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Abstract. Over the last decades, fault injection attacks have been demonstrated to
be an effective method for breaking the security of electronic devices. Some types of
fault injection attacks, like clock and voltage glitching, require very few resources by
the attacker and are practical and simple to execute. A cost-effective countermeasure
against these attacks is the use of a detector circuit which detects timing violations -
the underlying effect that glitch attacks rely on. In this paper, we take a closer look
at three examples of such detectors that have been presented in the literature. We
demonstrate four high-speed clock glitching attacks, which successfully inject faults
in systems, where detectors have been implemented to protect. The attacks remain
unnoticed by the glitch detectors. We verify our attacks with practical experiments
on an FPGA.
Keywords: fault analysis · glitch detectors · clock glitching attacks

1 Introduction
In recent decades, electronic devices have become ubiquitous in everyday life. Some of
these devices are made for applications where security is of obvious importance such as
access control systems, smart cards, car keys, etc. The importance of security is, however,
not limited to these types of systems. It is very common for devices to use cryptographic
algorithms for securing communications, securing a boot process, and protecting firmware
and other intellectual property from being accessible.

The security of these devices can be compromised by a range of different methods,
one of which is Fault Injection Attacks (FIA). FIA is a range of attacks that are based
on the attacker causing a fault to happen within the electronic device and exploiting the
result of this fault. Examples of exploitable faults include incorrect instruction execution
in microprocessors, corruption of data, or the release of incorrect output of cryptographic
algorithms. As shown by the seminal paper “On the Importance of Checking Cryptographic
Protocols for Faults” [BDL97], the release of incorrect ciphertexts or signatures can result
in attackers recovering secret keys from asymmetric ciphers. Shortly after, a related
type of attack against symmetric ciphers called Differential Fault Analysis (DFA) was
published [BS97]. Faults can be introduced into a target device by a range of different
fault injection methods which is an active research area in itself. Some of the early fault
injection techniques included voltage and clock glitching and were used by the pay-tv
hacking community in the 90s [AK96, AK97]. More advanced fault injection techniques
have also been developed, such as optical fault injection [SA03], laser fault injection, and
electromagnetic (EM) fault injection.

As a natural response to FIA, countermeasures have been developed. A simple
countermeasure is duplication, where the same computation is performed twice in order to
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check for faults. Duplication can be effective but has the drawback of being vulnerable to
duplicated faults and having a large cost. Various error detection/correction techniques
have also been proposed to thwart FIA [BBK+03, KKG03, KKT04]. Malkin et al. [MSY06],
demonstrated that many of the proposed schemes had costs comparable to that of simple
duplication. More recently, countermeasures that protect against both side-channel attacks
and FIA such as ParTI [SMG16] and M&M [DAN+18] have been presented.

An alternative approach to algorithmic countermeasures, usually with far lower overhead,
is to use sensors for detecting physical attacks. The idea behind using detectors is that
appropriate action, such as performing a reset or not releasing potentially faulty data,
can be taken by the system if an attack is detected. Examples of such countermeasures
include light sensors protecting against optical attacks, sensors for detecting rapid voltage
changes [YPA08], and clock period monitors based on monitoring a critical clock by means
of a faster clock. An important group of detection countermeasures is timing-violation
detection circuits which have been described many times in the literature [SBGD11,
ELH+12, ISYT13, GRG+14]. More recently Intel announced that such a detector is
deployed in Intel Core processors starting from the 12th generation [NT22]. As several
different fault injection methods rely on timing violations, these detectors can be suitable
for detecting several types of attacks such as overclocking, underpowering, clock and
voltage glitching [ZDCT13], and to some extent electromagnetic fault injection [ZDT+14].
These detection circuits have similarities with timing-issue detection mechanisms such
as Razor [EKD+03] and canary logic [SK07]. Razor and canary logic are however not
intended to protect against FIA, and in [KSYH11] the authors show how canary logic can
fail to detect timing-violations.

Throughout this paper, we will discuss methods for injecting faults into a target circuit
while avoiding detection from detectors. We will refer to these as attacks against the
detection circuits. Since there are many possible targets of fault injection attacks, and
the types of exploitable faults depend heavily on the type of target, we will consider these
attacks successful if we are able to cause any faulty behaviour in the target circuit without
detection.

In Section 2 we present the relevant theoretical background, including models for
propagation delay in CMOS gates. In Section 3 we discuss the design of three closely
related FIA countermeasures that detect timing violations. We point out that there are
certain cases where these detectors can fail to detect injected faults, leading to attacks
that can bypass these detectors. In Section 4, we perform practical experiments where we
confirm that these attacks work against FPGA implementations of the detectors.

Our Contribution This paper presents our analysis of three glitch detection circuits that
are designed to detect timing violations and thwart fault injection attacks. These detectors
represent different variations of a common design concept, which involves comparing the
output values of parallel delay lines. Our main contribution is the presentation of four
different clock glitching attacks against these detection circuits. These specially crafted
attacks can inject faults into a target device undetected by the detection circuit, thereby
bypassing the countermeasure. We demonstrate two single-glitch attacks that use very
short injected clock periods to bypass the detectors, as well as two double glitch attacks
that offer the attacker more freedom in choosing the length of the glitched clock periods and
enable different types of faults to be injected into the target device. By highlighting these
attacks and the potential limitations of detection circuits, our work provides a valuable
contribution to ongoing efforts to enhance the security of digital systems.
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2 Preliminaries
2.1 Propagation Delay in CMOS
The speed of a digital gate, such as the inverter in Figure 1, is determined by the propagation
delay. The propagation delay is largely due to stray capacitances such as capacitance
between different conductors and gate capacitance. These capacitances can be modelled as
a load capacitance connected to the output of the inverter. The time it takes for the output
to change from low to high, tP LH , is the time it takes to charge the load capacitance
through the PMOS transistor. Similarly, the time it takes to switch from high to low, tP HL,
is the time it takes for the load capacitance to discharge through the NMOS transistor.
These times can be approximated as in equations (1) and (2). In the equations, kN and
kP are parameters of the transistors, while VT P and VT N are the threshold voltages for
the PMOS and NMOS transistors, respectively [SB15].

tP LH = CLVDD

kP (VDD − VT P )2 (1)

tP HL = CLVDD

kN (VDD − VT N )2 (2)

From equations (1) and (2), we can see that the propagation delay increases with a
higher load capacitance, and decreases with a higher supply voltage. Naturally, when
we have larger gates or combine multiple gates together to form combinatorial logic, the
propagation delay will increase.

Synchronous circuits can be formed by using flip-flops to hold the inputs and outputs
of combinatorial circuits. A D-type flip-flop is a circuit that operates in such a way that
the input (D) will be sampled at a rising clock edge and become the new value of the
output (Q). A D-type flip-flop will have its own timing properties associated with it, and
these can be modelled as the setup and hold time as well as the clock-to-Q delay, denoted
Tsetup, Thold, and Tclk2Q. The setup and hold time is the time an input has to be stable
before and after a clock edge in order to avoid meta-stability, respectively. Clock-to-Q
delay is the time between a rising clock edge and a new stable value at the output of the
flip-flop. Figure 2 shows a generic synchronous circuit, where m flip-flops hold the inputs
to a combinatorial circuit that produces n outputs which are also held by flip-flops. In
order for a synchronous circuit to behave correctly, the clock period Tclk has to satisfy
inequality (3), where Tcomb is the propagation delay of the combinatorial circuit.

Tclk > Tclk2Q + Tcomb + Tsetup (3)

Larger digital circuits typically consist of many synchronous circuits, where the combi-
natorial circuit with the longest propagation delay will decide the maximum clock speed.
This slowest path is referred to as the critical path of a design. This is a simplified model
of the behaviour of synchronous circuits, and we will simplify it further by omitting Tclk2Q

for the remainder of the paper.

2.2 Clock Manipulation
As discussed in the previous section, the clock period of a synchronous circuit, Tclk, has to
satisfy inequality (3) in order to avoid incorrect computations. Faults can be injected into
a system by increasing the clock frequency, thereby intentionally violating inequality (3). If
the clock frequency is increased for a long period of time, this is referred to as overclocking.
If only a single or a few clock cycles are manipulated, this is referred to as clock glitching.
Clock glitching can be performed by an attacker who has access to manipulate the clock
of the target device. One method for inserting a glitch into a clock signal is to generate a
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Figure 1: CMOS inverter.
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Figure 2: Timing in synchronous circuits.

pulse that is combined with the original clock signal. Figure 3 depicts this method with
the relevant parameters. A clock signal with clock period Tclk can be manipulated by
adding in a pulse with width W and offset O from a selected rising edge of the clock. This
results in an extra inserted rising clock edge at time TG = O + W after the rising edge of
the regular clock signal. The inserted clock edge results in an abnormally short clock cycle
of length TG that can cause faults through timing violations, followed by another short
cycle of length Tclk − TG. The outputs of combinatorial circuits typically change multiple
times before they reach stable values. Because of this, the value of TG is likely to have a
significant effect on the type of fault that is injected. For example, in microprocessors,
different types of faulty instructions can be executed depending on TG [BGV11, KHEB14].

Tclk
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clk
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combined

Figure 3: Glitch inserted in the high part of a clock period.

In Figure 3, the glitch pulse was added during the high part of a clock period. Alterna-
tively, the pulse can also be added during the low part of the clock signal as depicted in
Figure 4. In this case, we choose to define TG = (Tclk − O), in order for TG to represent



Amund Askeland, Svetla Nikova and Ventzislav Nikov 5

the distance from the rising edge of the inserted glitch to the nearest rising edge of the
regular clock signal.
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Figure 4: Glitch inserted in the low part of a clock period.

As noted before, an inserted glitch with the method from Figures 3 and 4, will result
in two abnormally short clock periods. For an attacker, this might cause complications if
the intention is to only cause one timing violation. Two possible solutions to this are to
either use a base clock frequency that is much larger than the delay of the critical path or
to remove a clock pulse from the original clock signal.

3 Detection Circuits
Since a wide range of fault injection methods work by causing timing violations, it makes
sense to build countermeasures that work by detecting these violations. Circuits that
raise an alarm flag if they detect timing violations can be made with few resources and
can be included as sub-circuits in larger designs, thus offering protection against fault
injection attacks at a very low cost compared to algorithmic countermeasures. The security
and resilience of such detection circuits is under-represented in the literature, and in this
section, we take a closer look at a set of detectors and ways in which they can fail.

3.1 Parallel Delay Lines
A common design for timing violation detectors is the parallel delay lines circuit. This
circuit consists of two parallel paths with different propagation delays. One such design is
shown in Figure 5a. In the circuit, a D-type flip-flop, referred to as the launch flop, inverts
its output on every rising clock edge. This output is connected to two paths, one with
very low propagation delay and one with intentionally high propagation delay. The high
propagation delay path is represented by a chain of buffers in the figure. The ends of these
two paths are connected to an XOR gate that compares the value at the end of the two
paths. The output of the XOR gate is sampled by another flip-flop, referred to as the
capture flop. If two rising clock edges are too close, the output value of the launch flop
will not have had enough time to propagate through the long delay path and the XOR
gate will compare two different values. This will cause the alarm to be raised which is how
this circuit can detect fault injections caused by timing violations. The propagation delay
of the long delay path, TD, can be adjusted by adding more or fewer gates in the path. In
this way, the detector can be tuned to match the critical path delay of other parts of the
device so that the alarm is raised if any timing violations occur. This type of circuit is
sometimes referred to as a replica circuit, because the long delay path aims to replicate, or
to be slightly longer, than the critical path of a circuit that should be protected.
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This type of design has been described several times in the literature with some slight
variations. In [GRG+14], the authors present several circuits designed to detect timing
violations and evaluate them for detection of voltage glitching attacks. One of their designs
is equivalent to the one in Figure 5c. Another is equivalent to the design in Figure 5b,
except for the position of the inverter. In [SBGD11], the authors perform clock glitching
attacks on an FPGA and suggest the design in Figure 5b as a possible countermeasure.
In [ISYT13] and in a white paper by Intel [NT22], a design equivalent to the circuit in
Figure 5a is presented. In the Intel design, the long delay path is configurable. This
change allows the threshold at which the alarm activates to be adjustable to account for
manufacturing variations, and it is explained that setting the delay length is part of a
calibration step in the manufacturing process. This design is referred to as the “Tunable
Replica Circuit”.
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Figure 5: Three variants of the parallel delay line circuit.

3.2 False Negative Attacks
The result of an attempted fault injection attack against a target device with a glitch
detector can be divided into four categories. If a fault is injected and an attack is detected,
the event is categorised as a positive. If no fault is injected and an attack is undetected,
the event is categorised as a negative. If no fault is injected and an attack is detected, the
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event is categorised as a false positive. Finally, if a fault is successfully injected and an
attack is undetected, the event is categorised as a false negative.

For any glitch detector, it is very important that successful fault injections are detected,
and false negatives should be avoided to the extent possible. If an attacker can reliably
cause false negative events, the detection mechanism can effectively be bypassed.

3.2.1 Single Glitch Attacks

Attack 1 Attack 1 is based on causing the launch flop output to not invert on a rising
clock edge, and is applicable to PDL-1 and PDL-2. All the detector circuits in Figure 5
use a launch flop with a feedback inverter such that the launch flop output inverts on
every rising clock edge. We note that if two rising clock edges are so close that the output
of the launch flop does not have time to propagate through the feedback inverter, the
launch flop will not change its output on the second rising clock edge. For PDL-2, this
will directly result in no alarm being raised even though we have a clear timing violation.
For PDL-1, there will also not be any raised alarms, since the change in the launch flop
output does not have time to propagate through the XOR gate. More formally, if we
have a glitched cycle such that TG < Tinv, the launch flop output will not invert, and if
TG < Tinv + Tsetup, it might invert. We refer to this attack as attack 1. Figure 6 shows a
clock signal with an inserted glitch such that TG < Tinv, together with the resulting values
of the launch flop input (LD) and output (LQ). We can see that the latest launch flop
output has not yet propagated through the inverter when the extra rising edge is inserted,
and therefore the launch flop output is not updated at this edge.

Tinv Tinv

clk

LQ

LD

Figure 6: Timing diagram for attack 1. From top to bottom: Clock, launch flop output,
launch flop input.

For PDL-3, this attack will not work unless the delay between the launch flop and
capture flop #2 is sufficiently large. As there is a direct connection between these two
flip-flops, we don’t consider the attack applicable to PDL-3.

Attack 2 For PDL-1 in Figure 5a there is no direct connection between the launch flop
and the capture flop. This means that a change in the launch flop output will have to
propagate through the XOR gate before it is noticed at the capture flop input. Attack 2 is
based on having two rising clock edges so close together, that a change in the launch flop
output at the first edge has not yet been noticed at the capture flop at the time of the
second edge. This attack is applicable to PDL-1.

For PDL-1, the input to the capture flop is the output of the XOR gate. After a rising
clock edge, the first change in the input value of the capture flop will be after Txor. We
note that if Tinv + Tsetup < TG < Txor, the launch flop will be updated, while the capture
flop will still sample a low value, i.e. 0, such that no alarm will be raised even though this
is a clear timing violation. In order for this to be possible, we need that Tinv < Txor. In
CMOS this is common, as an inverter is typically the fastest gate with only two transistors



8 Attacking Glitch Detection Circuits

while an XOR gate has a higher delay. Figure 7 shows a timing diagram for this attack
where we see a regular clock cycle to the left before we have a glitched clock cycle. We can
see that the capture flop input is low at all rising clock edges, and therefore the alarm will
not be activated.

Txor TD Txor TD

clk

LQ

CD

Figure 7: Timing diagram for attack 2. From top to bottom: Clock, launch flop output,
capture flop input.

3.2.2 Double Glitch Attacks

We have seen how attack 1 and attack 2 can be used to cause timing violations that
go undetected by PDL-1 and PDL-2. Both these two attacks are based on inserting a
clock edge such that we get a very low value for TG, meaning there is very little room for
choosing appropriate values for TG. Since the types of faults that are injected can depend
heavily on TG, it is desirable for an attacker to have more freedom in choosing this value.
We will now discuss how this can be achieved with double glitch attacks.

We extend the concept of combining glitches with a clock signal from Figure 3 so that
we have two glitches instead of one. If we add a requirement that O2 > O1 + W1, then we
will have three rising edges close together. The first is the normal clock edge, the second
comes at time TG1 after the normal clock edge, and the third at time TG2 after the normal
clock edge as shown in Figure 8. The clock signal now has two short clock periods of
length TG1 and TG2 − TG1.

Tclk

O1

O2

W1

W2

TG1

TG2

clk

glitch #1

glitch #2

combined

Figure 8: Clock signal with two inserted glitches.
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Attack 3 The alarm output of PDL-2 and PDL-3 is driven by an XOR gate and is not
held by a flip-flop as opposed to PDL-1. The papers describing the design of PDL-2 and
PDL-3 do not specify how to sample the output of the XOR gate. We will assume that
the output of the XOR gate is synchronously sampled, for example, by a D-type flip-flop.
We believe this to be a natural assumption because the XOR output should be held for
an entire clock cycle. If asynchronous logic, such as a latch, is used to sample the XOR
output, issues could arise due to clock skew or different delays between the two flip-flops
and the XOR gate. The result of this assumption is that the alarm from PDL-2 and PDL-3
will be activated only if the XOR output is high during a rising clock edge. The basic idea
of attack 3 is that the attacker first applies a glitch that causes the desired fault, but also
causes the two inputs to the XOR gate to take different values. A second glitch is then
applied before the changes have propagated through the XOR gate, and at the same time
causing the inputs to the XOR gate to hold equal values again. This attack is applicable
to PDL-2 and PDL-3. If we have TG1 such that TG1 < TD, the two flip-flops holding the
inputs of the XOR gate will sample different values. This means that the output of the
XOR gate will be raised at time Txor after the glitched clock edge. A second glitch is then
applied before the XOR output is raised, i.e. TG2 − TG1 < Txor. This second glitch also
has to put the two flip-flops back in a state where they hold the same value. This will
be the case for PDL-3 if TG2 < TD, and for PDL-2 we have the additional requirement
that the launch flop has to invert, i.e. Tinv + Tsetup < TG2 − TG1. Figure 9 shows a timing
diagram for this attack when applied to PDL-3, we can see that even though the alarm
signal is high for a brief moment, it is never high during a rising clock edge.

To some extent, attack 3 can also be achieved with just a single inserted glitch. This
can happen if the glitch is inserted in the low region of the clock signal as shown in
Figure 4, and the clock frequency is just right so that the attack can be achieved with the
two resulting short clock periods of length TG and Tclk − TG. The downside to this is that
it will only work if the detection threshold is tuned very close to the critical path delay,
and the attacker has very little room to select the values of the short clock periods. We
also note that adding two glitches to a clock signal is not much more difficult than adding
a single glitch.

Txor

clk

CF1Q

CF2Q

alarm

Figure 9: Timing diagram for attack 3. From top to bottom: Clock, capture flop #1
output, capture flop #2 output, alarm output.

Attack 4 Attack 4 is a double glitch attack applicable to PDL-1 that can be seen as
an extension of attack 2. As for attack 2, the first glitch is applied at a time such that
Tinv + Tsetup < TG1 < Txor. In the timing diagram for attack 2 in Figure 7 we can see
that after the inserted glitch, the XOR output, or equivalently the capture flop input, is
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high between Txor and TG1 + Txor as well as between TD + Txor and TG1 + TD + Txor.
This means that a second glitch can be applied between TG1 + Txor and TD + Txor without
being detected, which is how attack 2 is extended to attack 4. The advantage of attack 4
over attack 2, is that the first glitch enables the attacker to place a second glitch in a large
area in time without detection. This can be useful when attempting to trigger specific
behaviour in the target circuit.

In Figure 10, we have drawn the internal signals of PDL-1 using blue for low and thick
red for high. Figure 10a shows the internal signals when the circuit has reached a steady
state after the previous rising clock edge. We have arbitrarily chosen a starting point of a
low launch flop output. Figure 10b shows the internal signals shortly after a rising clock
edge, when the change in the launch flop output has had time to propagate through the
feedback inverter, but not yet through the XOR gate. At this point in time, a glitch is
inserted corresponding to attack 2. Figure 10c shows the signals shortly after the glitch,
where the XOR output will be high for a brief moment. Note that there is a high pulse of
width TG1 propagating through the long delay path. Figure 10d shows the internal signals
as they would be Txor after the inserted glitch, and before the high pulse has propagated
through the long delay path and the XOR gate. This period represents the time when a
second glitch can be added without causing the alarm to be raised.

D Q D Q

clk clk

(a) t = 0

D Q D Q

clk clk

(b) t = TG1 and Tinv < TG1 < Txor

D Q D Q

clk clk

(c) Txor < t < TG1 + Txor

D Q D Q

clk clk

(d) t = TG2 and TG1 + Txor < TG2 < TD + Txor

Figure 10: Internal signals of PDL-1 during attack 4 at times, t, relative to a clock edge.
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Summary The different clock glitching attacks and the timing conditions for the inserted
glitches are summarised in Table 1.

Table 1: Summary of the different attacks.
Attack Timing conditions Applicable to
Attack 1 TG < Tinv PDL-1 and PDL-2
Attack 2 Tinv + Tsetup < TG < Txor PDL-1

Attack 3 TG1 < TD and TG2 − TG1 < Txor

Additionally, for PDL-2: Tinv + Tsetup < TG2 − TG1
PDL-2 and PDL-3

Attack 4 Tinv + Tsetup < TG1 < Txor

and TG1 + Txor < TG2 < Txor + TD
PDL-1

4 Experiments
In Section 3.2 several situations that could lead to false negatives, i.e. the detector failing
to detect actual timing violations, were described. In this section, we perform practical
experiments in which we attempt to execute the attacks.

4.1 Setup
4.1.1 Target Device

We use the CW305-A100 Artix-7 FPGA board from NewAE Technology [New18] as a
platform for our target implementation. We load the FPGA with two implementations of
the Advanced Encryption Standard (AES), and the three detector designs from Figure 5
simultaneously. This enables us to perform the experiments across all glitch detectors
concurrently, subjecting them to the same operational conditions. The interface to the
target device is such that the key and plaintext can be chosen before each encryption,
and after an encryption we can read the resulting ciphertexts as well as whether any
timing violations where detected. For any attempted attack, we use the correctness of the
ciphertext and the detection status to categorise the results into (false) negatives/positives
as mentioned earlier. This will be done separately for every combination of AES and
detector implementation. We choose to use AES as an example target, and we use the
correctness of the ciphertext to determine if a fault was successfully injected or not. Our
main goal with the AES target is to observe whether or not faults have been injected, but
we also investigate the occurrence of faulty ciphertexts that can be used in DFA.

AES Implementations We use two different implementations of AES-128 on the target
device, a round-based design with a 16-byte datapath and a serialised design with a single
byte datapath. Both implementations use the s-box design from [BP12], which is a fairly
complex combinatorial circuit that is part of the critical path for both implementations.
The round-based design uses 11 clock cycles to complete an encryption, while the serialised
design uses 200 clock cycles. The two implementations are run in parallel, but the round-
based design is delayed by 150 clock cycles such that they are both actively encrypting
at the same time. Unless specified, experimental results are on attacks against the round
based design. We use two different types of AES implementations in order to observe
whether the conditions for which they fail are dependent on the architecture.

Detection Circuit Implementations We use the Artix-7 FPGA as our target device,
which organizes the main FPGA primitives, flip-flops and lookup tables (LUTs), into units
called slices. Each slice consists of four 6-input LUTs and eight flip-flops. We implement
all three variants of the PDL timing violation detectors from Figure 5 on the target FPGA.
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Each of the various logic gates in the detector circuits is mapped to a LUT on the FPGA,
and the flip-flops are naturally mapped to the FPGA flip-flops. It’s worth noting that
the flip-flop primitives in this device lack a complementary output that could substitute
the feedback inverter. For increased repeatability and control, we manually assign each
component to primitives in a single slice per detection circuit, except for the long delay
path, which is allocated to the surrounding slices. This long delay path is constructed
by utilizing LUTs configured as buffers, interconnected in a chain. To make the delay
configurable, we employ additional LUTs configured as multiplexers, enabling the selection
of any point within the buffer chain as an output. This approach allows us to modify the
value of TD, without altering the overall implementation. In order to conduct initial testing
of the detector designs, we measure the detection threshold for all the delay settings. For
each adjustment setting of TD, we apply a glitch and observe the values of TG at which the
detector triggers an alarm. The results of this test are presented in Figure 11. The figure
demonstrates that the detectors can be adjusted to raise alarms for short clock periods
ranging from 2 ns to 10 ns in a roughly linear manner.
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Figure 11: Detector delay settings vs. alarm threshold.

The design tool used for the implementation, Xilinx Vivado, can be used to report
estimates on the various delays. Table 2 shows the reported delay for the paths through the
inverter and XOR gates of the three detector designs. Note that since both the inverters
and XOR gates are implemented in the FPGA using LUTs one might expect quite similar
delays for the respective paths, while in the table we see that the XOR-delays are slightly
higher. The reason for this lies in the delay of the nets, which is slightly more complicated
for the XOR gates. The feedback inverters only have one input and one output, and the
inverter LUTs and the launch flops are placed very close together. This might explain the
slight difference in the timings.

Table 2: Estimates on inverter and XOR delay for the detectors as reported by Vivado.
Tinv (ns) Txor (ns)

PDL-1 1.471 1.919
PDL-2 1.463 1.911
PDL-3 1.455 1.832

Because attack 1 and attack 2 are differentiated by whether or not the launch flop was
inverted by the inserted glitch, we have also added a shadow flip-flop to the launch flop
of the detectors. The output of the launch flop is connected to the input of the shadow
flip-flop, and we can therefore compare the values held by the two flip-flops in order to see
if the launch flop has held two equal values in a row.
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4.1.2 Clock Glitch Generator

The realisation of the attacks from Section 3.2 requires the generation of a clock signal
with very short pulses, and the ability to generate several independent glitches for the
double glitch attacks. We implement a clock glitch generator based on Xilinx 7-series
FPGAs using an approach similar to that described in [ESH+11] and [ADN+10]. The
glitch generator uses several Mixed-Mode Clock Manager (MMCM) modules, which is
a hardware module available in some Xilinx FPGAs. We use the MMCMs to create
phase-shifted versions of a clock signal where the phase shift can be controlled dynamically.
Our glitch generator follows the concept from Figure 3. We use two phase-shifted clock
signals that we combine in order to create a signal with adjustable phase and pulse width.
This signal can be enabled for a single clock cycle in order to form a pulse with adjustable
offset and width. The glitch pulse is then combined together with the original clock signal
using a logic function. We end up with a clock glitch generator which outputs a 12 MHz
clock signal and which has a trigger input. Two glitches can be controlled independently
in width, phase and clock cycle delay. The clock cycle delay decides how many clock cycles
after the trigger the glitch is inserted into the 12 MHz clock signal. The width and phase
of the glitches can be controlled in 3584 steps between 0 and 1/12 · 10−6 s, corresponding
to a step size of roughly 23 ps. For ease of use, the glitch generator has a simple serial
interface which can be controlled for example by a python script.

High Speed Challenges In order to be able to execute the attacks described in Section 3.2,
glitchy clock signals that have several rising edges in a very short period of time have to
be generated. While the glitch generator can control the width and position of a glitch
in very small steps, there are practical limitations. Various analog effects such as stray
capacitances effectively create a low-pass filter that limits how fast we are able to change
the logic level of the clock signal. This in turn results in a lower limit for how close together
two rising clock edges can be. These analog effects are heavily dependent on the physical
path, or channel, from the glitch generator to the target. We choose to use two versions of
the clock glitch generator. One that is implemented on the same FPGA chip as the target
circuit, and one that is implemented on a separate FPGA board. The internal generator
will be used to explore the different attacks, without the added challenges of the analog
effects of the channel between the boards. The external generator obviously represents a
more realistic scenario and will be used to show that the attacks do not rely on using an
internal generator. We expect that the performance of the external clock glitch generator
can be improved with a mixture of a better channel between the boards and a generator
board with better high-speed output capabilities.

4.2 Attacks Using an Internal Glitch Generator

We conducted a series of experiments in which we introduced additional glitches to a
clock signal during the 9th round of the round-based AES implementation. The internal
glitch generator was used in these experiments. We used a range of values for the position
of the glitches, performed 100 encryptions for each glitch position and recorded the
correctness of the resulting ciphertext as well as the state of the alarms. The reason for
performing multiple repetitions of each experiment was to demonstrate the repeatability of
the results, given that we are dealing with very short time periods and subtle effects that
can potentially influence the outcomes. We will use stacked bar plots, where the results of
the 100 repetitions are divided into categories represented by different coloured bars that
are stacked on top of each other.
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4.2.1 Single Glitch Attacks (Attack 1 & 2)

The results of a single glitch applied to the detection circuits are shown in Figure 12. The
figures show that when TG is greater than approximately 6.5 ns, the glitch has no impact.
Between approximately 5.8 ns and 6.5 ns, there is a region of false positives, which occurs
because the glitch detectors raise an alarm before the AES implementation fails. For lower
values of TG, faults are successfully injected and the ciphertext become faulty. As TG

becomes very small, false negatives begin to appear, consistent with attack 1 and attack 2
described earlier. Notably, PDL-1 is impacted by both attack 1 and attack 2, while PDL-2
is only affected by attack 1. This is reflected in the larger range of TG values causing false
negatives for PDL-1. We can also see a few false negatives for PDL-3. As discussed in
Section 3.2 this can be explained by a slight delay between the launch flop and capture
flop #2. At the far left of the figures there is a narrow region where the ciphertext is
not faulty and the alarm is not raised. This region is likely there because the glitch is
effectively filtered away due to analog effects when TG becomes too small.
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Figure 12: Single glitch attacks.

4.2.2 Differentiating Attack 1 & 2

Given that PDL-1 is affected by both attack 1 and attack 2, it is important to be able to
distinguish between these two events. The key difference between the two cases is that
for attack 1, the launch flop is not inverted by the glitch, whereas for attack 2 it is. To
differentiate the two situations, we will use a shadow flip-flop in PDL-1 as mentioned
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earlier. Figure 13 displays the false negatives from Figure 12a, where they have been split
into attack 1 and attack 2 events. We can see that we can reliably cause both attack 1 and
attack 2 events. We also see that successful attacks only happen for values of TG below
roughly 1.4 ns, which is lower than the expected 1.919 ns from Table 2. Reasons for this
discrepancy could be that the timing estimates from Vivado are conservative, or that our
values of TG have a systematic error.

Note that we see a portion of attack 2 events to the far left in the figure. These are
likely there because the shadow flip-flop of the launch flop does not always sample the
correct value when TG gets too small, and these events are thus not really attack 2 events.
Although there is a direct connection between the two flip-flops, there will be a slight delay
in wiring and the setup time of the shadow flip-flop could be violated.
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Figure 13: Differentiating between attack 1 and attack 2 for PDL-1.

4.2.3 Attack 3

We apply a double glitch attack where we fix TG1 at 4 ns, which will cause the ciphertexts
to become faulty, and normally also the alarms to be raised as we saw in Figure 12. We
then apply another glitch and perform a set of experiments with different distances between
the two glitches. Figure 14 shows the results of this experiment. Here we can see that
when the glitches are sufficiently close together, PDL-2 and PDL-3 stops reporting the
glitch, meaning that attack 3 has been successfully applied. At the far left in the figures we
have a section where the alarm is activated, this is because the two glitches are too close
together and analog filtering effects effectively turn the two glitches into a single glitch.
We can also see that PDL-1 detects the glitches regardless of the distance between them,
which is expected since this attack is not applicable to PDL-1. Note that the region of
false negatives happens slightly later for PDL-2, which is consistent with the requirement
for PDL-2 that the launch flop has to invert its value for attack 3 to work against this
detector. Also note that the region of false negatives ends slightly earlier for PDL-3 than
PDL-2, which can be explained by Table 2 where we can see that there is a difference in
Txor between the two detectors.

4.2.4 Attack 4

We apply a double glitch attack where we fix TG1 at 1.1 ns. This value is chosen based on
Figure 13, and is meant to maximise the probability of causing a successful attack 2, which
is necessary for attack 4 to work. We then perform a set of experiments where we sweep the
position of the second glitch, and record the results. The results are presented in Figure 15,
and seem consistent with the expected behaviour explained in Section 3.2.2. To the left in
the figure, we have a period where the detector alarm is active, which corresponds to the
time between TG1 and TG1 + Txor. Following this, we have an area with false negatives
corresponding to the time between TG1 + Txor and TD + Txor. Around 7 ns we can see
a region where the alarm is active, which should correspond to the TG1-wide pulse that
propagates through the long delay path as shown in Figure 10. To the right in the figure
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Figure 14: Attack 3 applied to all detectors.
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Figure 15: Attack 4 applied to PDL-1.
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there is another region of false negatives, which are caused by the first glitch that is at a
fixed position. In this region, the second glitch is far enough away from any other rising
edge to not cause any timing violations or alarms by itself.

4.3 Attacks Using an External Glitch Generator
We repeated the experiments from the previous section, this time with an external FPGA
board supplying the glitchy clock signal to the target board. The clock signal is shared
between the boards through a coaxial cable. As noted earlier, this makes it harder to
achieve very short glitched clock periods.

4.3.1 Attack 1 & 2

Figure 16 shows the results when we performed a single glitch attack in the same way
as in Figure 12, except that we used the external generator. As we can see, the rate of
false negatives have dropped down to a maximum of roughly 50% for PDL-1 and close to
zero for PDL-2. This happens because the lower limit of TG that we can achieve with our
external glitch generator is higher than for the internal generator. In order to increase the
success rate, we can lower the core voltage of the target device. From equations (1) and
(2) we can see that lowering the supply voltage will result in higher propagation delays,
thus making it easier to apply our attacks.

Figure 17 shows the repetition of the experiment, but where the target device has a
core voltage of 0.93 V as opposed to the nominal 1.0 V. Here we can see that the rate of
false negatives have increased to almost 100% for PDL-1. Note also that both the area of
positives and false positives have stretched out in time due to the increased propagation
delays. Since the rate of false negatives for PDL-2 is still close to zero, the false negatives
in PDL-1 are likely attack 2 events.
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Figure 16: Single glitch with external generator, nominal target voltage.

4.3.2 Attack 3

We fix the position of the first glitch such that TG1 = 4 ns, like before, and sweep the
position of the second glitch. Again, we have used a target core voltage of 0.93 V in order
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Figure 17: Single glitch with external generator, low target voltage.

to increase the propagation delays. Figure 18 shows the results of this experiment. We note
that compared to the same experiment performed with an internal glitch generator, shown
in Figure 14, the peak of the false negative regions are shifted slightly to the right due to
the increased propagation delay. We also note that the left edge of the false negative regions
seems to be in the same position for PDL-2 and PDL-3 in Figure 18, although that was
not the case for the internal glitch generator. This is consistent with the minimal distance
between two rising edges that we can practically achieve being larger than Tinv + Tsetup,
as we also saw in the attempt of applying attack 1 to PDL-2 in Figure 17b.
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Figure 18: Attack 3 applied to PDL-2 and PDL-3 using an external glitch generator and
low target voltage.



Amund Askeland, Svetla Nikova and Ventzislav Nikov 19

4.3.3 Attack 4

Figure 19 shows attack 4 applied to PDL-1 using the external glitch generator and a target
core voltage of 0.93 V. We can see that we do not reach 100% rate of false negatives, which
is due to the first applied glitch not always causing a successful attack 2, as we also saw in
Figure 17a. Note the small area of false positives just below 8 ns. This happens when the
first glitch and the clock edge become one single edge. Normally this results in detection,
but in this specific region the distance between the second glitch and the clock edge is too
large to cause faulty ciphertexts, yet small enough to cause alarms.
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Figure 19: Attack 4 applied to PDL-1 using an external generator and low target voltage.

4.4 Faults Suitable for DFA
The various attacks all rely on using very short glitched clock periods that might affect
large parts of the targeted device. This suggests that the faults produced by the attacks are
coarse and best suited for things like disrupting a microprocessor’s instruction execution,
and not for causing the single-byte faults commonly used in DFA. In order to assess
the suitability of the attacks for DFA, we perform some attempted attacks against the
serialised implementation of AES. The focus is on this implementation due to its single-byte
datapath, which should make it easier to affect small parts of the implementation with an
attack. We count the number of single-byte faults in round 8, since two faulty ciphertexts
of this type are usually enough for a full key recovery using DFA [PQ03].

We perform a set of experiments where we try out the various combinations of clock
cycle and glitch phase(s) in order to find a suitable set of parameters for the attacks. Using
the parameters that maximise the number of single-byte faults in round 8 of AES for each
attack, we attempt to fault 10000 encryptions. The results of these experiments are shown
in Table 3 along with the parameters used. These experiments used the internal glitch
generator, and the encryptions used a fixed key and random plaintexts for each of the
10000 experiments. In these experiments, we found no set of parameters for attack 2 or
attack 4 that caused single-byte faults in round 8. Note that for attack 3 none of the 245
exploitable faults were undetected by PDL-2, the value of TG2 − TG1 is likely too low for
the additional constraint for PDL-2 from Table 1 to be satisfied.

Table 3: Number of faulty ciphertexts suitable for DFA out of 10000 glitched encryptions.
Attack Clock cycle TG /TG1 TG2 − TG1 Faults Bypassed detectors
Attack 1 170 0.67 ns - 12 PDL-1 and PDL-2
Attack 3 161 3.77 ns 0.80 ns 245 PDL-3

5 Discussion
In Section 4, we found that the attacks described in Section 3.2 can be performed in practice
for a target implemented on an FPGA. All the attacks require a glitched clock signal that
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has two rising edges so close together that the timing requirements of a single-gate path
are violated. The generation of a glitchy clock signal that switches fast enough, and the
bandwidth of the channel for this signal, can make the attacks challenging to apply. We
saw how under-powering the target device can partly compensate for these challenges, and
we also believe that the performance of the external glitch generator can be improved.
Faults caused by timing violations can also be injected through voltage glitching, which is
sometimes mentioned as equivalent to clock glitching. The specific attacks presented here
require fine control and are not likely to have a direct equivalent in voltage glitching.

5.1 Applicability of the Attacks
These attacks are applicable to target devices with similar glitch detection circuits to the
ones shown in this paper. As the attacks are clock glitching attacks, access to manipulate the
clock signal is required. The experiments showed how the attacks can work against FPGA
implementations, but in principle they should also be applicable to non-reconfigurable
hardware such as smart cards, microcontrollers, and ASICs. Because of the challenges of
generating clock signals with high enough switching speed, the attacks will, in general,
be harder to apply to faster (i.e. lower propagation delay) devices. We have reported to
Intel the attacks applicable to PDL-1 (similar to Intel’s Tunable Replica Circuit) following
the “Report Potential Security Vulnerabilities” procedure. Intel processors should have
propagation delays that are orders of magnitude lower than FPGAs, and the attacks are
not likely to be feasible against these.

5.2 Countermeasures
Since the described attacks, like most clock glitching attacks, require direct access to
manipulate the clock of the target device, a countermeasure can be to avoid using external
clock signals directly. Many devices typically use an external clock or oscillator as a
reference and then generate internal clocks from the reference by using a Phased-Locked
Loop (PLL). Fast changes in the reference clock would not typically propagate through
the PLL, and a PLL is therefore an effective countermeasure against most clock glitching
attacks including these ones. While using PLLs is common, they are not always available
in low resource devices and sometimes external clocks are used for synchronisation reasons.

While we have presented attacks against all three tested detectors, no single attack is
effective against all of them. In Figure 12c we can see that there are almost no cases of
false negatives caused by a single-glitch attack against PDL-3, and in Figure 14a we can see
that attack 3 is ineffective against PDL-1. Thus, we note that the attacks presented here
will be ineffective against a combination of PDL-1 and PDL-3. However, the goal of the
paper is not to design detectors. Therefore we pose as an open question the development
of design methodology for provably secure detectors.

6 Conclusion
We have analysed detection circuits meant to be countermeasures against fault injection
attacks and presented clock glitching attacks that can go undetected by these circuits. In
our experiments, we showed how faults could be injected into a target device while avoiding
detection from the glitch detection circuits. The detection circuits can add security to a
system since they protect against more basic attacks, and the attacks presented in this
paper can be challenging to apply. Still, we question the effectiveness of these detectors
against clock glitching attacks.
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