all W
bins. This costs W page accesses per W updates, hence O(1) amortized page
efficiency. Another way to view this process is that we are performing a trivial
ORAM (i.e. reading the entire array of bins), amortized over W updates. This
basic idea can be deamortized, in such a way that each client update generates
O(1) page accesses in the worst case. The deamortization is somewhat subtle,
and proceeds differently depending on the regime of global parameters N , W
and p. For that reason, we introduce two schemes, BigHermes and SmallHermes,
respectively for the case N ≥ pW and N ≤ pW . Hermes is the combination of
those two schemes, one for each regime.

In the end, the storage and page efficiency of Hermes reduce to those of the
underlying scheme supporting dummy updates. Because that scheme relies on
the two-choice process, this works out to Õ (log log(N/p)) page efficiency, and
constant storage efficiency. While the ideas of buffering and deamortization, as
well as dummy updates, may be natural in hindsight, we view them as the key
contributions of this work: to our knowledge, they realize forward security in a
way that is fundamentally different from how it was realized in prior works —
and one that happens to be compatible with I/O efficiency. We note that both
new techniques (the use of dummy updates, for forward security; and the re-
placement of standard ORAM with “deamortized” trivial ORAM, for efficiency),
are modular: we could have introduced intermediate schemes that realize one
without the other, although we did not see a compelling reason for it.

2 Preliminaries

2.1 Notation

Let λ ∈ N be the security parameter. If X is a probability distribution, x← X
means that x is sampled from X. If X is a set, x← X means that x is sampled
uniformly at random from X . A function f(λ) is negligible in λ if it is O(λ−c)
for every c ∈ N. We write f = negl(λ) for short.

8

Protocols. Let prot = (protA, protB) be a protocol between two parties A and B.
We denote an execution of protocol prot between A and B with input inA and
inB respectively by protA(inA) ←→ protB(inB). We may write prot(inA; inB) for
short, if both executing parties can be inferred from the context.

Data Structures. For concision, in algorithmic descriptions, tables and arrays
are implicitly assumed to be initialized with 0’s (if they contain integers) or ⊥’s,
unless stated otherwise. Our algorithms will frequently make use of bins, which
can be thought of as disjoint memory segments of some fixed size s = f(p, λ).
Bins can contain arbitrary data up to their capacity s. Bins are always implicitly
assumed to be padded with 0’s up to their full capacity, so that their size remains
fixed. In particular, the encryption of a bin reveals no information about the
amount of real data contained in the bin.

Cryptographic Primitives. Throughout the article, we use the following crypto-
graphic primitives: (1) Enc is an IND-CPA secure symmetric encryption scheme
(assimilated with its encryption algorithm in the notation); (2) PRF is a secure
pseudo-random function; (3) H is a collision-resistant hash function (which will
be modeled as a random oracle in most security statements).

2.2 Searchable Symmetric Encryption

We recall the notion of searchable symmetric encryption (SSE). A database
DB = {(wi, (id1, ..., id`i))}Ki=1 is a set of K pairs (wi, (id1, ..., id`i)), where wi is a
keyword, and (id1, ..., id`i) is a tuple of `i document identifiers matching keyword
wi. The number of distinct keywords is K. We write DB(wi) = (id1, ..., id`i) for
the list of identifiers matching keyword wi. The size of the database DB is the
number of distinct keyword-identifier pairs (wi, idj), with idj ∈ DB(wi). It is
equal to

∑K
i=1 `i.

We will usually assume that there is an upper bound W on the total number
of keywords: K ≤ W ; and an upper bound N on the size of the database:∑k
i=1 `i ≤ N . Throughout the article, the integer p denotes the page size. We

treat p as a variable independent of the size of the database N , in line with
previous work.

Before giving the formal definition, let us sketch how a dynamic SSE scheme
operates. The client stores a small state st, while the server stores the encrypted
database EDB. The client calls Σ.Setup to initialize both states, on input an
initial plaintext database DB. To search the database on keyword w, the client
initiates the protocol Σ.Search on input w, and eventually obtains the list of
matching identifiers DB(w). As a side effect, Σ.Search may also update the client
and server states. Similarly, to add a new keyword-identifier pair (w, id) to the
encrypted database, the client initiates Σ.Update on the corresponding input.
The following formal definition follows [8, 30], with minor tweaks.

A dynamic searchable symmetric encryption scheme Σ is a 4-tuple of PPT
algorithms (KeyGen,Setup,Search,Update):

9

– Σ.KeyGen(1λ): Takes as input the security parameter λ and outputs client
secret key K.

– Σ.Setup(K, N,W,DB): Takes as input the client secret key K, upper bounds
N on the database size and W on the number of keywords, and a database
DB. Outputs an encrypted database EDB and client state st.

– Σ.Search(K, w, st;EDB): The client receives as input the secret key K, key-
word w and state st. The server receives as input the encrypted database
EDB. Outputs some data d, an updated state st′ for the client, and an up-
dated encrypted database EDB′ for the server.

– Σ.Update(K, w, id, op, st;EDB): The client receives as input the secret key K,
a keyword-identifier pair (w, id), an operation op ∈ {del, add}, and state st.
The server receives the encrypted database EDB. Outputs an updated state
st′ for the client, and an updated encrypted database EDB′ for the server.

We denote by SearchC (resp. UpdateC) the client side of the protocol Search
(resp. Update), and by SearchS (resp. UpdateS) its server counterpart. We may
omit W in the input of Setup if it is not used.

For concision, in the remainder, the client state st will be omitted in the
notation. As is standard in SSE literature, we assume that keywords are prepro-
cessed via a PRF by the client. That is, w = PRFK(H(k)) where k is the actual
keyword, for some PRF key K known only to the client.

Epochs. To facilitate the description of our schemes, it is convenient to concep-
tually partition update queries issued by the client into sequences of W consecu-
tive updates. The time frame corresponding to one such sequence of W updates
is called an epoch. More precisely, the k-th epoch comprises all updates and
searches that are performed between the ((k − 1) · W + 1)-th and (k · W)-th
update. Looking ahead, update queries belonging to the current epoch will typ-
ically be preprocessed together on the client side, then progessively pushed to
the server during the next epoch.

Correctness. Informally, correctness asks that at the outcome of a Search pro-
tocol on keyword w, the client should obtain exactly the identifiers of documents
matching w. The following definition asks for perfect correctness. In some cases,
we may allow correctness to fail as long as the probability of failure is negligible.

Definition 1 (Correctness). An SSE scheme Σ is correct if for all suffi-
ciently large W,N ∈ N, for all databases DB, and all sequences of search and
update operations, provided at most K keywords are used, and the size of the
database remains at most N at all times, letting K← Σ.KeyGen(1λ) and EDB←
Σ.Setup(K, N,W,DB), at the outcome of a search query on keyword w, the client
obtains exactly the identifiers of documents matching keyword w at query time.
(That is, documents matching w in the initial database DB or added by an update
query matching w, and not subsequently deleted.)

10

Security. We use the standard semantic security notion from [17]. The server
is modeled as a honest-but-curious adversary. Intuitively, security asks that the
information learned by the server in the course of the scheme’s execution is no
more than a specified leakage. The allowed leakage is expressed by a leakage
function, composed of setup leakage LStp, search leakage LSrch, and update leak-
age LUpdt. The intent is that, when executing Setup on input x, the server should
learn no more than LStp(x). To formally capture that requirement, the security
definition asks that there exists a PPT simulator that can simulate the view of
the server, taking as input only LStp(x). The same goes for Search and Update.

Formally, we define two games, SSEReal and SSEIdeal. In both games,
the adversary first chooses a database DB. In SSEReal, the encrypted database
EDB is then generated by Setup(K, N,DB). In SSEIdeal, EDB is instead gener-
ated by a stateful PPT algorithm Sim called the simulator, on input LStp(DB, N).
After receiving EDB, the adversary adaptively issues search and update queries.
In SSEReal, all queries are answered honestly. In SSEIdeal, search queries
on keyword w are simulated by Sim on input LSrch(w), and update queries
for operation op, keyword w, and identifier id are simulated by Sim on input
LUpdt(op, w, id). At the end of the game, the adversary outputs a bit b.

Definition 2 (Semantic Security). Let Σ be an SSE scheme and let L =
(LStp,LSrch,LUpdt) be a leakage function. The scheme Σ is L-adaptively secure
if for all PPT adversaries A, there exists a PPT simulator Sim such that:

|Pr[SSERealΣ,A(λ) = 1]− Pr[SSEIdealΣ,Sim,L,A(λ) = 1]| = negl(λ).

Leakage Patterns. To facilitate the description of leakage functions, we make
use of the following standard notions from the litereature [9]. The search pattern
sp(w) for keyword w is the sequence of identifiers of previous search queries
on w. The update pattern up(w) for keyword w is the sequence of identifiers of
previous update queries on w. The query pattern qp(w) = (sp(w), up(w)) is the
combination of search and update patterns.

Throughout the article, our schemes will be secure with regard to the follow-
ing leakage function: Lfs = (Lfs

Stp,Lfs
Srch,Lfs

Updt), with Lfs
Stp(DB,W,N) = (W,N),

Lfs
Srch(wi) = (qp, ai, di) where ai (resp di) is the number of additions (resp dele-

tions) for wi, and Lfs
Updt(op, w, id) = ⊥. In words, Setup leaks an upper bound on

the size of the database and on the number of keywords; Search reveals the query
pattern, and the number of additions and deletions for the searched keyword;
and updates leak nothing.

Forward Security and Backward Security. Forward security was intro-
duced and formalized in [36] and [9], respectively. In this work, we consider a
strictly stronger notion of forward security where updates leak no information.

Definition 3 (Forward Security). An SSE scheme with leakage L = (LStp,
LSrch,LUpdt) is forward-secure if LUpdt(op, w, id) = ⊥.

11

The notion of backward security was formalized in [11], and restricts the
leakage incurred by deletions. Since backward security is not the main focus of
this work, we refer the reader to [11] for the formal definition. In this work we
consider type-II backwards security, which requires that search queries leak the
documents currently matching w, when they were inserted, and when all the
updates on w happened (but not their content) Note that schemes with leakage
Lfs are forward-secure, and type-II backward-secure.

Remark on Deletions. The concrete SSE constructions presented in this arti-
cle are involved. Thus, we present them without deletions to improve readability.
This however does not reduce their functionality, as all schemes can be extended
to support deletions with the generic framework of [9]. Intuitively, given an SSE
scheme Σadd that supports additions, it allows to construct a scheme Σ that
supports additions and deletions with the same leakage. For this, two instantia-
tions of Σadd are used, Σ0 for additions and Σ1 for deletions. Added identifiers
are inserted into Σ0 while deleted keyword-identifier pairs are inserted into Σ1.
Each search request, the client queries Σ0 and Σ1 and retrieves identifier lists
L0 and L1 respectively. The result of the search request then is L0 \L1. Clearly,
if Σadd has leakage Lfs, then Σ also has leakage Lfs.

Efficiency Measures. We recall the notions of storage efficiency [15], and
page efficiency [8]. To reduce clutter, the following notation is common to all
definitions. Let K ← KeyGen(1λ). Given a database DB, an upper bound W on
the number of keywords, and an upper bound N on the size of the database,
let EDB ← Setup(K, N,DB). Let S = (opi, ini)

s
i=1 be a sequence of search

and update queries, where opi ∈ {add, del, srch} is an operation and ini =
(opi, wi, idi, sti;EDBi) its input. (If opi = srch, the query is a search query, and
idi is not provided.) After executing all operations opj in S up to j ≤ i, let DBi
denote the state of the database, sti the client state, and EDBi the encrypted
database. The following definitions are borrowed from [30].

Definition 4 (Storage Efficiency). An SSE scheme has storage efficiency E
if for any λ, DB, N , sequence S, and any i, |EDBi| ≤ E · |DBi|.

Definition 5 (Page Pattern). Regard server-side storage as an array of pages,
containing the encrypted database EDB. When processing search query Search(ini)
or update query Update(ini), the server accesses a number of pages p1, ..., ph′ .
We call these pages the page pattern, denoted by PgPat(opi, ini).

Definition 6 (Page Efficiency). An SSE scheme has page efficiency P if for
any λ, DB, N , sequence S, and any i, |PgPat(opi, ini)| ≤ P · X, where X is
the number of pages needed to store the document identifiers DBi(wi) matching
keyword wi in plaintext.

12

2.3 Allocation Schemes

Two-Choice. Insert n balls into m bins according to the standard two-choice
(2C) process [6]. That is, to insert each ball, pick two bins Bα, Bβ uniformly at
random, and insert the ball into the least loaded bin Bγ ∈ {Bα, Bβ}.

Lemma 1 (2C [30]). Let δ(m) = log log logm and m ≥ λ1/ log log λ. At the
outcome of a sequence of n insertions, the most loaded bin contains O(n/m +
δ(m) log logm) balls, except with negligible probability.

Layered Two-Choice. Layered two-choice (L2C) is a weighted variant of the
two-choice process, introduced in [30]. We sketch a simplified version that suf-
fices for our purpose. Let p ∈ N. Consider a sequence of insertions of weighted
balls into m bins. Each weight is an integer in [1, p] and each bin is split into
1 + log logm independent layers, numbered from 0 to log logm. (For simplic-
ity, assume log logm is an integer.) A ball of weight w is stored in layer 0 if
w ∈ [0, p/ logm], and in layer i ≥ 1 if w ∈ (p2i−1/ logm, p2i/ logm]. An in-
sertion of a ball of weight w is similar to a two-choice insertion: pick two bins
Bα, Bβ uniformly at random, and insert the ball into the bin Bγ ∈ {Bα, Bβ}
that contains the fewest balls at layer i. In other words, the difference with the
standard two-choice process is that when determining the “least loaded bin”, we
only look at the number of balls in the same layer as the newly inserted ball,
rather than looking at the total number.

The weight of balls can be increased after insertion. Assume the weight w of
a ball is increased by v, i.e. the ball has weight w + v after the update. The
layer of the ball after the update may increase as a result. Let i be the old layer
and j be the new layer after the update. If i 6= j, the ball of weight w + v is
reinserted into layer j. The old ball of weight w at layer i is marked as residual,
and is still considered for the load computation of its bin.

Define the load of a bin to be the sum of the weights of the balls it contains
(including residual balls, as noted above). Define the total weight to be the
sum of the weights of all balls inserted so far, using their current weights if it
has been updated. We require that the total weight remains upper-bounded by
wmax = poly(λ).

Lemma 2 ([30]). Let δ(λ) = log log log λ, m = d wmax

δ(λ) log logwmax
e, and assume

m = Ω(λ
1

log log λ). After a sequence of insertions and updates, the load of the
most loaded bin is O(pδ(λ) log logwmax), except with negligible probability.

In this article, the role of balls will be played by lists of (at most p) identifiers.
The weight of a list L is its number of identifiers. When some identifiers I are
added to L, if the new weight |L ∪ I| is in the same layer as |L|, then the new
identifiers I are simply added to L, in the same bin. Otherwise, I is inserted in
one of the two chosen bins, as if it was a list of weight |L∪ I|. (In that case, the
list L ∪ I is split between both bins.)

13

3 SSE with Dummy Updates

A first key technique for our results is the introduction of the notion of dummy
updates. An SSE schemes supports dummy updates if its interface is equipped
with a new operation DummyUpdate, taking as input only the client’s master
key K. For technical reasons, we also require that Setup receives an additional
parameter D, an upper bound on the total number of dummy updates.

3.1 Security Definition

Informally, an SSE scheme supporting dummy updates is said to be secure if it
is secure in the same sense as a normal SSE scheme, with the added requirement
that dummy updates should be indistinguishable from real updates from the
server’s perspective. (A subtle but important point is that later constructions
will ensure that server storage does not depend on D: dummy updates will look
indistinguishable from real updates, without actually affecting server storage.)

The security definition for SSE supporting dummy updates is given in Defini-
tion 7, with the associated security game in Algorithm 1. Note that this definition
naturally extends the standard definition (Definition 2).

Definition 7 (Adaptive Semantic Security with Dummy Updates). Let
Σ be an SSE scheme supporting dummy updates, A a stateful PPT adversary,
and Sim a stateful PPT simulator. Let q ∈ N, and let L = (LStp,LSrch,LUpdt) be
a leakage function. The games SSERealdum

Σ,A and SSEIdealdum
Σ,A,L,A are defined

in Algorithm 1. Σ is L-adaptively secure with support for dummy updates if
LUpdt does not depend on its first input op, and if for all PPT adversaries A,
there exists a PPT simulator Sim such that:

|Pr[SSERealdum
Σ,A(λ) = 1]− Pr[SSEIdealdum

Σ,Sim,L,A(λ) = 1]| = negl(λ).

3.2 A Framework to Build SSE with Dummy Updates

We now describe a framework that constructs an SSE scheme Dummy(Σ) sup-
porting dummy updates, based on an underlying SSE scheme Σ. Provided Σ is
suitable in a sense that will be defined shortly, the resulting scheme Dummy(Σ)
achieves the following features:

– It is a secure SSE scheme supporting dummy updates (cf. Definition 7).
– Server storage grows only with the number of real updates; in particular, it

does not depend on the upper bound D on the number of dummy updates.
– Relative to the base scheme Σ, Dummy(Σ) only incurs a Õ (log logN) over-

head in communication.

The definition of a suitable SSE is given next. Essentially, it requires that
server storage should behave like a key-value store. This is how most forward-
secure SSE schemes operate. It also requires that running Setup on a non-empty

14

Algorithm 1 Security games for SSE supporting dummy updates.
SSERealdum

Σ,A

1: K← Σ.KeyGen(1λ)
2: (DB, N,D,W, stA)← A(1λ)
3: EDB← Σ.Setup(K, N,D,W,DB)
4: send EDB to A
5: for all 1 ≤ i ≤ q do
6: (opi, ini, stA)← A(stA)
7: if opi = srch then
8: Parse ini = wi
9: Σ.SearchC(K, wi)↔ A(stA)

10: else if opi ∈ {add, del} then
11: Parse ini = (wi, idi)
12: Σ.UpdateC(K, wi, idi, opi) ↔

A(stA)
13: else
14: Σ.DummyUpdateC(K)↔ A(stA)
15: output bit b← A(stA)

SSEIdealdum
Σ,Sim,L,A

1: (DB, N,D,W, stA)← A(1λ)
2: EDB← Sim(LStp(DB, N,D,W))
3: send EDB to A
4: for all 1 ≤ i ≤ q do
5: (opi, ini, stA)← A(stA)
6: if opi = srch then
7: Sim(LSrch(ini))↔ A(stA)
8: else
9: Sim(LUpdt(opi, ini))↔ A(stA)

10: output bit b← A(stA)

initial database DB is equivalent to running Setup on an empty database, then
performing updates to add the contents of DB. Here, “equivalent” means that
the client and server states at the outcome of either process are distributed
identically. This condition can be fulfilled trivially by any SSE scheme. It is not
strictly necessary, but makes the description of the framework, and its security
proof, more consise.

Definition 8 (Suitable SSE). We say that an SSE scheme Σ is suitable if
there exist a key space K, a token space T , and a map keys : T 7→ K such
that: (1) Σ.Setup(K, N,W,DB) outputs an encrypted database EDB in the form
of an encrypted key-value store that maps a key to encrypted identifiers. (2)
Σ.Search(K,w;EDB) is a two-step protocol in which the client first sends a token
τ ∈ T and the server responds with EDB[k1], ...,EDB[kq] for k1, ..., kq ← keys(τ).
(3) Σ.Update(K, (w, id), op;EDB) is a one-step protocol in which the client sends
a key k ∈ K and value v = EncKEnc

(id) and the server stores v in EDB at position
k, i.e. sets EDB[k] = v. (4) Running the setup routine Setup(K, N,W,DB) is
equivalent to running the setup Setup(K, N,W, ∅) with an empty database and
subsequently performing an update operation for each keyword-identifier pair
(w, id) ∈ DB locally. (5) Σ is forward-secure.

Construction. A detailed description is given in Algorithm 2. Let us explain
it here in text. Let Σ be a suitable SSE scheme. First, observe that it is easy
to add dummy updates to Σ if we are willing to let server storage grow linearly
with the number of dummy updates: we could simply let DummyUpdate perform
a real update with a fresh keyword-identifier pair. Because Σ is forward-secure,
the leakage of either type of update would be ⊥. The problem is that the server

15

would have to store the keyword-identifier pairs arising from dummy updates,
potentially blowing up storage overhead. This is what we wish to avoid.

Instead, the idea is to wrap Σ inside an encrypted two-choice allocation
scheme (cf. Section 2.3). First, Dummy(Σ) initializes a two-choice scheme with
m = N/Õ (log logN) bins B1, ..., Bm, each of capacity Õ (log logN) (where one
unit corresponds to the storage cost of one identifier in Σ). Because Σ is suitable,
we know server storage in Σ behaves like a key-value store: for each update with
token τ , the server stores the corresponding data items under the keys keys(τ).
Let H : K → {1, ...,m}2 map keys to pairs of bins. In Dummy(Σ), whenever Σ
would store a data item under a key k, the same item is instead stored in one of
the two bins Bα, Bβ , where (α, β)← H(k). The destination bin is chosen among
Bα, Bβ according to the two-choice process: the item is inserted into whichever
bin currently contains fewer items.

In Dummy(Σ), the client always downloads and sends back full bins, padded
to their maximal capacity Õ (log logN), and encrypted under a key KEnc known
only to the client. This is where the Õ (log logN) overhead in communication
comes from. On the other hand, thanks to the properties of the two-choice pro-
cess, dummy updates can be realized easily: the client simply asks to access two
bins (α, β) ← H(k) for a fresh key k, re-encrypts them, and re-uploads them.
This matches the behavior of real updates (up to the IND-CPA security of Enc,
and the pseudo-randomness of H, modeled as a random oracle). In more detail,
the key k for dummy updates is generated by Σ.Update using a reserved dummy
keyword wdum, and a fresh identifier id chosen by the client.

Remark. Although the outline given above is natural, the detailed construc-
tion in Algorithm 2 involves some subtlety. During setup, Σ receives as upper
bound for the size of the database N +D, rather than just N . This is useful for
the security proof. It also means that the encrypted database generated by Σ
may scale with D. However, that database is not needed to run Dummy(Σ), so
this has no impact on storage efficiency. To see that the database generated by Σ
is not needed by Dummy(Σ), observe in Algorithm 2 that Dummy(Σ) crucially
only makes use of the client-side part of the protocols of Σ; the only relevant
aspect of the server-side part of those protocols is the keys map. This is made
possible by the suitability assumption on Σ, which is used very strongly.

Security. The security of Dummy(Σ) follows naturally from that of Σ. Indeed,
Dummy(Σ) essentially amounts to running Σ inside encrypted bins, with the
difference that Σ is scaled for size N + D. As a result, Dummy(Σ) intuitively
has at most the same leakage as Σ for Setup, Search and Update, except that
D is additionally leaked. Regarding DummyUpdate, the only difference between
real and dummy updates is that a new identifier is inserted in the bin with the
former, while the bins are re-encrypted without modifying their content with
the latter. Since Enc is IND-CCA-secure, and bins are always padded to ther full
size (cf. Section 2.1), the two behaviors are indistinguishable.

Theorem 1. Let Σ be a suitable, Lfs-adaptively secure SSE scheme. Let Enc be
an IND-CPA secure encryption scheme. Let H be a random oracle. Let N ≥ λ,

16

Algorithm 2 Dummy(Σ)

Dummy(Σ).Setup(K, N,W,D,DB)

1: Pick dummy keyword wdum

2: EDBΣ ← Σ.Setup(KΣ , N+D,W+1, ∅)
3: Initialize m = N/Õ (log logN)

empty bins B1, ..., Bm of capacity
Õ (log logN).

4: for all (w, id) ∈ DB do
5: (k, v)← Σ.UpdateC(K, (w, id), add)
6: (α, β)← H(k)
7: Insert id into the bin Bγ with fewest

items among Bα, Bβ
8: return EDB = (EncKEnc(Bi))

m
i=1

Dummy(Σ).KeyGen(1λ)

1: Sample KΣ ← Σ.KeyGen(1λ) and en-
cryption key KEnc

2: return K = (KΣ ,KEnc)

Dummy(Σ).Search(K, w;EDB)
Client:
1: τ ← Σ.SearchC(KΣ , w)
2: send τ

Server:
1: k1, ..., kq ← keys(τ)
2: (αi, βi)← H(ki) for i ∈ [1, q]
3: send {Benc

αi , B
enc
βi
}qi=1

Dummy(Σ).Update(K, (w, id), op;EDB)
Client:
1: (k, v)← Σ.UpdateC(KΣ , (w, id), add)
2: send k

Server:
1: (α, β)← H(k)
2: send Benc

α , Benc
β

Client:
1: Decrypt Benc

α , Benc
β to Bα, Bβ

2: Insert id into the bin Bγ with fewest
identifiers among Bα, Bβ

3: send re-encrypted Bα, Bβ
Server:
1: Replace Benc

α , Benc
β with received bins

Dummy(Σ).DummyUpdate(K;EDB)
Client:
1: Pick fresh identifier id
2: (k, v)←Σ.UpdateC(KΣ , (wdum, id), add)
3: send k

Server:
1: (α, β)← H(k)
2: send Benc

α , Benc
β

Client:
1: send re-encrypted Bα, Bβ

Server:
1: Replace Benc

α , Benc
β with received bins

17

and D = poly(N). Dummy(Σ) is a correct and secure SSE scheme support-
ing dummy updates with respect to leakage Ldum = (LStp,LSrch,LUpdt), where
LStp(DB, N,D,W) = (N,D,W),LSrch(w) = (qp, `), and LUpdt(op, w, id) = ⊥.

The full proof is postponed to Appendix F. We sketch it here. Because 2C
guarantees a maximum load of Õ (log logN) with overwhelming probability if
N ≥ λ (Lemma 1), correctness follows from the correctness of Σ. We turn to
security. Let SimΣ be a simulator for Σ. During setup, the client initializes the
encrypted database EDBΣ of Σ and outputs m = N/Õ (log logN) encrypted
bins. The output leaks nothing but N , since the bins are encrypted. Note that
for subsequent updates and searches, the state of SimΣ still needs to be initial-
ized by simulating EDBΣ . (Here, we use the fourth property of Definition 8.)
This potentially leaks N,D and W . For search queries, the search token can be
sampled via SimΣ . This requires the query pattern qpΣ of Σ and the length `
of the identifier list matching the searched keyword. Note that each search and
update query induces a corresponding query on Σ. Thus, the query pattern of
Dummy(Σ) and Σ are equivalent. Consequently, ` and qp are leaked. Similarly,
all updates (including dummy updates) can be simulated via SimΣ . As updates
leak nothing in Σ, neither dummy nor real updates have any leakage.

3.3 Efficient Instantiations

Definition 9. A suitable SSE scheme Σ is said to be efficient if:
– Σ has O(1) storage efficiency;
– If EDB contains ` values matching keyword w, then for τ ← Σ.SearchC(K, w),
|keys(τ)| = `.

Later, we will only use Σ to store full pages. That is, the atomic items stored
in Σ will be identifier lists of size p, rather than single identifiers. Each key
will map to one list of size p. Each access to the encrypted database EDB then
translates to one page access, and retrieves p identifiers. On the other hand, if Σ
is efficient in the sense above, the number of accesses is minimal, hence Σ with
full-page items has page efficiency O(1). Dummy(Σ) then has page efficiency
Õ (log logN). Moreover, if Σ has O(1) storage efficiency, so does Dummy(Σ).

Putting both remarks together, we see that if Σ is efficient per Definition 9,
then Dummy(Σ) has storage efficiency O(1), and when used to store full-page
items as outlined above, it has page efficiency Õ (log logN). To instantiate this
idea, the Σoφoς [9] and Diana [11] schemes are good choices: they are both
suitable, efficient, and Lfs-adaptively secure (assuming identifiers are encrypted
before being stored on the server).

Remark. The Dummy(Σ) framework technically does not exclude the pos-
sibility that the sizes of individual search tokens and keys could scale with D,
insofar as they are produced by Σ, and N+D is an input of Σ.Setup. In practice,
the overhead is at most constant for Σoφoς and Diana, and can be eliminated
entirely with a careful instantiation. To simplify the presentation, we have not
added formal requirements for that purpose at the framework level.

18

4 BigHermes: the Big Database Regime

We are now ready to present our main construction, Hermes. The construc-
tion differs depending on whether N ≥ pW or N < pW . This section presents
BigHermes, which deals with the case N ≥ pW . Throughout the section, we
assume N ≥ pW , and let Σdum be an efficient forward-secure SSE supporting
dummy queries, in the sense of Section 3.

The final BigHermes construction is rather involved. To simplify the explana-
tion, we build BigHermes progressively. We introduce three variants: BigHermes0,
BigHermes1, BigHermes2. The three variants are gradually more complex, but
achieve gradually stronger properties. The difference lies in the efficiency guar-
antees. BigHermes0 uses the idea of dummy updates from Section 3 to achieve
sublogarithmic page efficiency, communication and time complexity overheads;
but only in an amortized sense. BigHermes1 shows how BigHermes0 can be
deamortized in page efficiency and communication, notably without the use of
ORAM found in prior work [29]. Finally, BigHermes2 builds on BigHermes1 to
deamortize time complexity, and completes the construction.

4.1 BigHermes0: Amortized BigHermes

If a list of identifiers matching the same keyword contains exactly p identifiers,
let us say that the list is full. If it contains less than p identifiers, it is underfull.
In BigHermes0, for each keyword w, the server stores exactly one underfull list of
identifiers matching w. For that purpose, the server stores W bins (Bwi)

W
i=1 of

capacity p, one for each keyword. Full lists are stored separately in an instance of
Σdum. When searching for keyword w, the client will retrieve the corresponding
bin, and call Σdum.Search to fetch full lists matching w (if any).

Naively, to perform an update on keyword w, the client could simply fetch
the corresponding bin and add the new identifier, emptying the bin into Σdum

if it is full. However, this would trivially break forward security, because the
server would learn information about which keyword is being updated. Instead,
the scheme proceeds in epochs (cf. Section 2). Each epoch corresponds to W
consecutive updates. The client buffers all updates arising during the current
epoch, until the buffer contains W updates, and the epoch ends. At the end of
the epoch, the client downloads all bins (Bwi)Wi=1 from the server, updates them
with the W new identifiers from its buffer, and pushes the updated bins back to
the server.

If one of the bins becomes full during this end-of-epoch update, it would
be tempting to immediately insert the full list into Σdum. However, this would
again break forward security, as the server would learn how many bins became
full during the epoch. To hide that information, BigHermes0 takes advantage of
dummy updates. Observe that during an end-of-epoch update, at most W lists
can become full. To hide how many bins become full, BigHermes0 always performs
exactly W updates on Σdum at the end of the epoch, padding real updates
with dummy updates as necessary. From a security standpoint, this approach
works because real updates and dummy updates are indistinguishable. From an

19

efficiency standpoint, dummy updates have no impact on the efficiency of Σdum,
as discussed in Section 3 (in short, while dummy updates are indistinguishable
from real ones for the server, they effectively do nothing). The only cost of
dummy updates is in communication complexity, and page efficiency. For both
quantities, note that W updates to Σdum are performed per epoch of W client
updates, thus at most one dummy update per client update. Hence, we can
instantiateΣdum for at mostDdum = N dummy updates, and BigHermes0 directly
inherits the same page efficiency and communication overhead as Σdum.

It remains to discuss the order of (real and dummy) updates on Σdum at
the end of an epoch. This order has an impact on the security of the scheme.
To see this, suppose that the following process is used: at the end of an epoch,
push full lists to Σdum for each keyword where this is needed, taking keywords
in a fixed order w1, w2, ...; then pad with dummy updates. Now imagine that
during an epoch, the client fills a list for keyword w2, but not for w1. When
the client subsequently performs a search on w2, the server can see that the
locations accessed in Σdum during the search (partially) match the locations
accessed during the first update on Σdum at the end of the previous epoch (since
the first update was for w2). Since it was the first update, this implies that no
update was needed for w1. The server deduces that no list for w1 was full at the
end of the previous epoch. This breaks security. To avoid that issue, at the end
of an epoch, BigHermes0 first computes allW updates that will need to be issued
to Σdum, then permutes them uniformly at random, before sending the updates
to the server. As the security proof will show, this is enough to obtain security.

In the end, BigHermes0 achieves storage efficiency O(1), inherited from the
same property of Σdum, and because of the assumption N ≥ pW , the storage
cost of the W bins is O(N). As noted earlier, BigHermes0 also inherits the page
efficiency and communication overhead of Σdum. Because the number of entries
in the database of Σdum is at most N/p, it follows that BigHermes0 has page
efficiency and communication overhead Õ (log log(N/p)). However, this is only
in an amortized sense, since batches ofW updates are performed together at the
end of each epoch.

4.2 BigHermes1: BigHermes with Deamortized Communication

The reason BigHermes0 successfully hides which underfull list requires an update
when the client wishes to insert a new keyword-document pair is simple: all
underfull lists (bins) are updated at the same time, at the end of an epoch. This
approach may be interpreted as hiding the access pattern to bins using a trivial
ORAM: the entire set of bins is downloaded, updated locally, and uploaded
back to the server. Dummy updates are then used to hide how many full bins
are pushed to Σdum. This approach is possible due to amortization: a trivial
ORAM access only occurs once every W client updates, and updates all W bins
simultaneously.

In short, BigHermes1 deamortizes BigHermes0 by no longer updating bins
all at once at the end of an epoch, and instead updating them one by one
over the course of the next epoch. Thus, BigHermes1 may be understood as a

20

“deamortized” trivial ORAM, which turns out to be much more efficient in our
setting than directly using a standard ORAM, as in prior work [29]. Among
other benefits, this is what allows Hermes to achieve sublogarithmic efficiency,
avoiding the logarithmic overhead inherent in ORAM [28]. Let us now explain
the algorithm. Pseudo-code is available in Algorithm 3. A visual representation
of the update procedure is also given in Figure 1.

At a high level, at the end of an epoch, the client pre-computes where the W
new identifiers from the epoch should be stored on the server, without actually
pushing them to the server. To that end, the client maintains a (client-side) table
Tlen, that maps each keyword to the number of matching identifiers currently in
the server-side database. Using Tlen, at the end of an epoch, for each keyword
w, the client splits the list of new identifiers matching the keyword into three
(possibly empty) sublists: (1) a sublist that completes the content of Bw to a
full list (if possible); (2) full sublists of size p; and (3) an underfull sublist of
remaining identifiers (if any). Let CBout be a (client-side) buffer that maps each
keyword to sublists (1) and (3). All sublists of type (2) are stored in another
buffer CFP that maps an integer in [1,W/p] to either a full list or ⊥. (Note that
there are at most W/p such sublists in total.) Once all keywords are processed
in that manner, the content of CFP is shuffled randomly.

Over the course of the next epoch, the contents of CFP and CBout are pushed
to the server according to a fixed schedule. In more detail, during the k-th update
operation of the next epoch, the client inserts the new keyword-identifier pair
into CBnew. This new keyword-identifier pair will not be processed until the
end of the current epoch. The client then moves on to pushing updates that
were buffered from the end of the previous epoch, proceeding as follows. She
downloads the bin Bwk for the k-th keyword from the server. The client then
retrieves from CBout[wk] the list L1 that completes the content of Bwk to a list
of size p, and the new underfull list Lx. If there are enough new identifiers in L1

to complete the content of Bwk to a full list, the new full list is written to Σdum,
and the contents of Bwk is replaced with Lx. Otherwise, the client performs a
dummy update to Σdum, and adds the identifiers of L1 to Bwk . In either case,
Bwk is then re-encrypted and uploaded to the server. Finally, if k ≤ W/p, the
client also retrieves LS ← CFP[k]. Recall that LS is either a full list buffered
from the previous epoch, or ⊥. If LS = ⊥ the client performs a dummy update,
otherwise she writes LS to Σdum. In total, from the point of view of the server,
during the k-th client update in a given epoch, the bin Bwk is accessed, and
if k ≤ W/p (resp. k > W/p), two (resp. one) updates are performed in Σdum.
Thus, the access pattern during a client update is fully predictable, and reveals
no information to the server. Also note that during each epoch, at most 2W
dummy updates are performed. Hence, a number of at most Ddum = 2N dummy
updates are performed on Σdum.

21

4.3 BigHermes2: Fully Deamortized BigHermes

Observe that in BigHermes1, the client performs most computation at the end
of each epoch. We now sketch how we deamortize even the client computation,
and refer to Appendix B for details.

Recall that the client needs to assign each identifier to a sublist of type (1),
(2) or (3). Given this assignment, the sublists can be moved to CBout and CFP.
Observe that after an identifier is assigned to a sublist, it is easy to deamortize
the process of moving it into CBout or CFP. It is less straightforward to assign
a fresh identifier id to the correct sublist “on-the-fly” when it is added. Note
that when (w, id) is added, it is not possible to look at the list L of all buffered
identifiers matching w, as this list might be of size O(W). We show that a
pipeline pre-computation can resolve this problem, with a constant overhead of
additional data structures. These are either copies of existing data structures,
or tables to store intermediate information, all of size O(W).

4.4 Security

BigHermes is forward-secure with standard leakage Lfs, as stated next.

Theorem 2. Let N be an upper bound on the size of the database, let p be
the page size, and let W be an upper bound on the number of keywords. Let
N ≥ pW , and assume N/p ≥ λ. Let Σdum be a forward-secure SSE supporting
dummy updates, let Enc be an IND-CPA secure encryption scheme, and let PRF
be a secure pseudorandom function (for the preprocessing of keywords). Then
BigHermes is correct and Lfs-adaptively semantically secure.

We now sketch the security proof, and refer to Appendix G for the full proof.
BigHermes stores all full identifier lists of size p in Σdum, and one underfull sublist
per keyword w in the bin Bw. Each search, the corresponding bin is accessed,
and the client searches for all full lists on the server in Σdum. All identifiers that
are not retrieved are contained in a buffer on the client. Thus, correctness follows
immediately from the correctness of Σdum.

The setup only leaks W and N to the server, as the bins are encrypted,
and the security of Σdum guarantees that EDBΣdum

leaks no other information.
Further, updates leak no information which follows from two facts: (1) exactly
one bin is accessed each update via a fixed schedule known in advance; (2)
dummy updates and real updates leak no information, and are indistinguishable
in the view of the server, owing to the security of Σdum.

It remains to consider searches. Each search on keyword w only leaks the
query pattern qp, and the length ` of the identifier list for w. (Recall from
Section 2.2 that the query pattern qp is equal to the search pattern sp and
update pattern up.) To establish this, we need to show that the view of the
server can be simulated using only qp and `. Based on the search pattern and
the fact that bins are encrypted with IND-CPA encryption, simulating access to
the bin Bw is straightforward. Thus, security reduces to the simulation of Σdum.
Because Σdum is secure, we know that its behavior can be simulated as long as

22

Client

CBnew

w1 ... wi ... wW

CBout

w1 ... wi ... wW
L1

Lx

CFP

π(1) ... π(W/p)

p

if cnt = p

empty CBnew into CBout and CFP

(w, id)

Server

Bins

Benc
1

... Benc
i

... Benc
W

p

Σdum

stores full pages

access
Benc

cnt
two (real or dummy) updates

Fig. 1 – Sketch of the update schedule of BigHermes1. (The data structure Tlen

are omitted for clarity.) Each update, the variable cnt is incremented and the
dotted lines are executed. See Algorithm 3 for pseudo-code.

23

Algorithm 3 BigHermes1
BigHermes1.Setup(K, N,W,DB)

1: Initialize W empty bins Bw1 , ..., BwW
of capacity p

2: Initialize empty database DBdum

3: for all keywords w do
4: Split DB(w) into x lists Li such that

Lx has size at most p − 1, and the
remaining lists have size p

5: Insert pairs {(w,Li)}x−1
i=1 into DBdum

6: Insert list Lx into Bw
7: Tlen[w]← |DB(w)|
8: cnt← 0
9: (Ndum, Ddum,Wdum) = (N/p, 2N,W)

10: EDBΣdum ← Σdum.Setup(KΣdum , Ndum,
Ddum,Wdum,DBdum)

11: EDB ← (EDBΣdum , {EncKEnc(Bwi)}
W
i=1)

return EDB

BigHermes1.KeyGen(1
λ)

1: Sample KEnc for Enc with secu-
rity parameter λ and KΣdum ←
Σdum.KeyGen(1

λ)
2: return K = (KEnc,KΣdum)

BigHermes1.Search(K, w;EDB)
Client:
1: Perform Σdum.Search(KΣdum , w;EDB)
2: send w

Server:
1: send Benc

w

BigHermes1.Update(K, (w, id), add;EDB)
Client:
1: if cnt = p then
2: π ← uniformly random permuation

of [1,W/p]
3: Initialize empty set S of full pages
4: for all keywords w do
5: L← CBnew[w]
6: r ← Tlen[w] mod p
7: Tlen[w] = Tlen[w] + |L|
8: Split L into x lists Li such that

L1 has size at most p− r (exactly
size p− r if x > 1), Lx has size at
most p, and the remaining lists all
have size p

9: CBout[w]← CBout[w] ∪ {(L1, Lx)}
10: S ← S ∪ {(w,L2), ..., (w,Lx−1)}
11: CFP[π(i)]← S[i] for 1 ≤ i ≤ |S|
12: Empty CBnew and set cnt = 0

13: CBnew[w]← CBnew[w] ∪ {id}
14: cnt← cnt+ 1
15: send cnt

Server:
1: send Benc

cnt

test
Client:
1: Retrieve list L of identifiers from
Bcnt = DecKEnc(B

enc
cnt)

2: (L1, Lx)← CBout[wcnt]
3: CBout[wcnt]← ⊥
4: if L1 6= Lx then . x > 1
5: Run Σdum.Update(K, (wcnt, L1 ∪ L),

add;EDB)
6: Bcnt ← Lx
7: else . x = 1
8: Run Σdum.DummyUpdate(K;EDB)
9: Bcnt ← L ∪ L1

10: if cnt ≤W/p then
11: if CFP[cnt] 6= ⊥ then
12: (w,LS)← CFP[cnt]
13: Run Σdum.Update(K, (w,LS), add;

EDB)
14: CFP[cnt]← ⊥
15: else
16: Run Σdum.DummyUpdate(K;EDB)

17: send Benc
cnt ← EncKEnc(Bcnt)

Server:
1: Update Benc

cnt

24

we can compute the query pattern qpΣdum
and answer length `Σdum

for Σdum. To
see that this is the case, first observe that the number of Σdum-updates on w and
the load of Bw per epoch can be recomputed given only up and `. From there,
the simulator can compute the number `i of full lists for keyword w that were
pushed to Σdum during a given epoch i. Clearly,

∑
i `i = `Σdum

. To deduce the
update pattern upΣdum

for Σdum, it remains to determine when each update was
performed during the epoch. Intuitively, because updates to Σdum occurring in a
given epoch are permuted uniformly at random, it suffices to choose x updates
to Σdum uniformly at random among updates issued during the epoch (excluding
updates already chosen for the same purpose on a different keyword). This yields
upΣdum

. On the other hand, each search query to BigHermes triggers exactly one
search query to Σdum: the search pattern of Σdum matches the search pattern of
BigHermes. Thus, the simulator can compute qpΣdum

, and we are done.

4.5 Efficiency

We now analyze the efficiency of BigHermes, when Σdum is efficient (in the sense
of Section 3.3). Each client-side data structure, including identifier buffers and
tables, has sizeO(W). Since there is a constant number of such structures, overall
client storage is O(W). On the server side, Σdum has storage efficiency O(1), and
the bins require pW = O(N) storage, hence overall storage efficiency is O(1).
We turn to page efficiency. During each update, one bin of size p is read, and
two updates on Σdum are performed. Since Σdum only stores full pages, of which
there can be at most N/p, Σdum.Update has page efficiency Õ (log log(N/p)).
Similarly, a search on a keyword w with ` matching identifiers induces one bin
access and (at most) b`/pc accesses of Õ (log log(N/p)) pages each. We conclude
that BigHermes has page efficiency Õ (log log(N/p)).

5 The Hermes Scheme: Putting Everything Together

We have constructed BigHermes (Section 4), an I/O-efficient SSE scheme with
forward security in the big database regime, i.e. N ≥ pW .

SmallHermes: the Small Database Regime. Due to page limits, we only
sketch how we construct SmallHermes, a forward and I/O-efficient SSE scheme
in the regime N ≤ pW . We refer to Appendix C (resp. Appendix D) for a
short (resp. detailed) overview of the construction. SmallHermes uses some of the
same ideas as BigHermes, and combines them with techniques from the recent
LayeredSSE scheme [30].

Again, we buffer W updates on the client. The main observations is that in
the small database regime, we can download the entire encrypted database EDB
each epoch of W updates. If the underlying SSE scheme is storage efficient, then
this process remains page-efficient. LayeredSSE is a great candidate, as it has
constant storage efficiency, and also Õ (log log(N/p)) read page-efficiency. This

25

yields an amortized I/O-efficient SSE scheme with forward security. This is not
quite satisfactory yet, because the entire database has to be downloaded eachW
updates. For updates, we show that the locations in EDB of added identifiers can
be precomputed locally with constant storage overhead. The process can thus
be deamortized by iterating over EDB, where each update a small chunk EDB
is downloaded and some identifiers are inserted. SmallHermes shares the same
efficiency and security properties of BigHermes, though in a different regime.

Hermes. The Hermes scheme simply uses either BigHermes or SmallHermes,
depending on which regime the global parameters N , W and p are in. That
is, Setup, Search, and Update for Hermes behave exactly as in BigHermes, if
N ≥ pW , and as in SmallHermes otherwise. Clearly, Hermes has Õ (log log(N/p))
page efficiency and O(1) storage efficiency. Further, because both sub-schemes
are forward-secure with leakage Lfs (Theorems 2 and 4), the same holds for
Hermes. This is formalized in Theorem 3.

Theorem 3. Let N be an upper bound on the size of the database, and let W
be an upper bound on the number of keywords. Let p be the page size. Assume
p ≤ N1−1/ log log λ, and N/p ≥ λ. Let Enc be an IND-CPA-secure encryption
scheme, and let PRF be a secure pseudo-random function. The Hermes is correct
and Lfs-adaptively semantically secure.

6 Experimental Evaluation

All evaluations and benchmarks have been carried out on a computer with an
Intel Core i7 8550U 1.80 GHz CPU with 8 cores and an 512 GiB PCIe SSD,
running Ubuntu 20.04. The SSD page size is 4 KiB. We chose the setting where
document identifiers are encoded on 8 bytes. This allows us to support databases
with up to 264 documents, where each page fits p = 512 entries. We set λ = 128.

6.1 Evaluation of 2C and L2C

Hermes uses both the 2C and L2C allocation schemes (Section 2.3). We first em-
pirically evaluate the constant c in the page-efficiency bound c · p log log log(λ)
log log(N/p) of those schemes. This is a necessary preliminary step to any con-
crete instantiation of Hermes, since the constant determines the bin size.

To evaluate the constant, we run experiments allocating balls with total
weight N ∈ [212, 222] using L2C and 2C. For each scheme and each param-
eter set, we perform 10000 trial runs. Each run, we insert balls into m =

2N
p log log log(λ) log log(N/p) bins, adding new balls until a total weight of N is reached.
For L2C, ball weights are sampled uniformly at random in [1, p]. For 2C, ball
weights are set to p. Once all balls are inserted, we measure the load of the
most loaded bin, and output the highest number among the 10000 trials. The
results are presented in Figure 2. For c = 2, we see that the bound holds with
a comfortable margin for all variants. This shows that 2C and L2C behave quite
well in practice. The constant c = 2 is used for Hermes in the experiments below.

26

Fig. 2 – The loads of L2C (left) and 2C (right) for 10000 runs with balls of
total weight N . The function f(λ,N, p) = c log log log(λ) log log(N/p) is the
theoretical upper bound for the most loaded bin with constant c = 2 and λ = 128.
For L2C, the weights {wi} are chosen at random in [1, 512], and wi = 512 for 2C.

6.2 Evaluation of Hermes

We now analyze the I/O performance of Hermes. Because Hermes is the first
forward-secure I/O-efficient scheme, two properties that were thought to be at
odds until now, there is no direct point of comparison in the literature. Nev-
ertheless, to provide some means of comparison, we include in the evaluation
schemes that are forward-secure but not I/O-efficient, and I/O-efficient but not
forward-secure. To represent forward-secure but not I/O-efficient schemes, we
include the Diana scheme, which offers state-of-the-art performance [11]. In the
category of schemes that are I/O-efficient but not forward-secure, while there are
many static constructions, the only practical dynamic construction we are aware
of is IO-DSSE [29]. (As discussed in Section 1.2, another dynamic I/O-efficient
construction can be found in [30], but it is a theoretical feasibility result, with
no concrete instantation.) To round out the comparison, we also include Tethys,
which attains the best page efficiency among static schemes.

For each scheme in the comparison, we analyzed its memory access pattern
to deduce its I/O workload for search and update queries. We then simulated
that workload using the optimized framework fio (version 3.19) [5]. The same
technique was shown in [8] to provide accurate performance estimates. For con-
creteness, we run our experiments on the English Wikipedia database, containing
about 140 million entries, and 4.6 million keywords. Note that these parameters
fall under the regime of SmallHermes 1. The results are presented on Figure 3.

The throughput of Hermes outperforms other dynamic schemes Diana [11] and
IO-DSSE [29]. While Diana has excellent storage efficiency, only one identifier is
retrieved during each memory access, which heavily impacts page efficiency, and
hence, throughput. This is typical of schemes that do not target I/O efficiency,
and is indeed the main motivation for I/O-efficient SSE. Concretely, the I/O

1 We analyze the variant SmallHermes1 with weighted 2C (Appendix D.4). Due to space
limitations, we omit the analysis of Hermes in the other regime of parameters. We
expect BigHermes1 to have almost the same concrete performance as SmallHermes1.

27

throughput of Hermes improves over Diana by a factor of 37 (resp. 49) for reads
(resp. updates) in this setting.

IO-DSSE suffers from poor server storage efficiency when the database con-
tains many keywords, here requiring 150 GB of encrypted data to store a plain-
text index of 1.2GB (compared to only 4.5GB for Hermes). Hermes also improves
over the I/O throughput of IO-DSSE 2 by a factor 6.

In both cases, this is because IO-DSSE relies on ORAM. The gap is expected
to increase for larger databases, since Hermes scales sublogarithmically, while
IO-DSSE does not.

Note that while Hermes requires about twice the client storage of IO-DSSE,
we present tradeoffs between client storage and page efficiency in Appendix E.
Given the right tradeoff, Hermes outperforms IO-DSSE in all metrics.

Tethys [8] outperforms Hermes in throughput and storage. However, Tethys
does not support updates, and is only included for reference.

In conclusion, Hermes vastly outperforms non-I/O-efficient schemes in through-
put, as expected. It is perhaps less expected that it also outperforms IO-DSSE,
insofar as it adds forward security. But this is not so surprising when considering
that the only known approach to “reasonably secure” dynamic I/O-efficient SSE
prior to this work was to use ORAM.

Fig. 3 – Read and update I/O throughput, inverse page efficiency, and inverse
storage efficiency for various SSE schemes, in logarithmic scale. Higher is better.
Note that inverse client storage efficiency is W divided by client storage.

7 A Security Flaw in IO-DSSE

In this section, we present an attack that contradicts the security claim of IO-
DSSE [29]. In particular, we show that IO-DSSE is not forward secure. Con-
sequently, IO-DSSE is potentially vulnerable to attacks targeting SSE schemes
2 When measuring throughput, Figure 3 uses the repaired version of IO-DSSE, since
the original version is insecure (Section 7).

28

without forward security, for example [38]. We first introduce some background,
then we present a simple attack on IO-DSSE which contradicts its security claim.
In Appendix I, we present a stronger attack and highlight the flaw in the secu-
rity proof of IO-DSSE. Also, we discuss how to repair the flaw which seems to
inherently incur a large cost in I/O efficiency.

Overview of IO-DSSE. Let Lw be the list of document identifiers matching
keyword w. To optimize I/O efficiency, IO-DSSE splits Lw into blocks of size p,
for some fixed block size p (much like Hermes). For each keyword, the last block
may be of size less than p. That block is called incomplete. Incomplete blocks
are stored in a Path ORAM instance. To understand the security issue with
IO-DSSE, it is necessary to explain how Path ORAM functions. We refer the
reader to [37] for a full description. For the purpose of the attack, it is enough to
know the following facts. Let W be the number of keywords. The ORAM needs
to store (at most) W blocks. Each block is padded to the full size p before being
stored in the ORAM.

To store the W blocks, Path ORAM creates a full binary tree with W leaves
(for simplicity, assumeW is a power of two). Each node of the tree, including the
leaves, can store up to Z = 5 elements (sometimes Z is set to 4, but this has no
impact on the attack). In addition to the tree, Path ORAM maintains a stash,
which can receive Õ (logW) blocks. To each block w stored in the ORAM (we
assimilate a block with the corresponding keyword w) is associated a uniformly
random leaf lw of the tree. At all stages of the algorithm, Path ORAM maintains
the invariant that block w is stored in one of the nodes on the path from the
root to lw, or in the stash. In the standard version of Path ORAM, in order to
access a block w, the client reads the entire path P (lw) from the root to lw, plus
the stash. Afterwards, lw is updated to a fresh uniformly random leaf l′w, and
an eviction process is performed.

The eviction process takes all blocks currently stored in the path P (lw) and
in the stash, including block w, and stores each of those blocks as low as possible
along P (lw) (viewing the root as the top of the tree). Recall that a block w′ must
be stored above the leaf lw′ , in order to maintain the desired invariant. Ideally,
block w′ is stored in the lowest node along P (lw) that lies above lw′ . However,
it may be the case that more than Z blocks would be stored in that node; If so,
overflowing blocks are pushed to the parent node. If this happens at the root
node, overflowing blocks are pushed to the stash. To sum up, each block w′ is
stored “as low as possible” along P (lw), under the constraint that it must remain
above lw′ , and that no node can receive more than Z blocks.

The analysis of Path ORAM is quite involved, but shows that the scheme
is correct (no overflow occurs), except with negligible probability. Path ORAM
fully hides from the server which block is accessed. The price to pay is that each
access requires downloading an entire path plus the stash, which amounts to
Õ (logW) blocks, performing some computation, and reuploading.

To reduce that cost, IO-DSSE proposes the following optimization. Like most
SSE schemes, IO-DSSE search operations reveal which keyword is searched, re-

29

gardless of the ORAM component. Thus, hiding which block is accessed during
reads is overkill. Following that idea, IO-DSSE performs two optimizations. First,
it introduces a deferred read system, whereby reads are buffered, and evictions
are only performed once for a batch of successive reads. That optimization poses
no problem, and is unrelated to the attack. Second, for each keyword w, IO-
DDSE stores in a separate position map, not only the leaf lw associated to the
keyword, but also the level hw of the tree (or the stash) where the block is ac-
tually stored. That way, when reading block w, the client can retrieve lw and
hw from the position map, and query a single tree node: namely the node at
level hw along the path P (lw). This saves a factor logW during reads. In their
experiments, [29] consider 350 searchable keywords. Even with this very mod-
est number of keywords, the previous optimization saves as factor more than 8,
which is significant in practice (on the English Wikipedia database, the same
improvement would save a factor more than 20).

Unfortunately, the latter improvement introduces a security flaw. The secu-
rity claim of IO-DSSE is that, during updates, the server only learns whether the
incomplete block associated to the currently updated keyword becomes full, and
nothing else. (That information is leaked because the newly full block will be
removed from the Path ORAM instance, and pushed to a separate SSE scheme.)
During reads, IO-DSSE claims that the server only learns at which points in time
the currently searched keyword was previously updated.

The point of this section is to show that this security claim is incorrect. More
precisely, we will show that, when the client performs a series of updates followed
by a search, it is possible for the server to infer information about whether the
previous updates were on pairwise distinct keywords, or on the same keyword,
even if the following search is on an unrelated keyword. The issue is subtle, but
relies on the fact that the level hw of a given keyword depends on the pattern
of previous updates, even if they are on other keywords.

7.1 A simple attack

Let w1, ..., w6 be pairwise distinct keywords. In scenario (1), the client updates
keyword w1, w2, ..., w6 once each, then searches keyword w1. In scenario (2),
the client updates keyword w1, then updates w2 five times, then searches w1.
Assume p ≥ 6, so that no full block is created (the practical experiments of IO-
DSSE set p = 500). Then in both scenarios, the leakage function is the same: the
client performs six updates, then one search on the keyword that was updated
first. Hence, according to the security claim of IO-DSSE, the server should not
be able to distinguish those two scenarios.

We present an attack that allows the server to distinguish the two scenarios
with non-negligible probability. The attack is simple: the server observes the
level hw1

of w1 during the final search. If hw1
lies in the stash, then the server

guesses that the client performed scenario (1). Otherwise, the server guesses that
the client performed scenario (2). We now show that this attack has a constant
distinguishing advantage.

30

In scenario (2), only two blocks can be in the root node, namely blocks w1

and w2. Since the root can contain up to Z = 5 > 2 blocks, it is not possible
that block w1 is pushed to the stash. Hence, in scenario (2), it is never the case
that hw1 is at the stash level. In scenario (1), on the other hand, with probability
2−6, the leaves associated to all six keywords before they are updated are below
the left child of the root; and with probability 2−6 again, the leaves associated
to all six keywords after they have been updated are below the right child of
the root. If both events occur, then all six keywords need to be stored in the
root, which means that one of the keyword must be pushed to the stash. With
probability 1/6, keyword w1 is pushed to the stash (the scheme does not specify
how to choose which block is pushed in case of overflow; however, by linearity
of expectation, it must be the case that one of the six blocks is pushed with
probability at least 1/6; without loss of generality, we assume it is w1). Hence,
with probability C ≥ 1/6 ·2−12, hw1 will be at the stash level. In conclusion, the
server can distinguish the two scenarios with constant advantage.

References

1. Amjad, G.: Theoretical and Practical Advances in Structured Encryption. Ph.D.
thesis, Brown University, USA (2022), https://cs.brown.edu/research/pubs/
theses/phd/2022/amjad.ghous.pdf

2. Amjad, G., Patel, S., Persiano, G., Yeo, K., Yung, M.: Dynamic volume-hiding
encrypted multi-maps with applications to searchable encryption. Proceedings on
Privacy Enhancing Technologies 2023(1) (2023)

3. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: Wichs,
D., Mansour, Y. (eds.) 48th ACM STOC. pp. 1101–1114. ACM Press (Jun 2016).
https://doi.org/10.1145/2897518.2897562

4. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric en-
cryption. Journal of Cryptology 34(2), 9 (Apr 2021). https://doi.org/10.1007/
s00145-020-09370-z

5. Axboe, J.: Flexible I/O Tester (2020), https://github.com/axboe/fio
6. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. In: Pro-

ceedings of the twenty-sixth annual ACM symposium on theory of computing. pp.
593–602 (1994)

7. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: ISOC
Network and Distributed System Security – NDSS 2020 (2020)

8. Bossuat, A., Bost, R., Fouque, P.A., Minaud, B., Reichle, M.: SSE and SSD:
Page-efficient searchable symmetric encryption. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 157–184. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84252-9_6

9. Bost, R.: Σoφoς: Forward secure searchable encryption. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1143–
1154. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978303

10. Bost, R., Fouque, P.A.: Security-efficiency tradeoffs in searchable encryp-
tion. PoPETs 2019(4), 132–151 (Oct 2019). https://doi.org/10.2478/
popets-2019-0062

31

https://cs.brown.edu/research/pubs/theses/phd/2022/amjad.ghous.pdf
https://cs.brown.edu/research/pubs/theses/phd/2022/amjad.ghous.pdf
https://doi.org/10.1145/2897518.2897562
https://doi.org/10.1007/s00145-020-09370-z
https://doi.org/10.1007/s00145-020-09370-z
https://github.com/axboe/fio
https://doi.org/10.1007/978-3-030-84252-9_6
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.2478/popets-2019-0062
https://doi.org/10.2478/popets-2019-0062

11. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1465–1482. ACM Press
(Oct / Nov 2017). https://doi.org/10.1145/3133956.3133980

12. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
668–679. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813700

13. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: Data structures and
implementation. In: NDSS 2014. The Internet Society (Feb 2014)

14. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.:
Highly-scalable searchable symmetric encryption with support for Boolean
queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 353–373. Springer, Heidelberg (Aug 2013). https://doi.org/10.
1007/978-3-642-40041-4_20

15. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 351–368. Springer, Heidelberg (May 2014). https://doi.org/10.1007/
978-3-642-55220-5_20

16. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(Dec 2010). https://doi.org/10.1007/978-3-642-17373-8_33

17. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006. pp. 79–88. ACM Press
(Oct / Nov 2006). https://doi.org/10.1145/1180405.1180417

18. Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dynamic
searchable encryption with small client storage. In: ISOC Network and Distributed
System Security – NDSS 2022 (2022)

19. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption
with optimal locality: Achieving sublogarithmic read efficiency. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991,
pp. 371–406. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96884-1_13

20. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: Proceedings of the 2017 ACM International Conference on Management of
Data. pp. 1053–1067 (2017)

21. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. In: Proceedings on Privacy Enhancing Technolo-
gie – PoPETS 2018 (2018)

22. Friedman, S., Krishnan, A., Leidenfrost, N.: Hash tables for embedded and real-
time systems. EEE Real-Time Embedded System Workshop (2001)

23. George, M., Kamara, S., Moataz, T.: Structured encryption and dynamic leakage
suppression. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part III.
LNCS, vol. 12698, pp. 370–396. Springer, Heidelberg (Oct 2021). https://doi.
org/10.1007/978-3-030-77883-5_13

24. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct:
Statistical learning theory and encrypted database attacks. In: 2019 IEEE Sympo-
sium on Security and Privacy. pp. 1067–1083. IEEE Computer Society Press (May
2019). https://doi.org/10.1109/SP.2019.00030

32

https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-030-77883-5_13
https://doi.org/10.1007/978-3-030-77883-5_13
https://doi.org/10.1109/SP.2019.00030

25. Gui, Z., Paterson, K.G., Patranabis, S., Warinschi, B.: SWiSSSE: System-wide
security for searchable symmetric encryption. Cryptology ePrint Archive, Report
2020/1328 (2020), https://ia.cr/2020/1328

26. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272,
pp. 149–180. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/
978-3-030-03326-2_6

27. Kamara, S., Moataz, T., Park, A., Qin, L.: A decentralized and encrypted national
gun registry. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1520–
1537. IEEE (2021)

28. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 523–542. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96881-0_18

29. Miers, I., Mohassel, P.: IO-DSSE: Scaling dynamic searchable encryption to mil-
lions of indexes by improving locality. In: NDSS 2017. The Internet Society
(Feb / Mar 2017)

30. Minaud, B., Reichle, M.: Dynamic local searchable symmetric encryption. In:
Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022. Lecture
Notes in Computer Science, Springer (2022)

31. MongoDB: Queryable encryption. https://www.mongodb.com/products/
queryable-encryption (2022)

32. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
644–655. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813651

33. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W.,
Keromytis, A.D., Bellovin, S.: Blind seer: A scalable private DBMS. In: 2014 IEEE
Symposium on Security and Privacy. pp. 359–374. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.30

34. Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive
searchable symmetric encryption. In: ISOC Network and Distributed System Se-
curity – NDSS 2021 (2021)

35. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy. pp. 44–55. IEEE Com-
puter Society Press (May 2000). https://doi.org/10.1109/SECPRI.2000.848445

36. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS 2014. The Internet Society (Feb 2014)

37. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas,
S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 299–310. ACM Press (Nov
2013). https://doi.org/10.1145/2508859.2516660

38. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In: Holz, T., Savage, S.
(eds.) USENIX Security 2016. pp. 707–720. USENIX Association (Aug 2016)

A More Related Work and SSE Research Directions

Searchable Symmetric Encryption was introduced by Song et al. at Security
and Privacy 2001 [35]. Since then, the area has developed in several different

33

https://ia.cr/2020/1328
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://www.mongodb.com/products/queryable-encryption
https://www.mongodb.com/products/queryable-encryption
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1109/SP.2014.30
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/2508859.2516660

directions. Because of the breadth of literature on SSE, we only draw attention
here to a few important branches in the current research landscape. Insofar as
SSE is a trade-off between functionality, security, and efficiency, research in the
area can be roughly divided into three avenues, one for each component of the
trade-off.

Works that expand functionality include SSE for boolean queries [14], range
queries [33], or even subsets of SQL [26]. Works that deal with security include
attacks, and efforts to reduce leakage in response to those attacks. Most attacks
against searchable encryption fall in the category of leakage-abuse attacks, a
term coined in [12]. Leakage-abuse attacks do not contradict the security claims
of a scheme, but show how the leakage allowed by the security model enables
the server to reconstruct large parts of the database in certain settings [12, 24].
These attacks have motivated further works that reduce or suppress leakage [23],
including forward-secure schemes [34, 11, 27, 21, 18].

Among works that mainly target efficiency, perhaps the most notable devel-
opment in recent years is I/O efficiency. We refer the reader to the introduction
for a presentation of the topic, and the relevant literature. Beside the three re-
search directions briefly outlined above, some works have attempted to propose
complete solutions [33, 25].

Lastly, we remark that the idea of a fixed update schedule is used in other
constructions. Notably, the schemes FIX in [1] and SWiSSSE in [25] use a fixed
update schedule to obtain (variants of) forward security. We stress that the
schedules of FIX and SWiSSSE are not compatible with I/O-efficiency: both
schemes have worst-case page efficiency Ω(N/p), and this cost seems intrinsic
to their approach. Both schemes also require client buffers of size Ω(N) in the
worst case (namely, when one keyword matches a constant ratio of the database).
In a different direction, multiple-choice processes have emerged as useful build-
ing blocks for SSE in recent years, and have been used in several prior works,
including [3, 19, 30, 2].

B BigHermes: Additional Material

We provide an overview of the data structures used in BigHermes0 in Table 2.

Table 2 – Overview of the data structures used in BigHermes1 (see Algorithm 3).
Data Structure Comments

Bins Bw1 , ..., BwW Each bin Bw stores up to p identifiers matching keyword w
CBnew : w 7→ L Table that buffers for each keyword w fresh identifiers L match-

ing w (up to W identifiers in total)
CBout : w 7→ (L,L) Table that buffers for keyword w up to 2 identifier lists of size

at most p
CFP : [1,W/p] 7→ L Table that maps an index to either a list L of p identifiers or ⊥
Tlen : w 7→ ` Stores for keyword w the number ` of identifiers that match w.

34

The remainder of this section describes BigHermes2, the fully deamortized
variant of BigHermes (Section 4).

Recall that BigHermes1 achieves worst-case sublogarithmic page efficiency,
communication complexity, as well as server-side time and memory complexi-
ties. It also achieves sublogarithmic client-side time complexity, but only amor-
tized over an epoch, since the last update of an epoch triggers an end-of-epoch
computation that runs in time O(W) on the client. Although the computations
are simple, this behavior may be undesirable, and one may wish for worst-case
sublogarithmic time complexity on the client side. Since every other aspect of the
scheme is already deamortized, this would result in a fully deamortized scheme.
That is what we set out to do with BigHermes2.

Here, standard deamortization techniques suffice. The main new techniques
underpinning BigHermes (SSE supporting dummy updates, and the idea of “deamor-
tizing” a trivial ORAM) were already present in BigHermes1. That is why we
have focused the presentation on BigHermes1, in both Algorithm 3 and Figure 1.
Nevertheless, we now show that client-side computation can also be deamortized.

BigHermes2 makes use of a pipeline precomputation in two steps. For this,
we require separate copies of CBnew,CFP and CBout for both steps. We denote
by CB(i)

new,CFP(i) and CB
(i)
out the copies of CBnew,CFP and CBout respectively

for the step i. Additionally, we require a table Tx that stores for each keyword
w the number of underfull sublists, i.e. sublists of type (1) or (2), during the
current epoch; and a counter ctr that counts the total number of (full) sub-
lists of type (2). The tables Tlen and Tx are shared by both steps. Further, we
assume that at the beginning of each epoch, a new permutation π is drawn,
CB(1)

new,CFP(1) and CB
(1)
out is copied to CB(2)

new,CFP(2) and CB
(2)
out respectively, and

that CB(1)
new,CFP(1),CB

(1)
out, ctr and Tx are reinitialized. The client then performs

the following operations, for each pipeline step.

1. During the first step, the data structures are prepared such that in step 2, the
client can directly write the content to the server. That is, each update, the
new keyword-identifier pair (w, id) is added to the identifier list CBnew[w], and
Tlen[w] is incremented. Then, the client checks whether the current identifier
list CBnew[w] is equal to the sublist of type (1), i.e. if Tx[w] = 0 and Tlen[w] =
0 mod p. In that case, the sublist is complete and Tx[w] is incremented.
Further, she sets CBout[w]← CBnew[w] and empties CBnew[w] thereafter.
If Tx[w] 6= 0, she checks whether |CBnew[w]| = p, i.e. whether the sublist
is of type (2). In that case, Tx[w] and ctr is incremented. Then, she sets
CFP[π(ctr)]← CBnew[w] and empties CBnew[w] thereafter.
Note that at the end of an epoch, all full lists of size p are written to CFP
in a random location. Further, for each keyword w, CBnew[w] contains the
underfull sublist of type (3) that will be written to Bw in the next step and
CBout[w] contains the sublist of type (1) that completes the current list of
Bw (if that is possible).

2. During the second step, the content of the data structures is written to the
server as before. The only difference is that CBout only contains L1, whereas
CBnew contains Lx (with the notation of Algorithm 3).

35

C SmallHermes: Short Overview

In Section 4, we have built BigHermes, under the assumption N ≥ pW . We now
build a scheme SmallHermes with the same efficiency and security properties as
BigHermes, but in the regime N ≤ pW . SmallHermes uses some of the same ideas
as BigHermes, and combines them with techniques from the recent LayeredSSE
scheme [30]. Similar to BigHermes, we present SmallHermes in three steps, each
building on the previous one. To provide a concise overview, we only sketch the
construction here. The full description can be found in Appendix D.

SmallHermes0: Amortized SmallHermes. SmallHermes stores identifiers in m =
o(N) encrypted bins according to L2C (Section 2.3). Recall that each bin has
capacity Õ (p log log(N/p)), and is conceptually divided into log log(N/p) layers.
Each list L of (at most p) identifiers matching keyword w is mapped to two
bins Bα, Bβ . The list L is stored in either Bα or Bβ , depending on which bin
has fewer items at layer κ, where κ is determined by the size of L. For a search
on keyword w, the bins Bα and Bβ are retrieved from the server. The client
can read the matching identifiers from the bins after decryption. When a list
has more than p identifiers, it is split into sublists of size p, which are treated
independently.

So far, SmallHermes behaves like LayeredSSE [30]. The main difficulty is how
to achieve forward security, that is, how to perform updates with no leakage.
Here, SmallHermes borrows from BigHermes. Client updates are buffered over
the course of an epoch in a client-side buffer CBnew of capacity W . At the end
of an epoch, the client downloads the entire encrypted database EDB from the
server, and performs updates locally. Because we are in the “small database”
regime N ≤ pW , this process has amortized O(1) page efficiency. Of course, it
is desirable to deamortize the algorithms, so that the client does not need to
download the entire database at the end of an epoch. This is presented next.

SmallHermes1: SmallHermes with Deamortized Communication. The communica-
tion of SmallHermes0 can be deamortized via client-side pre-computation (similar
to Section 4.2), yielding a scheme SmallHermes1 with Õ (log log(N/p)) page ef-
ficiency and O(1) storage efficiency. To that end, the client stores an additional
table Tload, which records the load information of each bin on all log logm lay-
ers. (This requires O(W · log logm) client storage but can be improved to O(W)
with a more complex pre-computation.) Whenever the client decides to store
an identifier in a bin, she updates Tload accordingly. Using Tload, the client can
pre-compute locally in which bin a new identifier should be added. Each epoch,
she accesses every bin on a fixed schedule, and inserts identifiers according to
the local pre-computation.

In the end, a fresh identifier is written to the server after at most 2W client
updates. During a client update, at most one bin of size pO(log log(N/p)) is
downloaded. During a search matching ` identifiers, exactly 2d`/pe bins are
downloaded. Thus, SmallHermes has O(log log(N/p)) page efficiency. It also in-
herits O(1) storage efficiency from L2C.

36

SmallHermes2: Fully Deamortized SmallHermes. With a complex but efficient
pipeline pre-computation, we can remove the additional log logm factor in client
storage and deamortize both the communication and computation of SmallHermes.
The optimization is based on the observation that for inserting the O(W) new
identifiers of CBnew, we do not require the entire load information of L2C, only
the load of relevant bin-layer pairs. For W updates, even if each new identifier
requires the load of some bin Bγ at some layer κ, there are at most 2W such
pairs (γ, κ). The load information of these pairs can be precomputed in a pipeline
with three steps, where each step is performed in one epoch. The client can then
decide where to insert each of the new identifiers based on the load informa-
tion, and subsequently push the identifiers to the server. This approach yields
an update operation with at most O(p log log(N/p)) communication and com-
putation. In the end, SmallHermes2 achieves the same worst-case sublogarithmic
performance in page efficient, communication and computation, as BigHermes2.

It is interesting to note that SmallHermes can be simplified if we are willing to
make a natural conjecture about the behavior of the weighted two-choice process.
This point is discussed in Appendix D.4. The relevant conjecture seems to be
a long-standing open problem. If true, a simpler and more elegant variant of
SmallHermes can be built, although asymptotic performance remains the same.

C.1 Security and Efficiency

Theorem 4 (Sketch). If N ≤ pW , then SmallHermes is correct and Lfs-
adaptively semantically secure.

The full formal statement and proof are deferred to Appendix H. Let us
outline the proof here. Semantic security follows from the following facts. (1)
The bins are encrypted, hence only the upper bound N is leaked during setup.
(2) During search, 2 · d`/pe bins are accessed, where ` is the number of identifiers
matching the searched keyword w. These bins are re-accessed if w is searched
again, but look random random to the server during the initial search. Thus,
a search leaks the search pattern, and the number of sublists. (3) Updates are
performed by accessing each bin via a fixed schedule (which solely depends on
the number of updates). Hence, updates leak no information.

Each data structure on the client requires O(W) storage. As there are only
a constant number of data structures and pipeline steps, total client storage is
O(W). At most one bin is downloaded each update; and each search on keyword
w, exactly 2 d`/pe bins are retrieved, where ` is the length of the list of identifiers
matching w. Because each bin is of size Õ (p log log(N/p)), page efficiency is
Õ (log log(N/p)), and storage efficiency is O(1).

D SmallHermes: Detailed Overview

Recall that p is the page size, N is an upper bound on the total number of
identifiers andW is an upper bound on the total number of distinct keywords. In

37

this section, we assume N ≤ pW . We detail our scheme SmallHermes (sketched in
Appendix C). Our construction SmallHermes builds on the page-efficient dynamic
SSE scheme LayeredSSE [30]. While LayeredSSE is not forward secure, we show
that with the techniques developed in this work, we can construct an oblivious
update algorithm with O(W) client memory. Note that our technique can only
be applied if N ≤ pW . Our construction preserves the efficiency properties of
LayeredSSE, namely Õ

(
log log N

p

)
page efficiency and constant storage efficiency,

and uses only O(W) client storage.
We present the results as follows. First, we recall how LayeredSSE works

and outline a simple amortized update procedure that it forward secure. This
intermediate construction SmallHermes0 is presented in Appendix D.1. In Ap-
pendix D.2, we present SmallHermes1 version, which has deamortized communi-
cation. This version is also given in pseudo-code in Algorithm 4 and the used
data structures are presented in Table 3. Then, we show how to deamortize
both communication and computation via the construction SmallHermes2 in Ap-
pendix D.3. Finally, we analyze the security and efficiency in Appendix D.5 and
Appendix D.6 respectively.

Table 3 – Overview of the data structures used in SmallHermes (see Algo-
rithm 4).
Data Structure Comments

Bins B1, ..., Bm Each bin stores up to p · bN,p identifiers as in LayeredSSE with
bN,p = Õ (log log(N/p))

Tlen : w 7→ ` Table that stores for each keyword w the number ` of matching
identifiers

CBnew : w 7→ L Table that buffers for each keyword w fresh identifiers L match-
ing w (up to W identifiers in total)

CBout : γ 7→ L Table that buffers for the γ-th bin the identifiers (potentially
matching different keywords) to be added to Bγ

Tload : (γ, κ) 7→ nγ,κ Stores for bin γ the number nγ,κ of sublists in layer κ

D.1 SmallHermes0: Amortized SmallHermes

Recall that LayeredSSE stores identifiers in m = o(N) encrypted bins accord-
ing to L2C. That is, each list L of (at most p) identifiers matching keyword w
is mapped to two bins Bα, Bβ with log log N

p conceptual layers and capacity

Õ
(
p log log N

p

)
. Then, L is stored in either Bα or Bβ depending on the load of

each bin at layer κ, where κ depends on the size of L. For a search on keyword
w, the bins Bα and Bβ are requested from the server. The client can read the
matching identifiers from the bins after decryption. These bins are also retrieved
for each update on keyword w, and the new identifier is inserted in one of the

38

bins according to L2C. When a list has more than p identifiers, it is split into
sublists of size p which are treated independently as described above. This re-
sults in Õ

(
log log N

p

)
page efficiency and O(1) storage efficiency. See [30] for

more details.
The setup and search of SmallHermes0 are identical to setup and search of

LayeredSSE. As updates of LayeredSSE are not forward secure, we now show how
to adapt the update procedure such that it has no leakage. With O(W) client
storage, the client can buffer O(W) fresh keyword-identifier pairs in a buffer
CBnew. When CBnew is full, she can download the entire encrypted database
EDB from the server and perform the updates locally with amortized O(1) page
efficiency, as N ≤ pW . For this, she has to perform up toW insertions according
to L2C operations. In the following, we show how to deamortize this simple ap-
proach. As the final variant SmallHermes2 is technically involved, we first present
an intermediate variant SmallHermes1.

D.2 SmallHermes1: SmallHermes with Deamortized Communication

SmallHermes1 deamortizes the communication at the cost of O(W log logN)
client storage. Note that the overhead can be avoided heuristically via the use
weighted 2C or via more pre-computation (details follow later). Since each bin
is of size Õ

(
p log log N

p

)
, we aim for Õ

(
log log N

p

)
page efficiency and constant

storage efficiency. We proceed as follows, assuming that per keyword, there are
at most p matching identifiers.

The client accesses each bin in a fixed schedule and inserts new identifiers
into the required bin, based on locally computed load information. The client
stores an additional table Tload which maps a bin Bγ and layer κ to the number
nγ,κ ← Tload(γ, κ) of lists stored in Bγ at layer κ. 3 Whenever the client decides
to store an identifier list in a bin, she also updates Tload accordingly. With Tload,
the client can now directly decide locally where to insert each new identifier.
Note that the client cannot download the corresponding bin directly to insert
the identifier, as this would break forward security. But we can still leverage the
load information of Tload with an additional identifier buffer CBout.

Each update, the client inserts the new keyword-identifier pair into CBnew.
After W updates CBnew is filled and the client pre-computes the location of the
new identifiers. That is, for all keywords w, the client pre-computes the index
γ of bin Bγ in which to insert the list Lnew of new identifiers matching w (that
are buffered in CBnew). The list Lnew is then moved into CBout[γ]. Note that the
index γ can be computed via Tload, if Tload is continuously updated throughout
the pre-computation.

After this pre-computation, for each bin Bγ , the buffer CBout[γ] contains
all identifiers from CBnew to be inserted into bin Bγ . CBnew can be emptied

3 The table Tload is the reason O(W log logN) client storage is required. Using some
additional pre-computation, the client can compute Tload at only O(W) required
positions. This retains O(W) client storage (see appendix D.3).

39

subsequently. During the next epoch, the client can download each bin Bγ via a
fixed schedule and insert CBout[i] into Bi. For this, SmallHermes1 downloads bin
Bi the i-th update operation of the epoch.

Note that a fresh identifier is written to the server after at most 2W update
operations and inserted into the bin Bγ chosen according to L2C. Consequently,
no bin overflows with overwhelming probability due the correctness of L2C. Also,
during each update operation, at most one bin of size pO

(
log log N

p

)
is down-

loaded. As in LayeredSSE, exactly two bins are accessed during a Search. Thus,
SmallHermes1 has O

(
log log N

p

)
page efficiency and O(1) storage efficiency.

Handling arbitrary list lengths. If there are more than p identifiers per keyword,
we split the lists L of identifiers matching keyword w into full lists and (at most)
one underfull list. Sublists with exactly p identifiers are called full, whereas sub-
lists with less than p identifiers are referred to as underfull. In order to compute
the correct bin for the new identifiers, the client also stores the length of L for
each keyword in a table Tlen. During an update, the client computes the size
r = Tlen[w] mod p of the underfull list on the server. Lnew (defined as above) is
split into x =

⌈
r+|Lnew|

p

⌉
sublists as follows:

– L1, the sublist that fills the underfull list on the server (if possible).
– L2, ..., Lx−1, the full sublists of size p.
– Lx, the remaining underfull sublist (if any).

For each sublist Li, we again compute the bin Bγ in which we need to insert Li
via Tload (according to L2C) and insert Li into CBout[γ]. Note that during this
process, we interpret L1 as a list of size |L1|+r, as it will complete the underfull
sublist on the server, if possible. Also, Tlen and Tload are updated accordingly
throughout the pre-computation.

D.3 SmallHermes1: Fully Deamortized SmallHermes

Here, we remove the requirement of O
(
W log log N

p

)
client storage and deamor-

tize both the communication and computation of SmallHermes. This optimization
is possible, because we observe that for inserting the O(W) new identifiers of
CBnew, we do not require the entire load information of L2C. Only the load of
bin layers in which a new identifier is inserted is required. Per epoch, each new
identifier requires the load of some bin Bγ at some layer κ. There at most 2W
such pairs (γ, κ). The load information of these pairs can be precomputed in a
pipeline with three steps, where each step is performed during O(W) updates.
In an additional fourth step, the client can finally fill CBout as before using the
load information. During the next W updates, the content of the filled buffer
CBout is pushed to the server as before. This approach naturally yields an update
operation with at most O

(
p log log N

p

)
communication and computation.

Before we present each pipeline step, we fix some convention as all steps rely
on the results of previous steps. We assume that there are independent copies of

40

Algorithm 4 SmallHermes1
SmallHermes1.Setup(K, N,DB)

1: Set B1, ..., Bm ←
L2C.Setup({(wi,DB(wi))}Wi=1, N/p)

2: Fill bins B1, ..., Bm up to size p · bN,p
with zeroes

3: Set Benc
i ← EncKEnc(Bi) for i ∈ [1,m]

4: Tlen[w]← `i for all keywords w
5: Setup Tload according to load of
B1, ..., Bm

6: Set cnt← 0
7: return EDB = (Benc

1 , ..., Benc
m)

SmallHermes1.KeyGen(1
λ)

1: Sample KEnc for Enc with security pa-
rameter λ

2: return K = KEnc

SmallHermes1.Search(K, w;EDB)
Client:
1: Set `← Tlen(w) and x = d`/pe
2: send w, x

Server:
1: Set αi, βi ← H(w || i) for i ∈ [1, x]
2: send {Benc

αi , B
enc
βi
}xi=1

SmallHermes1.Update(K, w, id, add;EDB)
Client:
1: if cnt = p then
2: for all keywords w do
3: Set L← CBnew[w]
4: Set r ← Tlen[w] mod p
5: Set x← d(r + |L|)/pe
6: Split L into x lists Li such that L1

has size at most p− r, Lx has size
at most p, and the remaining lists
have size p

7: Precompte bin index γi of Li via
load information in Tload for all i ∈
[1, x]

8: Set CBout[γi] ← CBout[γi] ∪ {Li}
for all i ∈ [1, x]

9: Update load information in Tload

accordingly
10: Set Tlen ← Tlen[w] + |L|
11: Empty CBnew and set cnt = 0

12: CBnew[w]← CBnew[w] ∪ {id}
13: cnt← cnt+ 1
14: if cnt ≤ m then
15: send cnt

Server:
1: send Benc

cnt

Client:
1: Set Bcnt ← DecKEnc(B

enc
cnt)

2: Insert CBout[γi] into Bcnt

3: send Benc
cnt ← EncKEnc(Bcnt)

Server:
1: Update Benc

cnt

41

client data structures CBnew,CBout, Tload and Thash, per pipeline step. We index
a data structure ds from step i via ds(i). Note that Tlen is a table shared by all
steps. The pipeline steps are executed in reverse order, i.e. step i+1 is executed
before step i. We implicitly assume that the content of ds(i) is copied to ds(i+1)

before execution of pipeline step i. The contents of all data structures of step i
are emptied after the step is performed and the content was copied to step i+1.
The 5 pipeline steps are as follows:

Client

CBnew

w1 ... wi ... wW

Pipeline

local precomputation

CBout

1 ... i ... m

(w, id)

access Benc
cnt

Server

Bins

Benc
1

... Benc
i

... Benc
W

pbN,p

Fig. 4 – Sketch of the update schedule of SmallHermes1. (The data structures
Tlen and Tload are omitted for clarity.) Each update, the variable cnt is incre-
mented and added keyword-identifier pairs are moved along the dotted lines.
See Algorithm 4 for pseudo-code. Note that the SmallHermes2 shares the same
structure, though the pipeline that pre-computes the final bin location of added
identifiers is much more sophisticated.

1. In the first step, the client simply buffers the identifiers id in CB(1)
new as before,

i.e. for each new keyword-identifier pair (w, id), the client adds id to the list
CB(1)

new[w].
2. In the second step, the client splits for each keyword w the list of L ←

CB(2)
new[w] of new identifiers matching w into sublists Li (as explained above)

and computes for each of these sublists the two bins it could be stored in.
The result (along with auxiliary information) is stored in Thash. Further, all
required layers are marked in Tload with ∞ (and filled with the correct value
in the following step).

42

In more detail, during the k-th update operation, the client takes some
keyword w for which CB(2)

new is not empty. She sets r ← Tlen[w] mod p if
w was considered for the first time this step and set r ← 0 otherwise 4.
Also, she sets d ← bTlen[w]/pc. The client removes up to p − r identifiers
Lnew = (id1, ..., id`new) from CB(2)

new[w]. Note that Lnew corresponds to the i-th
sublist Li, if w was considered for the i-th time during this step. She sets
κ = layer(`new + r). Then, she computes α, β ← H(w || (1 + d)) and stores
T

(2)
hash[β]← T

(2)
hash[β] || (Lnew, κ, α) and T

(2)
hash[α]← T

(2)
hash[α] || (Lnew, κ, β). Also,

she sets T (2)
load[α, κ]← 0. Finally, she updates Tlen[w]← `new + Tlen[w].

3. In the third step, the client fetches the load for all required bin-layer pairs
(γ, κ) and stores it in T (3)

load, i.e. all keys of T
(3)
load that are mapped to an integer

n. The load nγ,κ will either be 0, if it was marked in step 2, or equal to the
load of the bin at the given layer, if it was updated in step 4 (see step 4 for
more details). The client proceeds as follows.
Whenever she fetches the bin Bcnt during an update operation, she retrieves
the load nγ,κ of bin Bcnt at all layer κ. Then, only if T (3)

load[γ, κ] = 0, she stores
the load in T (3)

load[γ, κ] = nγ,κ.
4. In the fourth step, the client fills CBout with the new sublists. Also, she

updates Tload from the previous level according to the updates in order to
avoid inconsistencies. She proceeds as follows.
During the k-th update operation, she retrieves and removes some list and
auxiliary information (w,Lnew, β, κ) from T

(4)
hash[α] for some bin Bα. Then,

she computes the bin γ in which to store Lnew according to L2C using the
load information from T

(4)
load[γ, κ] and inserts the new sublist into CB

(4)
out[γ].

Further, she increments T (4)
load[γ, κ]. Note that this changes the load of the

bin but we do not push Lnew to the server in this step. Thus, the load
information of the subsequent step 4 would be computed wrong for layers of
bins that were updated in this step. In order to avoid these inconsistencies,
the client further updates the load information of step 3 accordingly, i.e. sets
T

(3)
load[γ, κ] = T

(4)
load[γ, κ] + 1 directly.

5. In the fifth step, the client writes the content of CBout to the server as in
Algorithm 4.

Careful inspection shows that the pipeline pre-computation retains correctness.
Also, the view of the server remains unchanged, thus SmallHermes2 remains
semantically secure with the same leakage. Notably, even the client computation
is de-amortized.

D.4 Heuristic Variant via Weighted 2C

In SmallHermes, we can replace L2C with weighted 2C. That is, weighted balls
are inserted in the least loaded bin of two bins chosen at random, independent
4 This can be decided using another table Tflg that matches a keyword w to a flag
b ∈ {0, 1}, initialized with 0 for each keyword. When the keyword w is considered,
the flag Tflg is set to 1.

43

Fig. 5 – The loads of 2C for 10000 runs with balls of total weight N . The function
f(λ,N, p) = c log log log(λ) log log(N/p) is the theoretical upper bound for the
most loaded bin in L2C with constant c = 2 and λ = 128. The weights {wi} are
chosen at random in [1, 512].

of layers. While we know of no non-trivial upper bound for this variant, heuris-
tically it performs similar to L2C (see Figures 2 and 5). With this adaption, the
entire load information can be kept on the client with O(W) storage. Thus, the
SmallHermes1 has O(W) client storage using weighted 2C. Further, each update,
we can directly decide in which bin to insert the added identifier, independent of
layers, and update the load information accordingly. Recall that in SmallHermes2,
we previously had to fetch exactly the right load information which resulted in
complicated pipeline pre-computation. With weighted 2C, the client-side pipeline
in SmallHermes2 can be heavily simplified, which reduces both the computation
per update and the client storage. As this variant is only heuristically secure, we
omit details.

D.5 Security

SmallHermes is forward secure with standard leakage as formalized in Theorem 5.

Theorem 5. Let N be an upper bound on the size of the database,W be an upper
bound on the number of keywords and let p ≤ N1−1/ log log λ be the page size. We
model H : {0, 1}∗ 7→ {1, ...,m} as a random oracle. Let N ≤ pW . The scheme
SmallHermes is correct and Lfs-adaptively semantically secure if Enc is IND-CPA
secure and PRF is a secure pseudorandom function (for the preprocessing of w).

Here, we sketch the proof of Theorem 5. We refer to Appendix H for a detailed
proof.

44

The underlying L2C scheme is scaled such that up to N identifiers (orga-
nized into lists of size at most p) fit into the bins without overflowing (for any
list distribution). SmallHermes inserts lists into the least loaded of two randomly
chosen bins at the corresponding layer. Consequently, the bins are filled accord-
ing to L2C. It follows from Lemma 2 that no bin overflows its capacity with
overwhelming probability. Correctness follows immediately.

Semantic security also follows from the following facts. (1) The bins are
encrypted and thus, only the upper bound N is leaked during setup. (2) During
search, 2 · d`/pe bins are accessed, where ` is the number of identifiers matching
the searched keyword w. These bins are re-accessed if w is searched again but
look random random to the server for the first search (as bin indices are the
output of a hash function and w is random in the view of the server). Thus,
a search leaks the search pattern and the number of sublists. (3) Updates are
performed by accessing each bin via a fixed schedule (that solely depends on the
number of updates).

D.6 Efficiency

Each data structure on the client side requires at most O(W) storage. As there
are only a constant number of data structures and pipeline steps, the total client
storage is O(W). At most one bin is downloaded each update and each search
on keyword w, exactly d`/pe bins are retrieved, where ` is the length of the list
of identifiers matching keyword w. As each bin of size Õ

(
p log log N

p

)
, the page

efficiency is Õ
(
log log N

p

)
and the server storage is O(N).

E Efficiency Trade-offs

For ease of exposition, several design choices in Hermes have been made in favor of
simplicity. Depending on the deployment scenario, various tradeoffs are possible.
We sketch a few in this section. These tradeoffs apply to both sub-schemes of
Hermes, BigHermes and SmallHermes.

E.1 Dynamic server storage

First, as defined, the Σdum component of Hermes requires allocating all memory
upfront. If the database is intended to grow up to N elements, then O(N) mem-
ory must be allocated at setup time. In some use cases, that behavior may be
undesirable. If so, the scheme can be modified so that its memory usage scales
dynamically with the size of the database. First, setup an instance of Hermes
with capacity k for some small k. Once that instance reaches full capacity, create
a new instance with capacity 2k, initialized with the content of the original in-
stance. The original instance is then deleted, and the pattern repeats. This basic
technique has been studied in depth in the context of memory allocation algo-
rithms, and can be further refined in various way, for example to deamortize the

45

cost of building the new instance; see e.g. [22]. We leave further optimizations
along this line for future works.

E.2 Reducing client storage

Hermes requires O(W) client storage. This is optimal for efficient forward secure
SSE schemes [10]. In most such schemes, for example [9, 11], the O(W) comes
from the need to store a counter for each keyword, similar to Tlen in Hermes. To
improve memory efficiency, Hermes additionally buffers O(W) keyword-identifier
pairs on the client. The client memory required for this can be reduced by a
(constant) factor c in exchange for increasing update page efficiency by factor
c. We sketch how to proceed for BigHermes. (The tradeoff can be applied to
SmallHermes in a similar manner.) Each update, the client performs c updates
of BigHermes at once. That is, she buffers the new keyword-identifier pair on
the client, and instead of retrieving a single bin and performing two (dummy)
updates to Σ, read c bins and perform 2c (dummy) updates to Σ. Now, each
epoch lasts W/c updates and thus, only O(W)/c pairs need to be buffered on
the client. While c bins are fetched each update (instead of one), note that the
page efficiency of read queries is not impacted, as the worst-case load of the bins
is not impacted.

E.3 On leakage

In line with most SSE literature, Hermes does not specify how full documents
are fetched on the server, once their identifier is retrieved. In SSE folklore, it is
typically assumed that the documents are simply encrypted, and then queried
from the server. That explains why most SSE schemes make no attempt to hide
access pattern leakage (that is, which documents match a given query): this
information will implicitly be revealed at a later stage, when the client queries
the full documents. This leakage can sometimes be exploited by attacks, although
this depends on the use case (see [7] for a detailed analysis). Some recent work
has proposed to obfuscate access pattern leakage at the expense of efficiency [25].
While such techniques are out of scope, we note that Hermes naturally lends itself
to such obfuscation techniques, in particular because it never requires the server
to learn document identifiers in the clear (in fact, it is naturally response-hiding).

Finally, we note that Hermes realizes an encrypted multi-map. As such, be-
yond the direct application to keyword search, it can be used in any application
that relies on encrypted multi-maps, such as the graph search algorithms from
[16].

F Security Proof of Dummy(Σ)

Here, we prove Theorem 1. We show that Dummy(Σ) is secure, if Σ is suitable
and forward secure. Note that correctness follows from Lemma 1 and the proof
is straight-forward.

46

Proof. Let Sim denote the simulator and A an arbitrary honest-but-curious PPT
adversary. Further, let SimΣ be a simulator for Σ with leakage Lfs. Initially, Sim
receives LStp(DB, N,D,W) = (N,D,W) and later, an series of search and up-
date queries with input LSrch(w) = (qp, `) and LUpdt(op, w, id) = ⊥ respectively.
First, Sim generates an encryption key K′Enc and initializes m = N/Õ (log logN)

bins B1, ..., Bm zeroed out up to size Õ (log logN). Next, she sets EDBΣ ←
SimΣ(N,W) and outputs EDB′ = (EncK′

Enc
(B1), ...,EncK′

Enc
(Bm)). Next, Sim sim-

ulates the search and update queries.
For search queries, Sim receives the query pattern qp and the length ` of the

identifier list matching the searched keyword. Sim outputs τ ← SimΣ(qp, `). For
update queries, Sim receives no input. Sim sets (k, v) ← SimΣ(⊥) and outputs
k. We now show that the real game is indistinguishable from the ideal game. For
this, we define five hybrid games.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0 raises a flag flag when a bin overflows its

capacity during setup or update. As the client never inserts an identifier if
the bin were to overflow, the probability of a flag being raised is 0. Thus,
Hybrid 1 and Hybrid 0 are indistinguishable.

– Hybrid 2 is the same as Hybrid 1 except in Setup, the encrypted database
EDB replaced with EDB′, and in Update, the client sends back fresh encryp-
tions of log log(m) zeros. Since Enc is IND-CPA secure, it follows that the
advantage of an adversary trying to distinguish Hybrid 2 from Hybrid 1 is
negligible.

– Hybrid 3 is given in Algorithm 5 and is the same as Hybrid 2 except in Setup,
the client performs the setup of Σ with DB directly instead of performing
the updates locally. As Σ is suitable, Hybrid 3 and Hybrid 2 are identically
distributed and thus indistinguishable.

– Hybrid 4 is given in Algorithm 6 and is the same as Hybrid 3, except the
scheme Σ is simulated via SimΣ . Hybrid 4 and Hybrid 3 are indistinguish-
able, as Σ is Lfs-adaptively secure.

– Hybrid 5 is identical to the ideal game. Hybrid 5 and Hybrid 4 are identically
distributed and thus, indistinguishable.

G Security Proof of BigHermes

Here, we prove Theorem 2. We show that BigHermes is secure with leakage Lfs

in detail. Correctness is tedious but straight-forward.

Proof. Let Sim denote the simulator and A an abitrary honest-but-curious PPT
adversary. Further, let SimΣ be a simulator of Σ.

Initially, Sim receives Lfs
Stp(DB,W,N) = (W,N) and later, an adaptive series

of search and update queries with input Lfs
Srch(wi) = (qp, `i) and Lfs

Updt(opi, wi, idi) =
⊥ respectively. First, Sim generates an encryption key K′Enc and initializesW bins
B1, ..., BW zeroed out up to size p. Then, Sim sets EDB′Σ ← SimΣ(W,N) and

47

Algorithm 5 Hybrid 3
Dummy(Σ).Setup(K, N,W,DB)

1: Set NΣ ← N +D and WΣ ←W + 1
2: Generate random K′Enc

3: Generate dummy keyword wdum and
identifier iddum

4: Let EDBΣ ←
Dummy(Σ).Setup(K, NΣ ,WΣ ,DB)

5: Initialize m = N/Õ (log logN) bins
B1, ..., Bm containing Õ (log logN) ze-
ros

6: return output EDB =
(EncK′

Enc
(Bi))

m
i=1

Dummy(Σ).Search(K, w;EDB)
Client:
1: Set τ ← Σ.SearchC(K, w)
2: send τ

Dummy(Σ).Update(K, (w, id), op;EDB)
Client:
1: Set (k, v) ←
Σ.UpdateC(K, (w, id), add)

2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

Dummy(Σ).DummyUpdate(K;EDB)
Client:
1: Set (k, v) ←
Σ.UpdateC(K, (wdum, iddum), add)

2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

Algorithm 6 Hybrid 4
Setup(LStp(N,W,DB))

1: Set NΣ ← N +D and WΣ ←W + 1
2: Generate random K′Enc

3: Let EDBΣ ← SimΣ(Lfs
Stp(NΣ ,WΣ , ∅))

4: Initialize m empty bins B1, ..., Bm
5: Fill each bin up to capacity
Õ (log logN) with zeros

6: return output EDB =
(EncK′

Enc
(Bi))

m
i=1

SearchC(LSrch(w))
Client:
1: Simulate τ ← SimΣ(LSrch(w))
2: send τ

UpdateC(LUpdt(op, w, id) = ⊥)
Client:
1: Simulate (k, v)← SimΣ(⊥)
2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

DummyUpdateC()
Client:
1: Simulate (k, v)← SimΣ(⊥)
2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

48

outputs EDB′ = (EncK′
Enc
(B1), ...,EncK′

Enc
(BW),EDB′Σ). Further, Sim initializes a

counter cnt = 0 of the number of updates. Next, Sim simulates the search and
update queries.

For search queries, Sim receives query pattern qp = (sp, up) and the total
number ` of identifiers matching the searched keyword. If the search pattern
sp indicates that the keyword was already searched, Sim outputs the keyword
w′ from the previous query. Otherwise, Sim outputs a new uniformly random
keyword w′. Also, Sim associates an index µ ∈ [1,W] to w′ at random but
distinct from indices of other keywords. Next, Sim simulates a search query of
Σ. Recall that up is a bit vector that indicates for each update query whether it
was an update on the searched keyword or not. As the updates on SmallHermes
induce an altered update pattern on Σ, the simulator Sim needs to reconstruct
the update pattern upΣ of Σ from up. For this, she proceeds as follows for the
k-th epoch:

She initializes an all-zero vector upΣ = (0, ..., 0) of length 2cnt. If the co-
ordinates of upΣ were already computed for the k-th epoch during a previous
search query for the current keyword, she sets upΣ as before at these positions.
If otherwise no search query was issued on the keyword after the k-th epoch,
the corresponding coordinates of upΣ were not yet set. Recall that during the
last epoch, the updates on Σ depend on the updates during the previous epoch,
and during the first epoch, only dummy updates are performed. She will set the
coordinates as follows for k > 1.

Sim recomputes the number of added sublists x in the (k − 1)-th epoch for
the searched keyword. (Note based on up and `, Sim can recompute the number
of identifiers in the bin of the searched keyword at the beginning of the (k−1)-th
epoch and the number of identifiers added during the (k − 1)-th epoch. These
values determine x. Then, x− 1 sublists are then written to Σ during the k-th
epoch due to preprocessing.) Then, if x ≥ 2, she sets upΣ [2(k + µ) − 1] ← 1,
where µ is the index of w′. Further, for all i ∈ [1, x − 2], she chooses some
j ∈ [1,W/p] that has not been chosen during the (k − 1)-th epoch at random
and sets upΣ [2(k + j)] ← 1. (If 2(k + µ) − 1 or 2(k + j) are larger than 2cnt,
then the client remembers the choice until the update happened and sets up
accordingly for subsequent searches.) Note that for the first epoch, upΣ remains
zeroed out. Similarly, Sim computes the number nclient of identifiers matching
the searched keyword that are still buffered on the client via ` and up, and sets
sets `Σ ← b(`− nclient)/pc. Finally, Sim invokes SimΣ with input qpΣ and `Σ to
simulate the search protocol of Σ.

In order to simulate an updates, Sim simply invokes SimΣ twice (with input
⊥) to simulate the update protocol of Σ and increments cnt.

We now show that the real game is indistinguishable from the ideal game.
For this, we define four hybrid games.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except the simulated keywords w′ are

output during search. As we assume that w is the output of a PRF and thus

49

indistinguishable from random, Hybrid 0 and Hybrid 1 are (computationally)
indistinguishable.

– Hybrid 2 is the same as Hybrid 1, except the updates on Σ are induced
by upΣ . That is, updates for a given keyword w′ on Σ are performed each
u-th update operation, where upΣ [u] = 1 (but with the real identifiers).
Note that by construction, for each such update on Σ, there is a full list of
identifiers that was inserted during the previous epoch. Hybrid 2 is identically
distributed to Hybrid 1, as the π is a random permutation.

– Hybrid 2 is the same as Hybird 1, except Σ is simulated. That is, EDBΣ
is replaced with the simulated EDB′Σ , the search queries are simulated with
input `Σ and upΣ , and the updates on Σ are simulated with input ⊥. Hybrid
2 and Hybrid 1 are indistinguishable based on the security of Σ.

– Hybrid 3 is the same as Hybrid 2, except the bins are zeroed out. That
is, EDB is replaced fully with EDB′ and received bins are only reencrypted
during updates. Since Enc is IND-CPA secure, Hybrid 3 and Hybrid 2 are
indistinguishable.

– Hybrid 4 is identical to the ideal game. Hybrid 4 and Hybrid 3 are identically
distributed and thus, indistinguishable.

H Security Proof of SmallHermes

Here, we prove Theorem 5 (which is sketched in Theorem 4). We show that
SmallHermes is secure with leakage Lfs in detail. Correctness is tedious but
straight-forward.

Proof. Let Sim denote the simulator and A an arbitrary honest-but-curious PPT
adversary. Initially, Sim receives Lfs

Stp(DB,W,N) = (W,N) and later, an series of
search and update queries with input Lfs

Srch(wi) = (qp, `i) and Lfs
Updt(opi, wi, idi) =

⊥ respectively. First, Sim generates an encryption key K′Enc and initializes m =
N/(p · bN,p) bins B1, ..., Bm zeroed out up to size p · bN,p. Then, Sim outputs
EDB′ = (EncK′

Enc
(B1), ...,EncK′

Enc
(Bm)). Further, Sim initializes a counter cnt = 0.

Next, Sim simulates the search and update queries.
For search queries, Sim receives query pattern qp and the length ` of the

searched identifier list. If the query pattern qp indicates that the keyword was
already searched, Sim outputs the keyword w′ from the previous query. Other-
wise, Sim outputs a new uniformly random keyword w′ that has not been output
during a search query yet. In addition, Sim forwards x = d`/pe to the A.

For update queries, Sim receives no input. Sim simply increments cnt, sends
cnt to the A, re-encrypts the received bin and sends it back to to A.

We now show that the real game is indistinguishable from the ideal game.
For this, we define three hybrid games.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except the simulated keywords w′ are out-

put. As we assume that w is the output of a PRF and thus indistinguishable

50

from random, Hybrid 0 and Hybrid 1 are (computationally) indistinguish-
able.

– Hybrid 2 is the same as Hybrid 1, except the encrypted database EDB is
replaced with EDB′ and whenever the simulator receives a bin, she simply
sends back re-encrypted bins. Since Enc is IND-CPA secure (and bins always
have size p·bN,p), it follows that Hybrid 1 and Hybrid 2 are indistinguishable.

– Hybrid 3 is identical to the ideal game. Hybrid 3 and Hybrid 2 are identically
distributed and thus, indistinguishable.

I Further Remarks on the Insecurity of IO-DSSE

In this section, we sketch how to improve the simple attack on IO-DSSE from
Section 7. Further, we highlight the flaw in the security proof of IO-DSSE. Lastly,
we discuss how to repair the flaw. This seems to inherently incur a large cost in
I/O efficiency.

A generalized attack. The distribution of blocks inside Path ORAM is quite
difficult to analyze in general. For that reason, we have focused on a simple
attack that is easy to analyze. Stronger attacks are certainly possible, at the
cost of a more intricate analysis. We note in particular that there is no need
to exploit the stash in the attack, and observing levels of items close to the
leaves can also lead to distinguishers. As an illustration of that point, consider
the following attack. Split keywords into two sets W1 and W2 of respective sizes
|W1| = min(p − 1,W − 2) and |W2| = W − |W1| − 1, plus a special keyword
w not in W1 or W2. In scenario (1), we update |W1| times the keyword w.
During this process, for each keyword w′ ∈ W1 ∪ W2, the associated leaf lw′

remains unchanged. Hence, as we make repeated accesses to w, each block w′ for
w′ ∈W1 ∪W2 will be progressively pushed down towards its associated leaf lw′ .
However, since keywords in W1 and W2 have to compete for space at the leaf
level, it may be the case that some of them cannot fit in the leaves, no matter
how many accesses to w we perform.

In scenario (2), instead of repeatedly updating w, we update all keywords
in W1 once. Each time a keyword in W1 is accessed, its associated leaf changes,
and the block must begin a new journey down to its associated leaf. As a result,
intuitively, the levels associated to keywords in W1 will be higher on average
in scenario (2) than in scenario (1). This frees up more space in the leaves for
keywords in W2. Hence, the expectation of the level of a uniform keyword in
W2 should be lower in scenario (2). This provides a sketch for a distinguishing
attack that only looks at levels close to the leaves.

On the security proof. IO-DSSE comes with a security proof. Unfortunately,
it is incomplete. In particular, the proof does not explain how the level hw is
chosen by the simulator. Our attack implies that this is not only a gap in the
proof, but it is impossible for the simulator to simulate hw based only the leakage
function.

51

How to repair the flaw. It appears impossible to reveal information about hw
to an adversary without breaking security. As a consequence, we do not see a way
to repair the security issue without undoing the second optimization introduced
by IO-DSSE. That is, the position map should only store the leaf associated to
a keyword, and not its level. When accessing the keyword, the whole path is
read. Note that this is how Tree ORAM schemes normally operate. Undoing the
optimization incurs a logW cost in I/O efficiency, since all blocks along a path
must be read.

52

	Hermes: I/O-Efficient Forward-Secure Searchable Symmetric Encryption
	Introduction
	Our Contributions
	Related Work
	Technical Overview

	Preliminaries
	Notation
	Searchable Symmetric Encryption
	Epochs.
	Correctness.
	Security.
	Leakage Patterns.
	Forward Security and Backward Security.
	Remark on Deletions.
	Efficiency Measures.

	Allocation Schemes

	SSE with Dummy Updates
	Security Definition
	A Framework to Build SSE with Dummy Updates
	Construction.
	Security.

	Efficient Instantiations

	BigHermes: the Big Database Regime
	BigHermes0: Amortized BigHermes
	BigHermes1: BigHermes with Deamortized Communication
	BigHermes2: Fully Deamortized BigHermes
	Security
	Efficiency

	The Hermes Scheme: Putting Everything Together
	Experimental Evaluation
	Evaluation of 2C and L2C
	Evaluation of Hermes

	A Security Flaw in IO-DSSE
	Overview of IO-DSSE.
	A simple attack

	More Related Work and SSE Research Directions
	BigHermes: Additional Material
	SmallHermes: Short Overview
	Security and Efficiency

	SmallHermes: Detailed Overview
	SmallHermes0: Amortized SmallHermes
	SmallHermes1: SmallHermes with Deamortized Communication
	SmallHermes1: Fully Deamortized SmallHermes
	Heuristic Variant via Weighted 2C
	Security
	Efficiency

	Efficiency Trade-offs
	Dynamic server storage
	Reducing client storage
	On leakage

	Security Proof of Dummy()
	Security Proof of BigHermes
	Security Proof of SmallHermes
	Further Remarks on the Insecurity of IO-DSSE
	A generalized attack.
	On the security proof.
	How to repair the flaw.

