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Abstract. Digital signatures are a cornerstone of security and trust in cryptography, providing
authenticity, integrity, and non-repudiation. Despite their benefits, traditional digital signature
schemes suffer from inherent immutability, offering no provision for a signer to retract a previ-
ously issued signature. This paper introduces the concept of a withdrawable signature scheme,
which allows for the retraction of a signature without revealing the signer’s private key or
compromising the security of other signatures the signer created before. This property, de-
fined as “withdrawability”, is particularly relevant in decentralized systems, such as e-voting,
blockchain-based smart contracts, and escrow services, where signers may wish to revoke or
alter their commitment.
The core idea of our construction of a withdrawable signature scheme is to ensure that the
parties with a withdrawable signature are not convinced whether the signer signed a specific
message. This ability to generate a signature while preventing validity from being verified is
a fundamental requirement of our scheme, epitomizing the property of withdrawability. After
formally defining security notions for withdrawable signatures, we present two constructions
of the scheme based on the pairing and the discrete logarithm. We provide security proof
that both constructions are unforgeable under insider corruption and satisfy the criteria of
withdrawability. We anticipate our new type of signature will significantly enhance flexibility
and security in digital transactions and communications.
Keywords: Digital signatures, Withdrawable signature scheme, Withdrawability.

1 Introduction

Digital signatures are instrumental in constructing trust and security, acting as the essential mecha-
nism for authentication, data integrity, and non-repudiation in contemporary digital communications
and transactions. In specific applications of digital signature schemes, such as decentralized e-voting
systems, there may arise a natural need for the signer to possess the capability to “undo” a digital
signature. Undoing a digital signature implies that the signer may desire to retract the signature they
created, as seen in e-voting systems where a voter might wish to change or withdraw their vote before
the final vote tally.

However, in traditional digital signature schemes, undoing a digital signature is impossible, as it
persists indefinitely once a signature is created. Furthermore, digital signatures provide authenticity,
integrity, and non-repudiation for signed messages. As a result, when a message is signed, the non-
repudiation of its content is guaranteed, meaning that once the signature is generated, the signer
cannot rescind it. In light of this limitation, one might ask whether it is possible for a signer to
efficiently revoke or withdraw a previously issued digital signature without revealing their private key
or compromising the security of other signatures created by the signer. We answer this question by
presenting a withdrawable signature scheme that provides a practical and secure solution for revocating
or withdrawing a signature in a desirable situation.

We note that a traditional signature scheme can achieve “withdrawability” by employing a trusted
third party (TTP) to establish signature revocation lists. In cases where a signer desires to invalidate a
signature, they notify the TTP, which subsequently adds the revoked signature to the revocation list.
This enables future verifiers to consult the revocation list via the TTP, allowing them to determine if
the signature has been previously revoked before acknowledging its validity. As all participants fully
trust the TTP, including the revoked signature in the revocation list ensures its validity and enables
the withdrawal of the signature. However, this approach has a centralized nature as it depends on
the TTP’s involvement, which may not be desirable in decentralized systems. As in decentralized
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systems, signers may prefer to manage their signatures without relying on centralized authorities.
Therefore, constructing a withdrawable signature scheme that does not rely on a TTP turns out to
be a non-trivial problem to solve.

Withdrawable signatures can have various applications in different scenarios where the ability
to revoke a signature without compromising the signer’s private key is demanded. Here are some
potential applications:
Smart Contracts [32]. In the context of blockchain-based smart contracts, withdrawable signatures can
enable users to sign off on contract conditions while retaining the ability to revoke their commitment.
This can be particularly useful in situations where the fulfillment of the contract depends on the
actions of multiple parties or external events.
E-Voting Systems [20]. In a decentralized e-voting system, withdrawable signatures enable voters to
securely sign their votes while retaining the option to modify or retract their choices before the final
votes count. This additional flexibility improves the voting procedure by allowing voters to respond
to fresh insights or unfolding events before the voting period concludes.
Escrow Services [17]. Withdrawable signatures could be employed in decentralized escrow services
where multiple parties must sign off on a transaction. If one party decides not to proceed with the
transaction due to disputes or changes in conditions, they can revoke their signature without affecting
the security of other parties’ signatures.

In light of the above discussion, we require the following three properties from the withdrawable
signature:

1. A withdrawable signature should be verifiable, especially, it should be verified through the signer’s
valid public key.

2. Only the signer can generate a valid withdrawable signature.
3. A withdrawable signature, once withdrawn, cannot become valid again without the original

signer’s involvement.

In the forthcoming subsection, we provide a technical outline of the withdrawable signature
scheme, focusing on the technical challenges we had to face.

1.1 Technical Overview

The most important feature of our withdrawable signature scheme is withdrawability. The idea behind
is that a signer, Alice, should not only be able to sign a message m with her private key to obtain
the signature σ but also have the option to revoke the signature if she changes her mind. This means
the signature σ will no longer be verifiable with Alice’s valid public key.

Our approach to introducing withdrawability into standard digital signatures is achieved through
controlling the withdrawability feature through the verifiability of the generated signature. As a veri-
fiable signature is not withdrawable by the signer, our approach to constructing the withdrawable sig-
nature centers on generating “non-verifiable” signatures when withdrawability is desired. Meanwhile, a
withdrawable signature scheme needs to allow for the confirmation of a non-verifiable (withdrawable)
signature into a verifiable one, permitting the signer to lift the withdrawability of the withdrawable
signature when desired.

In what follows, we describe the challenges to realizing the withdrawable signature at a technical
level.
First attempt: A simple withdrawable signature scheme with TTP. As mentioned earlier, one straight-
forward solution to achieve withdrawability is to have a trusted third party (TTP) maintain a signa-
ture revocation list. However, if we want to attain withdrawability without relying on a revocation
list, an alternative approach can be explored as follows: In this approach, the signer, Alice, “hides”
a signature ω by encrypting it using her public key and the TTP’s public key, resulting in a hidden
signature σ, which can be regarded as a withdrawable signature. For example, the BLS signature [8]
on a message m, computed as ω = H(m)sks with the signer’s secret key sks ∈ Zp and the hash function
H : {0, 1}∗ → Zp, can be encrypted into σ = (gskta ·H(m)sks , ga), where gskt is the TTP’s public key,
with skt as the corresponding secret key, and a ∈ Z∗

p is a uniform random value chosen by the signer.
The withdrawable signature σ preserves the verifiability of the signature as the verification works

by checking whether the following equality holds: e(gskta ·H(m)sks , g)
?
= e(gskt , ga)e(H(m), gsks), where

gsks is the signer’s public key.
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In the above scheme, everyone can ensure that the signer has generated a valid signature for
the message m under her public key pks(= gsks), but they cannot extract the original signature
ω(= H(m)sks) from σ. (No party except for the TTP can obtain ω.) Meanwhile, σ is not verifiable
through only pks, which ensures that σ is a withdrawable signature.The signer then has the option
to withdraw σ merely by taking no action. Later, the signer can request the TTP to “decrypt” the
signature σ into the original signature ω using the TTP’s secret key skt.
Towards a withdrawable signature scheme without TTP. Implementing a withdrawable signature
scheme using a TTP presents a significant drawback, as signers, particularly in decentralized and
trustless systems, may wish to achieve withdrawability without reliance on the TTP. How can we
achieve withdrawability without the help of the TTP? One possible method involves directly remov-
ing the TTP and allowing the signer to create σ using a secret random value r ∈ Z∗

p chosen by her,
which can be regarded as equivalent to the TTP’s secret key skt. Subsequently, the signer publishes
the corresponding “public key”, represented as gr, and selects another random value a ∈ Z∗

p.
The withdrawable signature σ is then computed as σ = (gra ·H(m)sks , ga), where the verification

of σ can be easily performed using the public keys gsks and gr (with the value ga) with the following
verification algorithm: e(gra ·H(m)sks , g)

?
= e(gr, ga)e(H(m), gsks).

However, without the TTP, the signature σ immediately becomes a valid signature that can be
verified using the signer’s public keys (gskt , gr); thus, the withdrawability is lost.

Because of this issue, we still need to introduce an additional entity that, while not a TTP, will act
as a specific verifier chosen by the signer. More specifically, the signer can produce a signature that
cannot be authenticated solely by the signer’s public key but also requires the verifier’s secret key.
This ensures the signature appears unverifiable to everyone except for the chosen verifier, as everyone
can only be convinced that the signature was created either by the signer or the verifier. If the verifier
cannot transform this signature back into a signature that can be verified using the signer’s public
key only, this scheme will achieve withdrawability. In particular, only the signer has the option to
transform this signature into a verifiable one. To optimize the length of the withdrawable signature,
we limit the number of specific verifiers to one.

Another technical issue then surfaces: How can a signer transform the withdrawable signature
into a signature that can be directly verifiable using the signer’s public key (and possibly with addi-
tional public parameters)? A straightforward solution might be having the signer re-sign the message
with her secret key. However, this newly generated signature will have no connection to the original
withdrawable signature.
Our response to the challenges. To overcome the limitations above, we introduce a designated-verifier
signature scheme to generate a withdrawable signature for a message m, denoted as σ, rather than
directly generating a regular signature. For a signer Alice, she can create a withdrawable signature for
a certain verifier, Bob. Later, if Alice wants to withdraw the signature σ, she just takes no action. If
Alice wants to transform the withdrawable signature, she executes an algorithm, “Confirm”, to lift the
limitation on verifying σ and yield a signature σ̃, which we call “confirmed signature”, verifiable using
both Alice’s and Bob’s public keys. Note that the confirmed signature σ̃ can then be deterministically
traced back to the original σ.

Generally, there is a withdrawable signature scheme involving two parties, denoted by user1 and
user2. Without loss of generality, assume that user1 is the signing user, while user2 is the certain
verifier. Let a set of their public keys be γ =

{
pkuser1 , pkuser2

}
. At a high level, we leverage the

structure of the underlying regular signature to construct a withdrawable signature σ designated to
the verifier user2. Later with the signer’s secret key skuser1 and σ, user1 can generate a verifiable
signature for m through the public key set γ. This signature is the confirmed signature σ̃ and can
easily be linked with the withdrawable signature σ through the public key set γ.

If we still take the BLS-like signature scheme as an instantiation with pkuser1 = gskuser1 and pkuser2 =

gskuser2 , considering two hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Z∗
p. The signer user1 can

generate the withdrawable signature σ of message m for user2 as follows:

y
$←Z∗

p, r = H2(m, gy, H1(m)skuser1 ), u = H1(m)r

σ =(σ1, σ2, σ3) = (e(uyH1(m)skuser1 , gskuser2 ), u, gy).

The verification of σ can be performed using the secret key of user2 and the public key of user1 as
follows: σ1

?
= e(σ

skuser2
2 , σ3)e(H1(m)skuser2 , pkuser1)

?
= e(σ2, σ

skuser2
3 )e(H1(m)skuser2 , pkuser1).



4 Xin Liu, Joonsang Baek, and Willy Susilo

Now, assume that user1 needs to transform σ into a confirmed signature associated with γ. Since
user1 has the secret key skuser1 , user1 can easily resign m and reconstruct randomness through r =

H2(m,σ3, H1(m)skuser1 ) and transform σ into a confirmed signature σ̃ for m of public key set γ with
r as follows.

σ̃ = (gskuser2 skuser1rH1(m)skuser1 , gr, (pkuser2)
r).

The above signature scheme achieves withdrawability in such a way that even if user2 reveals it’s
secret key skuser2 , other users won’t be convinced that σ was generated from user1. This is due to the
potential for user2 to compute the same σ using skuser2 , as described below:

σ = (e(uy, gskuser2 )e(H1(m)skuser2 , gskuser1 ), gy, u)

= (e(uyH1(m)skuser1 , gskuser2 ), gy, u).

Meanwhile, for a user, i.e., user3, who only obtains σ and without skuser2 , the withdrawability is
achieved through the DBDH problem, as to decide σ is generated by user1 or user2, user3 needs to
decide whether σ contains e(uy, gskuser2 ) or e(uy, gskuser1 ) when given u, y and γ. The detailed proof of
withdrawability is later given in our paper.

We then demonstrate how to construct a withdrawable signature scheme using the Schnorr [29]-like
signature scheme with user1 and user2. Assume the public/secret key pair of user1 and user2 are still
(pkuser1 = gskuser1 , skuser1),pkuser2 = gskuser2 , skuser2) where skuser1 , skuser2 ∈ Z∗

p, respectively. Employing a
hash function H : {0, 1}∗ → Z∗

p, the signer user1 is capable of generating the fundamental Schnorr
signature ω = (t, z) for a given message m in the following manner: e $← Z∗

p, t = H(m, ge), z =
e− skuser1 · t.

With ω, the withdrawable signature σ of message m for user2 is generated as follows:

r = H(m, geskuser1 ), σ = (σ1, σ2, σ3) =
(
ge, pkz−r·t

user2 , gr
)
.

The verification algorithm of σ can be performed using the secret key of user2 and the public key
of user1 as follows: user2 first reconstructs t′ = H(m,σ1), and verifies if σ2 = (σ1(pkuser1σ3)

−t′)skuser2

holds or not.
Now, assume that user1 needs to transform σ into a confirmed signature that is associated with

γ =
{
pkuser1 , pkuser2

}
. Given that only user1 has the secret key skuser1 , user1 can still easily reconstruct

randomness r = H(m,σ
skuser1
1 ). However, a key distinction with the withdrawable signature based

on BLS is that with the withdrawable signature σ, user1 now cannot reconstruct ω from σ directly
because solving for “e” in the expression ge (related to the Discrete Logarithm (DL) problem) is
computationally difficult. Therefore, an alternative method is required for user1 to transform σ into
a confirmed signature σ̃. Our solution is summarised as follows:

– user1 begins by re-signing message m and generating a new Schnorr signature ωs = (ts, zs) with
its secret key.

– Using ts, user1 can compute z̃s = zs − rts. The verification of z̃s is finalized through the public
key pkuser1 and σ3 from the withdrawable signature.

– To ensure that σ̃ is associated with pkuser2 , user1 can generate another Schnorr signature ωt for
user2’s public key pkuser2 with r. The signature ω2 is verifiable through gr, which could be obtained
through σ3. This process ensures that the confirmed signature σ̃ is connected with σ.

The resulting confirmed signature σ̃ is shown as follows:

ej
$← Z∗

p, tj = H(pkuser2 , g
ej ), σ̃ = (ts, z̃s, ej , tj) .

We show that this construction of withdrawable signature using the Schnorr [29]-like signature
also achieves the attribute of withdrawability.

1.2 Our Contributions

Motivated by the absence of the certain type of signature scheme we want for various aforementioned
applications, we present the concept called withdrawable signatures. Our contributions in this regard
can be summarized as follows:
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1. We provide a formal definition of a withdrawable signature scheme that reflects all the character-
istics we discussed previously.

2. We formulate security notions of withdrawable signature, reflecting the withdrawability and un-
forgeability, two essential security properties.

3. We propose two constructions of withdrawable signature schemes based on pairing and DL.

This paper is organized as follows: We first review the related work in section 2. In Section 3,
we provide a comprehensive definition of withdrawable signatures, including their syntax and se-
curity notion. Section 4 begins with a detailed overview of the preliminaries we used to build our
withdrawable signature schemes, then we give the full description of our two proposed constructions.
Following that, Section 5 focuses on the security analysis of the above two withdrawable signature
constructions.

2 Related Work

In this section, we first review the previous work relevant to our withdrawable signature scheme and
highlight differences between our scheme and existing ones.

Designated-Verifier Signature Scheme. The concept of designated-verifier signature (or proof) (DVS)
was first introduced by Jakobsson et al. [19], and independently by Chaum [9]. Since then, the field
has been studied for several decades with various assumptions leading to different instantiations.
[22, 34–37]. The concept of designated-verifier signature (or proof) (DVS) was first introduced by
Jakobsson et al. [19], and independently by Chaum [9]. Since then, the field has been studied for
several decades with various assumptions leading to different instantiations. Notable contributions in
this area include works [22,34–37].
Revocable Group Signature Scheme. Group signature [2, 6, 9] allows any member within a group
to authenticate a message on behalf of the collective. In the context of revocable group signature
schemes [3, 23, 27], revocation refers to the capability of the group manager to revoke a member’s
signing privilege.
Ring Signature Scheme. The concept of ring signature was first proposed by Rivest, Shamir, and
Tauman in [28]. In a ring signature scheme, a signer can select a set of public keys, including their
own, and create a signature on behalf of that set. [1, 4, 5, 7, 10–12, 15, 16, 39]. For instance, in the
public key setting, include RSA-based [28], discrete logarithm-based [16], pairing-based [7], lattice-
based [11, 12] approaches. Ring signatures can be generically constructed via zero-knowledge proof
on a signer index, particularly through a one-out-of-many proof, as demonstrated in [15, 26]. The
logarithmic-size constructions are also suggested in [4, 13,14].
Revocable Ring Signature Scheme. The notion of revocable ring signatures [24] was first introduced in
2007. This concept added new functionality where a specified group of revocation authorities could
remove the signer’s anonymity. In [41], Zhang et al. presented a revocable and linkable ring signature
(RLRS) scheme. This innovative framework empowers a revocation authority to reveal the real signer’s
identity in a linkable ring signature scheme [25].
Universal Designated Verifier Signature Scheme. Designated-verifier signature schemes have multi-
ple variations, including Universal Designated Verifier Signature (UDVS) schemes. Steinfeld et al.
proposed the first UDVS scheme based on the bilinear group [30]. They developed two other UDVS
schemes, which expanded the conventional Schnorr/RSA signature schemes [31]. Following the work
by Steinfeld et al., several UDVS schemes have been proposed in literature [18,33,38,40]. Additionally,
the first lattice-based UDVS was proposed in [21].

Discussion on differences. Our withdrawable signature constructions presented above comprise two
primary parts: withdrawable signature generation and transformation of a withdrawable signature
into a confirmed one. When viewed through the “withdrawability” requirements of the first part,
our withdrawable signature scheme is relevant to existing group and ring signatures, wherein the
signer retains anonymity within a two-party setup. What distinguishes our approach is the second
transformation stage, which offers a unique feature not found in the aforementioned revocable group
and ring signatures. Our scheme empowers signers to retract their signatures independently, without
relying on a certain group manager or a set of revocation authorities. Additionally, the right to remove
its “anonymity” rests only with the signer.
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Readers might also discern similarities between our withdrawable signature scheme and designated-
verifier signature (DVS) schemes. In the withdrawable signature generation phase of our scheme, the
generated signature can only convince a specific verifier (the designated verifier) that the signer
has generated a signature, the same as the core concept of DVS. Note that a DVS holds “non-
transferability”, which means that a DVS cannot be transferred by either the signer or the verifier to
convince a third party. Although this non-transferability aligns with our concept of withdrawability,
our scheme diverges by permitting the signer to transform the withdrawable signature into one that’s
verifiable using both the signer’s and verifier’s public keys, challenging the foundational property of
DVS.

To achieve this additional property at the transformation stage, we consider leveraging the struc-
tural properties of existing regular signatures. Provided that our withdrawable signature scheme was
derived from a particular signature, which has been generated with the signer’s secret key, only
the signer can access this underlying regular signature during the transformation stage. Then one
might have also noticed that the construction of our withdrawable signature scheme is related to the
UDVS scheme. In a UDVS scheme, once the signer produces a signature on a message, any party
possessing this message-signature pair can designate a third party as the designated verifier by pro-
ducing a DVS with this message-signature pair for this verifier. Much like DVS, UDVS is bound by
non-transferability as well. Meanwhile, our withdrawable signature scheme takes another different
approach than UDVS’s as our scheme does not require the signer to reveal the underlying regular
signature at the withdrawable signature generation stage.

In our withdrawable signature scheme construction, the underlying regular signature is treated
as a secret held by the signer. This secret ensures the signer creates a corresponding withdrawable
signature specific to a certain (designated) verifier. Later at the transformation stage, we require the
additional input as the public key set of signer and verifier and the signer’s secret key to reconstruct
the underlying additional regular signature. With these inputs, we can finalize our transformation
algorithm.

3 Definitions

In this section, we provide a comprehensive overview of the syntax and security notion of withdrawable
signature.

3.1 Notation and Terminology

Throughout this paper, we use λ as the security parameter. By a
$← S, we denote an element a is

chosen uniformly at random from a set S. Let S =
{
pk1, · · · , pkµ

}
be a set of public keys, where

each public key pki is generated by the same key generation algorithm KeyGen(1k) and µ = |S|. The
corresponding secret key of pki is denoted by ski. Given two distinct public keys pks, pkj

$← S where
j ̸= s, the signer’s public key is denoted by pks.

3.2 Withdrawable Signature: A Formal Definition

Naturally, our withdrawable signature scheme involves two parties: signers and verifiers. At a high
level, the scheme consists of two stages, i.e., generating a withdrawable signature and transforming it
into a confirmed signature. These two stages are all completed by the signer.

More precisely, a withdrawable signature scheme WS consists of five polynomial time algorithms,
(KeyGen,WSign,WSVerify,Confirm,CVerify), each of which is described below:

– (pk, sk)← KeyGen(1k) : The key generation algorithm takes the security parameters 1k as input,
to return a public/secret key pair (pk, sk).

– σ ←WSign(m, sks, γ): The “withdrawable signing” algorithm takes as input a message m, signer’s
secret key sks and γ =

{
pks, pkj

}
where pks, pkj ∈ S, to return a new withdrawable signature σ

of m respect to pks, which is designated to verifier pkj .
– 1/0 ← WSVerify(m, skj , pks, σ): The “withdrawable signature verification” algorithm takes as

input a withdrawable signature σ of m with respect to pks, the designated verifier’s secret key
skj , to return either 1 or 0.



Withdrawable Signature: How to Call off a Signature 7

– σ̃ ← Confirm(m, sks, γ, σ): The “confirm” algorithm takes as input a withdrawable signature σ of
m with respect to pks, signer’s secret key sks, the public key set γ, to return a confirmed signature
σ̃ of m, σ̃ is a verifiable signature with respect to γ.

– 1/0← CVerify(m, γ, σ, σ̃): The “confirmed signature verification” algorithm takes as input a con-
firmed signature signature σ̃ of m with respect to γ, and the corresponding withdrawable signature
σ, to return either 1 or 0.

3.3 Security Notions of Withdrawable Signature

The security notion of a withdrawable signature scheme WS covers the properties of correctness,
unforgeability under insider corruption, and withdrawability three aspects.
Correctness. As long as the withdrawable signature σ is verifiable through the withdrawable sig-

nature verification algorithm WSVerify, it can be concluded that the corresponding confirmed
signature σ̃ will also be verifiable through the confirm verification algorithm CVerify.

Unforgeability under insider corruption. Nobody except the signer can transform a verifiable
withdrawable signature σ generated from sks for pkj into corresponding confirmed signature σ̃,
even the adversary can always obtain the secret key skj of the verifier.

Withdrawability. The withdrawability means that, given a verifiable withdrawable signature σ, it
must be intractable for any PPT adversary A to distinguish whether σ was generated by the signer
or the verifier unless the Confirm algorithm of σ has been achieved. The withdrawability ensures
that the capability of generating a withdrawable signature is equivalent between the signer and
the certain verifier.

Below, we provide formal security definitions. The formal definitions of correctness, unforgeability
under insider corruption, and withdrawability.

We call a withdrawable signature scheme WS secure if it is correct, unforgeable under insider
corruption, withdrawable.

Definition 1 (Correctness). A withdrawable signature scheme WS is considered correct for any
security parameter k, any public key set γ, and any message m ∈ {0, 1}∗, if with following algorithms:

– (pks, sks), (pkj , skj)← KeyGen(1k)

– γ ←
{
pks, pkj

}
– σ ←WSign(m, sks, γ)
– σ̃ ← Confirm(m, sks, γ, σ)

it holds with an overwhelming probability (in k) that the corresponding verification algorithms:

WSVerify(m, skj , pks, σ) = 1 and CVerify(m, γ, σ, σ̃) = 1.

Unforgeability under insider corruption. Unforgeability under insider corruption means that the ad-
versary A cannot generate a valid confirmed signature from a withdrawable signature for a certain
signer without its secret key, even if A can adaptively corrupt some honest participants as certain
verifiers and obtain their secret keys.

Definition 2 (Unforgeability under insider corruption). Considering an unforgeability under
insider corruption experiment ExpEUF-CMA

WS,A (1k) for a PPT adversary A and security parameter k.
The three oracles we use to build the ExpEUF-CMA

WS,A (1k) are shown as follows.

Oracle OCorrupt
i (·)

if i ̸= s,
CO ← CO ∪ ski

return ski

else return ⊥

Oracle OWSign
sks,γ

(·)
if pks ∈ γ ∧ s /∈ CO,

σ ←WSign(m, sks, γ)

W ←W ∪ {σ}
return σ

else return ⊥

Oracle OConfirm
sks,σ,γ

(·)
if σ ∈ W
M←M∪ {m}
σ̃ ← Confirm(m, sks, γ, σ)

return σ̃

else return ⊥

With these three oracles, we have the following experiment ExpEUF-CMA
WS,A (1k):
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ExpEUF-CMA
WS,A (1k)

for i = 1 to µ do

(pki, ski)← KeyGen(1k), s, j ∈ [1, µ], j ̸= s;
CO,W,M← ∅;

(m∗, σ̃∗)← AOCorrupt
i (·),OWSign

sks,γ
(·),OConfirm

sks,σ,γ(·)
(1k, γ∗, σ∗)

if γ∗ =
{
pks, pkj

}
, j ∈ CO ∧m∗ /∈M

∧WSVerify(m∗, skj , pks, σ
∗) = 1 ∧ CVerify(m∗, γ∗, σ∗, σ̃∗) = 1

return 1

else return 0

A withdrawable signature scheme WS is unforgeable under insider corruption of EUF-CMA security
if for all PPT adversary A, there exists a negligible function negl such that:

Pr[ExpEUF-CMA
WS,A (1k) = 1] ≤ negl

(
1k
)
.

Withdrawability. The withdrawability means that a PPT adversary A is always given a message m
and an unconfirmed withdrawable signature σ, it is infeasible to determine who created the signature.

Definition 3 (Withdrawability). Assume two public/secret key pairs are generated as (pk0, sk0),
(pk1, sk1)← KeyGen(1k). Let γ = {pk0, pk1} and b

$← {0, 1}, considering a withdrawability experiment
ExpWithdraw

WS,A (1k) for a PPT adversary A and security parameter k.
The oracle we use to build our withdrawability experiment ExpWithdraw

WS (1k) is shown as follows.

Oracle OWSign
sks,γ

(·)

if γ = {pk0, pk1}, b
$← {0, 1}

σb ←WSign(m, skb, γ)

M←M∪ {m}
return σb

else return ⊥

With this signing oracle, we have the following experiment ExpWithdraw
WS (1k):

ExpWithdraw
WS,A (1k)

for i = 0 to 1 do

(pki, ski)← KeyGen(1k), γ = {pk0, pk1}

b
$← {0, 1}, M← ∅;

if γ = {pk0, pk1} ∧m∗ /∈M
σb ←WSign(m∗, skb, γ)

b′ ← AOWSign
skb,γ

(·)
(1k,m∗, σ∗

b )

if b = b′

return 1

else return 0

A withdrawable signature WS achieves withdrawability if, for any PPT adversary A, as long as the
Confirm algorithm hasn’t been executed, there exists a negligible function negl such that:

Pr[ExpWithdraw
WS,A (1k) = 1] ≤ 1

2
+ negl

(
1k
)
.

4 Our Withdrawable Signature Schemes

In this section, we present two specific constructions of withdrawable signatures. We start by intro-
ducing the necessary preliminaries that form the basis of our constructions.
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4.1 Preliminaries

Bilinear Groups. Let G1, G2 and GT be three (multiplicative) cyclic groups of prime order p. Let g1
be a generator of G1 and g2 be a generator of G2. A bilinear map is a map e : G1 × G2 → GT with
the following properties:

– Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
– Non-degeneracy: e(g1, g2) ̸= 1 (i.e. e(g1, g2) generates GT ).
– Computability: For all u ∈ G1, v ∈ G2, there exists an efficient algorithm to compute e(u, v).

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For Type-2
pairings, there is an efficiently computable homomorphism ϕ: G2 → G1. For Type-3 pairings no such
homomorphism is known.
Digital Signatures. A signature scheme DS consists of three PPT algorithms, described as follows:

DS =


(pks, sks) ← KeyGen(1k)

σ ← Sign(m, sks)

0/1 ← Verify(m, pks, σ)

The relevant security model of existential unforgeability against chosen-message attacks (EUF-
CMA) for digital signature schemes is given as follows.

Definition 4 (EUF-CMA). Given a signature scheme DS = (KeyGen,Sign,Verify), and a ppt ad-
versary A, considering the following game ExpEUF-CMA

A :

– Let SP be the system parameters. The challenger B runs the key generation algorithm to generate
a key pair (pks, sks) and sends pk to the adversary A. The challenger keeps sks to respond to
signature queries from the adversary.

– A is given access to an oracle OSign
sks

(·) such that OSign
sks

(·) : σ ← Sign(m, sks).
– A outputs a message m∗, and returns a forged signature σ∗ on m∗.
– A succeeds if σ∗ is a valid signature of the message m∗ and the signature of m∗ has not been

queried in the query phase.

A signature scheme is (t, qs, ε)-secure in the EUF-CMA security model if there exists no adversary
who can win the above game in time t with advantage ε after it has made qs signature queries.

Designated-Verifier Signatures [19]. A designated-verifier signature DVS consists of four PPT algo-
rithms, where the signer’s public/secret key pair is denoted as (pks, sks), and the designated-verifier’s
public /secret key pair is denoted as (pkd, skd). The definition of designated-verifier signature schemes
is described as follows:

DVS =


(pk, sk) ← KeyGen(1k)

σ ← Sign(m, pkd, sks)

σ ← Simul(m, pks, skd)

0/1 ← Verify(m, pks, skd, σ)

The relevant non-transferability model of designated-verifier signature is called “non-transferability”.
Non-transferability implies, that, given a message-DVS signature pair (m,σ), which is accepted by
the designated verifier, without access to the secret key of the signer, it is computationally infeasible
to determine whether the message was signed by the signer or the signature was simulated by the
designated-verifier. The formal definition is shown as follows.

Definition 5 (Non-transferability). Given a designated-verifier signature scheme polynomial in
λ, and a ppt adversary A, consider the following game ExpSignNonTrans,DV,A:

– Generates (pks, sks)← KeyGen(1k) and (pkd, skd)← KeyGen(1k).
– A is given access to a signing oracle OSign

sks,pkd
(·) such that:OSign

sks,pkd
(·) : σ0 ← Sign(m, sks, pkd); and

a simulation oracle OSimul
skd,pks

(·) such that: OSign
skd,pks

(·) : σ1 ← Simul(m, sks, pkd).
– A outputs a message m∗, furthermore, a random bit b is chosen, and A is given the signature σ∗

b .
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– The adversary outputs a bit b′, and succeeds if b′ = b.

A DVS achieves nom-transferability if Pr[ExpSignNonTrans,DV,A(1
k) = 1] ≤ 1

2 + negl
(
1k
)
.

Universal Designated-Verifier Signatures [30, 31]. The universal designated-verifier signature scheme
can operate as a standard publicly-verifiable digital signature but possesses additional functionality.
This extended functionality allows any holder of a regular signature (not necessarily only the signer)
to designate the signature to any desired verifier using the verifier’s public key.

4.2 Computational Assumptions

We begin by revisiting the Computational Diffie-Hellman (CDH) assumption and the Discrete Log-
arithm (DL) assumption, under which the BLS signatures and Schnorr signatures are respectively
proven EUF-CMA secure. Furthermore, we will also revisit the Decisional Bilinear Diffie-Hellman
(DBDH) assumption and the Decisional Diffie-Hellman (DDH) assumption. These two assumptions
are used to prove the withdrawability feature of our proposed withdrawable signature constructions
based on BLS and Schnorr signatures, respectively.

Definition 6 (CDH Assumption). Let G be a generic group of prime order p, and g is a generator
of G. Given (g, ga, gb) for a, b

$← Z∗
p, no adversary A can output gx ∈ Z∗

p where gx = gab.

Definition 7 (DL Assumption). Let G be a generic group of prime order p, and g is a generator
of G. Given (g, ga) for a

$← Z∗
p, no adversary A can output a′ ∈ Z∗

p where ga
′
= ga.

Definition 8 (DBDH Assumption). Let G be a generic group of prime order p, and g is a generator
of G, G × G → GT . Given (g, ga, gb, gc) ∈ G and Z ∈ GT , no adversary A can decide whether
Z = e(g, g)abc or not.

Definition 9 (DDH Assumption). Let G be a generic group of prime order p, and g is a generator
of G. Given (g, ga, gb, Z) ∈ G, no adversary A can decide whether Z = gab or not.

4.3 A Construction Based on BLS

Suppose G is a generic group of prime order p, and g is a generator, with two hash functions H1 :
{0, 1}∗ → G and H2 : {0, 1}∗ → Z∗

p. PG : G × G = GT is a Type-1 bilinear pairing as defined in
Section 4.1.

Let BLS.DS denotes the BLS signature scheme [8], which contains three algorithms: BLS.DS =
(KeyGen,BLS.Sign,BLS.Verify). Comprehensive details of these three algorithms are outlined as fol-
lows. The output of the signing algorithm is denoted as ω ← BLS.Sign(m, sks) where ω is derived,
such that ω = H1(m)sks .

Setup(·)
define H1 : {0, 1}∗ → G

return H1

KeyGen(1k)

sks
$← Zp, pks = gsks

return (pk, sk)

BLS.Sign(m, sks)

h = H1(m)

ω ← hsks

return ω

BLS.Verify(m, pks, ω)

parse ω, t′ = H(m)

if e(σ, g) ̸= e(h′, pks)

return 0

else return 1

Fig.1. The Detail of BLS Signature Scheme

Following this, we have a construction of a withdrawable signature scheme based on the original
BLS signature scheme.
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Setup(·)
define H1 : {0, 1}∗ → G
define H2 : {0, 1}∗ → Z∗

p

return H1, H2

KeyGen(1k)

ski
$← Zp, pki = gski

return (pki, ski)

WSign(m, sks, γ)

(pks, sks), (pkj , skj)← KeyGen(1k)

parse γ =
{
pks, pkj

}
ω = H1(m)sks

y
$← Z∗

p, r = H2(m, gy, ω)

σ1 ← e(H1(m)ryω, pkj)

σ2 ← H1(m)r, σ3 ← gy

σ = (σ1, σ2, σ3)

return σ

WSVerify(m, skj , pks, σ)

parse σ = (σ1, σ2, σ3)

if σ1 = e(σ2, σ
skj
3 )e(H1(m)skj , pks)

= e(σ
skj
2 , σ3)e(H1(m)skj , pks)

return 1

else return 0

Confirm(m, sks, γ, σ)

parse σ = (σ1, σ2, σ3)

ω = H1(m)sks

r′ = H2(m,σ3, ω)

δ1 ← pk
sksr

′

j ω

δ2 ← pkr
′

j , δ3 ← gr
′

σ̃ = (δ1, δ2, δ3)

return σ̃

CVerify(m, γ, σ, σ̃)

parse σ̃ = (δ1, δ2, δ3)

parse σ = (σ1, σ2, σ3)

if e(σ2, g) = e(H1(m), δ3),
e(δ1, g) = e(pks, δ2)e(H1(m), pks),
e(δ2, g) = e(δ3, pkj)

return 1

else return 0

Fig.2. A Construction Based on BLS

4.4 A Construction Based on Schnorr

Recall that G is a generic group of prime order p, and g is a generator, with hash function H :
{0, 1}∗ → Zp.

Let Sch.DS denote the Schnorr signature scheme [29], which contains three algorithms: Sch.DS =
(KeyGen,Sch.Sign,Sch.Verify). Details of these three algorithms are outlined in [29]. The output of
the signing algorithm is also denoted as ω ← Sch.Sign(m, sks) where ω = (t, z) is derived as follows:

A randomness e is randomly selected from Zp, then u is calculated as u = ge. The value t is
computed using the hash function t = H(m,u). Finally, z is calculated as z = (e− skst) mod p.

Setup(·)
define H : {0, 1}∗ → Z∗

p

return H

KeyGen(1k)

sks
$← Zp, pks = gsks

return (pks, sks)

Sch.Sign(m, sks)

e
$← Z∗

p, t = H(m, ge)

z = e− skst

σ ← (t, z)

return σ

Sch.Verify(m, pks, ω)

parse ω = (t, z)

if H(m, gzpkts) ̸= t

return 0

else return 1

Fig.3. The Detail of Schnorr Signature Scheme

Following this, we have a construction of a withdrawable signature based on the Schnorr signature:
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Setup(·)
define H : {0, 1}∗ → Zp

return H

KeyGen(1k)

ski
$← Zp, pki = gski

return (pki, ski)

WSign(m, sks, γ)

(pks, sks), (pkj , skj)← KeyGen(1k)

parse γ =
{
pks, pkj

}
e

$← Z∗
p, t = H(m, ge)

z = e− skst

ω = (t, z)

r = H(m, gskse)

σ1 ← ge, σ2 ← pkz−rt
j , σ3 ← gr

σ = (σ1, σ2, σ3)

return σ

WSVerify(m, skj , pks, σ)

parse σ = (σ1, σ2, σ3)

t′ = H(m,σ1)

if σ2 = (σ1(pksσ3)
−t′)skj

return 1

else return 0

Confirm(m, sks, γ, σ)

parse σ = (σ1, σ2, σ3)

es
$← Z∗

p, r′ = H(m,σ
sks
1 )

ts = H(m, ges)

zs = es − sksts

ωs = (ts, zs)

ej
$← Z∗

p, tj = H(pkj , ej)

zj = ej − r′tj

δ1 ← ts, δ2 ← zs − r′ts

δ3 ← tj , δ4 ← zj

σ̃ = (δ1, δ2, δ3, δ4)

return σ̃

CVerify(m, γ, σ, σ̃)

parse σ̃ = (δ1, δ2, δ3, δ4)

parse σ = (σ1, σ2, σ3)

if δ1 = H(m, gδ2pkδ1s σδ1
3 ),

δ4 = H(pkj , g
δ4σδ3

3 )

return 1

else return 0

Fig.4. A Construction Based on Schnorr

5 Security Analysis

In this section, we provide the security analysis of our two constructed withdrawable signature
schemes.

5.1 Security of Our Withdrawable Signature Scheme Based on BLS

Theorem 10. If the underlying BLS signature scheme BLS.DS is unforgeable against chosen-message
attacks as defined in Definition 4, our withdrawable signature scheme based on BLS presented in
Section 4.3 is unforgeable under insider corruption (Definition 2) in the random oracle model with
reduction loss L = qH1

where qH1
denotes the number of hash queries to the random oracle H1.

Proof. Let B be an adversary that is breaking EUF-CMA of underlying BLS signature scheme BLS.DS.
We assume that B runs another adversary A which can break unforgeability under insider corruption
in the random oracle model of our withdrawable signature scheme based on BLS. Setup. B has
access to the simulator C. Suppose C executes the EUF-CMA game of BLS.DS, denoted as denoted
as ExpEUF-CMA

A which includes a signing oracle denoted as OBLS.Sign
sks

(·), where OBLS.Sign
sks

(·) : ω ←
Sch.Sign(m, sks). C first generates (pks, sks)← KeyGen(1k), B then gains pks from C.
B then generates other public keys in S as S =

{
pk1, · · · , pks−1, pks+1, · · · , pkµ

}
.

B now can set the public key set of the signer and a specific (designated) verifier as γ =
{
pks, pkj

}
where j ̸= s and provide γ to A. Oracle Simulation. B answers the oracle queries as follows.
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Corruption Query. The adversary A makes secret key queries of pki, i ∈ [1, µ] in this phase. If A
queries for the secret key of pks, abort. Otherwise, B returns the corresponding ski to A, and adds
ski to the corrupted secret key list CO.
H-Query. The adversary A makes hash queries in this phase. C simulates H1 as a random oracle, B
then answers the hash queries of H1 through C.
Signature Query. Adversary A outputs a message mi and queries for withdrawable signature with
signer pks and the specific (designated) verifier pkj . If the signer isn’t pks, B abort. Otherwise, B
sets mi as the input of C. B then asks for the signing output of C as ωi ← BLS.Sign(mi, sks). With
ωi = H1(mi)

sks from C, B could respond to the signature query of A with the specific verifier pkj as
follows:

– OWSign
sks,γ

(·): Given the output ωi of C, B can compute the withdrawable signature σi ← OWSign
sks,γ

(·)
for A as:
1. ri, yi

$← Z∗
p, σi = (e(H1(mi)

yiriωi, pkj), H1(mi)
ri , gyi)

– OConfirm
sks,σ,γ

(·): With ωi and σi, B can compute the corresponding confirmed signature σ̃i ← OConfirm
sks,σ,γ

(·)
for A with underlying signature ωi = H1(mi)

sks and ri as:

1. Compute δ1,i = pk
skjri
s ωi.

2. Compute δ2,i = pkrij , δ3,i = gri

3. σ̃i = (δ1,i, δ2,i, δ3,i)

Meanwhile, B sets M←M∪mi and W ←W ∪ σi.
Forgery. On the forgery phase, the adversary B generates a withdrawable signature σ∗ for signer pks
that designated to verifier pkj where γ∗ =

{
pks, pkj

}
on some m∗ that has not been queried before,

and sends to A. The withdrawable signature σ∗ is generated by B as follows:

σ∗ = (e(H1(m
∗)r

∗y∗
, pkj)e(H1(m

∗)skj , pks), H1(m
∗)r

∗
, gy

∗
)

Then σ∗ could be transformed by A into σ̃∗ under γ∗ correctly. After A transforms σ∗ into σ̃∗,
if σ̃∗ could not be verified through CVerify(m∗, γ∗, σ∗, σ̃∗) with signer pks and certain verifier pkj ,
abort.

Otherwise, if σ̃∗ = (δ∗1 , δ
∗
2 , δ

∗
3) is valid, B then could obtain a forged signature ω∗ for pks on

m∗. Since B is capable of directly computing pk
skjr

∗

s , the forged signature ω∗ can be determined as:
ω∗ = δ∗1/pk

skjr
∗

s .
Therefore, we can use A to break the unforgeability in the EUF-CMA model of our underlying

signature scheme BLS.DS, which contradicts the property of our underlying signature scheme.
Probability of successful simulation. All queried signatures ωi are simulatable, and the forged
signature is reducible because the message m∗ cannot be chosen for a signature query. Therefore, the
probability of successful simulation is 1

qH1
for qH1

queries. ⊓⊔

Theorem 11. If the DBDH problem is hard, our withdrawable signature scheme based on BLS pre-
sented in Section 4.3 is withdrawable (Definition 3) in the random oracle model.

Proof. Suppose there exists an adversary A that can (t, ε)-break the withdrawability of our with-
drawable signature scheme based on the BLS scheme, we construct a simulator B to solve the DBDH
problem. Given problem instance g, ga, gc, gd ∈ G, Z ∈ GT as input, where Z = e(g, g)acd or
Z = e(g, g)t for random t ∈ Z∗

p. B randomly chooses b
$← {0, 1} and µ

$← Z∗
p, and sets the chal-

lenge signer/verifier public key set as γ =
{
pkb, pk1−b

}
= {gµ, ga}, where the associated secret key

set is δ =
{
skb, sk1−b

}
= {µ, a}. The public key set is available from the two problem instances. The

signer is denoted as pkb and the specific verifier is denoted as pk1−b.
Oracle Simulation. B answers the oracle queries of A as follows.
H-Query. The adversary A makes hash queries in this phase, where B simulates H1 as a random
oracle.
Signature Query. A outputs a message mi and queries for withdrawable signature with corresponding
signer pkb and the specific verifier pk1−b, B responses the signature query of A as follows:
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– OWSign
skb,γ

(·): ri, yi
$← Z∗

p, σb,i = (e(H1(mi)
riyiH1(mi)

skb , pk1−b), H1(mi)
ri , gyi).

Meanwhile, B sets M←M∪mi.

Challenge. On the challenge phrase, A gives B a message m∗ /∈M, where m∗ /∈M. Upon receiving
m∗, B chooses k

$← Z∗
p and sets H1(m

∗) = gk, H1(m
∗)r

∗
= (gc)k and gy

∗
= gd. B then computes the

challenge withdrawable signature σ∗
b for b

$← {0, 1} as follows:

σ∗
b = (Zke(H1(m

∗)µ, ga), gck, gd)

Guess. A outputs a guess b′ of b. The simulator outputs true if b′ = b. Otherwise, false.
Probability of breaking the withdrawability property. We note that the above σ∗

b perfectly
simulates the real withdrawable signature when Z = e(g, g)acd since

σ∗
b = (Zke(H1(m

∗)µ, ga), gck, gd)

= (e(gkcd, ga)e(H1(m
∗)a, gµ), H1(m

∗)r
∗
, gy

∗
)

= e(H1(m
∗)r

∗y∗
, pk1−b)e(H1(m

∗)sk1−b , pkb), H1(m
∗)r

∗
, gy

∗
)

= e(H1(m
∗)r

∗y∗
H1(m

∗)skb , pk1−b), H1(m
∗)r

∗
, gy

∗
).

Thus, using A’s ability to decide b ∈ {0, 1} (i.e., A outputs b′ = b), B can solve the DBDH problem.
However, as the DBDH problem is hard, A’s success probability is bounded by 1/2 + ε/2.
Probability of successful simulation. Since there is no abort in our simulation, the probability
of successful simulation is 1. ⊓⊔

5.2 Security of the Withdrawable Signature Scheme Based on Schnorr

Theorem 12. If the underlying Schnorr signature scheme Sch.DS is unforgeable against chosen-
message attacks, our withdrawable signature scheme based on Schnorr presented in Section 4.4 is
unforgeable under insider corruption (Definition 2) in the random oracle model with reduction loss
L = 2qH − 1 where qH denotes the number of hash queries to the random oracle H.

The proof of Theorem 12 follows the same proof structure shown in Proof 5.1, which also contains
three algorithms, A, B, and C. The completed proof of Theorem 12 is given as follows.

Proof. Let B be an adversary that is breaking EUF-CMA of underlying Schnorr signature scheme
Sch.DS. We assume that B runs another adversary A which can break the unforgeability under insider
corruption in the random oracle model of our withdrawable signature scheme based on Schnorr.
Setup. B has access to the simulator C. Suppose C executes the EUF-CMA game of Sch.DS, denoted
as ExpEUF-CMA

A which includes a signing oracle OSch.Sign
sks

(·), where OSch.Sign
sks

(·) : ω ← Sch.Sign(m, sks).
C first generates (pks, sks)← KeyGen(1k), B then gains pks from C.
B then generates other public keys in S as S =

{
pk1, · · · , pks−1, pks+1, · · · , pkµ

}
and gains pks

from C.
B now can set the public key set of the signer and a specific (designated) verifier as γ =

{
pks, pkj

}
where j ̸= s and provide γ to A.
Oracle Simulation. B answers the oracle queries of A as follows.
Corruption Query. The adversary A makes secret key queries of public key pki, i ∈ [1, µ] in this phase.
If A queries for the secret key of pks, abort. Otherwise, B returns the corresponding ski to A, and
add ski to the corrupted secret key list CO.
H-Query. C simulates H as a random oracle, B then answers the hash queries of H through C.
Signature Query. A outputs a message mi and queries for withdrawable signature with corresponding
signer pks and specific verifier pkj . If the signer of withdrawable dignature isn’t pks, abort. Otherwise,
B sets mi as the input of C. B then asks the signing output of C as ωi = Sch.Sign(mi, sks). With ωi,
B could response the signature query for the specific verifier pkj chosen by A as follows:

– OWSign
sks,γ

(·): With the output of C, B can compute the withdrawable signature σi ← OWSign
sks,γ

(·) for
A with ωi = (ti, zi) = (H(mi, ui), zi) as:
1. Randomly choose ri

$← Z∗
p
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2. Compute σ1,i = gzipktis , σ2,i = pkzi−riti
j , σ3,i = gri

3. σi = (σ1,i, σ2,i, σ3,i)
– OConfirm

sks,σ,γ
(·): B then queries for the Schnorr signature of mi again to C and returns a corresponding

ωs,i = (ts,i, zs,i) instead. With ωi, ωs,i and σi, B can compute the confirmed signature σ̃i ←
OConfirm

sks,σ,γ
(·) for A as follows:

1. Compute δ1,i = gzs,ipkts,is , δ2,i = zs,i − rits,i
2. Randomly choose ej,i, tj,i

$← Z∗
p, δ3,i = tj,i

3. Compute δ4,i = ej,i − ritj,i
4. σ̃i = (δ1,i, δ2,i, δ3,i, δ4,i)

Meanwhile, B sets the queried message set asM←M∪mi and queried withdrawable signature
set as W ←W ∪ σi.
Forgery. On the forgery phase, B returns a withdrawable signature σ∗ for γ∗ =

{
pks, pkj

}
on some

m∗ that has not been queried before. Then σ∗ could be transformed into σ̃∗ under γ∗ for signer pks
correctly. After A transforms σ∗ into σ̃∗, if σ̃∗ could not be verified through CVerify(m∗, γ∗, σ∗, σ̃∗),
abort.

Otherwise, if σ̃∗ = (δ∗1 , δ
∗
2 , δ

∗
3 , δ

∗
4) is valid, B then could obtain a forged signature ω∗ for pks on

m∗. Since B is capable of directly computing r∗t∗s, the forged signature ω∗ can be determined as
ω∗ = δ∗2 + r∗t∗s.

Therefore, we can use A to break the unforgeability in the EUF-CMA model of our underlying
signature scheme Sch.DS, which contradicts the property of our underlying signature scheme.
Probability of successful simulation. All queried signatures ωi are simulatable, and the forged
signature is reducible because the message m∗ cannot be chosen for a signature query as it will be
used for the signature forgery. Therefore, the probability of successful simulation is 1

2qH−1 . ⊓⊔
Theorem 13. If the DDH problem is hard, our withdrawable signature scheme based on Schnorr
presented in Section 4.4 is withdrawable (Definition 3) in the random oracle model.

The complete detailed proof of Theorem 13 is given as follows.
Proof. Suppose there exists an adversary A who can (t, ε)-break the withdrawability of our with-
drawable signature scheme based on Schnorr, we construct a simulator B to solve the DDH problem.
Given as input DDH problem instance g, ga, gc, Z ∈ G, where Z = gac or Z = gx for random x ∈ Z∗

p.
B sets the challenge public key set as γ =

{
pkb, pk1−b

}
= {gµ, ga} and associated secret key set

δ =
{
skb, sk1−b

}
= µ, a. The public key set is available from the problem instance. The signer is

denoted as pkb where b
$← {0, 1}, and the specific verifier is denoted as pk1−b.

Oracle Simulation. B answers the oracle queries as follows.
H-Query. The adversary A makes hash queries in this phase where B simulates H as a random
oracle.
Signature Query. A outputs a message mi and queries the withdrawable signature for corresponding
signer pkb and specific verifier pk1−b, B responses the signature queries of A as follows:

– OWSign
skb,γ

(·): ei, ri
$← Z∗

p, ti = H(mi, g
ei), σb,i = (gei , pk

ei−skbti−riti
1−b , gri)

Meanwhile, B sets M←M∪mi.
Challenge. On the challenge phase, A gives B a message m∗, where m∗ /∈ M. Upon receiving m∗,
B chooses d, k

$← Z∗
p and sets r∗ = d, t∗ = k = H(m, ge

∗
), e∗ = r∗t∗ + c = dk + c, to compute the

challenge withdrawable signature of m∗ as σ∗
b for b

$← {0, 1} with Z as follows:

σ∗
b = (gdk+c, Zg−aµk, gd).

Guess. A outputs a guess b′ of b. The simulator outputs true if b′ = b. Otherwise, false.
Probability of breaking the withdrawability property. We note that the above σ∗

b perfectly
simulates the real withdrawable signature when Z = gac since

σ∗
b = (gdk+c, Zg−aµk, gd)

= (gdk+c, gacg−aµk, gd)

= (gdk+c, (ga)c−µk, gd)

= (gdk+c, (ga)dk+c−dk−µk, gd)

= (ge
∗
, pk

e∗−r∗t∗−skbt
∗

1−b , gr
∗
).
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Meanwhile, gc can be computed from gc = ge
∗
(gr

∗
)−t∗ with ge

∗
, gr

∗
and t∗ = H(m∗, ge

∗
). Thus,

using A’s ability to decide b ∈ {0, 1} (i.e., A outputs b′ = b), B can solve the DDH hard problem.
However, as the DDH problem is hard, A’s success probability is bounded by 1/2 + ε/2.
Probability of successful simulation. Since there is no abort in our simulation. Therefore, the
probability of successful simulation is 1. ⊓⊔

6 Conclusion

In this paper, we discussed the challenges associated with traditional signature schemes and the need
for a mechanism to revoke or replace signatures. We introduced a unique withdrawability feature for
signature schemes, allowing signers to have the ability to call off their signatures as withdrawable
signatures, and later, the signature could be transformed into a confirmed signature that could be
verified through their public keys.

Furthermore, we proposed cryptographic primitives and two constructions of the withdrawable sig-
nature based on the BLS/Schnorr signature. We formally proved that the two proposed constructions
are unforgeable under insider corruption and satisfy withdrawability.

There are several directions for future work: one is improving the efficiency of our withdrawable
signature scheme. Exploring further to discover practical applications and use cases of withdrawable
signature schemes can also be an interesting avenue for future work.
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