
Optimizing the depth of quantum
implementations of linear layers

Chengkai Zhu1,2[0000−0001−5250−5885] and Zhenyu Huang1,2[0000−0002−3499−538X]

1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

zhuchengkai@iie.ac.cn, huangzhenyu@iie.ac.cn

Abstract. Synthesis and optimization of quantum circuits are impor-
tant and fundamental research topics in quantum computation, due to
the fact that qubits are very precious and decoherence time which deter-
mines the computation time available is very limited. Specifically in cryp-
tography, identifying the minimum quantum resources for implementing
an encryption process is crucial in evaluating the quantum security of
symmetric-key ciphers. In this work, we investigate the problem of op-
timizing the depth of quantum circuits for linear layers while utilizing
a small number of qubits and quantum gates. To this end, we present
a framework for the implementation and optimization of linear Boolean
functions, by which we significantly reduce the depth of quantum circuits
for many linear layers used in symmetric-key ciphers without increasing
the gate count.

Keywords: Quantum Circuit · Reversible Circuit · Linear depth · Symmetric-
key ciphers.

1 Introduction

With the rapid development of quantum technologies and quantum algorithms
such as Grover’s algorithm, Simon’s algorithm, and Shor’s algorithm, the security
of modern cryptography has been challenging. It is widely known that Grover’s
algorithm [22] has a square root speedup over a classical algorithm in terms of the
problem of database search, which can be applied to find the key for a symmetric
cipher instead of a classical exhaustive key search. Moreover, quantum attacks
on symmetric-key schemes are extensively studied these years, including Simon’s
period-finding algorithm [25,12] and other attacks derived from cryptanalytic
techniques [14,13,23,30]. All these works imply that there would be a potential
quantum threat to our symmetric encryption system used today.

To actually implement a quantum key search on a symmetric-key encryption
scheme, e.g., a block cipher, the encryption process is supposed to be imple-
mented as a Grover oracle, meaning that we should be capable of constructing
a quantum circuit for the specific encryption algorithm. Meanwhile, in the call

2 C. Z. and Z. H.

for proposals for the standardization of post-quantum cryptography, the Na-
tional Institute of Standards and Technology (NIST) makes the complexities
of the quantum circuit for AES standards to categorize the security strength
of post-quantum public-key schemes. All these reasons give rise to the growing
appeals for studying the quantum implementation of quantum oracles of itera-
tive symmetric-key ciphers as well as how to optimize the implementation. This
has been an important and fruitful topic recently, which helps understand the
quantum security of current encryption schemes and guides future post-quantum
encryption designs.

Although the circuit implementations of symmetric-key ciphers differ from
each other, a recurring theme can be recognized, which is to construct the quan-
tum circuit for each building block of the cipher separately. Then we can do
post-optimizations for the circuit to reduce the quantum cost, including the
depth, the width (the number of qubits), and the gate count (the number of
quantum gates). For the non-linear building blocks, most work has been focus-
ing on reducing the T -depth due to its importance in fault-tolerant quantum
computation [21]. The circuits that implement the linear building blocks are
called linear reversible circuits, which only consist of CNOT gates. They have
many important applications in quantum computation, e.g., stabilizer circuits.

Related work. Work in quantum implementation of symmetric ciphers mostly
focuses on AES due to its popularity and importance. In 2015, Grassl et al. [21]
first proposed a quantum circuit of AES and found that the number of logical
qubits required to implement a Grover attack on AES is around 3000 to 7000.
Followed by their work, Almazrooie et al. [4] gave a more detailed circuit of
AES trying to use fewer qubits. In [33] Langenberg et al. presented an improved
quantum circuit for the S-box of AES which reduced the numbers of Toffoli gates
and qubits. In [49], Zou et al. constructed two quantum circuits for AES S-box
and S-box−1, trying to use fewer qubits as well. Except for these works primarily
focusing on the number of qubits, Jaques et al. in [39] build circuits for AES and
LowMC with the primary goal of reducing the circuit depth. Recently, Huang
and Sun [24] proposed a general structure for implementing quantum circuits for
the round functions of block ciphers. They utilized some techniques to give the
state-of-the-art synthesis of AES, with respect to depth-width trade-offs. Not
surprisingly, their strategy for efficient quantum circuit synthesis is also to build
linear and non-linear cryptographic building blocks separately. The depth of the
linear block is not considered in the first place in their work.

Apart from the efficient quantum implementation of symmetric-key ciphers,
the problem of quantum circuit optimization has been studied for many years in
the field of synthesis and optimization of reversible logic circuits [48,42,36,38,5],
which is historically motivated by theoretical research in low-power electronics
transforms in cryptography and computer graphics. The basic task is to use
reversible gates to implement a reversible Boolean function, i.e., a permuta-
tion. There have been enormous algorithmic paradigms such as search-based,
cycle-based, transformation-based, and BDD-based for reversible circuit synthe-

Optimizing the depth of quantum implementations of linear layers 3

sis, both exact and heuristic. One may refer to [38] for a detailed review. Also,
there are some tools developed to study the synthesis of reversible circuits [46].

Specifically for the synthesis and optimization of linear quantum circuits
(the CNOT circuits), traditional methods usually yield a circuit with O(n2)
gates based on standard row reduction methods such as Gaussian elimination
and LU-decomposition for an n × n matrix. In [37], Patel et al. present an
algorithm that uses O

(
n2/ log(n)

)
gates, which is the theoretical lower bound,

to build an n-qubit linear quantum circuit. This will trivially give a bound of
O
(
n2/ log(n)

)
on the circuit depth. Furthermore, Jiang et al.[28] reduce this

bound by a factor of n, achieving an asymptotically optimal depth bound of
O (n/ log(n)). Some other efforts were also made to achieve a more compact
circuit of linear layers [17,18]. The synthesis of the CNOT circuits has direct
applications to the synthesis of stabilizer circuits, an important class of quantum
circuits introduced by Aaronson and Gottesman [2]. However, there is still a lack
of practical and efficient strategies for the optimal implementation of the linear
components.

Our contribution. In this work, we first revisit the problem of optimization of
a subclass of quantum circuits - CNOT circuits. We give three characterizations
of the CNOT circuit depth, i.e., sequence depth, move-equivalent depth, and
exchange-equivalent depth. Based on that, we focus on the problem of minimizing
the circuit depth while maintaining the gate count of a gate-count-optimized
CNOT circuit.

We present a practical and efficient framework in Algorithm 3 for the im-
plementation of linear operators as well as the optimization of their circuits.
Consequently, one can construct the quantum circuit for a linear Boolean func-
tion with a small number of CNOT gates and lower circuit depth. For a linear
Boolean function with n-variables, our depth optimization procedure yields a
complexity of O

(
n4/ log(n)2

)
.

We finally showcase the strength of our framework in quantum implementa-
tions of symmetric-key ciphers. For different linear layers used in symmetric-key
ciphers, which corresponds to some invertible matrices, our method can always
give a considerable reduction in the circuit depths of their implementations,
and obtain the state-of-the-art quantum circuits for those linear layers. Notably,
for non-invertible linear transformations that appear in the non-linear building
blocks or other more complex circuit structures, our method can also make the
circuits for these linear parts more compact hence reducing the depth of the
whole circuit.

2 Preliminaries

2.1 Quantum circuit

Among the various alternative models used to represent a quantum computer,
the circuit model is arguably the most widely used. In the circuit model of

4 C. Z. and Z. H.

quantum computation, a qubit (quantum bit) is a theoretically abstract mathe-
matical object. It has two possible states |0⟩ and |1⟩ that are usually called basis
states just as a classical bit has a state of either 0 or 1. The difference between
bits and qubits is that a qubit can be in a state other than |0⟩ and |1⟩. It can
be a linear combination of basic states, |ψ⟩ = α|0⟩ + β|1⟩, where α, β ∈ C and
|α|2 + |β|2 = 1.

Geometrically, |0⟩ and |1⟩ can be represented as two-dimensional vectors
|0⟩ = [1, 0]T and |1⟩ = [0, 1]T . And |ψ⟩ is described by a unit vector in a two-
dimensional Hilbert space H ∼= C2 of which |0⟩ and |1⟩ are known as compu-
tational basis states. A system of n-qubits, also called an n-qubit register, has
states described by a unit vector in the Hilbert space Hn

∼= H⊗n. Based on
this, the evolution of quantum states is described by unitary transformations or
quantum gates. A quantum gate acting on n qubits is represented by a 2n × 2n

unitary matrix. For instance, a NOT gate will invert the qubit and has a matrix

form

(
0 1
1 0

)
. There are some important single-qubit gates like the Hadamard

gate H, S gate, T gate:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
.

For two-qubit gates, one of the most important ones is the CNOT gate which is
a two qubits (control and target) operation.

CNOT : |x1⟩|x2⟩ → |x1⟩|x1 ⊕ x2⟩. (1)

It is worth mentioning that the CNOT gate, H gate, and S gate generate
the Clifford group and Clifford + T forms a universal gate library. Whereas,
in the field of cryptography and quantum combined, one mostly works with the
Boolean functions, thus is more interested in a gate set called CNTS gate library,
consisting of the CNOT, NOT, Toffoli, and SWAP gates.

From (1), we can see that a CNOT gate can be seen as an invertible linear

transformation

(
1 0
1 1

)
over F2

2. Similarly, for an n-qubit system, we can charac-

terize a CNOT gate with an n× n matrix instead of its 2n × 2n unitary matrix
form for its linearity. In detail, a CNOT gate controlled by the j-th qubit, acting
on the i-th qubit (i ̸= j) can be written as

Eij = I + eij , (2)

where I is the n × n identity matrix and eij the elementary matrix with all
entries equal 0 but the entry (i, j) equals 1. In fact, Eij belongs to the ele-
mentary matrices in linear algebra or matrix theory. Recall that there are three
types of elementary matrices, which correspond to three types of row operations
(respectively, column operations) and may be interpreted as quantum gates:

Optimizing the depth of quantum implementations of linear layers 5

1. Row switching: interchange two rows, which will be implemented by renam-
ing or switching the circuit wires3.

2. Row multiplication: multiply a row with a nonzero number, which is trivial
in F2 and not concerned in this paper.

3. Row addition: add a row to another one multiplied by a nonzero number,
which in F2 will be interpreted as a CNOT gate.

It is a well-known theorem that any linear reversible matrix can be decomposed
as a product of elementary matrices. All of these indicate that for any linear
Boolean function with n variables, we can use a sequence of CNOT gates on n
qubits, referred as a CNOT circuit with n qubits, to implement it.

Theorem 1. Any invertible matrix A can be decomposed as a product of ele-
mentary matrices.

Two metrics, named width and depth, are often used to characterize the cost
of a quantum circuit. The width refers to the number of qubits that comprise the
circuit and depth refers to the number of layers of gates that are not executed
at the same time. Width and depth are both limiting factors in the execution
of quantum algorithms. For CNOT circuits, since it can be easily implemented
without auxiliary qubits, hence minimizing its width is an easy problem. There-
fore, in this paper, we focus on optimizing the depth of CNOT circuits, by which
we can reduce the depth of the quantum implementations of linear components
of symmetric-key ciphers.

2.2 Depth of the quantum circuits

For the depth of a quantum circuit, one usually refers to the minimal number
of stages the hardware needs to execute the gates when we suppose that the
gates acting on different qubits are executed simultaneously. For instance, the
following circuit (a) in Fig. 1 has depth 3 and the circuit (b) in Fig. 1 has depth
2 since the second and the last CNOT gates on the right circuit can be executed
simultaneously. However, when the quantum circuit consists of different kinds

(a) CNOT circuit with depth 3 (b) CNOT circuit with depth 2

Fig. 1. The quantum CNOT circuits with different depth.

3 This operation can also be implemented by 3 CNOT gates, but this will cost more
quantum resources since we think the cost of rewiring is free in most cases.

6 C. Z. and Z. H.

of gates and we want to reduce the depth for a particular gate, e.g., the Toffoli
depth that refers to the number of stages the hardware needs to execute the
Toffoli gates simultaneously, the definition of depth we mentioned should be
fixed.

(a) Toffoli depth 2 and circuit depth 2 (b) Toffoli depth 1 and circuit depth 3

Fig. 2. The quantum circuits with different Toffoli depth.

For instance, the two circuits illustrated in Fig. 2 contain the same gates. In
circuit (b), in order to execute the two Toffoli gate in parallel, the two CNOT
gates should be executed in another two different stages, which makes the circuit
has depth 3.

This example shows that the depth of a circuit should be defined based on
its building structure. The key issue here is that quantum circuits are written
such that the horizontal axis is time, starting at the left-hand side and ending at
the right. These lines define the sequence of events, and are usually not physical
cables, resulting in that these two circuits in Fig. 2 are practically two different
events. In this sense, the depth of the quantum circuit actually reveals its exe-
cution time. For this reason, in this paper, when we say a circuit with depth d,
we mean a circuit is described by d layers of gates, and all gates in each layer
can be executed simultaneously.

3 Linear depth optimization

Generally for a linear Boolean function or a linear component in symmetric-
key ciphers, one may first easily obtain its matrix A from its algebraic normal
form. Then implementing A with a CNOT circuit is equivalent to decomposing
A into a sequence of elementary matrices and a permutation matrix. Since this
permutation matrix corresponds to rewiring operations that are considered free,
we only need to focus on this sequence of elementary matrices. We call it the
decomposition sequence of A, which is defined formally as follows.

Definition 1. A decomposition sequence SEQ of a matrix A is a finite sequence
of elementary matrices with a particular order

SEQ = {E(c1, t1), E(c2, t2), · · · , E(cL, tL)}, (3)

Optimizing the depth of quantum implementations of linear layers 7

such that

A = P

(
1∏

k=L

E(ck, tk)

)
, (4)

where P is a permutation matrix. Here, L is called the length of the sequence,
and

∏1
k=LE(ck, tk) is called the output of the sequence.

In fact, any invertible matrix in F2 has a decomposition sequence followed by
Theorem 1. Each E(ck, tk) actually corresponds to a CNOT gate controlled by
the line ck acting on the line tk in a quantum context. For convenience, we
may simply use SEQ to denote the decomposition sequence corresponding to a
CNOT circuit for a given linear transformation A. For a SEQ, we say it is divided
continuously into D sub-sequences if

SEQ1 = {E(c1, t1), E(c2, t2), · · · , E(ck1
, tk1

)},
SEQ2 = {E(ck1+1, tk1+1), E(ck1+2, tk1+2) · · · , E(ck2

, tk2
)},

· · ·
SEQD = {E(ckD−1+1, tkD−1+1), E(ckD−1+2, tkD−1+2) · · · , E(ckD

, tkD
)},

(5)

and
⋃D

k=1 SEQk = SEQ, and {SEQ1, SEQ2, . . . , SEQD} is called a parallel partition
of SEQ if

⋂
i{ci, ti} = ∅ for any i in each SEQk. Then the depth of SEQ is defined

as follows.

Definition 2 (Sequence depth). For a decomposition sequence SEQ, the depth
of SEQ is the minimum D such that there is a parallel partition of SEQ with D
sub-sequence.

Notably, as discussed in Section 2.2, the depth of a quantum circuit is a circuit-
architecture-dependent parameter, and from a parallel partition with D sub-
sequences, we can easily achieve a quantum circuit with depth D. Moreover, we
always cluster the CNOT gates leftward when considering the depth of a CNOT
circuit particularly, making as many gates as possible run simultaneously.

It is straightforward to know that if {ci−1, ti−1} ∩ {ci, ti} = ∅ (or {ci, ti} ∩
{ci+1, ti+1} = ∅), E(ci, tj) can be moved forward (or backward) without chang-
ing the output of the sequence. Then we have the following definition for the
equivalence of two decomposition sequences.

Definition 3 (Move-equivalence). Two decomposition sequences SEQ and SEQ′

are move-equivalent if SEQ′ can be obtained by moving gates in SEQ forward or
backward.

Actually, given a CNOT circuit, which corresponds to a decomposition se-
quence SEQ, the output of its depth from most quantum resources estimators, for
example, the Q# resources estimator of Microsoft [1], is the depth of the move-
equivalent sequence of SEQ under the strategy that moves all E(ci, ti) forward as
far as possible. However, we will discuss in the next subsection that for a SEQ,
after exchanging some gates that seem can not be further moved forward (or
backward), we can obtain a new decomposition sequence that has lower depth
than all move-equivalent sequences of SEQ.

8 C. Z. and Z. H.

3.1 Depth optimization for decomposition sequences

By PLU-decomposition, one can easily obtain a decomposition sequence of a ma-
trix A. However, it is obviously not an optimal implementation when concerning
two metrics - the gate count and the circuit depth.

For the gate count, it is pointed out in [47] that there are seven cases where
three adjacent elementary operations can be equivalently reduced to two, im-
plementing the same Boolean function. As a result, they built seven rules to
optimize a given sequence and here we employ the same method to reduce the
gate count of a decomposition sequence.

For the circuit depth, we find that the depth of a CNOT circuit can be further
reduced since there are other equivalent decomposition sequences for a SEQ that
is shallower. For example, we can swap the order of the second and the third
CNOT gates of Circuit (a) in Fig. 3, maintaining the output. Then we obtain
Circuit (b), which has circuit depth 2.

(a) CNOT circuit with depth 3 (b) CNOT circuit with depth 2

Fig. 3. The quantum CNOT circuits with different depths by exchanging gates.

Actually, we have the following observation for the elementary matrix (the
CNOT gate) E(ck, jk) in a decomposition sequence:

Observation 1 For elementary matrices, E(ci, ti)E(cj , tj) = E(cj , tj)E(ci, ti)
if and only if ti ̸= cj and ci ̸= tj.

Observation 1 is quite obvious from the circuit perspective meaning that two
CNOT gates can swap order with each other if and only if the control qubit of
the first gate is not the target qubit of the other, and vice versa. In Fig. 3 the
first CNOT gate and the second CNOT gate in Circuit (a) can not be exchanged
since the target qubit of the first gate is the controlled qubit of the second gate.
In this way, we have the following definition for exchange-equivalence of two
decomposition sequences.

Definition 4 (Exchange-equivalence). For two adjacent gates E(ck, tk) and
E(ck+1, tk+1) in SEQ, we can exchange the order of the two if and only if tk ̸=
ck+1 and ck ̸= tk+1. We say SEQ′ and SEQ are exchange-equivalent if SEQ′ can
be obtained by exchanging the order of the gates in SEQ.

Optimizing the depth of quantum implementations of linear layers 9

It is worth noting that the move-equivalence is a special case of the exchange-
equivalence. Obviously, now we can try to find a shallower circuit for SEQ among
all exchange-equivalent decomposition sequences. To this end, we present Al-
gorithm 1 to find the exchange-equivalent SEQ′ that has nearly optimal circuit
depth for a given decomposition sequence. Intuitively, we try to apply as many
quantum gates as possible in a single sub-sequence. To accomplish this, we search
for possible swapping between different gates forward and backward as detailed
in the function One-way-opt. Algorithm 1 uses One-way-opt twice and has the
following property.

Property 1. Given a decomposition sequence SEQ with L gates, the Algorithm 1
has O(L2) steps to achieve a stable depth, meaning the depth will not be further
reduced by using One-way-opt more.

Proof. Suppose the output of the Algorithm 1 is S1 which is exchange-equivalent
to SEQ. If the number of sub-sequences can still be reduced, meaning there is
a redundant sub-sequence Sr all of whose gates can be moved equivalently into
other sub-sequences in S1. For any gate Er in Sr, if the sub-sequence in which
Er can be moved lies before Sr, Er should have been moved there in Step 1
of the Algorithm 1 by the definition of the One-way-opt procedure. Else if the
sub-sequence in which Er can be moved lies after Sr, Er should have been moved
there in Step 3 of the Algorithm 1. All of these claim that there is no such Er

that can be moved equivalently into other sub-sequences. Thus by applying One-
way-opt twice, we achieve a stable depth for implementing SEQ with Algorithm
1. For each gate in SEQ, in the worst case, we may iterate through all the gates
that lie after A in SEQ twice to check whether they can be executed in parallel
and whether they are exchangeable. This will give us a query complexity O(L2).

Remark 1. For a linear Boolean function F with n variables, the result in [37]
shows that it can be implemented with O(n2/ log(n)) CNOT gates. Hence, by
Algorithm 1, we can obtain a low-depth CNOT circuit of F with complexity
O(n4/ log(n)2).

Algorithm 1: CNOT depth optimization of SEQ

Input: A decomposition sequence SEQ.
Output: A low-depth decomposition sequence SEQopt which is

exchange-equivalent to SEQ.
1 SEQleft ←One-way-opt(SEQ);
2 Reverse sort the gates in SEQleft to get SEQrevleft;
3 SEQrevopt ← One-way-opt(SEQrevleft);

4 Reverse sort the gates in SEQrevopt to get SEQopt;

5 return SEQopt;

Example 1. Here we show a toy example to demonstrate the effectiveness of our
algorithm. For a decomposition sequence

SEQ = {E(0, 1), E(1, 3), E(2, 3), E(2, 0), E(0, 3), E(0, 2), E(2, 1)}, (6)

10 C. Z. and Z. H.

One-way-opt: One-way-opt CNOT depth optimization of SEQ(A)

Input: A decomposition sequence
SEQ(A) = {E(c1, t1), E(c2, t2), · · · , E(cK , tK)} of an invertible matrix
A.

Output: A decomposition sequence SEQout(A) of matrix A and the sequence
depth d.

1 SEQout(A)← {·};
2 d = 0;
3 while length(SEQ(A)) > 1 do
4 Layer ← {·};
5 d = d+ 1;
6 Move the first gate in SEQ to Layer;
7 i = 1;
8 while i <= length(K) do
9 if E(ci, ti) can be executed simultaneously with all gates in Layer then

10 CHANGE ← TRUE;
11 for j = 1 : i do
12 if E(cj , tj) can not swap with E(ci, ti) then
13 CHANGE ← FALSE;
14 end

15 end
16 if CHANGE = TRUE then
17 Layer ← E(ci, ti);
18 Remove E(ci, ti) from SEQ

19 end
20 i = i+ 1;

21 else
22 i = i+ 1;
23 end

24 end
25 Add all gates in Layer to SEQout(A);

26 end
27 Add all gates left in SEQ to SEQout(A);
28 return SEQout(A), d;

Optimizing the depth of quantum implementations of linear layers 11

its circuit is shown as (a) in Fig. 4 whose sequence depth is obviously 7. After
the first step of Algorithm 1, E(2, 3) is exchanged with E(1, 3) since it can be
executed with E(0, 1) in parallel and is exchangeable with E(1, 3). Then we get
an exchanging-equivalent sequence whose circuit is shown as (b) in Fig. 4 with
depth 5. Furthermore, after Step 3 and Step 4, the order of E(0, 3) and E(0, 2)
are swapped since they are exchangeable and E(0, 3) can be executed in parallel
with E(2, 1), reducing the circuit depth from 5 to 4. Then Algorithm 1 output
the sequence

SEQopt = {E(0, 1), E(2, 3), E(2, 0), E(1, 3), E(0, 2), E(0, 3), E(2, 1)}, (7)

whose circuit is shown as (c) in Fig. 4.

(a) CNOT circuit of SEQ

D 1 D 2 D 3 D 4 D 5

(b) CNOT circuit of SEQleft

D 1 D 2 D 3 D 4

(c) CNOT circuit of SEQopt

Fig. 4. The quantum CNOT circuit of SEQ and its exchange-equivalent circuits obtained
in Algorithm 1.

3.2 Finding better gate sequences

Besides the optimized implementation of a given decomposition sequence as well
as all its equivalent sequences, we point out that there are actually other different
decomposition sequences that can implement the linear transformation A. As an
example shown in Fig. 5, circuit (a) and circuit (b) realize the same Boolean
function after we rename (or swap) wire i and wire k, hence SEQa for Circuit
(a) and SEQb for Circuit (b) are two different decomposition sequences for the
same matrix. Whereas, circuit (a) has depth 4, and circuit (b) has depth 3 since
the second and the third CNOT gates in (b) can be executed simultaneously.
Hence, we are inspired to find a shallower implementation, by firstly constructing
different decomposition sequences, then applying Algorithm 1 to find a better

12 C. Z. and Z. H.

decomposition sequence whose minimum depth after our optimization method in
Section 3.1 is lower. We present our framework for searching a depth-optimized
linear quantum circuit for a linear building block in Algorithm 3.

i

j

k

l

(a) CNOT circuit with depth 4

k

j

i

l

(b) CNOT circuit with depth 3

Fig. 5. The quantum CNOT circuits with different depths after swapping wires.

Algorithm 3: Search a low-depth implementation of SEQ(A)

Input: An invertible matrix A ∈ GL(n,F2).
Output: A low-depth decomposition sequence SEQopt(A) of matrix A.

1 Translate A into a binary matrix and decompose it into
{Et, Et−1 · · · , E1};

2 SEQ← {Et, Et−1 · · · , E1};
3 SEQopt is the output of Algorithm 1 (SEQ), and d(SEQopt) is the depth of

SEQopt ; // Initialize the depth

4 g ← t+ 1;
5 while g ≥ 2 do
6 g = g − 1;
7 for i = 0 to t− g do
8 SEQ1 ← {Et, · · ·Ei+g−1};
9 SEQ2 ← {Ei+g, · · ·Ei+1};

10 SEQ3 ← {Ei, · · ·E1};
11 A′ ← {Ei+g, · · ·Ei+1};
12 Decompose A′ into {E′

u, E
′
u−1 · · · , E1};

13 SEQ′2 ← {E′
u, · · · , E1};

14 SEQ′ = SEQ1 + SEQ′2 + SEQ3 ; // New decomposition sequence

15 SEQ′opt is the output of Algorithm 1 (SEQ′), and d(SEQ′) is the

depth of SEQ′opt ; // Minimize depth for SEQ′

16 if d(SEQ′) < d(SEQopt) and |SEQ′| < |SEQopt| then
17 SEQopt = SEQ′;
18 d(SEQopt) = d(SEQ′);
19 Break;

20 end

21 end

22 end
23 return SEQopt;

Optimizing the depth of quantum implementations of linear layers 13

4 Applications

In this section, we showcase the applications of our algorithm in different linear
building blocks. From these experimental results, one can see that our algorithm
can not only be applied to optimize invertible linear transformations, but also
be extended to optimize non-invertible linear transformations. Consequently, it
is helpful for the optimization of the whole circuit depth for some block ciphers
such as AES by optimizing some linear sub-structures of the whole circuit.

Optimization for invertible linear transformations. Firstly, we apply our
framework to minimize the quantum circuit depth of a large set of invertible
cipher matrices. Notice that [47] gave state-of-the-art classical implementations
of some cipher matrices to our knowledge in terms of the gate count, which
outperform Paar’s and Boyar-Peralta’s heuristics [32] in most cases. And their
implementation can be typically employed to produce a compact CNOT circuit
implementing the linear transformation. We therefore compare our result with
theirs in Table 1, concerning the circuit depth while maintaining the gate count
same.

The depths of the quantum circuits for different cipher matrices optimized
by our method are listed in the last column. We can see there is a significant
improvement in our synthesis compared with the circuit implementation in [47].
When the matrix size is large such as an 8× 8 matrix for KHAZAD [9] (the size
is 8 × 8 in GF(8, F2) and 64 × 64 in GF(2, F2)), our method can give a nearly
75% improvement compared with the naive implementation with sequence depth,
and a 45% improvement compared with the usual move-equivalent optimization.
Even for 4×4 small matrices, our method still can reduce the depth of the circuits
in some cases.

Next, we apply our framework to optimize the depth of the quantum cir-
cuit implementation for various invertible matrices, presented in different works
[11,27,35,44,41,40]. All matrices compared can be found in those papers sorted
by their size and the finite field they belong to. The experiment results are sum-
marized in Table 2. Notice that for different matrices with different sizes, our
method always reduces the circuit depth compared with the previous quantum
circuit construction derived from the in-place implementations of classical linear
circuits. Generally, the larger the size of the matrix, the greater the advantage
of our method.

Optimization for non-invertible linear transformations. Besides, our frame-
work can also be used to optimize the circuit depth of some non-invertible linear
transformations, since any non-invertible linear transformation can always be
expressed by a sequence as well. For example, we optimized the quantum cir-
cuit depth for AES, by reducing the depth of some linear sub-structures in its
nonlinear blocks. As shown in [16], when using the tower filed structure, there
are two linear components in the implementation of AES S-box, called the top
linear layer and bottom linear layer, respectively. The top linear layer, which
is defined as a 22 × 8 binary matrix, is used to generate the desired number
of middle variables used for a tower field construction, while the bottom linear

14 C. Z. and Z. H.

layer, which is defined as an 8×18 binary matrix, is used to generate the output
of the S-box from the output of the tower field construction. After applying our
framework, we can reduce the depth of the top linear layer of the AES S-box cir-
cuit from 14 [39,24] to 8, compared with the previous implementations. For the
bottom linear layer, we can reduce the depth from 11 to 7. Thus we can reduce
the depth of linear layers of an AES S-box by 10. Even though this reduction is
not very large, our new implementation will reduce the depth of the whole AES
circuit significantly, since the S-box and its inverse are used iteratively in the
whole circuit.

Table 1. Quantum circuit depth of cipher matrices under different optimization heuris-
tic

Cipher Size1 # CNOT2 Seq D3 Move-eq D4 Exchange-eq D5

KHAZAD [9] 64 366 112 54 30
AES [20] 32 92 41 30 28
ANUBIS [45] 32 98 40 26 20
CLEFIA M0 [43] 32 98 41 30 27
CLEFIA M1 [43] 32 103 41 21 16
FOX MU4 [29] 32 136 75 55 48
QARMA128 [6] 32 48 12 6 5
TWOFISH [31] 32 111 53 37 29
WHIRLWIND M0 [8] 32 183 93 65 51
WHIRLWIND M1 [8] 32 190 90 69 54
JOLTIK [26] 16 44 23 20 17
MIDORI [7] 16 24 9 3 3
SmallScale AES [19] 16 43 26 20 19
PRIDE L0 [3] 16 24 9 3 3
PRIDE L1 [3] 16 24 15 5 5
PRIDE L2 [3] 16 24 12 5 5
PRIDE L3 [3] 16 24 11 5 5
PRINCE M0 [15] 16 24 10 6 6
PRINCE M1 [15] 16 24 10 6 6
QARMA64 [6] 16 24 9 6 5
SKINNY [10] 16 12 3 3 3

1 The size refers to the degree of the corresponding binary matrix.
2 The number of CNOT gates of quantum implementation in [47].
3 Quantum circuit depth with sequence depth.
4 Quantum circuit depth with minimum move-equivalent depth.
5 Quantum circuit depth with minimum exchange-equivalent depth.

Optimizing the depth of quantum implementations of linear layers 15

Table 2. Quantum circuit depth of some invertible matrices with different optimization
methods.

Matrices Size1 #CNOT2 Seq D3 Move-eq D4 Exchange-eq D5

4× 4 matrices in GF(4, F2)

[11] 16 41 27 23 21
[27] 16 41 28 24 18
[35] 16 44 29 27 26
[44] 16 44 30 25 22
[34] 16 44 29 29 27
[27](Involutory) 16 41 25 15 14
[44](Involutory) 16 44 24 19 16
[34](Involutory) 16 44 33 27 25
[40](Involutory) 16 38 19 12 11

4× 4 matrices in GF(8, F2)

[11] 32 114 72 56 47
[27] 32 82 43 26 22
[35] 32 121 79 67 54
[34] 32 104 69 55 42
[44] 32 90 42 23 20
[40] 32 114 58 47 40
[27](Involutory) 32 83 34 18 14
[44](Involutory) 32 91 39 18 16
[34](Involutory) 32 87 39 19 19
[40](Involutory) 32 93 42 19 18

8× 8 matrices in GF(4, F2)

[41] 32 183 83 54 44
[44] 32 170 89 59 49
[44](Involutory) 32 185 85 47 37

8× 8 matrices in GF(8, F2)

[44](Involutory) 64 348 117 50 37

1 The size refers to the degree of the corresponding binary matrix.
2 The number of CNOT gates of quantum implementation in [47].
3 Quantum circuit depth with sequence depth.
4 Quantum circuit depth with minimum move-equivalent depth.
5 Quantum circuit depth with minimum exchange-equivalent depth.

5 Conclusion

In this work, we focus on minimizing the depth of a subclass of quantum cir-
cuits - the CNOT circuits, especially those for the linear building blocks of
symmetric-key ciphers. We are motivated by the quantum security analysis of
current symmetric-key encryption systems and end up with a framework for
constructing low-depth quantum circuits for linear Boolean functions. We fully
characterize the CNOT circuits with decomposition sequence and its two equiva-
lent classes, called move-equivalent sequence and exchange-equivalent sequence.
Based on these two classes, we can give a clearer definition for the depth of

16 C. Z. and Z. H.

the CNOT circuits and achieve shallower quantum circuit implementations for
a large set of cipher matrices compared with previous results.

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (Grant No. 61977060).

References

1. Microsoftt q#. quantum development. https://devblogs.microsoft.com/

qsharp/

2. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical
Review A 70(5) (nov 2004)

3. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yaln, T.: Block
ciphers – focus on the linear layer (feat. pride). Annual Cryptology Conference
(2014)

4. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of aes-128. Quantum Information Processing 17(5), 1–30 (2018)

5. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(6), 818–830 (2013)

6. Avanzi, R.: The qarma block cipher family. almost mds matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Transactions
on Symmetric Cryptology 2017(1), 4–44 (2017)

7. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Regazzoni, F.: Midori: A block
cipher for low energy. Springer Berlin Heidelberg (2015)

8. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: A new
cryptographic hash function. Designs Codes and Cryptography 56(2-3), 141–162
(2010)

9. Barreto, P., Rijmen, V.: The khazad legacy-level block cipher. submission to the
nessie project (2000)

10. Beierle, C., Jean, J., Kölbl, S., Leander, G., Sim, S.M.: The skinny family of
block ciphers and its low-latency variant mantis. In: Annual Cryptology Conference
(2016)

11. Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in gf(2n) with
applications to mds matrices. In: Annual International Cryptology Conference.
pp. 625–653. Springer (2016)

12. Bonnetain, X., Leurent, G., Naya-Plasencia, M., Schrottenloher, A.: Quantum lin-
earization attacks. Cryptology ePrint Archive, Paper 2021/1239 (2021)

13. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of aes. IACR Transactions on Symmetric Cryptology 2019(2), 55–93 (2019)

14. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
Cryptology ePrint Archive, Paper 2018/1067 (2018)

15. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C.: Prince - a low-latency
block cipher for pervasive computing applications: Extended abstract. In: Springer
Berlin Heidelberg (2012)

16. Boyar, J., Peralta, R.: A small depth-16 circuit for the aes s-box. In: IFIP Inter-
national Information Security Conference. pp. 287–298. Springer (2012)

https://devblogs.microsoft. com/qsharp/
https://devblogs.microsoft. com/qsharp/

Optimizing the depth of quantum implementations of linear layers 17

17. de Brugiere, T.G., Baboulin, M., Valiron, B., Martiel, S., Allouche, C.: Reducing
the depth of linear reversible quantum circuits. IEEE Transactions on Quantum
Engineering 2, 1–22 (2021)

18. Brugière, T.G.D., Baboulin, M., Valiron, B., Martiel, S., Allouche, C.: Gaussian
elimination versus greedy methods for the synthesis of linear reversible circuits.
ACM Transactions on Quantum Computing 2(3), 1–26 (sep 2021)

19. Cid, C., Murphy, S., Robshaw, M.: Small scale variants of the aes. In: International
Conference on Fast Software Encryption (2005)

20. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. The Design of Rijndael: AES - The Advanced Encryption Standard
(2002)

21. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s al-
gorithm to aes: quantum resource estimates. In: Springer International Publishing
(2015)

22. Grover, L.K.: A fast quantum mechanical algorithm for database search (1996)
23. Hosoyamada, A., Sasaki, Y.: Quantum demiric-selçuk meet-in-the-middle attacks:

applications to 6-round generic feistel constructions. In: International Conference
on Security and Cryptography for Networks. pp. 386–403. Springer (2018)

24. Huang, Z., Sun, S.: Synthesizing quantum circuits of aes with lower t-depth and
less qubits. Cryptology ePrint Archive, Paper 2022/620 (2022)

25. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on aes and lowmc. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 280–310. Springer
(2020)

26. Jean, J., Nikolić, I., Peyrin, T.: Joltik. submission to the caesar competition (2014)
27. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of

lightweight building blocks. Cryptology ePrint Archive (2017)
28. Jiang, J., Sun, X., Teng, S.H., Wu, B., Wu, K., Zhang, J.: Optimal space-depth

trade-off of cnot circuits in quantum logic synthesis. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 213–229.
SIAM (2020)

29. Junod, P., Vaudenay, S.: Fox : A new family of block ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) Selected Areas in Cryptography. pp. 114–129. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

30. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. arXiv preprint arXiv:1510.05836 (2015)

31. Kelsey, B., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish: A 128bit
block cipher (1998)

32. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line pro-
grams for mds matrices (2017)

33. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
the advanced encryption standard as a quantum circuit. IEEE Transactions on
Quantum Engineering 1, 1–12 (2020)

34. Li, Y., Wang, M.: On the construction of lightweight circulant involutory mds
matrices. Springer, Berlin, Heidelberg (2016)

35. Liu, M., Sim, S.M.: Lightweight mds generalized circulant matrices. In: Interna-
tional Conference on Fast Software Encryption. pp. 101–120. Springer (2016)

36. Miller, D., Maslov, D., Dueck, G.: A transformation based algorithm for reversible
logic synthesis (July 2003), 318–323 (2004)

37. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible cir-
cuits. Rinton Press, Incorporated (3) (2008)

18 C. Z. and Z. H.

38. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits-a survey.
ACM Computing Surveys 45(2) (2013)

39. SamuelJaques, MichaelNaehrig, MartinRoetteler, FernandoVirdia: Implementing
grover oracles for quantum key search on aes and lowmc. Springer, Cham (2020)

40. Sarkar, S., Syed, H.: Lightweight diffusion layer: Importance of toeplitz matrices
(2016)

41. Sarkar, S., Syed, H.: Analysis of toeplitz mds matrices. In: Australasian Conference
on Information Security and Privacy. pp. 3–18. Springer (2017)

42. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Reversible logic circuit syn-
thesis. IEEE/ACM International Conference on Computer-Aided Design, Digest
of Technical Papers pp. 353–360 (2002)

43. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-
cipher clefia (extended abstract). In: International Workshop on Fast Software
Encryption (2007)

44. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight mds involution matrices.
In: International Workshop on Fast Software Encryption. pp. 471–493. Springer
(2015)

45. S.L.M., P., Barreto, Rijmen, V.: The anubis block cipher (2000)
46. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: An online

resource for reversible functions and reversible circuits. In: 38th International Sym-
posium on Multiple Valued Logic (ismvl 2008). pp. 220–225. IEEE (2008)

47. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of
linear layers. IACR Transactions on Symmetric Cryptology pp. 120–145 (2020)

48. Zakablukov, D.V.: Application of Permutation Group Theory in Reversible Logic
Synthesis pp. 1–15 (2015)

49. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
aes with fewer qubits. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 697–726. Springer (2020)

Optimizing the depth of quantum implementations of linear layers 19

Appendix

In the following, we present the CNOT circuit for AES MixColumns using 92
CNOT gates, which keeps the gate count the same as the implementation with
classical XOR gates in [47]. After our optimization, the circuit depth is reduced
from 41 to 28, compared with direct sequence depth; from 30 to 28, compared
with move-equivalent circuit depth.

Table 3. A quantum circuit for AES MixColumns with depth 28, where each XOR
operation is corresponding to a CNOT gate.

No. Operation No. Operation No. Operation No. Operation

Layer 1 Layer 11 44 x8 = x0 ⊕ x8 68 x6 = x5 ⊕ x6

0 x14 = x6 ⊕ x14 21 x3 = x11 ⊕ x3 45 x28 = x12 ⊕ x28 69 x1 = x25 ⊕ x1

Layer 2 22 x20 = x19 ⊕ x20 46 x4 = x31 ⊕ x4 Layer 26
1 x6 = x22 ⊕ x6 23 x26 = x10 ⊕ x26 47 x15 = x7 ⊕ x15 70 x28 = x20 ⊕ x28

Layer 3 Layer 12 Layer 19 71 x14 = x30 ⊕ x14

2 x22 = x30 ⊕ x22 24 x11 = x10 ⊕ x11 48 x16 = x0 ⊕ x16 72 x15 = x7 ⊕ x15

3 x13 = x21 ⊕ x13 25 x19 = x18 ⊕ x19 49 x12 = x15 ⊕ x12 73 x5 = x29 ⊕ x5

Layer 4 Layer 13 50 x27 = x31 ⊕ x27 74 x0 = x24 ⊕ x0

4 x30 = x13 ⊕ x30 26 x10 = x18 ⊕ x10 Layer 20 75 x25 = x9 ⊕ x25

Layer 5 27 x17 = x9 ⊕ x17 51 x0 = x31 ⊕ x0 76 x3 = x19 ⊕ x3

5 x13 = x29 ⊕ x13 Layer 14 52 x25 = x24 ⊕ x25 Layer 27
6 x21 = x5 ⊕ x21 28 x18 = x2 ⊕ x18 53 x11 = x15 ⊕ x11 77 x20 = x4 ⊕ x20

7 x12 = x4 ⊕ x12 29 x9 = x1 ⊕ x9 Layer 21 78 x29 = x21 ⊕ x29

Layer 6 30 x0 = x24 ⊕ x0 54 x31 = x7 ⊕ x31 79 x6 = x14 ⊕ x6

8 x5 = x13 ⊕ x5 Layer 15 55 x24 = x15 ⊕ x24 80 x7 = x23 ⊕ x7

9 x4 = x28 ⊕ x4 31 x18 = x17 ⊕ x18 Layer 22 81 x1 = x0 ⊕ x1

Layer 7 32 x10 = x9 ⊕ x10 56 x7 = x14 ⊕ x7 82 x9 = x17 ⊕ x9

10 x13 = x12 ⊕ x13 33 x11 = x2 ⊕ x11 57 x15 = x23 ⊕ x15 83 x2 = x26 ⊕ x2

11 x29 = x4 ⊕ x29 34 x24 = x8 ⊕ x24 58 x12 = x27 ⊕ x12 84 x19 = x27 ⊕ x19

12 x11 = x27 ⊕ x11 Layer 16 Layer 23 Layer 28

Layer 8 35 x17 = x25 ⊕ x17 59 x14 = x21 ⊕ x14 85 x4 = x12 ⊕ x4

13 x12 = x20 ⊕ x12 36 x2 = x9 ⊕ x2 60 x31 = x22 ⊕ x31 86 x21 = x13 ⊕ x21

14 x4 = x11 ⊕ x4 37 x8 = x23 ⊕ x8 61 x16 = x23 ⊕ x16 87 x22 = x6 ⊕ x22

Layer 9 38 x24 = x16 ⊕ x24 62 x27 = x26 ⊕ x27 88 x23 = x31 ⊕ x23

15 x20 = x27 ⊕ x20 39 x31 = x15 ⊕ x31 63 x30 = x6 ⊕ x30 89 x17 = x0 ⊕ x17

16 x11 = x19 ⊕ x11 Layer 17 Layer 24 90 x26 = x18 ⊕ x26

17 x23 = x31 ⊕ x23 40 x1 = x17 ⊕ x1 64 x22 = x21 ⊕ x22 91 x27 = x11 ⊕ x27

Layer 10 41 x9 = x8 ⊕ x9 65 x23 = x6 ⊕ x23

18 x27 = x3 ⊕ x27 42 x16 = x31 ⊕ x16 66 x26 = x1 ⊕ x26

19 x19 = x23 ⊕ x19 Layer 18 Layer 25
20 x18 = x26 ⊕ x18 43 x17 = x16 ⊕ x17 67 x21 = x28 ⊕ x21

	Optimizing the depth of quantum implementations of linear layers

