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Abstract. We propose a generic compiler that can convert any zero-
knowledge (ZK) proof for SIMD circuits to general circuits efficiently,
and an extension that can preserve the space complexity of the proof
systems. Our compiler can immediately produce new results improving
upon state of the art.
– By plugging in our compiler to Antman, an interactive sublinear-

communication protocol, we improve the overall communication com-
plexity for general circuits from O(C3/4) to O(C1/2). Our implemen-
tation shows that for a circuit of size 227, it achieves up to 83.6×
improvement on communication compared to the state-of-the-art im-
plementation. Its end-to-end running time is at least 70% faster in a
10Mbps network.

– Using the recent results on compressed Σ-protocol theory, we obtain a
discrete-log-based constant-round zero-knowledge argument withO(C1/2)
communication and common random string length, improving over the
state of the art that has linear-size common random string and requires
heavier computation.

– We improve the communication of a designated n-verifier zero-knowledge
proof from O(nC/B + n2B2) to O(nC/B + n2).

To demonstrate the scalability of our compilers, we were able to extract
a commit-and-prove SIMD ZK from Ligero and cast it in our framework.
We also give one instantiation derived from LegoSNARK, demonstrating
that the idea of CP-SNARK also fits in our methodology.

Keywords: Zero-Knowledge Proof, General Compiler, SIMD ZK, VOLE-based
ZK, Σ-protocol



1 Introduction

Assume that the verification of a statement is represented as a public circuit
C : {0, 1}n → {0, 1}. A zero-knowledge proof (ZKP) allows a prover to convince
a verifier that it possesses a witness w such that C(w) = 0, without the verifier
learning any information beyond the circuit output. The commit-and-prove zero-
knowledge (CP-ZK) paradigm is among the most flexible and modular design
mechanisms for constructing ZKP. For instance, a CP-SNARK allows a prover to
commit to a batch of secrets via a commitment scheme (e.g. vector commitment
or polynomial commitment), then prove relations between the committed values
in ZK [18,17,38]. A small communication footprint is achieved when the commit-
ment is compressing and the proof is succinct. On the other hand, schemes like
VOLE-based ZKPs [5,49,52,23] rely on efficient interactive commitment scheme
that separately commits to wire values in the circuit, then prove the consistency
between committed wire values with constant overhead. Though general VOLE-
ZKs incur communication complexity linear to the circuit size, they achieve high
throughput owing to the lightweight operations.

Generally, CP-ZK proof systems with sublinear communication involve two
components after the batch commitment of witnesses: (1) Hadamard product of
committed vectors, (2) equality of individual wires across different committed
vectors. The former is used to demonstrate the correct computation of multipli-
cation gates and the latter is used to show that the committed wire values are
consistent with the circuit topology.
From SIMD-ZK to general ZK. From another perspective, the above ap-
proach can be viewed as a conversion from commit-and-prove SIMD-ZK to gen-
eral ZK. Define (B, C)-SIMD circuit which contains B identical components
of the circuit C. A SIMD-ZK proves that for input witnesses (w1, . . . ,wB),
C(wi) = 0 for i ∈ [B]. By exploiting the fact that operations are identical
across B components, SIMD-ZK schemes typically utilize vector commitments
and batch proofs to achieve communication sublinear in B · |C|. In more de-
tail, denote by JwK a commitment to a vector w. Define a witness matrix
W = (w1∥ . . . ∥wB). Instead of viewing the ith column as the witness to the ith
evaluation of C, a prover commits to each row vector and lets the verifier obtain
(Jw1K, . . . , Jw|C|K). In this way, for any gate (α, β, γ, ⋄) in C and ⋄ ∈ {Add,Mult},
the prover only needs to prove that wγ = wα ⋄wβ . ZKP schemes achieve O(|C|)
proof size if both the vector commitment and batch proof of additions and mul-
tiplications incur constant size.

Most of priors work on different proof systems indeed take this approach by
first implementing batch commitment and proof of multiplication gates, which
are followed by a wiring consistency check [26,20,18,17,2,50,53]. However, they
take divergent paths to tackle the latter problem. A popular approach is to
compile the circuit into an algebraic format via a constraint system, e.g. rank-1
constraint system (R1CS) [27]. Define z := (1,x,w) in which x and w are the
public and private inputs of the circuit. Denote (L,R,O) as the matrices that
represent the map from z to the vectors of the left, right and output wires of
multiplication gates a, b, c. Then the relation a ∗ b − c = 0 can be expressed
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as (L · z) ∗ (R · z) − (O · z) = 0. In this way, the ZKP is reduced to proving
matrix-vector products on committed values. On the other hand, some ZKPs
like [50] and [53] proceed differently: they individually prove that wα[i] = wβ [j]
for any i, j ∈ [B]. Although this approach yields better scalability for the ZKP,
it results in worse communication complexity, usually with a B2 factor.

An interesting question is whether we can design a generic compiler that
translates any commit-and-prove SIMD-ZK (CP-SIMD-ZK) into a general CP-
ZK with sublinear communication. It would facilitate the design of communication-
efficient ZKP because it allows the focus to be shifted to the design of SIMD-ZK
primitives, which are generally easier than general-purpose ZKP.
From SIMD-ZK to scalable ZK. It is common for ZKPs to trade off scalabil-
ity against succinctness. On the one hand, although zk-SNARKs generate proofs
of constant size or size sublinear to |C|, their memory overhead is at least O(|C|).
The constant factor is large when public-key operations are involved. This pre-
vents them from being applied to large statements: prior benchmarks only focus
on statements represented by less than 225 constraints [19]. Efforts are made to
distribute the zk-SNARK proof generation among a set of provers [51,40,45,33,9],
however, the overall computational and memory overhead is still prohibitive.
They either need to disclose secret input to all provers, or only aim to delegate
computation to more powerful workers but not to reduce the computational cost
of them. Another line of work focuses on recursive SNARKs [37,35,14] that allow
a statement that can be divided into multiple steps to be proven step-by-step,
but they require the statement to be structured, i.e., each step is represented
by identical constraints. On the other hand, interactive ZKPs such as VOLE-
ZK [5,49,52,23] achieve high scalability by “streaming” the circuit evaluation.
They evaluate the circuit gate-by-gate and only incur memory overhead linear
in the current gates that are evaluated. Neither the witness nor the circuit struc-
ture for future gates are required to be known in advance. Hence these types of
ZKPs scale to large circuits with billions of gates. However, their drawback is
the O(|C|) communication complexity and lack of public verifiability.

Naturally, it would be interesting to study how to achieve scalability and
succinctness at the same time. Specifically, can we obtain efficient ZKPs with
proof size sublinear to the circuit size, without the memory overhead being lower
bounded by the circuit size?

1.1 Our Contributions

In this work, we start from SIMD-ZK schemes and aim to obtain efficient general
ZK and scalable ZK. We first extend the SIMD-ZK functionality by adding a
proof of linear map, which is easily realized by most SIMD-ZK schemes. Then
we design two compilers. The first one converts a wide range of extended SIMD-
ZK to general ZK, and the second one further converts it to scalable ZK for
memory-constrained provers to prove large statements. For both constructions,
we also demonstrate the generality of the compilers, i.e., our methods promote
any SIMD-ZK to general and possibly scalable ZK so that attention can be paid
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only to the design of the efficient SIMD-ZK, instead of more complicated generic
primitives. Our contributions are fourfold.
Extended SIMD-ZK. We propose a functionality that extends the SIMD-ZK
functionality FSIMDZK and denote it as FeSIMDZK. In addition to the subroutines
commit, open and prove that are commonly supported by SIMD-ZK schemes, it
also contains a proof of linear map that checks the relation x = My for commit-
ted vectors (x,y). The functionality FeSIMDZK is the fundamental building block
of our constructions. Additionally, we observe that special attention needs to be
paid to the security of commit-and-prove procedures when designing a general
framework for scalable ZK. Some commitment schemes may put a restriction on
its proving phase. The security consideration will be reflected as a counter in
FSIMDZK and analyzed when such a commitment scheme is encountered.
Compiling SIMD-ZK to general ZK. Based on the extended SIMD-ZK, we
design a SIMD compiler that allows a wide spectrum of SIMD-ZK to work for
general circuits. To do so, it first converts the general circuit into a SIMD circuit
by ignoring the circuit connectivity, and proves its satisfiability via a SIMD
proof. This only utilizes the commit, open and prove thus can be handled by
the underlying SIMD-ZK. Then the compiler represents the wiring as a linear
mapping of committed wire values, and proves the wiring consistency by the
proof of linear map from FeSIMDZK. Our compiler is a generalization of a few
works including Ligero [2,6] and LegoSNARK [18], which utilize R1CS-style
representations for the wiring of circuits and reduce the statement to relations
that can be better handled by the extended SIMD-ZK.
ZKP for large statements. Except for VOLE-based ZKP, most practical
ZKPs incur large RAM consumption, often linear to the circuit size. To re-
lax the memory overhead, we propose a framework for memory bounded provers
to prove the correctness of large statements. It also relies on FeSIMDZK and can
easily achieve sublinear communication complexity for arbitrary large circuits
by properly instantiating the underlying SIMD-ZK. Particularly, it utilizes the
proving technique in our SIMD compiler to evaluate a circuit segment by seg-
ment and prove the connectivity of wires between these segments. Similar to the
current scalable interactive ZK, it does not require the whole circuit structure
or the witness to be known in advance, hence allowing streaming.
Instantiation for various proof systems. To demonstrate the generality of
our compiler, we describe and analyze the detailed instantiation of our com-
piler with various CP-ZK that inherently work well for SIMD circuits, including
VOLE-based ZK [50], constant-round sublinear ZK from Σ-protocol [3], desig-
nated multi-verifier ZK from packed Shamir sharing [53], MPC-in-the-Head [2]
and zk-SNARK from pairing [18]. We show how to adapt these work for gen-
eral ZK and scalable ZK by merely satisfying the minimum requirement, that
is, realizing the SIMD-ZK functionality. We emphasize that the transformation
may affect the security guarantee of the underlying SIMD-ZK, and extra security
analysis will be provided in that case.

In many cases, applying our compiler yields concrete efficiency improvements
over the state of the art in various settings. We list our results in Section 2.2.
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Furthermore, we implement the SIMD compiler and evaluate the compilation
of a VOLE-based ZK [50] that is previously designed for SIMD circuits. For a
circuit of size |C| = 227, it shows up to 83.6× improvement on communication,
compared to the general VOLE-ZK Quicksilver [52]. In terms of running time,
it is 70% faster when bandwidth is 10Mbps and 30% faster when bandwidth
increases to 25Mbps using the same set of parameters. Its running time can be
further improved if sacrificing communication by reducing batch size.

1.2 Related Work

Previous work on complexity-preserving zero-knowledge proofs study efficient
proof generation with constrained space or time budget [10,11,24,31,8,7]. Boo-
tle et al. propose elastic SNARKs that can either achieve linear time and space
complexity, or reduce the RAM consumption to O(logC) with O(C log2 C) com-
putational complexity [13]. Assume an NP relation that can be verified in time
T and space S by a RAM program, Bangalore et al. [4] propose a public-coin
ZKP based on collision-resistant hash functions that allows the prover to run
in time Õ(T ) and space Õ(S), with proof size Õ(T/S). Their space-preserving
ZKP is converted from Ligero [2].

Recent recursive zk-SNARK and incremental verifiable computation (IVC)
propose succinct arguments for composed circuits, which can be evaluated step
by step [37,35,36,47,14,16]. These techniques increase the scalability of the prover,
who separately generates proof for each step while simultaneously proves its con-
sistency with all previous steps without going over the history data. They can
potentially support streaming proofs in a way that the input and witness for
future steps are not necessary known until those steps are reached. However,
many of them only support structured circuit which are divided into a sequence
of components that share the same structure. More advanced IVCs cross this
barrier, however they reveal the output of each step thus does not provide the
zero-knowledge guarantee when they are treated as general ZK [37,35].

1.3 Notation and Functionalities

Notation. Denote λ as the computational security parameters and [1,m] as a
set {1, 2, . . . ,m}. For a vector x ∈ FB we define its i-th coordinate by xi, and
a vector x′ := (f(0),x) ∈ FB+1 as the concatenation of a value f(0) ∈ F and
the vector x. Given distribution ensembles {Xn}, {Yn}, we write Xn ≈ Yn to
denote that Xn is computationally indistinguishable to Yn. negl() is defined as
a negligible function such that negl(λ) = o(λ−c) for any positive constant c. A
circuit C over a field F consists of input, output, addition and multiplication
gates, where input gates use circuit-input wires as their output wires and output
gates use circuit-output wires as their input wires. |C| = C is the number of
multiplication gates in the circuit C. Define (B, C)-SIMD circuit as a circuit that
contains B copies of C.

Zero-knowledge proof FZK:

5



– Upon receiving (prove, C,w) from prover P and (verify, C) from verifier V, if
C(w) = 0, then output (true) to V, else output (false) to V.

Vector oblivious linear evaluation FVOLE. This functionality works over
a field F, and upon receiving (init) from P and V, if V is honest, then sample
∆← F, else receive ∆ ∈ F from the adversary. Store ∆ and ignore all subsequent
(init) commands. Upon receiving (extend, n) from P and V, execute:

– If V is honest, sample v ← Fn. Otherwise, receive v ∈ Fn from the adversary.
– If P is honest, sample u← Fn and compute w := v +u ·∆ ∈ Fn. Otherwise,

receive u ∈ Fn and w ∈ Fn from the adversary, and then recompute v :=
w − u ·∆ ∈ Fn.

– Output (u,w) to P and v to V.

Commitment FCom. Similar to the functionality of Commit command in FSIMDZK:

– Upon receiving input (Commit,w) from P and (Commit) from V, pick a tagJwK and store (JwK,w) in the memory. Return JwK to both parties.
– Upon receiving (Open, JwK), if a tuple (JwK,w) was previously stored, output

(JwK,w) to V; otherwise abort.

The descriptions of special honest-verifier ZK argument are deferred to Sup-
plementary Material A.1.

2 Technical Overview

2.1 From SIMD to General Circuit in ZK

Denote the prover as P and verifier as V. Define (B, C)-SIMD circuit as B iden-
tical repetitions of a circuit C with size |C| = C. SIMD-ZK is designed for such
circuits. First, we would like to focus on converting SIMD-ZK to general ZK that
works for arbitrary circuits. The functionality of ZKP for SIMD circuits is shown
in figure 1. P first groups and commits to the vectors of witnesses. Then it uses
the underlying ZKP to prove the relation of committed values by directly oper-
ating on commitments. Since elements in each vector are committed in a batch,
the operations on the commitment apply to all of the committed elements. For
a SIMD-ZK to be interesting, it usually costs less than separately evaluating C
for B times. For example, AntMan [50] has a complexity of O(B+C) for (B, C)-
SIMD circuits, which shows significant saving on communication compared with
its non-SIMD opponents [52,23] that incur O(BC) complexity.

There are multiple ways to conduct the transformation from SIMD-ZK to
general ZK. As discussed in Section 1, such constructions usually need a wire
consistency check on top of SIMD-ZK. Taking AntMan [50] as an example, one
can first arrange all gates in batches, commit to their input and output wire
values, then utilize a SIMD-ZK to prove that all batches of gates are computed
correctly. Then an extra protocol is invoked to prove the consistency of each
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Functionality FSIMDZK

Public parameter: Define B to be the batch size and τmax to be the maximum
time that a commitment can be used in the proof.

Commit: Upon receiving input (Commit,w ∈ FB) from P and (Commit) from V,
pick a tag JwK and store (JwK,w, ctrw = 0) in the memory. Return JwK to both
parties.

Open: Upon receiving (Open, JwK), if a tuple (JwK,w) was previously stored,
output (JwK,w) to V; otherwise abort.

Prove: Upon receiving (Prove, C, Jw1K, . . . , JwmK), where the circuit C : {0, 1}m →
{0, 1}, fetch wi from the memory, for i ∈ [m]. If for any wi that JwiK does not exist
or its counter ctrwi ≥ τmax, abort. Check C(w1[i], . . . ,wm[i]) = 0 for all i ∈ [B]. If
any check fails, abort; otherwise, return Pass. For i ∈ [m], set ctrwi = ctrwi + 1.

Fig. 1: Functionality of SIMD ZK.

individual wire value that is repeatedly packed in multiple commitments, E.g.
for batched wire values w1,w2 ∈ FB and wire indices i, j ∈ [B], it aims to
check whether they satisfy w1[i] = w2[j]. AntMan requires O(B3) complexity
for checking all combinations of (i, j) ∈ [B]× [B], which leads to a total commu-
nication complexity of O(B3 + C/B). This translates to a O(C3/4) cost when
setting B = C1/4. The designated multi-verifier ZK from [53] also uses a similar
wire consistency check, which incurs O(n2B2) among n verifiers.

A better wire consistency check. We follow an idea similar to the above but
manage to improve the complexity from O(C3/4) to O(C1/2). As in AntMan [50],
we ignore the wiring of the circuit and pack the multiplication gates in blocks of
size B, which results in C/B batches. The SIMD proof is invoked to first commit
to the input and output wires of the packed multiplication gates, then prove
the SIMD circuit satisfiability. They totally incur communication complexity
O(C/B). Then, we manage to perform the wire consistency check with cost
O(B) rather than O(B3).

Instead of considering the wire consistency among each pair of commitments
that contain values from the same wire as done in AntMan, we consider how
they are all consistent with a global vector w that contains all wire values in
the circuit. Taking the left input wire of all multiplication gates as an example.
Define a circuit C that has a total of Bm wire values and Bn multiplication
gates. Assume global wire values w ∈ FBm and the values of left input wires
across all multiplication gates l ∈ FBn. For any i ∈ [Bn], the left wire of the i-th
multiplication gate must be associated a wire index αi ∈ [Bm] such that l[i] =

w[αi]. Alternatively, one can define a mapping matrix L ∈ {0, 1}Bn×Bm such
that the i-th row Li is all-zero except at the entry Li[αi]. In this way, the wire
consistency check boils down to check l = Lw, where L is public and parties have
commitments {JliK}i∈[n] and {JwiK}i∈[m]. In the context of SIMD-ZK protocols,
values in l and w are batch-committed, meaning that operations on them are
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applied to every element in the vector. As a result, it is not straightforward to
use SIMD-ZK to prove wire consistency which intuitively involves operations for
separate elements.

We sketch our idea below. First, let V send a challenge vector r̂ ∈ FBn

and convert the check of l
?
= Lw to the check of r̂⊺l ?

= r̂⊺Lw. This reduces
the proof of a matrix-vector multiplication to a proof of two inner products,
with an increase in soundness error depending on the distribution of r̂. To sim-
plify the notation, we define a public vector v⊺ = r̂⊺L, then rewrite the above
relation as r̂⊺l ?

= v⊺w. If we define a circuit C : F2n+2m+1 → F such that
C(r̂1, . . . , r̂n, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q) :∑

i∈[n]

r̂i · li −
∑
j∈[m]

vj · wj − q,

then P can prove the above statement by: 1) Divide each of the vectors in
(r̂, l,v,w) into length-B segments. Compute and commit to q :=

∑
i∈[n] r̂i ∗ li−∑

j∈[m] vj ∗ wj ∈ FB . Prove the consistency between (r̂, l,v,w, q) by using a
SIMD-ZK composed of B evaluations of the circuit C. 2) prove that

∑
i q[i] = 0.

This is not obvious, as it involves the computation of the sum of values in one
commitment. A naive way is for P to open the commitment to q, but it com-
promises the zero-knowledge requirements because q is the linear combination
of private circuit wire values. To tackle the problem, P instead commits to a
uniform vector r̃ ∈ FB under the constraint that

∑
i∈[B] r̃[i] = 0. It should be

done before V samples r̂ (else P can break soundness). After P commits to the
mask vector, V sends the challenge r̂ and the new SIMD circuit is defined to be

C′(r̂1, . . . , r̂n, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q, r̃)

=
∑
i∈[n]

r̂i · li −
∑
j∈[m]

vj · wj − q − r̃

P computes and commits to q ∈ FB such that

q =
∑
i∈[n]

r̂ ∗ li −
∑
j∈[m]

vj ∗ wj − r̃.

The parties can now use the SIMD-ZK to prove B number of instances of C′ with
committed inputs Jr̂1K, . . . , Jr̂nK, Jl1K, . . . , JlnK, Jv1K, . . . , JvmK, Jw1K, . . . , JwmK,JqK and Jr̃K. Finally, the proof of

∑
i q[i] = 0 is specific to the underlying com-

mitment schemes. The naive way is to let P fully open q to V who verifies its
sum locally. This would generally require O(B) communication complexity.

Soundness comes from the randomness of the challenge vector r that is sam-
pled after P commits to r̃. Assume that F is an exponentially large field and a
cheating prover commits to (l,w) such that l− Lw ̸= 0Bn. By Schwarz-Zippel,
the probability that the erroneous values happen to be corrected by r̂ during
the check of

∑
i q[i]

?
= 0 where q := r̂⊺l− r̂⊺Lw is 1/|F|, which is negligible.
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Functionality FeSIMDZK

Public parameter: batch size B.
FeSIMDZK supports all that FSIMDZK supports and the following instruction.

Linear map: Upon receiving input (LinearMap, Jx1K, . . . , JxnK, Jy1K, . . . , JynK,M),
check if tuple (JxiK,xi) and (JyiK,yi) exists for i ∈ [n] and that x = My. If any
check fails, abort; otherwise, return Pass.

Fig. 2: Functionality of extended SIMD zero-knowledge.

Plugging in the protocol. For a general circuit with a total of |w| = Bm
wire values and C = Bn multiplication gates, the above approach leads to a
zero-knowledge proof of linear map that can be instantiated by any SIMD-ZK.
The actual communication complexity depends on the cost of proving the inner
product argument by the underlying SIMD-ZK, plus the opening cost of the
commitment scheme. Let (l, r,o) ∈ FnB be the batched wire values of left, right
and output of multiplication gates in the circuit. The wire consistency can be
proven by checking (l

?
= Lw, r

?
= Rw,o

?
= Ow), where (L,R,O) ∈ FnB×mB are

public maps that describe the circuit connectivity. Furthermore, the SIMD-ZK
protocol handles the rest of the multiplicative relation check o

?
= l ∗ r. This

scheme is captured in the extended SIMD-ZK functionality FeSIMDZK shown in
Figure 2. Compared to the common SIMD-ZK functionality shown in Figure 1, it
additionally supports the proof of linear map between committed vectors. Based
on this extended SIMD-ZK, we propose a compiler that compiles any SIMD-
ZK into general ZK. By plugging this compiler to AntMan [50], it improves
its communication complexity from O(C3/4) to O(C1/2). In another case, for
compressed Σ-protocols [3], this yields a reduction of the CRS size from O(C)
toO(

√
C) for constant-round sublinear ZK. Eventually, the multi-verifier ZK [53]

can be improved from O(nC/B + n2B2) to O(nC/B + n2).

Memory constrained prover. The above construction can be viewed as a
compiler that enables a SIMD-ZK to handle arbitrary circuits C, where all wire
values fit in a vector w of size O(C). Assume the linear mapping matrices use
succinct representation, the proof requires memory overhead O(C), which upper
bounds the largest circuit that the scheme can prove. We propose a second
compiler that further extends the previous idea to the streaming setting, in which
the memory overhead is proportional to the plaintext evaluation of the circuit.
Furthermore, the whole circuit structure and the witnesses are not required to be
known until they are reached. Instead, P proves the circuit segment-by-segment
and only needs to evaluate the current and the previous one at a time: the
circuit C is split into segments C = (C1, . . . , Cn′) using existing circuit partition
methods [43,1,44]. For any consecutive segments Cj and Cj+1, let (wj , lj , rj ,oj)
and (wj+1, lj+1, rj+1,oj+1) be the witness and the input and output wire values
of multiplication gates for each segment. P first uses a commit-and-prove SIMD-
ZK to prove the internal satisfiability of Cj including the linear and multiplicative
relations of (wj , lj , rj ,oj). Then P proves that the output wires of Cj correctly
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link to some input wires of Cj+1. Namely, it additionally invokes the check of
linear map to prove Mwj = w̃j+1, in which M is a map that indicates the
connectivity between Cj and Cj+1 and w̃j+1 are the input wire values of Cj+1.
After this, P and V discard everything for segment Cj and carry on with the
check of internal circuit satisfiability of Cj+1. The above step incurs memory
overhead O(|wj | + |w̃j+1|). Based on this framework, P is able to prove the
satisfiability of a large circuit by separately evaluating a sequence of smaller
circuits.

2.2 Improved Commit-and-Prove ZK via SIMD Compiler

Now we show three commit-and-prove SIMD ZK protocols that take advantage of
our compilers to perform general ZKP with either reduced online communication
complexity or reduced setup cost:

– The aforementioned AntMan [50] requiresO(B+C) communication for (B, |C|)-
SIMD circuit and at least O(C3/4) for a general circuit. Our compiler trans-
forms it into a general VOLE-ZK with communication O(C/B+B), which is
O(C1/2) when B = O(C1/2).

– A constant-round SHVZK argument of knowledge for NP from the discrete
logarithm assumption with sublinear communication O(C/B+B) = O(C1/2)
and a CRS of size O(B) = O(C1/2), where the computation is dominated by
O(C1/2) C1/2-size Fast Fourier Transforms (FFT). It builds upon the tech-
niques from Attema et al. [3] (denoted as AC20) and is combined with a
2-round SHVZK for Hadamard product of [30]. It improves upon a protocol
of AC20 which has a CRS of size O(C) and requires O(1) C-sized FFT. For
(B, C)-SIMD circuit, our protocol has O(C+

√
B) = O(C1/2) communication.

– A non-interactive designated n-verifiers ZK based on the packed Shamir secret
sharing [53,25]. Restricting B < n − 2t where t is the number of corrupted
verifiers, it incurs O(nC) communication overhead for (B, C)-SIMD circuits
and O(nC/B+n2B2) for arbitrary circuit of size C, The cost is optimized to
O(nC/B + n2) with the help of our compiler.

Additionally, we also demonstrate that Ligero [2] and its follow-up work [4] per-
fectly fit our compilers. Although there is no improvement in terms of the proof
size or computational complexity, casting Ligero in our framework and using it as
a commit-and-prove ZK allows us to identify an important security consideration
that would affect both the soundness and zero-knowledge properties.
Compiling AntMan SIMD-ZK. The AntMan SIMD-ZK protocol consists of
the following key components: 1) a constant-size additive-homomorphic poly-
nomial commitment scheme, 2) a proof of multiplicative relation on committed
polynomials, i.e. prove that f0(·) = f1(·) · f2(·). and 3) a proof of degree reduc-
tion, i.e. for two polynomials (f(·), f̂(·)) with degrees d1 < d2, f(i) = f̂(i) for
i ∈ [d1+1]. We write JfK for a commitment to the polynomial f(·). The AntMan
protocol realizes FSIMDZK as follows:
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1. For each batch of B private inputs wα ∈ FB , P computes a degree-(B − 1)
polynomial fα such that fα(i) = wα[i]. P commits to fα so that P and V
obtain JfαK.

2. The parties process the circuit in topological order. For any batch of k addition
gates with commitments to input wires (JfαK, JfβK), P and V locally computes
the commitment to output wires by JfγK = JfαK + JfβK. For multiplication
gates with input commitments JfαK and JfβK, P computes wγ = wα ∗ wα

and a degree-(B − 1) polynomial fγ such that fγ(i) = wγ [i], i ∈ [B]. P also
computes f̂γ(·) = fα(·) · fβ(·). P commits to them by generating JfγK andJf̂γK.

3. For each multiplication gates with input and output wires (α,β,γ), P proves
that (JfαK, JfβK, Jf̂γK) is a multiplication triple and f̂γ(i) = fγ(i) for i ∈ [B].

4. When a batch of k output wires α, P opens the commitment to fα, from
which V reconstructs wα.

The overhead of AntMan SIMD-ZK lies in the commitment of batch circuit
intermediate wire values at Step 2, which takes O(C) for a (B, C)-SIMD circuit.
The proof of multiplication and degree reduction only incurs O(B) with random
linear combination.

When applying the SIMD compiler to the AntMan SIMD-ZK, it takesO(C/B)
to prove all multiplicative relations for a general circuit of size C. Namely, it
checks C multiplication triples (l, r,o) via SIMD-ZK. Additionally, it invokes
the proof of linear map to check the wire consistency between (l, r,o) and w,
which contains intermediate wire values in the circuit. This procedure incurs
O(B) communication overhead at the final commitment opening. Hence, it takes
O(C/B +B) ≥ O(C1/2) in total to prove the satisfiability of arbitrary circuits.
This protocol is referred as AntMan++. We implemented the AntMan++ and
evaluate its performance on proving general circuits of size up to C = 227. It
is compared with the prior practical VOLE-based ZK QuickSilver [52], which
requires O(C) communication overhead. More details are shown in Section 4.1.
SIMD-ZK based on Pedersen commitment. We briefly present a SHVZK
argument of knowledge for (B, C)-SIMD circuits which relies on the techniques of
AC20 [3]. The key construction of AC20 is a compression mechanism to handle
ZK proof for general linear relations (the prover wants to prove the correction of
evaluation of a linear form over a committed vector). We expand this technique
to obtain a constant-round DLOG-based ZK proof for (B, C)-SIMD circuits with
O(C+

√
B) communication. When plugged into our compiler, we get a constant-

round circuit ZK with O(C1/2) communication, O(C1/2) CRS size, and with
computation dominated by O(C1/2) FFTs of size O(C1/2). It improves over
AC20 in both CRS size (from linear to square root) and computation time.

Specifically, for a group of B multiplication gates, we encode the values over
all B evaluations on left wire values i.e x ∈ FB into one polynomial f using pack
secret sharing such that f(0) $←− F, f(i) = xi for i ∈ [1, B] and commit to it using
Pedersen commitment to obtain JfK = gx′

hr where x′ := (f(0),x) ∈ FB+1. The
vector of right wire values y is committed in the same way as x to get JgK. For the
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vector of output wire values z, we define h(X) := f(X)g(X) and JhK = gz′
hr

where z′ := (h(0), z, h(B + 1), . . . , h(2B)) ∈ F2B+1. P can convince V that
zi = xiyi for all i ∈ [1, s] by revealing f(c), g(c) and h(c) where the challenge c is
randomly picked by V. V now checks f(c)g(c) ?

= h(c) while P needs to prove that
the revealed values are correct evaluations of f(X), g(X) and h(X) at c. This can
be handled by using a ZK proof for linear relations since by Langrage formula,
f(c), g(c) and h(c) can be expressed as linear form on the committed vectors
x′,y′ and z′. Observe that this way, P can prove correctness of a batch of B-
tuples of multiplication gates, by showing that the evaluation of many different
committed polynomials at a given challenge c is correctly computed. This can
be done using an amortized check over many executions, with cost identical to
that of a single execution. Using a sublinear argument for a batch of B-tuples of
multiplications, the circuit ZK can be obtained by combing our compiler with
an amortized nullity check over one commitment scheme which is used to check
the consistency of output gates and also of two different commitments of two
vectors of the form x ∈ FB+1 and (x, aux) ∈ F2B+1. The details of construction
are shown in section 4.2.
Compiling multi-verifier ZK. Yang et al. [53] proposed an non-interactive
designated multi-verifier zero-knowledge proof (MVZK) that allows a prover to
prove the correctness of a statement to a set of n honest-majority verifiers. It
leverages packed Shamir secret sharing (PSS) [25] to support SIMD statements.
At a high-level, P first distributes the witnesses to V in the form of PSS, then
utilize a polynomial compression protocol [29,15,12] to reduce the check of all
multiplications into a single multiplication triple. The PSS of witnesses serves as
commitments among all V, thus it can be viewed as a commit-and-prove SIMD
ZK. Effort is made in [53] to convert its SIMD-ZK to general ZK by arranging all
wire connection as a tuple (Jw1K, Jw2K, i, j), indicating that w1[i] = w2[j]. All
tuples with the same (i, j) can be checked in a batch with commitment-opening
cost O(n2) by a random linear combination. Since i, j ∈ [B], the total wire
consistency check incurs O(n2B2). However, by applying our SIMD compiler,
the overhead for the check is reduced to O(n2). The cost to prove multiplicative
relations remains O(nC/B). One caveat is that this protocol is not flexible in
choosing the batch size B. Assume the maximum number of corrupted verifiers
t < n/2, it requires that 2t+B < n to ensure that honest verifiers have enough
shares to determine the result.
SIMD-ZK from Ligero. Our compiler is partially inspired by Ligero [2], an
MPC-in-the-head based ZKP [32] that works for general circuits. At the core
of Ligero, P batch encodes the witness using the Reed-Solomon (RS) coding
scheme and commits to each entry of the codewords. V chooses a subset of entries
in codewords, and applies the interleaved RS test, linear constraint test and
quadratic constraint test to verify the correctness of encoding, wiring consistency
and multiplicative consistency.

We first extract a commit-and-prove SIMD-ZK from Ligero and prove that
it realizes FSIMDZK. Applying our SIMD compiler would result in the origi-
nal Ligero. We then identify a security issue when applying SIMD Ligero to
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our memory-constrained framework designed for scalable-ZK. Namely, although
Ligero can be turned into a commit-and-prove ZK, its commitment only supports
a pre-determined limited number of invocations from the proving procedure. Fol-
lowing the MPC-in-the-head paradigm, the committing phase mentioned above
is equivalent to emulating a n-party computation of such circuit, then sepa-
rately commit to the view of each party among (P1, . . . , Pn). During the proving
phase, P opens a subset of t < n views to V, who applies the above mentioned
tests. This is fine for one-shot proofs. However, general commit-and-prove ZK
does not restrict the number of times that the proving procedure is applied to a
commitment. The zero-knowledge property can be compromised if the number of
opened views exceeds the degree parameter of Reed-Solomon encoding. Although
refreshing the commitment solves this issue, a proof of equality across the ob-
solete and new commitments does not come for free. Our framework covers this
issue by adding a counter in FSIMDZK to check the usage of each commitment,
and abort the proving phase when an input commitment is overused.

3 Generic Compiler of ZK Proofs from SIMD Circuits to
Arbitrary Circuits

In this section, we first present a construction for extended SIMD-ZK function-
ality FeSIMDZK which supports the proof of linear map, in addition to the normal
SIMD-ZK functionality FSIMDZK. Based on the extended SIMD-ZK, we describe
our compiler that enables a SIMD-ZK scheme to work for general circuits. At
last, we present a framework that allows SIMD-ZK schemes to prove large state-
ments with small memory footprints.

3.1 Extended SIMD-ZK

The protocol for extended SIMD-ZK is shown in Figure 3, which realizes the
functionality FeSIMDZK. It is based on the FSIMDZK functionality to perform the
committing and opening of batched wire values, as well as prove the element-
wise multiplicative relations between these batches. It takes input a public matrix
M ∈ FBn×Bk and two vectors x = (x1, . . . ,xn) ∈ FBn and y = (y1, . . . ,yk) ∈
FBk from P, outputs 1-bit information to V indicating whether x = My. Es-
sentially, it is a proof of linear map. The first step is to reduce the proof of
linear map to a proof of inner products, which is achieved by a random linear
combination: V uniformly samples r̂ ∈ FBn and converts the check of x ?

= My

into r̂⊺x ?
= v⊺y, where v⊺ = r̂⊺M . After dividing these vectors into length-B

segments, P and V invoke the FSIMDZK functionality of batch size B. P inputs q
and proves the correctness of q =

∑n
i=1 r̂i ∗ xi −

∑k
j=1 vi ∗ yi ∈ FB . Eventually

it opens the commitment to q and let V check
∑B

i=1 q[i]
?
= 0. To ensure the

privacy of P, it needs to make sure that only opened commitment to q does not
reveal information of x and y. It does so by the random mask r̃. The impact of
this mask on soundness is negligible since it is committed before r̂ is sampled.
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Protocol ΠeSIMDZK

Inputs: The prover P and verifier V hold a public matrix M ∈ FBn×Bk for some
integers n and k. Commitments JxK and JyK are public, where x ∈ FBn and
y ∈ FBk.
Protocol:

1. P uniformly samples a vector r̃ ∈ FB such that
∑B

i=1 r̃[i] = 0. Then FSIMDZK

is invoked to obtain its commitment Jr̃K.
2. V uniformly samples a vector r̂ ∈ FBn and sends it to P. Everyone computes

v = r̂TM ∈ FBk. Then for i ∈ [k], FSIMDZK is invoked to construct JviK, where
vi is the i-th B-sized vector of v. In the same way, everyone can have access to
{Jr̂iK}i∈[n].

3. P computes q ∈ FB , such that q[i] =
∑n

j=1 r̂j [i]xj [i] −
∑k

j=1 vj [i]yj [i] + r̃[i].
P invokes FSIMDZK to obtain JqK.

4. Define circuit

CLin(a1, . . . , an, b1, . . . , bn, c1, . . . , ck, d1, . . . , dk, e, f)

:=

n∑
i=1

ai · bi −
k∑

i=1

ci · di + e− f,

then call FSIMDZK.Prove(CLin, Jr̂1K, . . . , Jr̂nK, Jx1K, . . . , JxnK,Jv1K, . . . , JvkK, Jy1K, . . . , JykK, Jr̃K, JqK).
5. V sends (Open, JqK) to FSIMDZK, which returns q to V; V checks

∑B
i=1 q[i] = 0

and aborts if the check fails.

Fig. 3: The protocol for extended SIMD ZK from SIMD ZK.

In terms of the cost, the protocol ΠeSIMDZK takes input k + n vector com-
mitments. During the protocol execution, it additionally commits to k + n + 1
size-B vectors. If element-wise product between a public vector and a commit-
ted vector is supported by the underlying FSIMDZK, the number of commitments
is reduced to 1 size-B vector commitment. Parties invoke the Prove procedure
from FSIMDZK to prove a (B,n + k)-SIMD circuit. P also opens a size-B vector
to V with cost at most O(B). The cost is reduced if the underlying SIMD-ZK
protocol provides an easier way to prove

∑B
i=1 q[i] = 0 for a committed vector

q without opening the commitment.

Theorem 1. Protocol ΠeSIMDZK (Figure 3) securely realizes the Functionality
FeSIMDZK (Figure 2) in the FSIMDZK-hybrid model, with soundness error |F|−1.

Proof. We first consider the case of a malicious prover and then the case of a
malicious verifier. In each case, we construct a PPT simulator S given access to
functionality FeSIMDZK, and running a PPT adversary A as a subroutine while
emulating FSIMDZK for A. We show that no PPT environment Z can distinguish
the real-world execution from the ideal-world execution.
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Malicious prover. The simulator S simulates the view of adversary A for the
protocol execution of ΠeSIMDZK as follows:

1. By emulating the (Commit) command of FSIMDZK, S receives r̃ from A and
sends a handler Jr̃K to A.

2. S uniformly samples r̂ ∈ FBn and sends to A. For i ∈ [k], after receiving
(Commit,vi) from A, S sends a handler JviK to A. Similarly, S sends Jr̂iK to
A for i ∈ [n].

3. After receiving (Commit, q) fromA, S emulates FSIMDZK by sendingA another
handler JqK.

4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) from A, and then checks whether τi for
all i ∈ [2n + 2k + 2] match their corresponding tags. For i ∈ [B], S checks
whether

∑n
j=1 r̂j [i]xj [i] −

∑k
j=1 vj [i]yj [i] + r̃[i] − q[i] equals to 0 or not. If

any check fails, S aborts; otherwise sends Pass to A.
5. S emulates the (Open) command of FSIMDZK and receives a handler τ from A.

If τ does not match JqK or the vector q previously sent by A does not satisfy∑B
i=1 q[i] = 0, S aborts.

Define E to be the event that a cheating prover A successfully convinces V
in the real world. This happens when r accidentally corrects the wrong input of
A. Define z = My and

f(x1, . . . , xBn) =

Bn∑
i=1

xi(x[i]− z[i]) +

B∑
i=1

r̃[i].

With fixed x, z, r̃ and uniformly sampled r̂, we have

Pr [E|x ̸= My] = Pr [f(r̂) = 0|x ̸= My] = |F|−1.

since f(x1, . . . , xBn) is a Bn-variate degree-1 polynomial. Hence we conclude
that A cannot distinguish between the real and ideal world except with proba-
bility |F|−1.

Malicious verifier. Similarly in this case, S interacts with A as follows:

1. To emulate the (Commit) command, S sends a handler Jr̃K to A.
2. S recieves r̂ and (Commit,vi) from A for i ∈ [k]. Then S emulates FSIMDZK

by sending A a handler JviK for i ∈ [k]. In the same way, S sends A handlers
{Jr̂iK}i∈[n].

3. Then, S plays the role of FSIMDZK and sends a handler JqK to A.
4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) fromA and checks whether {τi}i∈[2n+2k+2]

match their corresponding tags. Then S queries FeSIMDZK. If check fails or
FeSIMDZK aborts, S aborts; otherwise sends Pass to A.

5. By emulating the (Open) command of FSIMDZK, S uniformly samples a vector
q ∈ FB such that

∑B
i=1 q[i] = 0 and sends q to A.

The only difference between reality and the ideal world is the method of cal-
culating vector q. Following the constraint

∑B
i=1 q[i] = 0, S uniformly samples
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Protocol Πcompiler

Inputs: The prover P and verifier V hold an arbitrary circuit C over a large field
F, where C contains N1 = Bn1 addition gates, N2 = Bn2 multiplication gates and
K = Bk wires for some n1, n2 and k.
Protocol:

1. Set c = 1. For each gate in the form (i, α, β, γ, T )
– If T = ADD, set Ai := Iα + Iβ − Iγ ; P sets w[γ] := w[α] +w[β]
– If T = MULT , set (Lc,Rc,Oc) := (Iα, Iβ , Iγ); P sets (l[c], r[c],o[c]) =:

(w[α],w[β],w[α] ·w[β]). Increase c by 1.
After the circuit is processed, matrix L,R,O ∈ FN2×K , and A ∈ FN1×K are
public; P has (l, r,o,w) ∈ FN2 × FN2 × FN2 × FK .

2. P splits wire values (l, r, o, w) into chunks of size B, i.e., {li, ri,oi}i∈[n2]

and {wi}i∈[k], such that each element is in FB . FeSIMDZK is invoked to obtain
commitments {JliK, JriK, JoiK}i∈[n2] and {JwiK}i∈[k].

3. Then, (LinearMap, {JliK}i∈[n2], {JwiK}i∈[k],L) is sent to FeSIMDZK to check that
l = Lw; similarly check that r = Rw, o = Ow, and that 0 = Aw.

4. Let circuit CMult : F3 → F such that CMult(x, y, z) := xy − z. For i ∈ [n2], send
(Prove, CMult, JliK, JriK, JoiK) to FeSIMDZK.

Fig. 4: Generic ZK in the FeSIMDZK hybrid.

vector q. While in reality, each entry of q is masked by vector r̃ chosen by P.
As a result, in both worlds, all entries except one of q are information-theoretic
secure, so no one can distinguish one from another.

Overall, any PPT environment Z cannot distinguish between the real-world
execution and ideal-world execution, which completes the proof.

3.2 Compiling Extended SIMD-ZK

The general approach to compile a SIMD protocol into a generic protocol is to
supplement it with an additional proof of wiring consistency. Namely, denote w
as a vector that includes all the wire values in a circuit, then any input wire of
a multiplication gate can be represented as the linear combination of a series of
values in w, who are the wire values that connect from the circuit inputs or the
output of other gates. This relation can be generally represented as a linear map
M between a vector of wire values x, and w, which should satisfy x = Mw. As
shown in Figure 4, along with the vector w, P also commits to (l, r,o) which are
the batches of input and output wire values of multiplication gates. Showing that
o = l ∗r is enough to prove that all multiplication gates are computed correctly.
Additionally, P also proves the correctness of (l = Lw, r = Rw,o = Ow),
in which (L,R,O) are the linear maps that defines the routing of wires that
connects to the input and output wires of multiplication gates. Additionally, the
proof of 0 = Aw shows the correct computation of all addition gates.

To handle a general circuit C, our compiler fully depends on the extended
SIMD-ZK functionality FeSIMDZK. Regarding the cost analysis, P commits to
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a total of k + 3n2 size-B vectors to V. They invoke the proof of linear map
for 4 times to prove the wiring consistency, and the proof of element-wise mul-
tiplication to prove the correctness of n2 batches of multiplication gates. An
optimization to reduce the cost for the proof of linear map is to combine the 4 of
them into 1. Namely, define w′ to be the wire values excluding the input and out-
put wires of multiplication gates. Construct the witness vector w = (w′∥l∥r∥o)
and prove the wiring consistency by proving 0 = A′w, in which A′ ∈ FK×K is
a map that describes the circuit wire connectivity.

Theorem 2. The Protocol Πcompiler (Figure 4) securely realizes the Functional-
ity FZK in the FeSIMDZK-hybrid model, with 0 soundness error.

Proof. Similarly, we construct a PPT simulator in two cases and argue that no
PPT environment Z can distinguish reality and the ideal world.
Malicious prover. The simulator S simulates the view of adversary A for the
protocol execution of Πcompiler as follows:

1. Following the protocol specification, S obtain matrix L,R,O and A from
circuit C.

2. By emulating the (Commit) command of FeSIMDZK, S receives {li, ri,oi}i∈[n2]

and {wi}i∈[k] fromA and sendsA handlers {JliK, JriK, JoiK}i∈[n2] and {JwiK}i∈[k].
3. After receiving (LinearMap, {τi}i∈[n2+k],L) fromA, S checks whether {τi}i∈[n2]

match {JliK}i∈[n2] and {τi}i∈[n2+1,n2+k] matches {JwiK}i∈[k]. Then, S checks
whether l = Lw. If any check fails, S aborts; otherwise, S sends Pass to A.
Similarly, S handles other three (LinearMap) commands from A.

4. For i ∈ [n2], S receives (Prove, C, τ1, τ2, τ3) fromA and checks whether {τ1, τ2, τ3}
match the tags {JliK, JriK, JoiK}. In each round, S also checks that li[j]·ri[j] =
oi[j] for j ∈ [B]. If any check fails, S aborts; otherwise, S sends Pass to A.

It is trivial that S is perfect, since whenever an ideal functionality is called in
the protocol, S acts exactly the same as the definition of the functionality. On
the other hand, if the witness indeed satisfies linear as well as the multiplication
constraints, we can conclude that it satisfies circuit C. Given the perfectness of
the ideal functionality, we can conclude that the soundness error is 0.
Malicious verifier. The simulator S simulates the view of adversary A for the
protocol execution of Πcompiler as follows:

1. S follows the protocol specification and obtain matrix L,R,O and A from
circuit C.

2. By emulating the (Commit) command of functionality FeSIMDZK, S sends A
handlers {JliK, JriK, JoiK}i∈[n2] and {JwiK}i∈[k].

3. After receiving (LinearMap, {τi}i∈[n2+k],L) fromA, S checks whether {τi}i∈[n2]

match {JliK}i∈[n2] and {τi}i∈[n2+1,n2+k] matches {JwiK}i∈[k]. Then, S queries
FZK. If check fails or FZK aborts, S aborts; otherwise, S sends Pass to A.
Similarly, S handles other three (LinearMap) command from A.

4. For i ∈ [n2], S receives (Prove, C, τ1, τ2, τ3) fromA and checks whether {τ1, τ2, τ3}
match the tags {JliK, JriK, JoiK}. In each round, S also queries FZK. If any
check fails or FZK aborts, S aborts; otherwise, S sends Pass to A.
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Similarly, since S acts according to the definition of the ideal functionality and
there is no commitment opening during the protocol, the simulation is perfect.

As a result, no PPT environment Z can distinguish between the real-world
scenario and the ideal-world execution, which completes the proof.

3.3 Generic ZK for Limited-Memory

Besides a basic-version compiler, we also present another compiler that can deal
with a situation where the prover’s memory is limited. Although a similar ques-
tion has already been proposed before [7,27,41,37], our construction does not rely
on any complicated assumption other than the realizatin of FeSIMDZK with the
parameter τmax > 1. The protocol is shown in Figure 5. We take the advantage
of the commit-and-prove paradigm: instead of proving the whole circuit at one
time, circuit can be “partially" proved. The value of wires that connect between
different parts of the circuit can be reserved as commitments and used for the
proof of connectivity. Specifically, prover will clarify a space threshold parameter
S before the proof, and the original circuit C will be divided into ⌈|C|/S⌉ parts
(denoted as C1, C2, . . . , C⌈|C|/S⌉), where each part contains at most S gates. In
each round, S gates of Ci will be read and processed in the memory, and P gen-
erates the proof for Ci. At the end of each round, P commits to a vector which
contains all the wire values that are still active in Ci+1, and discards those that
won’t be used in the remaining circuit.

To support this pruning operation, we add a DEL gate to the encoding
of the circuit. P reads the circuit from a stream of (α, β, γ, T ), where T ∈
{ADD,MULT,DEL}. If T ∈ {ADD,MULT}, P processes gates α, β, γ simi-
larly as the previous compiler. If T = DEL, P adds gate α to the set D, which
contains all the wire values that no longer appear in the next segment of the
circuit. After the proof of consistency inside Ci, P forms a new commitment to
wire values that are not in the set D. By applying FeSIMDZK.LinearMap, P proves
that the committed wire values belongs to the output wires of Ci, which are also
the input of Ci+1. P and V repeat this procedure for the proof of each segment.

Now we claim that if the plaintext evaluation of circuit C requires mem-
ory space M , then in our protocol, the prover’s space complexity is O(M).
Denote oi as the output of subcircuit Ci, and circuit input x is denoted as
o0. In each round, we call FeSIMDZK.Prove to complete the proof for Ci and
FeSIMDZK.LinearMap to prove the transformation between Joi−1K and JoiK. As
each subcircuit contains at most S gates, proving Ci requires O(S) space. And
also, using FeSIMDZK.LinearMap to prove the consistency between Joi−1K andJoiK requires O(|oi−1| + |oi|) space, so the space complexity of each round
is O(S + |oi−1| + |oi|). As a result, the overall space complexity is O(S +
max{|oi−1| + |oi|}i∈[⌈|C|/S⌉]). Since in the plaintext evaluation of C, only ac-
tive wire value needs to be read into the memory, memory upper bound M ≥
max{|o0|, |o1|, |o2|, . . . , |o⌈|C|/S⌉|}. By choosing S < M , we can conclude that
the space complexity of the protocol is O(M).
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Protocol Πsmall−space

Inputs: The prover P and verifier V hold an arbitrary circuit C over a large field
F, and a space threshold parameter S = sB for some integer s. P holds the secret
input x such that C(x) = 0.
Protocol:

1. Let h() : Z→ Z be a function map wire indices to physical indices and w be a
dynamic list storing wire value to be dealt with in the current round. Initially,
set h(i) = i and w[i] = x[i] for all i ∈ [|x|]. Define function Im() : f → Z,
returning the maximum index that f has the definition.

2. Let D = ∅ and W = Im(h) + S. Initialize L, R, O, A to be empty matrices.
Read the next S gates to the memory (or until the last gate). For each in the
form (α, β, γ, T ):
– If T = ADD, set h(γ) := Im(h)+1, compute r := Ih(α) + Ih(β)− Ih(γ) ∈ FW

and append r to A. P sets w[h(γ)] := w[h(α)] +w[h(β)]
– If T = MULT , set h(γ) := Im(h) + 1, append rows in FW Ih(α), Ih(β), Ih(γ)

to matrices L,R,O respectively. P sets w[h(γ)] := w[h(α)] · w[h(β)] and
append values w[h(α)],w[h(β)],w[h(γ)] to vectors l, r,o respectively.

– If T = DEL, add α to D.
Suppose that there are S1 = s1B addition gates and S2 = s2B multiplication
gates (S = S1 + S2), and after processing S gates, |w| = kB. A ∈ FS1×W and
L,R,O ∈ FS2×W are public.

3. P splits wire values (l, r, o, w) into chunks of size B, i.e., {li, ri,oi}i∈[s2]

and {wi}i∈[k], such that each element is in FB . FeSIMDZK is invoked to obtain
commitments {JliK, JriK, JoiK}i∈[s2] and {JwiK}i∈[k].

4. Then, (LinearMap, {JliK}i∈[n2], {JwiK}i∈[k],L) is sent to FeSIMDZK to check that
l = Lw; similarly check that r = Rw, o = Ow, and that 0 = Aw.

5. Let circuit CMult : F3 → F such that CMult(x, y, z) := xy − z. For i ∈ [s2],
(Prove, CMult, JliK, JriK, JoiK) is sent to FeSIMDZK.

6. Let R = Domain(h) \ D. Suppose that |R| = k′. For the i-th element in R, let
h′(R[i]) = i, and set the ith row of H as Ih(R[i]).

7. P computes w′ such that for each w′[h′(i)] = w[h(i)]. Append 0 to w′ and 0
to H until the size of w′ becomes a multiple of B. Supppose that |w′| = k′B,
and then P calls Commit to obatin {Jw′

iK}i∈[k′]. Update (h,w) := (h′,w′).
8. Both parties call (LinearMap, {w′

i}i∈[k′], {wi}i∈[k],H) to check the consistency
between w and w′.

9. If more gates need to be processed, jump to step 2.

Fig. 5: Generic ZK in limited-memory scenario.

4 Efficient Instantiations of Our Compiler

The only assumption that our general compiler described in Section 3.2 makes is
that the underlying ZKP realizes the extended SIMD-ZK functionality FeSIMDZK.
The compiler for scalable ZK described in Section 3.3 only additionally requires
the parameter τmax > 1 for FeSIMDZK. In this section, we show three instantia-
tions of SIMD-ZK that benefits from these compilers, including
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Protocol ΠAntMan

Public inputs. The prover P and verifier V hold a general circuit C over a
large field F, where C contains n = |C| multiplication gates and m input gates.
Let α1, . . . , αB ∈ F be B distinct elements that are fixed for the whole protocol
execution. Both parties invoke Initialize() in IT-PAC to obtain τ1.

Private input. P holds m witnesses w1, . . . ,wm ∈ FB such that
C(w1[i], . . . ,wm[i]) = 0 for all i ∈ [B].

Commit: On input w ∈ FB , P computes polynomial f(·) =
∑B−1

i=0 fi · Xi such
that for i ∈ [B], f(αi) = wi. Both parties invoke (⟨b⟩, τ2)← PreGen(f). P obtains
⟨b⟩ and V obtains τ2. If Λ has been revealed, invoke (M,K)← Gen(τ1, τ2). P holds
M and V holds K.

Open: On input (Jf(·)K, f(·), Λ), both parties compute that JµK := Jf(Λ)K−f(Λ).
Let H : {0, 1}∗ → {0, 1}λ be a random oracle. P sends H(Mµ) to V who checks
whether H(Mµ) = H(Kµ).

Fig. 6: The protocol of SIMDZK from AntMan.

– A ZKP based on vector oblivious linear evaluation [50].
– A zk-SNARK from Σ-protocol [3].
– A designated multi-verifier ZKP based on packed Shamir secret sharing and

recursive inner product check [53].

All of these works are in the form of SIMD-ZK and originally require significant
extra effort to be converted into a general ZK. Our compilers are able to trans-
form them into general ZK with decrease in their proof size or setup cost. The
only exception is the AntMan [50] which is restricted by τmax = 1 thus does
not fit into the second compiler for scalable ZK. In Supplementary Material A.5
and A.6, we additionally describe a SIMD-ZK that is extracted from an MPC-
in-the-head scheme Ligero [2], and a construction from LegoSNARK [18]. Both
our compilers are generalizations of them and a follow-up work [4]. We show
that Ligero SIMD-ZK perfectly fits our compilers and discuss extra caution that
need to take when compiling Ligero.

4.1 AntMan++: Sublinear Designated-Verifier ZK

AntMan [50] is a sublinear VOLE-based ZK proof for SIMD circuits, which only
requires communicating O(B+|C|) field elements to prove a (B, C)-SIMD circuit.
It also presents a construction for proving a single execution of an arbitrary
circuit, by breaking down the circuits into individual gates and batching them
as SIMD circuits. The proving of SIMD circuits requires sending O(|C|/B +
B) field elements, and the cost to check the wire-value consistency is O(B3),
which leads to O(|C|3/4) communication complexity in optimal. It is the only
sublinear-communication VOLE-ZK protocol for proving an arbitrary circuit. In
AntMan [50], the information-theoretic polynomial authentication code Πk

IT-PAC
servers as a polynomial commitment scheme. For arbitrary degree-k polynomial
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f(·) known by P, an IT-PAC Jf(·)K consists of a MAC M ∈ F known by P and
a tuple of keys (K,∆,Λ) ∈ F3 known by V, such that M = K + f(Λ) ·∆. In the
following, we first detail the commitment scheme used in the AntMan protocol,
then discuss how to enable AntMan to prove arbitrary circuits.

Information-theoretic polynomial authentication code ΠIT−PAC. As shown
in Figure 7, the protocol is designed in the (FVOLE,FCom)-hybrid model. It adopts
additively homomorphic encryption (AHE) scheme to obliviously evaluate a
polynomial, where the polynomial is known by P and the secret point Λ is
known by V. Then VOLE correlations further transform such oblivious polyno-
mial evaluation (OPE) into IT-PACs. A critical issue is to guarantee that the HE
ciphertext which encodes the evaluation point Λ is correct. Instead of using the
zero-knowledge proof of knowledge for the proof of validity (as done in several
MPC protocols [34,21]), AntMan utilizes a simple commit-and-open approach.
Specifically, V first commits to the randomness that are used to generate the HE
ciphertexts ⟨Λ1⟩, . . . , ⟨Λk⟩. After receiving HE ciphertexts from V, P performs
the homomorphic evaluation and commits to all of HE ciphertexts ⟨b⟩ that it
should send to V for OPE. Then V opens the randomness and let P check the
correctness of ⟨Λ1⟩, . . . , ⟨Λk⟩. If they are valid, P opens ⟨b⟩ to continue with
the execution of OPE. This allows the AntMan protocol to remove the possible
leakage of secret polynomials, which is incurred by homomorphically performing
polynomial evaluation upon incorrect ciphertexts.

AntMan++. By applying our SIMD compiler to the original SIMD AntMan,
we propose AntMan++, which is a more efficient VOLE-based ZK proof for
arbitrary circuits. Similar to the original AntMan, we first batch arithmetic
gates and prove their correctness. The generation of IT-PACs of all the wire
values incurs O(|C|/B) communication communication complexity. Additionally,
checking the correctness of multiplication gates requires an opening of size B.

The improvement of AntMan++ lies in the proof of wire consistency. As
shown in Πcompiler, this problem is transferred into proof of linear map. And
we use a random vector to further transfer linear-mapping proof into inner-
product proof. In AntMan, we observe that the proof of inner product between
public and private vectors takes only O(B) communication overhead. Suppose
the challenge vector r is public and witness x is private, and the IT-PACs of
two vectors are known to both parties. After the secret evaluation point Λ is
revealed, both parties can locally calculate fr(Λ) because r is known. Via the
additively homomorphic property of IT-PACs, both parties compute fr(Λ) · JxK,
which is also the IT-PAC of Hadamard product of r and x. In this way, both
parties compute n + k IT-PACs and add them up to obtain JqK. In the end,
according to the protocol in figure 3, both parties open the vector of size B and
check whether their sum equals to 0. As a result, the communication cost of
AntMan++ is O(|C|/B +B). When setting B = |C|1/2, it results in O(|C|1/2).

The full description of SIMD AntMan is shown in Protocol 6 and 8.

Performance evaluation. We implement the AntMan++ protocol and bench-
mark its performance. Its homomorphic encryption (HE) is supported by the
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Protocol Πk
IT-PAC

Let AHE = (Setup,KeyGen,Enc,Dec) be an additively homomorphic encryption
scheme. Suppose that two parties P and V have already agreed a set of public
parameters par = Setup(1λ) and global key ∆ ∈ F. Let G be a PRG. Let k be the
maximum degree of the polynomials committed in each IT-PAC.

Initialize.

1. V samples seed ← {0, 1}λ, and then V and P call the (Commit) command of
FCom with input seed, which returns a handle τ1 to P.

2. V samples Λ ← F and runs ⟨Λi⟩ ← Enc(sk, Λi; ri) for all i ∈ [1, k] where
(r0, r1, . . . , rk) = G(seed) and sk ← KeyGen(par; r0). Then, V sends the AHE
ciphertexts ⟨Λ1⟩, . . . , ⟨Λk⟩ to P.

Pre-Gen. On input f ,

3. P and V sends (extend) to FVOLE, which returns u,w to P and v to V, such
that w = v + u ·∆.

4. On input polynomial f(·) =
∑k

i=0 fi ·X
i ∈ F[X], P computes a ciphertext ⟨b⟩

with u+ b = f(Λ) via ⟨b⟩ =
∑k

i=1 fi · ⟨Λ
i⟩+ f0 − u.

5. P and V call the (Commit) command of FCom with inputs ⟨b⟩, which returns a
handle τ2 to V.

Gen. On input (τ1, τ2),

6. V and P call the (Open) command of FCom on input τ1, which returns (seed, τ1)
to P. In parallel, V sends Λ to P. Then, P computes (r0, r1, . . . , rk) := G(seed)
and runs sk ← KeyGen(par; r0). P checks that ⟨Λi⟩ = Enc(sk, Λi; ri) for all
i ∈ [1, k], and aborts if the check fails. P sets M := w.

7. P and V call the (Open) command of FCom on input τ2, which returns
(⟨b1⟩, . . . , ⟨bℓ⟩, τ2) to V. Then, V runs b ← Dec(sk, ⟨b⟩), and then computes
K := v − b · Λ ∈ F.

8. Two parties obtain an IT-PAC [f(·)], where P holds (f(·),M) and V holds K.

Fig. 7: Protocol for generating IT-PACs without ZK proofs in the (FVOLE,FCom)-
hybrid model.

Microsoft SEAL [46] and other cryptographic building blocks are from EMP-
toolkits [48]. Two Amazon EC2 m5.8xlarge instances located in the same re-
gion are running as P and V. We manually throttle the network to simu-
late low-bandwidth settings. We use the same 59-bit FFT-friendly field as the
AntMan [50]. The performance of AntMan++ is not affected by the circuit struc-
ture and we benchmark with layered circuits for convenience. In all experiments,
we randomly sample a circuit with 216 input wires, 227 addition gates and 227

multiplication gates distributed at 212 layers. We compare AntMan++ with the
prior general VOLE-ZK Quicksilver [52] and use its default parameter setting
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Protocol ΠAntMan (Cont.)

Prove: On input (C, Jw1K, . . . , JwmK), P and V do:
1. For each gate (α, β, γ, T ) in C, two parties holds IT-PAC of input wire vectorsJfK and JgK:

– If T = ADD, both parties locally compute output IT-PAC JhK = JfK + JgK.
– If T = MULT , P computes a degree-(2B−2) polynomial h̃(·) := f(·) ·g(·) ∈

F[X] and a degree-(B − 1) polynomial h(·) such that h(αi) = h̃(αi) for all
i ∈ [B]. Then, P and V run sub-protocol Π(2B−2)

PAC to generate two IT-PACsJh(·)K and Jh̃(·)K.
As there are n2 multiplication gates, the commitments of their outputs are
denoted as Jh1K, . . . , Jhn2K. Consequently, their degree-(2B − 2) polynomials
are denoted as Jh̃1K, . . . , Jh̃n2K.

2. P samples two random polynomials r(·) and s(·) of respective degrees B−1 and
2B − 2 in F[X] such that r(αi) = s(αi) for i ∈ [1, t]. Then, P and V generate
the corresponding IT-PACs Jr(·)K and Js(·)K.

3. V samples seed ← {0, 1}λ and sends it to P. Then, two parties compute
(χ1, . . . , χn2) := Hash(seed) ∈ Fn2 .

4. P and V locally compute Jh(·)K :=
∑n2

j=1 χj · Jhj(·)K + Jr(·)K and Jh̃(·)K :=∑n2
j=1 χj · Jh̃j(·)K + Js(·)K. Then, P sends the polynomial pair (h(·), h̃(·)) to V,

who checks that h(·), h̃(·) have the degrees B − 1 and 2B − 2 respectively and
h(αi) = h̃(αi) for all i ∈ [1, t].

5. P and V run Gen(τ1, τ2) to open Λ to P, and then V can compute the local
keys on all IT-PACs.

6. P and V run a VOLE-based zero-knowledge proof
DVZK

{
(Jfj(Λ)K, Jgj(Λ)K, Jh̃j(Λ)K)j∈[n2] | ∀j ∈ [n2], h̃j(Λ) = fj(Λ) · gj(Λ)

}
.

7. P and V locally compute [µ] := [h(Λ)]− h(Λ) and [ν] := [h̃(Λ)]− h̃(Λ). Then,
two parties run Open to check that µ = 0 and ν = 0.

8. Let Jv(·)K be the IT-PAC associated with the output values circuit C. P and V
run Open to check v(Λ) = 0.

If any check fails, V aborts.

Fig. 8: The protocol of SIMDZK from AntMan (Cont.).

in [48]. We do not compare with AntMan [50] because it only proves SIMD
circuits.

We first benchmark the running time and communication overhead with vari-
able batch size log2 B ∈ [9, 12]. AntMan++ is split into the input-independent
setup phase and online phase, and their performance are reported separately.
As shown in Table 1, the increase of B leads to the significant reducing of the
online communication overhead. The setup communication is dominated by HE
ciphertexts and rotation keys. For the security of HE, the ciphertext size is fixed
for all log2 B ≤ 11 and start to increase when B ≥ 12. The running time for
both setup and online phases increase with B. The overhead mainly comes from
the ciphertext rotation during the setup phase as well as the HE evaluation and
polynomial multiplication during the online phase. Although its running time
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log2 B
Communication (MB) Running time (s)
Setup Online Setup Online

9 4.6 60.13 6.84 377.3
10 4.6 30.54 14.7 380.7
11 4.6 15.78 38.72 407.83
12 6.7 8.82 144.75 438.19

QS [52] 1087.23 185.43

Table 1: Performance of AntMan++ with variable batch size. Benchmarked
with 1 thread, 50 Mbps bandwidth and circuit size C = 227.

Scheme-Threads Bandwidth (Mbps)

10 25 50 100

AM-1 461.71 449.75 446.55 444.17
AM-4 292.61 280.53 277.43 275.28
AM-8 263.55 249.89 248.24 246.07

QS-8 [52] 900.47 361.29 181.63 91.9

Table 2: Performance of AntMan++ with variable threads and bandwidth.
Benchmarked with circuit size C = 227 and batch size B = 211. Numbers are in seconds.

is 2.1× ∼ 3.2× longer than Quicksilver, the bandwidth usage is 17.5× ∼ 83.6×
smaller.

Then we show the running time with the variable network bandwidth and the
number of threads (Table 2). The batch size is fixed to be B = 211. AntMan++ is
highly efficient in terms of network communication with asymptotically O(C/B)
overhead. Its running time does not significantly deteriorate with the decreasing
of bandwidth. On the another hand, AntMan++ is computationally heavy but
fully parallelable, thus multi-threading is effective on increasing its throughput.
When the number of threading is increased from 1 to 4, the running time is
decreased by 36% ∼ 38%. Compared to Quicksilver, it requires 70% less running
time when bandwidth is 10Mbps and 30% less when bandwidth is 25Mbps.

4.2 Constant-round SIMD-ZK in the Discrete Logarithm setting

To showcase the versatility of our framework, we present an SHVZK argument
of knowledge for (B,C)- SIMD circuits, and compile it to a constant-round
square-root size argument for general circuit. This construction is based on the
work of Attema–Cramer [3]. We note that [3] also mention (in a remark) that
their techniques yield a constant-round sublinear argument; however, our ap-
proach achieves better parameters. Our SIMD-ZK has a better CRS size and
computation complexity by taking advantage of our compiler and the approach
of dividing circuit into smaller ones, i.e our CRS size is O(B) instead of O(|C|),
our dominant computation cost is O(|C|/B) interpolations of polynomials of de-
gree O(B) while it is O(1) interpolations of polynomials of degree O(|C|) in [3].
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Moreover, for a special type of circuit, i.e for (B, C)-SIMD circuit, our protocol
has only O(C +

√
B) communication. We provide a more in-depth comparison

in Supplementary Material A.3.

Sublinear ZK Argument for Linear Form Evaluation. Given a linear form
L : Zn

p → Zp, consider the relation

R = {(P ∈ G, L, y ∈ Zp;x ∈ Zn
p , r ∈ Zp) : P = gxhr, y = L(x)}

Let P ∈ G be a commitment to x ∈ Zn
p . The prover wants to convince the veri-

fier that y = L(x), while keeping x secret. To achieve this, [3] divides the witness
vector x ∈ Zn

p into 2 parts then recursively run the protocol log(n)−1 times and
get an honest-verifier proof of knowledge for relation R with O(log n) bits com-
munication in O(log n) moves. It is known [30] that there is a trade-off between
communication cost and the number of rounds, and this protocol can be gener-
alized by dividing the witness into k = O(

√
n) parts, yielding a 5-round protocol

with sublinear communication (this was also mentioned in [3]). We denote the 5-
round sublinear ZK argument for linear form evaluation by Π(JxK, Li, 0;x). We
provide a formal description of this protocol in the Supplementary Material A.3.

Amortization. We now overview some amortizations techniques of [3] which
allow the prover to prove correctness of 1) many nullity checks of different linear
forms over the same committed vector x and 2) many evaluations of the same
linear form over many different committed vectors in the 5-move protocols, with
negligible communication overhead compared to a single check Π.
Compressing many nullity checks Πzeros(JxK, L1, L2, . . . , Ls, 0;x): Given P =
gxhr, s linear functions Li : Zn

p → Zp, P can show that Li(x) = 0 for all
i ∈ [1, s] at the cost of one single check plus one Zp challenge from V to P.
Amortizing over many commitments ΠAm(JxiK, L, yi;xi)i∈[1,s]: Given Pi = gxihri

for i ∈ [1, s], the prover wants to show that the evaluation of the same linear
form L on many committed vectors is correct i.e yi = L(xi). Intuitively, a prover
can do this batch evaluation checks of L over many committed vectors xi at the
same cost of evaluation checks of L over only one committed vector.

Batch argument for multiplication gates. Let’s consider m tuples of B
multiplications (xj,i, yj,i, zj,i = xj,iyj,i)i∈[1,B] for each j ∈ [1,m]. The batch
argument is based on algebraic interpolation polynomial and the ZK proof Π
which proves the correct evaluation of linear form (consider Π as a black box).

– For j ∈ [1,m], P defines 2 random polynomials fj , gj of degree at most B such
that fj(i) = xj,i and gj(i) = yj,i for all i ∈ [1, B]. By Lagrange-interpolation
fj , gj are well-defined from xj := (fj(0), xj,1, xj,2, . . . , xj,B) ∈ ZB+1

p and
yj := (gj(0), yj,1, yj,2, . . . , yj,B) ∈ ZB+1

p . Define hj := fjgj , observe that
degree of hj is at most 2B, hj(i) = zj,i for i ∈ [1, B] and hj is well-defined
from zj := (h(0), zj,1, zj,2, . . . , zj,B , h(B+1), . . . , h(2B)) ∈ Z2B+1

p . P commits
(xj ,yj , zj)j∈[1,m].

– V pick randomly c
$−→ Zp \ [1, B] and sends to prover.
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– P reveals (fj(c), gj(c), hj(c))j∈[1,m]. V now then checks hj(c)
?
= fj(c)gj(c).

P can cheat with probability at most (2B)/(p − B). Denote Lc : ZB+1
p →

Zp, L
′
c : Z2B+1

p → Zp are public linear forms by Lagrange formula such that
Lc(xj) = fj(c), Lc(yj) = gj(c) and L′

c(zj) = hj(c) (fj , gj are corresponding
to the same linear form).

– P runs in parallel ΠAm(JxjK, JyjK, Lc, fj(c), gj(c);xj ,yj)j∈[1,m] and ΠAm(JzjK,
L′
c, hj(c); zj)j∈[1,m].

We obtain an argument for n multiplications with sublinear communication cost
when choosing B = O(

√
n).

Instantiation of SIMD ZK. We achieve a ZK proof for (B,C)-SIMD circuits
with communication O(|C| +

√
B). Concretely, sending commitments of gates

costs at most 3|C| elements of G. For checking the correction of multiplica-
tion gates and consistency of output gates, the cost is less than 3 times the
instantiation of Π over the committed vector of length 2B which has O(

√
B)

communication.
Sublinear Circuit Satisfiability. Since Pedersen’s commitment is homomor-
phic, additions are free in our system, there are two constraints needed to prove
1) that multiplication gates are correctly computed and 2) the consistency of
wires between layers. The former constraints is handled by the batch multipli-
cation argument and the latter is proven using our compiler (section 3). Note
here, we apply our compiler to prove in ZK the consistency of wires between
layers (this is essentially a proof of a linear map) and combine the high-level
intuition underlying the analysis of our compiler with the analysis of Attema et
al. to obtain a direct security proof. Concretely, we carefully combine two works
([2] and [28]) to obtain an SHVZK for SIMD circuit.

These two proofs use different commitments for two vectors which present for
the same tuple of output wire values of multiplication gates so then it requires to
prove the consistency. Specifically, for j group of multiplication gates, we have
two commitments Jo′jK, JojK which committed of two vectors o′

j and oj . While
o′
j := (r, o1,j , o2,j , . . . , oB,j) ∈ ZB+1

p and oj := (hj(0), o1,j , o2,j , . . . , oB,j , hj(B+

1), . . . , hj(2B)) ∈ Z2B+1
p where r ∈ Zp. Prover therefore needs to prove thatJo′jK/JojK is the commitment of vector which having the power 0s of the set of

generators {g2, g3, . . . , gB+1}. By the method described earlier, this is handled
by a ΠAm for checking many nullities. The protocol ΠZKPed of our sublinear ZK
is shown in the Figure 14 of Supplementary Material.

Theorem 3. There is a sublinear argument of knowledge for circuit satisfiability
in constant-round with the following properties:

– Perfect completeness, computational special soundness, and special HVZK un-
der the discrete logarithm assumption.

– The number of rounds is 7.
– The size of CRS is O(

√
|C|) random elements of G.

– Computation is dominated by O(
√
|C|) interpolations of polynomial of degree

O(
√
|C|).
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Protocol ΠSIMD−Ped

Public inputs. A general circuit C over Zp, where C contains k addition gates,
n multiplication gates and m input gates. For B executions of circuit C, P and V
pack B same-type gates into a group in a straightforward way. In particular, for
an index i, the parties pack the i-th input/output/multiplication/addition gates
from all B executions of circuit C into a group.

Private input. P holds B witnesses w1, . . . ,wB ∈ Zm
p such that C(wi) = 0 for

all i ∈ [1, B].

Commit: For each group j ∈ [1, |C|], P defines commitments for tuple of left wire
values (l1,j , l2,j , . . . , lB,j), right wire values (r1,j , r2,j , . . . , rB,j) and output wire
values (o1,j , o2,j , . . . , oB,j) in the following way

– For left wire values, P selects random polynomial fj(X) that defines a packed
secret sharing of the vector (l1,j , l2,j , . . . , lB,j) i.e fj(i) = li,j for i ∈ [1, B],
P then commits vector lj := (fj(0), l1,j , l2,j , . . . , lB,j) as JljK. Similarly for the
right wire values with random polynomial gj(X).

– If the group contains addition gates then P sends JljK, JrjK to V and the com-
mitment of output wire values JojK := JljKJrjK is non-interactive computed by
both P and V.

– Otherwise, if the group contains multiplication gates JojK is defined by the com-
mitment of vector oj := (h(0), o1,j , o2,j , . . . , oB,j , h(B + 1), . . . , h(2B)) where
h(X) = f(X)g(X). P then sends JljK, JrjK and JojK to V.

Prove:

– Correctness check of multiplication gates is proven by using the batch
multiplication argument (described above).

– Consistency check of output gates for output gates, P wants to show that
the value of all output gates is 0s. It means that when j = |C|, JojK is the com-
mitment of vector oj = (r, 0, 0, . . . , 0) ∈ ZB+1

p (w.r.t addition output gates) or
oj = (hj(0), 0, 0, . . . , 0, hj(B + 1), . . . , hj(2B)) ∈ Z2B+1

p (multiplication output
gates). Consider crs = (g1, g2, . . . , g2B+3) then P has to convince that in JojK
the powers of set of generator {g2, g3, . . . , gB+1} are zeros. This constraint actu-
ally is a batch of B-nullity checks for different linear forms over one committed
vector. P and V then run Πzeros for many nullity checks.

If any check fails, V aborts.

Fig. 9: The protocol of SIMDZK from [3].

Note that in our sublinear ZK based on DLOG setting, we do not directly derive
the result from the generic UC proof of security of the abstract compiler, and in
particular, do not achieve UC security. This would require the commitments to be
extractable. The proof of the consistency of wires follows our compiler, but there
is some extra work needed to prove the consistency of commitments (described
above). As for the security analysis, the analysis of our ZK based on DLOG is not
directly inherited from the real-ideal security proof of instantiation of eSIMDZK,
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but rather follows directly from the security analysis of the two works [3] and
[30]. Note that we can define JxK in functionality 2 being Perdersen commitment
of x, but in DLOG-setting, we never need to extract the commitments, and the
proofs of soundness and ZK are not in the UC model.

4.3 Multi-Verifier ZK

Yang et al. propose a non-interactive designated multi-verifier ZK (MVZK)
proof [53]. In this protocol, a prover P validates a statement to n verifiers
(V1, . . . ,Vn) with its private input. Verifiers are assumed honest-majority with
adversary threshold t < n(1/2 − ε) for 0 < ε < 1/2. P distributes packed
Shamir secret shares (PSS) of all batched circuit wire values to (V1, . . . ,Vn),
who jointly execute a distributed ZK to verify the correctness of the circuit eval-
uation [29,15,12], with the assistance of P. A special coin tossing protocol is
designed to maintain non-interactiveness. This MVZK protocol can be viewed
as a commit-and-prove ZK, in which the circuit wire values are committed by
the PSS. The hiding property is ensured by the privacy property of PSS, for
which a collusion of ≤ t parties can not reconstruct the secret values. The bind-
ing property holds by the fact that any (n − t) > t + 1 honest parties’ shares
define the secret values.

In addition to proving the satisfiability of SIMD circuits, [53] also proposes
a protocol for the check of wiring consistency, which enables the PSS-based
MVZK to work for general circuits. Define a packing parameter B, for any indices
i, j ∈ [B] and PSS [w1], [w2], the protocol proves that w1[i] = w2[j]. Overall,
the checking procedure incurs communication complexity O(n2B2). Our com-
piler reduces it to O(n2). In Supplementary Material A.4, we introduce an inner
product verification protocol for the check of multiplication gates, and its func-
tionality is denoted as Fverifyprod.

SIMD-ZK from [53]. The protocol is shown in Figure 10. A commitment in
MVZK is a PSS for a vector of B values. The opening of a commitment is done by
each verifier sending its PSS share to all other verifiers, followed by all of them
validating the shares and decoding the committed values. The proving proce-
dure takes the input of commitments to batch circuit input wires and output
wires of all multiplication gates. They are precomputed by P and distributed to
verifiers via PSS. At Step 1, verifiers locally arrange (JwαK, JwβK, JwγK) for the
indices of all batch multiplication triples (α, β, γ). The PSS for the input wires
of batch multiplication gates are obtained locally by linearly combining the PSS
for previous batches. Next, parties invoke a Fiat-Shamir procedure at Step 2 to
sample a random coin χ ∈ K. The property of non-interactiveness forbids the
verifiers from sending messages to P. In this protocol, P computes the input
to the Fiat-Shamir transformation from the shares of parties and let verifiers
verify their correctness, namely, (com1, . . . , comn). In this way, verifiers are able
to compute χ by hashing these commitments. In the end, parties convert the
multiplication triples to an inner product triple, which is verified by Fverifyprod.
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Protocol ΠMVZK

Setup: Define the number of verifiers n, packing parameter B and adversary
threshold t < n(1/2 − ϵ) for 0 < ϵ < 1/2, which satisfy t + 2B − 1 ≤ n.
α1, . . . , αn, γ1, . . . , γB ∈ F are n+B evaluation points. Let H1 : {0, 1}∗ → {0, 1}κ
and H2 : {0, 1}∗ → K be two random oracles.

Commit: On input degree d and a vector w ∈ FB , P uniformly samples r ∈
Fd−B+1 and interpolates a degree-d polynomial f(·) such that f(γi) = wi for
i ∈ [B] and f(αi) = ri for i ∈ [d − B + 1]. The commitment is defined as JwK =
{f(αi)}ni=1, in which f(i) is held by Vi.
The communication cost can be reduced from n|F| to (n − d + B − 1)|F| if for
i ∈ [d − B + 1], P and Vi hold a shared PRG PRGi. The share can be computed
locally as f(αi)← PRGi.Next().

Open: On input degree d, and commitment JwK, each verifier in (V1, . . . ,Vn) sends
its share to all other verifiers. They reconstruct the degree-d polynomial f(·) and
derive w = (f(γ1), . . . , f(γB)). If the reconstruction fails, the verifier aborts.

Prove: On input the commitment to circuit input wires and output wires of
multiplications (Jw1K, . . . , JwmK),
1. P and (V1, . . . ,Vn) scan the circuit in topological order. For each batch

of multiplication gates (α, β, γ) for which they already have JwγK, compute
(JwαK, JwβK) which are linear combinations of commitments for previous wires.

2. Denote ŵi as the share that Vi holds for a PSS JwK. For i ∈ [n], P samples
ri ← {0, 1}κ, sends ri to Vi and computes

comi = H1(ŵ
i
1, . . . , ŵ

i
m, ri).

P broadcasts (com1, . . . , comn) to all verifiers. Each verifier Vi checks whether
comi is consistent with its local shares and ri. It aborts if the check fails.
Otherwise, P and all verifiers compute χ := H2(com1, . . . , comi).

3. Denote {JliK, JriK, JoiK}i∈[n] to be commitments of all left, right and output
wires of batched multiplication gates. Construct [x̃i] := χi−1 · [li], [ỹi] :=
[ri] for i ∈ [n] and [z̃] :=

∑
i∈[n] χ

i−1 · [oi]. Invoke Fverifyprod with input
({[x̃i]}i∈[n], {[ỹi]}i∈[n], [z̃]) and parties output reject if Fverifyprod outputs reject.

Fig. 10: The protocol of SIMDZK from designated multi-verifier ZK.
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A Supplementary Material

A.1 Additional Preliminaries

The following definitions are provided for the instantiation of SHVZK argument
of knowledge.

Definition 1 (Generalized Pedersen Commitment [42]). Given a Abelian
group G of prime order p. The Pedersen commitment works as follow:

– Set up a commitment key ck = (g, h) = {g1, g2, . . . , gn, h}
$←− Gn+1.

– Commitment of a vector x ∈ Zn
p is defined by comck(x, r) = hrgx = hr

∏n
i=1 g

xi
i

where r
$←− Zp.

Pedersen commitment is perfectly hiding, computationally binding under the
DDH assumption. It satisfies homomorphic property, for all x1,x2 ∈ Zn

p , r1, r2
$←−

Zp:
comck(x1, r1).comck(x2, r2) = comck(x1 + x2, r1 + r2)

Let R be an efficiently decidable binary relation for an NP language L . If
x ∈ L and (x,w) ∈ R then x is a statement and w is a witness. An interactive
argument for R is a tuple of three probabilistic polynomial time interactive
algorithms Π = (Gen,P,V) called the common reference string generator, the
prover and the verifier. with the following properties:

– crs ← Gen(1λ). On input 1λ generates public parameters par (such as group
parameters), a crs. For simplicity of notation, we assume that any group pa-
rameters are implicitly included in the crs.

– We write tr ← ⟨P(x),V(y)⟩ for the public transcript produced by P and V
when interacting on inputs x and y. This transcript ends with V either accept-
ing or rejecting. We sometimes shorten the notation by saying ⟨P(x),V(y)⟩ =
b, where b = 0 corresponds to V rejecting and b = 1 corresponds to V accept-
ing.

Definition 2 (Perfect completeness). A proof system Π = (Gen,P,V) for
R is perfectly complete, if

Pr

[
⟨P(crs, x, w),V(crs, x)⟩ = 1

crs← Gen(1λ)
(x,w) ∈ R

]
= 1

Definition 3 (Computationally soundness). A proof system Π is compu-
tational sound if for every efficient adversary A

Pr

[
⟨A,V(crs, x)⟩ = 1

x /∈ L
crs← Gen(1λ)
x← A(1λ, crs)

]
= negl(λ)
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An argument Π = (Gen,P,V) is public coin if the verifiers messages are chosen
uniformly at random independently of the messages sent by the prover, i.e the
challenges correspond to the verifiers randomness ρ. If there is a polynomial
time algorithm that, given a statement x and a (k1, . . . , kµ)-tree of accepted
transcripts, produces a witness w for x, then the public coin protocol is said
to be (unconditionally) (k1 . . . , kµ)-special sound. Under the DL assumption, we
state that the protocol is computationally special sound if there exists an efficient
algorithm that either extracts a witness or finds a non-trivial DL relation between
g1, . . . , gn, h.

Definition 4 (Special honest-verifier zero-knowledge (SHVZK)). A pub-
lic coin argument Π is a SHVZK if if there exists a probabilistic polynomial time
simulator S such that for all non-uniform polynomial time adversaries A we have

Pr

[
A(tr) = 1
(x,w) ∈ R

crs← Gen(1λ)
(x,w, ρ)← A(crs); tr ← ⟨P(crs, x, w),V(crs, x)⟩

]
≈Pr

[
A(tr) = 1
(x,w) ∈ R

crs← Gen(1λ)
(x,w, ρ)← A(crs); tr ← S(crs, x, ρ)

]
where ρ is the public coin randomness used by the verifier.

The following description of functionalities are provided for the instantiation
of AntMan++.

Vector oblivious linear evaluation FVOLE. This functionality works over
a field F, and upon receiving (init) from P and V, if V is honest, then sample
∆← F, else receive ∆ ∈ F from the adversary. Store ∆ and ignore all subsequent
(init) commands. Upon receiving (extend, n) from P and V, execute:

– If V is honest, sample v ← Fn. Otherwise, receive v ∈ Fn from the adversary.
– If P is honest, sample u← Fn and compute w := v +u ·∆ ∈ Fn. Otherwise,

receive u ∈ Fn and w ∈ Fn from the adversary, and then recompute v :=
w − u ·∆ ∈ Fn.

– Output (u,w) to P and v to V.

Commitment FCom. Similar to the functionality of Commit command in FSIMDZK:

– Upon receiving input (Commit,w) from P and (Commit) from V, pick a tagJwK and store (JwK,w) in the memory. Return JwK to both parties.
– Upon receiving (Open, JwK), if a tuple (JwK,w) was previously stored, output

(JwK,w) to V; otherwise abort.

A.2 AntMan

We discuss how to enable AntMan to prove arbitrary circuits.

Compiling AntMan. The AntMan protocol that realizes FSIMDZK is shown in
Figure 6 (derived from the original AntMan [50]). Below we show how to compile
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it into a ZK protocol that proves the satisfiability of a single general circuit with
sublinear communication, following the protocol of our compiler Πcompiler.

Given a public circuit C, both parties scan the circuit following the procedure
in figure 4 to calculate wire rearrangement matrices L,R,O, as well as matrix A
that describes addition gates. Then P splits wire values (l, r, o, w) into chunks
of size B, and calls Commit to obtain {JliK, JriK, JoiK}i∈[n2] and {JwiK}i∈[k]. To
prove l = Lw:

1. P uniformly samples a vector r̃ ∈ FB such that
∑B

i=1 r̃[i] = 0, and calls
Commit to obtain Jr̃K.

2. V uniformly samples a vector r̂ ∈ FBn2 and sends it to P. Both parties com-
pute v = r̂TL ∈ FBk and call Commit to obtain {JviK}i∈[k] and {Jr̂iK}i∈[n2].

3. P computes q ∈ FB , such that

q[i] =

n2∑
j=1

r̂j [i]lj [i]−
k∑

j=1

vj [i]wj [i] + r̃[i].

P calls Commit to obtain JqK.
4. Define circuit

CLin(a1, . . . , an2
, b1, . . . , bn2

, c1, . . . , ck, d1, . . . , dk, e, f)

:=

n2∑
i=1

ai · bi −
k∑

i=1

ci · di + e− f,

then call Prove(CLin, Jr̂1K, . . . , Jr̂n2
K, Jl1K, . . . , Jln2

K, Jv1K, . . . ,JvkK, Jw1K, . . . , JwkK, Jr̃K, JqK).
In the same way, check that r = Rw, o = Ow, and that 0 = Aw. After wire
consistency check, we check the correctness of multiplication gates. Define circuit
CMult({xi,yi, zi}i∈[n2]) :=

∨
i∈[n2]

(xiyi−zi), and call Prove(CMult, {JliK, JriK, JoiK}i∈[n2]).
Then, V calls (Open, JqK) and checks

∑B
i=1 q[i] = 0. V aborts if any check fails.

A.3 Compressed Sigma protocol of Attema–Cramer

Sublinear ZK Argument for Linear Form Evaluation.
Without the loss of generality, for a dimension m and a vector g ∈ Gm,

given k|m where k is the number of parts to divide g into, if this is not the
case the vector g can be appended with zeros, then g := g1|g2| . . . |gk ∈ Zm

p

and gi ∈ Zm/k
p for i ∈ [1, k]. Given a linear form L : Zm

p → Zp, let us define k

sub-linear forms Li : Zm/k
p → Zp of L as x→ L(x′) where vector x′ ∈ Zm

p such
that block i of x′ equals to x and other k − 1 blocks equal to 0s. As a result,
L(x) =

∑k
i=1 Li(xi). The notation JxK is a Pedersen commitment of vector x.

Theorem 4. Π (Figure 11) is a 5-move protocol for relation R. This argument
is perfect completeness, special HVZK, and computationally special soundness,
under the discrete logarithm assumption. The total communication costs include:
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Protocol Π(JxK, L, y;x)
Public parameters. (g, h, k) ∈ Gn+2, L : Zn

p → Zp, P = gxhr, y = L(x).
Protocol.

1. P → V. Prover picks randomly α
$←− Zn

p , β
$←− Zp. Prover sends t = L(α), A =

gαhβ to verifier.
2. V → P. Verifier chosen randomly c0, c1

$−→ Zp and sends them to prover.
Prover defines z = c0x+α, γ = c0r + β and ẑ := (z, γ).
Define ĝ := (g, h) ∈ Gn+1, Q := AP c0kc1(c0y+t) and L̃(z, γ) := c1L(z). Note
that Q := ĝẑkL̃(ẑ).

3. P → V. For l ∈ [0, 2k − 2], prover computes:

ml :=
∏

i,j,l=k+i−j−1

ĝ
ẑj
i kL̃i(ẑj)

Observe by construction mk−1 = Q.
Prover sends mi to verifier for i ∈ [0, 2k − 2].

4. V → P. Verifier picks randomly c
$−→ Zp and sends c to prover.

Define g′ := ĝ1∗ĝc
2∗· · ·∗ĝck−2

k−1 ∗ĝck−1

k ∈ Gn+1/k (∗ is denoted as component-wise
product), Q′ :=

∏2k−2
l=0 mcl

l , L′ :=
∑k

i=1 c
i−1L̃i.

5. P → V. Prover defines and sends z′ :=
∑k

i=1 c
k−iẑi ∈ Zn+1/k

p to verifier.
Verifier checks g′z′kL′(z′) ?

= Q′.

Fig. 11: HVZK argument Π(JxK, L, y;x) for relation R.

– P → V: 2k − 1 elements of G and (n+ 1)/k + 1 element of Zp.
– V → P: 3 elements of Zp.

The completeness comes from:

Q′ :=
2k−2∏
l=0

mcl

l =
2k−2∏
l=0

 ∏
i,j,l=k+i−j−1

ĝ
ẑj

i kL̃i(ẑj)

cl

=

2k−2∏
l=0

 ∏
i,j,l=k+i−j−1

ĝ
ẑj

i kL̃i(ẑj)

ck+i−j−1

=

k∏
i=1

(
ĝci−1

i

)∑k
j=1 ck−j ẑj

k∏
i=1

(
kc

i−1
)L̃i(

∑k
j=1 ck−j ẑj)

=
(
ĝ1 ∗ ĝc

2 ∗ · · · ∗ ĝck−2

k−1 ∗ ĝck−1

k

)z′

k
∑k

i=1 ci−1L̃i(z
′) = g′z′

kL
′(z′)

The remaining proof of this theorem is directly obtained from [3],
[30].
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Amortizations.

Compressed many nullity checks as one. Given P = gxhr, s linear functions
Li : Zn

p → Zp, the prover want to prove that Li(x) = 0 for all i ∈ [1, s]. By the
well-known Schwartz-Zippel lemma, the prover can do many nullity checks at
the cost of one single check plus one more element of Zp (challenge) from the
verifier to prover. Especially, the verifier sends a challenge φ

$←− Zp to prover and
both of them then define the new linear form L(x) :=

∑s
i=1 Li(x)φ

i−1. Observe
that L(x) = 0 implies Li(x) = 0 for all i ∈ [1, s] with the probability at least
1− (s− 1)/p ≈ 1 when s is polynomial of λ and p is exponential. So, it requires
only one single nullity check plus sending one more challenge φ to do s nullity
checks. instead of running sequentially s- Π(JxK, Li, 0;x) for i ∈ [1, s].

Protocol Πzeros(JxK, L1, L2, . . . , Ls, 0;x)

Public parameters. (g, h) ∈ Gn+1, Li : Zn
p → Zp for i ∈ [1, s], P = comck(x, r) =

gxhr.
Protocol.

1. V → P. Verifier chosen randomly φ
$−→ Zp and sends to prover.

2. Define L :=
∑s

i=1 Liφ
i−1.

3. Prove and verifier runs protocol Π(P,L, 0;x) for checking the evaluation of
L(x)

?
= 0.

Fig. 12: Many nullity checks Πzeros(JxK, L1, L2, . . . , Ls, 0;x).

Amortized over many commitments. Given Pi = gxihri for i ∈ [1, s], the prover
wants to convince that the evaluation of the same linear form L on many commit-
ted vectors is correct i.e yi = L(xi). Intuitively, a prover can do this batch evalu-
ation checks of L over many committed vectors xi at the same cost of evaluation
checks of L over only one committed vector. We can see that P̃ := A

∏s
i=1 P

ci

i is
the Pedersen commitment of vector z =

∑i
i=1 xic

i
0 +α where A is commitment

of α then L(z) := L(α) +
∑s

i=1 c
i
0yi. Note that, assume c0

$←− Zp, if the prover
knows the open of P̃ , it means the prover has to know the open of each Pj with
a probability of almost 1. Indeed, if there exists an Pj such that prover does not
know the opening xj then prover can cheat when having a correct opening of P̃
with at most probability of s/p (a cheating prover succeeds when c0 is the zero
of some polynomial of degree at most s).
Following the protocol Π (Figure 11), we modify the definition as z =

∑i
i=1 xic

i
0+

α, γ =
∑s

i=1 ric
i
0+β and Q := A

∏s
i=1 P

ci0
i kc1(

∑s
i=1 ci0yi+t). So, prover and verifier

now can interact following the same last 3-move in Π.
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Protocol ΠAm(JxiK, L, yi;xi)i∈[1,s]

Public parameters. (g, h, k) ∈ Gn+2, L : Zn
p → Zp, Pi = gxihri , yi = L(xi) for

i ∈ [1, s].
Protocol.

1. P → V. Prover picks randomly α
$←− Zn

p , β
$←− Zp. Prover sends t = L(α), A =

gαhβ to verifier.
2. V → P. Verifier chosen randomly c0, c1

$−→ Zp and sends them to prover.
Prover defines z =

∑i
i=1 xic

i
0 +α, γ =

∑s
i=1 ric

i
0 + β and ẑ := (z, γ).

Define ĝ := (g, h) ∈ Gn+1, Q := A
∏s

i=1 P
ci0
i kc1(

∑s
i=1 ci0yi+t) and L̃(z, γ) :=

c1L(z). Note that Q := ĝẑkL̃(ẑ).
3. The last 3-move is the same as the protocol in the Figure 11.

Fig. 13: Amortized over many commitments ΠAm(JxiK, L, yi;xi)i∈[1,s].

Sublinear circuit satisfiability. Given an arbitrary circuit C, we present a
ZK proof for circuit satisfiability with sublinear communication cost based on
generalized Pedersen commitments. Intuitively, the circuit C is divided into B
smaller sub-circuits having the same number of input gates, addition gates, and
multiplication gates then we do ZK proof in the batch of tuple B elements corre-
sponding with the same type of gate in B sub-circuits. Without loss of generality,
assume that the number of input gates, addition gates, and multiplication gates
of circuit C are multiple of B. If not the compiler to transfer general circuits in
detail is explained in [50].

Comparison with the Work of Attema–Cramer. The work of [3] described
a logarithmic-round and logarithmic communication protocol from the discrete
logarithm assumption, and mentioned in a remark that their protocol can be
made constant-round, at the cost of increasing the communication to O(

√
C).

This builds upon a “direct” reduction from proving satisfiability of an arithmetic
circuit to batch Hadamard arguments and proofs for linear relations. Working
out the details, the protocol of Attema–Cramer enjoys

– A constant number of rounds,
– O(

√
C) communication,

– O(C) CRS size,
– A computation dominated by O(1) executions of an FFT on degree-C poly-

nomials (as well as O(C) exponentiations).

In contrast, when using our approach (which proceeds by first building a
ZK proof for SIMD circuits via the techniques of Attema–Cramer combined
with a careful batch checking argument, then applying our general compile) also
has constant round complexity and O(

√
C) communication, but additionally

achieves a sublinear CRS size O(
√
C), and the computation is dominated by
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Protocol ΠZKPer

– Preprocessing circuit Every B same-type gate is divided into a group, the
prover commits all left wire and right wire values of B gates as in the SIDM-ZK
framework. Then for every j-th group, we have 2 commitments JljK, JrjK.
• If the j-th group includes addition gates, prover commits output wire values

as in SIDM, i.e JojK := JljKJrjK.
• Otherwise, if this group contains multiplication gates, prover computes two

commitments JojK and Jo′jK while JojK is defined in SIMDZK for output wire
values of multiplication gates and Jo′jK is defined as the same of JljK, JrjK.
Note that Jo′jK, JojK are used for showing the correction of routing and mul-
tiplications respectively.

All the wires in circuit C are also divided into groups of B wires and each j-th
group is committed to getting the commitments JwjK as JljK, JrjK.

– Correctness check of multiplication gates is presented in section 4.2.

– Consistency check of wire routing We use high-level intuition of the com-
piler described in the section 3 to prove the corresponding left wire, right wire,
and output wire values of all gates to the wire values of circuit. As described,
the core idea of our compiler is that we transfer the proof of consistency into a
SIMD ZK which can be achieved with sublinear communication.

– Consistency of output wire values of multiplication gates Observe that
for each group of multiplication gates, we have two commitments Jo′jK, JojK
which committed of two vectors o′

j and oj . While o′
j := (r, o1,j , o2,j , . . . , oB,j) ∈

ZB+1
p and oj := (hj(0), o1,j , o2,j , . . . , oB,j , hj(B + 1), . . . , hj(2B)) ∈ Z2B+1

p

where r ∈ Zp. Prover therefore need to prove that Jo′jK/JojK is the commit-
ment of vector which having the power 0s of the set of generators {g2, g3, . . . ,
gB+1}. By the method described earlier, this is handled by a ΠAm for checking
many nullities.

If any check fails, V aborts.

Fig. 14: The protocol of SHVZK for circuit satisfiability from Pedersen commit-
ment.

O(
√
C) executions of an FFT on degree-

√
C polynomials (as well as O(C) ex-

ponentiations). For large circuits, due to the polylogarithmic overhead of FFTs,
this translates to a lower computational overhead.

A.4 Multi-Verifier ZK

We describe the realization of the functionality Fverifyprod, which recursively com-
press the check of an inner product to a single multiplication triple. Fverifyprod

follows the fully linear PCP framework proposed by Boneh et al. [12] and uses
the optimization proposed in [28,29]. Similar technique is also used in MPC-in-
the-head ZKPs such as Limbo [22].
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Inner product verification Fverifyprod. The functionality Fverifyprod takes input
mℓ multiplication triples and first convert it into a dimension-mℓ inner product
triple {(JxiK, JyiK}mℓ

i=1 and JzK. Then it verifies whether z =
∑mℓ

i=1 xi∗yi. It incurs
only logarithmic communication and round-trip complexity via a compression
procedure. Define K to be a field extension of F and is exponentially large to
achieve negligible soundness error. The compression is done in the following
steps.

1. Divide the triple into m inner product triples of dimension-ℓ

{(Jxi,1K, . . . , Jxi,ℓK), (Jyi,1K, . . . , Jyi,ℓK), JziK}mi=1

The shares {JziK}m−1
i=1 are directly distributed by P, and JzmK = JzK −∑m−1

i=1 JziK
2. interpolate 2ℓ degree-(m− 1) polynomials

(Jf1(·)K, . . . , Jfℓ(·)K), (Jg1(·)K, . . . , Jgℓ(·)K)
such that Jfj(i)K = Jxi,jK and Jgj(i)K = Jyi,jK, for i ∈ [m], j ∈ [ℓ].

3. P computes zi =
∑ℓ

j=1 fj(i) ∗ gj(i) for i ∈ [m + 1, 2m − 1]. It distributes
{JziK}2m−1

i=m+1 to parties.
4. Interpolate a degree-2(m − 1) polynomial Jh(·)K such that Jh(i)K = JziK for

i ∈ [2m− 1].
5. Jointly sample a random element β ∈ K, and evaluate these 2ℓ+1 polynomials

to β. Output a dimension-ℓ inner product triple

(Jf1(β)K, . . . , Jfℓ(β)K), (Jg1(β)K, . . . , Jgℓ(β)K), Jh(β)K.
The above compression is executed recursively for logarithmic rounds to reduce
the dimension of inner product triple to constant. The last round of compression
outputs a single multiplication triple (f̃(β̃), g̃(β̃), h̃(β̃)), whose correctness will
be checked by all parties. Two facts are omitted in the above description, and
we refer the readers to [53].

– The sampling of random point β ∈ K is done by Fiat-Shamir heuristic. It
requires a public message known by all parties. At step 3, instead of P dis-
tributing a PSS JzK, parties first hold a random PSS JrK, then P broadcasts
u = z + r. Then parties not only derive JzK = JrK − u, but also attain the
public message u.

– To achieve zero-knowledge, the multiplication triple output at the final round
should not reveal any private information. Some independent randomness will
be added into the final round of compression to mask the information com-
puted from the witness.

A.5 SIMD ZK from Ligero

We present the SIMD ZK protocol modified from Ligero [2] with its security
analysis. As shown in Figure 17, the Protocol ΠLigeroSIMD is an instantiation of

41



Protocol ΠRSEncode

Parameters. Define parameters n,B such that B < n. Ld
RS is the set of all valid

Reed-Solomon codeword. α1, . . . , αn, γ1, . . . , γB ∈ F are n + B evaluation points.
A pseudorandom generator PRG : {0, 1}κ → {0, 1}∗.

Input. Parameter d satisfying B ≤ d + 1 < n, vector x ∈ FB and a randomness
r ∈ {0, 1}κ.

Encode. If B < d+1, compute (x̄1, . . . , x̄d−B+1)← PRG(r). Interpolate a degree-
d polynomial fx(·) such that fx(γi) = xi for i ∈ [B] and and set fx(αi) = x̄i for
i ∈ [d−B + 1]. Output (fx(α1), . . . , fx(αn)).

Fig. 15: Reed-Solomon Encoding.

Protocol ΠMerkleCnP

Define τmax to be the maximum time a commitment is used in the MerkleProve
procedure.

MerkleCommit. On input a vector x of size |x| = n, Build a Merkle tree with
2⌈log2 n⌉ leaf nodes, where the first n leaf nodes are elements in x and the rest
are dummy. Output the root node τ ∈ {0, 1}2κ. Initiate a counter ctr = 0 and
associate it with τ .

MerkleProve. On input (x, Q) ∈ Fn × Nt, first check the counter ctr that asso-
ciates with the commitment to x. If ctr ≥ τmax, abort. Recompute the Merkle tree
as described in MerkleCommit. Construct σ which contains all sibling nodes that
are on the path to the leaves in set {x[i]}i∈Q. Output σ. Set ctx = ctr + 1.

MerkleVerify. On input (τ, {x[i]}i∈Q,σ), reconstruct the Merkle tree path from
{x[i]}i∈Q,σ. Define the Merkle tree root τ ′. If τ ̸= τ ′, output fail.

Fig. 16: Merkle tree vector commitment.

FSIMDZK. Its two building blocks are the Reed-Solomon (RS) encoding described
in Figure 15 and the Merkle commitment scheme described in Figure 16.
Commit and open procedures. As described in Figure 15, to commit to a vector
of field elements w ∈ FB , the prover first pad it into a length-(d + 1) vector
with randomly sampled d − B + 1 elements, then encode them into a Reed-
Solomon codeword u ∈ Fn. Eventually, the codeword is committed by the Merkle
commitment scheme specified in Figure 16. Assume a set of n + B distinct
evaluation points α1, . . . , αn, γ1, . . . , γB ∈ F. The (n, d + 1)-RS codes naturally
determines a degree-d polynomial f(·) where f(αi) = ui for i ∈ [n] and fj(γi) =
wi for i ∈ [B]. To open a commitment, the prover simply reveal the vector w
and the randomness used for padding.

Assume that during the commitment phase, P commits to m batches of wire
values (w1, . . . ,wm) to V, which are taken as inputs during the proving phase
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to convince V of the relation C(Jw1K, . . . , JwmK) = 0. The proving phase (in
Figure 17) for SIMD circuits inherits the tests of interleaved linear codes and
quadratic constraints over interleaved linear codes from the Ligero [2] protocol.
Throughout these steps, the challenges sampled and sent by V include the coeffi-
cients (r, r̄) for random linear combination, and the set Q indicating the subset
of t elements to be opened among a length-n codeword.
Testing interleaved Reed-Solomon Codes. P additionally samples and commits
to a random vector wm+1 as a mask. Upon receiving the coefficients r̄ ∈ Fm+1,
P responses with the polynomial h(·) :=

∑m+1
j=1 r̄jfj(·), in which {fj(·)}j∈[m] are

RS polynomials for committed wire values {wj}j∈[m] and fm+1(·) is for wm+1.
V first checks whether h(·) is a degree-(k − 1) polynomial. This is equivalent
to check whether (h(α1), . . . , h(αn)) is a valid Reed-Solomon codeword. After
P reveals {uj [i]}i∈Q and proves the correctness of Merkle opening, V checks
whether h(αi) :=

∑m+1
j=1 r̄juj [i] for i ∈ Q. This step validates whether the open-

ings of t views are consistent with the previously claimed h(·). Since h(·) is the
linear combination of committed codewords, the passing of above steps validates
the correctness of RS encoding for all committed wire values. Intuitively, the
zero-knowledge property is preserved by the mask fℓ+1(·) corresponding to the
randomly sampled wm+1. The soundness requires that r̄ is uniformly sampled
after P committing to wm+1 and it is hard for P to guess correctly the subset
Q of size t.
Testing quadratic constraints over interleaved Reed-Solomon Codes. Assume that
there are ℓ batches of multiplication gates in the SIMD circuit. P constructs and
commits to wm+2 := 0B . Unlike the (n, k)-RS encoding used during previous
the commitment phase, P needs to perform a (n, 2k−1)-RS encoding for wm+2,
which results in a degree-(2k−2) polynomial fm+2. Upon receiving the challenge
r ∈ Fm, P responses with the degree-(2k − 2) polynomial g(·) := fm+2(·) +∑ℓ

j=1 rj
(
fαj

(·)fβj
(·)− fγj

(·)
)

where (αj , βj , γj) are the indices of input and
output wires of a batch of multiplication gates. It becomes clear at this point
that the reason why fm+2 has degree 2(k− 1) instead of k− 1 is to disguise the
combination of circuit wire encodings, which is a degree-(2k − 2) polynomial. If
all multiplication gates are computed correctly, it should satisfy that g(γi) = 0
for i ∈ [B]. After P reveals {uj [i]}i∈Q and proves the correctness of Merkle
opening, V checks their consistency with g(·). In terms of the security, the zero-
knowledge is guaranteed by the mask fm+2. Similar to the previous test, the
soundness requires that r is uniformly sampled after P committing to wm+2

and it is hard for P to guess correctly the subset Q of size t.
Security Analysis. We provide formal security analysis of the SIMD Ligero
and pay attention to the case then compiling SIMD Ligero to general ZK and
scalable ZK. We claim that the protocol ΠLigeroSIMD shown in Figure 17 securely
realizes the functionality FSIMDZK. The proof separately considers the case of
corrupted verifier and prover. In each case, a PPT simulator S is constructed to
simulate the view of adversaries.
Malicious Verifier V∗. We construct a PPT simulator S to simulate the view
of V∗ executing the Protocol 17. S interacts with A in the following way.
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Protocol ΠLigeroSIMD

Public inputs. Define Batch size B and Reed-Solomon parameters n, k, t such
that k < n and B + t − 1 ≤ k. α1, . . . , αn, γ1, . . . , γB ∈ F are n + B evaluation
points.

Private inputs. P holds witness (w1, . . . ,wm) such that C(w1, . . . ,wm) = 0B .

Commit. On input w ∈ FB and degree d from P, parties proceed as follows: (By
default, d = k − 1, unless otherwise mentioned.)

1. P samples a uniform r ∈ {0, 1}κ and invokes (u, f(·))← RSEncode(w, r, d+1).
The codeword u and degree-d polynomial f(·) satisfy that u ∈ Ld

RS and f(γi) =
w[i] for i ∈ [B].

2. P invokes τ ← MerkleCommit(u) and sends τ to V.
3. Output JwK := ((w, r,u, f(·)), τ) such that P holds (w, r,u, f(·)) and V holds

τ .

Open. On input JwK := ((w, r,u, f(·)), τ) from P and V, P sends (w, r) to V. V
recomputes (u′, f ′(·))← RSEncode(w, r) then τ ′ ← MerkleCommit(u′). If τ ̸= τ ′,
V aborts.

Prove. On input (Jw1K, . . . , JwmK), parties proceed as follows:

1. P uniformly samples wm+1 ∈ FB and constructs wm+2 := 0B . P and V invoke
the above Commit procedure to obtain Jwm+1K. They also invoke Commit with
input d = 2(k − 1) to obtain Jwm+2K.

2. V uniformly samples r ∈ Fm, r̄ ∈ Fm+1 and sends them to P.
3. P holds {JwjK}j∈[m+2] := {(wj , rj ,uj , fj(·))}j∈[m+2]. P defines:

(a) g(·) := fm+2(·) +
∑ℓ

j=1 rj
(
fαj (·)fβj (·)− fγj (·)

)
where (αj , βj , γj) are the

indices of input and output wires of j-th batch of multiplication gates.
(b) h(·) :=

∑m+1
j=1 r̄jfj(·).

P sends the degree-(2k − 2) polynomial g(·) and degree-(k − 1) polynomial
h(·) to V. V checks whether g(γi) = 0 for i ∈ [B]. It also checks whether the
codeword (h(α1), . . . , h(αn)) ∈ LRS . If not, it aborts.

4. V uniformly samples a set Q ⊂ [n] of size |Q| = t, and sends it to P. For
j ∈ [m + 2], P invokes σj ← MerkleProve(JwjK.u, Q). It sends {uj [i]}i∈Q and
the proof of opening σj to V. V invokes MerkleVerify(JwjK.τ, {uj [i]}i∈Q,σj). If
the verification fails, V aborts.

5. V checks the followings:
(a) For any batches of addition gates indexed by (α, β, γ), it satisfies that

uα[i] + uβ [i]− uγ [i] = 0 for i ∈ Q.
(b) g(αi) := um+2[i] +

∑ℓ
j=1 rj

(
uαj [i] · uβj [i]− uγj [i]

)
for i ∈ Q.

(c) h(αi) :=
∑m+1

j=1 r̄juj [i] for i ∈ Q.
If any check fails, V aborts.

Fig. 17: The protocol of SIMD ZK from Ligero.
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1. S emulates a random oracle OH .
2. S simulates the procedure MerkleCommit as an honest prover do. It stores the

commitment τj for each committed vector wj .
3. On simulating the Prove, S first commits to random (wm+1,wm+2). Upon

receiving r, r̄ from A, S samples a random degree-(2k − 2) polynomial g̃(·)
such that g̃(γi) = 0 for i ∈ [B]. It also samples a random degree-(k − 1)
polynomial h̃(·). It sends (g̃(·), h̃(·)) to A.

4. On receiving Q from A, S constructs {{uj [i]}i∈Q}m+2
j=1 in the following ways:

(a) Construct random {{uj [i]}i∈Q}mj=1 that can pass the check at step 5a.
(b) Randomly sample the rest of values except for uℓ+1 and uℓ+2.
(c) For i ∈ Q, set

um+2[i] := g̃(αi)−
ℓ∑

j=1

rj
(
uαj [i] · uβj [i]− uγj [i]

)
.

(d) For i ∈ Q, set um+1[i] := h̃(αi)−
∑m

j=1 uj [i].
5. S simulates the procedure MerkleProve. It aborts if the counter of a com-

mitment reaches the maximum. Otherwise it samples random sibling nodes
{σj}j∈[m+2] and sends {σj}j∈[m+2] to A. S acts as an honest prover to com-
pute Merkle trees from the above constructed codewords. It constructs a list
L which records all inputs to the random oracle OH when computing the root
node.

6. S simulates the procedure MerkleVerify by monitoring the random oracle
query to OH . For any query q = L[j] where j ∈ [m], answer the query
with τj (stored when simulating MerkleCommit). Otherwise sample a uniform
answer τ̄ ∈ {0, 1}2κ.

We argue the indistinguishability between the real and ideal world from the
view of A. S emulates a programmable random oracle OH to handle oracle
queries and program the oracle output for certain inputs. At step 2, S simulates
the Merkle tree commitment by a random value τj of which the length is the same
as a hash output. The polynomials g(·) and h(·) sent by S is indistinguishable
from their distribution in real-world because: (i) In the real world, degree-(2k−2)
polynomial satisfies g(γi) = 0 for i ∈ [B] and g(·) is masked by a random
polynomial fm+2(·) such that fm+2(γi) = 0 for i ∈ [B]. It is perfectly simulated
by g̃(·) in the ideal world. (ii) In the real world, h(·) is masked by a random
polynomial fm+1(·). It is simulated by the random h̃(·) of the same degree. At
step 4, {{uj [i]}i∈Q}j∈[ℓ+2] constructed by S follows the real-world distribution
as long as the Reed-Solomon encoding has degree k > B + t − 1. In this case
any t-out-of-n views are random and independent of the encoded vector, thus
indistinguishable from what are sampled by S. At last, S monitors the random
oracle and programs any oracle query in L for the computing of the Merkle
tree root. ΠLigeroSIMD requires that the randomness of the commitment contains
enough entropy so that there is negligible probability for A to make queries
whose results match elements in L.
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Notes on achieving zero-knowledge. The protocol ΠLigeroSIMD shown in Fig-
ure 17 turns Ligero into a commit-and-prove SIMD ZK. It comes with restriction
such that a commitment can only be used in a limited number of proofs. Also,
this maximum number of usage τmax is determined upon the committing phase.
This has been reflected in the functionality FSIMDZK: a counter ctrw is attached
to the commitment to vector w. Each time a JwK contributes to a proof, ctrw
increments. A commitment should never be used again unless in the opening
phase, if its counter reaches τmax. In Ligero, it is related to the fact that each
proving phase exposes t-out-of-n committed views, which are t elements in each
of size-n codeword. Once (k+1)-out-of-n elements in the codeword is disclosed,
the commitment will be fully opened. Hence, the parameters chosen during the
initial committing phase fully determine τmax and it should guarantee t·τmax ≤ k.

Malicious Prover P∗. We analyze the soundness error when A (as a cheating
prover) causes S to abort in the ideal world, but successfully cheats in the real
world. Ligero follows the framework of MPC-in-the-Head in a way that P first
commits to n views to V by the Reed-Solomon code with length-n codeword.
Then V randomly chooses t of them to open and check. A cheating prover P∗ is
not caught if the opened t parties are among the honest parties that P∗ emulates.
The probability of such event is required to be negligible. Define Pr [succ] to be
the probability that the cheating prover A succeeds. We adapt the optimized
soundness analysis in the full version of Ligero [2]. We have

Pr [succ] ≤
(
k+e
t

)
+
(
2k−2

t

)(
n
t

) +
n+ 2

|F|

in which the error e < (n− k + 1)/2.

A.6 Succinct Non-Interactive Arguments from Pairing

Campanelli et al. propose LegoSNARK [18], a framework for commit-and-prove
zk-SNARKs (CP-SNARKs). In Figure 18, we present one of the detailed con-
struction mentioned in the paper, which naturally fits the intuition of FeSIMDZK.
It has to be mentioned that in SNARK paradigm, to achieve succinctness, batch
size B is fixed as circuit size C. Basically what we are doing is to show that
SNARK can also be constructed via our methodology: parallel proof of multipli-
cation gate (FeSIMDZK.Prove) and wire consistency check (FeSIMDZK.LinearMap).

In this construction, P commits vector to its multilinear extension (MLE),
which is the (unique) multilinear polynomial fw : Fd → F such that w(b) =
fw(b) for all b ∈ {0, 1}d. Formally, it is defined as:

fw(X1, . . . , Xd) =
∑

b∈{0,1}d

χb(X1, . . . , Xd) ·w(b).

where χb(X1, . . . , Xd) =
∏d

i=1 χbi(Xi), χ1(X) = X and χ0(X) = 1−X.
Besides MLE, the protocol realizes our functionality based on two gad-

gets Fpoly and Fsc. Fpoly checks the relation Rpoly over Fd × F × F, where
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Protocol ΠLegoSNARK

Setup: Upon receiving maximum degree d, sample a bilinear group and define
⟨group⟩ := (G1,G2, q, g, e) where e : G1 × G1 → G2 and g is a generator of G1.
Sample random elements s1, . . . , sd+1 ∈ Fq and compute vector

Σ := {gΠi∈W si}W∈2[d] ,

and then output the public parameters (⟨group⟩,Σ, gsd+1).

Commit: On input w, P computes its multilinear extension fw and uniformly
samples r̃ ∈ F, and then sends V the commitment JfwK = gfw(s1,...,sd)+r̃sd+1 ; To
commit a single value w, the commitment JwK is simply gw+r̃sd+1 .

Open: On input (JwK, w, r̃), V checks whether JwK = gw+r̃sd+1 .

Prove: For each gate (α, β, γ, T ) in the public circuit C, commitments to input
wire vectors JfαK and JfβK are also public:

– If T = ADD, every party locally computes JfγK = JfαK · JfβK.
– If T = MULT :

1. P computes fγ such that fγ [i] = fα[i] · fβ [i] for i ∈ {0, 1}d. Then P calls
Commit to obtain JfγK.

2. V picks a random point r and sends it to P.
3. P computes t = fγ(r) and calls Commit to obtain JtK. Then Fpoly is invoked

to check that fγ(r) = t.
4. P calls Fsc to prove that t =

∑
b∈{0,1}d ẽq(r, b)·fα(b)·fβ(b), where ẽq(r, b) =

1 when r = b, otherwise 0.

If any check fails, V aborts.

Linear map: Upon receiving (JfxK, JfyK,M), to prove that x = My:

1. Trusted parties compute the MLE of matrix M, and form its commitmentJfMK, as well as corresponding proving and verification key.
2. V samples a random point r and sends to P. Then P uses Commit to obtainJgK, where g(S) = fM(r,S).
3. V picks another random point σ and sends to P. P computes t = g(σ) =

fM(r,σ) and commit t.
4. Fpoly is invoked to check that g(σ) = t and fM(r,σ) = t, and V calls Open to

check the correctness of JtK.
5. P computes fx(r) = k and calls Commit to obtain JkK, and V calls Open to

check its correctness.
6. P calls Fsc to prove that k =

∑
b∈{0,1}d g(b) · fy(b).

If any check fails, V aborts.

Fig. 18: The protocol of eSIMDZK from LegoSNARK.

Rpoly(x, f, y) := y
?
= f(x). Fsc enables a prover to convince a verifier of the

validity of a statement of the form t =
∑

b∈{0,1}d g(b) where g : Fd → F. It has
already been realized in paper [39]. To achieve zero-knowledge, g is defined in the
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form
∏2

i=0 gi(S), that all the gi’s, except g0, are committed. Namely, Fsc checks
the relation Rsc(x,u), with x ∈ F and u ∈ F×F2, that is formally defined as:

Rsc(g0, (t, g1, g2)) = 1⇔ g(S) =

2∏
i=0

gi(S) ∧ t =
∑

b∈{0,1}d

g(b).

The construction in Figure 18 is secure in the GGM and random oracle
model, and it has only linear proving time. The size of the proof in this protocol
is O(log n), while it can be shrink to O(1) by applying another method of proving
Hadamard product [38], with a log n blow-up in prover’s computation cost.
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