
A Thorough Evaluation of RAMBAM
Daniel Lammers

∗

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

daniel.lammers@rub.de

Amir Moradi
∗

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

amir.moradi@rub.de

Nicolai Müller
∗

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

nicolai.mueller@rub.de

Aein Rezaei Shahmirzadi
∗

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

aein.rezaeishahmirzadi@rub.de

ABSTRACT
The application of masking, widely regarded as the most robust

and reliable countermeasure against Side-Channel Analysis (SCA)

attacks, has been the subject of extensive research across a range

of cryptographic algorithms, especially AES. However, the imple-

mentation cost associated with applying such a countermeasure

can be significant and even in some scenarios infeasible due to

considerations such as area and latency overheads, as well as the

need for fresh randomness to ensure the security properties of the

resulting design. Most of these overheads originate from the ability

to maintain security in the presence of physical defaults such as

glitches and transitions. Among several schemes with a trade-off

between such overheads, RAMBAM, presented at CHES 2022, offers

an ultra-low latency in terms of the number of clock cycles. It is

dedicated to the AES and utilizes redundant representations of the

finite field elements to enhance protection against both passive and

active physical attacks.

In this paper, we have a deeper look at this technique and provide

a comprehensive analysis. The original authors reported that the

number of required traces to mount a successful attack increases

exponentially with the size of the redundant representation. We

however examine their scheme from theoretical point of view. More

specifically, we investigate the relationship between RAMBAM and

the well-established Boolean masking and, based on this, prove the

insecurity of RAMBAM. Through the examples and use cases, we as-

sess the leakage of the scheme in practice and use verification tools

to demonstrate that RAMBAM does not necessarily offer adequate

protection against SCA attacks neither in theory nor in practice.

Confirmed by real-world experiments, we additionally highlight

that – if no dedicated facility is incorporated – the RAMBAM de-

signs are susceptible to fault-injection attacks despite providing

some degree of protection against a sophisticated attack vector, i.e.,

SIFA.

KEYWORDS
RAMBAM; Power Analysis Attack; Hardware; Masking

∗
Authors list in alphabetical order; see https://www.ams.org/profession/leaders/

CultureStatement04.pdf

1 INTRODUCTION
Since the pioneering work of Kocher et al. in the late 1990s [21, 22],

Side-Channel Analysis (SCA) attacks have emerged as a serious

threat to the confidentiality of sensitive information processed by

cryptographic hardware circuits. SCA attacks exploit unintended

information leakage through physical characteristics, so-called side

channels, such as power consumption [22], electromagnetic radi-

ation [15], or timing [21]. Even small variations in these physical

characteristics can be analyzed to deduce sensitive information such

as cryptographic keys. These threats are not just theoretical but

have been demonstrated through real-world attacks documented

in the literature over the past twenty years of research [26, 29]. As

a result, the reliable protection of cryptographic hardware circuits

against SCA attacks has become an essential aspect of ensuring

confidentiality.

To do this, two main concepts, called hiding and masking, have

been developed. The goal of hiding is to obscure any dependency

between sensitive information and the measured physical charac-

teristic below the noise level, making it more challenging for an

adversary to obtain any useful information. This is accomplished

by decreasing the Signal-to-Noise Ratio (SNR) through, e.g., the

addition of random noise to the measured signal [23]. While hid-

ing can make the accomplishment of attacks more difficult, in the

sense that more measurements are required for a successful attack,

there is no security guarantee or formal proof of its effectiveness.

The efficiency of hiding countermeasures depends heavily on the

measurement setup and the specific device being used. Therefore,

these techniques are not generalizable or transferable, and their

efficiency must be evaluated for each individual device separately.

In contrast, themasking countermeasure provides security proofs

under formal adversary models and aims to remove the dependency

of the circuit’s power consumption on the cipher intermediates

by randomizing them based on secret sharing [38]. Despite its

simple security assumptions, realizing masking on hardware is a

complicated task due to physical defaults, such as glitches. This

results in overhead in terms of circuit size, latency, and the demand

for randomness to correctly implement a masked circuit. Conse-

quently, researchers have focused on minimizing these particular

overheads while maintaining others at an acceptable level. This

has led to various research branches focusing on low-area [19, 31],

low-latency [34, 42], or low-randomness [9, 37].

https://orcid.org/0000-0002-9134-8568
https://orcid.org/0000-0002-4032-7433
https://orcid.org/0000-0002-3286-4722
https://orcid.org/0000-0002-9549-268X
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi

Low-latency masking is of particular interest because masking

naturally increases the latency of designs by requiring additional

register stages to synchronize intermediate signals and prevent

glitch propagation. To address this issue, multiple masking schemes,

such as Generic Low-Latency Masking (GLM) [18], LUT-based

Masked Dual-Rail with Pre-charge Logic (LMDPL) [34], and Redun-

dancy AES Masking Basis for Attack Mitigation (RAMBAM) [1],

reduce the number of consecutive register stages, resulting in a

significant latency improvement.

Generic Low-Latency Masking. GLM [18] is a method to remove

register stages from Domain-Oriented Masking (DOM)-protected

designs [19], but at the cost of substantially higher area and random-

ness requirements. Unlike DOM that requires a share compression

after each non-linear operation, GLM offers greater flexibility by al-

lowing the designer to selectively choose which share compression

steps to perform while skipping the others. However, when a share

compression step is skipped, the circuit temporarily processes a

higher number of shares and requires duplication of certain parts

of the circuit what greatly increases the circuit size.

LUT-based Masked Dual-Rail with Pre-charge Logic. LMDPL com-

bines both Dual-Rail Pre-charge (DRP) and Boolean masking to

create glitch-free composable sub-circuits, so-called gadgets, that

can be composed without increasing the latency [34]. This means

that regardless of the circuit depth, the circuit only encompasses a

single register stage. The DRP technique ensures that the circuit is

glitch-free [39], and other delay-based effects do not leak sensitive

information.

The current state-of-the-art techniques in low-latency masking

suffer from increased area overhead or a higher demand for fresh

randomness in exchange for reduced latency. This renders the im-

plementation of provably secure, low-latency masking schemes in

commercial devices a costly proposition. Recently, a new technique

called RAMBAMwas introduced at CHES 2022, which claims to pro-

vide a solution to this long-standing problem. Compared to the exist-

ing techniques such as GLM and LMDPL, RAMBAM offers protec-

tion against SCA and Statistical Ineffective Fault Attack (SIFA) [11],

a particular class of Fault Injection (FI) attacks, while maintaining

low latency and a relatively low gate count. Notably, RAMBAM

achieves a latency of only one clock cycle per round for the Ad-

vanced Encryption Standard (AES), which is unattainable by GLM

and LMDPL due to their impractical circuit complexity, while its

compact version exhibits a circuit size of 12.075 kGE [1]. Addition-

ally, RAMBAM offers fault protection, whereas redundant compu-

tation must be retrofitted to a GLM or LMDPL-protected circuit,

further increasing the gate count. In summary, RAMBAM appears

to offer a viable solution to this long-standing problem, provided

that its security guarantees remain valid. Note that the original

authors did not claim the provable security of their scheme. Instead,

they claimed that the number of traces required to successfully

attack their scheme increases exponentially with the redundancy

size, as explained in Section 3.1.

1.1 Our Contributions
In this work, we carefully evaluate the underlying scheme of

RAMBAM in both theory and practice. First, we present the main

concept behind the scheme with concrete examples, which should

help the reproducibility of the technique and further evaluations.

Moreover, focusing on concrete design choices (suggested by the

original authors) towards a protected implementation of AES, we

show theoretical as well as experimental analysis results for each

step indicating its failure in providing security against SCA and FI

attacks.

2 PRELIMINARIES
In this section, we provide the background necessary to understand

and follow the rest of the paper. We also present the details of the

setup and evaluation schemes which we have employed to conduct

our analyses.

2.1 Notation
We denote single-bit Boolean variables as well as integers (e.g., 𝑥 ∈
F2 and 𝑝 ∈ Z) by lower case letters while we denote 𝑛-bit vectors

of Boolean variables by upper case letters, e.g., 𝑋 ∈ F𝑛
2
. We use

subscripts to show certain elements of a vector, e.g., ⟨𝑋𝑛−1, . . . , 𝑋0⟩
or ⟨𝑥𝑛−1, . . . , 𝑥0⟩ depending on the context, and a sans serif font

for functions, e.g., T(.). We also use superscripts to refer to specific

shares of a sensitive variable. For example, the share with index

𝑖 of a sensitive variable 𝑥 ∈ F2 is denoted as 𝑥𝑖 ∈ F2. Further, we

denote the set of all shares of a sensitive variable 𝑥 as 𝑆ℎ(𝑥) =
{𝑥 |𝑆ℎ (𝑥) |−1, . . . , 𝑥0}.

2.2 Galois Fields
A Galois field F𝑛𝑞 [𝑋]\𝑃 = 𝐺𝐹 (𝑝𝑛) [𝑋]\𝑃 , also known as finite field,

with characteristic 𝑝 and order 𝑝𝑛 defines a set encompassing a

finite number of 𝑝𝑛 elements. In this work, we focus on Galois fields

with characteristic 2, i.e., F𝑛
2
[𝑋]\𝑃 . Every element 𝐴 ∈ F𝑛

2
\𝑃 repre-

sents a polynomial with coefficients {𝑎𝑛−1, . . . , 𝑎0} ∈ (F2)𝑛 with

𝐴 ≡ ∑𝑛−1

𝑖=0
𝑎𝑖𝑥

𝑖
. Computing sum of𝐴, 𝐵 ∈ F𝑛

2
\𝑃 is done by applying

XOR on their corresponding coefficients with equal indices.

𝐶 = 𝐴 + 𝐵 =

𝑛−1∑︁
𝑖=0

𝑐𝑖𝑥
𝑖 , ∀𝑖, 𝑐𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖

Multiplication of 𝐴, 𝐵 ∈ F𝑛
2
\𝑃 requires an irreducible polynomial 𝑃

of degree 𝑛 with coefficients in F2, i.e., 𝐴 · 𝐵 mod 𝑃 . However, 𝑃 is

not the only irreducible polynomial to construct F𝑛
2
, but all such

Galois fields are isomorphic.

Definition 2.1 (Irreducible). A polynomial 𝑃 is irreducible if it
cannot be factored into two non-constant polynomials of lower degree
over its field of coefficients.

Definition 2.2 (Isomorphic). Two Galois fields F′ and F′′ are
isomorphic (denoted as F′ � F′′) iff there exists a linear transforma-
tion 𝜙 : F′ → F′′ called isomorphism that preserves all arithmetic
operations of F′ and F′′. In particular, 𝜙 satisfies the following condi-
tions:

• For any 𝐴, 𝐵 ∈ F′ it holds that 𝜙 (𝐴 + 𝐵) = 𝜙 (𝐴) + 𝜙 (𝐵) and
𝜙 (𝐴 · 𝐵) = 𝜙 (𝐴) · 𝜙 (𝐵) while + and · denote addition and
multiplication in the fields, respectively, as defined above.

• 𝜙 (1) = 1 where 1 denotes the multiplicative identity in F′

and F′′ respectively.

A Thorough Evaluation of RAMBAM

Example 2.1. Every S-box of the AES computes an inversion in
F8

2
[𝑋]\𝑃0 with the fixed irreducible polynomial 𝑃0 = 𝑥8+𝑥4+𝑥3+𝑥+1.

Nevertheless, there exist 30 irreducible polynomials 𝑃0, . . . , 𝑃29 of
degree 8 with coefficients in F2 allowing to create 30 isomorphic
Galois fields F8

2
[𝑋]\𝑃0, . . . , F

8

2
[𝑋]\𝑃29. Further, every isomorphism

𝜙 between two fields F8

2
[𝑋]\𝑃𝑖 and F8

2
[𝑋]\𝑃 𝑗 is a linear function

over F2, hence can be represented by an 8 × 8 matrix multiplication.

2.3 Boolean Masking
Boolean masking [3], a well-established and predominant approach

to achieve provable 𝑡-order security (cf. Section 2.4) against SCA,

randomizes every sensitive variable 𝑋 ∈ F𝑛
2
by splitting it into a

sharing encompassing 𝑠 > 𝑡 independent and uniformly distributed

shares 𝑆ℎ(𝑋) =
{
𝑋𝑠−1, . . . , 𝑋 0

}
∈ (F𝑛

2
)𝑠 . To generate 𝑆ℎ(𝑋) it

holds that {𝑋𝑠−2, . . . , 𝑋 0} ∈𝑅 (F𝑛
2
)𝑠−1

while 𝑋𝑠−1 = 𝑋 ⊕
(
𝑠−2⊕
𝑖=0

𝑋 𝑖

)
.

This implies that 𝑋 =
𝑠−1⊕
𝑖=0

𝑋 𝑖
enables to compute the unshared 𝑋

from 𝑆ℎ(𝑋). Due to the fact that only the combination of all shares

in 𝑆ℎ(𝑋) reveals information about 𝑋 , all cipher operations must

process only a restricted subset of 𝑆ℎ(𝑋), i.e., an incomplete set of

shares giving no information about 𝑋 itself.

2.4 Robust Probing Security Model
Ishai et al. proposed the 𝑡-probing model [20] to formally abstract

the security of masked circuits against adversaries. The 𝑡-probing

model limits the adversary to observe the distribution over a maxi-

mum of 𝑡 wires in a given circuit by placing probes on the respec-

tive wires. Each probe records one stable and noise-free interme-

diate during a specific point in time. Thus, a circuit is considered

𝑡-probing secure if it does not reveal any information to a potential

𝑡-probing adversary.

Definition 2.3 (𝑡-probing security). A masked circuit achieves
𝑡-probing security iff every joint distribution over up to 𝑡 wires ob-
served by a 𝑡-probing adversary is statistically independent of any
sensitive variable.

Definition 2.3 serves as a cornerstone for evaluating the security

of masked circuits. However, the 𝑡-probing model falls short in

accounting for the behavior of physical defaults, which is a well-

known issue when practically realizing a masked hardware circuit.

Therefore, masked hardware circuits, which are shown secure under

𝑡-probing model, are not necessarily secure in practice. To address

this limitation, the robust 𝑡-probing model was introduced in [13],

which extends the 𝑡-probing model by considering all possible

occurrences of glitches [24], transitions [7], and couplings [5]. This

is achieved by enhancing the adversary’s capabilities to place a

maximum of 𝑡 extended-probes on the circuit that capture not only

the stable signals but also the transient signals that may be induced

on the wire due to physical defaults. This extended definition of the

adversary aligns with Definition 2.3 to form the so-called robust

𝑡-probing adversary.

Definition 2.4 (Robust 𝑡-probing security). A masked circuit
achieves robust 𝑡-probing security iff every joint distribution over up
to 𝑡 wires observed by a robust 𝑡-probing adversary is statistically
independent of any sensitive variable.

In this work, our focus is on glitches, which are temporary signal

transitions that occur in combinational circuits due to delay im-

balances of signals arriving at a logic gate. To account for glitches

within the robust probing model, glitch-extended probes not only

record the stable signal of a probed wire, but also all the stable

signals that contribute to the probed wire. For example, a probe

placed on the output of a gate in a combinational circuit propagates

backward to all primary inputs and register outputs that contribute

to the value of the probed signal.

2.5 Leakage Assessment
To evaluate the effectiveness of protection mechanisms applied

on a circuit, it is necessary to practically test the resistance of a

fabricated prototype of the Device Under Test (DUT) against real-

world adversaries who exploit the device’s physical characteristics.

Unfortunately, due to the large number of possible combinations of

attacks, power models, and intermediate values, exhaustive testing

of the prototype’s resistance is infeasible. However, leakage assess-

ment methodologies, such as Welch’s t-test [6, 35], are statistical

hypothesis tests applied to detect any possible leakage within a

certain security order 𝑡 . In contrast to performing attacks, Welch’s

t-test evaluates whether SCA measurements have a dependency

with the associated data, regardless of the exploitability of the leak-

age. For instance, the most common fixed-versus-random t-test [6]

(also known as non-specific t-test) compares the statistical proper-

ties of two sets of measurements. One set corresponds to the SCA

measurement associated with a fixed plaintext, and the other to

random plaintexts, while the key is kept the same in both sets. If

there is a significant difference in the statistical properties between

these two sets (e.g., through student t-test), its reported that the

SCA leakage is detectable, i.e., there might be an attack exploiting

such a leakage.

2.6 PROLEAD
Since the evaluation of masked implementations via experimen-

tal analysis requires a suitable measurement setup, a high level of

expertise, and prototyping the DUT, some efforts have been put

in developing schemes and tools to enable assessing the design

prior to prototyping. PROLEAD [28] is a novel tool, which com-

bines formal verification and leakage simulation, to evaluate the

robust probing security of masked hardware circuits presented by

a gate-level netlist. By simulating the netlist, PROLEAD obtains

the distributions for every possible robust probing adversary under

different input settings. Subsequently, the tool checks the inde-

pendence of these distributions using a statistical hypothesis test.

In the event that a significant dependency is detected for at least

one probing set, PROLEAD reports the detectability of the leakage

and provides details of the most leaking probing sets. It is highly

efficient and can handle first-order masked full cipher hardware

cores in a matter of minutes to hours. If enough simulations are

used, PROLEAD provides reliable evaluation results with respect

to robustness/vulnerability of the given masked circuit. We make

use of PROLEAD in some of our evaluations explained in detail in

Section 3.

Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi

2.7 SCA Measurement Setup
In order to conduct experimental SCA evaluations, we employed an

Field Programmable Gate Array (FPGA)-based platform, and syn-

thesized and mounted all investigated designs on a customized plat-

form, SAKURA-G board [33], which is suitable for SCA evaluations

containing a target Spartan-6 FPGA. We captured the power con-

sumption using a 1Ω shunt resistor inserted on the target FPGA’s

VDD path, and recorded the traces using a digital oscilloscope at a

sampling rate of 500MS/s, while all target designs were supplied

by a stable 3MHz clock. In order to facilitate and accelerate the

measurement process for fixed vs. random t-test, we employed the

techniques and procedures suggested in [35].

3 RAMBAM AND EVALUATIONS
3.1 Concept
As mentioned in Section 2.2, there are 30 different polynomials of

degree 8 over 𝐺𝐹 (2) that can be used to construct the field 𝐺𝐹 (28).
As a matter of fact, all of these polynomials are isomorphic to each

other, meaning that a linear transformation 𝜙 (.) can be used to

switch between different representations of the field.

In their work on protecting AES against SCA, the authors of

RAMBAM [1] employed a larger algebraic structure to random-

ize the representation. Specifically, they used a redundant repre-

sentation to construct a protected construction after transform-

ing the key and the input data bytes from the representation in

F𝑃0
[𝑋] = 𝐺𝐹 (2) [𝑋]\𝑃0 = 𝐺𝐹 (28) [𝑋] to any other representation

in F𝑃 [𝑋] = 𝐺𝐹 (2) [𝑋]\𝑃 . An element 𝑋 of F𝑃 can be expressed

equivalently as 𝑋 +𝐶𝑃 , where 𝐶 is an arbitrary polynomial over

𝐺𝐹 (2) of degree 𝑑 . The authors utilized a ring homomorphism

𝐻 : R𝑃 ·𝑄 → F𝑃 defined as 𝐻 (𝑋) = 𝑋 mod 𝑃 to map any re-

dundant representation 𝐵 ∈ R𝑃 ·𝑄 to F𝑃 , where 𝑄 is a polynomial

of degree 𝑑 over 𝐺𝐹 (2). All calculations are performed modulo

𝑍 = 𝑃 · 𝑄 , and the elements of R𝑃 ·𝑄 are represented by (8 + 𝑑)-
bit words. The parameters 𝑃 and 𝑄 are specific to each variant of

RAMBAM, and the degree 𝑑 of the polynomial 𝑄 represents the

level of redundancy in the representation, as it reflects the number

of additional bits in the representation of each byte.

It is worth noting that any given value𝑋 can be represented using

2
𝑑
different interchangeable redundant representations. Therefore,

the redundant representation of each byte can be seen as a form

of masking and the authors of [1] also utilized this property to

re-randomize intermediate values in their masked S-box realization,

as it is possible to replace any one of these representations with

another one at any time. Moreover, a redundant representation can

be uniquely defined using the two independent parameters 𝜙 (.) and
𝑄 , where the former is used to transform the key and data bytes

from the representation in F𝑃0
to any other representation in F𝑃 .

The masking entropy is naturally lower than 8 bits when 𝑑 is

smaller than 8, which is known as Low Entropy Masking Schemes

(LEMS). It can be beneficial under certain adversarial and implemen-

tation scenarios. However, the limitations of such schemes have

been discussed in [41], as they often lack sufficient entropy and fail

to meet the requirements for provable security. On the other hand,

when 𝑑 ≥ 8, the RAMBAM scheme can be interpreted as a form of

Boolean masking. As previously mentioned, each byte𝑋 in the AES

standard is represented as 𝑋 +𝐶𝑃 , where 𝐶 is a random 𝑑-bit num-

ber. This representation can be seen as two shares ⟨𝑅,𝑋 + T(𝑅)⟩,
where 𝑅 is a random 𝑑-bit number, and T : {0, 1}𝑑 → {0, 1}8 is a

linear function. In other words,

𝑋 +𝐶𝑃 = 𝑅𝑥8 + 𝑋 + T(𝑅) ⇒ 𝐶𝑃 = 𝑅𝑥8 + T(𝑅) . (1)

𝐶𝑃 is a linear function over 𝐶 , since 𝑃 is a fixed irreducible poly-

nomial. Notably, if 𝑑 ≥ 8, T(.) becomes surjective, and for 𝑑 = 8

bijective. Therefore, T(𝑅) covers all elements of {0, 1}8, and par-

ticularly for 𝑑 = 8 has a uniform distribution if 𝑅 is taken from

a uniform distribution at random. Therefore, one can potentially

transform Boolean masking into RAMBAM by following a specific

procedure. Consider a byte in the AES standard, denoted as 𝑋 and

represented by two shares ⟨𝑅,𝑋 + 𝑅⟩, where 𝑅 represents an 8-bit

random number. Evidently, the redundancy size is 𝑑 = 8. To obtain

the RAMBAM representation of the shares, the inverse of the trans-

formation function T(.), represented as T−1 (.), must be applied to

𝑅. The resulting values are then represented as a pair in the form

of

〈
T−1 (𝑅), 𝑋 + 𝑅

〉
. We will use this property of the equivalent rep-

resentation of the design in Boolean masking to check the security

of the RAMBAM with verification tools.

The authors of RAMBAM considered several criteria when se-

lecting the polynomials 𝑃 and 𝑄 for a redundancy size of 𝑑 . They

asserted that 𝑄 should be an irreducible polynomial and not divisi-

ble by 𝑃 . Additionally, they examined the product 𝑍 = 𝑃 ·𝑄 based

on two further criteria. Firstly, they searched for a product with a

minimum Hamming weight since doubling in the ring R𝑃 ·𝑄 would

be more cost-effective in hardware. Secondly, the product should

possess specific properties that enhance protection against SIFA-

1 [32]. Further details and explanations on each of these criteria

are provided in the original publication [1]. It is noteworthy that

SIFA-1 is a type of SIFA [11] where the attacker can only inject

faults into the registers. Neither RAMBAM nor any other form of

pure Boolean masking provides complete protection against SIFA

in general (e.g., when the faults are injected into the combinational

logic) or against other forms of fault attacks (e.g., Differential Fault

Analysis (DFA)). Based on these criteria, the authors of RAMBAM

proposed the following polynomials for a redundancy size of 𝑑 = 8:

𝑃 (𝑥) = 𝑥8+𝑥6+𝑥5+𝑥3+1, 𝑄 (𝑥) = 𝑥8+𝑥6+𝑥5+𝑥4+𝑥3+𝑥+1. (2)

3.2 Components
To implement the protected version of the AES encryption using

the redundant representation, we initially present each byte of

both plaintext and key with Boolean masking. Specifically, each

byte 𝑋 is represented with two shares ⟨𝑅,𝑋 + 𝑅⟩, where 𝑅 is an

8-bit random number. Subsequently, we convert the bytes from

the representation in F𝑃0
to the representation in F𝑃 , where the

polynomial 𝑃 is provided in Equation (2). This conversion can

be achieved with the linear transformation 𝜙 (.), which is defined

below. It is worth noting that since these operations are linear,

we express them as matrix multiplication with the corresponding

matrices presented below.

A Thorough Evaluation of RAMBAM

Φ =



1 0 1 0 0 1 1 1

0 1 0 1 0 0 0 0

0 0 0 1 0 1 1 1

0 0 1 1 0 1 0 0

0 0 0 0 0 0 1 1

0 1 0 0 1 0 1 0

0 0 1 1 0 0 0 1

0 0 1 1 0 1 0 1


, Φ−1 =



1 0 1 1 0 0 1 1

0 1 1 0 1 0 1 1

0 0 1 1 1 0 0 0

0 0 1 0 1 0 1 1

0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 1

0 0 0 1 0 0 0 1


(3)

To convert the representation from Boolean masking to RAM-

BAM, we utilize the function T−1 (.) on one share of each byte.

Therefore, the representation becomes as follows.〈
T−1 (Φ · 𝑅),Φ · (𝑋 + 𝑅)

〉
The corresponding matrices of T(.) and T−1 (.) are defined below.

𝑇 =



1 0 1 1 1 1 0 1

0 1 0 1 1 1 1 0

0 0 1 0 1 1 1 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 0 1 0 1 1 1

1 1 1 1 0 1 1 0

0 1 1 1 1 0 1 1


, 𝑇 −1 =



1 0 0 1 0 1 0 0

1 1 0 0 1 0 1 0

1 1 1 0 0 1 0 1

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 0 0 0 1 1 0 1

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1


(4)

At this stage, every byte in the internal state belongs to the

R𝑃 ·𝑄 ring and is represented by 16 bits. As opposed to operating

on individual bytes, the standard operations of AddRoundKey and
ShiftRows can now be applied to each redundant representation.

The SubBytes operation in the protected version of the AES is

slightly different from the standard one, and we will explain it in

more details in the next paragraphs. The KeyExpansion function in

the protected AES also requires replacing the SubBytes operation

with the protected version. The other operations in KeyExpansion,
such as RotWord, SubWord, and XOR with the round constant can be

applied to each 16-bit redundant representation as usual. However,

instead of XORing with the round constant, Φ ·𝑟con should be added
to the state, where 𝑟con is the round constant in the standard AES.

In the ordinary AES, the S-box operation involves the inversion

of𝑋 over F𝑃0
followed by an affine functionA(.) while the inversion

can be expressed as𝑋 254
. As raising to any power of two in a ring of

characteristic 2 is a linear transformation, it has a lower hardware

implementation cost compared to ring multiplication. To calculate

the inversion function as a sequence of multiplications, an optimal

search is conducted by the authors of the RAMBAM to determine

the sequence that minimizes the number of multiplications and

raising to the power of 𝑛 to result in a lower area overhead while

considering low circuit depth to increase the maximal frequency of

the circuit. It has been demonstrated in the original publication that

the number of multiplications in such a sequence cannot be less

than 4. By performing a brute-force search, two distinct versions

of the ProtectedS-box were proposed, where one is optimized for

the maximal frequency and the other one for the area overhead.

For simplicity without losing generality, we focus on the version

that is optimized for area, and reiterate the general algorithm in Al-

gorithm 1, which is borrowed from the original paper [1].

Algorithm 1 Protected S-box (optimized for the area) [1]

Input: 𝑆𝑏𝑜𝑥_𝑖𝑛 ⊲ The input of the S-box which is (8 + 𝑑)-bit value
Input: 𝑅0, . . . , 𝑅6 ⊲ 7 random 𝑑-bit values

Output: 𝑆𝑏𝑜𝑥_𝑜𝑢𝑡 ⊲ (8 + 𝑑)-bit values after S-box operation
1: function 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑆-𝑏𝑜𝑥𝑍 (𝑆𝑏𝑜𝑥_𝑖𝑛, 𝑅0, . . . , 𝑅6)

2: 𝑉 ← 𝑆𝑏𝑜𝑥_𝑖𝑛

3: 𝑉2 ← Ψ
(2)
𝑍
·𝑉 + ⟨𝑅0,𝑇 · 𝑅0⟩ ⊲ Raising to the power of 2

4: 𝑉3 ← 𝑀𝑢𝑙𝑍 (𝑉 ,𝑉2) + ⟨𝑅1,𝑇 · 𝑅1⟩
5: 𝑉12 ← Ψ

(4)
𝑍
(𝑉3) + ⟨𝑅2,𝑇 · 𝑅2⟩ ⊲ Raising to the power of 4

6: 𝑉14 ← 𝑀𝑢𝑙𝑍 (𝑉2,𝑉12) + ⟨𝑅3,𝑇 · 𝑅3⟩
7: 𝑉15 ← 𝑀𝑢𝑙𝑍 (𝑉3,𝑉12) + ⟨𝑅4,𝑇 · 𝑅4⟩
8: 𝑉240 ← Ψ

(16)
𝑍
(𝑉15) + ⟨𝑅5,𝑇 · 𝑅5⟩ ⊲ Raising to the power of 16

9: 𝑉254 ← 𝑀𝑢𝑙𝑍 (𝑉14,𝑉240) + ⟨𝑅6,𝑇 · 𝑅6⟩
10: 𝑆𝑏𝑜𝑥_𝑜𝑢𝑡 ← A𝑍 (𝑉254)
11: end function

As stated, raising to the power of 2, 4, and 16 are all linear

functions in F𝑃 and hence can be expressed as matrix multiplication.

The matrices that should be multiplied to𝑋 ∈ F𝑃 are defined below.

Ψ(2) =



1 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1

0 1 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 1 1 1 0 1

0 0 0 0 0 1 1 1


, Ψ(4) =



1 0 1 1 1 0 1 0

0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 0

0 0 1 1 0 0 1 1

0 1 0 0 0 1 1 1

0 0 1 0 0 1 1 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 1


,

Ψ(16) =



1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1


(5)

In fact, when the redundancy 𝑑 ≥ 8, a matrix multiplication can

be formulated in a new, larger domain by performing two matrix

multiplications, each on one side of the variables: one on the 8-

bit part and another one on the redundancy part. In other words,

suppose that

〈
𝑇 −1 · 𝑅,𝑋 + 𝑅

〉
should be squared. It is possible to

realize such an operation by two matrix multiplications, one on

T−1 ·𝑅 and another one on𝑋 +𝑅. Since each of these parts is seen as

a share in a masked implementation, this separation indeed would

allow us to perform the operations on each share individually. For

instance, the matrices for raising to the power of 𝑖 ∈ {2, 4, 16} can
be constructed as

Ψ
(𝑖)
𝑍

=

[
𝑇 −1 · Ψ(𝑖) ·𝑇 0

0 Ψ(𝑖)

]
, (6)

with matrices 𝑇 and 𝑇 −1
provided in Equation (4). However, when

the redundancy 𝑑 < 8, T(.) is not surjective, and hence T−1 (.) does
not necessarily exist. Therefore, it is not possible to write Ψ

(𝑖)
𝑍

as

shown in Equation (6), i.e., the operations cannot be individually

performed on each share. This means that Ψ
(𝑖)
𝑍

can still be realized

Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi

Algorithm 2Multiplication

Input: 𝑋,𝑌 ⊲ Two (8 + 𝑑)-bit values
Output: 𝑀𝑢𝑙_𝑜𝑢𝑡 ⊲ An (8 + 𝑑)-bit value
1: function𝑀𝑢𝑙𝑍 (𝑋 , 𝑌)
2: 𝑀𝑢𝑙_𝑜𝑢𝑡 ← 0

3: 𝑌_𝑆ℎ𝑖 𝑓 𝑡𝑒𝑑 ← 𝑌

4: for 𝑖 = 0 to 7 + 𝑑 do
5: if 𝑋𝑖 = 1 then
6: 𝑀𝑢𝑙_𝑜𝑢𝑡 ← 𝑀𝑢𝑙_𝑜𝑢𝑡 + 𝑌_𝑆ℎ𝑖 𝑓 𝑡𝑒𝑑
7: end if
8: 𝑌_𝑆ℎ𝑖 𝑓 𝑡𝑒𝑑 ← 𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑆ℎ𝑖 𝑓 𝑡𝐿𝑒 𝑓 𝑡𝑍 (𝑌_𝑆ℎ𝑖 𝑓 𝑡𝑒𝑑)
9: end for
10: end function

Algorithm 3Modular Shift Left

Input: 𝑋 ⊲ An (8 + 𝑑)-bit value
Output: 𝑌 ⊲ An (8 + 𝑑)-bit value
1: function𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑆ℎ𝑖 𝑓 𝑡𝐿𝑒 𝑓 𝑡𝑍 (𝑋)
2: 𝑌 ← 𝑋 << 1 ⊲ binary left shift

3: if 𝑌
8+𝑑 = 1 then

4: 𝑌 ← 𝑌 + 𝑍 ⊲ Reduction modulo 𝑍 = 𝑃 · 𝑄
5: end if
6: end function

by a matrix multiplication, but some operations will include both

the masked data and the mask, which may result in leakage. More

precisely, if the redundant value is represented by ⟨𝑅,𝑋 +𝑇 · 𝑅⟩,
one way of application of squaring is to write〈

𝑅,Ψ(2) · (𝑋 +𝑇 · 𝑅) + Ψ(2) ·𝑇 · 𝑅 +𝑇 · 𝑅
〉
,

whichmeans that the followingmatrix ismultiplied by ⟨𝑅,𝑋 +𝑇 · 𝑅⟩.

Ψ
(2)
𝑍

=

[
𝐼 0

Ψ(2) ·𝑇 +𝑇 Ψ(2)

]
, (7)

where 𝐼 denotes the identity matrix of size 𝑑 . It can be seen that the

lower rows of such a matrix contain elements multiplied to both

shares, i.e., both parts of ⟨𝑅,𝑋 +𝑇 · 𝑅⟩. We should highlight that

this problem is not identified in the original RAMBAM paper, and

the authors reported hardware implementations with redundancy

smaller than 8.

The authors of RAMBAM utilized the schoolbook multiplica-

tion algorithm, shown in Algorithm 2, which employs reduction

modulo 𝑍 = 𝑃 ·𝑄 , to implement the multiplication. The function

𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑆ℎ𝑖 𝑓 𝑡𝐿𝑒 𝑓 𝑡𝑍 encapsulates the modular reduction, as can

be seen in Algorithm 3. It is important to note that this multiplica-

tion operates on the entire redundant representation as a whole,

and cannot be split into two parts like linear operations for 𝑑 ≥ 8.

Consequently, due to applying the operation to both masked data

and the mask, this operation is susceptible to leakage in practice.

As mentioned earlier, an affine function A(.) needs to be applied
to each byte after the inversion to construct the AES S-box. A(.) is
written as

A(𝑋) = 𝐴 · 𝑋 + 63,

where 𝑋 ∈ F𝑃0
and 𝐴 is an 8 × 8 matrix and constant is in hexadec-

imal format. In order to exchange F𝑃0
with F𝑃 , we can write

A′ (𝑋) = 𝐴′ · 𝑋 + Φ · 63,

where 𝑋 ∈ F𝑃 and 𝐴′ = Φ ·𝐴 ·Φ−1
. Then, in the redundant domain

𝑍 , the multiplication with 𝐴′ can be performed similar to what we

have explained in Equation (6) for 𝑑 ≥ 8 and in Equation (7) for

𝑑 < 8. The addition with the constant can also be straightforwardly

done by adding with ⟨0,Φ · 63⟩. Note that it is also possible to

generate 𝐴′ for any field based on the representation of A(.) in
GF(28) [8]1.

To refresh the masked elements in R𝑃 ·𝑄 , one can add 𝐶𝑃 to

each element, where 𝐶 is a 𝑑-bit random value. Alternatively, we

can use Equation (1) for refreshing. This involves adding ⟨𝑅,𝑇 · 𝑅⟩
to each element, where 𝑅 is a 𝑑-bit random value. Note that the

authors of RAMBAM claimed that to avoid the leakage observed

in the state of the art [17], it is necessary to add fresh masks, i.e.,

refresh the sharing at the output of each Square and each multiply

as demonstrated in Algorithm 1. In our implementations, we have

employed this approach for share refreshing.

The original MixColumns operation involves multiplication by

both 2 and 3 in F𝑃0
, which needs to be replaced by multiplication

in R𝑃 ·𝑄 . Given that both values are constant, they can be imple-

mented as binary linear functions, i.e., matrix multiplication. More

specifically, we can write

2 ∗ 𝑋 = Γ (2) · 𝑋, 3 ∗ 𝑋 = Γ (3) · 𝑋

with ∗ being the modular multiplication in F𝑃0
and Γ (2) /Γ (3) 8 × 8

binary matrices. One can also write Γ (3) = Γ (2) + 𝐼 with 𝐼 being
identity.

Without loss of generality, suppose that ⟨𝑅,𝑋 +𝑇 · 𝑅⟩ should
be multiplied by 2. Similar to squaring, it is possible to apply the

operation using two distinct matrix multiplications on each part

individually, if 𝑑 ≥ 8. Following Equation (6), this allows us to

construct the matrix Γ
(2)
𝑍

as follows. The same can be written for

Γ
(3)
𝑍

. Note that if 𝑑 < 8, one solution is the procedure explained for

Equation (7).

Γ
(2)
𝑍

=

[
𝑇 −1 · Φ · Γ (2) ·𝑇 0

0 Φ · Γ (2)
]

(8)

Herein, we present the matrices utilized for the implementation of

the MixColumns operation.

1A(𝑋)=05·𝑋+09·𝑋 2+F9·𝑋 2
2+25·𝑋 2

3+F4·𝑋 2
4+01·𝑋 2

5+B5·𝑋 2
6+8F·𝑋 2

7+63

A Thorough Evaluation of RAMBAM

Γ
(2)
𝑍

=



0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1



,

Γ
(3)
𝑍

=



1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0



(9)

3.3 Hardware Implementation
We have implemented the AES encryption using the above-given

components in two distinct architectures: round-based and byte-

serial. The overall structure of our round-based AES design is illus-

trated in Figure 1, outlining the various steps involved. Firstly, the

plaintext and the key bytes are given with two shares using Boolean

masking. Subsequently, the linear function 𝜙 (.) as described in

Equation (3) is applied to each byte of both shares to transform

the representation to F𝑃 . Next, the function T−1 (.) is applied to

one share of each byte to convert the representation from Boolean

masking to the redundant RAMBAM representation in the ring

R𝑃 ·𝑄 . All the operations are then performed in R𝑃 ·𝑄 , and at the

end, the reverse steps are applied. Namely, once the AES encryption

in the redundant representation is accomplished, the function T(.)
is applied to the redundant part of each ciphertext byte to convert it

back to the Booleanmasking form in F𝑃 . Finally,𝜙
−1 (.) is applied to

transform the representation to the standard field F𝑃0
. At this stage,

the ciphertext is trivially obtained by XORing the corresponding

two shares 𝐶0
and 𝐶1

.

The round-based implementation naturally needs 16 masked S-

boxes for the data path and 4 such instances for the KeyExpansion.

rst rst

Key
Expansion

𝑅

𝑇

Masked
SB

SR

𝑃0 𝑃1

ΦΦ

𝑇 −1

𝐾0 𝐾1

ΦΦ

𝑇 −1

Φ−1𝑇

Φ−1

𝐶0 𝐶1

𝑅

𝑇

MC

last round

Figure 1: Round-based AES design.

In a byte-serial implementation, this can be reduced to only one

masked S-box. Due to the absence of registers in the S-box, we

seamlessly integrated it into the AES byte-serial implementation

design of [25], resulting in 226 clock cycles per encryption. During

the first 16 clock cycles, the circuit loads the Boolean-masked key

and plaintext serially while transforming them into the redundant

representation by applying T−1 (.) and 𝜙 (.) to the corresponding

shares. Simultaneously, the AddRoundKey operation is performed

and the output is fed into the ProtectedS-box. The next four cycles
are dedicated to the S-box operation for the KeyExpansion. Once
the last state byte is obtained from the S-box module, the ShifRows
operation is applied. Finally, the MixColumns operation is executed

in parallel with the KeyExpansion in 4 clock cycles. In summary, the

circuit requires 21 clock cycles to accomplish every cipher round.

Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi

3.4 PROLEAD Evaluation
To evaluate the security of these designs, we first used PROLEAD [28],

which is introduced in Section 2.6. As stated in Section 3.2, the lin-

ear operations can be realized by individual matrix multiplications

on each share when 𝑑 ≥ 8, which is also the case in our imple-

mentations. However, the non-linear operation, i.e., multiplication,

needs to be realized by a function dealing with both shares, which

is susceptible to leak information. In order to examine this, we first

evaluated a single multiplication module implemented following

Algorithm 2. However, PROLEAD is designed to handle Boolean

masked circuits only. To enable its application to the multiplica-

tion module, we took advantage of the property of conversion

between the design in the redundant RAMBAM representation

and Boolean masking, and vice versa, as also applied for the start

and end of the AES encryption in Figure 1. In other words, we

have supposed that two 8-bit Boolean masked inputs

〈
𝑋 0, 𝑋 1

〉
and〈

𝑌 0, 𝑌 1
〉
are given while 𝑋 = 𝑋 0 ⊕ 𝑋 1

and 𝑌 = 𝑌 0 ⊕ 𝑌 1
. After ap-

plying 𝜙 (.) and T−1 (.) we achieved 𝑋 ′ :

〈
𝑇 −1 · Φ · 𝑋 0,Φ · 𝑋 1

〉
and

𝑌 ′ :

〈
𝑇 −1 · Φ · 𝑌 0,Φ · 𝑌 1

〉
which are now masked in the redundant

domain 𝑍 . Now we can apply the multiplication of Algorithm 2

on 𝑋 ′ and 𝑌 ′. This allows us to assess the security of such an

implementation using PROLEAD while considering the specific

characteristics of RAMBAM. It is worth noting that such a circuit

including the multiplication by Φ and 𝑇 −1
and the field multipli-

cation is fully combinational without any register, which is inline

with the implementations reported in the original work [1].

The PROLEAD results are depicted in Figure 2, where we present

the progression of 𝑝-values for two separate experiments. For both

experiments, we considered fixed versus random test; with fixed we

gave 𝑋 and 𝑌 a constant value (still uniformly shared to represent

𝑋 0
and𝑋 1

(resp.𝑌 0
and𝑌 1

), and with randomwe selected all inputs

𝑋 0
, 𝑋 1

, 𝑌 0
and 𝑌 1

randomly for each simulation.

In the first experiment, we set both inputs to zero, i.e.,𝑋 = 𝑌 = 0,

while in the second experiment we arbitrary selected a non-zero

value for each input, i.e., 𝑋 ≠ 0 and 𝑌 ≠ 0. The corresponding

results are shown in Figure 2. As a side note, we applied the default

statistical parameters proposed in the original PROLEAD publica-

tion [28], i.e., 𝛽 = 10
−5

and 𝜑 = 0.1. Notably, in these experiments

we considered only glitch-extended probing security and ignored

transitions, since – as stated above – the circuit contains no regis-

ters.

The result of PROLEAD is the probability 𝑝 to reject the null hy-

pothesis, i.e., assuming that the leakages associated to two groups

(fixed input versus random input) are taken from the same popu-

lation and hence not distinguishable. In each plot, the minimum

𝑝-values are represented by − log
10
(𝑝) in black, while the hori-

zontal red line indicates the 10
−5

threshold. It means that if the

black curve exceeds the red line, the null hypothesis is rejected.

Additionally, the grey line shows the quotient between processed

simulations and required simulations to achieve 𝛽 < 10
−5

for a

predefined 𝜑 . We have set another threshold at 1.0 (drawn in blue)

which must be surpassed by the grey line in order to imply that

PROLEAD has considered enough simulations to detect all effects

with an effect size larger or equal to 𝜑 with a false-negative proba-

bility of 𝛽 = 10
−5

. Both figures show significant first-order leakage,

0 5 10 15
Number of Simualtions 105

0

20

40

60

80

-lo
g1

0(
p)

0

0.5

1

1.5

(E
va

l.
/ R

eq
.)

 S
im

ul
at

io
ns

(a) Zero input vector

0 5 10 15
Number of Simualtions 105

0

10

20

30

40

50

-lo
g1

0(
p)

0

0.5

1

1.5

(E
va

l.
/ R

eq
.)

 S
im

ul
at

io
ns

(b) Non-zero input vector

Figure 2: PROLEAD results for the RAMBAMmatrix multi-
plication.

0 5 10 15

Number of Simualtions 105

0

100

200

300

-l
o

g
1

0
(p

)

0

0.5

1

1.5

(E
va

l.
/

R
e

q
.)

 S
im

u
la

tio
n

s

(a) Zero input vector

0 5 10 15

Number of Simualtions 105

0

50

100

150

200

250

-l
o

g
1

0
(p

)

0

0.5

1

1.5

(E
va

l.
/

R
e

q
.)

 S
im

u
la

tio
n

s

(b) Non-zero input vector

Figure 3: PROLEAD results for the RAMBAM S-Box.

which highlights the insecurity of RAMBAM multiplier with re-

spect to the glitch-extended probing model. It is noteworthy that

we observed more leakage when the fixed input was tied to zero,

i.e., the first experiment. Specifically, for the zero input vector, we

observed a 40% increase in the value of − log
10
(𝑝) compared to the

non-zero input. This indicates that relying solely on a single input

vector when evaluating a design might be not sufficient, and it is

always suggested to evaluate a circuit with multiple fixed input

vectors to make the overall results more reliable.

We would like to highlight that the observed leakage is due to

the glitch-extended probes. In such a model, a probe can propagate

backwards up to the last synchronization point, which in this case

A Thorough Evaluation of RAMBAM

is the primary inputs of the circuit, as it does not contain any regis-

ters. We repeated both evaluations on the RAMBAM S-Box as well

which is again fully combinational, i.e., without any registers. In

contrast to the multiplier, the S-Box module requires 7 × 8 = 56

fresh masks which PROLEAD sets randomly in every clock cycle.

However, the high demand for fresh masks in a fully combinational

circuit results in large glitch-extended probing sets that primarily

record random data. As a result, if PROLEAD evaluates a potentially

leaking probing set, the probes on random data act as noise and

may potentially hide the leakage from PROLEAD. Nevertheless, the

leakage persists and PROLEAD reveals the leakage, as shown in Fig-

ure 3. We observed substantial leakage, in particular, the evaluation

shows that the leakage can still be clearly detected by conducting

around 1.5 million simulations. Again, we observed a remarkable

increase in the value of − log
10
(𝑝) for a zero input vector compared

to the non-zero case. However, due to the large number of fresh

masks, this increase, about 30%, is smaller compared to Figure 2. In

fact, this is consistent with our recommendation to examine the

design using multiple input vectors.

3.5 SCA Experimental Evaluations
Multiplier. In order to examine our findings in real world settings,

we conducted the corresponding experiments using the setup intro-

duced in Section 2.7. In the first set of experiments, we evaluated

the multiplier which we have examined by PROLEAD in Section 3.4.

To this end, as explained in Section 2.5 we measured the traces suit-

able for a fixed vs. random t-test and conducted the corresponding

analyses using two fixed values: (1) fully zero and (2) non-zero. The

corresponding results using 100 million traces are shown in Figure 4

clearly indicating first-order leakage of the design when the fixed

input is fully zero. We should highlight that the leakage which was

reported by PROLEAD for a non-zero input vector is not detected

in practice which can be due to the noise of the measurement setup

and the fact that the multiplier is a tiny circuit with a low power

consumption. This already highlights the importance of the selected

fixed input vector in such experimental leakage assessments.

Round-based AES Encryption. In the next set of experiments, we

implemented the round-based AES encryption engine depicted in

Figure 1 on our measurement setup. It is noteworthy to mention

that, following the RAMBAM design, we placed no registers be-

tween the square and multiply chain in the inversion module of

Algorithm 1. This results in accomplishing the entire AES-128 en-

cryption in 11 clock cycles while employing 20 instances of the

masked S-box.

As explained in Section 3.2, fresh masks are added to the output

of every square as well as every multiplier. In order to generate

the fresh masks, we employed a 31-bit Linear Feedback Shift Reg-

ister (LFSR) with a feedback polynomial of 𝑥31 + 𝑥28 + 1 for each

required single fresh mask bit, while the LFSRs are updated at ev-

ery clock cycle. While the authors of the original work proposed a

scheme to minimize the number of required fresh masks by reusing

some of them following a specific fashion, we did not incorporate

this optimization in our implementation. Instead, we followed the

square and multiply chain along with the affine transformation

as given in Algorithm 1, and employed individual fresh masks at

each position in the S-box. Specifically, we utilized seven 8-bit fresh

0 1 2 3 4
Time [s]

P
ow

er

(a) A sample trace

0 1 2 3 4
Time [s]

-5

0

5

t-
st

at
is

tic
s

(b) Zero input vector, t-test results using 100 million traces

0 1 2 3 4
Time [s]

-5

0

5

t-
st

at
is

tic
s

(c) Non-zero input vector, t-test results using 100 million traces

Figure 4: FPGA-based experiments on RAMBAM multiplier.

masks per S-box, without reusing any of them, to avoid any proba-

ble leakage originating from the mask reuse, i.e., in total 140 fresh

mask bits per clock cycle generated by 140 individual LFSRs seeded

randomly at the power-up cycle. In fact, the target FPGA receives

a two-share masked input, i.e., plaintext along with a masked key,

and produces the ciphertext also in a two-share masked form while

the fresh masks are generated internally.

Similar to our findings with PROLEAD, the fixed-versus-random

t-test experiments revealed that more leakage is detectable when

the fixed input vector leads to zero at the input of the S-boxes. To

emulate this, we set the fixed plaintext the same as the key, where

the input of all S-boxes in the first round is set to zero. This is

reflected in Figure 5 clearly indicating the presence of detectable

leakage using only 1 million traces. It is noteworthy that since

the fixed plaintext=key, the leakage is prominently visible in the

first cipher round, but it significantly decreases in the subsequent

rounds, since in the later rounds the input of the S-boxes is not zero

anymore.

The mask refreshes in RAMBAM S-box add noise to the circuit

and reduce leakage to some extent, but they do not fully prevent

the leakage as the building block, i.e., the multiplier, is not secure

under the glitch-extended probing model and the design contains

no registers to avoid the propagation of glitches. Namely, to ad-

dress the high demand of fresh randomness many LFSRs should be

instantiated which would add a considerable amount of noise to

the power traces.

Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi

0 1 2 3 4 5
Time [s]

P
ow

er

(a) A sample trace

0 1 2 3 4 5
Time [s]

0

10

20

30

t-
st

at
is

tic
s

(b) t-test results using 1 million traces

(c) DPA results using 100 million traces

20 40 60 80 100

Number of Traces 106

-10

-5

0

5

10

t-
st

at
is

tic
s

(d) DPA results over number of traces

Figure 5: FPGA-based experiments on round-basedRAMBAM
AES.

Nevertheless, we also conducted a key-recovery attack to further

evaluate the exploitability of the detected leakages. We collected

100 million traces from the round-based design when the plaintext

is always selected randomly and performed classical Differential

Power Analysis (DPA) attack using the well-known zero-value

model, i.e.,

𝑍𝑉 (𝑥) =
{

0, 𝑥 = 0

1, 𝑥 ≠ 0

.

In this model, the traces are divided into two groups for each key

guess. One group corresponds to operations where the predicted

input to the cryptographic primitive (here the S-box) is set to zero,

while the other group corresponds to non-zero values. By compar-

ing the power consumption patterns associated to these two groups

for every key guess by means of student t-test, an intuition about

the correct key byte may be achieved. Using 100 million traces, we

could recover 4 key bytes, one of which is shown in Figure 5. In order

to recover all key bytes, one can collect more traces. Alternatively,

a Correlation Power Analysis (CPA) attack using a more sophis-

ticated power model can be used to consider the leakage of more

S-boxes than only one. Suppose that the key bytes 𝑘0 and 𝑘1 are

confidently found using the classical DPA as explained above. The

third key byte 𝑘2 might be recovered using by a CPA utilizing the

hypothetical power model𝑍𝑉 (𝑝0⊕𝑘0) +𝑍𝑉 (𝑝1⊕𝑘1) +𝑍𝑉 (𝑝2⊕𝑘2).
Considering more known key bytes in such a power model would

help estimating the power consumption leading to more confident

results.

Byte-serial AES Encryption. We further evaluated the byte-serial

design as explained in Section 3.3. In general, the noise level of the

byte-serial design is typically lower compared to the round-based

design due to two main reasons. Firstly, the demand for fresh masks

per clock cycle is reduced as only one S-box is instantiated. This re-

sults in a smaller circuit required for generating the necessary fresh

masks, leading to a lower noise level. Secondly, in key-recovery

attacks naturally, one key byte is targeted at a time, i.e., a divide-

and-conquer scenario. Therefore, in the round-based design, the

effect of other S-boxes can be considered as noise, making it more

challenging to reveal the key as more traces are typically needed.

By repeating the same experiment as before using 1 million

traces when the fixed plaintext=key, the results depicted in Figure 6

have been obtained. Note that in this experiment, we covered only

the 1.5 cipher rounds. Similar to the former results, the leakage is

more easily detectable in the first round.

Similar to the round-based implementation, we conducted key-

recovery attacks on the byte-serial design. To this end, we collected

20 million traces when the plaintext is fully selected randomly

and performed similar DPA attacks using the aforementioned zero-

value model. Remarkably, we can confirm the possibility of recover-

ing all key bytes from the byte-serial implementation using around

10 million traces. One of such results is also shown in Figure 6.

3.6 Fault Injection Experimental Evaluations
The authors of RAMBAM also presented arguments regarding the

resilience of their design against SIFA [11]. SIFA combines the ad-

vantageous aspect of Ineffective Fault Attack (IFA) [4] and Statisti-

cal Fault Attack (SFA) [14] principles while relaxing many of their

requirements for key recovery. More precisely, SIFA exploits the

dependency of ineffective fault injection and the targeted intermedi-

ate value, similar to IFA, but relies only on the statistical bias of the

intermediate value for correct key hypothesis, akin to SFA. Unlike

IFA, which requires a specific fault model, SIFA does not have such

a requirement and can use fault-free ciphertexts to retrieve the key,

which is not the case for SFA.

To initiate the attack, the adversary collects fault-free cipher-

texts despite injecting a fault during encryption. Using a guessed

key, the adversary partially decrypts the ciphertexts to obtain the

targeted (faulted) intermediate value. Subsequently, the distribution

of the intermediate value is evaluated, and the Squared Euclidean

Imbalance (SEI) score is calculated for each key candidate. The

key candidate with the highest SEI score is identified as the most

probable correct key candidate.

In the study by Saha et al. [32], SIFA is divided into two versions:

SIFA-1 and SIFA-2. In the first one, only the state variable, namely

A Thorough Evaluation of RAMBAM

0 2 4 6 8 10
Time [s]

P
ow

er

(a) A sample trace

0 2 4 6 8 10
Time [s]

-5

0

5

10

t-
st

at
is

tic
s

(b) t-test results using 1 million traces

(c) DPA results using 20 million traces

4 8 12 16 20

Number of Traces 106

2

3

4

5

6

t-
st

at
is

tic
s

(d) DPA results over number of traces

Figure 6: FPGA-based experiments on byte-serial RAMBAM
AES.

the registers, can be targeted for fault injection. On the other hand,

in SIFA-2, faults are injected into the sub-operations of the cipher,

such as the S-box or MixColumns operations of the AES.

According to the authors of [32], Boolean masking can provide

protection against SIFA-1, as long as the fault does not corrupt

all shares of a variable. Therefore, a masked implementation with

𝑠 shares can provide security against up to 𝑠 − 1 faulty bits in

the SIFA-1 model. The authors of RAMBAM have improved the

security margin against SIFA-1, achieving at most 4 bits security

with a redundancy size of 𝑑 = 8, which is equivalent to using

Boolean masking with two shares. Security of their design against

SIFA-2 is not clearly specified in the paper, although the authors

claimed practical security against SIFA-2 in their presentation at

CHES 2022
2
. However, from a theoretical point of view, the design

is insecure with faults being injected into the combinational logic

of the cipher.

Apart from that, the design is vulnerable to other kinds of fault

attacks including DFA, first introduced by Biham and Shamir [2]

2
https://iacr.org/submit/files/slides/2022/tches/ches2022/2_10/slides.pptx

MMCM

Control
Logic

CLK
AES CoreCore CLK

PT

CT
UART

Fast CLK

Basys3 FPGA

Figure 7: Fault Injection experimental setup [36].

inspired from the principles of differential cryptanalysis on round-

reduced ciphers. In DFA, the adversary injects faults at specific

points in the computation and then compares the faulty ciphertext

with the correct one. By analyzing the difference between the two

ciphertexts, some information about the key can be inferred. DFA is

indeed effective against implementations like RAMBAM that use no

error-detecting or error-correcting facilities. We should highlight

that the authors of RAMBAM did not claim any security against

DFA, but our argument is that sole protection against SIFA is not

helpful. To protect against DFA, fault-detection facilities should

be added to the design. Such facilities either are independent of

data being processed (e.g., by detecting clock glitch, laser light, or

EM pulses), or are based on concurrent error detection schemes

utilizing error-detection codes. The first category can potentially

protect against SIFA as well since the fault becomes effective or

ineffective independent of the processed data. The second category

however may give a new opportunity to successfully mount SIFA.

To demonstrate the effectiveness of the attack, we conductedDFA

of the round-based AES design. Our experimental setup is similar to

the one used in [36], where the fault is injected bymeans of the clock

glitch. It utilizes a Basys3 FPGA development board from Digilent,

which is equipped with a Xilinx Artix-7 (XC7A35T-1CPG236C)

FPGA [10]. Further, we employed an Agilent Function/Arbitrary

Waveform Generator 33521A to generate an external precise clock

frequency to control the duration of the clock glitch.

In order to overcome the limitations of the function generator,

which has amaximum frequency of 30MHz, and the low-bandwidth

of the I/O ports, we utilized a Mixed-Mode ClockManager (MMCM)

module on the FPGA. This allowed us to increase the frequency of

the externally provided clock signal, enabling us to inject a fault

into the combinational circuit. Specifically, we needed to generate

a glitchy cycles in the range of 35MHz to induce faulty behavior in

the circuit.

We devised a comprehensive framework for the evaluation board

that facilitates communication with the PC. The experimental setup,

depicted in Figure 7, entails the reception of a plaintext and an

index 𝑐 by the board. Subsequently, the encryption function is ex-

ecuted on the given plaintext and the embedded key after being

masked and transferred to the RAMBAM domain as given in Fig-

ure 1. To inject the clock glitch, the ordinary clock is replaced with

a fast clock at the clock cycle 𝑐 after the start of the encryption.

The resulting ciphertext is then transmitted back to the PC.

Two consecutive encryptions with the same plaintext are per-

formed on the target device: one without any fault to obtain the

https://iacr.org/submit/files/slides/2022/tches/ches2022/2_10/slides.pptx

Daniel Lammers, Amir Moradi, Nicolai Müller, Aein Rezaei Shahmirzadi

correct ciphertext, and another one with a clock glitch at the 8-

th encryption round. The induced faults on each byte propagate

through the S-box and ShiftRows in the 9-th round up to the input

of the MixColumns. This allowed us to mount state-of-the-art DFA

attacks which commonly target the input of the MixColumns in the

9-th cipher round and model the injected fault as a linear difference

between the faulty and fault-free values [12, 16, 27, 30]. In short,

similar to the results reported in the literature, we successfully

recovered every four bytes of the 10-th roundkey with only two

faulty/fault-free ciphertext pairs. Notably, one can apply the tech-

nique presented in [40] to reveal the full key using only one fault

injection. All these known attacks are possible since the design

does not employ any fault-detection facility.

4 CONCLUSIONS
In this paper, we conducted an in-depth analysis of the RAMBAM

technique and its relation to the commonly used Boolean mask-

ing approach. Specifically, we demonstrated that RAMBAM with

a redundancy size of 𝑑 = 8 can be seen as an alternative represen-

tation of Boolean masking with two shares, each containing full

8-bit entropy for every byte. Using the verification tool PROLEAD,

we showed that the design suffers from SCA leakage in the mul-

tiplier despite the presence of 8-bit entropy. We also showed that

independent of the leakage of the multiplier, the protected S-box

construction is insecure due to lack of register layers to stop propa-

gating the probes in glitch-extended probing model. We performed

experimental SCA evaluations on an FPGA-based platform and il-

lustrated that the leakage is not only detectable but also exploitable

using the school-book zero-value model. In our byte-serial RAM-

BAM implementation, the secret key was fully recovered using

around 10 million traces, while we even did not re-use any fresh

randomness suggested by the original authors. In our round-based

implementation of RAMBAM, where 20 S-box instances are active

in parallel, we revealed 4 key bytes using 100 million traces. We

should highlight that recently, i.e., after being informed about our

investigations, the original authors made some of their implemen-

tations publicly available
3
. Hence, our results with respect to the

number of required traces to successfully mount the attacks hold

only for our implementations of RAMBAM not necessarily for the

designs recently made public. However, our analyses and claims

related to the insecurity of the scheme under robust probing model

stay valid. As a side note, the original authors confirmed the exis-

tence of a first-order leakage in their design, but claim a very high

level of effort to exploit it.

Furthermore, we evaluated the security of our implementation

against fault-injection attacks and presented that avoiding SIFA-

1 is insufficient, as no fault detection or correction mechanism is

employed in the design, hence enabling several other attack vectors,

e.g., DFA, although RAMBAM original authors did not provide any

claims about the security of their design against DFA. In order to

provide security against DFA, certain facilities should be integrated.

However, pure fault-detection techniques may or may not turn the

design susceptible to SIFA.

This work emphasizes the importance of providing security

proofs alongside any countermeasures against implementation

3
https://github.com/fortify-iq/fiq-openaes-128e

attacks. There is a considerable body of work on how masking

works and how physical defaults can compromise them. Glitches

are a well-known phenomenon in hardware platforms, and their

potential impact was not adequately addressed during the design

of RAMBAM. Actually, the original authors of RAMBAM did not

claim the security of their scheme under glitch-extended probing

model. They, in fact, claimed that the number of traces required

to successfully attack their scheme increases exponentially with

the redundancy size 𝑑 . This is not what we evaluated in this work,

as our main goal was to examine the scheme under common and

well-known hardware masking concepts and tools as RAMBAM

with 𝑑 = 8 is equivalent to first-order Boolean masking. Indeed, one

can also find such an equivalence between RAMBAM with 𝑑 = 16

and second-order masking.

It is important to note that experimental analyses alone are in-

sufficient to establish the security of a cryptographic design since

the measurement setup can significantly impact the result. The

authors of RAMBAM did not provide any proofs for the theoreti-

cal security of their scheme, and some details of their conducted

evaluations are not fully given, e.g., which fixed value was used in

fixed-versus-random t-tests. The authors reported that the power

analysis evaluation involved collecting only four samples per clock

cycle, raising questions about the reliability and accuracy of their

findings. That motivated us to conduct further investigation and

more rigorous testing to establish the effectiveness of the RAMBAM

scheme in protecting against SCA attacks. Our analysis revealed

that the scheme is indeed insecure and might be compromised by

exploiting the leakage.

On the other hand, we reported that the selection of the fixed

value in the fixed-versus-random t-test can significantly affect the

detectability of SCA leakage of the RAMBAM design. Apparently,

this was not considered by the authors of RAMBAM. This high-

lights the importance of using verification tools like PROLEAD to

verify the security of any masked hardware design prior to experi-

mental analysis, as such tools evaluate the circuits in the worst-case

scenario.

Our designs, as well as the evaluation scripts and results (PRO-

LEAD), are publicly available via https://github.com/ChairImpSec/

RAMBAM.

ACKNOWLEDGMENTS
The work described in this paper has been supported in part by the

German Research Foundation (DFG) under Germany’s Excellence

Strategy - EXC 2092 CASA - 390781972, and through the projects

406956718 (SuCCESS), 435264177 (SAUBER), and 456967092 (SecF-

Share).

REFERENCES
[1] Yaacov Belenky, Vadim Bugaenko, Leonid Azriel, Hennadii Chernyshchyk, Ira

Dushar, Oleg Karavaev, Oleh Maksimenko, Yulia Ruda, Valery Teper, and Yury

Kreimer. 2022. Redundancy AESMasking Basis for AttackMitigation (RAMBAM).

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 2 (2022), 69–91.
[2] Eli Biham and Adi Shamir. 1997. Differential Fault Analysis of Secret Key Cryp-

tosystems. In CRYPTO ’97 (LNCS), Vol. 1294. Springer, 513–525.
[3] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. To-

wards Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO
1999 (LNCS), Vol. 1666. Springer, 398–412.

[4] Christophe Clavier. 2007. Secret External Encodings Do Not Prevent Transient

Fault Analysis. In CHES 2007 (LNCS), Vol. 4727. Springer, 181–194.

https://github.com/fortify-iq/fiq-openaes-128e
https://github.com/ChairImpSec/RAMBAM
https://github.com/ChairImpSec/RAMBAM

A Thorough Evaluation of RAMBAM

[5] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla

Nikova, and Vincent Rijmen. 2017. Does Coupling Affect the Security of Masked

Implementations?. In COSADE 2017 (LNCS), Vol. 10348. Springer, 1–18.
[6] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenworthy,

Pankaj Rohatgi, et al. 2013. Test vector leakage assessment (TVLA) methodology

in practice. In International Cryptographic Module Conference, Vol. 20.
[7] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,

Matthieu Rivain, and Praveen Kumar Vadnala. 2012. Conversion of Security

Proofs from One Leakage Model to Another: A New Issue. In COSADE 2012
(LNCS), Vol. 7275. Springer, 69–81.

[8] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer.

[9] Siemen Dhooghe, Aein Rezaei Shahmirzadi, and Amir Moradi. 2022. Second-

Order Low-Randomness d + 1 Hardware Sharing of the AES. In CCS 2022. ACM,

815–828.

[10] Digilent. 2019. Basys3. (2019). https://reference.digilentinc.com/reference/

programmable-logic/basys-3/.

[11] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian

Mendel, and Robert Primas. 2018. SIFA: Exploiting Ineffective Fault Inductions

on Symmetric Cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3
(2018), 547–572.

[12] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. 2003. Differential Fault

Analysis on A.E.S. In ACNS 2003 (LNCS), Vol. 2846. Springer, 293–306.
[13] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and

François-Xavier Standaert. 2018. Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018, 3 (2018), 89–120.

[14] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. 2013. Fault

Attacks on AES with Faulty Ciphertexts Only. In FDTC 2013. 108–118.
[15] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic

Analysis: Concrete Results. In CHES 2001 (LNCS), Vol. 2162. Springer, 251–261.
[16] Christophe Giraud. 2004. DFA on AES. In AES 2004 (LNCS), Vol. 3373. Springer,

27–41.

[17] Jovan Dj. Golic and Christophe Tymen. 2002. Multiplicative Masking and Power

Analysis of AES. In CHES 2002 (LNCS), Vol. 2523. Springer, 198–212.
[18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. 2018. Generic Low-Latency

Masking in Hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2 (2018),
1–21.

[19] Hannes Groß, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented

Masking: CompactMaskedHardware Implementationswith Arbitrary Protection

Order. In TIS @ CCS 2016. ACM, 3.

[20] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing

Hardware against Probing Attacks. In CRYPTO 2003 (LNCS), Vol. 2729. Springer,
463–481.

[21] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In CRYPTO 1996 (LNCS), Vol. 1109. Springer, 104–113.
[22] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In CRYPTO 1999 (LNCS), Vol. 1666. Springer, 388–397.
[23] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power analysis

attacks - revealing the secrets of smart cards. Springer.
[24] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. 2005. Success-

fully Attacking Masked AES Hardware Implementations. In CHES 2005 (LNCS),

Vol. 3659. Springer, 157–171.

[25] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.

2011. Pushing the Limits: A Very Compact and a Threshold Implementation of

AES. In EUROCRYPT 2011 (LNCS), Vol. 6632. Springer, 69–88.
[26] Amir Moradi and Tobias Schneider. 2016. Improved Side-Channel Analysis

Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series. In COSADE 2016
(LNCS), Vol. 9689. Springer, 71–87.

[27] Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salmasizadeh.

2006. A Generalized Method of Differential Fault Attack Against AES Cryptosys-

tem. In CHES 2006 (LNCS), Vol. 4249. Springer, 91–100.
[28] Nicolai Müller and Amir Moradi. 2022. PROLEAD A Probing-Based Hardware

Leakage Detection Tool. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 4 (2022),
311–348.

[29] Christof Paar, Thomas Eisenbarth, Markus Kasper, Timo Kasper, and Amir

Moradi. 2009. KeeLoq and Side-Channel Analysis-Evolution of an Attack. In

FDTC 2009. IEEE Computer Society, 65–69.

[30] Gilles Piret and Jean-Jacques Quisquater. 2003. A Differential Fault Attack

Technique against SPN Structures, with Application to the AES and KHAZAD.

In CHES 2003 (LNCS), Vol. 2779. Springer, 77–88.
[31] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong

Wang, and San Ling. 2011. Side-Channel Resistant Crypto for Less than 2, 300

GE. J. Cryptol. 24, 2 (2011), 322–345.
[32] Sayandeep Saha, Dirmanto Jap, Debapriya Basu Roy, Avik Chakraborty, Shivam

Bhasin, and Debdeep Mukhopadhyay. 2020. A Framework to Counter Statistical

Ineffective Fault Analysis of Block Ciphers Using Domain Transformation and

Error Correction. IEEE Trans. Inf. Forensics Secur. 15 (2020), 1905–1919.
[33] SAKURA. 2016. Side-channel Attack User Reference Architecture. http://satoh.

cs.uec.ac.jp/SAKURA/index.html. (2016).

[34] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. 2020. Low-

Latency Hardware Masking with Application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2 (2020), 300–326.

[35] Tobias Schneider and Amir Moradi. 2015. Leakage Assessment Methodology

- A Clear Roadmap for Side-Channel Evaluations. In CHES (LNCS), Vol. 9293.
Springer, 495–513.

[36] Aein Rezaei Shahmirzadi and Amir Moradi. 2020. Clock Glitch versus SIFA. In

DFT 2020. IEEE, 1–6.
[37] Aein Rezaei Shahmirzadi and Amir Moradi. 2021. Re-Consolidating First-Order

Masking Schemes Nullifying Fresh Randomness. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021, 1 (2021), 305–342.

[38] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.

[39] Kris Tiri and Ingrid Verbauwhede. 2004. A Logic Level Design Methodology

for a Secure DPA Resistant ASIC or FPGA Implementation. In DATE 2004. IEEE
Computer Society, 246–251.

[40] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. 2011. Differential

Fault Analysis of the Advanced Encryption Standard Using a Single Fault. In

WISTP 2011 (LNCS), Vol. 6633. Springer, 224–233.
[41] Xin Ye and Thomas Eisenbarth. 2013. On the Vulnerability of Low Entropy

Masking Schemes. In CARDIS 2013 (LNCS), Vol. 8419. Springer, 44–60.
[42] Sara Zarei, Aein Rezaei Shahmirzadi, Hadi Soleimany, Raziyeh Salarifard, and

Amir Moradi. 2021. Low-Latency Keccak at any Arbitrary Order. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021, 4 (2021), 388–411.

https://reference.digilentinc.com/reference/programmable-logic/basys-3/
https://reference.digilentinc.com/reference/programmable-logic/basys-3/
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Galois Fields
	2.3 Boolean Masking
	2.4 Robust Probing Security Model
	2.5 Leakage Assessment
	2.6 PROLEAD
	2.7 SCA Measurement Setup

	3 RAMBAM and Evaluations
	3.1 Concept
	3.2 Components
	3.3 Hardware Implementation
	3.4 PROLEAD Evaluation
	3.5 SCA Experimental Evaluations
	3.6 Fault Injection Experimental Evaluations

	4 Conclusions
	Acknowledgments
	References

