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Abstract. Publicly Verifiable Secret Sharing (PVSS) allows a dealer to publish encrypted shares
of a secret so that parties holding the corresponding decryption keys may later reconstruct it. Both
dealing and reconstruction are non-interactive and any verifier can check their validity. PVSS finds
applications in randomness beacons, distributed key generation (DKG) and in YOSO MPC (Gentry
et al. CRYPTO’21), when endowed with suitable publicly verifiable re-sharing as in YOLO YOSO
(Cascudo et al. ASIACRYPT’22).
We introduce a PVSS scheme over class groups that achieves similar efficiency to state-of-the art
schemes that only allow for reconstructing a function of the secret, while our scheme allows the
reconstruction of the original secret. Our construction generalizes the DDH-based scheme of YOLO
YOSO to operate over class groups, which poses technical challenges in adapting the necessary
NIZKs in face of the unknown group order and the fact that efficient NIZKs of knowledge are not
as simple to construct in this setting.
Building on our PVSS scheme’s ability to recover the original secret, we propose two DKG protocols
for discrete logarithm key pairs: a biasable 1-round protocol, which improves on the concrete
communication/computational complexities of previous works; and a 2-round unbiasable protocol,
which improves on the round complexity of previous works. We also add publicly verifiable resharing
towards anonymous committees to our PVSS, so that it can be used to efficiently transfer state
among committees in the YOSO setting. Together with a recent construction of MPC in the
YOSO model based on class groups (Braun et al. CRYPTO’23), this results in the most efficient
full realization (i.e. without assuming receiver anonymous channels) of YOSO MPC based on the
CDN framework with transparent setup.

1 Introduction

Publicly Verifiable Secret Sharing [37] (PVSS) allows for a dealer to publish encrypted secret shares in
such a way that any verifier can check their validity. Moreover, after the parties holding the corresponding
decryption keys reconstruct the secret, any verifier can also check the secret’s validity with respect to
the encrypted shares (typically by checking the consistency between the encrypted and plaintext shares
used for reconstruction). Many PVSS schemes are known [23,36,4,35,30,8,9,26], but the state-of-the-art
constructions [10] based on number theoretic assumptions only allow for reconstructing gs, where g ∈ G
is the generator of a cyclic group G and s ∈ Zp is the secret. This limitation can be circumvented [11] by
sharing a random secret s′ with the PVSS and publishing a one-time pad of the actual secret s with a
key derived (e.g. via a random oracle) from the reconstructable secret gs

′
. However, this solution limits

the efficiency of a number of PVSS applications. In particular, the secret sharing scheme derived in this
way is no longer linear.

Distributed Key Generation (DKG). Besides randomness beacons (e.g. [8,9]), one of the main
applications of PVSS schemes is in constructing Distributed Key Generation (DKG) protocols. Such
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protocols [33,22,32,24,29,28] allow for parties to obtain Shamir shares ski of a secret key sk ∈ Zp and
the corresponding public key gsk while revealing nothing else. The recent unbiasable DKG protocol
of [11] builds on the PVSS scheme of [9] to achieve higher efficiency than previous protocols in terms of
round/computational complexities (and in many cases [22,24,28] also better communication complexity).
However, even though it requires only 2 rounds in case there is no cheating, it still falls short of round
optimality [32] in case a malicious party triggers a dispute phase that requires 2 extra rounds. This issue
stems from the fact that, in order to allow the parties to retrieve si, the DKG of [11] must publish a
separate encryption of shares si apart from the original PVSS [9] encrypted shares, since those can only
be reconstructed to gsi . In case the PVSS encrypted shares are not consistent with the extra encryption,
the dispute phase must be triggered to avoid bias.

The YOSO model. The recent introduction of the You Only Speak Once (YOSO) model for multiparty
computation (MPC) protocols [25] and related models [17,1,19] has sparked a renewed interest in PVSS
schemes with added properties. In the YOSO model, each round of the protocol is executed by a fresh
randomly selected committee of parties who remain anonymous until they send their first message,
after which they no longer participate in the execution. This is interesting as it improves scalability
because small committees are sufficient to execute each round, as well as resulting in protocols resistant
to adaptive corruptions, given that the adversary does not know who to corrupt. However, due to the
ephemeral nature of these committees, each of them must transfer their secret state to the next, which is
hard given their anonymity. In the YOSO model, it is assumed that all parties have access to ideal receiver
anonymous communication channels (RACC), which allow for sending messages to an anonymous party
to be randomnly chosen at a later point. Hence, protocols in the YOSO model assume RACCs as setup
but aim at minimizing their use. In particular, it was observed in [25] that the Cramer-Damg̊ard-Nielsen
(CDN) [18] approach to MPC via threshold encryption is particularly well suited to this setting, as secret
key shares are the only secret state maintained by parties. Only very recently, Braun et al. proposed a
YOSO MPC protocol [6] following the CDN approach without assuming pre-distribution of secret key
shares as trusted setup. This protocol assumes access to ideal RACCs in order to realize a threshold
encryption scheme over class groups with a matching DKG and a protocol for re-sharing the secret key
at every round.

PVSS in the YOSO model. A number of tools [3,27,7] have been proposed to implement RACCs
but only recently an efficient publicly verifiable (re-)sharing scheme compatible with such techniques
was proposed in YOLO YOSO [10]. The YOLO YOSO scheme allows for parties to share secrets by
publishing publicly verifiable encrypted shares and then re-share those secrets into a fresh set of shares
for the next anonymous committee without assuming access to an ideal RACC, thus providing a way to
realize the communication infrastructure of the YOSO model using only a random oracle and a Public
Key Infrastructure (PKI) as setup (i.e. a transparent setup). However, besides suffering from the issue
that only gs can be reconstructed from encrypted shares of s, YOLO YOSO is based on DDH and
not directly compatible with class groups. Hence, if YOLO YOSO was used to realize the RACC setup
required in the protocol of [6] one would need to rely on freakishly large groups where DDH is hard and
be prepared to rely both on DDH and on hardness assumptions over class groups.

1.1 Our Contributions

We introduce an efficient PVSS scheme based on class groups that allows for reconstructing the original
secret, enabling applications to DKG and YOSO MPC. Our main results are summarized as follows:

PVSS over class groups: We construct a PVSS scheme over class groups [15] that allows for recon-
structing the original secret achieving similar efficiency3 as previous works [9,10] that only allowed
for recovering functions of the secret. Moreover, our scheme achieves a stronger security guarantee.
In addition to this, privacy is based solely on the DDH-f assumption [16], known to be implied by
both DDH and hard subgroup membership on class groups.

Efficient NIZKs of encrypted share validity: Our design differs from the schemes of [9,10], over-
coming the hurdles of avoiding extracting witnesses and adapting the SCRAPE [8] share validity test
to the class group setting.

3 Up to a constant due to the time for group operations and size for group elements in class groups being higher
than those for DDH-hard groups based on elliptic curves.
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DKG protocols for Discrete Logarithm key pairs: We show how our PVSS can be used to con-
struct a 1-round biasable DKG protocol that outperforms the state-of-the-art [28]. We also construct
a 2-round unbiasable protocol which is round-optimal [32], improving on the state-of-the-art [11].

Full realization of Efficient YOSO MPC with transparent setup: Our
PVSS can be endowed with publicly verifiable re-sharing towards anonymous committees, lifted from
YOLO YOSO [10] via our new NIZKs of share validity. Using this efficient realization of the RACC
setup needed by the communication-efficient protocol of [6] yields the most efficient full realization
(i.e. without assuming ideal RACCs) of YOSO MPC with transparent setup based solely on class
groups.

When constructing our PVSS scheme, we face the main technical hurdle of constructing an efficient
NIZK of share validity over class groups. Similarly to [9,10], we start from Shamir’s secret sharing,
encrypt the shares (using encryption over class groups) and want to apply the SCRAPE [8] test to
verify share validity. However, we cannot apply the SCRAPE test directly, since the security analysis of
this technique crucially relies on the group order, which is unknown for class groups. Moreover, current
techniques [12,13,6] for zero knowledge proof systems over class groups do not allow for efficient proofs
of knowledge for complex relations such as that of share validity via the SCRAPE test. In order to
overcome both of these difficulties we make the following main technical contributions: 1. a new analysis
of the SCRAPE test for encrypted shares over groups of unknown order (i.e. class groups); 2. a new
efficient NIZK proof of share validity (but not of knowledge) based on the SCRAPE test for Shamir
shares encrypted over class groups; 3. a new proof strategy for our PVSS scheme based on a NIZK that
does not allow for extracting adversarial shares.

We construct our 2-round unbiasable DKG protocol as a direct application of our new PVSS protocol.
First, all parties publish encrypted shares of random secrets along with proofs of share validity, which
are checked so that invalid share vectors and their creators are ignored. Next, honest parties decrypt
the shares they received and combine them to generate their share of the secret key and a partial public
key, which is published along with a correctness proof so that all parties may compute the final public
key. While a similar approach was taken in Mt. Random [11], that DKG requires two extra rounds
in case of cheating. The ALBATROSS [9] PVSS used in [11] only allows parties to share gsi , not the
original share si, requiring an extra ciphertext containing si to be published. When the share in the
separate ciphertext differs from the PVSS encrypted share, a dispute phase consisting of 2 extra rounds
is executed. We eliminate the dispute phase and achieve a round-optimal [32] protocol by relying on the
fact that we can recover the original si in our new PVSS scheme’s encrypted shares.

Our 1-round DKG protocol publishes the information needed for computing public key shares and
the final public key along with the encrypted shared of our PVSS scheme. Doing so avoids the need
for the second round where this information is revealed but allows for an adversary to bias the public
key by observing the shares published by the honest parties before publishing its own shares. While
this bias is unavoidable in 1-round DKG protocols [32], it does not pose a problem when DKG is used
in many applications (see e.g. [29]). Our approach cannot be implemented by a simple modification of
our 2-round protocol, since it is necessary to prove consistency between encrypted shares used to derive
the secret key and public shares used to derive the public key. In order to do so, we design an efficient
NIZK proving this relation for our PVSS scheme. Our 1-round protocol requires computing less group
operations and communicating less group elements than the work of Kate et al. [31], which in turn is
shown to be more efficient than the Groth [28] DKG. Hence, our 1-round DKG improves on the concrete
efficiency of [31,28].

Another application of our new PVSS scheme is in efficiently realizing publicly verifiable (re-)sharing
towards anonymous committees selected at random, which is crucial in the YOSO model. We adapt
our techniques for proving encrypted share validity over class groups to obtain an efficient NIZK of
encrypted re-sharing data validity. We remark that efficiently and non-interactively proving re-sharing
validity is the main hurdle when constructing secret sharing schemes for the YOSO model, where all
parties must do re-sharing at every round. This extended PVSS with re-sharing can be combined with
the shuffle-based encryption to the future scheme from YOLO YOSO [10], which only requires a publicly
verifiable mixnet, known to be realizable with proofs of shuffle correctness [2] for linearly homomorphic
encryption schemes (e.g. based on class groups [15]). The resulting publicly verifiable secret (re-)sharing
scheme towards anonymous committees implements the communication infrastructure needed for the
efficient YOSO MPC protocol proposed in [6], which follows the CDN [18] approach to reduce the size
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of secret state transferred among anonymous committees to a minimum and is based on class groups
to achieve transparent setup. However, our solution does not require assuming ideal receiver anonymous
communication channels (RACC) as in [6], while improving on the efficiency of the proof of resharing,
which in [6] requires executing two instances of an inefficient PVSS-like protocol. Hence, combining our
results with the protocol of [6] yields the most efficient full realization of YOSO MPC with transparent
setup.

1.2 Related Works

Cryptography over Class Groups: The Castagnos-Laguillaumie (CL) framework for encryption based
on class groups was introduced in [15] and later refined in [6,12,13,14,16,38]. This framework creates a
finite group of unknown order where the discrete logarithm is assumed hard to compute, together with
a cyclic subgroup where the discrete logarithm is actually easy. This allows for constructing additively
homomorphic ElGamal-style encryption, where it is possible to encode plaintexts into the group where
the discrete logarithm is easy, compute linear operations on multiple ciphertexts and obtain the result
m instead of gm.

Publicly Verifiable Secret Sharing: Many PVSS schemes based on different techniques for proving
share validity are known [37,23,36,4,35,30]. SCRAPE [8] was the first scheme to achieve O(n) complexity
for share validity verification, allowing for executions with tens of thousands of parties. ALBATROSS [9]
built on the SCRAPE techniques to construct a compact NIZK for share validity and also achieved sharing
of large batches of secrets. This NIZK was generalized and further improved in YOLO YOSO [10], where
support for re-sharing and anonymous committees was also efficiently achieved for the first time. Recently,
Mt. Random [11] extended ALBATROSS, showing how to slowly release sub-batches of secrets. While
these previous works build on number theoretical assumptions, an efficient PVSS scheme from lattice-
based assumptions is constructed in [26].

Distributed Key Generation: Most DKG protocols use secret sharing in a similar way as ours, the
key difference being how parties prove the correctness of their shares and public information. The classic
DKG by Pedersen [33], employs Feldman’s VSS, resulting in a protocol with 1 round in case of no
disputes, and 2 extra rounds if there are disputes. Fouque and Stern [22] proposed a one-round DKG
based on the Paillier cryptosystem that still allows the adversary to bias public keys. Groth [28] proposed
a 1-round protocol based on pairings. Recently, Katz [32] showed that all 1-round protocols are biasable
and proposed round-optimal protocols. Gennaro et al. [24] were the first to observe that Pedersen’s DKG
is biased and made it unbiasable by introducing a new round of interaction and a new round of dispute
resolution. Gurkan et al. [29] introduces a pairing-based DKG based on the notion of aggregation via
gossip. Cascudo et al. [11] introduce the Mt. Random DKG, which follows a similar approach as our
constructions but is based on the ALBATROSS [9] PVSS, requiring 2 extra conflict resolution rounds to
avoid bias. Recently, Kate et al. introduced a DKG based on class groups improving on the performance
of Groth [28].

YOSO MPC: The original YOSO MPC model and the first constructions were introduced in [25],
while similar models with less stringent restrictions on interaction and matching protocols were intro-
duced in Fluid MPC [17] and in SCALES [1]. A similar model without anonymity but stricter interaction
restrictions and matching protocols were introduced in [19]. Further protocols for the Fluid MPC and
YOSO MPC models were proposed in [34] and [6], respectively. Suitable receiver anonymous commu-
nication channels for original YOSO model (where parties remain anonymous until they act) were first
constructed in [3] and [27], respectively suffering from a low corruption threshold (less than 1/4 of par-
ties) and from high complexity. Towards solving this issue, the notion of Encryption to the Future (EtF)
was introduced in [7] and efficient DDH-based EtF schemes with matching PVSS (and re-sharing) were
introduced in [10].

Independent Work: Several 2-round (i.e. round optimal) unbiasable DKG protocols based on generic
secret sharing, encryption and NIZK schemes are proposed in [32]. However, the core technical issue of
obtaining efficient concrete instantiations is not addressed. In [31], the authors propose 1-round (biasable)
and 2-round (unbisable) DKG protocols based on “leaky” non-interactive VSS (NI-VSS) protocol. This
NI-VSS achieves a weaker security notion than our PVSS as it leaks information about the secret, which
is shown to be sufficient for their DKG constructions but is clearly insufficient for general use (e.g. our
YOSO MPC application). Moreover, the NIZK of share validity of [31] is based on a NIZK of exponent
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knowledge and requires more communication/computation than our NIZKs, which circumvent the need
for extracting witnesses.

2 Preliminaries

For m,n ∈ Z, we denote [m,n] := {m,m + 1, . . . , n}. Moreover, we write [n] = [1, n] = {1, . . . , n}.
For a finite set S, we denote by x ←$ S the selection of a uniformly random element in S. If we are
sampling from a non-necessarily uniform distribution D, then we write x← D. In this paper q will always
denote a prime number and then Zq := Z/qZ is the field of integers modulo q. Zq[X]≤t denotes the set
of polynomials in Zq[X] of degree at most t. Let S ⊆ N a finite set and A = {αi : i ∈ S} be a set of
pairwise distinct points contained in a field F. For i ∈ S, we define the Lagrange interpolation polynomial
Lagi,S,A(X) :=

∏
j∈S\{i}

X−αj

αi−αj
. Recall that L(X) =

∑
i∈S yi · Lagi,S,A(X) is the unique polynomial in

F[X] of degree at most |S| − 1 with L(αi) = yi for all i ∈ S.
Relations are written as R = {(x;w) : R(x,w) = 1} where x is the statement, w is the witness and R

is some predicate. We write NIZK(R) (respectively NIZKPoK(R)) to denote a generic non-interactive zero
knowledge proof (respectively proof of knowledge) for relation R, without instantiating it at that point.

2.1 Publicly Verifiable Secret Sharing(PVSS)

We first present our definitions of a publicly verifiable secret sharing scheme and security properties,
where we mainly adopt the definitions from [10]. After that, we recall the SCRAPE test [8] which has
been of great utility in several works on publicly verifiable secret sharing and applications [8,9,10,29].

Model A PVSS scheme consists of the following algorithms.

– Setup
• Setup(1λ, ip) → pp outputs public parameters pp. The initial parameters ip contain information

about number of parties, privacy and reconstruction thresholds and spaces of secrets and shares.
The public parameters include a description of spaces of private and public keys SK and PK and
the relation RKey ⊆ PK× SK describing valid key pairs.

• KeyGen(pp, id)→ (sk, pk,Pfpk), where (pk; sk) ∈ RKey and Pfpk is a proof meant to assert that pk
is a valid public key.

• VerifyKey(pp, id, pk,Pfpk)→ 0/1 (as a verdict on whether pk is valid).
– Distribution
• Dist(pp, (pki)i∈[n], s) → ((Ci)i∈[n],PfSh) where s ∈ S is a secret, outputs “encrypted shares” Ci

and a proof PfSh of sharing correctness.
– Distribution Verification
• VerifySharing(pp, (pki, Ci)i∈[n],PfSh)→ 0/1 (as a verdict on whether the sharing is valid).

– Reconstruction
• DecShare(pp, pki, ski, Ci) → (Ai,PfDeci), outputs a decrypted share Ai and a proof PfDeci of
correct decryption.

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] outputs an element of the secret space s′ ∈ S or an error
symbol ⊥.

– Reconstruction Verification
• VerifyDec(pp, pki, Ci, Ai,PfDeci)→ 0/1 (as a verdict on whether Ai is a valid decryption of Ci).
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Security properties

Correctness with r-reconstruction. The correctness with r-reconstruction requirement ensures that if
everybody is honest, then all proofs involved pass and any set of at least r participants can reconstruct
the secret from their shares (by first having each party decrypt their share and then jointly applying the
reconstruction algorithm Rec).

Definition 1. For a set T ⊆ [n], and a probability distribution DS over the secret space, define the
following experiment ExpCorrT ,DS

(1λ).

– pp← Setup(1λ, ip)

– ∀ i ∈ [n], (ski, pki,Pfpki)← KeyGen(pp, i)

– s← DS
– ((Ci)i∈[n],PfSh)← Dist(pp, {pki : i ∈ [n]}, s)
– ∀ i ∈ T , (Ai,PfDeci)← DecShare(pp, pki, ski, Ci)

– s′ ← Rec(pp, {Ai : i ∈ T }), where s′ ∈ S ∪ {⊥}
– Output

(
pp, (pki,Pfpki, Ci)i∈[n],PfSh, (PfDeci)i∈T , s, s

′)
Definition 2. We say that the PVSS is correct with r-reconstruction if for all T ⊆ [n] of size at least
r, any probability distribution DS over the secret space,

Pr [ VerifyKey(pp, i, pki,Pfpki) = 1 ∀ i ∈ [n] ∧ VerifySharing(pp, (pki, Ci)i∈[n],PfSh) = 1

∧ VerifyDec(pp, pki, Ci, Ai,PfDeci) = 1 ∀ i ∈ T ∧ s′ = s

|
(
pp, (pki, Ci)i∈[n],PfSh, (PfDeci)i∈T , s, s

′)← ExpCorrT ,DS
(1λ) ] = 1

Verifiability. The verifiability properties assert that passing the verification procedures VerifyKey, VerifySharing
and VerifyDec guarantee respectively that the key pairs are well constructed, that the set of encrypted
shares is indeed a correct sharing of a secret and that the shares have been correctly decrypted.

Definition 3 (Verifiability of Key Generation). A PVSS satisfies verifiability of key generation for
RKey if for all PPT A,

Pr
[
VerifyKey(pp, id, pk,Pfpk) = 1 ∧ ∄ sk ∈ SK s.t. (pk; sk) ∈ RKey

∣∣∣
pp← Setup(1λ), (id, pk,Pfpk)← A(pp)

]
is negligible in λ.

Definition 4 (Verifiability of Sharing Distribution). The PVSS satisfies verifiability of sharing
distribution if for every PPT A,

Pr
[
VerifySharing(pp, (pki, Ci)i∈[n],PfSh) = 1 ∧

∄s ∈ S s.t. ((Ci)i∈[n], ·)← Dist(pp, {pki : i ∈ [n]}, s)
∣∣∣

pp← Setup(1λ), ((Ci)i∈[n],PfSh)← A(pp)
]
is negligible in λ.

Definition 5 (Verifiability of Share Decryption). The PVSS satisfies verifiability of share decryp-
tion if the following is satisfied: For every PPT A,

Pr
[
VerifyDec(pp, pk, C,A,PfDec) = 1 ∧

∄sk ∈ SK s.t. (A, ·)← DecShare(pp, pk, sk, C)
∣∣∣

pp← Setup(1λ), (pk, C,A,PfDec)← A(pp)
]
is negligible in λ.
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Privacy (t-indistinguishability). We define now indistinguishability of secrets against an adversary cor-
rupting t parties. We follow the notions from [30,35]. In our definition, the adversary is allowed to decide
the public keys of the corrupted parties after seeing those of the honest parties. Then, provided two
secrets (s0, s1) and a sharing of a random secret sb, the adversary has negligible advantage in guessing
which secret was shared. In this paper we choose the IND2-privacy flavor where the adversary can choose
s0, s1. This is stronger than IND1-privacy (used e.g. in [8,9,10]) where the challenger chooses the secrets
at random.

Definition 6 (t-(IND2-privacy), based on [30]). The PVSS is t-IND2-private if for any poly(λ)-
time adversary APriv corrupting t parties (w.l.o.g. APriv corrupts [n− t+ 1, n]), we have

Pr
[
Gameind-secrecy,0APriv,PVSS

(λ) = 1
]
− Pr

[
Gameind-secrecy,1APriv,PVSS

(λ) = 1
]
= negl(λ)

where for b = 0, 1, Gameind-secrecy,bAPriv,PVSS
(λ) is the following game against a challenger:

– The challenger runs pp← Setup(1λ) and sends pp to APriv.
– For i ∈ [n− t], the challenger runs (ski, pki,Pfpki)← KeyGen(pp, i) and sends all created (pki,Pfpki)

to APriv

– APriv creates (pki,Pfpki)i∈[n−t+1,n] ← APriv(pp, (pki,Pfpki)i∈[n−t]) for the corrupted parties and sends
them to the challenger, together with two values s0, s1 in S.

– The challenger runs VerifyKey(pp, i, pki,Pfpki) for i ∈ [n− t+ 1, n]. If any of these output 0 (reject),
the challenger sends ⊥ to APriv

– Otherwise, if all proofs accept, the challenger runs (C1, . . . , Cn,PfSh) ← Dist(pp, {pki : i ∈ [n]}, sb)
(a sharing of sb), and sends (C1, . . . , Cn,PfSh) to APriv.

– APriv outputs a guess b′ ∈ {0, 1}.

The SCRAPE test We recall the SCRAPE test from [8]. Given fixed evaluation points α1, . . . , αn in
a finite field F, the SCRAPE test allows to check whether a vector y = (y1, ..., yn) ∈ Fn is of the form
(p(α1), . . . , p(αn)) for some p(X) ∈ F[X]≤d, by computing the inner product of y with a vector sampled
uniformly at random from a certain set.4 This is summed up in Theorem 1.

Theorem 1 (SCRAPE test, [8]). Let F be a finite field, α1, . . . , αn pairwise distinct elements of F,
y1, . . . , yn arbitrary elements of F, 0 ≤ d ≤ n− 2 an integer. Let vi =

∏
j∈[n]\{i}(αi − αj)

−1.

Let m∗(X) := m0 +m1X + · · ·+mn−d−2X
n−d−2 ←$ F[X]≤n−d−2 and

T :=

n∑
i=1

vim
∗(αi)yi

1. If there exists a polynomial p ∈ F[X] of degree ≤ d such that yi = p(αi) for all i ∈ [n], then
Pr[T = 0] = 1.

2. Otherwise, Pr[T = 0] = 1/|F|.

where the probability is over the uniform choice of m∗(X).

For completion, we provide a proof of this theorem in Appendix A.1

2.2 Background on Class Groups

The CL Framework [15]. We first provide some background on the CL framework for encryption
based on class groups. First, there is a probabilistic algorithm CLGen which is given security parameter
λ, and some prime q > 2λ, and outputs ppCL = (q, s̄, Ĝ, F, f, gq, ρ)← CLGen(1λ, q; ρ). Here ρ ∈ {0, 1}λ is
the randomness used by CLGen and it is included in the output to signify that it can be publicly known.
We will omit it from the argument of CLGen when it is not important. The (non-necessarily cyclic) group

4 In coding-theoretic this set is the dual code to the Reed-Solomon code formed by the evaluations of polynomials
of degree ≤ d.
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Ĝ has odd cardinality q · ŝ where gcd(q, ŝ) = 1, and where ŝ is unknown but we know an upper bound
s̄, i.e. ŝ ≤ s̄. For technical reasons, we also assume without loss of generality gcd(q, s̄) = 1.

Having F = ⟨f⟩ denote the subgroup of cardinality q, Ĝ is a direct product Ĝ = Ĝq × F , where Ĝq

is the group of containing the q-th powers of elements in Ĝ, and is of order ŝ. Ĝ is not necessarily cyclic,
but there is a cyclic subgroup G ⊆ Ĝ of order q · s (again s is unknown) that factors as G = Gq × F
where Gq = ⟨gq⟩ again contains the q-th powers of elements in G. Note then that G = ⟨g⟩ with g = f ·gq.
Given some element in Ĝ it is not known how to determine if it is in G efficiently.

An key feature of this framework is that for subgroup F ≤ G there is an efficient deterministic
discrete logarithm algorithm CLSolve that given f ′ ∈ F computes the unique x ← CLSolve(ppCL, f

′),
with x ∈ [0, q − 1] such that fx = f ′.

We will need distributions D,Dq, over the integers such that {gx : x ← D} and {gxq : x ← Dq}
are statistically close to the uniform distributions in G and Gq, respectively. D,Dq can be instantiated
by either uniform or discrete Gaussian distributions [14,15,38]: in particular, choosing D (resp. Dq) to
be the uniform distribution in [qs̄2κ−2] (resp. [s̄2κ−2]) leads to distributions whose statistical distances
to the uniform distributions in the respective groups are at most 2−κ. Note also that the distribution
{gx′

q · fa : x′ ← Dq, a←$ Zq} is almost uniform in G, as a consequence of the factorization G = Gq × F .
Based on this framework, Castagnos and Laguillaumie construct a linearly homomorphic encryption

scheme for messages in Zq in [15]. Later, variations of this encryption scheme were presented in [16].
In particular, the share distribution in our PVSS is closely related to one of the schemes presented in
[16]: concretely the scheme where sk ← Dq, pk = gskq and the encryption of m ∈ Zq under pk and
randomness r ← Dq is the pair (c1, c2) = (grq , pkrfm) ∈ Gq × G. The message can then be decrypted

as m = CLSolve(c2 · c−sk
1 ). The scheme was proved IND-CPA secure under the hard subset membership

(HSM) assumption, described below. We describe first the assumptions we will need directly for our proofs.
First there is the DDH-f assumption from [16]

Definition 7 (DDH-f assumption, [16]). For a PPT A, let AdvDDH-fA (λ) be∣∣∣Pr [ b∗ = b | ppCL ← CLGen(1λ, q), x, y ←$ D, u←$ Zq, X = gx, Y = gy,

b←$ {0, 1}, Z0 = gxy, Z1 = gxyfu, b∗ ← A(ppCL, X, Y, Zb)
]
− 1/2

∣∣∣.
DDH-f is hard for CLGen if for all PPT A, AdvDDH-fA (λ) is negligible in λ.

Second, the more recent rough order assumption from [6].

Definition 8 (Rough Order assumption, [6]). For a natural number C ∈ N and security parameter
λ, consider Drough

C the uniform distribution in the set {ρ ∈ {0, 1}λ : ppCL ← CLGen(1λ, q; ρ)∧∀ prime p <

C, p ∤ ord(Ĝ)}. Let

AdvROCA (λ) =
∣∣∣Pr [b = b∗

∣∣∣ρ0 ←$ {0, 1}λ, ρ1 ← Drough
C , b←$ {0, 1}, b∗ ← A(1λ, ρb)

]
− 1/2

∣∣∣
ROC is hard for CLGen if for all PPT A, the AdvROCA (λ) is negligible in λ.

We refer to [6] for the discussion of why this assumption is plausible. Moreover, we remark, as was
also done in [6], that the assumption involves an inefficient challenger (as we do not know how to sample
from Drough

C efficiently). However, also as [6] does, we will only use the assumption inside a security proof,
namely that of Theorem 7,5 to argue that if an adversary successfully attacks a protocol, it would be
able to determine that that given class group has a low order element, contradicting the assumption.

Other hardness assumptions on class groups The standard Decisional Diffie-Hellman (DDH) assumption
on G states that distinguishing tuples (gx, gy, gxy) from tuples (gx, gy, gz) where x, y, z are sampled
independently from D is hard. More precisely:

Definition 9 (DDH-assumption on G). For a PPT A, let AdvDDHA (λ) be∣∣∣Pr [b∗ = b | ppCL ← CLGen(1λ, q), x, y, z ←$ D, X = gx, Y = gy,

b←$ {0, 1}, Z0 = gxy, Z1 = gz, b∗ ← A(ppCL, X, Y, Zb)
]
− 1/2

∣∣∣
5 As well as for using the ZK proof protocol from [6] which we show in next section
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We say that the DDH problem is hard for CLGen if for all PPT A, AdvDDHA (λ) is negligible in λ.

The HSM assumption states that it is hard to distinguish elements sampled from G from elements
sampled from Gq (using D and Dq respectively).

Definition 10 (Hard Subgroup Membership (HSM) assumption, [16]). For a PPT A, let AdvHSMA (λ)
be ∣∣∣Pr [ b = b∗| ppCL ← CLGen(1λ, q), x← D, y ← Dq,

b←$ {0, 1}, Z0 = gx, Z1 = gyq , b
∗ ← A(ppCL)

]
− 1/2

∣∣∣
We say that the HSM problem is hard for CLGen if for all PPT A, AdvHSMA (λ) is negligible in λ.

2.3 Zero Knowledge Proofs for Class Groups

In this section, we recall some proofs for statements involving discrete logarithms in class groups from
recent works. In this paper we will need both proofs of knowledge of discrete logarithm and proofs of
discrete logarithm equality. However, in the second case we will not need the proofs to be proofs of
knowledge.

Proofs of knowledge of discrete logarithm We consider two proofs of knowledge of discrete loga-
rithm, introduced respectively in [12] and [13].6. Let RDL = {((h, x);w) ∈ (G×G)×Z : hw = x}. For this
and all the proofs below to be statistically honest-verifier zero knowledge, we will require the witness w
to be in an interval [−S, S] for some public bound S (the proofs require to set parameters which depend
on S). We remark that the soundness does not guarantee that the witness is in that interval.

There is a tradeoff between both proofs in terms of complexity and security assumptions: the first
proof is less efficient but does not require any assumption; the second one is more efficient but is based on
the hardness assumptions (i.e. it is an argument of knowledge) LOC and SR; perhaps more importantly,
it requires h to be uniformly random, and in particular not decided by the adversary. We give a brief
description of both proof systems and we refer the readers to [12] and [13] for more details.

The proof (Figure 1) is parametrized by natural numbers A and ℓ. We will refer to its non-interactive
version via Fiat-Shamir with the name ΠDL1.

Theorem 2 (Adapted from [12]). The interactive proof in Figure 1 is a Proof of Knowledge for
RDL with knowledge soundness 2−ℓ, and it is statistically zero-knowledge as long as w ∈ [−S, S], ℓ is
polynomial and ℓS/A is negligible. By the Fiat-Shamir heuristic, the non-interactive version has the same
properties in the random oracle model.

In Figure 2 we present a proof of knowledge of discrete logarithm from [13]. We denote the non-
interactive version asΠDL2. As mentioned before, it does not only rely on LOC and SR but also requires h to
be uniformly random; typically is used in a setting where we can take h to be a random power of gq (since
the gq outputted by CLGen itself is not uniformly random). Finally the relation for which the proof has

knowledge soundness is not exactly RDL but R′
DL = {((h, x); (w0, w1)) ∈ (Gq × Ĝ)× Z2 : h2−w0w1 = x},

since this is what can be extracted from the proof. Still, the protocol assumes that the honest prover
uses an integer w = 2−w0 · w1.

Theorem 3 (Adapted from [13]). Under the LOC and SR assumption, and assuming h is uniformly
random in a large enough subset in Gq, the protocol in Figure 2 is a computationally sound proof of
knowledge for R′

DL with knowledge soundness error 4/C, complete if w ∈ [−S, S], and statistically
special honest-verifier zero knowledge as long as w ∈ [−S, S] and SC/A is negligible. By the Fiat-Shamir
heuristic, the non-interactive version has the same properties in the random oracle model.

6 The proofs were in fact introduced for slightly more involved relations, but for simplicity we adapt them for
just proving knowledge of discrete logarithm
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Proof of knowledge of discrete logarithm from [12]

Proof of knowledge for RDL = {((h, x);w) ∈ (G×G)× Z : hw = x}

Interactive version:
Repeat ℓ times in parallel:
– The prover chooses r ←$ [0, A] and sends t = hr to the verifier
– The verifier chooses b←$ {0, 1}
– The prover answers with u = r + bw
– The verifier accepts if u ∈ [−S,A+ S] and hu = t · xb

Non-interactive (Fiat-Shamir) version:
Let H : {0, 1}∗ → {0, 1}ℓ be a random oracle.
ΠDL1.Prove((h, x);w):

– The prover chooses r := (r1, . . . , rℓ) ←$ [A]ℓ, constructs t1 = hr1 , . . . , tℓ = hrℓ and computes
b := (b1, . . . , bℓ) = H(h, x, t1, . . . , tℓ) and u = r + wb with the sum and scalar product operating
componentwise.

– Output Pf = (b,u).
ΠDL1.Verify((h, x),Pf):

Check u ∈ [A + S]ℓ, compute t′j = x−bj · huj for j ∈ [ℓ], check that b = H(h, x, t′1, . . . , t′ℓ) and accept the
proof if all checks accept.

Fig. 1. Proof of knowledge of discrete logarithm from [12]

Proof of knowledge of discrete logarithm from [13]

Proof of knowledge for R′
DL = {((h, x); (w0, w1)) ∈ (Gq × Ĝ) × Z2 : h2−w0w1 = x} where a honest prover

uses integer w = 2−w0w1 ∈ Z.
The proof is parametrized by integers A and C and presented in Figure 2
Interactive version:
– The prover chooses r ←$ [A] and sends t = hr to the verifier.
– The verifier chooses c←$ [C]
– The prover answers with u = r + cw.
– The verifier accepts if u ∈ [−SC, SC +A] and hu = t · xc.

Non-Interactive version:
Let H : {0, 1}∗ → [C] be a random oracle.
ΠDL2.Prove((h, x);w):
– Choose r ←$ [A], construct t = hr and compute c = H(h, x, t) and u = r + cw.
– Output Pf = (u, c).

ΠDL2.Verify((h, x),Pf):

Checks that u ∈ [−SC, SC+A], compute t′ = x−chu, check that c = H(h, x, t′) and accept the proof if both
checks accept.

Fig. 2. Proof of knowledge of discrete logarithm from [13]

Sound Proofs of discrete logarithm equality and linear relations The proofs of knowledge
above are either somewhat inefficient, in the first case, or require that the basis is not controlled by the
adversary, in the second. In several cases we will need proofs of discrete logarithm equality where we can
settle for proofs with soundness, instead of proofs of knowledge. We can instantiate these from the proofs
for linear relations in a class group introduced in [6]. In this case, soundness requires the rough-order
assumption also introduced in [6].
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Consider the following relation RLinCL given by7

{((Xi,j)i∈[n],j∈[m], (Yi)i∈[n]; (wj)j∈[m]) ∈ (G)nm+n × Zm : Yi =

m∏
j=1

X
wj

i,j ∀i ∈ [n]}

For m = 1, this is in fact the discrete logarithm equality relation

RDLEQ = {((Xi)i∈[n], (Yi)i∈[n];w) ∈ (G)2n × Z : Yi = Xw
i ∀i ∈ [n]}

A Σ-protocol for RLinCL, parametrized by A,C ∈ N, is given in Figure 3.
We denote X = (Xi,j)i∈[n],j∈[m],Y = (Yi)i∈[n],w = (wj)j∈[m].

Proof of linear class group relations from [6]

Proof for RLinCL =
{
(X,Y;w) ∈ Gnm+n × Zm : Yi =

∏m
j=1 X

wj

i,j ∀i ∈ [n]
}

Interactive version:
1. The prover chooses (r1, . . . , rm)←$ [A]m, constructs Ti =

∏m
j=1 X

rj
i,j for i ∈ [n] and sends (T1, . . . , Tn).

2. The verifier chooses c←$ [C] and sends it to the prover.
3. The prover computes uj = rj + cwj for j ∈ [m] and sends them to the verifier.
4. The verifier checks uj ∈ [−SC, SC + A] for all j ∈ [m], and also Ti · Y c

i =
∏m

j=1 X
uj

i,j and accepts if all
checks pass.

Non-interactive version:
Let H : {0, 1}∗ → [C]
ΠLinCL.Prove(X,Y;w):

– Choose r = (r1, . . . , rm)←$ [0, A]m, construct Ti =
∏m

j=1 X
rj
i,j for i ∈ [n], compute c = H(X,Y,T), and

u = r+ cw (coordinatewise)
– Output Pf = (u, c)

ΠLinCL.Verify((X,Y),Pf):

Check u ∈ [−SC, SC +A]m, compute Ti = Y −c
i ·

∏m
j=1 X

uj

i,j for i ∈ [n], check c = H(X,Y,T), accept if both
checks accept.

Fig. 3. Proof of linear class group relations from [6]

Lemma 1 ([6]). The interactive proof in Figure 3 is complete, computationally sound with soundness
error 1/C + negl under the ROC assumption and statistically special honest-verifier zero knowledge if
SC/A is negligible. By the Fiat-Shamir heuristic, the non-interactive version has the same properties in
the random oracle model.

Remark 1. By the result of [21], the non-interactive version of the proof in Figure 3 obtained via the
Fiat-Shamir transform in the random oracle model is simulation sound.

3 PVSS over Class Groups

3.1 The PVSS scheme

Our PVSS is similar to the DHPVSS scheme in YOLO YOSO [10], which we recall in Appendix B for
comparison. In particular we replace the El Gamal encryption used there by the Castagnos-Laguillaumie-
Tucker encryption from [16]. The benefit we obtain over DHPVSS is that in our scheme parties can
reconstruct the share “field” secret s ∈ Zq, where in DHPVSS they can only reconstruct gs (with g being a

7 Notation: To avoid confusion with the group Gq of q-th powers of elements from G, we denote the direct
product of m copies of G, for m ∈ N, as (G)m
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generator of the DDH-hard group G). This is fine for applications of PVSS such as distributed randomness
beacons [8] and can also be turned into a PVSS for Zq by defining the secret to be s′ = H(gs) + a, for
some efficiently computable H : G→ Zq and an element a published by the dealer. But then the PVSS
is no longer linear, which makes it harder to be used for MPC-related applications and DKG.

In exchange, there arise some technical challenges with respect to [10]. First, several steps of the
construction need ZK proofs, and ZK proofs of knowledge are somewhat inefficient or only applicable
under certain conditions (see remarks above and Section 2.3) . Fortunately, we show that we only really
need proofs of knowledge in the key generation algorithm. This means that using less efficient PoKs (ΠDL1

in Section 2.3) may not be so problematic as key generation can be carried out long before the PVSS
takes place; but also one can use the more efficient proof ΠDL2 from [13] (Section 2.3) by randomizing
the generator gq. The second issue will be the construction of an efficient (constant in the number of
parties n) proof of correct sharing, but we defer this discussion to Section 3.2.

We present our scheme for a general case where the space of secrets is Zk
q . For applications in this

paper we only need k = 1, but the general case is not much harder to present an in addition PVSS with
larger secrets have been considered for some applications e.g. in [9].

PVSS Scheme qCLPVSS. Let λ be the security parameter and q > 2λ prime. Let k (size of the secret),
t (privacy threshold) and n (number of parties) be natural numbers, with k, t, n = poly(λ) (and hence
we can assume n + k ≤ q) and k + t ≤ n. Our scheme qCLPVSS consists of the tuple of algorithms
(Setup,KeyGen,VerifyKey,Dist,VerifySharing,DecShare,Rec,VerifyDec) below:

• qCLPVSS.Setup(1λ, q, k, t, n):

1. Specify a set of pairwise distinct points {β1, . . . , βk, α1, . . . , αn} ⊂ Zq.
Let ppSh = (q, k, t, n, (βj)j∈[k], (αi)i∈[n])

2. Run ppCL := (q, s̄, f, gq, Ĝ, F, ρ)← CLGen(1λ, q).
3. The output is then pp = (ppSh, ppCL).

• qCLPVSS.KeyGen(pp, i):

1. Sample ski ← Dq and compute pki = gskiq .

2. Create proof Pfpki = NIZKPoKDL.Prove({(gq, pki); ski : pki = gskiq })
3. Output(ski, pki,Pfpki).

• qCLPVSS.VerifyKey(pp, i, pki,Pfpki):
Run NIZKPoKDL.Verify on Pfpki with respect to statement (gq, pki) and output its result.

• qCLPVSS.Dist(pp, (pki)i∈[n], s), where s = (s1, . . . , sk) ∈ Zk
q :

1. Create a Shamir sharing of s: sample a polynomial p(X) ∈ Zq[X]≤t+k−1 with p(βj) = sj i for j ∈ [k]
and set σi = p(αi) for i ∈ [n].

2. Sample r ← Dq and compute R = grq .
3. Create Bi = pkri · fσi .
4. Create the sharing proof (not necessarily of knowledge)

PfSh = NIZKSh.Prove({(f, gq, (pki)ni=1, R, (Bi)
n
i=1); (p(X), r) :

deg p(X) ≤ t+ k − 1, R = grq , Bi = pkri · fp(αi) ∀i ∈ [n]})

We show how to instantiate NIZKSh in Section 3.2.
5. Output (R,B1, . . . , Bn,PfSh). To make it syntactically consistent with our definition in Section 2.1,

we define Ci := (R,Bi) for all i ∈ [n], and notice that (R,B1, . . . , Bn,PfSh) contains the same
information as (C1, . . . , Cn,PfSh).

• qCLPVSS.VerifySharing(pp, (pki)i∈[n], (C1, . . . , Cn,PfSh)), where Ci = (R,Bi):
Run NIZKSh.Verify on PfSh with respect to statement (f, gq, (pki)

n
i=1, R, (Bi)

n
i=1) and output its result.

• qCLPVSS.DecShare(pp, pki, ski, Ci), where Ci = (R,Bi):

1. Compute fi = Bi ·R−ski , Ai = CLSolve(fi) and Mi = f−1
i ·Bi.
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2. Compute PfDeci = NIZKDLEQ.Prove({(gq, R, pki,Mi); ski : g
ski
q = pki, R

ski = Mi}). Again this does not
need to be a proof of knowledge.

3. Output (Ai,PfDeci).

• qCLPVSS.Rec(pp, {Ai : i ∈ T }):

1. If |T | < t+ k, output ⊥.
2. Otherwise select T ′ ⊆ T , with |T ′| = t+ k (e.g. the first t+ k indices in T ).
3. For each j ∈ [k], define s′j =

∑
i∈T ′ Ai · Li(βj) where Li(X) = Lagi,T ′,{αi:i∈T ′}.

8

4. Output s′ = (s′1, . . . , s
′
k) .

• qCLPVSS.VerifyDec(pp, Ci, Ai,PfDeci) where Ci = (R,Bi):

Compute Mi = f−Ai ·Bi and run NIZKDLEQ.Verify on PfDeci with respect to statement (gq, R, pki,Mi),
and output the result of the verification.

We now show that the PVSS above guarantees the security properties from Section 2.1. In particular
there is t+ k-reconstruction and t-IND2-privacy.

Theorem 4. qCLPVSS is a correct PVSS with t+ k-reconstruction

Proof. The proof is quite immediate, we give a detailed proof in Appendix A.2

Theorem 5. – If NIZKPoKDL is a proof of knowledge with knowledge error negligible in λ then qCLPVSS
has verifiability of key generation.

– If NIZKSh is a proof with soundness error negligible in λ then qCLPVSS has verifiability of sharing
distribution.

– If NIZKDLEQ with soundness error negligible in λ then qCLPVSS has verifiability of share decryption.

Proof. Trivial as the statements proved by the NIZK proofs exactly guarantee correct key generation,
sharing distribution and share decryption, respectively.

In order to prove t-IND2-secrecy, we need to introduce a modified hardness assumption, and show
it is implied by DDH-f. The new assumption, DDH-qf is very similar to DDH-f but the generator of G is
replaced by the generator of Gq.

Definition 11 (DDH-qf hardness assumption). For a PPT A let

AdvDDH-qfA (λ) :=
∣∣Pr[b∗ = b|ppCL ← CLGen(1λ, q), x, y ← Dq, u←$ Zq, X = gxq ,

Y = gyq , b←$ {0, 1}, Z0 = gxyq , Z1 = gxyq fu, b∗ ← A(ppCL, X, Y, Zb)]− 1/2
∣∣

DDH-qf is hard for CLGen if ∀ PPT A, AdvDDH-qfA (λ) is negligible in λ.

Lemma 2. If DDH-f is hard for CLGen, then DDH-qf is hard for CLGen.

Proof. Appendix A.4

Theorem 6. qCLPVSS is t-IND2-secret under DDH-f, assuming NIZKSh, NIZKDLEQ are zero-knowledge
proofs and NIZKPoKDL is a zero-knowledge proof of knowledge.

Proof. The proof is presented in Apppendix A.3.

8 Recall, that by definition of Lag, Li(X) =
∏

j∈T ′\{i}
X−αj

αi−αj

13



3.2 Instantiating the proofs

Sharing proof We discuss how to instantiate the sharing proof PfSh, which we consider the main
technical challenge of the PVSS construction. Recall this is a zero knowledge proof for the language

{(f, gq, (pki)ni=1, R, (Bi)
n
i=1); (p(X), r) : deg p(X) ≤ t, R = grq , Bi = pkri f

p(αi) ∀i ∈ [n]}.

As we have mentioned before, we use the overall idea from YOLO YOSO [10], which in turn consists
in using the SCRAPE check from Theorem 1 in an efficient way which yields a constant size (in n) proof,
but we will need to do adjustments to this strategy.

The idea from [10], translated to our class group framework, is as follows: if we sample a random
polynomial m∗ ∈ Zq[X]≤n−t−k+1 then for any correct sharing (σi = p(αi) with deg p(X) ≤ t) we must
have

∑n
i=1 σi · vi ·m∗(αi) = 0 in Zq for the vi’s defined in Theorem 1.

We embed wi = vi ·m∗(αi) ∈ Zq as integers in [q − 1], and compute the products U =
∏n

i=1 pk
wi
i

and V =
∏n

i=1 B
wi
i . If the Bi’s are correct then V =

∏n
i=1 pki

rwifσiwi but the second term cancels out
because

∑n
i=1 σiwi = 0 mod q (recall f is of order q). So then V = Ur which can be proved using a proof

of discrete logarithm equality with R = grq . If the σi’s are not valid, with large probability
∑n

i=1 σiwi ̸= 0
mod q (by Theorem 1), the F -part of the product does not cancel out, and the proof will not pass.

However, there is a problem that did not appear in the setting of [10]: it may be that a malicious
prover sets Bi = (Hipk

r
i ) · fσi , with correct shares σi but where Hi ̸= 1 are elements in Ĝq such that,

when computing V the product
∏

Hwi
i cancels out and this is not caught by the proof.

We solve this problem as follows: we randomize further the values wi by replacing them with w′
i =

wi + ciq for some random ci ∈ [C]. This does not affect the F -part of the equation, as we are adding a
multiple of q, but as we will see the prover can only pass this test with high probability by either setting
all Hi = 1 (and then the shares are correct) or by breaking the rough order assumption from [6]. In
addition, this modification does not affect the communication complexity, while the computation only
increases slightly by computing n products and sums of integers. The proof ΠSh of correct sharing is
presented in Figure 4.

To prove the soundness of ΠSh we first need the following lemma.

Lemma 3. Let Hi ∈ Ĝq be elements in Ĝq such that there is at least one element Hj ̸= 1. Let wi ∈ Z.
Sample (c1, . . . , cn) ←$ [C]n for some integer C > 1. Then if Hj has order ≥ C, the probability that∏n

i=1 H
wi+ciq
i = 1 is at most 1/C.

Proof. Without loss of generality, we assume j = 1, i.e. the order of H1 is at least C. Then fix any
(c2, . . . , cn) ∈ [C]n−1 and consider the quantities Mc = Hw1+cq

1

∏n
i=2 H

wi+ciq
i . Clearly if Mc = Mc′ for

c ̸= c′ then 1 = Mc ·M−1
c′ = H

(c−c′)q
1 . But since the order of Ĝq is coprime to q, then H

(c−c′)
1 = 1, a

contradiction with the order of H1 (since |c− c′| ≤ C − 1). Therefore at most one Mc can equal 1. Since
this is for any (c2, . . . , cn−1) ∈ [C]n−1 we obtain the lemma.

Theorem 7. In the random oracle model, and assuming ROC is hard for CLGen, ΠSh in Figure 4 is a
proof for the relation RSh with soundness error ϵDLEQ+1/C+1/q+negl(λ), where ϵDLEQ is the soundness
error of NIZKDLEQ. It is zero knowledge assuming NIZKDLEQ is.

Proof. The proof is shown in Apprendix A.5.

Remark 2. By [21], ΠSh is simulation sound in the random oracle model.

Discrete logarithm knowledge and discrete logarithm equality We have seen that NIZKSh, and
hence the sharing distribution algorithm qCLPVSS.Share, can be instantiated by ΠSh as long as we
have a proof NIZKDLEQ of discrete logarithm equality. Moreover, we also need NIZKDLEQ for the sharing
decryption DecShare. In both cases, we do not need a proof of knowledge of the exponent, so we can use
ΠLinCL in Figure 3. This proof requires the ROC assumption, but we already need this assumption for
ΠSh anyway.

Finally, we do need a proof of knowledge NIZKPoKDL of discrete logarithm in the key generation
algorithm qCLPVSS.KeyGen. We have listed two options in Section 2.3: either we use ΠDL1, which has a
higher complexity but which does not require hardness assumptions and can be applied regardless of how
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Proof ΠSh of correct sharing:

Proof for the relation

RSh = {(f, gq, (pki)
n
i=1, R, (Bi)

n
i=1); (p(X), r) : p(X) ∈ Zq[X]≤t+k−1,

r ∈ Z, R = grq , Bi = pkri f
p(αi) ∀i ∈ [n]}.

The proof is parametrized by C ∈ Z. We assume a random oracle H : {0, 1}∗ → Zq[X]≤n−t−k−1 × [C]n and
a NIZK proof NIZKDLEQ for discrete logarithm equality in class groups, given by algorithms NIZKDLEQ.Prove,
NIZKDLEQ.Verify.

ΠSh.Prove((f, gq, (pki)
n
i=1, R, (Bi)

n
i=1); (p(X), r)):

1. Compute (m∗(X), c1, . . . , cn) = H(pk1, . . . , pkn, R,B1, . . . , Bn). Note m∗(X) ∈ Zq[X]≤n−t−k−1 and ci ∈
[C] for each i ∈ [n].
Let vi =

∏
j∈[n]\{i}(αi − αj)

−1 ∈ Zq.

2. Define wi = m∗(αi) · vi where the evaluation and product is in Zq. From now on see wi as integers (in
[q − 1]).

3. Compute w′
i = wi + ciq over the integers.

4. Compute U =
∏n

i=1 pk
w′

i
i and V =

∏n
i=1 B

w′
i

i .
5. Compute NIZKDLEQ((gq, U,R, V ); r) : grq = R ∧ Ur = V ). We write PfSh =

NIZKDLEQ.Prove((gq, U,R, V ); r).
6. Output PfSh.

ΠSh.Verify((f, gq, (pki)
n
i=1, R, (Bi)

n
i=1),PfSh) :

1. Compute (m∗(X), c1, . . . , cn) = H(pk1, . . . , pkn, R,B1, . . . , Bn).
2. Compute w′

i from m∗(X) and the public information as the dealer does.

3. Compute U =
∏n

i=1 pk
w′

i
i and V =

∏n
i=1 B

w′
i

i .
4. Output NIZKDLEQ.Verify((gq, U,R, V ),PfSh).

Fig. 4. Proof for correct PVSS sharing

gq is chosen; or we use ΠDL2 which relies on the LOC and SR assumptions and where we need to slightly
modify the setup to replace gq by a randomized g′q = gρq for a random ρ which the adversary cannot
control. We remark that, although ΠDL2 only guarantees witness extraction for the slightly different
relation R′

DL where only knowledge of integers ρ0 and ρ1 with g2
−ρ0ρ1

q = pki is guaranteed, this is not
really a big problem for us: the one place where we need extraction of the exponent is in the proof of

Theorem 6, and there we can replace extracted ski by ρi,1
2−ρi,0

and use the fact that square roots in Gq

are computed efficiently.

3.3 Complexity

We focus on the communication complexity of qCLPVSS, since this is usually the main bottleneck in
PVSS applications. Let κ be a statistical security parameter for soundness, zero knowledge (so both
soundness error and statistical distance in the zero knowledge simulation are bounded by 2−κ), and also
so that we instantiate Dq by sampling uniformly in [2κs̄] (see Section 2.2). 9

– qCLPVSS.KeyGen: 1 element in G and ∼ κ2+κ log κ bits (using ΠDL1) or ∼ 3κ+log(s̄) (using ΠDL2)
bits per party.

– qCLPVSS.Dist: n+ 1 elements in G and ∼ 3κ+ log(s̄) bits
– qCLPVSS.DecShare: ∼ 3κ+ log(s̄) + log q bits (per party)

Moreover, the encrypted shares are n CL-HSM ciphertexts (where we only send R once) and may
benefit from compression techniques [5].

Although we do not estimate the computational complexity in details, the main point of our con-
struction is that it maintains the linear complexity in terms of group operations that was achieved in

9 In practice we consider κ = 40 is reasonable.
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previous works [8,9,10]. While group operations on class groups have higher complexity than over groups
defined on elliptic curves, the concrete times estimated in [5] show that the overhead in computation
time is of about an order of magnitude.

Comparison with YOLO YOSO [10]. The PVSS scheme in YOLO YOSO requires essentially the same
amount of group operations computation and group elements communication. Since our scheme operates
over class groups, it clearly has an overhead in relation to elliptic curve implementations of YOLO
YOSO as estimated in [5]. However, we achieve more flexibility in being able to retrieve the original
shared secret s (or the result s′ of linear operations on multiple secrets), whereas YOLO YOSO only
allows for obtaining gs (or the result s′ of linear operations on multiple secrets). Moreover, we prove
the IND-2-security notion from [30], whereas YOLO YOSO only shows the weaker IND-1-security also
from [30], although we think it can also be proved IND-2-secure. In contrast, previous (and less efficient)
PVSS using similar techniques [8,9]are only IND-1. This is because these are based on a OW-CPA
secure encryption scheme that allows for the necessary linear operations used in the NIZKs of sharing
correctness.

Comparison with [31]. An independent work [31] constructs a PVSS scheme from class groups, motivated
by distributed key generation. The shares are encrypted in the same way as ours (namely the dealer
sends (R, (Bi)

n
i=1). However, our scheme presents several advantages: the remaining communication of

the sharing phase (the size of the proof PfSh) is independent of n and t, while they require to send
commitments to the t coefficients of the polynomial, as well as somewhat larger proofs. Moreover, our
PVSS achieves the strong IND-2-security property, while their construction does not satisfy the notion
of indistinguishability of secrets, but a weaker notion of privacy that allows leakage. This leakage is fine
for their DKG application, but it may not be adequate in other applications.

4 Application: Distributed Key Generation

We extend qCLPVSS to construct a distributed key generation protocol for a given cyclic group H of
prime order q where DDH is assumed to be hard (e.g. an elliptic curve group). We assume an static
adversary that can corrupt at most t ≤ n−1

2 parties. Our goal is for parties to generate partial public

keys tpki = hp(αi) and a global public key tpk = hp(β), where each party i privately knows tski = p(αi).
The global secret key is implicitly defined as tsk = p(β).

We will present two constructions of discrete key generation: the first one has two rounds of commu-
nication but has the property that the public key can not be biased by the adversary. The second is a
non-interactive protocol (only one round of communication) but a rushing adversary can bias the public
key. Note this is unavoidable for one-round distributed key generation (see [32]).

4.1 Two-round DKG with unbiasable public key

In this section we will implement the functionality FDKG in Figure 5. Note that when interacting with this
functionality, the adversary can decide on the threshold partial secret keys tski of the corrupted parties.
But the global secret key tsk is chosen by the functionality uniformly at random and independently of
these tski, and hence the adversary has no control on the threshold public key tpk.

The strategy follows the general template by Katz [32], using our PVSS. Every party PVSSs a
contribution sj to the secret key. This determines a set Q of parties whose sharing proofs pass the check.
Parties define their tski summing the shares received from parties in Q. In the second round, parties
publish tpki = htski and prove this is consistent with the encrypted shares received before.

Theorem 8. Under the DDH-f (for privacy of qCLPVSS) and ROC (for verifiability of qCLPVSS and sim-
ulation soundness of ΠSh and ΠLinCL) assumptions the protocol ΠDKG in Figure 6 realizes FDKG securely
in the random model in the presence of a malicious static adversary corrupting t ≤ n−1

2 parties.

Proof. Appendix A.6
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Functionality FDKG

FDKG is parameterized by a DDH-hard cyclic group H of prime order q, with generator h. Let n and 1 ≤
t ≤ (n− 1)/2 be integers. Let β, α1, . . . , αn be pairwise distinct elements in Zq. FDKG interacts with parties
ID1, . . . , IDn and an adversary S that corrupts at most t parties. FDKG works as follows:
– Upon receiving (Gen, sid, IDi) from a party IDi:

1. If IDi is honest, forward (Gen, sid, IDi) to S.
2. If IDi is corrupted, wait for S to send (SetShare, sid, IDi, tski) where tski ∈ Zq and set tpki = gtski .

– Let J be the set of all parties IDj who sent (Gen, sid, IDj). If all honest parties are in J , proceed as
follows:
1. Sample a random polynomial p of degree at most t with p(αi) = tski for all tski sent by S in

the previous stepa For every party IDℓ for which no tski has been received, set tskℓ = p(αℓ) and
tpkℓ = htskℓ .

2. Set tpk = hp(β). b

3. For all corrupted IDc ∈ J , send (Keys, sid, tskc, {tpkj}j∈J , tpk) to S.
4. Wait for S to send (Abort, sid, C) where C is a set of corrupted parties.
5. Send (Keys, sid, tskj , {tpkk}k∈J\C , tpk) to each honest party IDj .

a At least one such polynomial exists because there are at most t corrupted parties.
b Note that p(β) is uniformly random in Zq independently of the tski sent in the previous step, and hence
tpk is uniform in H conditioned to those tski.

Fig. 5. Distributed Key Generation Functionality FDKG

Two-round DKG protocol ΠDKG with Unbiasable Public Key
Let q be a prime and 0 ≤ t < n ≤ q be positive integers. Let H be a cyclic group of order q generated by h.
Setup:
1. Parties run pp← qCLPVSS.Setup(1λ, q, 1, t, n)
2. Each party i runs (ski, pki,Pfpki)← qCLPVSS.KeyGen(pp, i)

Only parties who have produced (ski, pki,Pfpki) that pass the verification qCLPVSS.VerifyKey are accepted
to participate in the protocol.
Protocol:
1. Each party j ∈ [n]:

(a) Samples uniformly random sj ∈ Fq

(b) Runs (Rj , (Bj,i)i∈[n],PfShj)← qCLPVSS.Share(pp, (pki)i∈[n], sj).
(c) Publishes (Rj , (Bj,i)i∈[n],PfShj)

2. Let Q be the set of j for which

qCLPVSS.VerifySharing(pp, (pki)i∈[n], Rj , (Bj,i)i∈[n],PfShj)) = 1.

Parties compute RQ =
∏

j∈Q Rj , BQ,i =
∏

j∈Q Bj,i for all i ∈ Q.
Each party i ∈ Q:
(a) Computes fi = BQ,i ·R−ski

Q , tski = CLSolve(fi) and tpki = htski .

(b) Creates a proof Pftpki = ΠLinCL.Prove({(f,RQ, BQ,i, h, tpki, pki); (tski, ski) : f
tskiRski

Q = BQ,i, htski =

tpki, gskiq = pki}). (Section 2.3)
(c) Publishes (tpki,Pftpki)

3. Let I be the set of parties i for which the (public, deterministic) verification of the proof Pftpki accepts,
and let T any set of t+1 parties in I (e.g. the first t+1 with respect to some pre-agreed indexing). The

global public key tpk is tpk =
∏

i∈T tpkλi
i where λi =

∏
k∈T \{i}

β−αj

αi−αj

Fig. 6. Two-round DKG protocol ΠDKG with Unbiasable Public Key

4.2 One-round biasable public-key version

We now show a protocol that implements the functionality in Figure 7 in one round of communication.
In this case, the functionality allows the adversary to bias the public key: the functionality sends some
“temporary” public keys tpk, {tpki}i∈[n] as well as temporary secret keys tski for the corrupted parties,
and then the adversary can choose to update the secret sharing polynomial by adding a contribution
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p′(X). This reflects the fact that in a one-round real protocol an adversary can wait until all honest
parties have spoken, see all information it is allowed to, and in that moment then make one or more
corrupted parties execute the PVSS honestly with sharing polynomials adding to some chosen p′(X).

Functionality FBDKG

FBDKG is parameterized by a DDH-hard cyclic group H of prime order q, with generator h. Let n and
1 ≤ t ≤ (n − 1)/2 be integers. Let β, α1, . . . , αn be pairwise distinct elements in Zq. FBDKG interacts with
parties ID1, . . . , IDn and an adversary S that corrupts at most t parties. FBDKG works as follows:
1. Upon receiving (Gen, sid, IDi) from a honest party IDi, forward (Gen, sid, IDi) to S. When all honest

parties have done this, continue.
2. Sample a random polynomial p of degree at most t. For every party IDj ∈ [n], set tskj = p(αj) and

tpkj = htskj , tpk = hp(β).
3. Send (Keys, sid, {tpkj}j∈[n], tpk, {tskj}j∈Corr) to S.
4. Upon receiving (Bias, sid, p′) from S, where p′ is a polynomial of degree at most t then update tpk′ =

tpk · hp′(β), tpk′j = tpkj · hp′(αj) and tsk′j = tskj + p′(αj) for all j ∈ [n].
5. For all parties IDi, send (Keys, sid, tsk′i, {tpk′j}j∈[n], tpk

′) to IDi.

Fig. 7. Biasable Distributed Key Generation Functionality FBDKG

As in the two-round protocol, every party j shares a secret sj with the PVSS, sending Rj = g
rj
q

Bj,i = pk
rj
i fσj,i where σj,i = pj(αi) are Shamir shares of pj(β) = sj . But now, they also publish the

values Dj,i := hσj,i ∈ H. This allows every party to eventually compute the i-th threshold public key as
tpki =

∏
j∈Q hσj,i where Q is again the set of parties that created the sharing honestly.

To be included in Q, party j needs to prove not only that (Rj , Bj,i) form a correct PVSS sharing but
also that Bj,i and Dj,i are consistent. In other words, we will need a NIZK proof PfExtSh for the relation

RExtSh = {(f, gq, h,R, (pki)i∈[n], (Bi)i∈[n], (Di)i∈[n]; (r, p(X)) :

deg p ≤ t, R = grq , and ∀ i ∈ [n], Bi = pkri f
p(αi), Di = hp(αi)}

We show how to accomplish this with a constant-size proof next.

As in qCLPVSS, we can reduce testing whether Bi are of the correct form with respect to R (i.e.
Bi = pkri f

p(αi) for p(X) ∈ Zq[X]≤t and where r ∈ Z is such that grq) to a DLEQ proof grq = R, Ur = V .

Moreover, thanks to the SCRAPE test, verifiers can locally check if Di = hp̂(αi) for some p̂ ∈ Zq[X]≤t.
We still need to guarantee that p(X) = p̂(X), i.e. the shares hidden by Bi and Di are the same. It

is enough to prove that p(αi) = p̂(αi) for all i ∈ [t + 1]. We can do this by testing
∑t+1

i=1 eip(αi) =?∑t+1
i=1 eip̂(αi) for random e1, . . . , et+1 ∈ Zq sampled via the random oracle. This would guarantee the

property with probability 1− 1/q over the random choice of the ei.

To test this we define D =
∏t+1

i=1 D
ei
i and B =

∏t+1
i=1 B

ei
i , M =

∏t+1
i=1 pk

ei
i (all of which can be

computed publicly) and d =
∑t

i=1 eip(αi) (computed privately by the prover). If the prover has been
honest then Mrfd = B. This suggests we can reduce the problem to proving existence of r in Z and
d in Zq with grq = R, Ur = V , Mrfd = B, hd = D. We will indeed prove this is sound. Finally, this
last statement can then be addressed with a proof similar to the ΠLinCL in Section 2.3, with the only
difference that h, D are in a different group and d is in Zq. We remark this type of “mixed” statements
have already been addressed in similar ways in papers such as [12,13,6].

We start by presenting this last proof, which we call ΠMDLEQ in Figure 8. Again, as in other similar
protocols, the proof is paramtetrized by C,A ∈ N and to guarantee zero knowledge, we need that the
witness is in an interval [−S, S] and CS/A is negligible.

Theorem 9. The interactive proof in Figure 8 has soundness error 1/C+negl(λ) if the ROC assumption
holds. It is statistically zero-knowledge if the witness r is in [−S, S] and CS/A is negligible. By the
Fiat-Shamir heuristic, the non-interactive version has the same properties in the random oracle model.
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Zero-Knowledge Proof for “Mixed” Discrete Logarithm Equality

Zero Knowledge Proof for relation

RMDLEQ = {(gq, U,M, f, h,R, V,B,D; r, d) : grq = R,Ur = V,Mrfd = B, hd = D}

Interactive version:
– Prover samples r∗ ←$ [0, A], d∗ ←$ Zq, computes R∗ = grq , V∗ = Ur∗ , B∗ = Mr∗fd∗ = B, D∗ = hd∗ ,

sends R∗, V∗, B∗, D∗ to verifier.
– Verifier samples c ∈ [C].
– Prover computes and sends ur = r∗ + cr (in Z), ud = d∗ + cd mod q.
– Verifier checks gur

q = R∗R
c, Uur = V∗ · V c, Murfud = B∗ ·Bc, hud = D∗ ·Dc and accepts if all checks

pass.

Non-Interactive version:
Requires Random Oracle H : {0, 1}∗ → [C]:
ΠMDLEQ.Prove(X,w) (where X = (gq, U,M, f, h,R, V,B,D), w = (r, d))

– Sample r∗ ←$ [0, A], d∗ ←$ Zq, computes R∗ = grq , V∗ = Ur∗ , B∗ = Mr∗fd∗ = B, D∗ = hd∗ ,
c = H(X,Y), where Y = (R∗, V∗, B∗, D∗), and ud = d∗ + cd mod q, ur = r∗ + cr (in Z).

– Output PfMDLEQ = (c, ud, ur)

ΠMDLEQ.Verify(X,PfMDLEQ)

Compute R∗ = R−cgur
q , V∗ = V −cUur , B∗ = B−cMurfud , D∗ = D−chud . Define Y = (R∗, V∗, B∗, D∗)).

Check c = H(X,Y). Accept if that is the case.

Fig. 8. Zero-Knowledge Proof for “Mixed” Discrete Logarithm Equality

Proof. We present the proof in Appendix A.7

We use ΠMDLEQ as a building block for the proof ΠExtSh, Figure 9.

Theorem 10. In the random oracle model, and assuming ROC is hard for CLGen, ΠExtSh ( Figure 9)
is a simulation sound proof for the relation RExtSh with soundness error ϵMDLEQ + 1/C + 3/q + negl(λ),
where ϵMDLEQ is the soundness error of ΠMDLEQ. If we use the same C in ΠMDLEQ as in this proof, the
soundness error is 2/C + 3/q + negl(λ). Moreover, it is zero-knowledge assuming ΠMDLEQ is.

Proof. We present the proof in Appendix A.8

Finally, we present our one-round DKG protocol in Figure 10.

Theorem 11. Under the DDH-f (for privacy of qCLPVSS) and ROC (for verifiability of qCLPVSS and
simulation soundness of ΠLinCL) assumptions the protocol ΠBDKG in Figure 10 realizes FBDKG securely in
the random model in the presence of a malicious static adversary corrupting t ≤ n−1

2 parties.

Proof. Appendix A.9

4.3 Communication complexity and comparison

In Table 1 we list the communication complexities of our two protocols, and compare them with the
best (to the best of our knowledge) round-efficient distributed key generation protocols, both in the
case of biasable and unbiasable public keys. In both cases, the comparison point is a scheme based on
Paillier encryption. For the one-round, biasable public key case, we use the Fouque-Stern [22] protocol.
For the two-round case, we use the suggested instantiation with Paillier of Katz’ framework from [32],
where we instantiate the NIZKs as in Fouque-Stern. We observe that the communication is dominated
by the first summand and that therefore for a moderately large amount of parties, our DKG protocol will
communicate less information as long as kĜ is somewhat smaller than 3kN . Current security estimations
([20,5]) indicate this is the case for reasonable security parameters, e.g. 128-bit security. In fact, note
that the dominating factor in our protocol consists of the n2 share encryptions (n per party), which
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Zero Knowledge Proof for correct “extended” sharing

Non-interactive Proof for the relation

RExtSh = {(f, gq, h, (pki)
n
i=1, R, (Bi)

n
i=1), (Di)

n
i=1); (p(X), r) : r ∈ Z,

p(X) ∈ Zq[X]≤t, R = grq , Bi = pkri f
p(αi) ∧Di = hp(αi) ∀i ∈ [n]}.

The proof is parametrized by C ∈ Z.
We assume a random oracle H : {0, 1}∗ → Zq[X]≤n−t−2 × [C]n × Zt+1

q .
Let X := (f, gq, h, (pki)

n
i=1, R, (Bi)

n
i=1, (Di)

n
i=1), wit := (p(X), r)

ΠExtSh.Prove(X;wit):
1. Compute (m∗(X), c1, . . . , cn, e1, . . . , et+1) = H(X).

Let vi =
∏

j∈[n]\{i}(αi − αj)
−1 ∈ Zq.

2. Define wi = m∗(αi) · vi for each i ∈ [n] where the evaluation and product is in Zq. From now on see wi

as integers (in [0, q − 1]).
3. Compute w′

i = wi + ciq over the integers for i ∈ [n].

4. Compute U =
∏n

i=1 pk
w′

i
i and V =

∏n
i=1 B

w′
i

i .
5. Compute d =

∑t+1
i=1 eip(αi), B =

∏t+1
i=1 B

ei
i , D =

∏t+1
i=1 D

ei
i , M =

∏t+1
i=1 pk

ei
i

6. Output PfExtSh = ΠMDLEQ.Prove(gq, U,M, f, h,R, V,B,D; r, d) as in Figure 8. Recall this is a proof for
the relations grq = R,Ur = V,Mr · fd = B, hd = D.

ΠExt−Sh.Verify(X,PfSh) :
1. Compute (m∗(X), c1, . . . , cn, e1, . . . , et+1) = H(X).
2. Compute wi and w′

i from m∗(X) and the public information as the prover does.
3. Check

∏n
i=1 D

wi
i = 1H. If not, output reject. Otherwise, continue.

4. Compute U, V,B,D,M from w′
i, ei and public information as the prover does.

5. Output ΠMDLEQ.Verify((gq, U,M, f, h,R, V,B,D,PfExtSh).

Fig. 9. Zero Knowledge Proof for correct “extended” sharing

are in fact roughly 1
2n

2 CL-HSM ciphertexts10, the Paillier based constructions communicate 3n2kN
bits (∼ 3

2n
2 Paillier ciphertexts) and [5] estimates each CL-ciphertext to be 1.5 to 2.3 shorter than a

Paillier ciphertext depending on the security parameter and for q of 224 bits. This estimation makes our
communication 4.5 to 7 times smaller than the alternatives.

5 Application: YOSO MPC

In the YOSO model, parties can only speak once, i.e. after each party sends a message it can no longer
participate in the execution. Moreover, the next committee of parties that take over the execution is
selected at random and remains anonymous until they act. This requires a mechanism for transferring
the secret state kept by each party in the comittee responsible for the current round to the committee
responsible to the next round. As observed in [25], departing from the protocol [18] is a promising
approach for keeping this state to a minimum. In the CDN protocol, the only secret state that parties
must hold throughout the execution consists of shares of a secret key for a linearly homomorphic threshold
encryption scheme, instead of requiring parties to hold shares of each intermediate gate output. In a recent
work [6], linearly homomorphic threshold encryption based on the CL-framework was leveraged to realize
this approach with a transparent setup by constructing a suitable DKG and a re-sharing protocol that
allows for transferring secret key shares among committees (assuming receiver anonymous communication
channels).

As a first step, we endow our PVSS scheme qCLPVSS with a publicly verifiable re-sharing scheme in
order to construct an efficient mechanism for transfering secret state among committees in the YOSO
model. This re-sharing mechanism already improves on the efficiency of the one proposed in [6]. We only
need to publish a set of encrypted shares and a NIZK of re-sharing validity as many elements of Zq as

10 Since the element Rj is common to all encryptions by party j
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One-round Distributed Key Generation ΠBDKG

Let q be a prime and 0 ≤ t < n ≤ q be positive integers. Let H be a cyclic group of order q generated by h.

Setup:
1. Parties run pp← qCLPVSS.Setup(1λ, q, 1, t, n)
2. Each party i runs (ski, pki,Pfpki)← qCLPVSS.KeyGen(pp, i)

Only parties who have produced (ski, pki,Pfpki) that pass the verification qCLPVSS.VerifyKey are accepted
to participate in the protocol.

Protocol:
In the only communication round, each party j ∈ [n]:
1. Samples uniformly random sj ←$ Zq

2. Runs (Rj , (Bj,i)i∈[n], ·)← qCLPVSS.Share(pp, (pki)i∈[n], sj). By this notation we mean we omit the proof
of correct sharing, as we replace it by the one below. Let pj(X) the sharing polynomial, σj,i = pj(αi)
the share for party i, obtained as part of the PVSS.

3. Computes Dj,i = hσj,i for all i ∈ [n]
4. Use ΠExtSh.Prove to compute a proof PfExtShj for the statement ∃rj ∈ Z, pj(X) ∈ Zq[X]≤t, such that

R = g
rj
q , Bj,i = pk

rj
i · f

pj(αi)

j ∀i ∈ [n], and Dj,i = hpj(αi) ∀i ∈ [n].
5. Publishes (Rj , (Bj,i)i∈[n], (Dj,i)i∈[n],PfExtShj)

Global output:
Let Q be the set of j for which the (deterministic, public) verification ΠExtSh.Verify accepts PfExtShj . Then:
– For every i ∈ [n], tpki is defined as tpki =

∏
j∈Q Dj,i.

– Let T = [t + 1]. The global public key tpk is tpk =
∏

i∈T tpkλi
i where λi is the Lagrange interpolation

coefficient λi =
∏

k∈T \{i}
β−αk
αi−αk

.

Private output:
Each party i ∈ [n]:
1. Computes BQ,i =

∏
j∈Q Bj,i, RQ =

∏
j∈Q Rj

2. Computes fi = BQ,i ·R−ski
Q and outputs tski = CLSolve(fi).

Fig. 10. One-round Distributed Key Generation (with biasable public key)

encrypted shares, whereas the protocol of [6] has each committee execute one VSS instances towards
the next committee and one towards the second next committee. Later one, we show how the efficient
encryption to the future scheme of YOLO YOSO can be combined with this approach to realize the full
communication infrastructure needed to transfer state among committees.

5.1 Resharing

We consider how a set of parties who have a correct PVSS sharing of a secret with qCLPVSS can reshare
this to a new set of parties. In the following we assume the case k = 1 (one secret in Zq) and we consider
a starting set of n0 parties, with privacy threshold t0 and we denote their evaluation points α1, . . . , αn0

for the shares and β for the secret. Moreover, let pki, ski their keys. Meanwhile for the next set of parties
we have respectively α1, . . . , αn1 , β and pki, ski respectively. Now given a secret s shared with degree-t0
Shamir secret sharing, with shares σi for i ∈ [n0] we know that, for any set T of size t0+1, s =

∑
i∈T λiσi

where λi = Li(β) for Li = Lagi,T ,(αi), i.e. λi =
∏

j∈T \{i}(β−αj)(αi−αj)
−1. Since Shamir secret sharing

is linear, it is enough that such a set T correctly reshare their shares to the new committee of parties:
party i, having received σj,i as a share of σj for each j ∈ T , can then compute

∑
i∈T λiσj,i and by

linearity this will form a new sharing of s.

Note that in PVSS, we have the advantage that there is no need for dispute resolution: everyone can
compute T by themselves, provided that there is a proof of correct sharing. This enables its use in the
YOSO model, as share receivers do not need to speak at that point. We do need that there are at least
t0 + 1 honest parties in the first set, i.e. 2t0 + 1 ≤ n.
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Scheme Comm. (bits) Rounds Bias Assump.
Resist.

Katz[32], 3n2kN + 2n2κ 2 Yes DCR
using Paillier +(n2 + tn+ n)kH

ΠDKG (n2 + n)kĜ + 3n log(s̄) 2 Yes DDH-f,ROC
+9nκ+ nkH

Fouque-Stern [22] 3n2kN + 2n2κ 1 No DCR
+(2n2 + tn+ n)kH

ΠBDKG (n2 + n)kĜ + n log(s̄) 1 No DDH-f,ROC
+3nκ+ n2kH

Table 1. Comparison of DKG schemes for a DDH-hard group H where n is the total number of parties, t is the
number of corrupted parties, kH is the number of bits of an element of H which to simplify we set to log q, kN
is the number of bits of the Paillier cryptosystem modulus N , kĜ is the number of bits of a representation of an

element in Ĝ, s̄ is the upper bound for the order of Ĝq.

The crux of the protocol is proving a correct resharing. If (R, (Bj)j∈[n0]) is the original sharing, party
j will create a polynomial with pj(β) = σj , use qCLPVSS for creating a sharing (Rj , Bj,i) where the Bj,i

encrypt pj(αi) and show not only correctness of this sharing, but also that (R,Bj) decrypts to pj(β).
We show the resharing protocol in Figure 11 and later we explain the proof of resharing in more detail

below. As for security, note that the IND2 security property of the PVSS directly guarantees that a set
containing at most t0 parties of the first committee and t1 parties of the second can still not distinguish
between sharings of two secrets. The soundness of the proofs will guarantee that a party is included in
Q if they have reshared their share correctly. From Q parties can then determine T .

Protocol for PVSS Resharing to a new committee

Input: A PVSS (R, (Bi)i∈[n0] of a secret s ∈ Zq

Output: A PVSS (R, (Bi)i∈[n1] of the same secret s ∈ Zq

We assume at most t0 corrupted parties in the first set and t1 corrupted parties in the second. Moreover
2t0 + 1 ≤ n0 (to guarantee at least t0 + 1 honest parties)
1. Every party j ∈ [n0]:

(a) Retrieves σj ← qCLPVSS.DecShare(pp, skj , R,Bj)
(b) Chooses pj ∈ Zq[X]≤t1 uniformly at random such that pj(β) = σj

(c) Chooses rj ← Dq and computes Rj = g
rj
q , Bj,i = pk

rj
i fpj(αi). Let

Xj := (gq, h, f, (pki)i∈[n1], pkj , R,Bj , Rj , (Bj,i)i∈[n1]), wj := (skj , rj , pj).
(d) Using ΠResh in Figure 12 below compute a proof PfReshj = ΠResh.Prove(Xj ;wj) for the relation given

by deg pj ≤ t1, g
skj
q = pkj , Bj = Rskj · fpj(β), Rj = g

rj
q , and Bj,i = pk

rj
i · f

pj(αi) ∀i ∈ [n1].
(e) Output (Rj , (Bj,i)i∈[n1],PfReshj).

2. Let Q the set of parties j in [n0] for which PfReshj passes. Let T ⊆ Q be a subset of t0 +1 parties. Then

define R =
∑

j∈T R
λj

j , and Bi =
∑

j∈T B
λj

j,i for i ∈ [n1], where λj =
∑

k∈T \{j}(β − αk)(αj − αk)
−1

computed over Zq and then considered as an integer in [0, q − 1].

3. Output (R, (Bi)i∈[n1]).

Fig. 11. Protocol for resharing to a new committee

We now detail the proof of resharing ΠResh(Figure 12). Consider

RResh = {(gq, h, f, (pki)i∈[n1], pk, R,B,R, (Bi)i∈[n1]); (sk, r, p(X)) : p ∈ Zq[X]≤t,

r ∈ Z, gskq = pk, B = R
sk · fp(β), R = grq , Bi = pkri f

p(αi) ∀i ∈ [n1]}.
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Zero Knowledge Proof for correct resharing

Non-interactive Proof for the relation

RResh = {(gq, h, f, (pki)i∈[n1], pk, R,B,R, (Bi)i∈[n1]); (sk, r, p(X)) : r ∈ Z,

p(X) ∈ Zq[X]≤t, gskq = pk, B = R
sk · fp(β), R = grq , Bi = pkri f

p(αi) ∀i ∈ [n1]}.
The proof is parametrized by C ∈ Z.
We assume a random oracle H : {0, 1}∗ → Zq[X]≤n−t−1 × [C]n+1.
Let X := (gq, h, f, (pki)i∈[n1], pk, R,B,R, (Bi)i∈[n1]), wit := (sk, r, p(X)). For ease of notation let α0 = β.

ΠResh.Prove(X;wit):

1. Compute (m∗(X), c0, c1, . . . , cn) = H(X). For i ∈ [0, n] let vi =
∏

j∈[0,n]\{i}(αi − αj)
−1 ∈ Zq.

2. Define wi = m∗(αi) · vi for each i ∈ [0, n] where the evaluation and product is in Zq. From now on see
wi as integers (in [0, q − 1]).

3. Compute w′
i = wi + ciq over the integers for i ∈ [n].

4. Compute U =
∏n

i=1 pk
w′

i
i and V =

∏n
i=1 B

w′
i

i . Also let R0 = R
w′

0 and B0 = B
w′

0

5. Compute a proof, using ΠLinCL (Figure 3, Section 2.3) of the following relation

{(U,R0, V, gq, pk, R); (r, sk) : Ur · (R0)
sk = V ·B0, gskq = pk, grq = R}

6. Output this proof as PfResh.

ΠExt−Sh.Verify(X,PfResh) :
1. Compute (m∗(X), c0, c1, . . . , cn) = H(X).
2. Compute wi, w

′
i, U , V , R0, B0 from m∗(X) and the public information as the prover does.

3. Verify PfResh is a valid proof for the relation above.

Fig. 12. Zero Knowledge Proof for correct resharing

This is the usual RSh augmented with the fact that the secret p(β) is the value committed by (pk, B) =

(gskq , R
sk · fp(β)). We will use the SCRAPE test, now applied to the n+1 evaluation points β, α1, . . . , αn.

We rename α0 := β for simplicity. Then we need to sample m∗ of degree n− t− 1 (rather than n− t− 2
as before), and define vi, now for all i ∈ [0, n] and including α0. Given wi = m∗(αi) · vi, the SCRAPE
test implies

∑n
i=0 p(αi)wi = 0 for any p of deg p ≤ t.

Now if we compute U =
∏n

i=1 pki and V =
∏n

i=1 B
wi
i as in previous proofs, we can eventually reduce

the task to showing existence of r, sk with grq = R, gskq = pk and Ur · (Rw0
)sk = V · Bw0

which can
be addressed with the proof ΠLinCL (Figure 3, Section 2.3). However, there is the same problem with
soundness as in Section 3.2, caused by the fact that the adversary could have concoctedBi = pkri ·fp(αi)·Hi

(and now also B = R
sk · fp(β) ·H0) so that

∏n
i=0 H

wi
i cancels out. This is solved exactly in the same way

as in Section 3.2 by randomizing w′
i = wi + ciq and using the rough order assumption.

Theorem 12. In the random oracle model, and assuming ROC is hard for CLGen, ΠResh in Figure 12
is a proof for the relation RResh with soundness error ϵLinCL + 1/C + 1/q + negl(λ), where ϵLinCL is the
soundness error of NIZKLinCL. It is zero knowledge assuming NIZKLinCL is.

Proof. The proof follows analogously to Theorem 7, with the changes above.

5.2 Realizing Efficient YOSO MPC

Departing from our qCLPVSS PVSS scheme and the associated resharing scheme in Figure 11, we realize
an efficient YOSO MPC protocol by combining the DKG and preprocessing/online phases from [6]
with our PVSS. The protocol of [6] first generates a shard key for a linearly homomorphic threshold
encryption scheme based on the CL-framework, which is then used to generate encrypted Beaver triples.
In an online phase, parties use distributed decryption to obtain the necessary information for evaluating
private multiplications using the preprocessed encrypted Beaver triples. However, at every round, the
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current committee of parties must reshare the secret key towards the next committee. We aim at replacing
the resharing scheme of [6] with our scheme from Figure 11.

At first, we assume we have public keys for the next committee despite it being anonymous, and later
argue about how to remove this assumption. Each party in the first committee to obtain shares of the
secret key via the DKG of [6] converts them into shares of our qCLPVSS scheme. This can be done using
standard tricks for share conversion or simply by a single execution of an inefficient YOSO MPC that
publishes qCLPVSS shares given shares in a different format. Once a committee has qCLPVSS shares of
the secret key, it can use our resharing scheme from Figure 11 to efficiently transfer those to the next
committee at every round of the MPC protocol of [6].

This simple application of our resharing scheme still requires each committee to know public keys for
the next random anonymous committee. While this could be done by means of Random-index RPIR [27]
or ideal receiver anonymous communication channels (RACC), we would like to perform the necessary
encryption towards the next anonymous committee in a more efficient way. In order to do so, one can use
the YOLO YOSO [10] encryption to the future scheme based on mixnets with publicly verifiable proofs
of shuffle correctness (and the associated scheme for authententication from the past). These schemes
allows for encrypting a message under a public key associated to a randomly chosen party without
learning their identity, later allowing the recipient to sign messages by proving that they indeed received
the ciphertext. Since the YOLO YOSO construction can be realized from proof of correctness shuffle,
it can be implemented in our setting by using a proof system [2] that works over linearly homomorphic
encryption schemes, such as those in the CL-framework. Hence, we can obtain a more efficient realization
of YOSO MPC based on the protocol of [6] and our PVSS scheme with resharing qCLPVSS that only
uses transparent setup and does not require ideal RACCs.
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Reference Material

A Proofs

A.1 Proof of Theorem 1

First consider the following claim

Theorem 13. Let F be a field, and α1, . . . , αn be pairwise distinct elements of F. Then, for every poly-
nomial h ∈ F[X] of degree at most n− 2, then

∑n
i=1 vi · h(αi) = 0 where vi =

∏
j∈[n]\{i}(αi − αj)

−1

Proof. For i ∈ [n], let

Li(X) = Lagi,[n],A =
∏

j∈[n]\{i}

X − αj

αi − αj

be the Lagrange interpolation polynomial. Li is a polynomial in F[X] of degree at most n− 1 such that
Li(αk) = 1 if k = i and Li(αk) = 0 if k ∈ [n] \ {i}. Moreover, the coefficient of Xn−1 in Li(X) is

∏
j∈[n]\{i}

1

αi − αj
= vi

Then h(X) and ĥ(X) =
∑n

i=1 h(αi)Li(X) are polynomials of degree < n which coincide in their eval-

uations on {α1, . . . , αn}, hence by uniqueness of the interpolation polynomial, h(X) = ĥ(X). Compare
now the coefficient of Xn−1 on both sides. On the left, this is 0 because deg h ≤ n− 2; on the right, this
is

∑n
i=1 vih(αi). Since they need to be equal

∑n
i=1 vih(αi) = 0 and we get the claim.

Now we can prove Theorem 1

Proof (of Theorem 1).

Consider the quantity T :=
∑n

i=1 vim
∗(αi)yi where m∗ is sampled uniformly in F[X]≤n−d−2.

If there exists a polynomial p ∈ F[X] of degree ≤ d such that yi = p(αi) for all i ∈ [n], let h(X) =
p(X) ·m∗(X). This is a polynomial of degree at most n − 2 with T =

∑n
i=1 vih(αi). By Theorem 13,

T = 0.

Now consider the set V = {(v1m∗(α1), v2m
∗(α2), . . . , vnm

∗(αn)) : m
∗(X) ∈ Zq[X]≤n−d−2}. This is a

vector space of dimension n−d−1 inside Fn. By linear algebra, its orthogonal space 11 V ⊥ has dimension
d+ 1, i.e. it is exactly {(p(α1), p(α2), . . . , p(αn)) : deg p ≤ d}. Therefore any y = (y1, y2, . . . , yn) that is
not of the form (p(α1), p(α2), . . . , p(αn)) with deg p ≤ d cannot be in V ⊥.

For such a y, consider the linear map Ly : V → F where each element (v1m
∗(α1), v2m

∗(α2), . . . , vnm
∗(αn))

of V is taken into
∑n

i=1 vim
∗(αi)yi. Ly cannot be identically zero by the above, so its kernel must be a

strict subspace of V , of dimension one unit less, i.e. n − d − 2. This implies that |Ker Ly|/|V | = 1/|F|,
so Pr[T = 0] = 1/|F| in this case.

A.2 Proof of PVSS correctness (Theorem 4)

Proof. If all parties in [n] honestly create keys, then for all i we have pki = gskiq for some ski. If the dealer

is honest the values R and Bi are of the form R = grq , Bi = pkri f
p(αi) where p(X) is of degree t+k−1 and

p(βj) = sj are the coordinates of the secret. Then clearly DecShare, when honestly applied to (R,Bi), first
creates fi = Bi · R−ski = pkri f

p(αi)g−rski
q = pkri f

p(αi)pk−r
i = fp(αi) and then Ai = CLSolve(fi) = p(αi).

Therefore given a set T of parties of size at least t+k who correctly decrypted their shares, and a subset
T ′ of exactly t + k parties, we have that the reconstructed values are

∏
i∈T ′ p(αi)Li(βj) = p(βj) = sj ,

for each j ∈ [k], by Lagrange interpolation.

11 the space of all w ∈ Fn such that
∑

viwi = 0 for all v ∈ V
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A.3 Proof of PVSS IND2-secrecy (Theorem 6)

The proof is similar to some extent to the one for the DHPVSS in [10], although with the difference
that here we only need to assume DDH-f instead of DDH in the whole group. Another difference is that
the proof of [10] only showed the weaker notion of IND1-security (where the challenger instead of the
adversary choose the secrets) although it can be easily adapted to show IND2.

By the previous lemma, it is enough to prove the theorem under the DDH-qf assumption. Let A
be an adversary corrupting a set of up to t parties. Without loss of generality, we assume A corrupts
[n− t+ 1, n]. We prove that if this adversary is such that

Pr
[
Gameind-secrecy,1A,PVSS (λ) = 1

]
− Pr

[
Gameind-secrecy,0A,PVSS (λ) = 1

]
= ϵ

where Gameind-secrecy,bA,PVSS is as in Definition 6, then we can construct B such that AdvDDH-qfB (λ) = |ϵ|
2(n−t) .

This is enough as if |ϵ|
2(n−t) is negligible then so is |ϵ|.

On input a tuple (gq, X, Y , Z), where X = gxq , Y = gyq where x, y ←$ Dq and Z = gxy or Z = gxyfu

for uniformly random u ∈ Zq, B proceeds as follows:

– B chooses b at random in {0, 1}
– B chooses a non-corrupted party i∗ ∈ [n − t] at random and sets pki∗ = Y . B simulates the proof

Pfpki∗ using the zero-knowledge simulator of NIZKPoKDL

– For all i ∈ [n− t] \ {i∗}, B runs (ski, pki,Pfpki)← KeyGen(λ). B sends {(pki,Pfpki) : i ∈ [n− t]} to A.
– B waits for A to reply with pki and proofs Pfpki for each i ∈ [n− t+ 1, n], and s0, s1 in the space of

secrets Zk
q .

– B now checks Pfpki, sending ⊥ and aborting if these do not pass. Otherwise it extracts ski from Pfpki
for i ∈ [n − t + 1, n] using the fact that Pfpki is a proof of knowledge and therefore it has a witness
extractor.

– B creates Shamir sharings of s0, s1 with polynomials p0(X), p1(X) such that corrupted shares co-
incide, i.e. pc(βj) = scj , for all j ∈ [k] and c ∈ {0, 1} and p0(αi) = p1(αi) for i ∈ [n − t + 1, n]. For

i ∈ [n], let σc
i = pc(αi). Moreover, since σ0

i = σ1
i for i ∈ [n− t+ 1, n], we simply denote those values

σi for i ∈ [n− t+ 1, n].
– B defines R = X and:

Bi =


Rski · fσ0

i i ∈ [i∗ − 1]

Rski · fσ1
i i ∈ [i∗ + 1, n− t]

Rski · fσi i ∈ [n− t+ 1, n]

Z · fσb
i i = i∗

– B simulates PfSh using the zero-knowledge simulator of NIZKSh and sends (R,B1, . . . , Bn,PfSh) to A
– A makes a guess b∗ and B outputs 1 if b = b∗ and 0 otherwise. Let W be the event that B outputs

1, i.e. b = b∗.

Let W be the event that B outputs 1, i.e. that b∗ = b.

If Z = Z1 = gxyq fu for uniform u ∈ Zq, then (R,B1, . . . , Bn,PfSh) is independent from b; indeed, the

only computation involving b is that of Bi∗ , but Bi∗ is of the form gxyq fu+σb
i and u is uniform in Zq.

Therefore clearly the guess b∗ of A is independent from b, and hence Pr[W ] = 1/2 in this case.

On the other hand if Z = Z0 = gxyq = Xy, then since pki∗ = Y , implicitely we have y = ski∗ and

since in addition X = R we have Bi∗ = Z · fσb
i∗ = Rski∗ fσb

i . Therefore, condition to being in this case,
we have the following facts:

– For every j ∈ [n− t− 1], the views of A when i∗ = j, b = 0 and i∗ = j + 1, b = 1 are identical.

– If i∗ = n− t and b = 0, (R,B1, . . . , Bn,PfSh) is distributed as a PVSS sharing of s0 (all Bi = Rskifσ0
i

for all i) and A is playing Gameind-secrecy,0A,PVSS .

– If i∗ = 1 and b = 1, then (R,C1, . . . , Cn,PfSh) is distributed as a PVSS sharing of s1 and A is playing

Gameind-secrecy,1A,PVSS .
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Let Pj,c = Pr[W |i∗ = j, b = c]. Then the first item above implies

Pj,0 = Pr[b∗ = 0|i∗ = j, b = 0] = Pr[b∗ = 0|i∗ = j + 1, b = 1] = 1− Pj+1,1

and therefore Pj,0 + Pj+1,1 = 1 for all j ∈ [n− t− 1], while the second and third items imply Pn−t,0 =

1−Pr[Gameind-secrecy,0A,PVSS = 1] and P1,1 = Pr[Gameind-secrecy,1A,PVSS = 1] respectively, which by assumption implies
Pn−t,0 + P1,1 = 1 + ϵ.

Therefore in this case

Pr[W ] =
1

2(n− t)

n−t∑
j=1

1∑
j=0

Pj,c =
1

2(n− t)
(n− t+ ϵ) =

1

2
+

ϵ

2(n− t)
.

Thus AdvDDH-qfB (λ) = |ϵ|
2(n−t) which concludes the proof.

A.4 Proof of Lemma 2

Proof. Let B be an adversary for DDH-f. We construct A an adversary for DDH-qf that uses B as follows:
on challenge (ppCL, X, Y, Zb), A samples c, d←$ Zq, constructs X

′ = X ·f c, Y ′ = Y ·fd and Z ′
b = Zb ·f cd

and outputs B(ppCL, X
′, Y ′, Z ′

b).

We show AdvDDH-qfA (λ) = AdvDDH-fB (λ) − negl(λ), by showing that the challenge (X ′, Y ′, Z ′
b) for B is

distributed statistically close to that in the DDH-f experiment. Indeed, since X = gxq , Y = gyq then clearly

X ′ = gx
′
, Y ′ = gy

′
for x′, y′ distributed statistically close to D. More precisely (recall s is the order of

gq), x
′ = x mod s, x′ = c mod q, and y′ = y mod s, y′ = d mod q. Now note that x′y′ = xy mod s

and x′y′ = cd mod q. It is now clear that Z ′
b = Zbf

cd = gx
′y′

fu where u = 0 if b = 0 and uniformly
random in Zq if u = 1. We have indeed shown that the distribution received by B is statistically close to
the one in the DDH-f experiment and hence we obtain the result

A.5 Proof of NIZKSh of Sharing Correctness (Theorem 7)

Completeness. In order to check completeness clearly we need to argue that if the statement is cor-
rect then grq = R and Ur = V for the U, V constructed (deterministically) from the statement. Note

that V =
∏n

i=1 B
w′

i
i =

∏n
i=1 pk

r·w′
i

i fp(αi)·w′
i = Ur ·

∏n
i=1 f

p(αi)·w′
i Since f generates a group of order

q, w′
i = wi + ciq and wi = m∗(αi) · vi,

∏n
i=1 f

p(αi)·w′
i = f

∑n
i=1 p(αi)m

∗(αi)·vi Now we apply Theorem 1
that ensures

∑n
i=1 p(αi)m

∗(αi) · vi = 0 mod q. Therefore indeed V = Ur and completeness follows from
completeness of NIZKDLEQ

Soundness. IfΠSh.Verify((f, gq, (pki)
n
i=1, R, (Bi)

n
i=1),PfSh) accepts then, except with probability ϵDLEQ,

we have grq = R, Ur = V for some r where U =
∏n

i=1 pk
w′

i
i and V =

∏n
i=1 B

w′
i

i .

Call Ji = pk−r
i Bi for all i. Since Ur = V , we have

∏n
i=1 J

w′
i

i = 1. Since Ĝ = Ĝq × F , we can write

Ji = Hif
ai for some ai ∈ Zq and some Hi ∈ Ĝq.

Moreover
∏n

i=1 J
w′

i
i =

∏n
i=1 H

w′
i

i · f
∑n

i=1 aiw
′
i where the first factor is in the group Ĝq and the second

is in F . Therefore
∏n

i=1 H
w′

i
i = 1, f

∑n
i=1 aiw

′
i = 1.

The second equality implies
∑n

i=1 aiw
′
i = 0 mod q, hence also

∑n
i=1 aiwi = 0 mod q and since

wi = vi ·m∗(αi) in Zq, then by Theorem 1, except with probability 1/q we have that ai = p(αi) for some
polynomial p ∈ Zq[X] of degree at most t+ k − 1, i.e. ai are Shamir shares of some secret.

Now we consider the other equality
∏n

i=1 H
w′

i
i = 1 where Hi ∈ Ĝq.

There are two cases:

– Hi = 1 ∀i ∈ [n]. Then we have Mi = fai and therefore Bi = pkri f
ai where ai are correct Shamir

shares and r is such that R = grq , so the shares are correct.
– Some Hi ̸= 1. Then by Lemma 3, except with probability 1/C, Hi is of order smaller than C. But

this implies that if the prover could create Hi, not all one, such that
∏n

i=1 H
w′

i
i = 1 with probability

larger than 1/C, then there has to be a prime p < C such that p divides the order of Hi, hence
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also the order of Ĝ. In this case the prover knows that ρ, the randomness used by CLGen does not
come from the distribution Drough

C as defined in the ROC assumption. Therefore this should only
happen with negligible probability, or otherwise the prover would be a distinguisher that breaks this
assumption.

Putting everything together we see that if ΠSh.Verify accepts PfSh, then except with probability
ϵDLEQ + 1/q + 1/C + negl(λ), pk−r

i Bi = fai with grq = R, ai = p(αi) for some polynomial p ∈ Zq[X] of
degree at most t+ k − 1. Hence the statement is in the language given by relation RSh.

Zero Knowledge. All that is sent by the prover is NIZKDLEQ.Prove((gq, U,R, V ); r), where all arguments
of the statement gq, R, U, V can be deterministically computed from the statement of NIZKSh. Therefore,
the proof is zero knowledge if NIZKDLEQ is.

A.6 Proof of Theorem 8

Proof. Let Corr ⊆ [n] be the set of the parties corrupted by the adversary, where |Corr| ≤ t and let
Honest = [n] \ Corr the set of honest parties. We construct a simulator S that interacts with FDKG and
the adversary A, such that the view of the latter in the interaction with S and FDKG is indistinguishable
from its view in the real execution of the protocol.
S acts as follows. It first extracts ski from the proofs Pfpki for i ∈ Corr, using the fact that in

qCLPVSS, these are proofs of knowledge. Whenever it receives (Gen, sid, IDj) from FDKG, such that
party j is honest, then it runs step 1 of protocol ΠDKG honestly for party j as dealer, thereby sampling
sj ∈ Zq uniformly at random, creating and publishing

(Rj , (Bj,i)i∈[n],PfShj)← qCLPVSS.Share(pp, (pki)i∈[n], sj).

It also stores the Shamir shares σj,i, i ∈ [n] of sj created as part of running qCLPVSS.Share. Moreover,
S adds j to Q.

When A posts a message on the bulletin on behalf of party j ∈ Corr, S tries to parse it as
(Rj , (Bj,i)i∈[n],PfShj) and runs the verification of PfShj . If this passes, it adds j to Q.

Let QCorr = Q ∩ Corr, i.e. the set of all corrupted parties for which the adversary has sent correct
information in the previous step.
S uses the extracted ski to obtain σj,i from Rj , Bj,i for all pairs (i, j) such that both i, j ∈ QCorr.

Concretely σj,i = CLSolve(Bj,iR
−ski
j ). For every i ∈ C ∩Q, S now computes tski =

∑
j∈Q σj,i and sends

(Gen, sid, IDi), (SetShare, sid, IDi, tski) to FDKG. This can be done because S knows all σj,i for honest
j (which it has simulated) and for adversarial j in Q (which it has obtained).

For every corrupted party, S now computes tski =
∑

j∈Q σj,i and sends (Gen, sid, IDi), (SetShare,
sid, IDi, tski) to FDKG.

The functionality sends the messages (Keys, sid, tski, {tpkj}j∈[n], tpk) for corrupted parties i to S.
Now S executes step 2 for each honest party i by publishing instead the tpki received from the function-
ality and using the simulator of the NIZK to create a simulated proof Pftpki for (f,RQ, BQ,i, h, tpki, pki)
where all the other parts of the statement are as in the protocol.

Finally S waits for A to post (tpki,Pftpki) for i ∈ QCorr. S defines C to be the indices i ∈ QCorr for
which A fails to post an accepting proof. S sends (Abort, sid, C) to the functionality.

We show that the execution with S and FDKG is indistinguishable of an execution of the real protocol
ΠDKG. First, notice that all messages produced by S in the first step are exactly as in the protocol, and
Q is exactly as it would be in ΠDKG. The values tski, i ∈ QCorr computed by S are exactly the same
as the adversary would obtain in the protocol, and hence so are the tpki, i ∈ QCorr computed by the
functionality. Finally, for every pair honest party j, note the information about the vector (σj,i)i∈Honest

known by the adversary is exactly the fact that σj,i = pj(αi) for some polynomial of degree t such that
p(αi) = σj,i for i ∈ Corr and (Rj , Bj,i,PfShj) does not reveal more information beyond that. In order to
see this assume without loss of generality that |Corr| = t. Then by properties of interpolation the set of
polynomials pj with pj(αi) = σj,i for all i ∈ Corr has exactly q elements, and each gives a different pj(β).
So any additional information that (Rj , (Bj,i)i∈[n],PfShj) gives about pj would translate in additional
information about pj(β), contradicting the privacy property of qCLPVSS. Moreover, by the simulation
soundness of the proof and the IND-CPA security of the share encryption, the adversary cannot use the
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tpki, encrypted shares and NIZK of sharing correctness from simulated honest parties to create a tpki,
encrypted shares and a valid NIZK of sharing correctness for a corrupted party that are correlated to a
simulated honest party’s tpki and shares.

Therefore, the adversary has no additional information about σi = (
∑

j∈Q σj,i)i∈Honest beyond the
fact that σi = pj(αi) for a uniformly random polynomial conditioned to p(αi) = tski for i ∈ Corr, which is
exactly the same distribution the functionality uses to choose tski. In other words the tpki and hence tpk
seen by the adversary in the simulation as distributed as in the protocol. Finally, by the zero knowledge
property of Pftpki, this is still true about (tpki,Pftpki)i∈Honest.

A.7 Proof of Theorem 9

Proof. Correctness: It follows easily using the fact that ⟨f⟩ and H are groups of order q.
Soundness: Suppose that a malicious (PPT) prover can generate an instance (gq, U,M, f, h,R, V,B,D)

which is not in the language but passes the proof with probability more than 1/C. Then there must be two
different challenges c and c′ such that the prover can compute respective responses (ur, ud) and (u′

r, u
′
d)

that make the proof be accepted. This means g
ur−u′

r
q = Rc−c′ , Uur−u′

r = V c−c′ , Mur−u′rfud−u′
d =

Bc−c′ , hud−u′
d = Dc−c′ . Now if c − c′ is invertible modulo the order of Ĝ, let a be this inverse, i.e.

a(c − c′) = 1 mod ord(Ĝ). Note a is also an inverse of c − c′ modulo q, because q divides ord(Ĝ). Then
clearly clearly d = (ur − u′

r)a, r = (ur − u′
r)a mod q makes (r, d) a witness of the relation, which is a

contradiction.
If c − c′ is not invertible modulo ord(Ĝ) it must mean that gcd(c − c′, ord(Ĝ)) ̸= 1 and hence the

order of Ĝ is divisible by a prime smaller than C and the prover can distinguish this fact. This should
not be possible with probability larger than negl(λ) or this would contradict the ROC assumption.

Zero Knowledge: For a given instance in the language and a challenge c, we can simulate a conversation
that is distributed statistically close to a real one as follows. Sample ud uniformly at random in Zq and
sample ur ←$ [−SC, SC +A].

Compute R∗ = R−cgur
q , V∗ = V −cUur , B∗ = B−cMurfud , D∗ = D−chud . Clearly D∗ = h−dc+ud

is distributed uniformly in H. On the other hand we have R∗ = g−rc+ur
q , V∗ = U−rc+ur , B∗ =

M−rc+urf−dc+ud . Here f−dc+ud is distributed as fd∗ in the protocol, and independently from the integer
−rc+ ur. On the other hand −rc+ ur is distributed uniformly in −rc+ [−SC, SC +A] for a fixed value
−rc which is in [−SC, SC+A]. Then the -rc+ur is distributed uniformly in an interval of size −2SC+A
that contains A. Under the assumption that SC/A is negligible, the distributions are statistically close.

A.8 Proof of Theorem 10

Proof. Correctness. It follows from the explanation in Section 4.2.
Soundness. If the proof passes, then with probability at most ϵMDLEQ, we have grq = R,Ur =

V,Mrfd = B, hd = D for some r ∈ Z and d ∈ Zq. Reasoning exactly the same as in the proof of
Theorem 7 we have that grq = R,Ur = V imply that in that case, R = grq and Bi = pkri f

p(αi) for i ∈ [n]
for some p(X) ∈ Zq[X]≤t, except with probability 1/C + 1/q + negl(λ). Moreover, if

∏n
i=1 D

wi
i = 1H

passes then by Lemma 3, except with probability 1/q we have Di = hp̂(αi) for some p̂ of degree at most
t. Therefore all of the above occurs except with probability at most 1/C+2/q+ negl(λ). We assume this
is the case in the following.

Now the statement Mrfd = B ensures that (
∏t+1

i=1 pk
rei
i ) · fd =

∏t+1
i=1 B

ei
i =

∏t+1
i=1 pk

rei
i feip(αi).

Hence clearly fd =
∏t+1

i=1 f
eip(αi) so d =

∑t+1
i=1 eip(αi) mod q. On the other hand hd = D implies

hd =
∏t+1

i=1 D
ei
i = hp̂(αi), therefore d =

∑t+1
i=1 eip̂(αi) mod q. Then

∑t+1
i=1 ei(p(αi) − p̂(αi)) = 0 mod q.

Under the uniform random choice of ei in Zq, we have that if p(αi) ̸= p̂(αi) for some i, the above would
only happen with probability at most 1/q. Therefore except with probability 1/q we have p(αi) = p̂(αi)
for all i ∈ [t+ 1]. Since they are polynomials of degree t, then this implies p(X) = p̂(X).

For here we conclude that if the statement is incorrect the proof will pass with probability at most
ϵMDLEQ + 1/C + 3/q + negl(λ).

Moreover, being based on the Fiat-Shamir transform in the random oracle model, we observe that
by the result of [21] this scheme is simulation sound.

Zero Knowledge. It follows from the fact that PfMDLEQ is the only thing sent by the prover and all
the rest can be simulated (in fact it is computed by the verifier).
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A.9 Proof of Theorem 11

Proof. Let Corr ⊆ [n] be the set of the parties corrupted by the adversary, where |Corr| ≤ t and let
Honest = [n] \ Corr the set of honest parties. We construct a simulator S that interacts with FBDKG and
the adversary A, such that the view of the latter in the interaction with S and FBDKG is indistinguishable
from its view in the real execution of the protocol.
S acts as follows. It generates public keys and secret keys for the honest parties. It extracts ski from

the proofs Pfpki for i ∈ Corr, using the fact that in qCLPVSS, these are proofs of knowledge. Whenever it
receives (Gen, sid, IDj) from FBDKG, such that party j is honest, then except for the last honest party,
it runs the only round of ΠBDKG honestly for party j as dealer, thereby sampling sj ∈ Zq uniformly at
random, creating (Rj , (Bj,i)i∈[n], ·)← qCLPVSS.Share(pp, (pki)i∈[n], sj),Di,j = hσi,j and a proof PfExtShj .
It publishes (Rj , (Bj,i)i∈[n], (Di,j)i∈[n],PfExtShj). It also stores the Shamir shares σj,i, i ∈ [n] created as
part of running qCLPVSS.Share. Moreover, S adds j to Q∗.

When A posts a message on the bulletin on behalf of party j ∈ Corr before S has posted the message
for the last honest party, S tries to parse it as (Rj , (Bj,i)i∈[n], (Dj,i)i∈[n],PfExtShj) and runs the verification

of PfShj . If this passes then S adds j to Q∗. S computes t̃pki =
∏

j∈Q∗
Dj,i for all i, uses its knowledge

of all ski to obtain the σj,i sent by corrupted parties so far and defines t̃ski =
∑

j∈Q∗
σj,i.

Now S waits until the functionality sends (keys, sid, {tpki}i∈[n], tpk, tski∈Corr), and computes the

message for the last honest party j as follows: it defines Dj,i = tpki · t̃pki
−1

for all i and σj,i = tski− t̃ski
for i ∈ Corr. If hσj,i ̸= Dj,i, it aborts. Otherwise sample rj ← Dq, compute Rj = grq , Bj,i = pk

rj
i fσj,i

for all i ∈ Corr, and Bj,i = pk
rj
i fσ′

j,i for honest i, where σ′
j,i are such that there exists a polynomial pj

of degree at most t with pj(αi) = σj,i for i corrupt, pj(αi) = σ′
j,i for i honest, and compute the proof

PfExtShj using the zero knowledge simulator. Post all values as honest party j would do.
Now for all corrupt parties that have still not posted anything, whenever A posts a message on behalf

of them, S runs the verification of PfShj and if it passes, it uses the knowledge of all ski to obtain the
polynomial pj used for sharing (if this does not exist, it aborts). Let B all corrupt parties that have been
posted proofs that pass the verification after S published the message of the last honest party. Then S
defines p′ =

∑
j∈B pj and sends (bias, sid, p′) to the functionality.

We show that the execution with S and FBDKG is indistinguishable of an execution of the real protocol
ΠDKG. First, notice that all messages produced by S on behalf of honest parties are exactly as in the
protocol, except for the last one. The message for the last honest party guarantees that the current public
keys and the current secret keys corresponding to corrupted parties are the ones that the functionality
sent. By the zero knowledge property of the proof, PfExtShj is distributed as an honest proof. At this
point, the adversary can obtain from the published information the current tpk, tpki for all parties and
tski for corrupted parties i that the functionality has sent to S. Now the adversary posts additional
PVSS for parties that have not yet spoken and the simulator translates this into a polynomial p′ that
corresponds to the sum of the sharing polynomials of all corrupted parties that have sent after S published
a message on behalf the last honest party. By the simulation soundness of the proof and the IND-CPA
security of the share encryption, the adversary cannot use the tpki, encrypted shares and NIZK of
sharing correctness from simulated honest parties to create a tpki, encrypted shares and a valid NIZK
of sharing correctness for a corrupted party that are correlated to a simulated honest party’s tpki and
shares. Therefore the functionality will update the public and private keys exactly as the adversary does
with these last messages and the output will be the same as in a real protocol. Finally, throughout the
simulation, we note that the simulator only aborts when a proof of a false statement by the adversary
has passed, which we know only happens with negligible probability.

B The public verifiable secret sharing scheme DHPVSS from [10]

For comparison, and since we are following its blueprint, we recall the DDHPVSS scheme in YOLO
YOSO [10] for a cyclic group G = ⟨g⟩ of prime order q where DDH is assumed to be hard. As we have
already mentioned, the main qualitative difference with our scheme is that here parties can in principle
only reconstruct gs ∈ G rather than elements s ∈ Zq. Since the sharing can actually also be done knowing
only gs and not s, we can see this as a PVSS for secrets in G. We describe the case k = 1 (one element in
G as secret) only, as this is the case described in [10], but we observe it is trivial to adapt this to k > 1
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with the same modifications as in our scheme. The PVSS assumes non-interactive zero knowledge proofs
of discrete logarithm NIZKPoKDL and proof of discrete logarithm equality NIZKDLEQ which in this case of
known order groups can easily be constructed as Schnorr proofs.

DHPVSS.Setup(q, t, n, λ):

1. Specify a set of pairwise distinct points {β, α1, . . . , αn} ⊂ Zq. These points determine also vi =∏
j∈[n]\{i}(αi − αj)

−1 for every i ∈ [n]. Let ppSh = (q, t, β, (αi)i∈[n], (vi)i∈[n])

2. Specify a description of a random oracle H : {0, 1}∗ → Zq[X]≤n−t−2

3. The output is then ppSh.

DHPVSS.KeyGen(pp, i):

1. Sample ski ←∈ Zq and compute pki = gski .
2. Create proof Pfpki = NIZKPoKDL.Prove({((g, pk); ski) : pki = gski})
3. Output(ski, pki,Pfpki).

DHPVSS.VerifyKey(pp, i, pki,Pfpki): Run verification of Pfpki and output its result.

DHPVSS.Dist(pp, (pki)i∈[n], g
s), where s ∈ Zq:

1. Create a Shamir sharing of s: compute gσi where σi = p(αi) for a uniform polynomial in the set
of polynomials in Zq[X]≤t with p(β) = s. This can be done even without explicitly knowing s, by

sampling p′(X)←$ Zq[X]≤t−1 and computing gσi = gs · g(αi−β)·p′(αi) (since this induces a correctly
distributed p(X) = s+ (X − β) · p′(X)).

2. Sample r ←$ Zq and compute R = gr.
3. Create Bi = pkri · gσi .
4. Create the sharing proof PfSh = NIZKSh((g, (pki)

n
i=1, R, (Bi)

n
i=1); (p, r) : deg p ≤ t, R = gr, Bi =

pkri g
p(αi) ∀i ∈ [n]) as follows:

– Sample m∗(X) = H(pk1, . . . , pkn, B1, . . . , Bn) where H : {0, 1}∗ → Zq[X]≤n−t−2.

– Compute V =
∏n

i=1 pk
vi·m∗(αi)
i and U =

∏n
i=1 B

vi·m∗(αi)
i .

– Compute PfSh = NIZKDLEQ.Prove((g, U,R, V ); r) : gr = R ∧ Ur = V )
5. Output (R,B1, . . . , Bn,PfSh). We define Ci := (R,Bi) for all i ∈ [n].

DHPVSS.VerifySharing(pp, (pki)i∈[n], (R,B1, . . . , Bn,PfSh)): Run the verification of NIZKSh by con-
structing m∗, U, V from the arguments as in Dist and then using NIZKDLEQ.Verify((g, U,R, V ); r) : gr =
R ∧ Ur = V ).

DHPVSS.DecShare(pp, pki, ski, Ci), where Ci = (R,Bi):

1. Compute Si = Bi ·R−ski . Let Mi = BiS
−1
i = Rski

2. Compute PfDeci = NIZKDLEQ.Prove((g,R, pki,Mi); ski) : g
ski = pki, R

ski = Mi).
3. Output (Si,PfDeci).

DHPVSS.Rec(pp, {Si : i ∈ T }):

1. If |T | < t+ 1, output ⊥.
2. Otherwise select T ′ ⊆ T , with |T ′| = t+ 1 (e.g. the first t+ k indices in T ).
3. Define S′ =

∑
i∈T ′ S

Li(β)
i where Li(X) = Lagi,T ′,{αi:i∈T ′}.

4. Output S′.

DHPVSS.VerifyDec(pp, Ci, Si,PfDeci): Parse Ci = (R,Bi). Compute Mi = BiS
−1
i , verify PfDeci is a

valid proof of discrete log equality for the statement by running NIZKDLEQ.Verify((g,R, pki,Mi),PfDeci),
outputting the result of the verification.
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