
A New Framework for Fast Homomorphic
Matrix Multiplication⋆

Xiaopeng Zheng1,2, Hongbo Li1,2, and Dingkang Wang1,2

1 KLMM, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China. {hli,dwang}@mmrc.iss.ac.cn,

zhengxiaopeng@amss.ac.cn.
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China.

Abstract. Homomorphic Encryption (HE) is one of the mainstream
cryptographic tools used to enable secure outsourced computation. A
typical task is secure matrix computation. Popular HE schemes are all
based on the problem of Ring Learning with Errors (RLWE), where the
messages are encrypted in a ring. In general, the ring dimension should
be large to ensure security, which is often larger than the matrix size.
Hence, exploiting the ring structure to make fast homomorphic matrix
computation has been an important topic in HE.
In this paper, we present a new framework for encoding a matrix and
performing multiplication on encrypted matrices. The new framework
requires fewer basic homomorphic operations for matrix multiplication.
Suppose that the ring dimension is n and the matrix size is d × d with
d = nρ. (1) In the compact case where ρ ≤ 1

3
, the multiplication of two

encrypted matrices requires Õ(1) basic homomorphic operations, which
include plaintext-ciphertext multiplications, ciphertext-ciphertext mul-
tiplications, and homomorphic Galois automorphisms. (2) In the large
sized case where ρ > 1

3
, our new method requires O

(
d
(1− 1

3ρ
)·log2 7) basic

homomorphic operations, which is better than all existing methods.
In addition, the new framework reduces the communication cost, since
it requires fewer key-switching keys. The number of key-switching keys
is reduced from O(d) to O(log d).

Keywords: Homomorphic Encryption · Secure Outsourced Matrix Mul-
tiplication · Tensor Ring · Lattice Basis and Dual Basis · Galois Au-
tomorphism.

1 Introduction

Fully homomorphic encryption (FHE) is a revolutionary cryptographic technique
that enables computations to be performed on encrypted data without the need
⋆ Supported partially by National Key Research and Development Project

(2020YFA0712300) and the National Science Foundation of China under Grant No.
12171469.

2 Xiaopeng Zheng et al.

for decryption. With homomorphic encryption, data can be securely outsourced
to cloud service providers or processed by third parties, without compromising
confidentiality.

In 2009, Gentry launched a pioneering work on fully homomorphic encryption
(FHE) [9]. In 2014, Brakerski et al. [1] proposed a more practical homomorphic
encryption scheme that supports finite homomorphic operations without decryp-
tion. Since then, extensive research has been conducted to enhance the efficiency
of FHE, such as those in Cheon et al. [3], Chillotti et al. [5], Ducas et al. [7],
Gentry [10], Lee et al. [18], and Liu et al. [19].

Secure Matrix Computation based on HE. Secure matrix multiplication
is a trending research topic due to its importance in secure data analysis and
machine learning. A naive approach to securely multiply two matrices of size d×d
is to use d2 distinct ciphertexts to represent each input matrix. The method
is very inefficient and requires a large amount of communication. Therefore,
recently, more efficient algorithms have been proposed. Some methods are listed
as follows:

– In 2014, Halevi et al. [12] conducted research on secure matrix-vector mul-
tiplication, where both the matrix and the vector are encrypted. Lu et
al. [20] and Wang et al. [27] extended the matrix-vector multiplication to
matrix-matrix multiplication for two encrypted matrices. However, their ap-
proach requires d ciphertexts to represent a d×d matrix, and requires O(d2)
plaintext-ciphertext multiplications, O(d2) ciphertext-ciphertext multiplica-
tions, and O(d2 log d) homomorphic automorphisms to compute the multi-
plication of two d× d matrices, see Table 1.

– In 2018, Cheon et al. [4] proposed a more efficient method for secure ma-
trix multiplication, using only one ciphertext to represent a matrix. They
extract the diagonals from one matrix and rotate another matrix. As a con-
sequence, this method requires a total of O(d) plaintext-ciphertext multi-
plications, O(d log d) homomorphic automorphisms, and O(d) ciphertext-
ciphertext multiplications to compute the multiplication of two encrypted
matrices. Jiang et al. [17] also employed the use of a single ciphertext to
represent a matrix, and then introduced a new approach to compute matrix
multiplication, which reduced the number of homomorphic automorphisms
from O(d log d) to O(d). The depth of their approach consists of a single
ciphertext-ciphertext multiplication and two plaintext-ciphertext multipli-
cations.

– In 2020, Chen et al. [2] combined the algorithm of HE matrix multiplication
in [17] with SPDZ framework to reduce the communication cost.

– In 2022, Jang et al. [16] improved upon the algorithm presented by Jiang
et al. [17]. The enhanced algorithm achieves a depth of one ciphertext-
ciphertext multiplication and one plaintext-ciphertext multiplication. Re-
cently, Rizomiliotis and Triakosia [25] completed the work started by Jang
et al. [17] by reducing the number of ciphertext-ciphertext multiplications

A New Framework for Fast Homomorphic Matrix Multiplication 3

from O(d) to O(1). However, it still requires a total of O(d) homomorphic
automorphisms.

– In 2018-2023, several studies in Jiang et al. [17], Huang et al. [15], and Huang
et al. [14], investigate techniques for secure non-square matrix multiplication.

Table 1 presents a summary of the number of basic homomorphic operations of
these algorithms.

Table 1. Number of basic homomorphic operations for one matrix multplication

Methodology
Maximum

CMulta Autb Multc
Required Depth for one

value of d matrix multiplication
[20,27] O(n) O(d2) O(d2 log d) O(d2) 1 CMult + 1 Mult
[4,23] O(n

1
2) O(d) O(d log d) O(d) 1 CMult + 1 Mult

[17] O(n
1
2) O(d) O(d) O(d) 2 CMult + 1 Mult

[16] O(n
1
2) O(d) O(d) O(d) 1 CMult + 1 Mult

[25] O(n
1
3) O(d) O(d) O(1) 1 CMult + 1 Mult

Ourscomp O(n
1
3) O(1) O(log d) O(1) 1 CMult + 1 Mult

Ourslarge Infinityd O(d
2− 2

3ρ) Õ(d
2− 2

3ρ) O
(
d

(
1− 1

3ρ

)
log2 7) 1 CMult + 1 Mult

a CMult: plaintext-ciphertext multiplication;
b Aut: homomorphic Galois automorphism;
c Mult: ciphertext-ciphertext multiplication.
d d > n

1
3 but no restriction of the upper bound.

In Table 1, n is the ring dimension and d = nρ. The estimated numbers of
basic homomorphic operations only works when d is not larger than the maxi-
mum value, otherwise, one needs to partition a matrix into several sub-matrices
and encrypt each one separately, and then use block matrix multiplication.

1.1 Our Results

The current best-performing HE schemes rely on the hardness of the Learning
with Errors (LWE) problem or it ring variant (RLWE) [21,24]. In RLWE-based
HE schemes, the plaintext space is Rp = Zp[x]/(Φm(x)), where Φm(x) is the
m-th cyclotomic polynomial. Let n = deg(Φm(x)). In general, for security con-
sideration, the value of n should not be small.

In this paper, we present a new framework for homomorphic matrix mul-
tiplication. It outperforms all other existing methods based on homomorphic
encryption (HE). The main result is as follows:

Suppose that the size of the square matrix is d× d, where d = nρ.
Theorem 1.1 (Main Result). In the compact case where ρ ≤ 1/3, the homo-
morphic matrix multiplication requires O(1) ciphertext-ciphertext multiplications
and O(log d) homomorphic automorphisms. In the large sized case where ρ >

1/3, the homomorphic matrix multiplication requires O
(
d(1−

1
3ρ) log2 7

)
ciphertext-

ciphertext multiplications and O(d2−
2
2ρ log d) homomorphic automorphisms.

4 Xiaopeng Zheng et al.

In comparison with other methods in Table 1, if ρ ≤ 1/2, it is easy to deduce
that

(
1− 1

3ρ

)
log2 7 < 1 and 2 − 2

3ρ < 1, so our method is better than the

methods in [4,17,23,16]. If ρ ≤ 1, then by
(
1− 1

3ρ

)
log2 7 < 2 and 2 − 2

2ρ < 2,
our method is better than the methods in [20,27]. If ρ ≤ 1

3 , our method only
requires O(log d) homomorphic automorphisms and O(1) plaintext-ciphertext
multiplications, which is less than that in [25].

As for communication, as our framework requires fewer homomorphic auto-
morphisms, it demands less key-switching keys. This reduces the communication
load when compared with [4,16,17,23,25]. Indeed, in [4,16,17,23,25], the number
of key-switching keys is O(d), while in our method, the number of key-switching
keys is only O(log d).

1.2 Our Techniques

Let R = Z[x]/(Φm(x)), where Φm(x) is the m-th cyclotomic polynomial with
deg(Φm(x)) = n. In our new framework, we choose m = m1m2m3, with m1, m2

and m3 pairwise coprime. Let Ri = Z[x]/(Φmi
(x)), with i = 1, 2, 3. According

to the classical theory of algebraic number theory [19,22], we have R ∼= R1 ⊗
R2⊗R3. Let {u1, . . . ,ur}, {v1, . . . ,vs} and {w1, . . . ,wt} be Z-bases of R1, R2

and R3, respectively, and let {u∨
1 , . . . ,u

∨
r }, {v∨

1 , . . . ,v
∨
s } and {w∨

1 , . . . ,w
∨
t } be

the corresponding dual bases in R∨
1 , R∨

2 and R∨
3 respectively, where n = r · s · t.

We choose m1, m2 and m2 properly, such that r ≈ s ≈ t asymptotically.
Let

d0 = min{r, s, t}, (1.1)

then d0 ≈ n
1
3 . In the compact sized case where d ≤ d0, suppose that A = (aij)

and B = (bij) are two integer matrices of size d × d. Inspired by [19], we find
that the matrix multiplication can be achieved by polynomial multiplication and
trace operation. Specifically, let

m1 =

d∑
i=1

d∑
j=1

aijuiwj and m2 =

d∑
i=1

d∑
j=1

bijw
∨
i vj . (1.2)

Then we have

Tr(m1 ·m2) =

d∑
i=1

d∑
j=1

cijuivj , (1.3)

with (cij)1≤i,j≤d = A ·B (see Theorem 3.2). This surprising discovery allows us
to implement matrix multiplication through polynomial operations.

However, if A and B are encoded as (1.2), we cannot directly implement
matrix addition through polynomial addition. Therefore, we hope to encode
matrices A and B using the same method. Specifically, we hope that A and B
are encoded as

m1 =

d∑
i=1

d∑
j=1

aijuivj and m2 =

d∑
i=1

d∑
j=1

bijuivj . (1.4)

A New Framework for Fast Homomorphic Matrix Multiplication 5

Then we can obtain

m1 +m2 =

d∑
i=1

d∑
j=1

(aij + bij)uivj . (1.5)

To bridge the gap between the encoding methods (1.2) and (1.4), we propose
a homomorphic basis switching technique in Section 3.3. We summarize the new
framework homomorphic matrix multiplication for the compact sized case in
Figure 1.

Client

Server

Client

Homomorphic Multiplication
+ Homomorphic Trace

A = (aij) ∈ Zd×d
p

Encode

m1 =
d∑

i,j=1

aijuivj

Encrypt

c1 = Encs
(d∑

i,j=1

aijuivj

)

B = (bij) ∈ Zd×d
p

Encode

m2 =
d∑

i,j=1

bijuivj

Encrypt

c2 = Encs
(d∑

i,j=1

bijuivj

)

c1 = Encs
(d∑

i,j=1

aijuivj

)
Homomorphic Basis Switching

c′1 = Encs
(d∑

i,j=1

aijuiwj

)
c2 = Encs

(d∑
i,j=1

bijuivj

)
Homomorphic Basis Switching

c′1 = Encs
(d∑

i,j=1

bijw
∨
i vj

)

c = Encs
(d∑

i,j=1

cijuivj

)
, with (cij) = AB

c = Encs
(d∑

i,j=1

cijuivj

)
, with (cij) = AB

Decrypt

m =
d∑

i,j=1

cijuivj

Decode
C = (cij) = AB

Fig. 1. (Informal) Homomorphic Matrix Multiplication for the compact sized case.

If d > d0 = min{r, s, t}, we divide the matrix into L×L blocks, and then use
block matrix multiplication (Theorem 3.4), where each block is a d0×d0 matrix.
However, if we encrypt each matrix directly, then a total of L2 matrices of size
d0 × d0 will be encrypted. This will lead to an increase in both the encryption

6 Xiaopeng Zheng et al.

and the decryption time, as well as the cost of communication. We propose a
new technique to pack these matrices into one plaintext polynomial. The main
idea is to use the basis {w∨

1 , . . . ,w
∨
t } for packing these L2 matrices. Now that

a maximum of t matrices can be packed with this basis, L can be at most bt 1
2 c,

so the maximal size of a matrix that can be packed in a plaintext is d × d,
with d = bt 1

2 c · d0. Since t and d0 are both approximately equal to n
1
3 , then

d = bt 1
2 c · d0 = O(n

1
2).

The procedure of large sized case for d > d0 in the illustrative case L = 2
is shown in Figure 2. In Figure 2, the homomorphic unpacking process only
needs to be done once when receiving the ciphertexts, and the homomorphic
packing process only needs to be done once when sending the ciphertexts. For
block matrix multiplication, we apply Strassen algorithm, which can reduce the
number of ciphertext multiplications from O(L3) to O(Llog2 7).

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we provide the neces-
sary background on algebraic number theory and BGV homomorphic encryption
scheme. In Section 3, we present a new framework for plaintext matrix multi-
plication via tensor ring. In Section 4, we extend the framework in Section 3
to the homomorphic case, and present a homomorphic packing and unpacking
technique to reduce the communication cost. Section 5 provides more detailed
comparisons with existing works under specific parameters. Section 6 presents
details of implementation and a discussion of the experimental results. Section
7 provides the conclusions and future work.

2 Preliminaries

Notations. Let Z denote the set of integers, Q denote the set of rational num-
bers. Notation log refers to the base-2 logarithm. For a positive k ∈ Z, let [k] be
the set of integers {0, ..., k − 1}.

For m ∈ N, let φ(m) denote Euler’s totient function. Denote by K =
Q[x]/(Φm(x)) the m-th cyclotomic field, R = Z[x]/(Φm(x)) the ring of inte-
gers of K, and RQ = ZQ[x]/(Φm(x)) the residue ring of R modulo Q. Elements
of the ring R or RQ will be denoted in lowercase bold, e.g. a ∈ R. The coeffi-
cients of an element a ∈ R will be denoted by ai, i.e. a =

∑d−1
i=0 ai · xi. We use

Z∩ (−Q/2, Q/2] as a representative of ZQ for integer a, and denote by [a]Q the
reduction of an integer a modulo Q.

2.1 Algebraic Number Theory Background

We present some necessary background of algebraic number theory. Further de-
tails can be found in reference [22,19].

A New Framework for Fast Homomorphic Matrix Multiplication 7

Client

Server

Client

Block Homomorphic Multiplication
Homomorphic Trace

B =

(
B(1) B(2)

B(3) B(4)

)
,

with B(k) = (b
(k)
ij) ∈ Zd0×d0

p

A =

(
A(1) A(2)

A(3) A(4)

)
,

with A(k) = (a
(k)
ij) ∈ Zd0×d0

p

Encode

m1 =
4∑

k=1

(d0∑
i,j=1

a
(k)
ij uivj

)
w∨

k

Encrypt

c1 = Encs(m1)

Encode

m2 =
4∑

k=1

(d0∑
i,j=1

b
(k)
ij uivj

)
w∨

k

Encrypt

c2 = Encs(m2)

c2 = Encs(m2)

Homomorphic Blockwise
UnpackingEncs

(∑
i,j

a
(1)
ij uivj

)
Encs

(∑
i,j

a
(2)
ij uivj

)
Encs

(∑
i,j

a
(3)
ij uivj

)
Encs

(∑
i,j

a
(4)
ij uivj

)


Homomorphic Basis
Switching

Encs
(∑

i,j

a
(1)
ij uiwj

)
Encs

(∑
i,j

a
(2)
ij uiwj

)
Encs

(∑
i,j

a
(3)
ij uiwj

)
Encs

(∑
i,j

a
(4)
ij uiwj

)


c1 = Encs(m1)

Homomorphic Blockwise
UnpackingEncs

(∑
i,j

b
(1)
ij uivj

)
Encs

(∑
i,j

b
(2)
ij uivj

)
Encs

(∑
i,j

b
(3)
ij uivj

)
Encs

(∑
i,j

b
(4)
ij uivj

)


Homomorphic Basis
Switching

Encs
(∑

i,j

b
(1)
ij w∨

i vj

)
Encs

(∑
i,j

b
(2)
ij w∨

i vj

)
Encs

(∑
i,j

b
(3)
ij w∨

i vj

)
Encs

(∑
i,j

b
(4)
ij w∨

i vj

)


Encs
(∑

i,j

c
(1)
ij uivj

)
Encs

(∑
i,j

c
(2)
ij uivj

)
Encs

(∑
i,j

c
(3)
ij uivj

)
Encs

(∑
i,j

c
(4)
ij uivj

)
 with C =

(
C(1) C(2)

C(3) C(4)

)
and C(k) = (c

(k)
ij).

Homomorphic Blockwise Packing

c = Encs
(4∑

k=1

(d0∑
i,j=1

c
(k)
ij uivj

)
wk

)

c = Encs
(4∑

k=1

(d0∑
i,j=1

c
(k)
ij uivj

)
wk

)
Decrypt

m =
4∑

k=1

(d∑
i,j=1

c
(k)
ij uivj

)
wk

Decode
C =

(
C(1) C(2)

C(3) C(4)

)
= AB

Fig. 2. (Informal) Homomorphic matrix multiplication for the illustrative example L =
2.

8 Xiaopeng Zheng et al.

Number Fields. Number fields are field extensions expressed as K = Q(α)
by adjoining an α to Q, where α is a root of an irreducible polynomial f(x)
in Z[x]. Let ξm represent the m-th root of unity. The field Q(ξm) is known
as the m-th cyclotomic field, which is isomorphic to Q[x]/(Φm(x)). The Galois
group of Q(ξm) over Q is denoted by Gal(Q(ξm)/Q). It is well-known that this
Galois group is isomorphic to the multiplicative group Z∗

m consisting of invertible
residues modulo m.

Ring of Integers. An algebraic integer is an algebraic number whose minimal
polynomial over the rationals has integer coefficients. Denote the subset of alge-
braic integers in the number field K by OK . It forms a ring known as the ring
of integers of K.

Trace. Let K be a Galois extension over k. The trace TrK/k(a) of an element
a ∈ K is defined as the sum of its embeddings:

TrK/k(a) =
∑

σ∈Gal(K/k)

σ(a). (2.1)

Duality. Let K = Q[x]/(Φm(x)) and R = Z[x]/(Φm(x)). The dual of R is
defined as:

R∨ = {a ∈ K : TrK/Q(aR) ⊂ Z}. (2.2)

For any Z-basis B = {b1, . . . ,bn} of R, its dual basis is denoted as B∨ =
{b∨

1 , . . . ,b
∨
n} ⊂ R∨, which is characterized by

TrK/Q
(
bi · b∨

j

)
=

{
1, if i = j,
0, if i 6= j.

A method to compute a Z-basis of R and its corresponding dual basis (referred
to as decoding basis) can be found in [22, Lemma 6.3].

Lemma 2.1 ([22]). Let m be a power of a prime p and let m′ = m/p. Let
n = φ(m). Then

1. B = {b1, . . . ,bn} = {x−j : j = 0, . . . , n−1} is a Z-basis of R = Z[x]/(Φm(x)).
2. The dual basis of B is

(b∨
1 , . . . ,b

∨
n) =

1− xm′

m
· (1, x, . . . , xn−1) · (Lp ⊗ Im′), (2.3)

where Lp ∈ Z(p−1)×(p−1) is a lower-triangular matrix with all entries 1 in
its lower-left triangle and Im′ is the m′×m′ identity matrix. In other words,
matrix Lp⊗ Im′ is obtained from Lp by replacing every entry of value 1 with
Im′ .

A New Framework for Fast Homomorphic Matrix Multiplication 9

Tensor Field and Tensor Ring. Let K,L be two field extensions of Q. Then
the field tensor product K ⊗ L is the set of all Q-linear combinations of pure
tensors a ⊗ b for a ∈ K, b ∈ L, equipped with the following multiplication: for
all a1, a2 ∈ K, b1, b2 ∈ L,

(a1 ⊗ b1) (a2 ⊗ b2) = (a1a2)⊗ (b1b2) .

The tensor product of rings is defined in the same way, except that it is made
up of only Z-linear combinations of pure tensors.

An important fact is that the m-th cyclotomic number field K = Q(ξm) ∼=
Q[x]/ (Φm(x)) may be viewed as (i.e., is isomorphic to) the tensor product of
prime-power cyclotomics:

K ∼=
ℓ⊗

i=1

Ki = Q(ξm1
, ξm2

, . . . , ξmℓ
),

where m =
∏ℓ

i=1 mi is the prime-power factorization of m and Ki = Q(ξmi
).

Equivalently, K may be viewed as the multivariate polynomial field

K ∼= Q [x1, x2, . . . , xℓ] /(Φm1
(x1), Φm2

(x2), . . . , Φmℓ
(xℓ)),

where there is one indeterminant xi and modulus Φmi(xi) for every prime-
power divisor mi. Similar decompositions hold for the ring of integers R ∼=
Z[x]/(Φm(x)) and the dual R∨.

2.2 Homomorphic Encryption

Ring Learning with Errors. For a real number σ > 0, DG(σ2) samples a
vector in Zn by dawning its coefficient independently form the discrete Gaussian
distribution of variance σ2. For an positive integer h,HWT (h) is the set of signed
binary vectors in {0,±1}n whose Hamming weight is exactly h.

Let χ be a distribution over R and σ > 0 be a real. Let n = deg(Φm(x)). The
ring learning with errors (RLWE) assumption with respect to the parameters
(n,Q, χ, σ) is the following: given polynomially many samples of either (a,b)
or (a,as0 + e), where a,b ← RQ, s0 ← χ, e ← DG(σ2), it is computationally
hard to distinguish between the two groups of samples. The most popular HE
schemes such as FV [8], BGV [1] and CKKS [3] rely on the security provided
by the RLWE assumption. In practical, χ is chosen to be HWT (h) with some
positive integer h.

BGV Scheme [1]. The plaintext space and ciphertext space are Rp and RQi

respectively.

– BGV.Setup(1λ, p,m, S): For given security parameter λ, the plaintext prime
modulus p, the order of primitive root of unity m, and a set S ⊂ Z∗

m,
choose a series of ciphertext moduli {Qi, i = 1, . . . , ℓ}, a modulus P , a key
distribution HWT (h), and an error parameter σ. The public parameters are
pp = (m, p,Qi, P, χ, σ, S), i = 1, . . . , ℓ.

10 Xiaopeng Zheng et al.

– BGV.KeyGen(pp): Given public parameters pp, generate a secret key s =
(−s0, 1) with s0 ← HWT (h), a public key pk, a relinearization key rlk, and
automorphism (key-switching) keys {atki : i ∈ S} of the automorphisms
m(x) 7→m(xi) for all i ∈ S.

– BGV.Enc(pk,m): Given a public key pk and a plaintext m ∈ Rp, output a
ciphertext c encrypting the plaintext m.

– BGV.Dec(s, c): Given a ciphertext c with secret key s, output the encrypted
plaintext m ∈ Rp.

– BGV.Add(c, c′): Given two ciphertexts c and c′ encrypting the plaintext
m1 and m2 respectively, output a ciphertext cadd encrypting the plaintext
m1 +m2.

– BGV.Mult(rlk, c, c′): Given two ciphertexts c and c′ encrypting the plaintext
m1 and m2 respectively and a relinearization key rlk, output a ciphertext
cmul encrypting the plaintext m1m2.

– BGV.CMult(c, f): Given a ciphertexts c encrypting the plaintext m, and
given a plaintext f ∈ Rp, output a ciphertext ccmul encrypting the plaintext
f ·m.

– BGV.Auto(atki, c): Given a ciphertext c encrypting the plaintext m(x) and
an automorphism key atki for some i ∈ S, output a ciphertext caut encrypt-
ing the plaintext m(xi) with secret key s.

– BGV.ModulusSwitch(c, Qi, Qj): Given a ciphertext c ∈ R2
Qi

encrypting the
plaintext m(x) and two moduli Qi and Qj , with Qi > Qj , output a cipher-
text cswitch ∈ R2

Qj
encrypting the plaintext m(x).

For convenience, we use Encs(m) to denote the set of all BGV ciphertexts en-
crypting the plaintext m under secret key s.

Canonical Embedding. Let ξ := e2πi/m ∈ C be a primitive m-th root of unity.
Consider two polynomials f(x),g(x) ∈ Z[x] such that f(x) ≡ g(x) mod Φm(x).
For any primitive m-th root of unity ξj , where j ∈ Z∗

m, since ξj is a root of
Φm(x), f(ξj) = g(ξj). This means that if a ∈ R such that a ≡ f mod Φm(x),
then a(ξj) := f(ξj) is well defined.

The canonical embedding of a ∈ R is the vector obtained by evaluating a at
all primitive m-th roots of unity:

can(a) :=
(
a
(
ξj
))

j∈Z∗
m
∈ Cφ(m).

Define ‖a‖can := ‖ can(a)‖∞ = max
j∈Z∗

m

|a(ξj)|. We say a is bound by B if ‖a‖can ≤

B.

Noise Estimate in BGV Scheme. For ciphertext c ∈ R2
Q, the noise of c is

defined as e = 〈c, s〉 mod Q, where s ∈ R2
Q is the secret key. We say the noise

of c is bounded by E if ‖e‖can ≤ E. We will recall the estimate of noise in the
BGV scheme [11,13].

A New Framework for Fast Homomorphic Matrix Multiplication 11

Lemma 2.2 (Modulus switch error estimate [6]). Let c ∈ R2
Q be a BGV ci-

phertext encrypting m ∈ Rp with noise bounded by E. Let q be another ciphertext
modulus. Then BGV.ModulusSwitch(c, Q, q) outputs a ciphertext in R2

q encrypt-
ing m ∈ Rp with noise bounded by E+Bscale where Bscale = p

(√
3n+8

√
nh/3

)
is the bound of rounding error.

Lemma 2.3 (Homomorphic automorphism error estimate [6]). Let c ∈
R2

Q be a BGV ciphertext encrypting m ∈ Rp with noise bounded by E. Let i be an
integer in Z∗ and the gadget vector g used in key-switching be (1, 2, . . . , 2⌊logQ⌋).
Then BGV.Auto(atki, c) outputs a ciphertext c′ encrypting m(xi) ∈ Rp with
secret key s, and noise of c′ is bounded by E +Bks, where Bks =

16√
3
pnσdlogQe

is the bound of key-switching error, and σ is the standard variance of discrete
Gaussian distribution used in sampling in the key-switching keys.

Lemma 2.4 (Plaintext-ciphertext multiplication error estimate [11]).
Let c ∈ R2

Q be a BGV ciphertext encrypting m ∈ Rp with noise bounded by E.
Let f ∈ Rp be a plaintext. Then BGV.CMult(c, f) outputs a ciphertext in R2

Q

encrypting f ·m with noise bounded by E · ‖f‖can.

Lemma 2.5 (Ciphertext-ciphertext multiplication error estimate [13]).
Let cl ∈ R2

Ql
be two BGV ciphertexts with moduli Ql encrypting ml with noise

bounded by El respectively, for l = 1, 2. Let q be a ciphertext modulus satisfying
q | Ql, for l = 1, 2, and

q ≈ min
{
(Bscale ·Q1)/E1, (Bscale ·Q2)/E2

}
. (2.4)

Then BGV.Mult(rlk, c1, c2) outputs a ciphertext in R2
q encrypting m1 ·m2 with

noise bounded by
(
(q/Q1)E1 +Bscale

)(
(q/Q2)E2 +Bscale

)
+Bks.

We want to emphasize that, to choose a proper common ciphertext modulus q, in
HElib [13], the modulus switching is performed before ciphertext multiplication
instead of after ciphertext multiplication, which is different from the original
BGV scheme.

3 Plaintext Matrix Multiplication via Tensor Ring

3.1 Notations.

Recall the cyclotomic field K := Q[x]/(Φm(x)). In our new framework, we
choose m = m1m2m3 with m1, m2 and m3 pairwise coprime. In particular,
we choose m1 = pa1

1 , m2 = pa2
2 and m3 = pa3

3 , where p1, p2 and p3 are primes,
such that φ(m1) ≈ φ(m2) ≈ φ(m3) asymptotically. In Section 2.1, we men-
tioned that K ∼= Q[x, y, z]/(ϕm1(x), ϕm2(y), ϕm3(z)). Therefore, we can view K
as Q[x, y, z]/(ϕm1(x), ϕm2(y), ϕm3(z)). Let Ki = Q[x]/(ϕmi(x)) for i = 1, 2, 3.
Then K ∼= K1 ⊗ K2 ⊗ K3. Let R = Z[x, y, z]/(ϕm1

(x), ϕm2
(y), ϕm3

(z)). Let
Ri = Z[x]/(ϕm1

(x)), for i = 1, 2, 3. Then R ∼= R1 ⊗ R2 ⊗ R3. The following
notations are introduced in [19]:

12 Xiaopeng Zheng et al.

– K12, K13 and K23 denote K1 ⊗K2, K1 ⊗K3 and K2 ⊗K3, respectively.
– R12, R13 and R23 denote R1 ⊗R2, R1 ⊗R3 and R2 ⊗R3, respectively.
– Set r := φ(m1), s := φ(m2) and t := φ(m3).
– {u1, . . . ,ur}, {v1, . . . ,vs} and {w1, . . . ,wt} denote the Z-bases of R1, R2

and R3, respectively.
– {u∨

1 , . . . ,u
∨
r }, {v∨

1 , . . . ,v
∨
s } and {w∨

1 , . . . ,w
∨
t } denote the corresponding Z-

bases of the dual lattices R∨
1 , R∨

2 and R∨
3 , respectively.

More notations and technologies will be used in this paper:
– Let d0 = min{r, s, t} and n = r · s · t. Then d0 ≈ n

1
3 .

– Zd×d denote the set of all integer matrices of size d× d. A matrix said to be
compact sized if d ≤ d0, and large sized if d > d0.

– For A = (aij) ∈ Zd0×d0 , let

m
(uv)
A =

d∑
i,j

aijuivj ,m
(uw)
A =

d∑
i,j

aijuiwj , and m
(w∨v)
A =

d∑
i,j

aijw
∨
i vj .

(3.1)
– For any polynomial a ∈ R, the saying a ∈ Rp means taking a as a mod p.

3.2 Multiplication of Compact Sized Matrix via Polynomial
Operations

For input matrices A,B ∈ Zd×d, to compute AB, we encode them respectively
as:

A = (aij)i,j=1,...,d ∈ Zd×d
Encode
−−−−−−→m

(uw)
A =

d∑
i=1

d∑
j=1

aijuiwj ,

B = (bij)i,j=1,...,d ∈ Zd×d
Encode
−−−−−−→m

(w∨v)
B =

d∑
k=1

d∑
l=1

bklw
∨
kvl.

(3.2)

We claim that the matrix product A · B can be computed using polynomial
multiplications in the field K and then a trace operation.
Theorem 3.2. Let A = (aij) and B = (bij) be two d× d matrices. Then

TrK/K12
(m

(uw)
A ·m(w∨v)

B) =

d∑
i=1

d∑
l=1

ciluivl, with (cij)1≤i,j≤d = A ·B. (3.3)

Proof. For all i, j = 1, . . . , d, since ui and vj both belong to K12, σ(ui) = ui

and σ(vj) = vj for any σ ∈ Gal(K/K12). So

TrK/K12

(
m

(uw)
A · ·m(w∨v)

B

)
= TrK/K12

 ∑
i,j,k,l

aijbkluiwjw
∨
kvl


=

∑
i,j,k,l

aijbklui

 ∑
σ∈Gal(K/K12)

σ(wjw
∨
k)

vl

(3.4)

A New Framework for Fast Homomorphic Matrix Multiplication 13

Notice that Gal(K/K12) is isomorphic to Gal(K3/Q) by the restriction map
σ 7→ σ|K3

for all σ ∈ Gal(K/K12). Since wjw
∨
k ∈ K3, we have∑

σ∈Gal(K/K12)

σ(wjw
∨
k) =

∑
σ∈Gal(K3/Q)

σ(wjw
∨
k)

= TrK3/Q(wjw
∨
k) =

{
1, j = k,

0, j 6= k.
(3.5)

Substituting it into (3.4), we get

TrK/K12

(
m

(uw)
A ·m(w∨v)

B

)
=

d∑
i,l=1

 d∑
j=1

aijbjl

uivl =

d∑
i,l=1

ciluivl. (3.6)

namely, (cil)1≤i,l≤d = A ·B. □

3.3 Basis Switching

In Theorem 3.2, for two matrices encoded by the uiwj and the w∨
i vj respec-

tively, C = AB is encoded by the uivj . However, for homomorphic addition
and iterative multiplication, it is preferable that the input and output are en-
coded in the same manner, for example, both A and B are encoded by the uivj .
In this situation, basis switch is necessary. Let A and B be both encoded by
{uivj : 1 ≤ i, j ≤ d}, i.e.,

m
(uv)
A =

d∑
i=1

d∑
j=1

aijuivj , m
(uv)
B =

d∑
i=1

d∑
j=1

bijuivj . (3.7)

Theorem 3.3. Let f =
∑d

j=1 v
∨
j wj ∈ K23 and g =

∑d
i=1 w

∨
i u

∨
i ∈ K23. Then

TrK/K13
(m

(uv)
A · f) =

∑
i,j

aijuiwj := m
(uw)
A ,

TrK/K23
(m

(uv)
B · g) =

∑
i,j

bijw
∨
i vj := m

(w∨v)
B .

Proof. The proof is the same as in Theorem 3.2.

3.4 Trace Computation

Let K/F be a Galois extension and let r = |Gal(K/F)|. Computing the trace
directly by definition requires r − 1 automorphisms. On the other hand, Galois
group Gal(Q(ξm)/Q) is isomorphic to the multiplicative group Z∗

m, which is
cyclic if and only if n is 1, 2, 4, pk or 2pk, where p is an odd prime and k > 0
[26]. Based on these properties, we apply a technique [12] to compute the trace
function, which requires only O(log r) automorphisms.

14 Xiaopeng Zheng et al.

Proposition 3.1. Let K/F be a Galois extension. Suppose Gal(K/F) is cyclic.
Let σ be a generator of Gal(K/F), then for any m ∈ K and 1 ≤ ℓ ≤ r =

|Gal(K/F)|,
∑ℓ−1

i=0 σ
i(m) can be calculated using at most 2 log ℓ additions and

2 log ℓ automorphisms. In particular, TrK/F can be calculated using at most
2 log r additions and 2 log r automorphisms.

Proof. For ℓ = 1, the statement holds trivial. Assume that the statement holds
for ℓ ≤ k − 1. For ℓ = k, if ℓ is even, then

ℓ−1∑
i=0

σi(m) =

ℓ/2−1∑
i=0

σi(m) + σℓ/2

ℓ/2−1∑
i=0

σi(m)

 . (3.8)

According to the inductive hypothesis,
∑ℓ/2−1

i=0 σi(m) can be calculated using at
most 2 log(ℓ/2) additions and 2 log(ℓ/2) automorphisms. By (3.8),

∑ℓ−1
i=0 σ

i(m)
can be computed using at most 2 log(ℓ/2)+1 < 2 log ℓ additions and 2 log(ℓ/2)+
1 < 2 log ℓ automorphisms.

If ℓ is odd, then

ℓ−1∑
i=0

σi(m) =

(ℓ−1)/2−1∑
i=0

σi(m) + σ(ℓ−1)/2

(ℓ−1)/2−1∑
i=0

σi(m)

+ σℓ−1(m). (3.9)

According to the inductive hypothesis,
∑(ℓ−1)/2−1

i=0 σi(m) can be calculated using
at most 2 log((ℓ− 1)/2) additions and 2 log((ℓ− 1)/2) automorphisms. By (3.9),∑ℓ−1

i=0 σ
i(m) can be computed using at most 2 log((ℓ− 1)/2)+2 = 2 log(ℓ− 1) <

2 log ℓ additions and 2 log((ℓ− 1)/2) + 2 = 2 log(ℓ− 1) < 2 log ℓ automorphisms.
ut

Based on the proof of Proposition 3.1, we get Algorithm 1 for trace compu-
tation.

As Gal(K/K12), Gal(K/K13) and Gal(K/K23) are isomorphic to Gal(K3/Q),
Gal(K2/Q) and Gal(K1/Q) respectively, if for i = 1, 2, 3, mi = psii , where each pi
is an odd prime, then Proposition 3.1 guarantees that TrKi/Q can be computed
at with most 2 logφ(mi) additions and 2 logφ(mi) automorphisms. In particular,
if mi = 2si for some i, then φ(mi) = 2si−1. Indeed, TrKi/Q can be computed
using only si − 1 additions and si − 1 automorphisms by the tower structure of
field extensions, see [19], Section 4.3.

3.5 Multiplication of Compact Sized Matrices

Our new framework for compact sized matrix multiplication consists of three
subprograms: (1) encoding, which encodes a matrix by the basis uivj , (2) de-
coding, which decodes the polynomial encoding a matrix by the basis uivj , (3)
matrix multiplication (Algorithm 2 below).

A New Framework for Fast Homomorphic Matrix Multiplication 15

Algorithm 1: TrK/F (m, r)

Input :
1. Polynomial m ∈ R.
2. Integer r.

Output: A polynomial
∑r−1

i=0 σi(m).
1 begin
2 if r = 1 then
3 return m;
4 end
5 if r is even then
6 mr/2 = TrK/F (m, r/2);
7 return mr/2 + σr/2(mr/2);
8 else
9 m(r−1)/2 = Tr(m, (r − 1)/2);

10 return m(r−1)/2 + σ(r−1)/2(m(r−1)/2) + σr−1(m);
11 end
12 end

Algorithm 2: Compact sized matrix multiplication

Input : m
(uv)
A ,m

(uv)
B ∈ R that encode two d× d matrices A and B by

{uivj : 1 ≤ i, j ≤ d}, respectively.
Output: A polynomial m(uv)

AB ∈ R encoding A ·B.
1 begin
2 m

(uw)
A = TrK/K13

(m
(uv)
A · f); // Basis Switching

3 m
(w∨v)
B = TrK/K23

(m
(uv)
B · g); // Basis Switching

4 m
(uv)
AB = TrK/K12

(m
(uw)
A ·m(w∨v)

B);
5 return m;
6 end

We analyze the number of polynomial multiplications and automorphisms in
Algorithm 2. In lines 2, 3, and 4, each line require one polynomial multiplication,
resulting in a total of three polynomial multiplications. The trace operations in
lines 2, 3, and 4 each require at most 2 log r, 2 log s, and 2 log t automorphisms,
respectively. Therefore, the algorithm calls for at most 2(log r + log s+ log t) =
2 log n automorphisms, where n = rst is the dimension of R. In summary, the al-
gorithm requires three polynomial multiplications and O(log d) automorphisms.

3.6 Multiplication of Large Sized Matrices

If d > d0 = min{r, s, t}, we need to divide every input matrix into L×L blocks,
where each block has size d0 × d0, so L = dd/d0e. For two input d× d matrices

16 Xiaopeng Zheng et al.

A,B, the decomposition gives

A =

A(11) · · · A(1L)

...
. . .

...
A(L1) · · · A(LL)

 , with A(kl) = (a
(kl)
ij) ∈ Zd0×d0 , 1 ≤ k, l ≤ L.

B =

B(11) · · · B(1L)

...
. . .

...
B(L1) · · · B(LL)

 , with B(kl) = (b
(kl)
ij) ∈ Zd0×d0 , 1 ≤ k, l ≤ L.

(3.10)

Then each block is encoded by {uivj : 1 ≤ i, j ≤ d0}, i.e,

m
(kl)
A =

d0∑
i=1

d0∑
j=1

a
(kl)
ij uivj and m

(kl)
B =

d0∑
i=1

d0∑
j=1

b
(kl)
ij uivj ,

with 1 ≤ k, l ≤ L.

Algorithm 3: Block Matrix Multiplication
Input : 2L2 elements {m(kl)

A : 1 ≤ k, l ≤ L} and {m(kl)
B : 1 ≤ k, l ≤ L} of R

encoding two d× d matrices A and B by {uivj : 1 ≤ i, j ≤ d0}.
Output: L2 elements {m(kl)

AB : 1 ≤ k, l ≤ L} of R that encode A ·B.
1 begin
2 for k, l = 1 to L do
3 m̃

(kl)
A = TrK/K13

(m
(kl)
A · f) // Bases Switching;

4 m̃
(kl)
B = TrK/K23

(m
(kl)
B · g); // Bases Switching

5 end
6 for k, l = 1 to L do
7 m̃(kl) = 0;
8 for h = 1 to L do
9 m̃(kl) = m̃(kl) + m̃

(kh)
A · m̃(hl)

B

10 end
11 end
12 for k, l = 1 to L do
13 m

(kl)
AB = TrK/K12

(m̃(kl));
14 end
15 return {m(kl)

AB : 1 ≤ k, l ≤ L};
16 end

Theorem 3.4. Let A and B be decomposed as in (3.10). Suppose that

AB = C =

C(11) · · · C(1L)

...
. . .

...
C(L1) · · · C(LL)

 , with C(kl) = (c
(kl)
ij) ∈ Zd0×d0 , 1 ≤ k, l ≤ L.

A New Framework for Fast Homomorphic Matrix Multiplication 17

Then Algorithm 3 returns a set {m(kl)
AB : 1 ≤ k, l ≤ L} with

m
(kl)
AB =

d0∑
i=1

d0∑
j=1

c
(kl)
ij uivj . (3.11)

Proof. According to Theorem 3.3, in lines 3 and 4 of Algorithm 3, for all k, l =
1, . . . , L,

m̃
(kl)
A =

d0∑
i=1

d0∑
j=1

a
(kl)
ij uiwj , m̃

(kl)
B =

d0∑
i=1

d0∑
j=1

b
(kl)
ij w∨

i vj .

By the computations from line 6 to line 11, m̃(kl) =
∑L

h=1 m̃
(kh)
A ·m̃(hl)

B , for 1 ≤
k, l ≤ L. Therefore, in line 13, we have m

(kl)
AB =

∑L
h=1 TrK/K12

(m̃
(kh)
A · m̃(hl)

B).
By Theorem 3.2, for all 1 ≤ h, k, l ≤ L, by letting (c

(klh)
ij)1≤i,j≤d0

= A(kh)B(hl)

and (c
(kl)
ij)1≤i,j≤d0 =

∑L
h=1 A

(kh)B(hl), we have

m
(kl)
AB =

L∑
h=1

 d0∑
i=1

d0∑
j=1

c
(klh)
ij uivj

 =

d0∑
i=1

d0∑
j=1

c
(kl)
ij uivj , .

ut

Next, we analyze the number of polynomial multiplications and automor-
phisms in Algorithm 3. From lines 2 to 5, the algorithm requires a total of
2L2 polynomial multiplications and at most 2L2(log r + log s) automorphisms.
From lines 6 to 11, the algorithm requires L3 polynomial multiplications. Us-
ing Strassen algorithm can reduce the polynomial multiplications from L3 to
O(Llog2 7). The number of automorphisms from lines 12 to 14 is at most 2L2 log t.
Therefore, the algorithm calls for at most 2L2(log r + log s + log t) = 2L2 log n
automorphisms and O(Llog2 7) polynomial multiplications.

Further assume d = nρ. Since d0 ≈ n
1
3 , L = d d

d0
e = O(nρ− 1

3) = O(d1−
1
3ρ).

The algorithm requires a total of O(Llog2 7) = O
(
d(1−

1
3ρ) log2 7

)
polynomial mul-

tiplications and 2L2 log n = O(d2−
2
3ρ log d) automorphisms.

4 Homomorphic Matrix Multiplication via Tensor Ring

In this section, we assume that p and m are coprime, where plaintext modulus
p is a prime number. For i = 1, 2, 3, suppose that mi = pai

i , where each pi is an
odd prime. Then Gal(K/K12), Gal(K/K23) and Gal(K/K13) are all cyclic.

4.1 Homomorphic Trace Computation

Algorithm 1 can be extended directly to the homomorphic case, see Algorithm
4 below, where σ is a generator of Gal(K/F), F is one of K12, K13 or K23, and
r = |Gal(K/F)|.

18 Xiaopeng Zheng et al.

Algorithm 4: HomTrK/F (c, r)

Input :
1. A ciphertext c ∈ R2

Q encrypting m ∈ Rp.
2. An integer r.

Output: A ciphertext cr encrypting
∑r−1

i=0 σi(m) ∈ Rp.
1 begin
2 if r = 1 then
3 return c;
4 end
5 if r is even then
6 cr/2 = HomTrK/F (c, r/2);
7 return cr/2 + BGV.Auto(atkσr/2 , cr/2);
8 else
9 c(r−1)/2 = HomTrK/F (c, (r − 1)/2);

10 return c(r−1)/2 + BGV.Auto(atk
σ

r−1
2

, c(r−1)/2) + BGV.Auto(atkσr , c);
11 end
12 end

Theorem 4.5. Let c ∈ R2
Q be a BGV ciphertext encrypting m ∈ Rp with

noise e bounded by E. Then HomTrK/F (r, c) outputs a ciphertext cr encrypting
TrK/F (m) with noise er bounded by rE+(r−1)Bks, where Bks =

16√
3
pnσdlogQe,

and σ is the standard variance of discrete Gaussian distribution used in sampling
in the key-switching keys.

Proof. The correctness of Algorithm 4 is based on the correctness of Algorithm
1 and homomorphic automorphism. We next prove the conclusion on the noise
noise bound of cr.

When ℓ = 1, then the algorithm outputs c directly, the conclusion holds
trivially. Assume that the conclusion holds for ℓ < k. For ℓ = k, if ℓ is even, then

cℓ = cℓ/2 + BGV.Auto(atkσℓ/2 , cℓ/2). (4.1)

By inductive hypothesis, the noise eℓ/2 of cℓ/2 is bounded by ℓ
2 (E +Bks)−Bks.

Then by (4.1), the noise eℓ of cl satisfies

‖eℓ‖can ≤ ‖eℓ/2‖can + ‖eℓ/2 + eks‖can ≤ l(E +Bks)−Bks (4.2)

where eks is the noise introduced by key-switching, which is bounded by Eks.
If ℓ is odd, then

cℓ = c(ℓ−1)/2 + BGV.Auto(atkσ(ℓ−1)/2 , cℓ/2) + BGV.Auto(atkσℓ , c) (4.3)

By inductive hypothesis, the noise e(ℓ−1)/2 of c(ℓ−1)/2 is bounded by ℓ−1
2 (E +

Bks)−Bks. Then by (4.3), the noise eℓ of cℓ satisfies

‖eℓ‖can ≤ ‖e ℓ−1
2
‖can + ‖e ℓ−1

2
+ eks‖can + ‖e+ eks‖can ≤ ℓ(E +Bks)−Bks (4.4)

Therefore, the conclusion holds. ut

A New Framework for Fast Homomorphic Matrix Multiplication 19

Since Algorithm 4 requires at most 2 log r homomorphic automorphisms by
Proposition 3.1, the algorithm requires O(log r) key-switching keys.

By Algorithm 4, we can homomorphically compute the trace TrK/K12
, TrK/K13

and TrK/K23
. These functions are denoted by HomTrK/K12

, HomTrK/K13
and

HomTrK/K23
, respectively.

Remark 1. A homomorphic trace algorithm is also proposed in [19]. where they
considered a more general case that the ciphertext belongs to K2. In our algo-
rithm, the ciphertext belongs to R2

Q, so we use a simple approach similar to that
in [12].

Moreover, we use the cyclic property of the Galois group to compute the
trace function instead of the tower structure presented in [19]. This is because if
mi is a prime number, then the tower structure method does not work.

Remark 2. In fact, if m1 = 2l, then r = φ(m1) = 2l−1 and Gal(K/K23) '
〈σ〉 × 〈τ〉, where σr/2 = 1 and τ2 = 1. We can first invoke Algorithm 4 to
compute c0 = Encs(

∑r/2−1
i=0 σ(m)), then compute c1 = c0 + BGV.Auto(atkτ , c0)

to obtain the trace. The number of homomorphic automorphisms is log r. Since
the noise of c0 is bounded by (r/2)E + (r/2− 1)Bks by Theorem 4.5, the noise
of c1 is bounded by rE + (r − 1)Bks.

4.2 Homomorphic Matrix Multiplication in the Compact Sized
Case

In the case of d ≤ d0 = min{r, s, t}, since polynomial additions, polynomial mul-
tiplications and trace functions in Algorithm 2 and Algorithm 3 can be executed
homomorphically, the framework proposed in Section 3 can extended to sup-
port homomorphic matrix multiplication. However, since f and g belong to R∨

instead ofR, they have coefficients in Q. So we need to make some modifications.
According to Lemma 2.1, m2 · f ∈ R and m1m3 ·g ∈ R. So, in the process of

basis switching, we will multiply the ciphertexts by m2 · f and m1m3 · g instead
of f and g. This will cause the result of homomorphic matrix multiplication
to be multiplied by m. This multiple needs to be recorded during the whole
computation. As a result, a ciphertext encrypting a compact sized matrix is
associated with an integer that record the exponent of the power of m.

We present a new framework for homomorphic matrix multiplication. It
mainly consists of three subprograms: Encoding and Encryption (Algorithm 5),
Decryption and Decoding (Algorithm 7), and Homomorphic Matrix Multiplica-
tion (Algorithm 6). In the following, we say a ciphertext c ∈ R2

Q encrypts a
matrix A if c encrypts the plaintext m

(uv)
A ∈ Rp.

Noise Estimation. Below we first estimate the noise growth in lines 2 and 3
of Algorithm 6. By Lemma 2.4, we need to estimate the canonical norms of f
and g. First, we recall a lemma from [22,19].

Lemma 4.6 ([22,19]). With notations introduced in Section 3.1, for all i =
1, . . . , d,

20 Xiaopeng Zheng et al.

Algorithm 5: Encoding and encryption
Input : A matrix A = (aij) ∈ Zd×d

p and the public key pk;
Output: (cA, 0), where cA is a ciphertext encrypting A.

1 begin
2 m

(uv)
A =

∑d
i=1

∑d
j=1 aijuivj ;

3 cA = BGV.Enc(pk,m
(uv)
A);

4 return (cA, 0);
5 end

Algorithm 6: Homomorphic compact matrix multiplication
Input :
1. (cmiA, i) and (cmjB , j), where cmjA and cmjB are BGV ciphertexts encrypting

two d× d matrices miA,mjB ∈ Zd×d
p respectively;

2. Automorphism keys for homomorphic traces computing;
3. Relinearization key rlk.

Output: (c, i+ j + 1), where c is a ciphertext encrypting mi+j+1AB ∈ Zd×d
p .

1 begin
2 c1 = HomTrK/K13

(BGV.CMult(cmiA,m2 · f));
3 c2 = HomTrK/K23

(BGV.CMult(cmjB ,m1m3 · g));
4 c = HomTrK/K12

(BGV.Mult(rlk, c1, c2));
5 return (c, i+ j + 1);
6 end

Algorithm 7: Decryption and decoding
Input :
1. (cmkC , k), where cmkC is a ciphertext encrypting a d× d matrix mkC, where

C = (cij) ∈ Zd×d
p ;

2. secret key s.

Output: Matrix C ∈ Zd×d
p .

1 begin
2 mmkC = BGV.Dec(s, cmkC);

3 return (cij ·m−k mod p)1≤i,j≤d; Suppose that mmkC =
d∑
i,j

cijuivj .

4 end

A New Framework for Fast Homomorphic Matrix Multiplication 21

1. ‖ui‖can = ‖vi‖can = ‖wi‖can = 1;
2. ‖u∨

i ‖can ≤
2(p1−1)

m1
, ‖v∨

i ‖can ≤
2(p2−1)

m2
and ‖w∨

i ‖can ≤
2(p3−1)

m3
.

Corollary 4.1. For the polynomials f and g defined in Theorem 3.3,

‖m2 · f‖can ≤ 2n
1
3 (p2 − 1) and ‖m1m3 · g‖can ≤ 4n

1
3 (p1 − 1)(p3 − 1).

Recall that the rounding noise is bounded by Bscale = p
(√

3n + 8
√
nh/3

)
and noise introduced by key-switching is bounded by Bks = 16√

3
pnσdlogQe for

c ∈ R2
Q, where σ being the standard variance of discrete Gaussian distribution

used in sampling in the key-switching keys [6].

Lemma 4.7. Let cA, cB ∈ R2
Q be two BGV ciphertexts encrypting m

(uv)
A and

m
(uv)
B with noise eA and eB bounded by E1 and E2. Let

c1 = HomTrK/K13
(BGV.CMult(cA,m2 · f)),

c2 = HomTrK/K23
(BGV.CMult(cB ,m1m3 · g)).

(4.5)

Then c1 ∈ R2
Q encrypts m2 ·m(uw)

A with noise bounded by E′
1, and c2 ∈ R2

Q

encrypts m1m3 ·m(w∨v)
B with noise bounded by E′

2, where

E′
1 = 2sn

1
3 (p2 − 1)E1 + (s− 1)Bks,

E′
2 = 4rn

1
3 (p1 − 1)(p3 − 1)E2 + (r − 1)Bks.

(4.6)

Proof. Since TrK/K13
(m

(uv)
A ·m2f) = m2 ·m(uw)

A by Theorem 3.3, c1 encrypts
m2 ·m(uw)

A ∈ Rp based on the correctness of Algorithm 4. By Corollary 4.1 and
Lemma 2.4, the noise of BGV.CMult(cA,m2 · f) is bounded by 2n

1
3 (p2 − 1)E1.

According to Theorem 4.5, the noise of c1 is bounded by 2sn
1
3 (p2 − 1)E1 + (s−

1)Bks. The statement about c2 can be proved similarly. ut

Without loss of generality, suppose that the input ciphertexts of Algorithm
6 have the same modulus Q.

Theorem 4.6. Let cmiA, cmjB ∈ R2
Q be two BGV ciphertexts encrypting m

(uv)
miA

and m
(uv)
mjB with noise e1 and e2, respectively. Suppose that ‖e1‖can ≤ E1 and

‖e2‖can ≤ E2. Let E′
1, E′

2 be defined in (4.6). Then Algorithm 6 outputs a
ciphertext c ∈ R2

q encrypting m
(uv)
mi+j+1AB with noise bounded by

E = t

((q

Q
E′

1 +Bscale

)(q

Q
E′

2 +Bscale

)
+Bks

)
+ (t− 1)Bks

= O(hp2n
4
3),

(4.7)

where q ≈ Bscale ·min{Q/E′
1, Q/E′

2}, h is the Hamming weight of the secret key,
and p is the plaintext modulus.

22 Xiaopeng Zheng et al.

Proof. By Lemma 4.7, c1 in line 2 and c2 in line 3 of Algorithm 6 encrypt
m

(uw)
m2miA and m

(w∨v)
m1m3mjB respectively with noise bounded by E′

1 and E′
2, respec-

tively. By Theorem 3.2,

TrK/K12

(
m

(uw)
m2miA ·m

(w∨v)
m1m3mjB

)
= m

(uv)
mi+j+1C . (4.8)

Then c ∈ R2
q in line 3 encrypts m

(uv)
mi+j+1C by the correctness of Algorithm 4. By

Lemma 2.5, the noise after ciphertext multiplication is bounded by(q

Q
E′

1 +Bscale

)(q

Q
E′

2 +Bscale

)
+Bsk.

where (q/Qℓ)E
′
ℓ is approximately equal to or less than Bscale, for ℓ = 1, 2. Then

by Theorem 4.5, after homomorphic trace operation, the noise of the ciphertext
c ∈ R2

q is bounded by (4.7). According to the choice of q and t = O(n
1
3),

E = O(tB2
scale) = O(hp2n

4
3). ut

Complexity Analysis. In lines 2 and 3 of Algorithm 6, each line requires
one plaintext-ciphertext multiplication. Line 4 requires one ciphertext-ciphertext
multiplication. The three homomorphic trace functions in lines 2, 3, and 4
require at most 2 log r, 2 log s, and 2 log t homomorphic automorphisms, re-
spectively. Suppose that d = nρ. The algorithm calls for at most 2(log r +

log s + log t) = 2 log n = 2 log d
1
ρ = O(log d) homomorphic automorphisms, two

plaintext-ciphertext multiplications, and one plaintext-ciphertext multiplication.

4.3 Homomorphic Block Matrix Multiplication for Large Sized
Matrices

The method for homomorphic block matrix multiplication can be easily derived
by modifying Algorithm 3. Specifically, we need the following modifications to
Algorithm 3:

– Each ciphertext is associated with an integer i to indicate that the ciphertext
encrypts the mi multiple of a matrix.

– Replace f and g in lines 3 and 4 with m2f and m1m3g, respectively.
– Replace the trace functions in lines 3,4 and 13 with the corresponding ho-

momorphic trace functions.
– Replace the polynomial multiplications in lines 3 and 4 with plaintext-

ciphertext multiplications.
– Replace the polynomial multiplication and addition in line 9 with ciphertext-

ciphertext multiplication and addition.

The complexity can be derived from Section 3.6 directly. Suppose that d =

nρ. The homomorphic block matrix multiplication requires O(d2−
2
3ρ) plaintext-

ciphertext multiplications, O(d(1−
1
3ρ) log2 7) ciphertext-ciphertext multiplications

and O(d2−
2
3ρ log d) homomorphic automorphisms.

A New Framework for Fast Homomorphic Matrix Multiplication 23

Packing and Unpacking. Recall that for large sized case, the input matrix
is divided into L × L blocks, where each block is a d0 × d0 matrix with d0 =
min{r, s, t}. Encrypting each matrix directly will result in L2 ciphertexts, which
leads to a increase in all of the time encryption, the decryption time, and the
communiation cost. In the following, we propose a technique to pack these L2

matrices into one plaintext.

Suppose that L2 ≤ t. The matrix

A =

 A(1) · · · A(L)

...
. . .

...
A((L−1)L+1) · · · A(L2)

 ∈ ZLd0×Ld0
p with A(k) = (a

(k)
ij),

is encoded by

m =

L2∑
k=1

 d0∑
i,j=1

Ma
(k)
ij uivj

m3w
∨
k mod p, (4.9)

where M is the inverse of m3 in Zp. The client encrypts m and obtains c =
Encs(m). When the server receives c, it use Algorithm 8 below to obtain ck =

Encs(mk) with mk =
∑d0

i,j=1 a
(k)
ij uivj , for all k = 1, . . . , L2. After all homomor-

phic block matrix computation finishes, the server homomorphically packs the
block matrices by Algorithm 9 and sends them to the client.

Algorithm 8: Homomorphic Blockwise Unpacking

Input : A ciphertext c encrypting m =
∑L2

k=1 M ·mk(m3w
∨
k) ∈ Rp

with noise bounded by B, where M is the inverse of m3 in Zp

and mk =
∑d0

i,j=1 a
(k)
ij uivj , for k = 1, . . . , L2;

Output: A ciphertexts {ck : k = 1, . . . , L2} with each ck encrypting
mk ∈ Rp.

1 begin
2 for k = 1 to L2 do
3 ck = HomTrK/K12

(BGV.CMult(c,wk))
4 end
5 return {ck : k = 1, . . . , L2};
6 end

24 Xiaopeng Zheng et al.

Algorithm 9: Homomorphic Blockwise Packing
Input : Ciphertexts {ck : k = 1, . . . , L2}, and each ck encrypts

mk =
∑d0

i,j=1 a
(k)
ij uivj ;

Output: A ciphertext c encrypting m =
∑L2

k=1

(∑d0

i,j=1 a
(k)
ij uivj

)
wk.

1 begin
2 c = BGV.CMult(c1,w1);
3 for k = 2 to L2 do
4 c = BGV.Add(c,BGV.CMult(ck,wk))
5 end
6 return c;
7 end

Theorem 4.7 (Homomorphic blockwise unpacking). Algorithm 8 outputs
ciphertexts {ck : k = 1, . . . , L2}, where each ck encrypts mk =

∑d0

i,j=1 a
(k)
ij uivj

with noise bounded by tB + (t− 1)Bks, for all k = 1, . . . , L2.

Proof. It is easy to verify that TrK/K12
(m · wk) ≡ mk mod p for all k =

1, . . . , L2. Therefore, by Theorem 4.5, ck encrypts mk ∈ Rp with noise bounded
by tB + (t− 1)Eks, for all k = 1, . . . , L2. □

Theorem 4.8 (Homomorphic blockwise packing). Algorithm 8 outputs ci-
phertext c that encrypts m =

∑L2

k=1

(∑d0

i=1,j a
(k)
ij uivj

)
wk with noise bounded by∑L2

i=1 Ei.

Proof. The noise bound is deduced from ‖wi‖can = 1. □

The maximal size of matrix that can be packed in a plaintext is d× d, with
d = bt 1

2 c ·d0. Since t and d0 are both approximately equal to n
1
3 , d = bt 1

2 c ·d0 ≈
n

1
3 ·

1
2 · n 1

3 = O(n
1
2).

4.4 Total Communication Cost

Using the pack-unpack method, it is possible to pack a matrix of size d × d
in one plaintext if d = O(n

1
2). We need O(log r), O(log s) and O(log t) key-

switching keys for the homomorphic trace functions HomTrK/K12
, HomTrK/K13

and HomTrK/K23
respectively. Therefore, a total of O(log n) = O(log d) key-

switching keys are needed.
In summary, when d = O(n

1
2), the communication cost is: one ciphertext per

matrix, O(log d) key-switching keys, and one relinearization key.

5 Comparison with Previous Work

This section provides more detailed comparisons under specific parameters, the
results are collected in Table 2.

A New Framework for Fast Homomorphic Matrix Multiplication 25

Table 2. Comparison with Previous Work

d Method m n CMult Aut Mult Ctxta Keysb

16

[20,27] 16384 8192 256 1024 256 16 4

[4,23] 17 · 1024 8192 16 80 16 1 19

[17] 16384 8192 64 68 16 1 45

[16] 17 · 1024 8192 32 42 16 1 30

[25] 16384 8192 32 42 1 1 42

Ours 17 · 19 · 25 5440 2 14 1 1 14

32

[20,27] 16384 8192 1024 5120 1024 32 5

[4,23] 257 · 128 16384 32 191 32 1 36

[17] 16384 8192 128 120 32 1 93

[16] 257 · 128 16384 64 82 32 1 60

[25] 16384 8192 128 168 8 4 42

Ours 17 · 19 · 25 5440 8 56 7 1 14

64

[20,27] 16384 8192 4096 24576 4096 64 6

[4,23] 257 · 256 32768 64 448 64 1 69

[17] 16384 8192 256 225 64 1 189

[16] 257 · 256 32768 128 154 64 1 126

[25] 16384 8192 512 672 49 16 42

Ours 17 · 19 · 25 5440 32 224 49 1 14
a Ctxt: number of ciphertexts needed per matrix.
b Keys: number of key-switching keys.

Comparisons:

1. For compact sized matrix, say, d = 16, our method is much better than
all other methods, in that the sum of the number of ciphertext-ciphertext
multiplications and homomorphic automorphisms is at most 1/3 of the best
existing algorithm, and the number of plaintext-ciphertext multiplications is
at most 1/8 of the best existing algorithm.

2. For large sized matrix, as the size increases, the number of blocks of the ma-
trix increases. If d = 32, we use ℓ = 4 blocks; if d = 64, we use ℓ = 16 blocks.
Then the number of plaintext-ciphertext multiplications and homomorphic
automorphisms increases by a factor of ℓ, and the number of ciphertext-
ciphertext multiplications increases by a factor of ℓ

1
2 log2 7 when compared

with the compact sized case.
3. The number of basic homomorphic operations in our algorithm is minimal,

except for the case of d = 64 where the number of homomorphic auto-
morphisms is bigger than that in [16]. This is because when d ≈ n

1
2 , our

algorithm requires asymptotically d2/3 log d homomorphic automorphisms.
In fact, we requires approximately 3d2/3 log d homomorphic automorphisms,

26 Xiaopeng Zheng et al.

while [16] requires only 2d+ 4
√
d− 6 homomorphic automorphisms. There-

fore, for the specific value, d = 64, they require fewer homomorphic auto-
morphisms than us.

4. Since we need the key-switching keys only to perform HomTrK/K12
, HomTrK/K13

and HomTrK/K23
, for large sized matrix, the number of keys does not increase

with the size of input matrix.
5. The work in [4,23,16] requires m = m1m2, where m1 and m2 are coprime.

Additionally, n = φ(m1) · φ(m2) must satisfy d | φ(m1) and d | φ(m2). In
our new framework, there are no such restrictions.

6. The method in [25] only supports the special case such d ≤ 1
2n

1
3 . If d > 1

2n
1
3 ,

for comparison purpose, we need to extend their method by homomorphic
block matrix multiplication.

6 Implementation

Our implementation of the new framework and the algorithm therein is publicly
available at

https://github.com/XiaopengZheng/HEMat.

It is based on the BGV scheme in HElib, a homomorphic encryption library. The
experiment results are show in Table 3.

Table 3. Experiments on the new framework of homomophic matrix multiplication
algorithm.

Size of matrix Ring dimension n Blocks Plaintext modulus Cipertext modulus Runtime per Security
d× d r × s× t L× L p Q · P (in bit) HE-MatMult. level

16× 16

16× 18× 20

1× 1

65537 151 0.158s 133.479
18× 18× 20 231 − 1 238 0.303s 87.4684
32× 18× 22 231 − 1 456 1.295s 87.9782

32× 32

16× 18× 20

2× 2

65537 151 0.231s 133.479
18× 18× 20 231 − 1 238 0.410s 87.4684
32× 18× 22 231 − 1 456 1.651s 87.9782

64× 64

16× 18× 20

4× 4

65537 151 0.691s 133.479
16× 18× 20 231 − 1 238 1.124s 87.4684
32× 18× 22 231 − 1 456 4.407s 87.9782

The following are some remarks on Table 3.

1. The level of security is λ ≥ 80 bits. The security level is estimated by the
program in HElib [13].

2. The ciphertext modulus contains the modulus used in key switching. As
the ciphertext modulus increases, the security level decreases, so we need to
increase the ring dimension to ensure sufficient security.

https://github.com/XiaopengZheng/HEMat

A New Framework for Fast Homomorphic Matrix Multiplication 27

3. As the ciphertext modulus and the dimension of the ring increase, the time
required for basic homomorphic operations also increases. Therefore, after
selecting the ciphertext modulus based on the desired depth of the computa-
tion task, at the same time guaranteeing the desired security level, we choose
a smaller value of n.

4. By Theorem 4.6, and also from the experimental result, the plaintext modu-
lus p affects the growth of noise. In the experiments, a homomorphic matrix
multiplication results in approximate 60 bits of loss in the ciphertext mod-
ulus for p = 231 − 1, n = 12672, and h = 2n/3.

5. The number of threads used in our implementation is equal to the number
of blocks.

6. The platform is a personal laptop with AMD Ryzen 7 6800H with Radeon
Graphics of 64GB Memory running, and Ubuntu 22.04.2 LTS.

7 Conclusion and Further work

The paper presents a new framework for homomorphic matrix computations.
It is shown to be more efficient compared with all existing methods, in that it
requires fewer basic homomorphic operations and has lower communication cost.

In future studies, we will consider performing homomorphic multiplication
of matrices with floating-point entries.

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014). https://doi.org/10.1145/2633600

2. Chen, H., Kim, M., Razenshteyn, I., Rotaru, D., Song, Y., Wagh, S.: Maliciously
secure matrix multiplication with applications to private deep learning. In: Ad-
vances in Cryptology–ASIACRYPT 2020: 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon, South
Korea, December 7–11, 2020, Proceedings, Part III 26. pp. 31–59. Springer (2020).
https://doi.org/10.1007/978-3-030-64840-4_2

3. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 409–437. Springer (2017). https://doi.org/10.1007/978-3-319-70694-8_15

4. Cheon, J.H., Kim, A., Yhee, D.: Multi-dimensional packing for heaan for approx-
imate matrix arithmetics. Cryptology ePrint Archive, Paper 2018/1245 (2018),
https://eprint.iacr.org/2018/1245

5. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Advances in Cryptology–
ASIACRYPT 2016: 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I 22. pp. 3–33. Springer (2016). https://doi.org/10.1007/
978-3-662-53887-6_1

https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-030-64840-4_2
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2018/1245
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1

28 Xiaopeng Zheng et al.

6. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryp-
tion scheme is best? In: Topics in Cryptology-CT-RSA 2016: The Cryptographers’
Track at the RSA Conference 2016, San Francisco, CA, USA, February 29-March
4, 2016, Proceedings. pp. 325–340. Springer (2016). https://doi.org/10.1007/
978-3-319-29485-8_19

7. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 617–640. Springer (2015). https://doi.org/10.
1007/978-3-662-46800-5_24

8. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/
144

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009). https://doi.org/10.1145/1536414.1536440

10. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013).
https://doi.org/10.1007/978-3-642-40041-4_5

11. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. IBM Research (Manuscript) 6(12-15), 8–36 (2013)

12. Halevi, S., Shoup, V.: Algorithms in helib. In: Advances in Cryptology–CRYPTO
2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I 34. pp. 554–571. Springer (2014). https://doi.org/
10.1007/978-3-662-44371-2_31

13. Halevi, S., Shoup, V.: Design and implementation of helib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https:
//eprint.iacr.org/2020/1481

14. Huang, H., Zong, H.: Secure matrix multiplication based on fully homomorphic
encryption. The Journal of Supercomputing 79(5), 5064–5085 (2023). https://
doi.org/10.1007/s11227-022-04850-4

15. Huang, Z., Hong, C., Weng, C., Lu, W.j., Qu, H.: More efficient secure matrix
multiplication for unbalanced recommender systems. IEEE Transactions on De-
pendable and Secure Computing 20(01), 551–562 (2023). https://doi.org/10.
1109/TDSC.2021.3139318

16. Jang, J., Lee, Y., Kim, A., Na, B., Yhee, D., Lee, B., Cheon, J.H., Yoon, S.: Privacy-
preserving deep sequential model with matrix homomorphic encryption. In: Pro-
ceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security. pp. 377–391 (2022). https://doi.org/10.1145/3488932.3523253

17. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix compu-
tation and application to neural networks. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. pp. 1209–1222
(2018). https://doi.org/https://doi.org/10.1145/3243734.3243837

18. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Effi-
cient fhew bootstrapping with small evaluation keys, and applications to thresh-
old homomorphic encryption. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 227–256. Springer (2023).
https://doi.org/10.1007/978-3-031-30620-4_8

https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/s11227-022-04850-4
https://doi.org/10.1007/s11227-022-04850-4
https://doi.org/10.1109/TDSC.2021.3139318
https://doi.org/10.1109/TDSC.2021.3139318
https://doi.org/10.1145/3488932.3523253
https://doi.org/https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1007/978-3-031-30620-4_8

A New Framework for Fast Homomorphic Matrix Multiplication 29

19. Liu, F.H., Wang, H.: Batch bootstrapping i: a new framework for simd bootstrap-
ping in polynomial modulus. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 321–352. Springer (2023).
https://doi.org/10.1007/978-3-031-30620-4_11

20. Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for statisti-
cal analysis of categorical, ordinal and numerical data. Cryptology ePrint Archive,
Paper 2016/1163 (2016), https://eprint.iacr.org/2016/1163

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Advances in Cryptology–EUROCRYPT 2010: 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29. pp. 1–23. Springer (2010).
https://doi.org/10.1007/978-3-642-13190-5_1

22. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography.
In: Advances in Cryptology–EUROCRYPT 2013: 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings 32. pp. 35–54. Springer (2013). https:
//doi.org/10.1007/978-3-642-38348-9_3

23. Rathee, D., Mishra, P.K., Yasuda, M.: Faster pca and linear regression through
hypercubes in helib. In: Proceedings of the 2018 Workshop on Privacy in the Elec-
tronic Society. pp. 42–53 (2018). https://doi.org/10.1145/3267323.3268952

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009). https://doi.org/10.1145/
1568318.1568324

25. Rizomiliotis, P., Triakosia, A.: On matrix multiplication with homomorphic en-
cryption. In: Proceedings of the 2022 on Cloud Computing Security Workshop.
pp. 53–61 (2022). https://doi.org/10.1145/3560810.3564267

26. Vinogradov, I.M.: Elements of number theory. Courier Corporation (2003)
27. Wang, S., Huang, H.: Secure outsourced computation of multiple matrix multi-

plication based on fully homomorphic encryption. KSII Transactions on Internet
and Information Systems (TIIS) 13(11), 5616–5630 (2019). https://doi.org/10.
3837/tiis.2019.11.019

https://doi.org/10.1007/978-3-031-30620-4_11
https://eprint.iacr.org/2016/1163
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1145/3267323.3268952
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/3560810.3564267
https://doi.org/10.3837/tiis.2019.11.019
https://doi.org/10.3837/tiis.2019.11.019

	A New Framework for Fast Homomorphic Matrix Multiplication

