
Et tu, Brute? Side-Channel Assisted Chosen
Ciphertext Attacks using Valid Ciphertexts on

HQC KEM
Thales Paiva∗1, Prasanna Ravi2, Dirmanto Jap2 and Shivam Bhasin2

1 Fundep and CASNAV, Brazil
2 Temasek Laboratories, Nanyang Technological University, Singapore

thalespaiva@gmail.com prasanna.ravi@ntu.edu.sg djap@ntu.edu.sg
sbhasin@ntu.edu.sg

Abstract. HQC is a code-based key encapsulation mechanism (KEM) that was selected
to move to the fourth round of the NIST post-quantum standardization process.
While this scheme was previously targeted by side-channel assisted chosen-ciphertext
attacks for key recovery, all these attacks have relied on malformed ciphertexts for
key recovery. Thus, all these attacks can be easily prevented by deploying a detection
based countermeasures for invalid ciphertexts, and refreshing the secret key upon
detection of an invalid ciphertext. This prevents further exposure of the secret key
to the attacker and thus serves as an attractive option for protection against prior
attacks. Thus, in this work, we present a critical analysis of the detection based
countermeasure, and present the first side-channel based chosen-ciphertext attack
that attempts to utilize only valid ciphertexts for key recovery, thereby defeating the
detection based countermeasure. We propose novel attacks exploiting leakage from
the ExpandAndSum and FindPeaks operations within the Reed-Muller decoder for
full key recovery with 100% success rate. We show that our attacks are quite robust
to noise in the side-channel measurements, and we also present novel extensions of our
attack to the shuffling countermeasure on both the ExpandAndSum and FindPeaks
operation, which renders the shuffling countermeasure ineffective. Our work therefore
shows that low-cost detection based countermeasures can be rendered ineffective, and
cannot offer standalone protection against CC-based side-channel attacks. Thus, our
work encourages more study towards development of new low-cost countermeasures
against CC-based side-channel attacks.
Keywords: Code-based cryptography · Electromagnetic Side-Channel Attack · HQC
· Key Encpasulation Mechanism · Chosen Ciphertext Attack

1 Introduction
The NIST standardization process for post-quantum cryptography concluded the third
round in 2022 with the announcement of 4 winners (1 KEM and 3 digital signature schemes)
for standardization. Three code based KEMs (HQC, BIKE and Classic McEliece) advanced
to the fourth round of the standardization process, and at least one among these KEMs
will be standardized at the end of the fourth round. While implementation performance
and theoretical security served as the main criteria in the initial rounds, resistance against
side-channel attacks (SCA) and fault injection attacks (FIA) emerged as an important
criterion in the final round, as clearly stated by NIST at several instances [AH21,RR21].

∗Part of this work was done while the author was a PhD student at the University of São Paulo.

mailto:thalespaiva@gmail.com
mailto:prasanna.ravi@ntu.edu.sg
mailto:djap@ntu.edu.sg
mailto:sbhasin@ntu.edu.sg


2 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

This work focuses on HQC [MAB+21], a code-based KEM whose security is based on
the syndrome decoding problem for quasi-cyclic codes. HQC can be seen as an intermediate
scheme between the other two code-based KEMs currently being considered by NIST,
namely, Classic McEliece [BCL+19] and BIKE [ABB+21]. Its quasi-cyclic structure
improves efficiency compared to Classic McEliece, while avoiding the reliance on a secret
sparse structure found in BIKE, making HQC a more conservative choice. Similar to
LWE-based schemes, HQC employs error-correction mechanisms to recover the message
after errors accumulate during decryption. To achieve this, HQC leverages a combination
of well-known Reed-Muller and Reed-Solomon error-correction codes.

There have been several side-channel attacks, particularly attacks exploiting the pow-
er/EM side-channel reported on HQC KEM [SRSWZ21,SHR+22,GLG22]. Most of these
attacks target the decapsulation procedure with chosen-ciphertexts for key recovery. All
these attacks fall under the category of side-channel assisted chosen-ciphertext attacks.
These attacks use malformed ciphertexts to trigger decapsulation failure and exploit corre-
sponding side-channel leakage for key recovery. Moreover, there have been several timing
and cache-timing side-channel attacks [HSC+23,GHJ+22], all of which also only utilize
invalid/malicious ciphertexts for key recovery.

One of the standard ways to protect against these attacks is to employ masking
countermeasures for the decapsulation procedure, but we expect them to come at a
significant performance penalty, similar to other PQC schemes such as Kyber. For
schemes such as Kyber, there have been alternative approaches that propose low-cost
countermeasures against CC based attacks [XPRO20,RCDB22]. These countermeasures
rely on detecting malicious ciphertexts and refreshing the secret key upon detection of an
invalid ciphertext to prevent further exposure. Such countermeasures can also be effective
for HQC KEM, as all existing side-channel attacks on key recovery only utilize malformed
ciphertexts. Especially since these countermeasures come at a low-cost, they serve as an
attractive option for designers for protecting against CC-based side-channel attacks on
HQC KEM.

In this work, we perform a critical analysis of the decapsulation failure check coun-
termeasure, and present novel CC-based side-channel attacks that only work with valid
ciphertexts, thereby bypassing the decapsulation failure check countermeasure for HQC
KEM. Moreover, we also identify new types of side-channel vulnerabilities within the RM
decoding operation of HQC KEM within the decapsulation procedure, leading to novel
key recovery attacks using valid ciphertexts.

Our Contribution

In this work, we present the following new contributions:

1. We demonstrate novel CC-based side-channel attacks on HQC KEM, that only rely
on valid ciphertexts to carry out the attack for key recovery. In order to detect
leakage from valid ciphertexts, we exploit two operations within the Reed-Muller
decoder: ExpandAndSum and FindPeaks, and these operations have not been
targeted by previous side-channel attacks on HQC KEM.

2. We propose novel key recovery algorithms exploiting leakage from the ExpandAnd-
Sum and FindPeaks operations for full key recovery with 100% success rate. While
our attack on the ExpandAndSum operation leads to key recovery in only 2 traces,
our attack on the FindPeaks operation requires about 200 thousand traces for full
key recovery.

3. We also show that our key recovery attacks are quite robust to noise in the side-
channel measurements, and full key recovery is possible even in the presence of
significant errors of up to 40% bit error rate in the recovered codeword.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 3

4. We also demonstrate novel key recovery attacks on the shuffled implementations of
both the ExpandAndSum and FindPeaks, and demonstrate impact of the shuffling
countermeasure on key recovery. While shuffling increases the attacker’s complexity
for key recovery, it does not concretely prevent the attack. Our novel key recovery
algorithms are designed in such a way that they are invariant with respect to the
shuffling countermeasure. This therefore calls for the design of strong side-channel
countermeasures to protect against CC-based side-channel attacks.

We perform experimental validation of our CC attack using valid ciphertexts, on the
unprotected and proprietary shuffled implementation variants of HQC KEM taken from
the pqm4 library [KRSS]. Table 1 summarizes our results and shows a comparison with
previous works. Our attack is the only one that is not easily thwarted by refresh-on-failure
low-cost countermeasures. We remark that we do not target masking countermeasures
since we are not aware of a masking scheme for HQC KEM, as well as an available masked
implementation of HQC KEM for analysis.

Our work therefore shows that low-cost detection based countermeasures can be
rendered ineffective, and cannot offer standalone protection against CC-based side-channel
attacks. Thus, our work encourages more study towards development of new low-cost
countermeasures against CC-based side-channel attacks.

Table 1. Comparison with previous power/EM based side-channel attacks when attacking
HQC with 128-bit parameters.

Reference Target operation Number of traces for key recovery Avoided with
refresh-on-failure
countermeasures?Unprotected Shuffled

(Low-level)
Shuffled

(Top-level)

[SRSWZ21] BCH decoder (replaced) 10,000 – – Yes
[SHR+22] Reed-Solomon decoder 53,000 – – Yes
[GLG22] Hadamard transform 20,000 – – Yes

This work ExpandAndSum 2 3682 64,200 No
This work FindPeaks 200,000 20,000,000 – No

2 Preliminaries

Vectors and matrices are denoted by bold lowercase and uppercase letters. We use zero-
based indexing for vectors, and a[i] denotes the i-th entry of a. We sometimes abuse the
notation a[i] to represent the entry of a whose index is (i mod n). The cyclic rotation of a
vector a by i positions to the right is denoted by a≫ i. In our analysis, it will be useful
to talk about contiguous parts of a cyclic vector, which are called slices. A k-bit slice of a
starting at position i is denoted as slicek

i (a) = [a[i], . . . , a[i + k − 1]]. We let slices wrap
around the end of a vector, therefore slice3

n−1 (a) = [a[n− 1], a[0], a[1]]. This, allows for a
more concise notation and somewhat more intuitive descriptions in specific parts of our
analysis. We denote the space of all byte arrays of length n bytes as Bn. If b ∈ Bn, then
b[i] denotes its i-th byte, while b[i]k denotes the kth bit of b[i].

A binary [n, k]-linear code is a k-dimensional linear subspace of Fn
2 , where F2 denotes

the binary field. The Hamming weight of a vector v, denoted by w (v), is the number of its
non-zero entries. The Hamming distance between two vectors is the number of coordinates
in which they differ. The support of a binary vector v ∈ Fn

2 , denoted as supp (v), is the
set of indexes of its non-null entries. We denote by L (w) the subset of Fn

2 consisting only



4 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

of elements of weight w. The product1 of two binary vectors u, v ∈ Fn
2 is defined as

u · v =
∑

i∈supp(u)

(v≫ i) =
∑

i∈supp(v)

(u≫ i).

3 HQC
This section presents the parameters and algorithms used by HQC, followed by a brief
discussion of previous SCA attacks against the scheme.

3.1 Parameters and Algorithms
HQC provides its parameter sets defining (n, k, δ, w, wr, we) for each security level, as
shown in Table 2. The integers n and k are the length and dimension, respectively, of
the public error correction code C used by HQC. Parameters w, wr and we correspond
to the weights of the sparse vectors used for key generation and encryption. Parameter
M = n2/128 is the multiplicity of the repeated Reed-Muller code, which is a building
block of code C and it is an important parameter used in our attacks.

Table 2. Parameter sets for HQC [MAB+21].
Security
level n1 n2 M n k w wr = we

Failure probability
(upper bound)

128 46 384 3 17669 128 66 77 2−128

192 56 640 5 35851 192 100 114 2−192

256 90 640 5 57637 256 133 149 2−256

For each parameter set, HQC uses a public binary [n, k]-linear code C, which is defined
by the concatenation between a repeated Reed-Muller (RM) code and a Reed-Solomon
(RS) code. The repeated Reed-Muller code is a binary [n2, 8]-linear code whose minimum
distance is n2/2, while the Reed-Solomon is a non-binary linear code. Since the internal
details of the RS codes are not important in this work, we simply consider that they take
a string of k bits, then add redundancy to it, and return 8n1 bits. Figure 1 illustrates the
encoding process of code C.

Code C comes with an efficient pair of algorithms for encoding and decoding. Intuitively,
if m ∈ Fk

2 , then Encode (m) is responsible to add redundancy to it. If c = Encode (m) + e
for some error vector e ∈ Fn

2 , then Decode (c) returns m as long as the weight of e is not
too large. Notice that the decoding of a corrupted codeword goes in the inverse direction
of Figure 1, that is, first remove the padding bits, then use the decoding algorithms for the
Reed-Muller code in each block, followed by the Reed-Solomon decoder to the 8n1 bits.

Decoding Repeated Reed-Muller codes. We now review the RM decoding in detail, as it
is the main focus of our work. Let M be the multiplicity2 of the RM code and let n2 = 128M .
Suppose w ∈ F8

2 was encoded using the repeated RM code as z = Encoderm (w) ∈ Fn2
2 .

Let e ∈ Fn2
2 be an error vector of weight w (e) < ⌊n2/4⌋. Given a corrupted codeword

z′ = z + e, the RM decoding procedure recovers w with the following 3 steps.

1. ExpandAndSum: This operation over z′ returns vector a ∈ Z128, such that a[i] =∑M−1
m=0 z′[i+128m]. That is, ExpandAndSum sums the M bits corresponding to the

(possibly corrupted) repetitions of each of the 128 bits of the original RM codeword.
1It is well-known that Fn

2 equipped with this product is isomorphic to the polynomial ring F2[x]/(xn −1).
2The multiplicity is the number of times the Reed-Muller code is repeated.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 5

crs
1

RM−−−→ crmrs
1

crs
2

RM−−−→ crmrs
2

...
...

...

crs
n1

RM−−−→ crmrs
n1

crsRS−−→m crmrs
Padding with−−−−−−−−−−→
n−n1n2 zeros Encode (m)

k bits 8n1 bits

8 bits n2 bits

n1n2 bits n bits

Figure 1. The encoding process using concatenated Reed-Muller and Reed-Solomon codes
with padding.

2. Hadamard transform: This operation outputs transform← Hadamard(a) ∈ Z128.
It can be shown that transform[i] represents how likely the corrupted codeword
z′ resulted from the RM encoding of the binary representations of i or (128 + i),
depending on the sign of transform[i] [MS77].

3. FindPeaks: The final step is then to compute w← FindPeaks(transform). This
operation first finds the index pos with the largest absolute value in transform.
Then, if transform[pos] ≥ 0, it sets w = pos + 128, otherwise it sets w = pos.
Finally, it returns vector w ∈ F8

2 as the binary representation of w.

Algorithms used by HQC. The IND-CPA encryption scheme underlying the IND-CCA
secure HQC KEM is presented in Algorithm 1. While the key generation and encryption are
more directly understood, let us see why decryption works. If we expand vector c′ = v−u·y,
as computed in the decryption algorithm, we obtain c′ = Encode (m) + x · r2 − r1 · y + e.
Intuitively, since x, y, r1, r2, and e all have low weight, we expect e′ = x · r2 + r1 · y + e to
have a relatively low weight. HQC parameters are carefully chosen to ensure that w (e′)
is sufficiently low for it to be corrected out of c′ with overwhelming probability, using
the concatenated decoding algorithm C.Decode. The concatenated decoding of C, first
applies the internal Reed-Muller decoder followed by the external Reed-Solomon decoder
to correct the errors in c′, and hopefully obtain the original message m.

The scheme uses the implicit-rejection Fujisaki-Okamoto transformation [HHK17] in
order to build upon the IND-CPA secure HQC encryption scheme into an IND-CCA secure
HQC KEM. This enables the detection of invalid/malicious ciphertexts with overwhelming
probability, thereby providing theoretical security against chosen-ciphertext attacks.

3.2 Prior Works and Motivation
The decapsulation procedure of HQC KEM has been subjected to several timing and power
side-channel attacks to recover the long-term secret key [BDH+21, RRCB20, HHP+21,
RRD+23]. In the following, we briefly describe prior side-channel attacks on the decapsu-
lation procedure of HQC KEM.

The first power side-channel attack in this context was proposed by Schamberger
et al. [SRSWZ21], targeting the original version of HQC based on BCH codes. It used
malformed ciphertexts to query the decapsulation oracle, uses side-channel leakage from
the BCH decoder to realize a Plaintext Checking (PC) oracle that returns if the error
has been corrected for a given chosen-ciphertext. They were able to recover full key
in ≈ 10000 traces. The same authors adapted their attack to the updated version of
HQC based on concatenated Reed-Muller and Reed-Solomon codes, by exploiting leakage
from the Reed-Solomon decoder, realizing a similar PC oracle for key recovery [SHR+22].
Subsequently, Goy et al. [GLG22] presented a simplified version of this attack, showing that
leakage from the Hadamard transform operation in the RM decoder, for malformed/invalid



6 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

Algorithm 1. IND-CPA secure HQC PKE Scheme [MAB+21].
1: procedure CPAPKE.KeyGen
2: h← Fn

2
3: (x, y)← (L (w))2

4: s← x + h · y
5: Return pk← (h, s), sk← (x, y)

6: procedure CPAPKE.Encrypt(pk, m ∈ B∗, seed ∈ B∗)
7: (e, r1, r2)← Pseudorandom sample from (L (we)× L (wr)× L (wr)) using seed
8: u← r1 + h · r2
9: v← C.Encode (m) + s · r2 + e

10: Return ct = (u, v)

11: procedure CPAPKE.Decrypt(ct, sk)
12: c′ = v− u · y
13: m′ = C.Decode (c′)
14: Return m′

ciphertexts for full key recovery in ≈ 20000 traces. Similarly, there have been timing
side-channel [GHJ+22,PT20] as well as cache-timing attacks [HSC+23], targeting leakage
from the re-encryption procedure for key recovery, to realize a PC oracle that also relies
on malformed/invalid ciphertexts for key recovery.

All the aforementioned Chosen-Ciphertext (CC) based side-channel attacks can be
prevented using the masking countermeasure, but masking the entire decapsulation proce-
dure of HQC KEM is expected to incur a significant performance penalty, as has been
observed for other PQC schemes [OSPG18,BGR+21]. Moreover, we are not aware of a
masking scheme for HQC KEM. This therefore calls for potential low-cost countermeasures
to counter such attacks against HQC KEM.

In this context, we make a key observation that all the aforementioned attacks rely
on invalid/malformed ciphertexts that always induce a decapsulation failure. Thus, an
alternative approach towards countering such attacks has been towards development of low-
cost countermeasures that attempt to detect such malicious ciphertexts [XPRO20,RCDB22].
If detected as malicious, the DUT can choose to refresh the secret key, ensuring further
exposure for attacks is prevented. Thus, the attacker is restricted to recovering the
secret key with only a single trace, which therefore offers concrete protection against all
the previously proposed CC based side-channel attacks on HQC KEM. We refer to this
countermeasure as the decapsulation failure check countermeasure.

3.3 Attacking Decapsulation Failure Check Countermeasure against
CC based SCA

In this work, we perform a critical analysis of the decapsulation failure check countermeasure
and construct novel side-channel attacks using valid chosen-ciphertexts that does not trigger
refresh of the secret key. This calls for a completely new approach that uses valid chosen-
ciphertexts for key recovery. This leads to identification of new side-channel vulnerabilities
in the decapsulation procedure, that provides new type of information about the secret key.
This also leads to identification of novel key recovery algorithms for practical key recovery
attacks. This therefore makes our attack unique compared to prior side-channel attacks on
HQC KEM, which can be easily defeated by the decapsulation failure check countermeasure.
Moreover, we also demonstrate novel attacks on the shuffling countermeasure that protects
the targeted operations by our attack.

Since our attack only relies on valid ciphertexts to defeat the decapsulation failure check
countermeasure, we are limited to targeting operations in the decryption procedure for key
recovery. In this respect, we identify two types of leakages from the RM decoder in the



T. Paiva, P. Ravi, D. Jap, S. Bhasin 7

decryption procedure that can be exploited for key recovery with valid chosen ciphertexts.
They are: 1) ExpandAndSum Operation 2) FindPeaks Operation. We remark that
our work is the first to exploit leakage from these two operations for key recovery. In the
following, we demonstrate novel side-channel attacks exploiting leakage individually from
both these operations for key recovery. We start with briefly describing the adversary
model for our attack.

Adversary Model. The attacker’s target is to recover the long-term secret key sk used by
the target’s decapsulation procedure of Kyber KEM. We assume physical access to DUT
performing decapsulation for power/EM measurements. Since our attack is a CC-based
attack, we assume the attacker’s ability to communicate with the target decapsulation
procedure with chosen ciphertexts of their choice. We note that this is a standard adversarial
model used in several CC-based side-channel attacks [RRCB20,XPRO20,BDH+21]. All
the chosen ciphertexts used in our attack for key recovery are valid ciphertexts. Since it
is a profiled attack, the attacker has access to a clone device, on which they can control
the secret key, so as to build side-channel templates for any intermediate variable of their
choice.

Experimental Setup. We target the HQC implementation from the pqm4 library [KRSS],
a benchmarking and testing framework for PQC schemes on the 32-bit ARM Cortex-
M4 microcontroller. This is the main optimization target recommended by NIST for
embedded software implementations. Since we are not aware of any assembly optimized
implementations of HQC for the embedded microcontrollers, all of our analysis was
conducted on the reference implementation. We demonstrate our attacks using the EM
side-channel measurements captured from an STM32F4 microcontroller (running at 24
MHz) using a Langer RF-U 5-2 near-field EM probe placed on top of the chip and are then
collected using a Lecroy 610Zi oscilloscope at a sampling rate of 1.25 GSam/sec, amplified
30dB with a pre-amplifier. We also used a 48 MHz analog low-pass filter to remove high
frequency noise in our traces.

4 SCA of ExpandAndSum Operation
The Reed-Muller decoding procedure is computed separately over n1 RM corrupted
codewords of c′ in the decryption procedure, and each of the RM codewords is passed
as variable src to ExpandAndSum. The ExpandAndSum is the first operation of the
Reed-Muller decoder and refer to Figure 2 for its implementation as a C code snippet. The
input codeword of 16 ·M bytes, or n2 bits, is stored in the src array. The operation runs
in two steps. In the first step (Lines 6 to 10), each bit of the first 16 bytes are extracted
and stored separately as individual elements in the output array dest of 128 integers. In
the second step (Lines 11 to 18), each bit of the successive (M − 1) segments of 16 bytes
are extracted and accumulated into the corresponding indices in the output array dest.

Thus, we can clearly observe a bitwise manipulation behaviour of the codeword in
src in both the steps of the ExpandAndSum operation. Similar behavior has also been
observed in other PQC schemes such as Kyber and Frodo [ABD+20] leading to message
and key recovery attacks [RR21,RBRC20,NDGJ21]. However, this is the first time that
such behavior is reported for HQC, and in the following, we demonstrate exploitation of
side-channel leakage to extract the complete codeword c′ in src one bit at a time.

4.1 Leakage Detection and Template Building
We use the well-known TVLA metric for leakage detection [GJJR11], and particularly
focus on detecting leakage from single bits of the codeword stored in the src array. To test



8 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

leakage of the first bit of the codeword (i.e.) src0, we capture side-channel measurements
for ciphertexts from two separate sets, CT0 and CT1, defined next. For CT0 and CT1, we
collect 10,000 ciphertexts such that the first bit src0 = 0 and src0 = 1 respectively, while
all the other bits of the codeword are random. This can be chosen by the attacker on a
clone device, where they control the secret key.

We now obtain two sets of side-channel measurements, T0 and T1, corresponding to
decapsulation of ciphertexts CT0 and CT1, respectively. We normalize each trace and
compute the Welch’s t-test to identify the differentiating features between the trace sets.
Figures 3a and 3b show 8 t-test plots validating leakage from the bits processed in Steps
1 and 2 of ExpandAndSum, respectively. We can see noticeable peaks in the t-test
corresponding to single bits of the codeword, clearly demonstrating presence of leakage
due to the bitwise manipulation from both steps of ExpandAndSum. In the following,
we demonstrate how the detected leakage can be exploited to recover single bits of the
codeword one at a time.

4.2 Recovery of the Corrupted Codeword c′ in Two Phases
We now show an attack to recover bits of src that are processed either in Step 1 or 2 of
ExpandAndSum. The attack can then be repeated to recover all bits of src, separately,

1 void expand_and_sum ( uint16_t dest [128] , uint8_t src [16*M]) {
2 // Remember that src represents one RM block of the corrupted codeword c’
3 size_t seg , bytepos , bitpos ;
4
5 /* Bitwise manipulation of codeword in first 16- byte segment */
6 for ( bytepos = 0; bytepos < 16; bytepos ++) {
7 for ( bitpos = 0; bitpos < 8; bitpos ++) {
8 dest[bytepos*8+bitpos] = (src[bytepos] >> bitpos) & 1;
9 }

10 }
11 /* Bitwise manipulation of codeword in remaining M -1 16- byte segments */
12 for ( block = 1; block < M; block ++) {
13 for ( bytepos = 0; bytepos < 16; bytepos ++) {
14 for ( bitpos = 0; bitpos < 8; bitpos ++) {
15 dest[ bytepos *8+ bitpos ] += (src[16*block+bytepos] >> bitpos) & 1;
16 }
17 }
18 }
19 }

Figure 2. C code snippet of ExpandAndSum operation in RM decoder of HQC KEM.
The target operations/variables for SCA are highlighted in red.

3400 3500 3600 3700 3800 3900
Features

50

0

50

100

T-
te

st
 V

al
ue

Leakage of First Segment

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(a) Leakage of the 8 bits in src[0] =
(src0, . . . , src7) from Step 1 of ExpandAnd-
Sum operation.

2600 2800 3000 3200 3400
Features

10

5

0

5

10

15

T-
te

st
 V

al
ue

Leakage of Other Segment

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

(b) Leakage of the 8 bits in src[16] =
(src128, . . . , src135) from Step 2 of Expan-
dAndSum operation.

Figure 3. Observed t-test leakage of single bits of the codeword in src, considering Steps
1 and 2 of the ExpandAndSum algorithm.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 9

and would ultimately provide a full recovery of c′. The attack is done in two phases. First
we build templates for a target device, and then we exploit exploit the ExpandAndSum
leakage to recover c′.

4.2.1 One-time Template Building For a Given Target

This phase involves building side-channel templates for the targeted bit of the codeword.
It is a one-time process for a given target device as the templates are independent of
the secret key, thus the same templates can be used to perform multiple attacks. We
use the t-test plots from Figure 3 obtained from leakage detection of src0, and select
those features whose absolute t-test value is above a certain threshold. This gives us
the set P0 of our points of interest (PoI). We stress that the threshold is a parameter of
the experimental setup, and can be empirically determined. Using selected features P0,
we build a reduced trace set RT (0,i) from each Ti for i = {0, 1}. We can then compute
the mean and co-variance matrix of each reduced trace set RT (0,i), which we denote as
µ(0,i) ∈ R∥P0∥ and Σ(0,i) ∈ R(∥P0∥)×(∥P0∥), respectively. Thus, the reduced template for
src[0]0 = i is denoted as Template(0,i) = (µ(0,i), Σ(0,i)), for i = 0 or i = 1. An analogous
process can be used to build templates Template(j,i) for all bits srcj , for j = 0 to n2 − 1.

4.2.2 Exploitation Phase with Valid Ciphertexts

In the exploitation phase, the attacker tries to recover the first bit src0 from a given
trace tr as follows. The PoI set P0 is used to build a reduced trace tr′

0, corresponding to
P0. Then the the maximum likelihood f(tr′

0)i of the reduced trace tr′
0 for i ∈ {0, 1} is

computed, to match with the templates Template(0,i) using the following expression:

f(tr′
0)i = 1√

(2π)k∥Σ∥
exp

(
−

(
tr′

0 − µ(0,i)
)T · Σ−1 ·

(
tr′

0 − µ(0,i)
))

.

This is used to classify whether src0 = 0 or src0 = 1 based on the highest value of f(tr′
0)i.

The same approach can be used to recover all the bits of the codeword one bit at a time.

4.2.3 Experimental Results

Figures 4a and 4b show the error rate when recovering the first 8 bits from the first segment
(i.e.) src[0] and first 8 bits from the second segment (i.e.) src[16], which are processed in
Steps 1 and 2 of ExpandAndSum, respectively. In both figures, we see a non-negligible
error rate between 4% and 20% when recovering single bits of the codeword. The leakage
is stronger in the first step, because it involves storing the single bits of the codeword in
memory, while the second step only involves extracting the bit of the codeword in the
registers, which manifests as weaker leakage.

We also observe the exact very similar success rates for other bits of the codeword,
since they are manipulated sequentially, by the same instructions. This gives rise to an
error rate of ≈ 14% for recovering each bit of the codeword c′ with c′ = mG + ê, where
ê = x · r2 + y · r1 + e, except for the last n− n1n2 padding bits which are not dropped
before being processed by ExpandAndSum.

While we are not able to achieve perfect recovery of c′ through SCA, we show that
an attacker can still recover the secret key in the presence of noise through our novel key
recovery algorithm.

4.3 Key Recovery
We now analyze how to use information on the corrupted codeword c′ = Encode (m)+ ê to
recover the secret key. Suppose we generate a number η of valid ciphertexts

(
ui, vi

)
, that



10 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

0 1 2 3 4 5 6 7
Bit Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Er

ro
r r

at
e

Bitwise Error Rate in First Segment

(a) Each of the 8 bits in src[0] =
(src0, . . . , src7) from Step 1 of ExpandAnd-
Sum operation.

0 1 2 3 4 5 6 7
Bit Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

Bitwise Error Rate in Other Segment

(b) Each of the 8 bits in src[16] =
(src128, . . . , src135) from Step 2 of Expan-
dAndSum operation.

Figure 4. Error rate in recovering single bits of the codeword from leakage of the
ExpandAndSum operation.
are created using values

(
mi, ri

1, ri
2, ei

)
, for each i = 1 to η. Then we use SCA on η traces to

get an approximation of each corrupted codeword as (c′)i ≈ Encode
(
mi

)
+ ri

2x + ri
1y + ei.

Notice that the quality of the approximation depends on the strength of the SCA
leakage. We can then write η approximate linear equations as

(c′)i − Encode
(
mi

)
≈

∑
j∈supp(x)

(
rk

2 ≫ j
)

+
∑

j∈supp(y)

(
rk

1 ≫ j
)

+ ek.

Remember that the main argument for the effectiveness of HQC decoding is that the
products x ·rk

2 and y ·rk
1 are somewhat sparse, and so is their sum. Because of this sparsity,

we expect (c′)k−Encode
(
mk

)
to have a large number of ones in the same locations as the

circular shifts of rk
2 and rk

1 that are selected by the non-null entries of x and y, respectively,
in the corresponding products of the equation above.

This motivates us to define vectors likelihoodsx and likelihoodsy, whose entries
represent the likelihoods of the corresponding index being 1 in x or y, by computing the
similarity between (c′)k − Encode

(
mk

)
and the vectors rk

2 and rk
1 , respectively. Formally,

we let each entry j of the likelihood vector associated it x to be defined as3

likelihoodsx[j] =
η∑

k=1

∣∣∣supp
(

(c′)k − Encode
(
mk

))
∩ supp

(
rk

2 ≫ j
)∣∣∣ .

The definition of likelihoodsy is analogous, but uses r1 instead of r2. We emphasize that,
although these likelihood vectors do not represent a probability, we expect that entries
i ∈ supp (x) would show a high value of likelihoodsy[i], and analogously for y.

Figure 5 shows the histogram of entries likelihoodsx[j] when j is, or is not, a non-null
of x. To generate these values, we simulated the case when η = 10 SCA decapsulation
traces were used, and assumed that the obtained information on the bits of c′ have
an error rate of ε = 25%. Even under these noisy SCA assumptions, we can see that
likelihoodsx[i] indeed tends to be higher for values i for which x[i] = 1. In particular,
while the separation between the distributions is not perfect, if we take the values of j with
the lowest values of likelihoodsx[j], our results suggest that we can be rather confident
that they correspond to zero entries in x.

3We remark that the definition of these likelihood vectors is somewhat similar to the computation
of the counters of unsatisfied parity-check equations used by Gallagher’s [Gal62] well-known decoding
algorithm for low-density parity-check codes.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 11

300 350 400 450

Values of likelihoodsy[j]

0

5

10

15

20
N

u
m

b
er

o
f

o
cc

u
rr

en
ce

s
x[j] = 0

x[j] = 1

Figure 5. The distribution of the likelihood
values, using η = 10 simulated SCA traces,
assuming bit error rate of ε = 25% for the
SCA recovery of c′.

0.0 0.1 0.2 0.3

SCA bit error probability ε of c′

100

101

N
u
m

b
er
η

o
f

S
C

A
tr

a
ce

s

η = 2

95% quantile

Average

Figure 6. The number of SCA traces of Ex-
pandAndSum to recover the key for increas-
ing bit error rate ε, considering parameters
for 128 bits of security.

Algorithm 2. Solving the key equation using likelihood vectors.
1: procedure TryToSolveKeyEquation(likelihoodsx, likelihoodsy)
2: for n_zeros_in_x = 1 to n do
3: n_zeros_in_y← n− n_zeros_in_x
4: Zx ← Indexes of the n_zeros_in_x lowest values of likelihoodsx
5: Zy ← Indexes of the n_zeros_in_y lowest values of likelihoodsy
6: Fix x[i] = 0 for each i ∈ Zx, and y[j] = 0 for each j ∈ Zy
7: Try to solve linear system s = x + hy for the n non-fixed values
8: if low weight solutions x and y are found then
9: return (x, y)

10: return ⊥ ▷ More SCA traces needed to build better likelihood vectors

Now we have to actually use the likelihood vectors to find the key secret (x, y).
While likelihoods vectors can be combined with advanced information-set decoding algo-
rithms [HPR+22], we propose a simple linear algebra algorithm. This makes the evaluation
of the key recovery more straightforward, since we do not need to take into account
complicated attacker trade-offs between key recovery complexity and number of traces.

The key recovery algorithm from the likelihoods vectors is shown as Algorithm 2.
At each iteration, the algorithm fixes a number of zeros in x and in y based on their
corresponding likelihood vectors, and tries to solve for the missing part, which always
consists of n bits. Since the key equation s = x + hy can be written as n binary linear
equations, the algorithm should be able to find the key if the entries fixed as 0 were
correctly guessed.

4.3.1 Experimental Results for Key Recovery targeting ExpandAndSum

Figure 6 shows the number of traces for full key recovery, considering different bit error
rates ε. With very high probability, the attack works with only one query for values of
ε up to 10%. Furthermore, the attack works for relatively high error rates of 35% with
about 25 traces on average. Since the observed error rate in our real SCA experiments
was about ε ≈ 14%, we expect that only η = 2 SCA traces should be enough for key
recovery. Comparing the number of traces for key recovery with prior works with invalid
ciphertexts [SMS19,SRSWZ21,GLG22], we observe that bitwise leakage of the codeword
from the ExpandAndSum operation enables full key recovery in a few tens of traces,
while prior works requires ≈ 10 thousand to ≈ 20 thousand traces for key recovery.



12 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

5 SCA of FindPeaks Operation
In this section, we demonstrate how leakage from the FindPeaks operation, which is
the final operation in the RM decoding procedure can be exploited using valid chosen-
ciphertexts for full key recovery.

5.1 Using SCA to Obtain the Peak Position
Refer to Figure 7 for the C-code snippet of the FindPeaks operation. Given an array
transform as input, the main loop is responsible for finding the index with the highest
absolute value, which is the peak. The loop iterates over every element of transform,
and computes its corresponding absolute value abs in Line 8. Then, it computes variable
mask (Line 10) based on the absolute value of the previous peak (peak_abs) and abs.
The variable mask is defined as mask = 0x0000 when abs ≤ peak_abs, and mask =
0xFFFF when abs > peak_abs. The mask variable is then used to update the values of
variables pos, peak, and peak_abs whenever a change is required, which is characterized
by mask = 0xFFFF.

1 uint8_t find_peaks ( uint16_t transform [128]) {
2 uint16_t peak_abs = 0;
3 uint16_t peak = 0;
4 uint16_t pos = 0;
5 uint16_t t, abs , mask;
6 for ( uint16_t i = 0; i < 128; i++) {
7 t = transform [i];
8 abs = t ^ (( -(t >> 15)) & (t ^ -t));
9 /* Computation of Mask Variable */

10 mask = -(((uint16_t) (peak_abs - abs)) >> 15);
11 /* Utilization of Mask Variable */
12 peak ^= mask & (peak ^ t);
13 pos ^= mask & (pos ^ i);
14 peak_abs ^= mask & ( peak_abs ^ abs);
15 }
16 pos |= 128 & (( peak >> 15) - 1);
17 return ( uint8_t ) pos;
18 }

Figure 7. C code snippet of the FindPeaks operation used by the Reed-Muller decoder
in HQC. The target operations and variables for SCA are highlighted in red.

Therefore, we identify that tracking the value of the mask variable enables to recover
the index of the peak. In particular, the last occurrence of mask = 0xFFFF in the 128
iterations of FindPeaks provides the final position pos of the peak variable, as updated
in Line 13. Furthermore, notice that this value corresponds to the 7 least significant bits
of the output of FindPeaks. Now, remember that variable mask only takes two possible
values: 0x0000 or 0xFFFF. Since the values have a high Hamming distance of 16 bits,
these cases should be easily distinguishable through power and EM side-channel analysis.
In order to distinguish between mask = 0x0000 or 0xFFFF, we use the same t-test based
template technique used to recover single bits of the RM codeword using leakage from
ExpandAndSum in Section 4.

Compared with leakage from the ExpandAndSum operation, leakage of the mask in
FindPeaks is much more pronounced because of the large Hamming distance between its
two possible values. We propose to build a template for the mask = 0x0000 or 0xFFFF, in
each of the 128 iterations of the FindPeaks operation. This template can then be used
to recover the value of the mask variable in every iteration of the FindPeaks operation.

Exploiting Leakage of mask Variable. Figure 8 shows the t-test leakage due to the mask
variable in the first four iterations FindPeaks operation. We can observe corresponding



T. Paiva, P. Ravi, D. Jap, S. Bhasin 13

peaks in the t-test plot, and this leakage can be used to build template for mask =
0x0000/0xFFFF for each of the iterations, and this can be done for all iterations of the
FindPeaks operation. Given the clear leakage of mask, we obtained 100% success rate in
recovering the mask variable even with single traces. Thus, we observe that this leakage
can be used to easily recover the position of the peak, which in turn corresponds to the
least 7 significant bits of the output of FindPeaks.

5.2 Key Recovery
In the following, we demonstrate a novel key recovery algorithm that can exploit information
about the output of the FindPeaks operation, extracted through side-channels for full
key recovery, when a sufficiently large number of challenges is analyzed.

5.2.1 The Relation between the Side-Channel Information and the Secret Key

Let us first show how we can encode the 7-bit value obtained through SCA in a meaningful
way. Remember that FindPeaks is called n1 times, that is, one call for each RM block.
Let cfp

j ∈ F8
2 denote the output of FindPeaks applied to the j-th RM block. FindPeaks

is the last step of the RM decoding, therefore there are two possibilities: either the RM
decoder corrected all errors in the j-th block, or it did not. If the RM decoder successfully
corrected all errors in the block, then cfp

j = crs
j , where crs

j denotes the j-th 8-bit block of
the Reed-Solomon encoding of the message m, as shown in Figure 1.

But notice that, since the attacker knows m, they can easily compute the exact value
of each crs

j by simply encoding m with the Reed-Solomon code. Therefore, the attacker
can use the side-channel information on the FindPeaks output to learn if the RM decoder
did not corrected all errors in the j-th block. In particular, when the 7 least significant
bits of cfp

j and crs
j are different, then the RM decoder failed to decode the block. Formally,

we can represent the side-channel information by a binary vector d ∈ Fn1
2 , whose entries j

are defined as

d[j] =
{

0, if the 7 least significant bits of cfp
j and crs

j are equal,
1, otherwise.

Let us then investigate what kind of information on the secret key we can learn from
the SCA result encoded in vector d. Remember that the input to the decoding process
is c′ = Encode (m) + ê, where ê = x · r2 + y · r1 + e. The decoding procedure begins by
dropping the last n− n1n2 bits of c′, and the resulting n1n2-bit vector is broken into n1
blocks of n2 bits, and each of them is a RM codeword with some added noise.

Let c′
j and êj denote the corresponding blocks of n2 bits of c′ and ê, respectively. That

is, c′
j = slicen2

jn2
(c′) and êj = slicen2

jn2
(ê). Since the repeated Reed-Muller code used to

1500 2000 2500 3000
Features

750

500

250

0

250

500

750

T-
te

st
 V

al
ue

Leakage of Mask Variable in Each Iteration of FindPeaks Operation

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Figure 8. Observed t-test leakage corresponding to variable mask in the first four iterations
of the FindPeaks operation



14 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

encode each block is a linear code with minimum distance n2/2, then the RM decoder will
be able to correct the errors in c′

j if the weight of êj is w (êj) < ⌊n2/4⌋. Therefore, if the
j-th bit of the SCA output d is equal to 1, then we know that the weight of block êj must
be larger than ⌊n2/4⌋.

But by definition ê =
(∑

s∈supp(r2) (x≫ s) +
∑

s∈supp(r1) (y≫ s) + e
)

, and since ê
is sparse, the position of non-null entries of ê correlate with the non-null entries of the
shifts of x and y that are selected by the binary vectors r2 and r1, respectively, in the
summations above. Our main observation is that the attacker can then use the knowledge
on the failures on each RM block, together with r1 and r2, to infer the number of non-null
entries in the shifts of y and x, respectively.

Let us make this observation more formal. For concreteness, consider the pair of vectors
y and r1, but notice that we could have chosen x and r2 without loss of generality. Take
the j-th RM block êj , and notice that it can be written as

êj ≈
∑

s∈supp(r1)

slicen2
jn2

(y≫ s) ≈
∑

s∈supp(r1)

slicen2
(jn2−s) (y) .

Therefore, from d[j] and r1, we can learn a small amount of information on the weight
of slicen2

(jn2−s) (y) for each s in supp (r1). For example, if d[j] = 1, then, for each s in
supp (r1), we increase our belief that the weight of slicen2

(jn2−s) (y) is higher than previously
thought, otherwise we decrease it. Furthermore, if we have a sufficiently large number of
pairs of (r1, d), the values of (jn2 − s) mod n should cover the full set of integers modulo
n, which means we must be able to learn the weight of slicen2

i (y) for each possible i = 0
to n− 1.

This motivates us to define two vectors, w1 and w2 in Rn, as follows. Each entry
w1[i] represents the average number of failures when slicen2

i (y) was selected by a non-null
element of r1. Similarly, each entry w2[i] represents the same quantity but for x and r2.
Figure 9 illustrates how, for a sufficiently large number η of SCA observations, w1 and
w2 can be seen as approximations of the weights of the possible slices of n2 bits of y and
x, respectively. In particular, the figure shows this comparison for w1 and y, considering
η = 5 million traces.

6000 6500 7000 7500 8000

Index i

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

V
a
lu

e
o
f

w
1
[i

]

Positions in supp(y)

6000 6500 7000 7500 8000

Index i

0

2

4

6

W
ei

g
h
t

o
f

sl
ic

en
2
i

(y
) Positions in supp(y)

Figure 9. A comparison between w1 and the weight of each slice of n2 bits of y, considering
η SCA traces and parameters for 128 bits of security.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 15

5.2.2 Recovering the key

We now discuss how to use the information to effectively recover the key from vectors
w1 and w2, that are computed from observing SCA on FindPeaks for a number η of
decryption challenges. Once again, we focus on secret vector y, but the procedure works
analogously for x. Let us denote the weight of the i-th slice of n2 bits of y by

∆y(i) = w (slicen2
i (y)) .

Notice that, as shown in Figure 9, this definition implies that vector w1 can be seen as
a noisy representation of ∆y. Analyzing Figure 9, we can point two distinguishing patterns
that allow us to distinguish some of the non-null entries of y from ∆y.

• If ∆y(i) > ∆y(i + 1), then y[i] = 1. This happens because there is a 1 in slicen2
i (y)

but this 1 is not in slicen2
i+1 (y). Since the slices differ only in the first and last entries,

the only way to observe this is when y[i] = 1 and y[i + n2] = 0.

• If ∆y(i − n2) < ∆y(i − n2 + 1), then y[i] = 1. In this case, a new one was found
when going from slicen2

i−n2
(y) to slicen2

i−n2+1 (y). Since slicen2
i−n2+1 (y) contains y[i]

and slicen2
i−n2

(y) does not, then this happens when y[i] = 1 and y[i− n2] = 0.

Intuitively, these observations mean that indexes of non-null entries of y are typically
located in the right edges of the graphs, but not on the left ones, as shown in Figure 9. We
propose a simple approach to solve the problem of, given vectors w1 and w2, computing
the likelihoods of indexes being in the supports of y and x, respectively. The approach is
based on comparisons of moving averages to determine, for each index i, the likelihood
of w1[i] and w2[i] being right edges. While points closer to a right edge indeed tend to
correlate with non-null entries in the secret vectors, there are some important corner cases
that have to be considered. However, because of space limitations, we leave a detailed
description to the full version of this paper. After computing the likelihood vectors, we
can feed them to Algorithm 2 to recover the key.

5.2.3 Experimental Results for Key Recovery targeting FindPeaks

Figure 10 shows the number of SCA traces needed for a successful attack against 128 bits
of security. To simulate possible errors due to SCA, we consider that the SCA wrongly
classifies a change in the peak value with probability ε. Notice that even a small increase
in ε from 0 to 0.0025 has a significant impact on the number of traces needed, which goes
from about 200,000 to more than a million. This is unlike ExpandAndSum operation
where the noise in side-channel information on the attacker’s effort (number of traces) had
much lesser impact. However, the observed SCA output was 100% correct in all cases, that
is, the SCA experimental error was ε = 0. Therefore, key recovery requires η = 188,333
SCA traces on average for full key recovery. As can be seen, leakage from the FindPeaks
operation provides much lesser information compared to ExpandAndSum, which enables
key recovery with less than a hundred traces (refer to Section 4.3.1).

6 Attacking Shuffled Implementations
We have shown that both the ExpandAndSum and FindPeaks operation leak information
about the erroneous codeword c′, which can be used for key recovery with valid ciphertexts.
Both the targeted operations are sequential in nature, and we exploit information from
variables manipulated in every iteration of both the operations. Thus, shuffling both
the operations serve as a low-cost countermeasure to protect against the aforementioned
attacks.



16 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

0.00 0.02 0.04 0.06 0.08 0.10

SCA error probability ε

105

106

107

108

N
u

m
b

er
η

o
f

tr
a
ce

s

η = 188333

95% quantile

Average

Figure 10. Number of SCA traces of the FindPeaks operation needed to recover the key
for different levels ε of SCA error, considering parameters for 128 bits of security.

When the operations are shuffled, then the attacker does not know the value of the
individual bits that are processed, and hence the attacker cannot perform leakage detection
that was possible on unprotected implementations. But, notice that, the leakage of the
bits of the codeword as well as the mask variable still exists. The attacker can therefore
perform leakage detection and build templates on a clone device , on which the attacker
has knowledge of the random permutation used for every execution. Thus, we assume that
the attacker builds side-channel templates on the clone device, and uses the templates to
perform attack on the target device. In the following, we demonstrate novel attacks on
the shuffled implementations of the ExpandAndSum and FindPeaks operations.

6.1 Attacking Shuffled ExpandAndSum
We consider two variants of the shuffling countermeasure on the ExpandAndSum operation:
(1) Intra-codeword Shuffling and (1) Inter-codeword Shuffling. We now refer to Fig. 2 for
the C code snippet of the ExpandAndSum operation. For the intra-codeword shuffling,
we shuffle the order in which the individual bits of the codeword are accessed within the
ExpandAndSum operation of a given RM codeword. We generate a random permutation
using the Fisher-Yates shuffle algorithm for the 128 bits accessed in each segment of the
codeword. In this case, the attacker can extract the Hamming Weight of each of the n1
n2-bit RM codewords.

For inter-codeword shuffling, one can generate a random shuffling order in which the the
n1 codewords are decoded using the RM decoder algorithm. This performs a higher level
shuffling on the processing of the codewords themselves, without altering the underlying
bitwise operations within ExpandAndSum. From this shuffling variant, the attacker can
only obtain HW of all the n1 n2-bit codewords, which is much less information compared to
Intra-codeword Shuffling, where the attacker can extract HW of each of the n1 codewords.

Extracting Side-Channel information from Shuffled ExpandAndSum. In both the
shuffling variants, the leakage of the individual bits of the codeword still exists and is similar
to the unprotected implementation. But the attacker does not know the shuffling order and
hence the attacker can only build side-channel templates on a clone device where they have
knowledge of the random permutation. Thus, we are still in a profiled setting, and we can
perform similar experiments as that on the unprotected implementation. We performed
experiments to recover single bits of the codeword from the shuffled ExpandAndSum
operation, and observed an average bit error rate of 29% in recovering every bit of the
codeword.

6.1.1 Key Recovery using the SCA Information

We know that the attacker can still build templates for the single bits of the codeword
from ExpandAndSum, provided they are given access to a clone device with knowledge
of the random permutation on the clone device. With this, the attacker can recover the



T. Paiva, P. Ravi, D. Jap, S. Bhasin 17

HW of the individual RM codewords or all the RM codewords together, depending on the
shuffling variant.

We now discuss novel key recovery algorithms to perform full key recovery that applies
to both the shuffling variants, that only uses information from the approximation of the
Hamming weight RM codewords. We first demonstrate key recovery for the intra-codeword
shuffling variant, and show extensions to the inter-codeword shuffling variant.

The Likelihoods Vectors. Suppose the attacker generates a valid ciphertext (u, v) using
m, r1, r2 and e, following an honest execution of the encryption algorithm. After asking
the target to decrypt (u, v), the attacker uses SCA to obtain an array w ∈ Zn1 , which is a
list of the n1 approximate Hamming weights of the n2-bit corrupted RM codewords.

Let us then see how w relates to the secret key (x, y). Let crmrs
j denote the j-th

RM codeword of crmrs = Encode (m), which is known by the attacker who generated
the ciphertext. Similarly, let êj be the j-th block of n2 bits of the accumulated noise
ê = x · r2 + y · r1 + e. Then, by definition, w[j] ≈ w

(
crmrs

j + êj

)
, for each entry j = 0 to

n1 − 1. The attacker, who holds vectors w and crmrs, can compare them and reason as
follows.

1. When w[j] > w
(
crmrs

j

)
, then at least one of the non-null entries of êj was responsible

for flipping a bit of crmrs
j from a 0 to a 1.

2. Similarly, when w[j] < w
(
crmrs

j

)
, then there was an entry in êj responsible for

flipping a 1 to a 0.

This motivates us to define the vector flip_candidates ∈ {0, 1}n1n2 such that

flip_candidates[i] =


1, if crmrs[i] = 0 and w [⌊i/n2⌋] > w

(
crmrs

⌊i/n2⌋

)
,

1, if crmrs[i] = 1 and w [⌊i/n2⌋] < w
(

crmrs
⌊i/n2⌋

)
,

0, otherwise.

(1)

Intuitively, if flip_candidates[i] = 1, then crmrs[i] may have been one of the bits
flipped by the error ê when computing c′ = crmrs + ê. In other words, if the weight
of the j-th block increased when going from crmrs to c′, then all of the null entries in
block j are marked as 1. Alternatively, if the weight of the j-th block decreased, then
all of the non-null entries in block j are marked as 1. If no change is observed, that is
w [⌊i/n2⌋] = w

(
crmrs

⌊i/n2⌋

)
, then the entries of the j-th block are marked as 0.

We are now ready to define the likelihood vectors for entries of x and y as follows.
Suppose the attacker creates η valid ciphertexts

(
uk, vk

)
with known values

(
mk, rk

1 , rk
2
)
.

Let wk denote the information obtained from the SCA of the decryption of the k-th cipher-
text (u, v). Let flip_candidatesk denote the vector computed with Equation 1, using
crmrs ← Encode

(
mk

)
and wk. Then we compute the likelihood vectors likelihoodsx as

likelihoodsx[j] =
η∑

k=1

∣∣supp
(
flip_candidatesk

)
∩ supp

(
rk

2 ≫ i
)∣∣ .

Analogously, the likelihoods vector likelihoodsy is computed using r1 instead of r2. It is
interesting to notice that the likelihood vectors used for the non-shuffled implementation
can be seen as a particularization of the ones above when the shuffling block has length 1,
and not n2.



18 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

Key Recovery. Now, with the likelihood vectors in hand, we can use them together with
Algorithm 2 to try to solve the key equation. Figure 11 shows the number of decryption
SCA traces needed for a successful attack against 128-bit HQC parameters. To simulate
SCA errors when classifying between 0 and 1, we use the bit-error probability ε. Since the
observed SCA bit-error rate was around 29%, we consider that the attack is successful
with just 681 traces on average for full key recovery.

0.0 0.1 0.2 0.3 0.4

SCA error probability ε of bit misclassification

102

103

104

N
u

m
b

er
η

o
f

tr
a
ce

s

η = 681

95% quantile

Average

Figure 11. The number of decryption SCA traces needed to recover the key, when Expan-
dAndSum is implemented with the intra-codeword shuffling countermeasure, considering
128-bit security parameters.

Extending Key Recovery to Inter-codeword Shuffling. Our key recovery algorithm can
easily be extended to work with the Hamming weight of segments of c′ of arbitrary length.
The main step for this generalization is to replace n2 in Equation 1 with the lengths of the
blocks whose approximate Hamming weights can be obtained through SCA, which depends
on how granular is the implemented shuffling. Remarkably, this allows us to recover the
key even when shuffling is done by mixing RM blocks among themselves. In this case,
SCA would give us the Hamming weight of the full c′, except for the last n− n1n2 bits.
Assuming perfect SCA information (i.e. ε = 0), our key recovery algorithm requires 17,500
ciphertexts on average. However, considering our empirical bit error rate of ε = 29%, we
were able to fully recover the key with 64,200 traces.

6.2 Attacking Shuffled FindPeaks
For the shuffled FindPeaks, we generate a random permutation for the main loop of
FindPeaks using the Fisher-Yates algorithm, which is equivalent to say that the input
transform is given in its shuffled form shuff(transform) (refer to C code of unprotected
FindPeaks in Fig. 7). Similar to the shuffling assumption used in the previous section for
ExpandAndSum, all other operations remain the same, and we stress that this corresponds
to the most randomized assumption possible within FindPeaks. Since the leakage in the
shuffled FindPeaks operation is the same as that of the unprotected implementation, the
attacker can use leakage from a clone device to build templates for the leaky mask variable
in the same manner as an unprotected implementation. From our practical experiments
on the shuffled FindPeaks, we were able to recover the mask variable with 99.99% success
rate.

The attacker’s main technique for key recovery is to recover the number p of times that
the temporary peak changes when FindPeaks is processing the input shuff(transform).
While the number p clearly depends on the actual permutation of transform obtained
through shuffling, we show that, on average, p is higher when the number of unique values
in transform is larger. Now, the number of unique values is invariant with respect to
shuffling, and we demonstrate a novel technique to exploit this information to recover
the secret key. We remark that this is the first time this type of correlation is used for
attacking shuffled implementations.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 19

6.2.1 Key Recovery Attack

Using SCA on the shuffled FindPeaks, the attacker can recover the number of times the
temporary peak has changed when processing shuff(transform). Surprisingly, we now
show that this is enough to find the key, although a high number of traces is needed.

The Likelihoods Vectors. For each full decryption, the SCA information can be rep-
resented by a vector p ∈ Zn1 . Each entry p[j] is the number of times there is a change
of value in the temporary peak when iterating over shuff(transform) array of the j-th
Reed-Muller corrupted codeword. Formally, we can write

p[j] = |{ℓ : |shuff(transform)[ℓ]| > |shuff(transform)[i]| , for all 0 ≤ i < ℓ < 128}| .

Now let us consider what affects p[j] for a fixed n2-bit block j. In particular, we can
point two conditions for the number of peak changes p[j] to be high.

1. When the peak is located in the end of array shuff(transform), so there is more
opportunity for the current peak variable to be changed during the computation.

2. When there is a large number of unique entries shuff(transform). This makes it
more likely that the variable with the current peak will take different values before
finding the peak.

The first condition is rather useless, because the shuffling removes any useful information
related the position of the peak. Interestingly, however, the second condition can be
exploited, as we explain next.

Remember that the transform vector, which is the output of the Hadamard transform,
contains information on the distance from the corrupted RM codeword and each possible
valid codeword. Intuitively, then, when the noise is high, the number of different values in
the entries of transform should also be higher. In more detail, when the error block êj

added to the RM codeword crmrs
j has high Hamming weight, there are more possibilities

of binary combinations for the Hamming differences from the 28 Reed-Muller codewords,
resulting in a richer set of possible values in transform. The importance of this observation
comes from the fact that the number of different values in transform is invariant when
the vector is shuffled.

Figure 12a illustrates this property showing that the number of unique values in
shuff(transform) is indeed positively correlated with the weight of the error block êj .
Now, if we want to use the values of p to attack the shuffled implementation of FindPeaks
we use the following information flow. The value of p[j] gives some information on the
number of unique values in shuff(transform) associated with block j, which in turn is
related to the weight of the j-th block of n2 bits in the error ê. Figure 12b demonstrates
that this correlation holds. In fact, we can see that larger values of p[j], on average,
correspond to higher error weights in êj . However, the standard deviation, which is
shown as the grey error bands, is relatively large. This means that, if we want to use this
information for key recovery, we may need a large number of traces to get rid of the noise.

Now, we just concluded that the values in p are higher when the weight of the error ê in
each corresponding block is also higher. But this is exactly the same property observed for
vector d, which represents the SCA information obtained for the non-shuffled FindPeaks.
This means that we can build vectors w1 and w2, using p instead of d, just as described
in Section 5.2.2. For these newly computed vectors w1 and w2, we observe the same
properties illustrated in Figure 9, although with much more noise when the same number
η of traces is used. Finally, we can also compute likelihood vectors likelihoodsx and
likelihoodsy with our algorithm based on edge-detection, as used in the non-shuffled
attack, applied to w2 and w1, respectively.



20 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

2 4 6 8 10 12 14 16 18

Unique absolute values in transfrom

0

50

100

150
W

ei
g
h
t

o
f

er
ro

r
ê
j

(a) Correlation between error weight
and the number of unique absolute
values in shuff(transform).

1 2 3 4 5 6 7 8 9 10 11 12

Number p[j] of peak changes

0

50

100

150

W
ei

g
h
t

o
f

er
ro

r
ê
j

(b) The correlation between p[j] and
the weight of the j-th error block êj

of n2 bits.

Figure 12. The correlations observed that allow key recovery, considering parameters for
128 bits of security. The grey error bands illustrate the standard deviation.
Key Recovery. Figure 13 shows the attack performance against the 128-bit security
parameters of HQC, when FindPeaks is implemented with shuffling. We can see that
the number of traces needed for the attack is about 100× larger than what is needed to
attack the non-shuffled implementation of FindPeaks. Furthermore, we can see that even
a very small probability ε of wrongly detecting a peak change with SCA greatly impacts
the recovery performance. Luckily, however, our side-channel analysis of the shuffled
implementation of FindPeaks achieves 100% accuracy, and therefore the attack should
be possible with about 21 million challenges, on average, as shown in the figure.

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030

SCA error probability ε of detecting peak change

107

108

109

N
u

m
b

er
η

o
f

tr
a
ce

s

η = 20800000

95% quantile

Average

Figure 13. The number of SCA traces needed to recover the key on Shuffled FindPeaks
operation for 128-bit security parameters.

7 Countermeasures and Concluding Remarks
We have clearly demonstrated that decapsulation failure check countermeasure does not
provide protection, as leakages from the ExpandAndSum and FindPeaks operation can
be efficiently exploited for key recovery using only valid ciphertexts. Our attacks exploit
leakages from the ExpandAndSum and FindPeaks operations for efficient key recovery,
and we have also proposed novel key recovery algorithms that enable 100% key recovery,
even in the presence of significant noise in the side-channel measurements. Moreover,
our results show that shuffling has no effect in hindering the attack, when targeting
ExpandAndSum, allowing key recovery with less than 4000 traces. On the other hand
shuffling does help FindPeaks operation, however, key recovery is still possible with 100×
more traces. This makes it important to consider masking strategies for ExpandAndSum
and FindPeaks, which may require a redesign of the decoding procedure. It is possible
that masking and shuffling together might serve as a strong countermeasure against our
proposed attacks, but an extensive study of the same is left for future work. Thus, our
work highlights urgent need for research on efficient masking schemes for HQC, which
currently is one of the few NIST candidates without a masked implementation.



T. Paiva, P. Ravi, D. Jap, S. Bhasin 21

References
[ABB+21] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay
Gueron, Tim Güneysu, Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo
Persichetti, Jan Richter-Brockmann, Nicolas Sendrier, Jean-Pierre Tillich,
Valentin Vasseur, and Gilles Zémor. BIKE: Bit flipping key encapsulation, 2021.
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf.

[ABD+20] Erdem Alkim, Joppe W. Bos, Leo Ducas, Patrick Longa, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM learning with errors key encapsulation:
Algorithm specifications and supporting documentation (September 30, 2020).
Submission to the NIST post-quantum project, 2020.

[AH21] Daniel Apon and James Howe. Attacks on NIST PQC 3rd Round Candidates,
2021. Invited talk at Real World Crypto 2021, https://iacr.org/submit/
files/slides/2021/rwc/rwc2021/22/slides.pdf.

[BCL+19] Daniel J Bernstein, Tung Chou, Tanja Lange, Rafael Misoczki, Ruben Nieder-
hagen, Edoardo Persichetti, Peter Schwabe, Jakub Szefer, and Wen Wang.
Classic McEliece: conservative code-based cryptography. 2019.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel van Beirendonck. Attacking and defending masked polynomial com-
parison for lattice-based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(3):334–359, Jul. 2021.

[BGR+21] Joppe W Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First-and higher-order implementations.
IACR Cryptol. ePrint Arch., 2021:483, 2021.

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in hqc and bike. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 223–263, 2022.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST Non-Invasive
Attack Testing Workshop, volume 7, pages 115–136, 2011.

[GLG22] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. A new key recov-
ery side-channel attack on HQC with chosen ciphertext. In Post-Quantum
Cryptography: 13th International Workshop, PQCrypto 2022, Virtual Event,
September 28–30, 2022, Proceedings, pages 353–371. Springer, 2022.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Theory of Cryptography Conference,
pages 341–371. Springer, 2017.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure Kyber.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
88–113, 2021.

https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf


22 Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts on HQC KEM

[HPR+22] Anna-Lena Horlemann, Sven Puchinger, Julian Renner, Thomas Schamberger,
and Antonia Wachter-Zeh. Information-set decoding with hints. In Code-
Based Cryptography: 9th International Workshop, CBCrypto 2021 Munich,
Germany, June 21–22, 2021 Revised Selected Papers, pages 60–83. Springer,
2022.

[HSC+23] Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, and
Thomas Johansson. Cache-timing attack against hqc. Cryptology ePrint
Archive, 2023.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
mupq/pqm4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[MAB+21] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier
Blazy, Jurjen Bos, Jean-Christophe Deneuville, Arnaud Dion, Philippe
Gaborit, Jérôme Lacan, Edoardo Persichetti, Jean-Marc Robert, Pascal
Véron, and Gilles Zémor. Hamming Quasi-Cyclic: HQC, 2021. https:
//pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory
of error correcting codes, volume 16. Elsevier, 1977.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel
attack on a masked IND-CCA secure Saber KEM. IACR Cryptol. ePrint
Arch., 2021:079, 2021.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical cca2-secure and masked ring-lwe implementation. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 142–174, 2018.

[PT20] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors,
Selected Areas in Cryptography – SAC 2019, pages 551–573, Cham, 2020.
Springer International Publishing.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
On exploiting message leakage in (few) NIST PQC candidates for practical
message recovery and key recovery attacks. IACR Cryptol. ePrint Arch.,
2020:1559, 2020.

[RCDB22] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anub-
hab Baksi. Side-channel and fault-injection attacks over lattice-based post-
quantum schemes (Kyber, Dilithium): Survey and new results. Cryptology
ePrint Archive, 2022.

[RR21] Prasanna Ravi and Sujoy Sinha Roy. Side-channel analysis of lattice-based
PQC candidates. Round 3 Seminars, NIST Post Quantum Cryptography,
2021.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(3):307–335, 2020.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf


T. Paiva, P. Ravi, D. Jap, S. Bhasin 23

[RRD+23] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel attacks
on lwe-based kems-parallel pc oracle attacks on kyber kem and beyond. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2023.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl. A power side-channel attack on the Reed-Muller Reed-
Solomon version of the HQC cryptosystem. In Post-Quantum Cryptography:
13th International Workshop, PQCrypto 2022, Virtual Event, September
28–30, 2022, Proceedings, pages 327–352. Springer, 2022.

[SMS19] Thomas Schamberger, Oliver Mischke, and Johanna Sepulveda. Practical
evaluation of masking for NTRUEncrypt on ARM Cortex-M4. In International
Workshop on Constructive Side-Channel Analysis and Secure Design. Springer,
2019.

[SRSWZ21] Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh.
A power side-channel attack on the CCA2-secure HQC KEM. In Smart Card
Research and Advanced Applications: 19th International Conference, CARDIS
2020, Virtual Event, November 18–19, 2020, Revised Selected Papers 19, pages
119–134. Springer, 2021.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnify-
ing side-channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of Kyber. IACR Cryptol. ePrint Arch., 2020:912, 2020.


	Introduction
	Preliminaries
	HQC
	Parameters and Algorithms
	Prior Works and Motivation
	Attacking Decapsulation Failure Check Countermeasure against CC based SCA

	SCA of ExpandAndSum Operation
	Leakage Detection and Template Building
	Recovery of the Corrupted Codeword c' in Two Phases
	Key Recovery

	SCA of FindPeaks Operation
	Using SCA to Obtain the Peak Position
	Key Recovery

	Attacking Shuffled Implementations
	Attacking Shuffled ExpandAndSum
	Attacking Shuffled FindPeaks

	Countermeasures and Concluding Remarks

