
Sequential Half-Aggregation of Lattice-Based Signatures⋆

Katharina Boudgoust1 and Akira Takahashi2

1 Aarhus University, Denmark
katharina.boudgoust@cs.au.dk
2 University of Edinburgh, UK
takahashi.akira.58s@gmail.com

March 4, 2024

Abstract. With Dilithium and Falcon, NIST selected two lattice-based signature schemes
during their post-quantum standardization project. Whereas Dilithium follows the Fiat-Shamir
with Aborts (Lyubashevsky, Asiacrypt’09) blueprint, Falcon can be seen as an optimized
version of the GPV-paradigm (Gentry et al., STOC’06). An important question now is whether
those signatures allow additional features such as the aggregation of distinct signatures. One
example are sequential aggregate signature (SAS) schemes (Boneh et al., Eurocrypt’04)
which allow a group of signers to sequentially combine signatures on distinct messages in
a compressed manner. The present work first reviews the state of the art of (sequentially)
aggregating lattice-based signatures, points out the insecurity of one of the existing Falcon-
based SAS (Wang and Wu, PROVSEC’19), and proposes a fix for it. We then construct
the first Fiat-Shamir with Aborts based SAS by generalizing existing techniques from the
discrete-log setting (Chen and Zhao, ESORICS’22) to the lattice framework. Going from
the pre-quantum to the post-quantum world, however, does most often come with efficiency
penalties. In our work, we also meet obstacles that seem inherent to lattice-based signatures,
making the resulting scheme less efficient than what one would hope for. As a result, we
only achieve quite small compression rates. We compare our construction with existing
lattice-based SAS which all follow the GPV-paradigm. The bottom line is that none of the
schemes achieves a good compression rate so far.

⋆ An extended abstract appeared at ESORICS 2023. This is the full version.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Other Related Work . 5

2 Preliminaries . 5
2.1 Probability and Regularity . 5
2.2 Module Lattice Problems . 6
2.3 Fiat-Shamir with Aborts Signatures . 6
2.4 Sequential Aggregate Signatures . 7

3 Sequential Half-Aggregation of FSwA Signatures . 8
3.1 Definition and Correctness of the Scheme . 8
3.2 Security Proof . 10

4 Performance Estimates and Comparison . 15
4.1 Performance Estimates . 15
4.2 Comparison With SAS Using Trapdoors . 15

5 Attacks on Existing Schemes . 17
5.1 Attack on [WW19] . 17
5.2 Attack on [FH20] . 19

6 Conclusion . 21
A More Security Notions for Sequential Aggregate Signatures . 24

A.1 Histrory-Free Sequential Aggregate Signatures . 24
A.2 Partial-Signature History-Free Sequential Aggregate Signatures 24

1 Introduction

Aggregate signature (AS) schemes, introduced by [BGLS03], allow N signers to individually produce
signatures σ1, . . . , σN on distinct messages m1, . . . , mN , and later combine them into a single,
compact signature σAS. Such σAS can be verified with respect to the participants’ verification
keys pk1, . . . , pkN . Classical applications of aggregate signatures include certificate chains: in a
public key infrastructure one has to include their certificate in every sent message, which itself
comes from a chain of certificates issued by different authorities. Since the naive concatenation
of single-user signatures significantly adds to the certificate chain (e.g., [BGLS03] reports 15% of
a typical X.509 certificate length is occupied by the signature), it is paramount to replace them
with a compact, aggregated signature to save bandwidth. In the literature, essentially two different
paradigms of fully compact aggregate signatures have been proposed: (1) dedicated constructions
based on bilinear pairings [BGLS03, BNN07], and (2) generic solutions exploiting iO [HKW15] or
non-interactive arguments [DGKV22, WW22, ACL+22], where a signature aggregator produces a
succinct proof of knowledge of N valid signatures.

There also exists the slightly restricted notion of sequential aggregate signatures (SAS) [LMRS04].
In this setting, signing and aggregation are carried out altogether: signer i associated with pki receives
from signer i− 1 aggregate so-far σi−1 with a key-message list Li−1 = (pk1, m1, . . . , pki−1, mi−1),
adds a signature on the message mi of their own choice to produce σi, and then passes along σi

and Li = Li−1||(pki, mi) to the next signer i + 1. Unlike general aggregate signatures, SAS
require round-robin communication among signers, which however fits well in typical application
scenarios such as a certificate chain. A plethora of work proposed highly efficient, constant-
size SAS using pairings [LOS+06, BGOY07, BNN07, FLS12] or assuming the existence of trapdoor
permutations [LMRS04, Nev08, BGR12, GOR18].
Half-Aggregation of Fiat-Shamir Signatures. Perhaps unsurprisingly, not many aggregation
methods tailored to Fiat-Shamir signatures [FS87] such as Schnorr [Sch91] are known.3 Fiat-Shamir
signatures are typically constructed from three-round Σ-protocols [Cra96]: the signer invokes the
underlying Σ-protocol prover to generate the first-round commit value u, samples random challenge c
by hashing u together with the message m to be signed, creates response z, and outputs σ = (c, z)
as a signature. The verifier then reconstructs u from (pk, c, z) through certain algebraic operations
and checks the recomputed hash against c. Equivalently, the signer can set σ = (u, z) and the
verifier recomputes the hash c, while checking if a certain relation between c and (pk, u, z) holds.
The difficulty of aggregating Fiat-Shamir mainly lies in the challenge hash function: since its
typical instantiation such as SHA-256 has no algebraic structure, it does not blend well with
nice homomorphic properties of the underlying Σ-protocol transcript. This is why the existing
approaches (e.g., [BN06, DEF+19, NRS21]) require (at least) two rounds of interaction so that
all signers can first agree on a combined u that leads to the same challenge c, from which they
compute shares of z.

To avoid interaction, recent papers proposed half-aggregation of Schnorr/EdDSA [CGKN21,
Kas22, CZ22]. These are middle ground solutions where only the u or the z component gets
aggregated, and the other part consists of a concatenation of N partial signatures. Although it is
asymptotically no better than the trivial concatenation of N signatures, reducing the signature
size by a constant factor has meaningful implications in practice, e.g., in certain cases the entire
certificate chain of size O(N) needs to be transmitted anyway.

Another possible approach would be adapting one of the aforementioned generic solutions and
having an aggregator node to prove the knowledge of N tuples of the form (u, c, z) satisfying the
verification conditions descried as a circuit. However, the prover’s complexity likely hinges on
mixture of algebraic operations and non-algebraic hash computation in verification. Another issue
with such a generic solution applied to typical Fiat-Shamir signatures is that the security proof would
likely rely on heuristics. Since an aggregator of the generic method requires a concrete description of
the hash function, its security is only guaranteed assuming the security of the underlying signature
3 It is well known that interactive multi-signatures can be generically converted to interactive aggregate

signatures by asking all participants to sign a concatenation of N messages and public keys [BN06,
DEF+19, NRS21]. However, this requires the signers to agree on all N messages and who they co-sign
with in advance, and does not fit in the typical use cases of aggregate signatures such as a certificate
chain.

3

scheme in the standard model, whereas the majority of existing Fiat-Shamir signatures are only
proven in the random oracle model.
Aggregate Signatures from Lattices. Given that NIST has announced in their post-quantum
cryptography standardization project two signature finalists, Falcon [PFH+20] and Dilithium [LDK+20],
based on (structured) lattice assumptions, a natural question is whether tailor-made aggregate sig-
natures can be instantiated using lattices (instead of generic solutions such as [DGKV22, ACL+22]).
Both finalists represent the two major design principles to build lattice-based signatures: Dilithium
follows Lyubashevsky’s Fiat-Shamir with Aborts (FSwA) paradigm [Lyu09, Lyu12] and Falcon is a
GPV-type signature using preimage sampleable trapdoor functions [GPV08].

There are a limited number of proposals within the FSwA paradigm. Boneh and Kim [BK20]
presented a lattice-based instantiation of [BN06] but it requires three rounds of interactions. Boud-
goust and Roux-Langlois [BR21] are the first to securely instantiate non-interactive half-aggregation
of FSwA. From a high level perspective, they adapt the half-aggregation of Schnorr [CGKN21] to
the lattice-setting. Whereas in Schnorr, it does not really matter whether we output σ = (u, z)
or σ = (c, z), it makes a big difference in the lattice setting. The signature size significantly decreases
in the second case. During the half-aggregation of [BR21], only the z-parts are aggregated, but all
the u-parts are transmitted. Note that it is not sufficient to transmit all the c-parts, as we cannot
recover the different commitments anymore from an aggregated response. However, we need every
single commitment in order to verify an aggregate signature. In consequence, the provably secure
version of their construction outputs a signature σAS = (u1, . . . , uN , z) which is always larger than
the naive concatenation of N signatures σcon = (c1, z1, . . . , cN , zN). The MMSAT scheme [DHSS20]
is a candidate half-aggregate signature scheme based on a non-standard lattice problem, called the
Partial Fourier Recovery problem. However, it turned out that the security proof is flawed and even
simple forgery attacks exist [BR21]. Regarding sequential aggregation, the only known lattice-based
solutions we are aware of follow the GPV-paradigm [EB14, WW19], of which the latter turns out
to be insecure as we sketch below. Given all this, we are motivated to ask the following question in
this paper:

Can we construct a non-interactive sequential half-aggregate FSwA signature scheme
(1) with a signature size smaller than the naive concatenation, and (2) without invoking
expensive generic solutions?

1.1 Our Contributions

In this work, we positively answer this question. In Section 3, we present a sequential half-
aggregate signature based on the Fiat-Shamir with Aborts framework. The aggregation paradigm
closely follows recent Schnorr-based SAS due to Chen and Zhao [CZ22]. As elaborated before,
the main obstacle in previous works is that without interaction it is difficult to aggregate the
commitments u1, . . . , uN that are responsible for the large aggregate signature size in [BR21]. If,
however, we place ourselves in the sequential aggregate model, we can aggregate over the u-parts by
letting the parties sign one after each other. A sequential aggregate signature of our construction
now is of the form σSAS = (u, z1, . . . , zN). Once the size of (c1, . . . , cN) is larger than the size
of u, our SAS produces signatures that are indeed smaller than the trivial concatenation σcon.
Unfortunately, when looking at the ratio between σSAS and σcon, it is the (z1, . . . , zN)-part (that
both have in common) that makes up for most of the signature size and hence the compression rate
is close to 1. Although our concrete parameter estimates in Section 4 indicate the output signature
is only ∼ 1% smaller than the naive concatenation, we believe ours to be an important step towards
better understanding the possibilities and limits of lattice-based aggregate signatures.

The security of our scheme tightly reduces to the existential unforgeability of the standard
single-user FSwA scheme instantiated with structured lattices. We prove security in the so-called
full history setting of SAS. For completeness, we also discuss its security in a new model that has
been introduced in [CZ22], which we call the partial-signature history-free security model. The
details can be found in Appendix A. Although our construction closely follows the one of [CZ22],
our security proof is more involved because of subtleties that arise in the lattice setting. We have
to consider several bad events that might happen and bound their probability. In Section 4, we
also compare our scheme with the two existing lattice-based SAS [EB14, WW19] following the

4

GPV-paradigm. As in the lattice setting we only have so-called preimage sampleable trapdoor
functions (and no trapdoor permutation), they cannot achieve constant-size SAS either. The upshot
is that neither of them saves more than 4% of signature size if a fair comparison is made against
the naive concatenation and taking recent advances [ETWY22] into account.

As a separate contribution, we point out insecurities of two existing aggregate signature schemes
explicitly instantiated with NIST finalists: (1) Falcon-based SAS of [WW19] does not guarantee
the claimed security property due to the existence of a forgery attack (Section 5.1), and (2)
Dilithium-based interactive multi-signature of [FH20] (which can be generically turned into an
aggregate signature using [BN06]’s trick) leaks part of the secret key due to the misuse of Bai-
Galbraith’s HighBits optimization trick [BG14] (Section 5.2). The latter attack highlights that,
even after knowing how to aggregate signatures that follow a general paradigm, it is not trivial to
make the aggregation work for optimized instantiations.

Given the above attacks on existing solutions and the concrete parameter estimates of our
construction, we conclude in Section 6 that concretely efficient aggregation of the lattice-based
NIST finalists is still an unexplored area and mark it as an interesting direction for future work.

1.2 Other Related Work

Imposing a sequential way of signing is not the only way how to restrict the model of aggregate
signatures. Other works look for instance at a synchronous model [GR06, AGH10], where signatures
are aggregated together if they have been issued at the same time interval. One recent result studies
lattice-based aggregate signatures in the synchronous model [FSZ22]. As already mentioned before,
a related concept are multi-signatures [MOR01, Bol03], where we allow the parties to interact with
each other. There are several recent results on lattice-based multi-signatures [DOTT21, BTT22]
and we refer to the references therein.

2 Preliminaries

Notations. For any positive integer N , we denote by [N] the set {1, . . . , N}. For a finite set S,
we denote its cardinality by |S| and the uniform distribution over S by U(S). We simply write
s

$← S to indicate sampling s from U(S). For a probability distribution D , we write s ← D to
indicate sampling s from D ; for a randomized (resp. deterministic) algorithm A we write s← A
(resp. s := A) to indicate assigning an output from A to s. Throughout, the security parameter is
denoted by λ. The abbreviation PPT stands for probabilistic polynomial-time.

Following [LDK+20] r′ = r mod+ α denotes the unique integer r′ ∈ [0, α) such that r′ ≡
r mod α. For an even (resp. odd) positive integer α, r′ = r mod± α denotes the unique integer
r′ ∈ (−α/2, α/2] (resp. r′ ∈ [−(α− 1)/2, (α− 1)/2]) such that r′ ≡ r mod α.

Throughout the paper, we work over the ring R =: Z[X]/⟨Xn + 1⟩, where n is a power of
2. For any ring element r ∈ R, we define ∥r∥2 , ∥r∥1 and ∥r∥∞ to be the respective norms of its
coefficient vector. For some prime q, we define Rq := R/(qR) and for some positive integer γ, we
set Sγ := {r ∈ R : ∥r∥∞ ≤ γ}.

2.1 Probability and Regularity

The Rényi divergence (RD) defines a measure of distribution closeness. We follow [BLR+18] and
set the RD as the exponential of the classical definition.

Definition 2.1 (Rényi Divergence). Let P and Q be two discrete probability distributions such
that Supp(P) ⊆ Supp(Q). The Rényi divergence (of order 2) is defined by

RD2(P∥Q) =
∑

x∈Supp(P)

P (x)2

Q(x) .

The RD fulfills the following properties, as proved in [vEH14].

Lemma 2.2. Let P, Q be two discrete probability distributions with Supp(P) ⊆ Supp(Q).

5

Data Processing Inequality: RD2(P g∥Qg) ≤ RD2(P∥Q) for any function g, where P g (resp. Qg)
denotes the distribution of g(y) induced by sampling y ← P (resp. y ← Q),

Probability Preservation: Let E ⊂ Supp(Q) be an event, then

P (E) ≤
√

Q(E) · RD2(P∥Q).

In Section 3, we need the following regularity result.

Lemma 2.3 ([BJRW23, Lem. 2.8] Simplified). Let k, ℓ, q, γ ∈ N such that q is prime. Further,
let R = Z[X]/⟨Xn + 1⟩, where n is a power of 2. Then,

RD2((A, Ay′)∥(A, v)) ≤
(

1 + qk

(2γ + 1)ℓ

)n

,

where A $← Rk×ℓ
q , y′ $← D := U(Sℓ

γ) and v $← Rk
q .

In order to obtain a constant Rényi divergence, we require

ℓ ≥ k · log2 q

log2(2γ + 1) + O

(
log2 q

log2(2γ + 1)

)
. (1)

Remark 2.4. Alternatively, if one prefers the discrete Gaussian distribution for D , one can use the
regularity result [LPR13, Cor. 7.5]. It comes with the advantage that it holds for any q ≥ 2, not
necessarily prime, and that the parameter ℓ can be arbitrarily close to k, in particular ℓ = k is a
possible choice, which is common in practice. However, the resulting Gaussian width, defining the
parameter γ, cannot be freely chosen and needs to be above a certain threshold, which is much
larger than parameters used in practice.

2.2 Module Lattice Problems

We also recall two lattice problems and refer to [LS15] for more details. We state them in their
respective discrete, primal and HNF form.

Definition 2.5 (M-LWE). Let k, ℓ, η ∈ N. The Module Learning With Errors problem M-LWEk,ℓ,η

is defined as follows. Given A $← Rk×ℓ
q and t ∈ Rk

q . Decide whether t $← Rk
q or if t = [A|Ik] · s,

where s $← Sℓ+k
η .

The M-LWE assumption states that no PPT algorithm can distinguish between the two distribu-
tions with non-negligible advantage. Worst-case to average-case reductions guarantee that M-LWE
is quantumly [LS15] and classically [BJRW20] at least as hard as the approximate shortest vector
problem over module lattices.

Definition 2.6 (M-SIS). Let k, ℓ, b ∈ N. The Module Short Integer Solution problem M-SISk,ℓ,b

is as follows. Given a uniformly random matrix A $← Rk×ℓ
q . Find a non-zero vector s ∈ Rk+ℓ

q such
that ∥s∥2 ≤ b and [A|Ik] · s = 0 ∈ Rk

q .

The M-SIS assumption states that no PPT adversary can solve this problem with non-negligible
probability. Worst-case to average-case reductions guarantee that M-SIS is classically [LS15] at least
as hard as the approximate shortest independent vector problem over module lattices.

2.3 Fiat-Shamir with Aborts Signatures

In this paper, we build a sequential aggregate signature FSwA-SAS starting from a well-studied
signature scheme FSwA-S = (Setup, Gen, Sign, Ver) whose definition we recall in Algorithm 1. It
follows the so-called Fiat-Shamir with Aborts paradigm [Lyu09, Lyu12] and can be seen as the
module variant of [GLP12] or the ’vanilla’ flavor of Dilithium.

6

Algorithm 1: Description of the FSwA-S Signature

The challenge space is Ch :=
{

c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ
}

and the message space is M = {0, 1}l.
The random oracle is H : {0, 1}∗ → Ch.

Setup(1λ)

1: A $← Rk×ℓ
q

2: Ā := [A|Ik]
3: return Ā

Sign(sk, m)
1: s := sk
2: t := Ās mod q
3: z := ⊥
4: while z := ⊥ do
5: y← Dℓ+k

6: u := Āy mod q
7: c := H(u, t, m)
8: z := c · s + y
9: z := RejSamp(z, c · s)

10: σ := (u, z)
11: return σ

Gen(Ā)

1: s $← Sℓ+k
η

2: t := Ās mod q
3: sk := s
4: pk := t
5: return (sk, pk)

Ver(pk, σ, m)
1: (u, z) := σ
2: t := pk
3: c := H(u, t, m)
4: if ∥z∥∞ ≤ B ∧ Āz = c · t + u then
5: return 1
6: else
7: return 0

Modification. A difference to the standard design is that instead of outputting σ = (c, z), we
output σ = (u, z). For a single signature, both cases are equivalent, as u defines c via the hash
function H (and the public key t and the message m) and c defines u via the equation u = Āz− c · t.
However, this is not the case for a (sequential) aggregate signature scheme and we thus need to
transmit the information u.
Distribution D. During the signing algorithm Sign, the FSwA-S scheme uses a distribution D to
sample a vector of ring elements of short norm over R. In the literature, mainly two different ways of
instantiating D are studied. The first uses discrete Gaussian distributions (as for instance in [Lyu12])
and the second uses the uniform distribution over a bounded set, i.e., D = U(Sγ) for some γ ≪ q
(as for instance in [GLP12]). The concrete instantiation of D then influences the choice of the
rejection algorithm RejSamp during signing and of the bound B during verification. In this paper,
we focus on the latter as this is the choice commonly used in practice, as for instance in Dilithium.
In this case, the algorithm RejSamp outputs ⊥ if ∥z∥∞ > γ − κ · η =: B, else it outputs z.
Security. Overall, the UF-CMA security of the scheme FSwA-S as specified in Algorithm 1 is based
on the hardness of M-LWE and M-SIS [LS15]. For the reason of space limits, we refer the interested
reader to the original security proofs in [Lyu12, GLP12] in the random oracle model.

2.4 Sequential Aggregate Signatures

Sequential aggregate signatures (SAS) were first introduced in [LMRS04]. We recall now the syntax
of a (full-history) SAS scheme, together with the definitions of correctness and security following the
notations of Gentry et al. [GOR18]. See also Appendix A for a discussion of alternative definitions
of SAS schemes and corresponding security notions.

Definition 2.7 (SAS). A sequential aggregate signature scheme (SAS) for a message space M
consists of a tuple of PPT algorithms SAS = (Setup, Gen, SeqSign, SeqVerify) defined as follows:

Setup(1λ) → pp: On input the security parameter λ, the setup algorithm outputs the public
parameters pp.

Gen(pp) → (sk, pk): On input the public parameters pp, the key generation algorithm outputs a
pair of secret key sk and public key pk.

7

Game 1: Description of the FH-UF-CMASAS(A, λ) Security Game

1: pp← Setup(1λ)
2: (pk, sk)← Gen(pp)
3: Q := ∅
4: (L∗N , σ∗N)← AOSeqSign(pp, pk)
5: if SeqVerify(L∗N , σ∗N) ∧ ∃i∗ ∈ [N] : (pki∗ =

pk ∧ (mi∗ , Li∗−1) /∈ Q) then
6: return 1
7: else
8: return 0

OSeqSign(mi, σi−1, Li−1)
1: σi ← SeqSign(sk, mi, Li−1, σi−1)
2: Q := Q∪ {(mi, Li−1)}
3: return σi

SeqSign(ski, mi, Li−1, σi−1) → σi: On input a secret key ski, a message mi ∈ M , a list Li−1
with Li−1 := (pk1, m1)|| . . . ||(pki−1, mi−1), and a so-far signature σi−1, the sequential signing
algorithm outputs a new so-far signature σi.

SeqVerify(LN , σN)→ {0, 1}: On input a list LN of N message-public-key pairs and a sequential
aggregate signature σN , the sequential verification algorithm either outputs 1 (accept) or 0
(reject).
For convenience, given a list Lj = (pk1, m1)|| . . . ||(pkj , mj), we denote by Li its ith prefix

Li := (pk1, m1)|| . . . ||(pki, mi) for 1 ≤ i < j.

Definition 2.8 (Correctness). Let SAS = (Setup, Gen, SeqSign, SeqVerify) be a sequential aggre-
gate signature scheme for a message space M . It is called correct if for all λ, N ∈ N it yields

Pr
[
SeqVerify(LN , σN) = 1

]
= 1− negl(λ),

where mi ∈ M , pp ← Setup(1λ), (ski, pki) ← Gen(pp), Li = (pk1, m1)|| . . . ||(pki, mi) and σi ←
SeqSign(ski, mi, Li−1, σi−1) for all i ∈ [N]. Let L0 = ∅ and σ0 = (0, 0).

Informally, full history unforgeability against chosen message attacks captures the following
security notion. An adversary is given a challenge public key and has access to a sequential signing
oracle that, on input a message, a so-far signature and a list of public keys and messages (called
‘history’) provides the next so-far signature using the secret key corresponding to the challenge key.
A forgery is composed of an sequentially aggregate signature together with a history (i.e., a list of
message-key pairs). The forgery is successful if it passes verification, if one of the public keys is the
challenge key and if the signing oracle has not yet been queried on the same message and history.

Definition 2.9 (FH-UF-CMA Security). A SAS scheme satisfies full history unforgeabilty against
chosen message attacks, if for all PPT adversaries A,

AdvFH-UF-CMA
SAS (A) := Pr

[
FH-UF-CMASAS(A, λ) = 1

]
= negl(λ),

where the FH-UF-CMASAS game is described in Game 1.

3 Sequential Half-Aggregation of FSwA Signatures

3.1 Definition and Correctness of the Scheme

Our scheme is described in Algorithm 2. The overall structure closely follows the one by Chen and
Zhao [CZ22]. We remark that, for the sake of security proof, the key generation algorithm slightly
differs from the original one in Algorithm 1. It keeps regenerating a key pair until the public key t
contains at least one invertible element. This terminates relatively quickly in practice. Let pinv be
the probability that t = Ās has at least one invertible coefficient over Rq, where s is uniformly
sampled from Sℓ+k

η . Then the expected running time of Gen is 1/pinv. One can experimentally
find pinv for each parameter set.

The single signature scheme FSwA-S as described in Algorithm 1 can be obtained from the
sequential aggregate signature scheme FSwA-SAS (Algorithm 2) when taking N = 1 and starting
with the empty set L0 = ∅ and a trivial so-far signature σ0 = (0, 0).

8

Algorithm 2: Description of the FSwA-SAS Sequential Aggregate Signature

The challenge space is Ch :=
{

c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ
}

and the message space is M ′ = {0, 1}l.
The random oracle is H : {0, 1}∗ → Ch. The starting point is i = 1. Let L0 = ∅ and σ0 = (0, 0).
Setup is as in Algorithm 1.

Gen(Ā)
1: t := 0
2: while t has no invertible coefficient do
3: s $← Sℓ+k

η

4: t := Ās mod q

5: sk := s
6: pk := t
7: return (sk, pk)

SeqSign(ski, mi, Li−1, σi−1)
1: (ũi−1, z1, . . . , zi−1) := σi−1
2: si := ski

3: ti := Āsi mod q
4: Li := Li−1||(ti, mi)
5: zi := ⊥
6: while zi := ⊥ do
7: yi ← Dℓ+k

8: ui := Āyi mod q
9: ũi := ũi−1 + ui mod q

10: ci := H(ũi, Li, zi−1)
11: zi := ci · si + yi

12: zi := RejSamp(zi, ci · si)
13: σi := (ũi, z1, . . . , zi)
14: return σi

SeqVerify(LN , σN)
1: (t1, m1)|| . . . ||(tN , mN) := LN

2: (ũN , z1, . . . , zN) := σN

3: z0 := 1
4: if ∃i such that ti has no invertible element

then
5: return 0
6: for i = N, . . . , 1 do
7: if ∥zi∥2 > B then
8: return 0
9: Li := (t1, m1)|| . . . ||(ti, mi)

10: ci := H(ũi, Li, zi−1)
11: ui := Āzi − citi mod q
12: ũi−1 := ũi − ui mod q

13: if ũ1 = u1 then return 1

Remark 3.1. Whereas it seems to be hard to give unconditionally provable lower bounds for pinv
(at least in our parameter setting), it is possible to bound it assuming the hardness of M-LWE
(which is also used in the security proof of FSwA-S). Let pRq denote the probability that an element
of Rq sampled uniformly at random is invertible. There exist exact formulas to express this number,
depending on the splitting behavior of the ideal generated by q in the ring R. For the fully splitting
case, i.e., q = 1 mod 2n, it yields pRq

= (1− 1/q)n, see for instance [LPR13, Claim 2.25]. Assuming
the hardness of M-LWE, it yields pinv = pRq

+ negl(λ). If not, an adversary against M-LWE could
simply test a given instance for invertibility.

Remark 3.2. In its current presentation, all secret-public key pairs are using the same matrix A.
However, this is not required in our construction, and actually every party could use their own
matrix. In that case, the public key would need to contain not only t, but also A, requiring
larger storage. This, in turn, could be reduced by computing the matrix via some small seed and
a pseudorandom function (as done in Dilithium). We highlight that using different matrices for
different parties is not possible in all other proposed (non-interactive or interactive) aggregate
signature schemes following the Fiat-Shamir with aborts paradigm. As they compute a linear
combination of (parts of) the single signatures, every party must use the same A. Using the same
matrix A for every party leads to an instance of multi-secret M-LWE and its security is implied by
standard M-LWE via some simple hybrid argument [Mic18, Lemma 8].

Lemma 3.3 (Correctness). The scheme FSwA-SAS = (Setup, Gen, SeqSign, SeqVerify) as speci-
fied in Algorithm 2 is correct.

Proof. We inductively show that, if an i-th so-far signature σi = (ũi, z1, . . . , zi) with 1 ≤ i < N
is correct, the (i + 1)-th signature σi+1 = (ũi+1, z1, . . . , zi+1) is also correct. As zi+1 has been
correctly computed by the (i + 1)-th signer, it yields Ā · zi+1 − ti+1 · ci+1 = ui+1. Hence, ũi can be
recovered via ũi+1 − ui+1 and thus σi = (ũi, z1, . . . , zi) verifies by the induction hypothesis. Now,

9

let’s consider the base case i = 1. It yields ∥z1∥∞ ≤ B and Ā · z1 = t1 · c1 + ũ1 because of the
linearity of matrix-vector multiplication over Rq. ⊓⊔

3.2 Security Proof

We now prove the FH-UF-CMA security (as in Definition 2.9) of Algorithm 2. For completeness,
we also sketch in Appendix A the security of our scheme in a new model that has been introduced
in [CZ22], which we call the partial-signature history-free security model.

Theorem 3.4 (FH-UF-CMA security). Let k, ℓ, n, q, η, γ, l ∈ N such that n is a power of 2, q
is prime and Eq. 1 is fulfilled. Let pinv be the probability that Ās has at least one invertible
coefficient over Rq, where s is uniformly sampled from Sℓ+k

η and Ā = [A|Ik] with A is uniformly
sampled from Rk×ℓ

q , respectively. If the signature scheme FSwA-S with message space M = {0, 1}l, as
described in Algorithm 1, is UF-CMA secure, then is the sequential aggregate signature FSwA-SAS, as
described in Algorithm 2, FH-UF-CMA secure. Concretely, for any adversary A against FH-UF-CMA
security that makes at most Qh queries to the random oracle H, Qs queries to the OSeqSign oracle
and outputs a forgery with a history of length N , there exists an adversary B against UF-CMA
security such that

AdvFH-UF-CMA
FSwA-SAS (A) ≤ AdvUF-CMA

FSwA-S (B)
pinv

+ O

(
Qs(Qh + Qs)

qnk/2

)
+ (Qh + Qs + 1)2

|Ch| + Qs(2Qh + 1)
2l

,

and Time(B) = Time(A) + O((N + Qh)kℓtpmul), where tpmul is the time of polynomial multiplication
in Rq.

Proof. We first sketch the high level ideas of the reduction B. The complete description of B is
found in Alg. 3. The random oracle and the signing oracle in the FH-UF-CMA game (resp. UF-CMA
game) are denoted by H and OSeqSign (resp. H′ and OSign). On receiving the public parameter A
and the challenge public key t∗, B checks that t∗ ∈ Rk

q contains at least one invertible element. If
so, B forwards (A, t∗) to A.

OSeqSign replies to queries by asking OSign for a signature on uniformly chosen m and pro-
grams H such that it outputs c returned by the outer random oracle H′. Here we cannot just
forward mi to OSign, because it might be that a forgery submitted by A later reuses the same mi.
Then submitting a forgery w.r.t. mi is not valid in the UF-CMA game, causing B to lose.

At the core of reduction is simulation of responses to H queries. Suppose the key list LN as
part of the forgery tuple contains (ti, mi) such that ti = t∗. Then B must have extracted the
corresponding ui and forwarded ui to H′ together with a random message m, so that (m, (ui, zi))
qualifies as a valid forgery in the UF-CMA game. This extraction operation crucially makes use
of zi−1 when (ũi, Li, zi−1) is queried to H. Intuitively, zi−1 serves as a look-up key to obtain the
previous aggregated ũi−1, which allows B to extract ui = ũi − ũi−1.

In more detail, starting from the original FH-UF-CMA game, we construct several hybrid games
towards the one used by the final reduction B. We denote by Pr[Gi(A)] the probability that Gi(A)
halts with output 1.
G0 This game is identical to the FH-UF-CMA game. At the beginning, the game initializes an

empty key-value look-up table HT. Upon receiving a query to the random oracle H with
input X, it returns HT[X] if the table entry is non-empty; otherwise, it samples uniform c ∈ Ch,
sets HT[X] := c, and returns c. It holds that Pr[G0(A)] = AdvFH-UF-CMA

FSwA-SAS (A).
G1 This game is identical to G0, except that OSeqSign samples uniform ci ∈ Ch instead of calling ci =

H(ũi, Li, zi−1) after ũi is computed, and that it programs the RO table HT[ũi, Li, zi−1] := ci

as soon as the rejection sampling step succeeds; if HT[ũi, Li, zi−1] is already set, the game
aborts by setting baducol = true. It holds that |Pr[G0(A)]− Pr[G1(A)]| ≤ Pr[baducol].

G2 This game is identical to G1, except that responses to random oracle queries H(ũi, Li, zi−1)
are simulated as follows. Initialize an empty key-value look-up table ZT. If i = 1 or there
exists some X := (ũi−1, Li−1, zi−2) such that ZT[X] = Āzi−1 mod q, then extract ui :=
ũi − ũi−1, sample uniform ci ∈ Ch, and set ZT[ũi, Li, zi−1] := ui + citi. If there already
exists some entry X ′ := (ũi−1, Li−1, zi−2) such that ZT[X ′] = ui + citi, the game aborts by
setting badzcol = true. It holds that |Pr[G1(A)]− Pr[G2(A)]| ≤ Pr[badzcol].

10

G3 This game is identical to G2, except that OSeqSign and H proceed as follows. The game initializes
an empty set M and key-value look-up table MT. Whenever OSeqSign receives a query, it
internally samples a uniform message m ∈M and adds m to M. Whenever H receives a query
with input (ũi, Li, zi−1) and manages to extract ui as above, it samples a uniform message m ∈
M and aborts by setting badmcol = true if m ∈M. Else, it sets MT[ũi, Li, zi−1] = m. It holds
that |Pr[G2(A)]− Pr[G3(A)]| ≤ Pr[badmcol].

G4 This game is identical to G3, except that it performs the following checks against the ZT
entries after the adversary outputs a valid signature-history pair (LN , (ũN , z1, . . . , zN)) as
follows. Let ũN−1, . . . , ũ1 be as derived during the execution of SeqVerify. If for some i ∈ [N]
the entry ZT[ũi, Li, zi−1] is undefined, the game halts by setting badord = true. It holds
that |Pr[G3(A)]− Pr[G4(A)]| ≤ Pr[badord].

B Given an adversary A winning G4, the reduction B described in Alg. 3 is obtained as follows.
Upon receiving a query to OSeqSign, B makes a query to OSign of the UF-CMA game with a
uniform message m ∈M , receives ui and zi, and programs HT using challenge ci output by the
outer random oracle H′(ui, t∗, m). Moreover, H obtains fresh challenge ci for ti = t∗ by querying
the outer random oracle H′(ui, t∗, m) if it succeeds in extracting ui = ũi − ũi−1. Since A is
guaranteed to receive an invertible challenge public key in B, the view of A is identical to that
of G4.

We now show that, as long as none of the bad events happen, B is guaranteed to output a
message-signature pair (m, (ui∗ , zi∗)) that gets accepted in the UF-CMA game, i.e., ∥zi∗∥∞ ≤ B
and ui∗ = Āzi∗ − ct∗ mod q where c = H′(ui∗ , t∗, m). The former condition is immediate from the
verification condition of SeqVerify. To argue the latter, notice that we have c = H′(ui∗ , t∗, m) =
HT[ũi∗ , Li∗ , zi∗−1] = ci∗ as long as the RO entries HT[ũ1, L1, z0], . . . , HT[ũN , LN , zN−1] have
been set in the right order and thus ui∗ = ũi∗ − ũi∗−1 is extracted during the invocation
of H(ũi∗ , Li∗ , zi∗−1). The following lemma indeed assures that such queries have been made in the
right order as long as badzcol = badord = false.

Lemma 3.5. Let σN = (ũN , z1, . . . , zN) and LN = (t1, m1)|| . . . ||(tN , mN) a valid signature-
history pair that B received from A. Let ũ1, . . . , ũN−1 be as derived in SeqVerify run by B. Sup-
pose badzcol = false. Then for i ∈ [N − 1], the random oracle entry HT[ũi+1, Li+1, zi] had been set
after HT[ũi, Li, zi−1] was set if and only if badord = false.

Proof. “Only if” We first argue that if the oracle entries HT[ũ1, L1, z0], . . . , HT[ũN , LN , zN−1]
have been set in this order and badzcol = false, the corresponding ZT entries are all non-empty and
thus badord must be false. Suppose this statement holds for 1 ≤ i ≤ j, i.e., ZT[ũ1, L1, z0], . . . , ZT[ũj , Lj , zj−1]
are non-empty. Due to the verification condition it must be that ũj−1 = ũj − Āzj + cjtj and
thus Āzj = ũj−ũj−1 +cj +tj . Because we assumed that HT[ũj−1, Lj−1, zj−2] and HT[ũj , Lj , zj−1]
are set in this order, the invocation of H(ũj , Lj , zj−1) must have extracted uj = ũj − ũj−1 and
have set ZT[ũj , Lj , zj−1] = uj + cjtj . Note that, since badzcol = false, there is no other entry in ZT
that records the same value as uj + cjtj . Thus, when (ũj+1, Lj+1, zj) is queried, H can uniquely
find a tuple (ũj , Lj , zj−1) such that ZT[ũj , Lj , zj−1] = Āzj and then set ZT[ũj+1, Lj+1, zj] =
ũj+1 − ũj + cj+1tj+1. It is easy to see that the base case j = 1 is true: when (ũ1, L1, z0) is queried,
the invocation of H always sets ZT[ũ1, L1, z0] = u1 + c1t1 where u1 = ũ1.

“If” We give a proof by induction. As an induction hypothesis, we assume that for i = 1, . . . , j−1
the random oracle entry HT[ũi+1, Li+1, zi] had been set after HT[ũi, Li, zi−1] was set when-
ever badzcol = badord = false. Now suppose, for a contradiction, that HT[ũj+1, Lj+1, zj] was set be-
fore HT[ũj , Lj , zj−1] while badzcol = badord = false. Because badord = false, the entry ZT[ũi, Li, zi−1]
is non-empty for all i ∈ [N]. When H is queried with input (ũj+1, Lj+1, zj), since the corresponding
entry in ZT is non-empty, it must be that there exists some X ′ := (ũ′j , Lj , z′j−1) ̸= (ũj , Lj , zj−1)
such that c′j := HT[X ′] and ZT[X ′] = Āzj are already set. This implies that X ′ has been queried
to H before and that Āzj = u′j + c′jtj mod q, where u′j is some value extracted inside H(X ′).
On the other hand, due to the verification condition it also holds that Āzj = uj + cjtj mod q,
where cj = HT[ũj , Lj , zj−1] and uj = ũj− ũj−1. Here, uj is the value extracted when (uj , Lj , zj−1)
is queried to H for the first time, because due to the induction hypothesis HT[ũj−1, Lj−1, zj−2]
had been already set at this point. However, this implies that badzcol is set when (ũj , Lj , zj−1) is
queried to H, contradicting the assumption that badzcol = false.

11

Let us prove the base case j = 2 in a similar manner. Suppose HT[ũ2, L2, z1] was set be-
fore HT[ũ1, L1, z0] while badzcol = badord = false. When H is queried with input (ũ2, L2, z1), since
the corresponding entry in ZT is non-empty, it must be that there exists some X ′ := (ũ′1, L1, z0) ̸=
(ũ1, L1, z0) such that c′1 := HT[X ′] and ZT[X ′] = Āz1 are already set. This implies that X ′

has been queried to H before and that Āz1 = ũ′1 + c′1t1 mod q. On the other hand, due to the
verification condition it also holds that Āz1 = ũ1 + c1t1 mod q, where c1 = HT[ũ1, L1, z0]. However,
this implies that badzcol is set when (ũ1, L1, z0) is queried to H, contradicting the assumption
that badzcol = false. ⊓⊔

All in all, unless B sets badinv = true, B wins the UF-CMA game if and only if G4 outputs 1. In
other words,

AdvUF-CMA
FSwA-S (B) = (1− Pr[badinv]) · Pr[G4]

≥ pinv ·
(

AdvFH-UF-CMA
FSwA-SAS (A)− Pr[baducol]− Pr[badzcol]− Pr[badmcol]− Pr[badord]

)
.

The running time of B is at most the running time of A plus the time it takes for running
verification operations and handling random oracle queries. The former takes O(Nkℓtpmul) because
each iteration of the for-loop involves matrix-vector multiplication Āzi (ignoring the run-time
for polynomial addition as it’s much smaller than multiplication). The latter takes O(Qhkℓtpmul)
because B carries out matrix-vector multiplication Āzi−1 for each query to the RO H.

In the following, we provide a concrete bound for each bad event.

Bounding Pr[badmcol] Assuming that the adversary makes at most Qs queries to OSeqSign, there
are at most Qs distinct values in M and Qh distinct values in MT, respectively. The badmcol flag is
potentially set due to two different causes: (1) H internally samples m that is already recorded inM
and thus the corresponding entry is not stored in MT, or (2) OSeqSign internally samples m that
is already recorded in MT and thus the corresponding entry gets removed. The probability that a
randomly sampled m inside H collides with one of the values in M is at most Qs/|M | = Qs/2l.
Since at most Qh queries to H are made by A, the probability that case (1) occurs during such
queries is at most Qs · Qh/2l. If for some i ∈ I a tuple (ũi, Li, zi−1) is queried to H during the
invocation of SeqVerify for the first time, in order to cause badmcol = true, for all such i independently
sampled m must be in M. Thus, the probability that case (1) occurs during such queries is at
most Qs/2l. The probability that a randomly sample m inside OSeqSign collides with one of the
values in MT is at most Qh/2l. Since at most Qs queries to OSeqSign are made, the probability
that case (2) occurs is at most Qs ·Qh/2l. Overall, we get Pr[badmcol] ≤ Qs · (2Qh + 1)/2l.
Bounding Pr[baducol] Since there are at most Qh + Qs values in HT and u is generated by the
signing algorithm Sign from FSwA-S, for each query to OSeqSign the probability that the flag baducol
is set is at most

max
u

Pr
[
u = Āy mod q : y $← Dℓ+k

]
. (2)

Equation 2 can be upper bounded by Lemma 2.2, using the probability preservation property of
the Rényi divergence. It yields

max
u

Pr
[
u = Āy mod q : y $← Dℓ+k

]
≤
√

max
u

Pr
[
u = v mod q : v $← Rk

q

]
· RD2((Ā, Āy)∥(Ā, v)).

The probability in the second inequality is given by
√

1/|Rk
q | = q−nk/2. By Lem. 2.2, using the

data processing inequality, it holds RD2((Ā, Āy)∥(Ā, v)) ≤ RD2((A, Ay′)∥(A, v)), where y′ $← Dℓ.
By Lem. 2.3, the latter is bounded above by a constant if Eq. 1 is fulfilled. Since OSeqSign receives
at most Qs queries, overall, we obtain Pr[baducol] ≤ O(Qs(Qh + Qs)/qnk/2).
Bounding Pr[badzcol] Fix an existing entry in ZT of the form ũ′i + c′iti mod q. Then the probability
that ui + citi mod q hits such an entry is

Pr
ci

$←Ch

[
ui + citi = ũ′i + c′iti mod q

]
= Pr

ci
$←Ch

[
citi = ũ′i + c′iti − ui mod q

]
.

12

Algorithm 3: Reduction to UF-CMA security of FSwA-S

The random oracle in the UF-CMA game is denoted by H′. The sign oracle in the UF-CMA game is denoted by OSign.
Let ũ0 = 0. Without loss of generality, A queries H with input public keys t1, . . . , ti all of which contain at least
one invertible element, because otherwise such keys will be rejected by the verification algorithm anyway. All flags
are initially set to false.
BOSign,H′(Ā, t∗)

1: Q := ∅; M := ∅
2: if t∗ has no invertible element then
3: badinv := true
4: (σN , LN)← AOSeqSign,H(Ā, t∗)
5: (t1, m1)|| . . . ||(tN , mN) := LN

6: (ũN , z1 . . . , zN) := σN

7: I :=
{

i ∈ [N] : ti = t∗ ∧ (mi, Li−1) /∈ Q
}

8: if SeqVerify(σN , LN) = 1 ∧ |I| ≠ 0 then
9: Derive ũN−1, . . . , ũ1 as in SeqVerify

10: if ∃i ∈ [N] such that ZT[ũi, Li, zi−1] = ⊥ then
11: badord := true
12: if ∃i∗ ∈ I such that m := MT[ũi∗ , Li∗ , zi∗−1] ̸=
⊥ then

13: ui∗ := ũi∗ − ũi∗−1
14: return (m, ui∗ , zi∗)
15: else
16: badmcol := true

OSeqSign(mi, Li−1, σi−1)
1: Q := Q∪ {(mi, Li−1)}
2: (ũi−1, z1, . . . , zi−1) := σi−1

3: m
$←M

4: if ∃X such that MT[X] = m then
5: MT[X] := ⊥
6: M :=M∪ {m}
7: (u, z)← OSign(m)
8: c := H′(u, m, t∗)
9: Li := Li−1||(t∗, mi)

10: ũi := ũi−1 + u mod q
11: zi := z
12: if HT[ũi, Li, zi−1] ̸= ⊥ then
13: baducol := true
14: else
15: HT[ũi, Li, zi−1] := c

16: σi := (ũi, z1, . . . , zi)
17: return σi

H(ũi, Li, zi−1)
1: if HT[ũi, Li, zi−1] ̸= ⊥ then
2: return HT[ũi, Li, zi−1]
3: (t1, m1)|| . . . ||(ti, mi) := Li

4: if i = 1 or ∃X := (ũi−1, Li−1, zi−2) such
that HT[X] ̸= ⊥ ∧ ZT[X] = Āzi−1 mod q then

5: ui := ũi − ũi−1 mod q
6: if ti = t∗ then
7: m

$←M
8: ci := H′(ui, m, t∗)
9: if m /∈M then

10: MT[ũi, Li, zi−1] := m

11: else
12: ci

$← Ch
13: if ∃X ′ := (ũ′i, Li, z′i−1) such that ZT[X ′] = ui +

citi mod q then
14: badzcol := true
15: ZT[ũi, Li, zi−1] := ui + citi mod q
16: else
17: ci

$← Ch
18: HT[ũi, Li, zi−1] := ci

19: return ci

13

Since at least one coefficient of ti is invertible, the above probability is bounded by 1/|Ch|. Let Qi

be the number of entries in HT indexed by a tuple containing a history L of size i. Then we
have Qh + Qs =

∑N
i=1 Qi. Because H receives at most Qi + 1 queries for each (where “+1” comes

from the fact that an additional query is made from inside SeqVerify), by the union bound, we have
that Pr[badzcol] ≤

∑N
i=1 Qi(Qi + 1)/(2|Ch|).

Bounding Pr[badord] Due to Lemma 3.5, “badord = true while badzcol = false” implies that there
exists some i ∈ [N − 1], such that the entry HT[ũi+1, Li+1, zi] was set before HT[ũi, Li, zi−1],
where (ũN , (z1, . . . , zN)) and LN are signature-history pair output by A at the end of the game.
We argue that this event occurs with negligible probability if the verification condition is satisfied.
The event potentially occurs in two ways: (1) for some i ∈ [N − 1], HT[ũi, Li, zi−1] is set for the
first time during the invocation of SeqVerify, and (2) for some i ∈ [N − 1], HT[ũi, Li, zi−1] was set
for the first time before the invocation of SeqVerify, but after HT[ũi+1, Li+1, zi] was set.

To bound case (1), it is sufficient to prove the following statement inductively: if none
of HT[ũ1, L1, z0], . . . , HT[ũi−1, Li−1, zi−2] have been set for the first time during the invocation
of SeqVerify, the probability that HT[ũi, Li, zi−1] is set for the first time while running SeqVerify
and that the verification condition is satisfied, is at most Qi−1/|Ch|, where Qi’s are defined as
above and let Q0 = 1 for convenience. Since ũi−1, ũi, zi, ti have been already fixed at the moment
when (ũi, Li, zi−1) is queried to H inside SeqVerify, the probability that the signature gets accepted
is

Pr
ci

$←Ch

[
ũi−1 = ũi − (Āzi − citi) mod q

]
,

which is at most 1/|Ch|. Because there are at most Qi−1 entries HT indexed by a tuple containing Li

and thus at most Qi−1 different values for ũi−1 exist, by the union bound, the probability that
case (1) happens is at most Qi−1/|Ch|. The base case is true: if i = 1, since ũ1, z1, t1 have been
already fixed at the moment when (ũ1, L1, z0) is queried to H inside SeqVerify, the probability that
the signature gets accepted is

Pr
c1

$←Ch

[
ũ1 = Āz1 − c1t1 mod q

]
,

which is at most 1/|Ch|.
To bound case (2), it is sufficient to prove the following statement inductively: if HT[ũ1, L1, z0], . . . , HT[ũi, Li, zi−1]

have been set in this order before the invocation of SeqVerify, the probability that HT[ũi+1, Li+1, zi]
was set before HT[ũi, Li, zi−1] and that the verification condition is satisfied, is at most QiQi+1/|Ch|,
where Qi’s are defined as above. By the definition of the verification procedure, it holds that ũi−1 =
ũi − (Āzi − citi) mod q. However, because both HT[ũi−1, Li−1, zi−2] and HT[ũi+1, Li+1, zi] have
been already set before ci = HT[ũi, Li, zi−1] is sampled, for fixed ũi, ũi−1, zi, ti, Ā, the probability
that fresh ci meets the verification condition is

Pr
ci

$←Ch

[
ũi−1 = ũi − (Āzi − citi) mod q

]
,

which is at most 1/|Ch|. Because there are at most Qi+1 different existing entries of HT[ũi+1, Li+1, zi]
and fresh ci is sampled at most Qi times, by the union bound, we obtain the overall upper
bound QiQi+1/|Ch|. The base case i = 1 is clearly true: if the tuple (ũ1, L1, z0) is queried af-
ter HT[ũ2, L2, z1] has been set, for the verification condition to be met fresh c1 must satisfy c1t1 =
ũ1 − Āz1 mod q for fixed ũ1, z1, t1. The overall probability is thus bounded by Q1Q2/|Ch| using
the same argument as above. All in all, we have that Pr[badord] ≤ (1 +

∑N−1
i=1 (Qi + QiQi+1))/|Ch|.

Note that

Pr[badzcol] + Pr[badord] ≤
N∑

i=1
Qi(Qi + 1)/(2|Ch|) +

(
1 +

N−1∑
i=1

(Qi + QiQi+1)
)

/|Ch|

<

(
N∑

i=1
Qi + 1

)2

/|Ch| = (Qh + Qs + 1)2/|Ch|.

Putting all the bounds above together, we obtain the concrete bound in the theorem statement. ⊓⊔

14

Table 1: Tipping point N0 (where aggregate signatures start to be smaller than trivial concatenations)
and some τ values of our FSwA-SAS (Alg. 2) for the three different parameter sets of Dilithium.

Parameter Level 2 Level 3 Level 5
q 8380417 8380417 8380417
n 256 256 256
(k, ℓ) (4, 4) (6, 5) (8, 7)
B = γ − κ · η 130994 524092 524168
N0 92 138 184
τ(200) 0.9961 0.9985 0.9997
τ(250) 0.9954 0.9979 0.9991
τ(500) 0.9941 0.9966 0.9978
τ(1000) 0.9934 0.9959 0.9971
τ(1, 000, 000) 0.9927 0.9952 0.9965

4 Performance Estimates and Comparison

4.1 Performance Estimates

In the following, we provide some concrete sample parameters and performance estimates for
the FSwA-SAS from Section 3. We provide a formula for the compression rate τ and a lower bound
for N , from which on our SAS signature σN is smaller than the trivial solution of concatenating N

independent single signatures σcon. The compression rate is defined as τ(N) = len(σN)
len(σcon) , where len(·)

denotes the bit size of an element.
A FSwA-SAS signature after N steps is given by σN = (ũN , z1, . . . , zN) and the concatenation

of N single FSwA-S signatures by σcon = (c1, . . . , cN , z1, . . . , zN). Here, we have applied the standard
trick to shorten FSwA-S signatures by replacing the commitment u by the challenge c. Thus, its
compression rate is

τ(N) = len(u) + N · len(z)
N · len(c) + N · len(z) = kn⌈log2 q⌉+ N(k + ℓ)n⌈log2 B⌉

Nn + N(k + ℓ)n⌈log2 B⌉
(3)

= 1− 1
1 + (k + ℓ)⌈log2 B⌉

+ k⌈log2 q⌉
N + N(k + ℓ)⌈log2 B⌉

, (4)

where u ∈ Rk
q , z ∈ Sℓ+k

B and c ∈ Ch :=
{

c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ
}

. An element c ∈ Ch can
be represented by n bits [LDK+20, Sec. 5.3].

The SAS signature starts to be smaller than the concatenation as soon as len(u) < N · len(c),
hence, the tipping point is N0 > kn⌈log2 q⌉

n = k⌈log2 q⌉.
In Table 1, we provide concrete numbers for N0 and τ for different parameter sets. More

precisely, we take the same parameters as the ones provided for different security levels of Dilithium,
denoted by Level 2, Level 3 and Level 5. We can clearly see that in Equation 4 the compression rate
asymptotically goes towards 1− 1/(1 + (k + ℓ)⌈log2 B⌉) and for example for the Level 2 parameters
of Dilithium this is exactly the rate 0.9927 that we observe at N = 1, 000, 000.

Unlike other proposals to aggregate lattice-based signatures (either interactive [DOTT21, BTT22]
or non-interactive [BR21]), the modulus q doesn’t need to be increased in our construction. This is
due to the fact that we aggregate over the u-parts of the signature (which are uniform modulo q),
and not over the z-parts (which are small and hence the size of their sum increases).

We remark that the needed time to sequentially aggregate N signatures is linear in N . This is
unavoidable when sequentially aggregating, as signing cannot be parallelized. As mentioned before,
our sequential aggregate signature scheme FSwA-SAS can be seen as the vanilla version of Dilithium,
ignoring several optimizations of the latter to further improve efficiency. Hence, the given numbers
in Table 1 are only valid for our scheme and do not directly apply to Dilithium.

4.2 Comparison With SAS Using Trapdoors

In this part, we compare our lattice-based SAS scheme with existing proposals of lattice-based SAS
schemes [EB14, WW19]. As summarized in the introduction, they can be seen as sequential aggregate

15

versions of GPV-signatures. In the following, we take Falcon as a concrete instantiation for such a
signature.

As for the FSwA-S signature, the size of a single GPV-signature can be significantly reduced by
applying a small trick. More precisely, a Falcon signature of a message m is defined as σ = (s1, s2, r),
where (s1, s2) ∈ R×R is a pair of short polynomials such that s1h + s2 = H(m, r), where H is a
random oracle, r is some randomness salt and h ∈ Rq defines the public basis of the underlying
NTRU lattice. Here, R is again the ring Z[X]/⟨Xn + 1⟩ for n a power of 2 and q some prime integer.
As s2 is determined by m and s1 (given the public key h and the salt r), one can omit s2 in the
signature and only set σ = (s1, r). Intuitively, this (roughly) halves the signature size.

Unfortunately, this trick can’t be used in the (sequential) aggregate signature setting. Thus,
when assessing the compactness of an aggregate signature, one has to compare it with the trivial
concatenation of all single signatures, where each is only composed of the second polynomial. This
fair comparison has been done in [EB14], but not in [WW19].

Recently, Espitau et al. [ETWY22] used exactly this trick to make Falcon signatures even shorter.
By using elliptical instead of spherical Gaussians, the norm of s1 can be made smaller. At the
same time, the norm of s2 gets larger, accordingly. Again, this trick does not apply to (sequential)
aggregate signatures, as the total size of (s1, s2) stays the same.

In the existing SAS schemes that aggregate GPV-style signatures, the main bottleneck is
that in the lattice setting there are no known trapdoor permutations. To circumvent this, they
replace the trapdoor permutations from the RSA setting by so-called preimage sampleable trapdoor
functions [GPV08]. However, those functions have different domain Do and range Ra spaces. In the
case of Falcon, the domain is given by Rq, i.e., any element x ∈ Ra is of bit length len(x) = n⌈log2 q⌉.
The range, however, is given by pairs of polynomials of degree less than n with coefficients that
come from a discrete Gaussian distribution. Naively, one could apply the Gaussian tail bound
to argue that the coefficient’s absolute values are bounded by some parameter β, and hence any
element y ∈ Do can be represented by a bit string of length len(y) = 2n⌈log2 β⌉.4 The specifications
of Falcon [PFH+20, Sec. 3.11.2] propose a more intelligent representation of elements in the domain
by using the Huffman encoding. Note that in both cases it yields len(Ra) > len(Do). As the output of
one preimage sampleable function serves as the input for the next preimage sampleable function (of
the same domain as before), existing constructions [EB14] pack as many bits of the so-far signature
as they can into a vector that serves as the new input. The remaining bits (b := len(Ra)− len(Do))
are stored in some vector α and appended (at every step) to the so-far signature and appear at the
end in the final sequential aggregate signature. Clearly, they can’t achieve a constant-size aggregate
signature.

For concreteness, take the sample parameters of Falcon-512, i.e., q = 12289 and n = 512.
It yields len(Do) = n⌈log2 q⌉ = 7168 and len(Ra) = 2 · 5000, and hence b = 2832.5 The final
sequential aggregate signature after N steps is given by σN = (sN,1, sN,2, α1, . . . , αN−1, r1, . . . , rN),
where (sN,1, sN,2) ∈ Ra, len(αi) = b and len(ri) = 328 for i ∈ [N]. On the other side, the
concatenation of N single Falcon signatures is given by σcon = (s1,1, . . . , sN,1, r1, . . . , rN), where we
applied the ’omit the second polynomial’ trick. Thus, its compression rate is given by

τ(N) = len(s1) + len(s2) + (N − 1) · len(α) + N · len(r)
N · len(s1) + N · len(r)

= 2 · 5000 + (N − 1)b + N · 328
N · 5000 + N · 328 = 1− 5000− b

5000 + 328 + 10000− b

N(5000 + 328) ,

where (s1, s2) ∈ Ra, α is the carry-over information and r the salt.
We provide the number N0 and some τ values for the two different security parameters of Falcon

in Table 2. From the equations above, we can clearly see that the compression rate asymptotically
goes towards 1−(5000−b)/5328, which is exactly the rate 0.5931 that we observe at N = 1, 000, 000.

In the following, we explain how the recent results of Espitau et al. [ETWY22] extremely leverage
the benefit of GPV-style SAS. Overall, they significantly reduce the size of the trivial concatenation
by replacing spherical Gaussians by elliptical Gaussians. The main idea is that there are now two
different lengths, len(s1) and len(s2), where the first holds for s1 and the latter for s2 for every
4 This analysis has been done by [EB14].
5 We compute len(Ra) as 2 · (8 · sbytelen − 328) with sbytelen taken from [PFH+20, Table 3.3].

16

Table 2: Tipping point N0 (where aggregate signatures start to be smaller than trivial concatenations)
and some τ values for SAS based on Falcon-512, for spherical and elliptical Gaussians (distortion
factor γ = 8).

Parameter Falcon-512 (spherical) Falcon-512 (elliptical)
q 12289 12289
n 512 512
len(Do) 7168 7168
len(s1) 5000 2952
len(s2) 5000 7048
b 2832 2832
len(r) 328 328
N0 4 60
τ(150) 0.6021 0.9780
τ(200) 0.5998 0.9743
τ(250) 0.5985 0.9722
τ(500) 0.5958 0.9678
τ(1000) 0.5944 0.9656
τ(1, 000, 000) 0.5931 0.9634

pair (s1, s2) ∈ Ra. Whereas before both s1 and s2 followed a Gaussian distribution of width σ, they
now introduce a distortion factor γ and set σ1 = σ/γ and σ2 = σγ. One can see that the total size
of (s1, s2) is preserved as it yields 2 log2 σ = log2 σ1 + log2 σ2. If one takes γ = 8 (as suggested by
Espitau et al. [ETWY22, Table 1]), one can see that len(s1) = 2952, by again using the formulas of
the Falcon specifications.

The compression rate in the elliptical Gaussian case is

τ(N) = len(s1) + len(s2) + (N − 1) · len(α) + N · len(r)
N · len(s1) + N · len(r)

= 2 · 5000 + (N − 1)b + N · 328
N · 2952 + N · 328 = 1− 2952− b

2952 + 328 + 10000− b

N(2952 + 328) ,

where (s1, s2) ∈ Ra, α is the carry-over information and r the salt. Here, we can clearly see that
the compression rate asymptotically goes towards 1− (2952− b)/(2952 + 328), which is exactly the
rate 0.9634 that we observe at N = 1, 000, 000.

5 Attacks on Existing Schemes

5.1 Attack on [WW19]

In the following, we identify an insecurity of the history-free sequential aggregate signature from
Wang and Wu [WW19], published in the proceedings of the PROVSEC conference from 2019. More
precisely, Lemma 5.1 gives an attack that breaks its security in the history-free setting. Intuitively,
a history-free SAS does not require each signer i to take a so-far message-key pair list Li−1 as input.
The winning condition in the HF-UF-CMA game (formally recalled in Appendix A.1) is adjusted
such that they win as long as the forged message associated with a challenge public key pk has never
been queried to the signing oracle. From a high level perspective, the signing procedure of [WW19]
closely follows SAS2 of [GOR18] in the so-called ideal cipher model, except one crucial optimization
that reduces the signature size: it deterministically derives ephemeral randomness from the message
to be signed and an aggregate so-far, whereas the original SAS2 requires each signer to append fresh
randomness to an aggregate signature. We observe this small change does not sufficiently randomize
the scheme and leads to a variant of simple forgery attacks in the history-free setting, which were
already pointed out by Brogle et al. [BGR12, App. A] and Gentry et al. [GOR18, Sec. 4.3]. Recall
that their construction focuses on lattice signatures that follow the GPV-paradigm. For simplicity,
we adapt in the rest of the section the syntax of Falcon, as in Section 5 of [WW19].

Let us (again) briefly recap how Falcon works. As before, we are working over the ring Rq =
Zq[X]/⟨Xn + 1⟩ for some power-of-two integer n and some prime modulus q. The key generation

17

Algorithm 4: Description of History-Free SAS′ [WW19]

The message space is M = {0, 1}l. The two random oracles are H1, H2 : {0, 1}∗ → {0, 1}λ and the ideal cipher
is π : {0, 1}∗ ×Rq → Rq with inverse π−1 : {0, 1}∗ ×Rq → Rq. Let σ0 = ((0, 0), 0).

Gen(1λ)
1: (h, Th)← TrapGen(1λ)
2: pk := h
3: sk := (h, Th)
4: return (pk, sk)

SeqSign(ski, mi, σi−1)
1: (xi−1, αi−1) := σi−1
2: (hi, Thi

) := ski

3: Ki := hi||H1(mi)||H2(αi−1)
4: (si−1, s′i−1) := xi−1
5: αi := αi−1||s′i−1
6: yi := π−1(Ki, si−1) ∈ Rq

7: xi ← SamplePre(Thi
, yi) ∈ Do

8: return σi := (xi, αi)

SeqVerify(LN , σN)
1: {(h1, m1), . . . , (hN , mN)} := LN

2: (xN , αN) := σN

3: (s′1, . . . , s′N) := αN

4: for i = N, . . . , 1 do
5: αi = (s′1, . . . , s′i)
6: Ki = hi||H1(mi)||H2(αi)
7: si−1 = π(Ki, fhi(xi))
8: xi−1 = (si−1, s′i−1)
9: if xi−1 /∈ Do then

10: return 0
11: if x0 = (0, 0) then
12: return 1
13: else
14: return 0

algorithm invokes a function TrapGen which outputs a ring element h ∈ Rq
6, together with an

associated trapdoor Th. This trapdoor is needed to invert the function fh : Do ⊂ Rq×Rq → Rq = Ra,
where fh(s, s′) = hs+s′, with the help of a pre-image sampleable function SamplePre(Th, ·). Without
specifying the domain Do precisely, we remark that it only contains pairs of short ring elements.
The trapdoor defines the secret key, whereas the element h defines the public key. In order to sign a
message m, a random oracle H : {0, 1}∗ → Rq is invoked on m which outputs a ring element in Rq.
Then, the function SamplePre is used to compute (s, s′) ∈ Do such that fh(s, s′) = hs + s′ = H(m).
The signature is defined as x = (s, s′). In order to verify a signature x = (s, s′) for a message m,
one simply checks if (s, s′) ∈ Do and if the equation hs + s′ = H(m) holds in Rq.

The main idea of the history-free sequential aggregate signature SAS′ by Wang and Wu [WW19]
is to adapt the framework for trapdoor-permutation-based sequential aggregate signatures by Gentry
et al. [GOR18] to the lattice setting. As in [GOR18], the scheme is making use of an ideal cipher.
Additionally, and in contrast to [GOR18], the scheme in [WW19] also uses two random oracles. As
the domain Do ⊂ Rq ×Rq is larger than the range Ra = Rq, we don’t have trapdoor permutations
in the case of lattice signatures, but only pre-image sampleable functions [GPV08]. This is why a
so-far signature σi−1 has to be split into a first part (denoted by xi−1) that contains the output of
a previous call on SamplePre, and a second part (denoted by αi−1) which stores the information of
the previous signatures that didn’t fit into the sequential signing process. This part grows linearly
in the number of signed messages.

We summarize the SAS′ scheme of [WW19] in Alg. 4 (assuming enc and dec are instantiated
with simple split and merge functions as in [WW19, §5]) 7 and present the attack in Lemma 5.1.
The key idea of the attack is that an adversary can predict the one-time key Ki for a message mi

and public key hi, even though Ki is randomized due to random oracles.
Lemma 5.1. The history-free SAS′ described in Algorithm 4 is not HF-UF-CMA.

Proof. Let A be a PPT adversary. Their goal is to generate an aggregate signature σ∗ for a list L∗

claiming that signer i signed message mi (where the public key hi of signer i is the challenge public
key pk given to A) without having queried the signing oracle OSeqSign on input mi. A proceeds as
follows.
1 Compute σi−1 = (xi−1, αi−1) for arbitrary and self-chosen key pairs and messages, defining Li.

Let (si−1, s′i−1) := xi−1.

2 Choose some mi ̸= m̃i and let Ki := hi||H1(mi)||H2(αi−1) and K̃i := hi||H1(m̃i)||H2(αi−1).
6 The ring element h ∈ Rq is computationally close to uniform assuming the hardness of decision NTRU.
7 We slightly modified their scheme by adding Step 9-10 in the SeqVerify algorithm in order to check if the

so-far signature xi−1 recovered at each step lies indeed in the domain Do. Else, it would be very easy for
the adversary to come up with forgeries.

18

3 Compute s̃i−1 := π(K̃i, π−1(Ki, si−1)).
4 Let x̃i−1 := (s̃i−1, s′i−1). Query OSeqSign with input σ̃i−1 := (x̃i−1, αi−1) and m̃i.

The oracle responds with σ̃i = (xi, αi), such that (1) αi = αi−1||s′i−1 and (2) π(K̃i, fhi
(xi)) =

s̃i−1. The adversary outputs σ∗ := σ̃i and L∗ := Li∪{(hi, mi)}. Recall from Step 3 that π−1(K̃i, s̃i−1) =
π−1(Ki, si−1) while mi has never been queried to OSeqSign. This is a valid forgery as π(Ki, fhi

(xi)) =
si−1. ⊓⊔

Remark 5.2. An easy fix against this attack, at the expense of larger sequential aggregate signatures,
is to make the key for the ideal cipher unpredictable for the adversary. One possible strategy is
to freshly sample a truly random string r ∈ {0, 1}λ and append it to the public key h and the
message m to obtain the ideal cipher key K := h||m||r. Besides, this makes the use of the random
oracles H1 and H2 superfluous. However, the randomness r has to be carried over throughout the
sequential signing process, increasing the size of the final signature by λ ·N bits, where N is the
number of involved signatures. This strategy has already been formalized in the second construction
of Gentry et al. [GOR18, Sec. 4.2]. One may think that the scheme instantiated with Falcon can be
patched by having each signer reject si−1 with too large norm, since maliciously crafted s̃i−1 in the
above attack is uniform in the range Rq of the ideal cipher π. This ad-hoc countermeasure however
does not make the scheme provably secure: since the ideal cipher key Ki = hi||H1(mi)||H2(αi−1) can
still be predicted by querying the random oracle, the ideal cipher table can be determined before any
signing query is made, whereas the abort probability analysis in the simulation of aggregate signing
oracle in the proof of [WW19, Theorem 1] crucially requires the input of the ideal cipher to be
unpredictable. In fact, Gentry et al. instead suggest using tag-based trapdoor permutations [GOR18,
Sec. 4.3] as a provable secure way to maintain deterministic signing. It would be interesting to
study whether this approach can be adapted to pre-image sampleable functions.

5.2 Attack on [FH20]

In this section, we describe how to mount a (partial) secret-key recovery attack against the Dilithium-
based multi-signature by Fukumitsu and Hasegawa [FH20], published in the proceedings of the
PROVSEC conference from 2020. In order to be successful, the adversary only needs one valid and
honestly generated signatures. The attack exploits the fact that every party of the multi-signature
(including the adversary) obtains the full information of the first signature part u, which enables
them to compute c · s2, where (s1, s2) is the secret key corresponding to the provided challenge
public key. As it is easier to see the vulnerability in the single signature setting, we first describe an
insecure variant of FSwA-S (specified in Algorithm 5) and then show how the vulnerability is carried
over to the multi-signature from [FH20]. Note that the attack exploits particulars of the compression
technique described below. Hence, if the multi-signature scheme of [FH20] is instantiated with
plain FSwA-S instead of Dilithium their overall proof strategy in the quantum random oracle model
should still hold.8

The main difference between the original (and secure) FSwA-S (Algorithm 1) and the modified
(and insecure) version (Algorithm 5) is that we apply a trick due to Bai and Galbraith [BG14],
which enables to compress the size of the signature. This technique is also used in Dilithium. The
key idea is to compute u = Ay (instead of u = Ay1 + y2 as before) and to only use the high
order bits HighBits(u) of u to derive the challenge c. The function HighBits takes a module element
r = (r1, . . . , rk)t ∈ Rk, decomposes each ri into the higher-order part ri,1 and lower-order part ri,0,
respectively, and extracts (r1,1, . . . , rk,1) (see [LDK+20] for the formal specification). Subsequently,
in the verification algorithm only the high order bits of u and Az− ct are compared to each other.
This modification reduces the dimension of z from ℓ + k to ℓ, where A ∈ Rk×ℓ

q .
In contrast to Dilithium and [BG14], our version contains the full commitment u, and not the

challenge c. Transmitting the challenge instead of the commitment is a well-known technique in
the lattice setting to further shrink the size of the signature. As we see in the following, it is also
crucial for security once the trick of by Bai and Galbraith [BG14] has been applied.

8 We thank the authors of [FH20] for clarifying this point.

19

Algorithm 5: Description of Insecure FSwA-S

The challenge space is Ch :=
{

c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ
}

and the message space is M = {0, 1}l.
The random oracle is H : {0, 1}∗ → Ch. Let D , B and RejSamp be as in Sec. 2.3.

Setup(1λ)

1: A $← Rk×ℓ
q

2: return A
Gen(A)

1: (s1, s2) $← Sℓ
η × Sk

η

2: t := As1 + s2 mod q
3: sk := (s1, s2)
4: pk := t
5: return (sk, pk)

Ver(pk, σ, m)
1: (u, z) := σ
2: t := pk
3: c := H(HighBits(u), t, m)
4: if ∥z∥∞ ≤ B ∧ HighBits(Az − c · t) =

HighBits(u) then
5: return 1
6: else
7: return 0

Sign(sk, m)
1: (s1, s2) := sk
2: t := As1 + s2 mod q
3: z := ⊥
4: while z := ⊥ do
5: y $← Dℓ

6: u := Ay mod q
7: c := H(HighBits(u), t, m)
8: z := c · s1 + y
9: z := RejSamp(z, c · s)

10: σ := (u, z)
11: return σ

Lemma 5.3. Let A← Setup(1λ) and (sk, pk)← Gen(A) with sk = (s1, s2) as in Alg. 5. Given (u, z) =
σ ← Sign(sk, m) for the messages m ∈M together with the public key pk = t, a PPT adversary A
can recover s2.

Proof. The adversary re-constructs c = H(HighBits(u), t, m) and computes

b = Az− u− ct = Ay + cAs1 −Ay− cAs1 − cs2 = −cs2.

Note that the last equation gives b = −cs2 mod q, but as there is no wrapping around modulo q
(as both c and s2 are short elements) the equation also holds in R. The adversary now embeds
the elements in the field K = Q[x]/(xd + 1) and uses the fact that every non-zero element is
invertible in K. Note that 0 /∈ Ch. Hence, they multiply the result by c−1 (the K-inverse of c) and
recover −s2. ⊓⊔

We can now easily move to the multi-signature in [FH20]. We don’t re-state the full protocol
of their scheme here, but simply refer to Figure 5 in [FH20]. For simplicity, we use our notations
in the following and ignore the optimization to reduce the public key size in [FH20, Fig. 5]. The
main issue is that every signer broadcasts untruncated u in the clear during the interactive signing
process. We now explain how an adversary can during the common signing procedure recover half
of the secret key of the single honest signer.

Lemma 5.4. Let MS = (Setup, Gen, Sign, Ver) be the multi-signature as defined in [FH20, Fig. 5].
Further, let A be a PPT adversary who is controlling all-but-one parties. We denote by (pk∗, sk∗)
the key pair of the honest signer, where sk∗ = (s∗1, s∗2). After one successful multi-signature signing
process, A can recover s∗2.

Proof. Without loss of generality, let party 1 be the honest signer and party 2 to party N be the ones
controlled by A. Let ti denote the public key of party i ∈ [N]. During the signing process, every party
computes ui := Ayi (denoted by wv in the original protocol). At the second stage, they broadcasts ui

to all the co-signers. In particular, A receives u1 and computes u :=
∑

i∈[N] ui (denoted by w in
the original protocol). The multi-signature contains z :=

∑
i∈[N] zi, where zi = yi + cisi,1. The

adversary re-constructs all challenges ci = H(HighBits(u), ti, m) and computes

b = Az− u−
∑

i∈[N]

citi =
∑

i∈[N]

Ayi + ciAsi,1 −Ayi − ciAsi,1 − cisi,2 = −
∑

i∈[N]

cisi,2.

20

As they know si,2 for all 1 < i ≤ N , they can compute b +
∑N

i=2 cisi,2 and recover c1s1,2. With the
same reasoning as in the attack above, they can easily recover s1,2 = s∗2. ⊓⊔

Remark 5.5. In the simple signature setting (Algorithm 5) it is easy to fix this attack by only
outputting σ := (HighBits(u), z). However, in the multi-signature setting, this fix doesn’t seem
to apply in a trivial manner. The problem is that the function HighBits is not linear, and in
general HighBits(u1) + HighBits(u2) ̸= HighBits(u1 + u2).

6 Conclusion

In this paper, we proposed a sequential aggregate signature based on the FSwA framework and
showed that it can indeed save bandwidth compared to the naive concatenation. It exploits the
fact that aggregation of the u-part is much more critical than the z-part in the lattice-based FSwA
setting. Admittedly, the benefit of our construction appears still limited in practice according to the
concrete parameter analysis of Section 4. It would make an interesting future direction to design a
new aggregation paradigm tailored to FSwA exploiting small ci’s in the non-aggregated part.

Another natural follow-up question would be how to adapt our scheme to half-aggregate Dilithium
signatures incorporating all the bit-truncation optimizations. In terms of correctness, we observe no
obvious issue because our scheme can be securely modified by aggregating the u-part with XOR
instead of summation modq (as already observed by [CZ22] in the Schnorr setting), and thus the
fact that HighBits destroys homomorphism is not a major obstacle, unlike the issue with [FH20]
we pointed out in Section 5.2. However, one must carefully adapt the probability that bad events
happen in the reduction, and thus we leave detailed analysis for future work.

We also observe that the situation with Falcon-based SAS is not satisfactory either given that the
recent trick of [ETWY22] significantly saves the size of naive concatenation and one of the existing
instantiations turned out to be insecure. Since aggregation of hash-then-signatures essentially
amounts to batch-proving the knowledge of short preimages of the function fh : (s, s′) 7→ hs + s′

and requires no proof of correct hash evaluation, we conjecture that generic methods proposed by
[DGKV22, ACL+22] will likely lead to concretely efficient instantiations in this setting.

Acknowledgment

Katharina Boudgoust is supported by the Danish Independent Research Council under project
number 0165-00107B (C3PO) as well as by the Protocol Labs Research Grant Program RFP-013.
Akira Takahashi is supported by the Protocol Labs Research Grant Program PL-RGP1-2021-064.
The authors are grateful for Claudio Orlandi for discussions in the earlier stages of this work. We
thank our anonymous referees for their thorough proof reading and constructive feedback.

References

ACL+22. M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. Thyagarajan. Lattice-based
SNARKs: Publicly verifiable, preprocessing, and recursively composable. Cryptology ePrint
Archive, Report 2022/941, 2022. https://eprint.iacr.org/2022/941. 3, 4, 21

AGH10. J. H. Ahn, M. Green, and S. Hohenberger. Synchronized aggregate signatures: new definitions,
constructions and applications. In ACM CCS 2010, pp. 473–484. ACM Press, 2010. 5

BG14. S. Bai and S. D. Galbraith. An improved compression technique for signatures based on learning
with errors. In CT-RSA 2014, vol. 8366 of LNCS, pp. 28–47. Springer, Heidelberg, 2014. 5, 19

BGLS03. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In EUROCRYPT 2003, vol. 2656 of LNCS, pp. 416–432. Springer, Heidelberg,
2003. 3

BGOY07. A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and identity-based
sequential aggregate signatures, with applications to secure routing. In ACM CCS 2007, pp.
276–285. ACM Press, 2007. 3

BGR12. K. Brogle, S. Goldberg, and L. Reyzin. Sequential aggregate signatures with lazy verification
from trapdoor permutations - (extended abstract). In ASIACRYPT 2012, vol. 7658 of LNCS,
pp. 644–662. Springer, Heidelberg, 2012. 3, 17, 24

21

https://eprint.iacr.org/2022/941

BJRW20. K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen. Towards classical hardness of module-
LWE: The linear rank case. In ASIACRYPT 2020, Part II, vol. 12492 of LNCS, pp. 289–317.
Springer, Heidelberg, 2020. 6

BJRW23. K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen. On the hardness of module learning
with errors with short distributions. J. Cryptol., 36(1):1, 2023. 6

BK20. D. Boneh and S. Kim. One-time and interactive aggregate signatures from lattices. preprint,
2020. 4

BLR+18. S. Bai, T. Lepoint, A. Roux-Langlois, A. Sakzad, D. Stehlé, and R. Steinfeld. Improved security
proofs in lattice-based cryptography: Using the Rényi divergence rather than the statistical
distance. Journal of Cryptology, 31(2):610–640, 2018. 5

BN06. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In ACM CCS 2006, pp. 390–399. ACM Press, 2006. 3, 4, 5

BNN07. M. Bellare, C. Namprempre, and G. Neven. Unrestricted aggregate signatures. In ICALP 2007,
vol. 4596 of LNCS, pp. 411–422. Springer, Heidelberg, 2007. 3

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
Diffie-Hellman-group signature scheme. In PKC 2003, vol. 2567 of LNCS, pp. 31–46. Springer,
Heidelberg, 2003. 5

BR21. K. Boudgoust and A. Roux-Langlois. Compressed linear aggregate signatures based on module
lattices. Cryptology ePrint Archive, Report 2021/263, 2021. https://eprint.iacr.org/2021/
263. 4, 15

BTT22. C. Boschini, A. Takahashi, and M. Tibouchi. Musig-l: Lattice-based multi-signature with
single-round online phase. IACR Cryptol. ePrint Arch., p. 1036, 2022. Accepted at Crypto 22.
5, 15

CGKN21. K. Chalkias, F. Garillot, Y. Kondi, and V. Nikolaenko. Non-interactive half-aggregation of
EdDSA and variants of Schnorr signatures. In CT-RSA 2021, vol. 12704 of LNCS, pp. 577–608.
Springer, Heidelberg, 2021. 3, 4

Cra96. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI,
Amsterdam, 1996. https://ir.cwi.nl/pub/21438. 3

CZ22. Y. Chen and Y. Zhao. Half-aggregation of schnorr signatures with tight reductions. In
ESORICS 2022, Part II, vol. 13555 of LNCS, pp. 385–404. Springer, Heidelberg, 2022. 3, 4, 8,
10, 21, 24, 25

DEF+19. M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the
security of two-round multi-signatures. In 2019 IEEE Symposium on Security and Privacy, pp.
1084–1101. IEEE Computer Society Press, 2019. 3

DGKV22. L. Devadas, R. Goyal, Y. Kalai, and V. Vaikuntanathan. Rate-1 non-interactive arguments
for batch-np and applications. Cryptology ePrint Archive, Paper 2022/1236, 2022. https:
//eprint.iacr.org/2022/1236. 3, 4, 21

DHSS20. Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar. MMSAT: A scheme for multimessage
multiuser signature aggregation. Cryptology ePrint Archive, Report 2020/520, 2020. https:
//eprint.iacr.org/2020/520. 4

DOTT21. I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and multi-
signatures and trapdoor commitment from lattices. In PKC 2021, Part I, vol. 12710 of LNCS,
pp. 99–130. Springer, Heidelberg, 2021. 5, 15

EB14. R. El Bansarkhani and J. Buchmann. Towards lattice based aggregate signatures. In
AFRICACRYPT 14, vol. 8469 of LNCS, pp. 336–355. Springer, Heidelberg, 2014. 4, 15,
16

ETWY22. T. Espitau, M. Tibouchi, A. Wallet, and Y. Yu. Shorter hash-and-sign lattice-based signatures.
IACR Cryptol. ePrint Arch., p. 785, 2022. Accepted at Crypto 22. 5, 16, 17, 21

FH20. M. Fukumitsu and S. Hasegawa. A lattice-based provably secure multisignature scheme in
quantum random oracle model. In ProvSec 2020, vol. 12505 of LNCS, pp. 45–64. Springer,
Heidelberg, 2020. 2, 5, 19, 20, 21

FLS12. M. Fischlin, A. Lehmann, and D. Schröder. History-free sequential aggregate signatures. In
SCN 12, vol. 7485 of LNCS, pp. 113–130. Springer, Heidelberg, 2012. 3

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, vol. 263 of LNCS, pp. 186–194. Springer, Heidelberg, 1987. 3

FSZ22. N. Fleischhacker, M. Simkin, and Z. Zhang. Squirrel: Efficient synchronized multi-signatures
from lattices. IACR Cryptol. ePrint Arch., p. 694, 2022. 5

GLP12. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryptography: A
signature scheme for embedded systems. In CHES 2012, vol. 7428 of LNCS, pp. 530–547.
Springer, Heidelberg, 2012. 6, 7

22

https://eprint.iacr.org/2021/263
https://eprint.iacr.org/2021/263
https://ir.cwi.nl/pub/21438
https://eprint.iacr.org/2022/1236
https://eprint.iacr.org/2022/1236
https://eprint.iacr.org/2020/520
https://eprint.iacr.org/2020/520

GOR18. C. Gentry, A. O’Neill, and L. Reyzin. A unified framework for trapdoor-permutation-based
sequential aggregate signatures. In PKC 2018, Part II, vol. 10770 of LNCS, pp. 34–57. Springer,
Heidelberg, 2018. 3, 7, 17, 18, 19, 24

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In 40th ACM STOC, pp. 197–206. ACM Press, 2008. 4, 16, 18

GR06. C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In PKC 2006, vol. 3958 of
LNCS, pp. 257–273. Springer, Heidelberg, 2006. 5

HKW15. S. Hohenberger, V. Koppula, and B. Waters. Universal signature aggregators. In EURO-
CRYPT 2015, Part II, vol. 9057 of LNCS, pp. 3–34. Springer, Heidelberg, 2015. 3

Kas22. Y. Kondi and abhi shelat. Improved straight-line extraction in the random oracle model
with applications to signature aggregation. Cryptology ePrint Archive, Paper 2022/393, 2022.
https://eprint.iacr.org/2022/393. 3

LDK+20. V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehlé, and
S. Bai. CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions. 4, 5, 15, 19

LMRS04. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from
trapdoor permutations. In EUROCRYPT 2004, vol. 3027 of LNCS, pp. 74–90. Springer,
Heidelberg, 2004. 3, 7

LOS+06. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate signatures
and multisignatures without random oracles. In EUROCRYPT 2006, vol. 4004 of LNCS, pp.
465–485. Springer, Heidelberg, 2006. 3

LPR13. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In EURO-
CRYPT 2013, vol. 7881 of LNCS, pp. 35–54. Springer, Heidelberg, 2013. 6, 9

LS15. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices. Des.
Codes Cryptogr., 75(3):565–599, 2015. 6, 7

Lyu09. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In ASIACRYPT 2009, vol. 5912 of LNCS, pp. 598–616. Springer, Heidelberg, 2009. 4, 6

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012, vol. 7237 of
LNCS, pp. 738–755. Springer, Heidelberg, 2012. 4, 6, 7

Mic18. D. Micciancio. On the hardness of learning with errors with binary secrets. Theory Comput.,
14(1):1–17, 2018. 9

MOR01. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract.
In ACM CCS 2001, pp. 245–254. ACM Press, 2001. 5

Nev08. G. Neven. Efficient sequential aggregate signed data. In EUROCRYPT 2008, vol. 4965 of LNCS,
pp. 52–69. Springer, Heidelberg, 2008. 3

NRS21. J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In
CRYPTO 2021, Part I, vol. 12825 of LNCS, pp. 189–221, Virtual Event, 2021. Springer,
Heidelberg. 3

PFH+20. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ri-
cosset, G. Seiler, W. Whyte, and Z. Zhang. FALCON. Technical report, National
Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions. 4, 16

Sch91. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
1991. 3

vEH14. T. van Erven and P. Harremoës. Rényi divergence and kullback-leibler divergence. IEEE Trans.
Inf. Theory, 60(7):3797–3820, 2014. 5

WW19. Z. Wang and Q. Wu. A practical lattice-based sequential aggregate signature. In ProvSec 2019,
vol. 11821 of LNCS, pp. 94–109. Springer, Heidelberg, 2019. 2, 4, 5, 15, 16, 17, 18, 19

WW22. B. Waters and D. J. Wu. Batch arguments for sfNP and more from standard bilinear group
assumptions. In CRYPTO 2022, Part II, vol. 13508 of LNCS, pp. 433–463. Springer, Heidelberg,
2022. 3

23

https://eprint.iacr.org/2022/393
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Game 2: Description of the HF-UF-CMASAS′(A, λ) Security Game

1: pp← Setup(1λ)
2: (pk, sk)← Gen(pp)
3: Q := ∅
4: (L∗N , σ∗N)← AOSeqSign(pp, pk)
5: if SeqVerify(L∗N , σ∗N) ∧ ∃i∗ ∈ [N] : (pki∗ =

pk ∧ mi∗ /∈ Q) then
6: return 1
7: else
8: return 0

OSeqSign(mi, σi−1)
1: σi ← SeqSign(sk, mi, σi−1)
2: Q := Q∪ {mi}
3: return σi

A More Security Notions for Sequential Aggregate Signatures

In this section we discuss alternative flavors of security notions for SAS. Gentry et al. [GOR18]
distinguish between the full-history (see Definition 2.9) and the history-free case. Additionally, we
formalize yet another flavor as described by Chen and Zhao [CZ22], which we call partial-signature
history-free.

A.1 Histrory-Free Sequential Aggregate Signatures

History-free sequential aggregate signatures (SAS′) were first introduced by Brogle et al. [BGR12]. We
recall now their syntax, together with the definition of security following Gentry et al. [GOR18]. Note
that the only difference to the full-history setting is that now the sequential signing algorithm SeqSign
doesn’t take as input the list Li−1 of public keys and messages (i.e., the ’history’) which have been
used to compute the so-far signature σi−1. Consequently, the winning condition in the security
game changes accordingly. In the full-history case, a valid forgery could use an already queried
message, as long as the history changed. Now, a valid forgery must be on a non-queried message.

Definition A.1 (SAS′). A history-free sequential aggregate signature (SAS′) for a message
space M consists of a tuple of PPT algorithms SAS′ = (Setup, Gen, SeqSign, SeqVerify) defined as
follows:
Setup, Gen and SeqVerify as in Definition 2.7.
SeqSign(ski, mi, σi−1) → σi: On input a secret key ski, a message mi ∈ M , and a so-far signa-

ture σi−1, the sequential signing algorithm outputs a new so-far signature σi.

Definition A.2 (HF-UF-CMA Security). A SAS′ scheme satisfies history-free unforgeabilty
against chosen message attacks, if for all PPT adversaries A,

AdvHF-UF-CMA
SAS′ (A) := Pr

[
HF-UF-CMASAS′(A, λ) = 1

]
= negl(λ),

where the HF-UF-CMASAS′ game is described in Game 2.

A.2 Partial-Signature History-Free Sequential Aggregate Signatures

As already mentioned before, our construction of Section 3 is inspired by the paper on sequential
half-aggregation of Schnorr signatures by Chen and Zhao [CZ22]. In their work, they proposed yet
another security model, without providing a formal definition (and name) for it. Their model is
specifically tailored to Schnorr type signatures. In the following, we formalize the security model
by trying to be as general as possible and hence making the notion useful also for other type of
signatures.

24

Game 3: Description of the strong PS-HF-UF-CMASAS′′(A, λ) Security Game

1: pp← Setup(1λ)
2: (pk, sk)← Gen(pp)
3: Q := ∅
4: (L∗N , σ∗N)← AOSeqSign(pp, pk)
5: if SeqVerify(L∗N , σ∗N) ∧ ∃i∗ ∈ [N] : (pki∗ =

pk ∧ (mi∗ , Compl(σi∗)) /∈ Q) then
6: return 1
7: else
8: return 0

OSeqSign(mi, Part(σi−1))
1: (Part(σi), Compl(σi))← SeqSign(sk, mi, Part(σi−1))
2: Q := Q∪ ({mi} , Compl(σi∗))
3: return (Part(σi), Compl(σi))

Recall that in both the history-free and the full-history case (Def. 2.9 and Def. A.2), the
sequential aggregate signature takes the full description of the so-far signature σi−1 as input to
the SeqSign algorithm and then outputs the full description of the next so-far signature σi.

We now define a variant of the history-free case (i.e., no list Li−1 given to SeqSign) where
the amount of information that needs to be send to the next signer is reduced, at the expense
of introducing a new role, that we call the Combine algorithm. At each signing step, the signer
forwards only a partial description of σi−1 to the next signer, while at the same time sending some
complementary description of σi−1 to the combiner. Note that the complementary information can
overlap with the partial description. At the end, the combiner takes the partial description of the
final signature and all the complementary information they have received so far, to derive the full
description of the final signature.

We call it the partial-signature history-free case. The winning condition for the adversary stays
the same as in the history-free case.

Chen and Zhao [CZ22] actually consider a stronger notion where the winning condition is
relaxed to allow for forgeries that are on already queried messages as long as the corresponding
complementary part (in their case the response of the underlying Σ-protocol) is new. We suggest
calling this the strong PS-HF-UF-CMA security.

Definition A.3 (SAS′′). A partial-signature history-free sequential aggregate signature scheme (SAS′′)
for a message space M consists of a tuple of PPT algorithms SAS′′ = (Setup, Gen, SeqSign, SeqVerify, Combine)
defined as follows:

Setup, Gen and SeqVerify as in Definition 2.7 and A.1.
SeqSign(ski, mi, Part(σi−1))→ (Part(σi), Compl(σi)): On input a secret key ski, a message mi ∈M ,

and a partial description Part(σi−1) of the so-far signature σi−1, the sequential signing algorithm
outputs a partial description Part(σi) of a new so-far signature σi and some complementary
information Compl(σi).

Combine(Compl(σ1), . . . , Compl(σN−1), Part(σN))→ σN .

Definition A.4 (PS-HF-UF-CMA Security). A SAS′′ scheme satisfies partial-signature history-
free unforgeabilty against chosen message attacks, if for all PPT adversaries A,

AdvPS-HF-UF-CMA
SAS′′ (A) := Pr

[
PS-HF-UF-CMASAS′′(A, λ) = 1

]
= negl(λ),

where the PS-HF-UF-CMASAS′′ game is described in Game 3. It satisfies strong PS-HF-UF-CMA
security if the modifications in purple apply.

The interest of this model lies in the fact that when only half-aggregation is possible (as it is the
case in our construction and the one of [CZ22]), then a lot of information in every so-far signature
is redundant and simply carried over to the next signing step. In our case, this corresponds to the
list of responses z1, . . . , zi that is attached to every so-far signature σi. One possible instantiation
of Part and Compl would be to set Part(σi) = (ũi, zi) and Compl(σi) = zi. By outsourcing this
redundant information to the combiner, one safes significantly in bandwidth.

25

Algorithm 6: Description of the FSwA-SAS′′ Sequential Aggregate Signature

The challenge space is Ch :=
{

c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ
}

and the message space is M ′ = {0, 1}l.
The random oracle is H : {0, 1}∗ → Ch. The starting point is i = 1. Let L0 = ∅ and σ0 = (0, 0).
Setup and Gen are as in Algorithm 2.

SeqSign(ski, mi, Part(σi−1))
1: (ũi−1, zi−1) := Part(σi−1)
2: si := ski

3: ti := Āsi mod q
4: zi := ⊥
5: while zi := ⊥ do
6: yi ← Dℓ+k

7: ui := Āyi mod q
8: ũi := ũi−1 + ui mod q
9: ci := H(ũi, ti, mi, zi−1, i)

10: zi := ci · si + yi

11: zi := RejSamp(zi, ci · si)
12: Part(σi) := (ũi, zi)
13: Compl(σi) := zi

14: return Part(σi), Compl(σi)
Combine(Compl(σ1), . . . , Compl(σN−1), Part(σN))

1: zi := Compl(σi) for i ∈ [N − 1]
2: (ũN , zN) := Part(σN)
3: σN = (ũN , z1, . . . , zN))
4: return σN

SeqVerify(LN , σN)
1: (t1, m1)|| . . . ||(tN , mN) := LN

2: (ũN , z1, . . . , zN) := σN

3: z0 := 1
4: if ∃i such that ti has no invertible element

then
5: return 0
6: for i = N, . . . , 1 do
7: if ∥zi∥2 > B then
8: return 0
9: ci := H(ũi, ti, mi, zi−1, i)

10: ui := Āzi − citi mod q
11: ũi−1 := ũi − ui mod q

12: if ũ1 = u1 then return 1

Algorithm 6 specifies how our FSwA-SAS from Section 3 can easily be modified to FSwA-SAS′′
which fulfills PS-HF-UF-CMA security. The main modifications are that in SeqSign and SeqVerify
the random oracle H now doesn’t take the full history Li as input, but only the current public
key-message pair (ti, mi) together with an index i that fixes the position in the sequence. The
combine algorithm simply puts together the relevant information in order to define σN .

It is straightforward to adapt the security reduction (as specified in Alg. 3) to the PS-HF-UF-CMA
setting. Again, one only has to index of the different tables ZT, HT, MT by replacing the full
history Li by the ’current’ history (ti, mi, i). This change does not affect the bad flag analysis
conducted in the proof for Theorem 3.4: badmcol only depends on the size of the message space,
baducol only depends on min-entropy of freshly sampled ui, badzcol only depends on the distribution
of ui + citi, and badord only depends on the distribution of ũi−1 − (Āzi − citi), respectively. Thus,
all bad flags are preserved and occur with the same probability.

Theorem A.5 (PS-HF-UF-CMA security). If the signature scheme FSwA-S with message space M =
{0, 1}l, as described in Algorithm 1, is UF-CMA secure, then is the sequential aggregate signa-
ture FSwA-SAS′′, as described in Algorithm 6, PS-HF-UF-CMA secure.

26

	Introduction
	Our Contributions
	Other Related Work

	Preliminaries
	Probability and Regularity
	Module Lattice Problems
	Fiat-Shamir with Aborts Signatures
	Sequential Aggregate Signatures

	Sequential Half-Aggregation of FSwA Signatures
	Definition and Correctness of the Scheme
	Security Proof

	Performance Estimates and Comparison
	Performance Estimates
	Comparison With SAS Using Trapdoors

	Attacks on Existing Schemes
	Attack on PROVSEC:WanWu19
	Attack on PROVSEC:FukHas20

	Conclusion
	More Security Notions for Sequential Aggregate Signatures
	Histrory-Free Sequential Aggregate Signatures
	Partial-Signature History-Free Sequential Aggregate Signatures

