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Abstract. We show that under a mild number-theoretic conjecture,
recovering an integer from its Jacobi signature modulo N = p?q, for
primes p and g, is as hard as factoring N. This relates, for the first time,
the one-wayness of a pseudorandom generator that Damgard proposed
in 1988, to a standard number-theoretic problem. In addition, we show
breaking the Jacobi pseudorandom function is no harder than factoring.

1 Introduction

In 1988, Damgéard [8] proposed a pair of cryptographic pseudorandom generators,
based on quadratic characters. For a fixed natural number NV, he speculated that
the function that maps x € Z}; to the sequence of Jacobi symbols
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for some ¢ € N, is a pseudorandom generator. Following prior work [7], we refer to
this sequence of Jacobi symbols as the length-¢ Jacobi signature of x modulo N.
Damgard also considered the case when the modulus is a prime p; in that case
we replace Jacobi symbols with Legendre symbols and refer to the sequence as
the Legendre signature of © modulo p.

He left as an open question whether is is possible to relate the task of breaking
these pseudorandom generators to any other number-theoretic problem.

This work. We consider Damgard’s pseudorandom generator based on Jacobi
symbols modulo N = p?q, for primes p and q. We show that this function is a
one-way function if:

— factoring integers of the form p?q is hard, and
— if every number modulo p has a unique Legendre signature of length 2 log? (p).

Under a much stronger (and less plausible) number-theoretic assumption, we
show that finding collisions in Damgard’s Jacobi pseudorandom generator is as
hard as factoring.

Both results are based on the simple observation that Jacobi symbol of x
modulo N = p?q is equal to the Legendre symbol of z modulo ¢q. Thus, if we
give an attacker the Jacobi signature of a secret value £ modulo N, we reveal
no information to the attacker about the Legendre signature of x modulo p.

If the attacker succeeds at inverting the Jacobi-signature function modulo NV,
we then get a value ' € Z% such that = and 2’ have the same Legendre signa-
ture modulo g. Under a standard number-theoretic conjecture on the uniqueness



of Legendre signatures [7], this implies that © = 2’ mod ¢. At the same time,
since the attacker has no information about = mod p?, it is extremely likely that
x # 2’ mod p?. In this case, the the greatest common divisor of 2 — 2/ and the
modulus N will yield a non-trivial factor of V.

As an immediate consequence, if we additionally conjecture the hardness of
distinguishing integers of the form p?q, from integers of the form pq [1], for
primes p and ¢, then our results also imply the one-wayness of the Jacobi pseu-
dorandom generator modulo N = pq. (We thank an anonymous reviewer for this
observation.)

Lastly, we consider the generalization of the Jacobi pseudorandom generator
to a pseudorandom function [5]. Specifically, for a (public) composite modulus N,
a secret key k € Zy, and an input x € Zy, the Jacobi pseudorandom function
outputs the Jacobi symbol of (k + x) modulo N. In Section 5, we show that
an algorithm that can factor N can break this construction as a pseudorandom
function. This immediately gives a subexponential-time attack on the Jacobi
pseudorandom function and, via Shor’s algorithm [20], a quantum polynomial-
time attack as well.

Related work. Peralta and Okamoto [18] use Jacobi signatures modulo N =
p%q to speed up the elliptic-curve factoring algorithm. In particular, they use
Jacobi signatures modulo N to quickly search a list of integers z1,xs,..., 2, €
Z}, for a pair whose difference has a non-trivial greatest common divisor with N.
Several cryptosystems have also based their security on the hardness of factoring
integers of the form p?q [11,17].

Adleman and McCurley [1] discuss the problem of finding the smallest prime ¢
whose Legendre symbols modulo the first ¢ primes matches a prescribed pattern
in {—1,1}%. Solving this problem, they note, is as hard as factoring numbers
of the form N = p?q, provided that the signature length ¢ is long enough to
uniquely identify the prime q.

Grassi et al. [13] propose using a variant of Damgéard’s construction as a
pseudorandom function. For a fixed prime p, key k € Z;,, and input = € Zy, the
function’s output is the Legendre symbol of (k+ x) modulo p. This function has
a small arithmetic circuit over FF,,, which makes it useful in multiparty compu-
tation [13,9,4]. Several recent works have also studied the concrete hardness of
the Legendre pseudorandom function [5,14,19].

2 Preliminaries

Throughout this work, we write A € N to denote a security parameter. For a
positive integer n € N, we write [n] to denote the set [n] := {1,...,n}. We say
that an algorithm is efficient if it runs in probabilistic polynomial time in the
length of its input. We say that a function f(\) is negligible if f = o(A™¢) for all
constants ¢ € N; we denote this by writing f = negl(A). To denote the greatest
common divisor of natural numbers z and y, we write ged(z,y). For a natural
number A, we let Primes) denote the set of A-bit primes.



2.1 Legendre and Jacobi Signatures
We now recall the concept of a Legendre signature and a Jacobi signature.

Definition 2.1 (Jacobi and Legendre Signatures). For an integer N and
x € Ly, let (%) € {-1,1} denote the Jacobi symbol of 2 modulo N. Then,
for a positive integer N and signature length ¢, we define the Jacobi-signature
function Jy : Z% — {—1,1}* as the function

Tne() = [(I;1> , (x;:f) (z;zﬂ e {-1,1}%

When p is a prime, we refer to the function J,, as the “Legendre signature.”

Fact 2.2 (Jacobi Signatures with N = p%q). For odd primes p,q and N =
p2q, for allx € Zy and L € Z, Iy o(x) = Jgo(z).

Proof. The statement follows because the Jacobi symbol is multiplicative and

takes on values in {—1,1}: (§) = (%)2 (2)=(2) O

2.2 Standard Cryptographic Definitions

We recall a few standard cryptographic definitions. For each of the following
cryptographic notions or assumptions, we define the advantage of the adversary.
Typically, we say that the associated scheme is secure or that the assumption
holds if the advantage of every efficient (i.e., probabilistic polynomial time) ad-
versary is bounded by a negligible function of the security parameter.

Definition 2.3 (One-Way Function). For a function ensemble F = {F)} e,
where each function f € F) has the type f: X\ — V), define the advantage of
an algorithm A at breaking the one-wayness of F as:

Definition 2.4 (Collision Resistance). For a function ensemble 7 = {F) }sen,
where each function f € F) has the type f: X\ — )\, define the advantage of
an algorithm A at breaking the collision resistance of F as:

CRHFAVLA, FI(N) = Pr () = f) and o £+ L5 .

(z,2") « A(f)
Definition 2.5 (Pseudorandom Function). For a function ensemble F =

{Fr}ren, where each function f € F) has the type f: Ky x Xy — V¢, for an
algorithm A4, and a bit b € {0,1}, define

pars(N) i=Pr [APO(f) =11 fo:=f(k,-) ,



where Funs[Xy, Ys] denotes the set of all functions with domain Xy and co-
domain Y¢. Then, define the advantage of an algorithm A at breaking the pseu-
dorandomness of F as:

PRFAV[A, F](A) = [pa.70(A) — pari(N)].

Definition 2.6 (Factoring). We define the advantage of an algorithm A at
factoring integers of the form pq, for primes p and ¢, as

o P, q <& Primesy
FactAdv[AJ(A) i=Pr |1 <ged(t, N) < N: 720 )

We define FactAdv,2,[A]()) analogously, except that we run algorithm A on p?q.

3 One-Wayness of Jacobi Signatures

Our first result relies on a conjecture of Boneh and Lipton [7], which states that,
for a prime p, each value in Zj has a unique Legendre signature of length [2 log? pl:

Conjecture 3.1 (Boneh and Lipton [7]). For all sufficiently large primes p,
for all distinct x,x" € Zy, and for £ = [2 log? pl, it holds that Jpe(x) # Jpe(2').

Our results also hold under a weaker conjecture, where the signature length
is £ = log®(p), for any ¢ > 2. At the end of this section, we further discuss
Conjecture 3.1.

Under Conjecture 3.1, we show that inverting the Jacobi-signature function
modulo an integer N = p?q, for primes p and ¢, is as hard as hard as factoring N,
provided that the Jacobi-signature length is at least [2log? N7. Specifically, we
define 7V to be

j,PWF = {Jn2x2 | P,q € Primesy; N p*-q}.
‘We then have:

Proposition 3.2 (One-Wayness of Jacobi Signatures). Under Conjec-
ture 3.1, for every efficient algorithm A, there is an efficient algorithm B such
that for all A € N

OWFAdv[A, TOVF](\) < FactAdv,z,[B]()) + negl(\).

Proof. Suppose there exists an efficient adversary A that breaks one-wayness of
JOWF with advantage e = OWFAdv[A, 7OVF]()\). We construct an algorithm B
for factoring integers of the form p2q as follows:

— On input the modulus N, Algorithm B samples z < Zy and computes
t = ged(z, N). If t # 1, then Algorithm B outputs ¢.

— If ged(x, N) = 1, then = € Z%;, so Algorithm B runs 2’ < A(Jn ¢, Iy ()
where ¢ = 2)\? is the signature length.



— Algorithm B computes t = ged(N, z — ).
To complete the proof, we analyze the advantage of algorithm B:

— By definition, the adversary receives N = p?q, where p and ¢ are odd primes.

— Consider the initial value = that Algorithm B samples. If ged(z, N) # 1,
then Algorithm B successfully factored N. If ged(x, N) = 1, then the distri-
bution of x is uniform over Z3;. By assumption, with probability at least ¢,
Algorithm A then outputs 2" such that Jy ¢(z') = Jn o(2).

— By Fact 2.2, Iy (2') = Jyo(2") = Jg(z) = Jne(z). By Conjecture 3.1, we
then have that z = =’ mod gq.

— Next, consider the view of adversary A. Again by Fact 2.2,

Ine(z) = Jye(x) = Jge(z mod q).

Since Jy¢(x) is only a function of x mod ¢, we conclude via the Chinese
Remainder Theorem that Jy ¢(x) information-theoretically hides the value
of £ mod p?. This means the value of =’ mod p? that Algorithm B chooses
is independent of  mod p?. Moreover, since the distribution of 2 is uniform
over Z%;, the value of z mod p? is uniform over Z;z. Thus,

1 1
Z%2] plp—1)
Thus, with probability 1 — negl()), it holds that z # 2’ mod p?. If z =

2’ mod ¢ and = # 2’ mod p?, then it follows that ged(z — 2, N) € {q, pq} so
algorithm B produces a non-trivial factor of N.

Pr[z = 2’ mod p?] = negl()).

We conclude that algorithm B succeeds in factoring N with probability
FactAdv,z,[B](\) > € — negl(\) = OWFAdv[A, JOVF|(\) — negl()). O

Remark 3.1 (Polynomial Number of Preimages). Conjecture 3.1 asserts that for
= 2[10g2 p], the length-¢ Legendre signature of = € Z; uniquely determines p.
We can relax this conjecture to require that for every length-¢ signature o €
{-1, 1}Z7 there are at most polylog p number of values « where J, ;(x) = 0. In this
case, the reduction algorithm from Proposition 3.2 still applies, except its success
probability is now smaller by a factor 1/ polylog p. This is because the pre-image
2’ output by the one-wayness adversary A will only satisfy 2’ = x mod ¢ with
probability 1/ polylogp rather than with probability 1. Several works focused
on cryptanalyzing the Legendre-signature-based cryptosystems have relied on
similar conjectures (c.f., [15, §2], [5, Assumption 1] and [10, Heuristic 1]).

Discussion of Conjecture 3.1. If Conjecture 3.1 were true unconditionally,
it would imply a surprising number-theoretic result. Specifically, Conjecture 3.1
implies that the least quadratic non-residue modulo p is at most [2 log? p] + 1:

Proposition 3.3. If all length-{ Legendre signatures modulo a prime p are dis-
tinct, then the least quadratic non-residue modulo p is at most £ + 1.



Proof. If the least quadratic non-residue is n,, then the length-¢ Legendre signa-
tures of the first max{0, n, — ¢} positive integers are identical—i.e., they consist
of strings of £ ones. If all length-¢ signatures are to be distinct, it must then be
that n, — ¢ <1. O

There is no known proof that the least quadratic non-residue modulo an
arbitrary prime is even bounded by polylog(p), except under the Generalized
Riemann Hypothesis [2,3,16]. The tightest bound currently known is n,, < log? p
under the Generalized Riemann Hypothesis [16]. If Conjecture 3.1 were true
unconditionally, it would imply an O(log? p) bound on the least quadratic non-
residue, which in turn would give an O(log® p)-time deterministic algorithm for
producing a quadratic non-residue. Whether such an algorithm exists (uncondi-
tionally) is a longstanding open question [1].

The smallest signature length ¢ for which we know Conjecture 3.1 to be
unconditionally true is £ > p® for some ¢ > 0 [6]. This would only imply the
hardness of inverting the Jacobi pseudorandom generator with exponentially
long output, which is not interesting in the standard cryptographic setting.

4 Collision Resistance of Jacobi Signatures

In this section, we show that if:

— factoring numbers of the form N = p2q, for primes p and g, is hard, and
— there exists a constant k € (2,3) such that for most primes p, all Legendre
signatures of length [klogp] are unique

then the Jacobi-signature function modulo N is collision resistant when the
signature length is f% log N1.

More precisely, our argument for collision resistance relies on the following
number-theoretic assumption:

Assumption 4.1 (Uniqueness of Jacobi Signatures). There exists a con-
stant k € (2,3) such that for a random \-bit prime p, for all distinct x,2’' € L,
and for £ = [klogp], it holds that J,(x) # Jpe(x'), except with probability
negligible in X, only over the choice of prime p. More formally, we assume that
for € = [klogp], there exists a negligible function negl(-) such that for all A € N,

Pr[3z # 2’ : Jpe(x) = Jpe(x') | p 4 Primesy] = negl(\).
This assumption differs from Conjecture 3.1 in two ways. In particular,

1. this assumption considers Legendre signatures of length O(logp) whereas
Conjecture 3.1 considers Legendre signatures of length .Q(log2 p), and

2. this assumption is a statement about a large fraction of primes p, whereas
Conjecture 3.1 is a statement about all large enough primes p.



We need the first modification since for the Jacobi-signature function Jy, to
be compressing, the signature length ¢ must satisfy ¢ < log N. When N =
p?q, this requires k < 3. In addition, we require k > 2 to evade the birthday
bound. Specifically, for a prime p, if we heuristically model the Jacobi signatures
Jp(z) for each x € Z; as uniform random strings drawn from {1, 1}*, then
by the birthday bound, with constant probability, there will exist two distinct
x,x" € Z;, with a common Jacobi signature. However, if we consider signatures
of length ¢ = (2 + ¢)[log p] for any constant ¢ > 0 then, again heuristically, the
probability that there exist x # 2’ with the same Jacobi signature is at most
p?/p**e = 1/p° = negl(M).

The second modification is also necessary, since the conclusion of the assump-
tion does not hold for all primes p. That is, there are infinitely many primes p for
which there exist pairs z, 2" € Z; whose Legendre signatures of length [100log p]
are identical. This follows from the fact that there are infinitely many primes p
for which the least quadratic non-residue is £2(log plogloglogp) [12]. For such
primes p, the Legendre signatures of the elements “1” and “2” will be identical,
whenever that the signature length is O(logp).

It is not at all obvious to us that Assumption 4.1 is true. That said, prior work
has used similar assumptions in the cryptanalysis of the Legendre-signature-
based cryptosystems [5,15,10] (see also Remark 4.1).

Collision resistant hash function from Jacobi signatures. We now give the
main result of this section. Let k € (2,3) be the constant from Assumption 4.1.
On security parameter \, let

TERHE = LTn s | . € Primesy; N & 1% - q)

be the family of Jacobi-signature functions defined on number of the form N =
p%q. Notice that on modulus N, the signature length is kX = [g log N7. For this
signature length, the Jacobi-signature function is compressing.

Proposition 4.2 (Collision Resistance of Jacobi Signatures). Under As-
sumption 4.1, for every efficient algorithm A, there is an algorithm B such that

CRHFAdv[A, 7 RHFI()\) < FactAdv,z,[B]()\) + negl()).

Proof. Suppose there exists an efficient adversary A that breaks collision resis-
tance of J“RHF with advantage e = CRHFAdv[A, 7RHF](\). We use Algorithm A
to construct Algorithm B of the claim. Algorithm B, on input N = p?q, runs the
collision finder (z,z") < A(Jn,¢) where £ = kA, and outputs ged(N,z —z). We
analyze Algorithm B’s advantage:

— Whenever Algorithm A outputs a valid collision in Jy ¢, we have Jy ¢(z) =
JIne(z') and z # 2’ mod N.

— Since N is of the form p2q, by Fact 2.2, a collision in the Jacobi signature
modulo N implies a collision in the Legendre signature modulo ¢: J, ¢(x) =
Jq,g(a}/).



— By Assumption 4.1, if J, ,(z) = Jy¢(z’), then
r=2'modq = (z-—2')=0modyg,

except with probability negligible in A.
— However, since x # 2’ mod N, it must be that

r# 12’ modp? = (z—2')#0mod p*.

Therefore (z — 2') is a multiple of ¢ and not a multiple of p?. This means
ged(x—a', N) € {q,pq}, and Algorithm B obtains a factor of N with advan-
tage

FactAdv,z,[B]()\) > € — negl(\) = CRHFAdv[A, JRHF] —negl(\). O

Remark 4.1 (Assumption 4.1 with k > 3). Assumption 4.1 above requires the
constant k to be strictly smaller than 3. If we consider the hardness of factoring
N = p?q when the primes p and ¢ have different bit-lengths, then our results
follow from a weaker version of Assumption 4.1 that takes & > 3. To illustrate
this, suppose it is hard to factor N = p?q where p <* Primesy,1 and q < Primes)
(i.e., pis a (A+1)-bit prime and g is a A-bit prime). Then, for k = 3, the Jacobi-
signature function Jy px maps a (3\ + 2)-bit input to a kA = 3A-bit output.
This is a compressing function, and moreover, by an analogous proof as that
for Proposition 4.2, the Jacobi-signature functions Jy x is collision-resistant
assuming Assumption 4.1 holds for k = 3.

Assumption 4.1 with & = 3 coincides with the conjecture made by Frixons
and Schrottenloher [10, Heuristic 1] for the cryptanalysis of the Legendre pseu-
dorandom function.

5 Factoring Breaks the Jacobi Pseudorandom Function

In this section, we attack the Jacobi pseudorandom function [5], a natural gener-
alization of the Legendre pseudorandom function [13] proposed by Grassi et al.
On a public modulus N, secret key k € Zy, and input = € Zy, the Jacobi
pseudorandom function outputs the Jacobi symbol of (k + z) modulo N.

We show that breaking the pseudorandomness of the Jacobi pseudoran-
dom function is no harder than factoring the modulus N. This gives the first
subexponential-time distinguisher on the Jacobi pseudorandom function, and
gives a quantum-polynomial-time distinguisher as well [20].

Definition 5.1 (Jacobi Pseudorandom Function). The Jacobi pseudoran-
dom function is the function ensemble J7RF := {JPRF1, , where for each
A € N, we define

k+zx p,q <& Primesy

PRF

=< JIn(k,x) = ,
& {N( 2 (N>‘N<—pq }

where the key space and input space of Jy are K, = X, = Zy, and the
output space is {—1,1}.



Proposition 5.2 (Using Factoring to Break the Jacobi PRF). For every
efficient algorithm A, there exists an efficient algorithm B such that for all A € N,

PRFAdv[B, 77RF](\) >

> % - FactAdv[A](A).

Proof. Given a factoring algorithm A, we construct the algorithm B as follows:

Algorithm B (Jy):

— Invoke A(N) to obtain a factorization of N. If factorization fails,
then B aborts with output L.

— Using the prime factors N = pq, compute the four distinct square
roots of 1 € Z%. (Since the square roots of 1 modulo both p and ¢
are {—1,1}, we can deterministically compute the four square roots
of 1 modulo N = pq using the Chinese Remainder Theorem.) Call
these roots (r, —r, s, —s).

— Query the oracle f four times, once on each value in {r, —r, s, —s}.

— Output “17if f(r)- f(—r) = f(s)- f(—s) € Z},. Output “0” otherwise.

With probability FactAdv[A]()), algorithm A outputs a factorization of N. We
now compute the advantage when this happens:

— When f is pseudorandom—i.e., f(z) := Jy(k,x) for some modulus N and
key k € Z3;, we have by the multiplicativity of the Jacobi symbol,

o0 (57) (5 (557) - (55°).

2

since 72 = s2 = 1 mod N. By the same argument, we have f(r)- f(—r) =
(%) In this experiment, the adversary always outputs 1.

— When f is a uniformly random function, then f(s), f(—s), f(r), and f(—r)
are each independently and uniformly distributed over {—1,1}. Thus, the
probability that f(s)f(—s) = f(r)f(—r) is exactly 1/2.

Thus, whenever algorithm B successfully factors N, algorithm B achieves distin-
guishing advantage 1/2. We conclude that

PRFAdv[B, 77RF](A) > = - FactAdv[A]()). O

DO =

6 Open Problems

We have given a new connection between the hardness of inverting Jacobi signa-
tures and factoring. One potential next step is whether it is possible to remove
our results’ reliance on number-theoretic conjectures, or to show hardness under
the sole assumption that factoring integers of the form N = pgq, for primes p and
q, is intractable. Finally, it remains to show that is it hard to invert Legendre
signatures, under a more well-studied number-theoretic conjecture.
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