
More Efficient Two-Round Multi-Signature Scheme

with Provably Secure Parameters for Standardized

Elliptic Curves ∗

Kaoru Takemure1,2, Yusuke Sakai2, Bagus Santoso1, Goichiro Hanaoka2, and Kazuo Ohta1,2

1The National Institute of Advanced Industrial Science and Technology
2The University of Electro-Communications

kaoru.takemure@gmail.com

Abstract

The existing discrete-logarithm-based two-round multi-signature schemes without using the idealized
model, i.e., the Algebraic Group Model (AGM), have quite large reduction loss. This means that an
implementation of these schemes requires an elliptic curve (EC) with a very large order for the standard
128-bit security when we consider concrete security. Indeed, the existing standardized ECs have orders
too small to ensure 128-bit security of such schemes. Recently, Pan and Wagner proposed two two-round
schemes based on the Decisional Diffie-Hellman (DDH) assumption (EUROCRYPT 2023). For 128-bit
security in concrete security, the first scheme can use the NIST-standardized EC P-256 and the second
can use P-384. However, with these parameter choices, they do not improve the signature size and the
communication complexity over the existing non-tight schemes. Therefore, there is no two-round scheme
that (i) can use a standardized EC for 128-bit security and (ii) has high efficiency.

In this paper, we construct a two-round multi-signature scheme achieving both of them from the DDH
assumption. We prove that an EC with at least a 321-bit order is sufficient for our scheme to ensure
128-bit security. Thus, we can use the NIST-standardized EC P-384 for 128-bit security. Moreover, the
signature size and the communication complexity per one signer of our proposed scheme under P-384
are 1152 bits and 1535 bits, respectively. These are most efficient among the existing two-round schemes
without using the AGM including Pan-Wagner’s schemes and non-tight schemes which do not use the
AGM. Our experiment on an ordinary machine shows that for signing and verification, each can be
completed in about 65 ms under 100 signers. This shows that our scheme has sufficiently reasonable
running time in practice.

1 Introduction

In a multi-signature scheme [1], for a single common message m, multiple parties cooperatively generate a
signature, known as a multi-signature, which is basically a combination of multiple individual signatures on
m where each is created by each party using its own signing key. An essential property of the multi-signature
is that its size is kept constant independently of the number of parties. Multi-signature schemes based on
several hardness problems are proposed so far, e.g., the discrete logarithm (DL)-based schemes [2, 3, 4, 5, 6,
7, 8, 9, 10], pairing-based schemes [11, 12, 13, 14, 15], and lattice-based schemes [16, 17, 18, 19, 20].

In this research, we focus on DL-based multi-signature schemes which can be implemented under the
elliptic curves used to implement standard digital signature schemes, e.g., the ECDSA [21] and the Schnorr
signature scheme [22], used in cryptocurrencies, e.g., Bitcoin.

∗Copyright © 2024 IEICE. To appear in IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and
Computer Sciences.

1

For multi-signatures, the primary desirable features are the followings. The first one is the security in
the plain public-key (PPK) model, which allows an adversary to make cosigners’ public keys maliciously
without knowing the signing keys. The second is key aggregation property, which allows aggregating a set
of public keys into a single short key when signatures are verified. The third is a small number of rounds
of communication for signing. Moreover, a scheme achieving a small signature size (independent from the
number of signers) while achieving these three properties is desirable.

For DL-based multi-signature schemes, Bellare and Neven proposed the first three-round scheme, which is
the scheme with three rounds of communication for signing, proven secure in the PPK model [3]. Moreover,
Maxwell et al. proposed the first three-round scheme with key aggregation [4]. In recent years, several two-
round schemes, achieving security in the PPK model and the support of key aggregation, are proposed [5,
6, 7, 8, 9, 10, 23, 24].

1.1 Importance of Concrete Security for Parameter Choice

Theoretically, a security proof of a cryptosystem consists of a reduction from solving some computational
problem to breaking the cryptosystem under a defined adversarial model. From the security proof, usually,
we can derive a relation between TA = tA/εA and TP = tP /εP , where tA and εA are the adversary’s running
time and success probability for breaking the cryptosystem and tP and εP are the algorithm’s running time
and success probability for solving the computational problem. A typical relation between TP and TA is as
follows: TA ≥ TP /Φ, where Φ is often referred to as the reduction loss.

When we derive the size of parameters, e.g., an order of the underlying group in a DL-based scheme, for
guaranteeing the security of the cryptosystem in practice, Φ was often disregarded. However, this disregard
sometimes makes schemes vulnerable. An example of this vulnerability is shown by the recent work of
Kales and Zaverucha [25] which demonstrated an attack on the MQDSS signature scheme [26]. Their attack
exploits the fact that the parameter of MQDSS was derived without considering Φ. Therefore, it is important
to derive the size of parameters by considering Φ based on the security proof, and thus we should implement
cryptosystems with provable secure parameters.

A small Φ is preferable in practice because it does not let the problem mentioned above occur in the first
place. Also, if Φ is large, we need to ensure that TP is sufficiently large so that the derived lower bound of
TA, i.e., TP /Φ, is not too small to have a practical meaning. Usually, the only way to make TP larger is
by setting larger parameters, which means higher costs for implementation in practice. If Φ is a relatively
small constant value independent of the parameters of the cryptosystem and the adversary, we say that the
security proof is tight.

Also, it is difficult for a scheme with a large Φ to use the standardized cryptographic tools. Specifically,
for the DL-based schemes, a elliptic curve (EC) with a 256-bit prime order is required to guarantee 128-bit
security, but it is only applied to tightly secure schemes. The scheme with a large Φ requires an EC with
an order larger than 256-bit. We have standardized ECs with such an order, e.g., NIST P-384 and P-521.
However, for the scheme with very large Φ, such ECs are not sufficient for 128-bit security, and then, we
need to design a new desireable EC. This makes the implementation difficult and less reliable.

For schemes with a small Φ, it is easy to use the standardized tools because we do not have to care about
the above-mentioned problems. Specifically, for the DL-based schemes, we can use the standardized ECs,
e.g., NIST P-256 and Secp256k1, for 128-bit security. Also if Φ is small, even though Φ is not constant, we
may be able to avoid the inconvenient situation where there is no suitable standardized tool.

1.2 Concrete Security of Existing DL-Based Multi-Signature Schemes

Here, we review the existing DL-based two-round multi-signature schemes in terms of the tightness of a
reduction.

Most of them can be categorized into two types: The first type is the schemes with a non-tight reduction
(namely, having a large reduction loss) and the second type is the schemes with a tight reduction. The

1For MuSig2, ν is a unique parameter. In this comparison, mBCJ is a variant that is secure in the plain public-key model,
not the original one proposed in [5].

2

Table 1: Detailed performance comparison among two-round multi-signature schemes.1

Scheme Assumption Model Loss
Signature Communication Pub. Key |q|128 (bit) |σ̃|128 (bit) |CC|128 (bit)

Key Agg.
Size Complexity Size Curve |σ̃|EC (bit) |CC|EC (bit)

MuSig2 (ν = 2) [7] AOMDL O(1) |G|+ |Zq| 2|G|+ |Zq| |G| 257 515 773

Yes

P-256 513 770

DWMS [8] OMDL
AGM,

O(1) |G|+ |Zq| 2|G|+ |Zq| |G| 257 515 773
ROM P-256 513 770

HBMS-AGM [9] DL O(1) |G|+ 2|Zq| |G|+ 2|Zq| |G| 257 772 772
P-256 769 769

LK [10] DL
AGM,

O(1) 3|Zq| |G|+ 2|Zq| |G| 258 774 775
NPROM P-256 768 769

MuSig-DN [6]
DL, DDH, PRNG

ROM

O(q3H/ε
3) |G|+ |Zq| 2|G|+ |Zq|+ |π| |G| 740 1481 -

Yes

zk-SNARKs, PRF Not Exist - -

MuSig2 (ν ≥ 4) [7] AOMDL O(q3H/ε
3) |G|+ |Zq| ν|G|+ |Zq| |G| 750 1501 3754

Not Exist - -

HBMS [9] DL O(q4Sq
3
H/ε

3) |G|+ 2|Zq| |G|+ 2|Zq| |G| 986 2959 2959
Not Exist - -

TZ [24] DL O(q3H/ε
3) |G|+ 2|Zq| 4|G|+ 2|Zq| |G| 742 2227 4456

Not Exist - -

mBCJ [5] DL O(q2SqH/ε) |G|+ 3|Zq| 2|G|+ 3|Zq| |G| 544 2177 2722
No

Not Exist - -

260 3646+N 3647
PW-1 [23] DDH O(1) 6|G|+ 8|Zq|+N 6|G|+ 8|Zq|+ 1 2|G|

P-256 3590+N 3591
No

322 1610 2257
PW-2 [23] DDH

ROM
O(qS) 5|Zq| 3|G|+ 4|Zq| 2|G|

P-384 1920 2691
Yes

321 963 1286
Ours DDH ROM O(qS) 3|Zq| 2|G|+ 2|Zq| 2|G|

P-384 1152 1538
Yes

∗ Column 2 shows the security assumptions. Column 3 shows whether idealized models are used for a cyclic group and hash functions.
Column 4 shows the reduction loss. Columns 5, 6 and 7 show the size of a multi-signature, elements sent in the signing protocol per
a signer, and a public key, respectively. Column 8 shows the required underlying group size |q|128 and the NIST standardized EC
that enables a parameter choice with 128-bit security, which is called the recommended EC hereafter. Column 9 shows the signature
sizes |σ̃|128 and |σ̃|EC under the |q|128-bit EC group and the recommended EC, respectively. Column 10 shows the communication
complexities |CC|128 and |CC|EC under the |q|128-bit EC group and the recommended EC. Column 11 shows whether each scheme
allows key aggregation. G and Zq indicate the underlying group G of a prime order q and the ring of integers modulo q, respectively.
We assume that the sizes of |G| and |Zq| over a q-bit EC are q + 1 and q bits, respectively. ROM and NPROM indicate the random
oracle model and the non-programmable random oracle model. qH and qS indicate the number of random oracle queries and signing
oracle queries, respectively. ε indicates the advantage of an adversary against the scheme. N indicates the number of signers. |π| is the
size of the zk-SNARK proof. For MuSig-DN, we write “-” in Column 10 because the size of |π| considering concrete security is explicitly
unknown.

schemes of the first type include MuSig-DN [6], MuSig2 (ν ≥ 4) [7], HBMS [9], TZ [24], and mBCJ [5], while
the schemes of the second type include MuSig2 (ν = 2) [7], DWMS [8], HBMS-AGM [9], LK [10].

When taking tightness into consideration, even for 128-bit security, the first-type schemes require an
elliptic curve (EC) with an very large order. Table 1 shows how large the order of the group should be in
order to provably ensure 128-bit security. As Table 1 shows, MuSig-DN, MuSig2 (ν ≥ 4), HBMS, TZ [24],
and mBCJ, respectively, require 740-bit, 750-bit, 986-bit, 742-bit, and 544-bit groups. Importantly, these
schemes no longer have standardized curves that provably ensure 128-bit security.

The cause of the large reduction losses of these schemes is that to prove the security based on the DL
assumption, the reduction performs the rewinding of the adversary, like the security proof of the Schnorr
signature scheme. Moreover, in schemes with key aggregation, the number of rewindings has to be increased.
Thus, these schemes have larger reduction losses than that of the Schnorr signature scheme.

The schemes of the second type achieve tight security by using the Algebraic Group Model (AGM) [27],
which is a very idealized model of computation. The schemes allow us to use an EC of a small order,
e.g., 256-bit. However, the reliance on the AGM needs more care because recent research [28, 29] shows
that the reliability of the AGM is still not well-understood. Indeed, Zhandry showed the one-time message
authentication code that is secure in the AGM but insecure in the standard model [28].

The random oracle model is also an idealized model of hash functions, but the situation is rather dif-
ferent from the AGM. Much cryptanalytic literature investigates the possibility of distinguishing a concrete
hash function from a random oracle by finding a dedicated input-output correlation beyond (target) colli-
sion resistance or preimage resistance [30, 31, 32, 33]. These lines of research provide a more fine-grained
understanding of how far (or near) concrete hash functions are from a random oracle.

Recently, Pan and Wagner proposed two two-round multi-signature schemes which can guarantee 128-bit
security under standardized ECs. The first scheme PW-1 achieves tight security but does not support key

3

aggregation. The second scheme PW-2 has a small but non-tight reduction loss, e.g., O(qS) where qS is
the number of the signing queries. The second scheme is more efficient than the first one and supports key
aggregation. Both are proven secure under the decisional Diffie-Hellman (DDH) assumption in the random
oracle model.

However, under provably secure parameters, the two schemes do not improve the signature size and
the communication complexity over the existing non-tight secure schemes even though those achieve tight
security or a small reduction loss. Indeed, as shown in Table 1, the signature size of PW-1 is largest among the
existing schemes without using AGM and the size of PW-2 is larger than theirs except for HBMS. Therefore,
there is no scheme without using the AGM that (i) can use a standardized EC for 128-bit security and (ii)
has high efficiency.

1.3 Our Contribution

In this paper, we propose a two-round multi-signature scheme that achieves (i) and (ii) mentioned above.
We construct it from the DDH assumption and the random oracle model without using the AGM. This
scheme guarantees 128-bit security under a standardized EC, e.g., NIST P-384. The signature size and
the communication complexity under provable secure parameters are the most efficient among the existing
two-round schemes without using the AGM. Moreover, our scheme is proven secure in the PPK model and
supports key aggregation.

To achieve a scheme with the following properties, two rounds of communication for signing and a small
reduction loss, we base our scheme on the Katz-Wang signature scheme [34] by applying the technique of
HBMS. HBMS uses a certain tool like a homomorphic equivocal commitment scheme to achieve a two-round
signing protocol. However, this tool is specialized to use together with the Schnorr identification scheme.
Therefore, we cannot apply it to our case. To overcome this, we introduce a new technique to tailor a certain
tool for use with the Katz-Wang DDH-based signature scheme.

Our scheme has a small reduction loss O(qS) where qS is the number of signing queries of a forger. As
the result of the estimation of provable secure parameters, it only needs an EC with at least 321-bit order to
ensure 128-bit security.2 Therefore, the curve P-384 is sufficient. Under P-384, the signature size is 1152 bits
and the communication complexity per one signer is 1538 bits. These values achieve the shortest size among
the existing schemes without using the AGM. Below, we compare our scheme with the existing scheme in
detail.

Firstly, we compare our scheme with the existing non-tight schemes without using the AGM, e.g., MuSig-
DN, MuSig2 (ν ≥ 4), HBMS, TZ, and mBCJ. Our signature size is reduced by more than 22%, 23%, 60%,
45%, and 47%, respectively. Compared to MuSig2 (ν ≥ 4), HBMS, TZ, and mBCJ, our communication
complexity is reduced by more than 59%, 48%, 65%, and 43%, respectively. On the other hand, while the
public key of our scheme consists of two group elements, theirs consist of only one group element. However,
the public key size of our scheme under P-384 is 770 bits. This size is almost the same as theirs except for
mBCJ. While the key size of mBCJ is smaller than ours, it does not support key aggregation. Therefore,
we conclude that our scheme is more efficient compared to the existing non-tight schemes when we consider
concrete security.

Secondly, we compare ours with PW-1 and PW-2. The signature size of our scheme is reduced by more
than 67% and 40% , respectively. The communication complexity of our scheme is also reduced by more
than 57% and 41%. The public keys of them are two group elements. The public key size of PW-1 is 514
bits but this scheme does not support key aggregation. The key size of PW-2 is 770 bits as same as ours.
Thus, we also conclude that our scheme is more efficient than Pan-Wagner’s schemes.

We implement our scheme on an ordinary machine and measure the running time of our implementation.
We set the number of signers N = 3, 5, 10, and 15, as typical numbers of signers in a real-world Multi-Sig
Wallet, and N = 50 and 100 as large-scale settings. For more details of the setting and the environment,
see Section 6. Both the running time of the signing protocol and that of the verification under N = 15
are less than 10 ms. For large-scale settings, both the running time of the signing protocol and that of the

2We explain the way to estimate provable secure parameters in Section 5.1.

4

verification are about 30 ms under N = 50, and those are about 65 ms under N = 100. Moreover, since
our proposed scheme also supports key aggregation, by precomputing a aggregated key, both the running
time of signing and that of verification can be shortened to less than 2 ms irrelevantly to N . Thus, we can
conclude that our scheme has a realistic running time in practice.

1.4 Related Works

Bellare and Neven proposed the first Schnorr-based three-round multi-signature scheme [3] which is secure
in the PPK model. In the document [35], they also proposed a DDH-based scheme which is built from the
Katz-Wang signature scheme. Maxwell et al. proposed a variant of the Bellare-Neven scheme that supports
key aggregation [4]. Fukumitsu and Hasegawa proposed a DDH-based scheme with key aggregation [36].

Drijvers et al. proposed a secure Schnorr-based two-round multi-signature scheme mBCJ [5]. They con-
structed this scheme by applying a patch to the insecure two-round scheme BCJ [37] which uses a homo-
morphic (special) equivocal commitment scheme. Bellare and Dai proposed an improvement of mBCJ as
HBMS [9]. Lee and Kim proposed a two-round scheme LK [10] based on HBMS and the Okamoto identi-
fication scheme [38]. The security of these schemes is proven under the DL assumption. MuSig-DN [6] is
a two-round multi-signature scheme with a different approach from the above schemes. Specifically, this
scheme achieves a two-round signing protocol by using a pseudorandom functions (PRF), a pseudorandom
number generators (PRNG), and a succinct non-interactive arguments of knowledge (SNARKs) [39] to make
the signing protocol deterministic. MuSig2 [7] and DWMS [8] are also two-round schemes with different
approaches from the above-mentioned schemes. They are proven secure under the algebraic one-more DL
(AOMDL) and one-more DL (OMDL) assumptions, respectively. Tessaro and Zhu proposed a two-round
scheme [24]. This scheme is similar to MuSig2 but is proven secure under the DL assumption.

1.5 Concurrent Work

In concurrent and independent work, Pan and Wagner proposed two two-round multi-signature schemes
based on the DDH assumption [23]. The first scheme PW-1 achieves tight security but key aggregation is not
supported. The second scheme PW-2 supports key aggregation and achieves a small but non-tight reduction
loss. As shown in Table 1, our scheme has a security assumption, a reduction loss, and a standardized EC
for 128-bit security which are similar to those of PW-2. However, ours achieves a more efficient signature
size and communication complexity than PW-2. Below, we briefly explain the cause of this improvement.

Whereas Pan and Wagner dedicated the effort to present their construction in a generic and modular
way, we trade genericness and modularity for more efficiency. Our improvement is a benefit of this. PW-2
is an instantiation of their generic construction. PW-2 is constructed by combining a special commitment
scheme and other building blocks in a generic manner. The scheme requires the binding property of the
commitment scheme for proving the unforgeability. On the other hand, we construct our scheme in a specific
way to be able to directly prove the unforgeability without using the binding property of the commitment
scheme. In short, in our scheme, the binding property is not a necessary condition. Thus, the commitment
scheme no longer needs to have the binding property. Then, we can reduce the size of the commitment key,
the commitment, and the decommitment. This gives a smaller signature size and communication complexity.
However, our scheme cannot be captured by Pan-Wagner’s generic construction because the commitment
scheme used in ours deviates from their syntax of the special commitment scheme.

2 Technical Overview

Our goal is to construct a two-round multi-signature scheme with a small reduction loss. Our technique
is based on a tightly secure DDH-based variant of the Schnorr signature scheme (i.e., a DDH-based lossy
identification). Before describing our techniques in detail, we explain the difficulty to construct a two-round
multi-signature scheme from the basic Schnorr signature scheme in Section 2.1. Next, in order to explain
the idea of our technique to construct a two-round multi-signature scheme from a tightly secure signature

5

scheme, first we review the DDH-based lossy identification in Section 2.2. And then, we explain in detail the
difficulties we face if we only naively combine already existing techniques in Section 2.3. Finally, we explain
our solutions to overcome those difficulties in Section 2.4.

2.1 Existing Non-Tight Secure Two-Round Schemes

Here, we explain the difficulty to construct a two-round multi-signature scheme from the Schnorr signature
scheme. Schnorr signatures seem possible to be aggregated by using linearity. However, we cannot do that
easily because a hash function used to sign does not have linearity. The well-known approach for this obstacle
is to generate a multi-signature interactively as follows. Firstly each signer broadcasts a commitment Ri ∈ G
of the Schnorr protocol and computes R̃ ←

∑
iRi where G is an additive cyclic group of a prime order q.

Each signer computes a challenge ci ∈ Zq of the Schnorr protocol by the random oracle Hc(R̃, pk i,m),
generates a response si ∈ Zq of the Schnorr protocol, and sends it to all the cosigners where pk i is a public
key corresponding to the signer i and m is a message to be signed. Finally, each signer computes s̃←

∑
i si

and outputs (R̃, s̃) as a multi-signature on m. The verification equation is R̃ = s̃G −
∑

i ci · pk i where G
is a generator of G. Unfortunately, this two-round multi-signature scheme is insecure. In this case, honest
verifier zero-knowledge does not work because the reduction needs to return R to a forger before deciding c
in the random oracle. There are attacks [40, 5] against this multi-signature scheme.

As a solution to the above problem, Drijvers et al. proposed the secure two-round multi-signature scheme
mBCJ by combining the Schnorr protocol and a homomorphic (special) equivocal commitment scheme. In a
nutshell, all signers broadcast their homomorphic commitment T to R in the first round, and they broadcast
their decommitment d and response s in the second round. The commitment key is generated by the random
oracle on input a message m, e.g., Hck(m). Thus, in the security proof, the reduction can embed either a
binding commitment key or an equivocal commitment key into the random oracle Hck(m). The reduction
can simulate the honest signer without the secret key exploiting (special) equivocability if the commitment
keys corresponding to queried messages are equivocal keys. It can also extract the secret key of the honest
signer due to the binding property and the special soundness of the Schnorr protocol if the commitment key
corresponding to the forgery is a binding key.

Bellare and Dai proposed a more efficient DL-based two-round multi-signature scheme HBMS than mBCJ
by using a tool like the Pedersen commitment [41] instead of the homomorphic equivocal commitment scheme.

2.2 DDH-Based Lossy Identification

As in a well-known approach to achieve tight security of (standard) signature schemes, we attempts to
construct it from the Katz-Wang (standard) signature scheme [34] which employs a DDH-based lossy iden-
tification.

Here, we review the DDH-based lossy identification. The secret key is x ∈ Zq and the public key is
(Y,Z) = x(G,H)T , which is a Diffie-Hellman (DH) tuple. The identification protocol is as follows. At first,
the prover generates and sends (R1, R2)

T = r(G,H)T ∈ G2 to the verifier where r is uniformly chosen from

Zq. Next, the verifier uniformly chooses c
$← Zq and sends it to the prover. After that, the prover computes

s← r + cx mod q and sends it to the verifier. Finally, the verifier checks R = s(G,H)T − c(Y, Z)T .
The soundness is proven under the DDH assumption as follows: First, we prove that impersonation is sta-

tistically hard under the lossy key which is a non-DH tuple, i.e., there exists no x ∈ Zq s.t. (Y, Z) = x(G,H)T .
Namely, under the lossy key, even for a computationally unbounded adversary, the success probability of an
adversary is negligible.3 Next, assume that there is an adversary that can perform impersonation with a
non-negligible probability under the real public key, i.e., a DH tuple. Notice that this assumption induces
a non-negligible gap between the adversary’s success probability under a lossy key and that under a real

3Indeed, the probability of an adversary outputting s s.t. R = s(G,H)T − c(Y, Z)T after the verifier uniformly chooses c is
at most 1/q independently of the behavior of the adversary because (s, c) is uniquely determined according to R when (G,H)
and (Y, Z) are linearly independent.

6

public key. Based on this, we can construct an algorithm solving the DDH problem by internally running
(without rewinding) the adversary given an instance of the DDH problem as the public key.

2.3 Naive Approach and Difficulty

To construct a two-round scheme with a small reduction loss, we attempt to combine the technique of HBMS
and the DDH-based lossy identification. In the signing protocol of HBMS, for a commitment key ck ∈ G,
each signer generates a commitment T by T ← d · ck + R, where we consider an additive cyclic group and
d is a randomness for the commitment. Then, the verification equation is T = d · ck + s ·G− c · pk .4 Note
that one having the discrete logarithm of ck can extract the secret key from two forgeries (T, c, (d, s)) and
(T ′, c′, (d′, s′)) s.t. T = T ′ and c ̸= c′ like the special soundness. Then, the binding property is no longer
needed. Our observation means that we can replace the commitment scheme in mBCJ with a simpler and
more efficient tool that has equivocability5 and the above property like the special soundness.

We require a tool that has similar properties to HBMS to achieve our goal. More concretely, in our case, a
tool needs to have the following two types of commitment keys. The first type Type-1 ensures that forgery
is statistically hard under this commitment key and a lossy key like the lossy identification. The second type
Type-2 has (special) equivocability.

We need to newly construct such a tool tailored to the DDH-based lossy identification because we cannot
reuse the tool used in HBMS. In contrast to the Schnorr protocol, R of the DDH-based lossy identification
consists of two group elements. Thus, we cannot just apply the tool of HBMS to the DDH-based lossy
identification.

One may think that the following naive way is sufficient, but it is not true. Below, we explain why
the naive way fails. Each signer generates two keys ck1 and ck2 of the tool used in HBMS by hashing
the message and generates a commitment T1 of R1 and a commitment T2 of R2 by using ck1 and ck2,
respectively. Then, the verification equation is (T1, T2)

T = d1(ck1, O)T + d2(O, ck2)
T + s(G,H)T − c(Y,Z)T

where O is the identity element in G, c = Hc(T1, T2,m, pk), and d1, d2 ∈ Zq. The important observation
is that as long as the verification equation includes the term d1(ck1, O)T + d2(O, ck2)

T , we cannot prove
that forgery under the lossy key is statistically hard. Note that a forger can maliciously choose d1 and d2
so that d1(ck1, O)T + d2(O, ck2)

T is a non-DH tuple. This means that a computationally unbounded forger
can forge by generating d1, d2, and s so that they cancel out the lossy key even if (Y, Z) is a non-DH tuple.
Therefore, we must modify the term to ensure the property of Type-1.

2.4 Our Solutions

Our solution is aggregating two terms d1(ck1, O)T and d2(O, ck2)
T into d(ck1, ck2)

T and programming
the random oracle to let (ck1, ck2) be a random DH tuple. This programming is validated by the DDH
assumption. When (ck1, ck2) is a DH tuple, we can rewrite (ck1, ck2)

T = a(G,H)T where a ∈ Zq, and we
obtain (T1, T2)

T = (ad+ s)(G,H)T − c(Y,Z)T as the verification equation. Notice that because (G,H) and
(Y,Z) are linearly independent, c satisfying the equation is determined uniquely at the point when (T1, T2)
is determined. Since c is uniformly chosen from Zq by the random oracle on input (T1, T2), we can prove that
forgery is statistically hard. Remind that (ck1, ck2) is generated by the random oracle, and thus (ck1, ck2)
uniformly distributes over G in the real environment. Then, due to the DDH assumption, we can program
the random oracle to output a random DH tuple in G2 instead of a random tuple in G2.

We can construct keys of Type-2 by embedding the public key into a DH tuple. Specifically, we program
the random oracle to output (ck1, ck2)

T ← ρ(G,H)T +(Y,Z)T where ρ is a trapdoor uniformly chosen from
Zq. Due to the above approach, all terms in the verification equation are DH tuples. Then, The simulator
can generate (T1, T2) with embedded (Y,Z) in the first round and can generate (d, s) by exploiting ρ and
the state information in the first round after c is determined.

4For simplicity, we consider the case where there is only one signer.
5The equivocal key is generated by embedding the public key, and one having a trapdoor can simulate the honest signer

without using the secret key.

7

We need to guarantee that the forgery is valid under the commitment key Type-1 and embedded those
two types of commitment keys into the same random oracle to make our solution work well. Then, we use
the technique of the security proof of the RSA-FDH signature scheme by Coron [42]. Consequently, our
scheme has the security loss O(qS).

Consequently, we can construct a two-round multi-signature scheme with a small reduction loss.

3 Preliminaries

3.1 Notation

Unless noted otherwise, any algorithm is probabilistic. For an algorithm A, we write b $← A(α1, . . .) to mean
that A on inputs α1, . . . and a uniformly chosen random tape outputs b. For algorithms A1, . . . ,An, we write
b

$← ⟨{Ai(αi1, . . .)}ni=1⟩ to mean that each algorithm Ai on inputs αi1, . . . and a uniformly chosen random
tape executes a protocol with the others, and eventually all algorithms obtain b. For a list L, we write the
i-th element in L as L[i]. For any value a, we write a← b means the assignment of a into b. We denote the
security parameter by λ.

3.2 Hardness Assumption

For a prime integer q, we denote the ring of integers modulo q by Zq. Let G be an additive cyclic group of
order q and let G be a generator of G. We denote the identity element of G by O.

In this paper, we use the following notations. For A, B, G, H ∈ G and x ∈ Zq, we write (A,B)T ←
x(G,H)T to mean that A and B are computed by xG and xH, respectively. Also, for A, B, G, H, Y, Z ∈ G,
we write (A,B)T ← (G,H)T +(Y,Z)T to mean that A and B are computed by G+Y and H+Z, respectively.

Below, we recall the definitions of the discrete logarithm (DL) assumption and the decisional Diffie-
Hellman (DDH) assumption.

Definition 3.1. The advantage AdvdlG (A) of an algorithm A is defined as

AdvdlG (A) = Pr[xG = X : X
$← G, x $← A(X)].

We say that an algorithm A (t, ε)-solves the DL problem in G if it runs in time at most t and satisfies
AdvdlG (A) ≥ ϵ. We also say that the DL problem in G is (t, ε)-hard if there is no algorithm that (t, ε)-solves
it.

Definition 3.2. The advantage AdvddhG (A) of an algorithm A is defined as

AdvddhG (A) =

∣∣∣∣∣Pr[A(G, xG, yG, xyG) = 1 : x, y
$← Zq]− Pr

[
A(G, xG, yG, zG) = 1 :

x, y
$← Zq,

z
$← Zq\{xy}

]∣∣∣∣∣ .
We say that an algorithm A (t, ε)-solves the DDH problem in G if A runs in time at most t and satisfies
AdvddhG (A) ≥ ε. We also say that G is a (t, ε)-DDH group if there is no algorithm that (t, ε)-solves the DDH
problem in G.

3.3 Randomizing Algorithm of (non-)DH tuple

Bellare et al. proposed a randomizing algorithm of a (non-)DH tuple in [43]. Their algorithm on input
a (non-)DH tuple outputs a re-randomized (non-)DH tuple. More concretely, the algorithm is given a
tuple (G,H,P,Q) ∈ G4 as input and outputs a tuple (G,H ′, P ′, Q′) ∈ G4. If (G,H,P,Q) is a DH tuple,
(G,H ′, P ′, Q′) satisfies that (H ′, P ′) is uniformly distributed over G2 and (G,H ′, P ′, Q′) is a DH tuple. If
(G,H,P,Q) is a non-DH tuple, (G,H ′, P ′, Q′) satisfies that (H ′, P ′, Q′) is uniformly distributed over G3.

In this paper, we use the subtly modified algorithm to prove Proposition 4.5. This algorithm on input
a (non-)DH tuple outputs a re-randomized (non-)DH tuple of which the second element is also the same as

8

the second one of a tuple given as input. Specifically, if (G,H,P,Q) is a DH tuple, (G,H,P ′, Q′) satisfies
that P ′ is uniformly distributed over G and (G,H,P ′, Q′) is a DH tuple. If (G,H,P,Q) is a non-DH tuple,
(G,H,P ′, Q′) satisfies that (P ′, Q′) is uniformly distributed over G2.

Below we show our randomizing algorithm Rand.

Rand(G,H,P,Q)→ (P ′, Q′)

Choose s, t
$← Zq.

Compute P ′ ← sG+ tP and Q′ ← sH + tQ.

Output (P ′, Q′).

3.4 Multi-Signatures

In this section, we show the definition and security model of the multi-signature scheme.

Definition 3.3. A multi-signature scheme consists of the following three algorithms and an interactive pro-
tocol. Let n be the number of signers.

Pg(1λ)→ pp. On input the security parameter 1λ, the public parameter generation algorithm outputs a
public parameter pp.

Kg(pp)→ (pk , sk). On an input pp, the key generation algorithm outputs a public key pk and a secret key
sk.

⟨{S(pp, i, sk i, L,m)}ni=1⟩ → σ̃. The signing protocol is executed by multiple signers who intend to sign on the
common message m. On inputs pp, an index of signers i, sk i, a public-key list L = {pk1, . . . , pkn},
and m, each signer executes the signing protocol with cosigners. Finally, it outputs a multi-signature
σ̃ on m.

Vf(pp, L, σ̃,m)→ {0, 1}. On inputs pp, L, σ̃, and m, the verification algorithm deterministically outputs 1
(Accept) or 0 (Reject).

A multi-signature scheme must satisfy the following correctness property: For any messagem, any integer
n, pp

$← Pg(1λ), (pk i, sk i)
$← Kg(pp) for all i ∈ {1, n}, L ← {pk i}ni=1, and σ̃

$← ⟨{S(pp, i, sk i, L,m)}ni=1⟩,
Vf(pp, L, σ̃,m) = 1 holds.

3.4.1 Security Definition of Multi-Signatures

Here, we show the security definition of multi-signatures. Our security model is very similar to Bellare-
Neven’s model [3]. In the security model, corruption of cosigners by a forger is modeled by allowing a forger
to freely choose cosigners’ public keys involving a forgery and signing queries. Note that there are two subtle
differences from Bellare-Neven’s model in the winning conditions.

The first one is that, in our model, a forger’s output (m∗, σ̃∗, L∗) does not count as a successful forgery
if the forger has received a signature on the message m∗ from the signing oracle. In Bellare-Neven’s model,
(m∗, σ̃∗, L∗) counts as a forgery even if the forger has ever received a signature on m∗ as long as the pair of
the message and the public-key list (m∗, L∗) has never been queried. The second one is that, in our model,
(m∗, σ̃∗, L∗) counts as a successful forgery even if a signing protocol for m∗ is opened but not completed. In
Bellare-Neven’s model, (m∗, σ̃∗, L∗) does not count as a forgery if a signing protocol for that pair (m∗, L∗)
is opened but not completed. The latter modification captures adversaries who exploit the interruption of
the signing protocol. To see the difference, let us consider the following example. A forger sends a message
m∗ to the signing oracle as a signing query and receives a response of the first round from the oracle. Then,
it outputs a forgery on m∗ without completing the signing protocol. In our model, the forgery is valid even
if m∗ is queried to the signing oracle (as long as the signature on m∗ has never been received).

Our security model is formally defined by the following three-phase game.

9

Setup. The challenger generates a public parameter pp by Pg(1λ) and a key pair (pk , sk) by Kg(pp). It
initializes tables TM [·] and TΣ[·] to ∅. It sends pp and pk to a forger F . F is allowed to access random
oracles and a signing oracle.

Signing Oracle. The challenger receives a message m, a session identifier Is, and a public-key list L as a
signing query from F . Let nh = {i|L[i] = pk}. The challenger responses as follows.

Case |nh| = 0. The challenger returns ⊥ to F .
Case |nh| ≥ 1. The challenger executes the signing protocol by behaving as any honest signer corre-

sponding to indices in nh. Note that it behaves as each honest signer by maintaining its state and
using its random tape. Let stℓ be the state information, kept during the protocol, of the honest
signer corresponding to ℓ ∈ nh. At the end of each round of the protocol, the challenger stores
TΣ[Is]← {stℓ}ℓ∈nh

.

F is allowed to make multiple signing queries concurrently. Note that, under the same session identifier,
F is not allowed to make multiple signing queries in the same round of the signing protocol. If the
signing protocol for a queried m is completed, the challenger assigns TM [m]← 1.

Check. Finally, F outputs a public-key list L∗, a message m∗, and a forgery σ̃∗. F is said to win the game
if F ’s output satisfies that pk ∈ L∗, TM [m∗] ̸= 1, and Vf(pp, L∗, σ̃∗,m∗) = 1.

Definition 3.4. Let AdvMS(F) be the probability that F wins the above game. We say that F (t, qS , qH , N, ε)-
breaks multi-signature scheme if F runs in at most t time, it makes at most qS signing queries and qH random
oracle queries, the numbers of public keys included in L for any signing queries and a forgery are at most
N , and AdvMS(F) ≥ ε. We say a multi-signature scheme is (t, qS , qH , N, ε)-secure if there is no F that
(t, qS , qH , N, ε)-breaks that scheme.

4 Proposed Scheme

We show the construction of our proposed two-round multi-signature scheme and its security. We construct
our scheme by combining the Katz-Wang DDH-based signature scheme [34] to avoid rewinding and the
technique of HBMS [9], a DL-based two-round multi-signature scheme.

4.1 Our Proposed Scheme

Below, we show the construction of our two-round multi-signature scheme.

Pg(1λ)→ pp. On input the security parameter 1λ, the public parameter generation algorithm sets up
(G, q, G). It chooses a random element H ∈ G, hash functions Hc : {0, 1}∗ → Zq, Hck : {0, 1}∗ → G2,
and Hagg : {0, 1}∗ → Zq, and then it outputs pp = (G, q, G,H,Hc, Hck, Hagg).

Kg(pp)→ (pk , sk). On an input pp, the key generation algorithm chooses x
$← Zq, computes (Y, Z)T ←

x(G,H)T and outputs a public key pk = (Y,Z) and a secret key sk = x.

⟨{S(pp, i, sk i, L,m)}ni=1⟩ → σ̃. Each signer proceeds with the signing protocol as follows.

Round 1: Each signer computes tj ← Hagg((Yj , Zj), L) for all j ∈ [1, n] and p̃k ←
∑n

j=1 tj(Yj , Zj)
T .

It computes (U1, U2)← Hck(m), chooses ri, zi
$← Zq and computes Ti ← zi(U1, U2)

T + ri(G,H)T .
It broadcasts Ti to the cosigners.

Round 2: Each signer receives {Tj}j∈{1,...,n}\{i} from the cosigners. It computes T̃ ←
∑n

i=1 Ti,

c← Hc(T̃ , p̃k ,m), and si ← xitic+ ri mod q. It broadcasts (zi, si) to the cosigners.

Aggregate: Each signer receives {(zj , sj)}j∈{1,...,n}\{i} from the cosigners. It computes z̃ ←
∑n

j=1 zj
mod q and s̃←

∑n
j=1 sj mod q and outputs σ̃ = (c, z̃, s̃).

10

Vf(pp, L, σ̃,m)→ {0, 1}. On inputs pp, L, σ̃, andm, the verification algorithm computes tj ← Hagg((Yj , Zj), L)

for all j ∈ [1, n] and p̃k ←
∑n

j=1 tj(Yj , Zj)
T . It computes (U1, U2) ← Hck(m) and T̃ ← z̃(U1, U2)

T +

s̃(G,H)T − c · p̃k . It outputs 1 if c = Hc(T̃ , p̃k ,m) holds. Otherwise, it outputs 0.

4.2 Security

We show that our proposed scheme is secure under the DDH assumption in the random oracle model.

Theorem 4.1. If G is a (t′, ε′)-DDH group, then our scheme is (tF , qS , qH , N, εF)-secure s.t.

εF ≥ e(qS + 1)(2ε′ + (2qH + qS + 2)/q) and

tF ≤ min(t1, t2) where

t1 = t′ − (4qH + 6qSN + 2N + 12)tmul −O(qH + qSN),

t2 = t′ − (3qH + 6qSN + 3qS + 2N + 6)tmul −O(qH + qSN),

where e is the base of the natural logarithm, and tmul is the time of a scalar multiplication in G.

Before showing the full proof, we show a proof sketch.
As in the Katz-Wang signature scheme, we prove the unforgeability of our scheme by replacing the public

key with a non-DH tuple due to the DDH assumption and proving that forgery is statistically hard under
such the public key. The main strategy is that we ensure an situation where we can statistically evaluate
the forger’s success probability εF . To enable this, we need to ensure a situation where we can statistically
evaluate the forger’s success probability εF even if the forger is computationally unbounded when the public
key is a non-DH tuple. To ensure such a situation, we replace (U1, U2) generated by the random oracle
Hck(m) with a random DH tuple. The effect of this replacement is guaranteed to be negligible by the DDH
assumption. However, if we replace all (U1, U2) with DH tuples, we cannot simulate the honest signer without
the secret key sk . To solve this issue, we provide another way to generate (U1, U2) which allows simulating
the honest signer without sk . Then, to make these two contrasting ways compatible, we use the technique of
Coron [42], which is to prove the security of the RSA Full Domain Hash (RSA-FDH) signature scheme [44],
as in mBCJ and HBMS.

Our proof is a game-hopping proof. We start with the game of the security definition and sequentially
change it into a game in which forgery is statistically hard. Specifically, we consider the following game-
hopping.

Game G1 (Game1-Game3) : We change the game of the security game as follows: The challenger generates
two types of (U1, U2) instead of uniformly choosing from G2 and assigns one of them to the random
oracle table of Hck(m) according to a biased coin which comes out heads with a certain probability, like
the technique of Coron [42]. The first type (Type-1) is to statistically evaluate the success probability
of a forger in the final game. The other type (Type-2) is to simulate the honest signer without sk in
the signing oracle.

Game G2 (Game4) : We change the above game as follows: The challenger simulates the honest signer
without sk by using the property of (U1, U2) of Type-2.

Game G3 (Game5-Game6) : We change the above game as follows: The challenger embeds a non-DH tuple
into pk , like the security proof of the Katz-Wang signature scheme.

In a nutshell, as first, we show our procedure to prove that Game G1 and Game G3 are computationally
indistinguishable under the DDH assumption. First, we prove that Game G1 and Game G2 are perfectly
indistinguishable by proving that the distribution of responses of the signing oracle with sk and that of the
response of the signing oracle using the property of (U1, U2) of Type-2 are perfectly indistinguishable. Next,
we prove that Game G2 and Game G3 are computationally indistinguishable by proving that pk generated
by Kg in Game G2 which is a DH tuple and pk in Game G3 which is a non-DH tuple are indistinguishable
under the DDH assumption.

11

Using the property of (U1, U2) of Type-1, in Game G3, we can statistically evaluate εF and then prove
that forgery is statistically hard. Then, to complete the explanation of this proof sketch, it remains to
show the construction of two types of (U1, U2) and the indistinguishability between the game of the security
definition and Game G1. We explain these below.

First, we explain the way to generate (U1, U2) of Type-1. The challenger generates it satisfying that it

is uniformly distributed in the span of (G,H). Specifically, the challenger chooses ρ
$← Zq and computes

(U1, U2)
T ← ρ(G,H)T . To explain why this is necessary, we consider the simple case where there is only

one signer and key aggregation is not supported. Then, the verification equation is T1 = z1(U1, U2)
T +

s1(G,H)T − c(Y1, Z1)
T where c = Hc(T1, (Y1, Z1),m). Notice that, when (G,H, Y1, Z1) is a non-DH tuple

and (U1, U2) is in the span of (G,H), c satisfying the above equation is determined uniquely at the point
when T1 is determined. Because c is uniformly chosen from Zq by the random oracle, the probability that c
satisfies the above equation is at most 1/q.6

Next, we explain the way to generate (U1, U2) of Type-2. The challenge key (Y1, Z1) is embedded in this

type of (U1, U2). More concretely, the challenger chooses ρ
$← Zq and computes (U1, U2)

T ← ρ(G,H)T +
(Y1, Z1)

T . Then, the challenger has ρ as the trapdoor. The equivocal commitment T1 is generated by
α(G,H)T +β(Y1, Z1)

T where α and β are uniformly chosen from Zq. We need to produce z1 and s1 satisfying
T1 = z1(U1, U2)

T +s1(G,H)T−c(Y1, Z1)
T given c. Notice that sk is no longer required since T1 and (U1, U2)

T

is expressed by linear combinations of (G,H)T and (Y1, Z1)
T . Specifically, by using ρ, α, and β, we can

produce z1 and s1 satisfying T1 = α(G,H)T+β(Y1, Z1)
T = z1(ρ(G,H)T+(Y1, Z1)

T)+s1(G,H)T−c(Y1, Z1)
T .

For indistinguishability between the distribution of responses of the signing oracle with sk and that of
responses of the signing oracle using ρ, see Proposition 4.6.

Finally, we explain that the game of the security definition and Game G1 are computationally indis-
tinguishable under the DDH assumption. Notice that, for both types of (U1, U2), the challenger generates
(U1, U2) by producing a random DH tuple ρ(G,H)T . Then, we can prove that the distribution of (U1, U2)
uniformly chosen from G2 and the one of (U1, U2) generated by Hck(m) in Game G1 are computationally
indistinguishable under the DDH assumption. Therefore, the game of the security definition and Game G1

are computationally indistinguishable under the DDH assumption.
As a result, we can show that our scheme is secure under the DDH assumption in the random oracle

model.

Remark. Since we need to guarantee that the forger only produces a forgery which is valid under (U1, U2)
of Type-1, we need to add a condition that a forgery is valid under (U1, U2) of Type-1 into the winning
condition of the forger in Game G1. In the full proof, we consider intermediate games between the original
game of the security definition and Game G1 with the above additional winning condition. Thus, our scheme
has the reduction loss e(qS + 1), which is the same as the reduction loss of the RSA-FDH signature scheme
proven by Coron [42].

Below, we show the formal security proof.

proof of Theorem 4.1. The game Game0 is the unforgeability game for our scheme. Game0 is as follows.

Setup: The challenger generates pp by (G, q, G,H,Hc, Hck, Hagg)← Pg(1λ) and (pk , sk) by ((Y ∗, Z∗), x)
$←

Kg(pp) where Hc, Hck, and Hagg are random oracles. For Hc, Hck, and Hagg, it initializes tables Tc[·],
Tck[·], and Tagg[·] to ∅. It also initializes tables TM [·] and TΣ[·] to ∅. It sends pp and pk to F who is
allowed to access the signing oracle and the following random oracles.

Random Oracle Hck(m): The challenger chooses (U1, U2)
$← G2 and assigns Tck[m] ← (U1, U2) if Tck[m]

is undefined. It returns Tck[m].

Random Oracle Hc(T̃ , p̃k ,m): The challenger chooses c
$← Zq and assigns Tc[T̃ , p̃k ,m]← c if Tc[T̃ , p̃k ,m]

is undefined. It returns Tc[T̃ , p̃k ,m].

6Because our scheme supports the key aggregation, we need to consider a more complex setting. For more details, see
Proposition 4.11.

12

Random Oracle Hagg((Y,Z), L): The challenger chooses t
$← Zq and assigns Tagg[(Y, Z), L]← t if Tagg[(Y,Z), L]

is undefined. It returns Tagg[(Y, Z), L].

Signing Oracle: The challenger receives (Is,m,L) as a query. It returns ⊥ if pk /∈ L. It executes the
signing protocol by behaving the honest signers {S(pp, i, sk , L,m)}i∈nh

where nh is the set of the
indices of the signers who have pk as the public keys. At the end of Round 1 of the signing protocol,

it stores TΣ[Is]← (m,L, p̃k , nh, {(Ti, zi, ri, ti)}i∈nh
). If Round 2 of the signing protocol is completed,

it sets TM [m]← 1.

Check: F wins the game if F ’s output (L∗,m∗, σ̃∗) satisfies pk ∈ L∗, TM [m∗] ̸= 1, and Vf(pp, L∗, σ̃∗,m∗) =
1.

Now we change the above game Game0. Below, we describe only the changes.

Game1: We change Game0 as follows.

Random Oracle Hc(T̃ , p̃k ,m): The challenger makes a query Hck(m) first if Tck[m] undefined.

Signing Oracle: The challenger makes a query Hck(m) first if Tck[m] undefined.

Game2: We change Game1 as follows.

Setup: The challenger additionally initializes a table Tb[·]← ∅.
Random Oracle Hck(m): If Tck[m] is undefined, the challenger firstly chooses a bit bK ∈ {0, 1} which

becomes 1 with probability δ = qS/(qS+1). Note that the way to generate (U1, U2) is unchanged.
It additionally assigns Tb[m]← bK .

Signing Oracle: If Tb[m] = 0 holds for a queried m, the challenger terminates the game when it
starts Round 2 of the signing protocol. Otherwise, it continues the game.

Check: The condition Tb[m
∗] = 0 is added to the winning conditions.

Game3: We change Game2 as follows.

Setup: The challenger additionally initializes a table Ttd[·]← ∅.

Random Oracle Hck(m): Instead of (U1, U2)
$← G2, the challenger chooses ρ

$← Zq, computes

(U1, U2)
T $← ρ(G,H)T when Tb[m] = 0, and computes (U1, U2)

T $← ρ(G,H)T + (Y ∗, Z∗)T when
Tb[m] = 1. It additionally assigns Ttd[m]← ρ.

Game4: We change Game3 as follows.

Signing Oracle: Only in the case where Tb[m] = 1, the challenger executes the following modified
protocol instead of S(pp, i, sk , L,m).

Round 1: The challenger computes p̃k as in S(pp, i, sk , L,m). For all i ∈ nh, it chooses (αi, βi)
$←

Z2
q, computes Ti ← αi(G,H)T+βi(Y

∗, Z∗)T . It stores TΣ[Is]← (m,L, p̃k , nh, {(Ti, αi, βi, ti)}i∈nh
)

and returns {Ti}i∈nh
.

Round 2: The challenger receives (Is, {Ti}i∈[1,n]\nh
), looks up (m,L, p̃k , nh, {(Ti, αi, βi, ti)}i∈nh

)

from TΣ[Is], (U1, U2) from Tck[m], and ρ from Ttd[m]. It computes T̃ and c as in S(pp, i, sk , L,m).
For all i ∈ nh, computes zi ← βi+c mod q and si ← αi−ziρ mod q. It returns {(zi, si)}i∈nh

.

Game5: We change Game4 as follows.

Setup: The challenger generates pk by choosing x
$← Zq and y

$← Zq\{x} and computing Y ← xG
and Z ← yH.

Game6: We change Game5 as follows.

13

Random Oracle Hagg((Y, Z), L): For all i ∈ [1, n] where n is a number of public keys in L, the

challenger chooses ti
$← Zq and assigns Tagg[L[i], L]← ti if Tagg[L[i], L] is undefined.

We write Pr[Gamei = 1] to mean the probability that a forger wins the game Gamei. From Propositions 4.2,
· · · , 4.11, which we will prove later, we obtain

εF = Pr[Game1 = 1] (Propositions 4.2 and 4.3)

≤ e(qS + 1)Pr[Game2 = 1] (Proposition 4.4)

≤ e(qS + 1)(ε′ + Pr[Game4 = 1]) (Propositions 4.5 and 4.6)

≤ e(qS + 1)(2ε′ + Pr[Game6 = 1]) (Propositions 4.9 and 4.10)

≤ e(qS + 1)(2ε′ + (2qH + qS + 2)/q). (Proposition 4.11)

From Propositions 4.4 and 4.9, we also have

tF ≥ t′ − (4qH + 6qSN + 2N + 12)tmul −O(qH + qSN),

and tF ≥ t′ − (3qH + 6qSN + 3qS + 2N + 6)tmul −O(qH + qSN).

From here, we prove Propositions 4.2, · · · ,4.11.

Proposition 4.2. εF = Pr[Game0 = 1]

proof of Proposition 4.2. Because Game0 is the unforgeability game of our scheme, the probability that F
wins this game is identical to εF .

Proposition 4.3. Pr[Game0 = 1] = Pr[Game1 = 1]

proof of Proposition 4.3. The difference between Game0 and Game1 is that, in Game1, the challenger makes
a query Hck(m) first in Hc and Signing Oracle. These newly added steps do not affect the probability of
F winning the game. Therefore, Pr[Game0 = 1] = Pr[Game1 = 1] holds.

Proposition 4.4. Pr[Game1 = 1] ≤ e(qS + 1)Pr[Game2 = 1]

proof of Proposition 4.4. First, we show that the added steps of Hck in Game2 do not affect the probability
of F winning the game. Since (U1, U2) in Game2 is generated by uniformly choosing from G2 independently
of the value of Tb[m], the distributions of the responses of Hck in both games are identical. Therefore, the
added steps do not affect the probability of F winning the game.

Second, we show that Pr[Game1 = 1] ≤ e(qS + 1)Pr[Game2 = 1]. For Game2, let E
Game2
1 be the event

where the game does not terminate in Signing Oracle, EGame2
2 be the event where F ’s output satisfies the

added condition Tb[m
∗] = 0, and EGame2

3 be the event where F ’s output satisfies the winning conditions as
same as Game1. Then, we have

Pr[Game2 = 1] = Pr[EGame2
1 ∧ EGame2

2 ∧ EGame2
3]

= Pr[EGame2
1] Pr[EGame2

3 |EGame2
1] Pr[EGame2

2 |EGame2
1 ∧ EGame2

3].

Firstly, we evaluate Pr[EGame2
1]. The game terminates before the challenger starts Round 2 in Signing

Oracle if Tb[m] = 0 holds for some queried message. Thus, EGame2
1 occurs when Tb[m] = 1 holds at that

point for all messages queried to Signing Oracle. Since the responses of the random oracles and the
responses of the signing oracle until Round 1 leak no information on the value of Tb[m] for any m, F can
know Tb[m] only when it observes whether the game continues or not. Also, F can only know Tb[m] = 1
for all messages queried to Signing Oracle as long as the game continues. Therefore, the probability that
Tb[m] = 0 holds for a queried message is equal to (1− δ). In consequence, because F can make at most qS

14

signing queries, we have Pr[EGame2
1] ≥ δqS . Setting δ = qS/(qS + 1), we have Pr[EGame2

1] ≥ δqS ≥ 1/e. The
last inequality holds because of the fact that (1 + 1/qS)

qS < e for qS > 0.
Next, we evaluate Pr[EGame2

3 |EGame2
1]. Conditioned on EGame2

1 , Game2 does not terminate, and the dis-
tribution of the view of F in Game2 is identical to the distribution of the view of F in Game1. Thus, F ’s
output in Game2 satisfies the winning conditions of Game1 with the same probability as in Game1. Namely,
we have Pr[EGame2

3 |EGame2
1] = Pr[Game1 = 1].

Finally, we evaluate Pr[EGame2
2 |EGame2

1 ∧ EGame2
3]. Conditioned on EGame2

1 and EGame2
3 , since Round 2

of the signing protocol on m∗ has never been executed in Signing Oracle, F cannot know Tb[m
∗]. Then,

Pr[EGame2
2 |EGame2

1 ∧EGame2
3] = (1−δ) holds. Setting δ = qS/(qS+1), we obtain Pr[EGame2

2 |EGame2
1 ∧EGame2

3] =
1/(qS + 1).

From the above, we obtain Pr[Game1 = 1] ≤ e(qS + 1)Pr[Game2 = 1].

Proposition 4.5. If G is a (t′, ε′)-DDH group, then

|Pr[Game2 = 1]− Pr[Game3 = 1]| ≤ ε′, and
tF ≥ t′ − (4qH + 6qSN + 2N + 12)tmul −O(qH + qSN)

where tmul is the time for a scalar multiplication in G.

proof of Proposition 4.5. To prove this proposition, we construct a distinguisher ADDH against the DDH
problem from a forgery F as follows.

Setup: ADDH receives a tuple (G,H,P,Q) as input. It assigns (G, q, G,H) of input to (G, q, G,H) of a
public parameter pp. It sets up pk and tables as in Game2 or Game3. It runs F on inputs pp and pk .

Random Oracle Hck(m): ADDH responds similarly to in Game3 with the following difference in the way
to generate (U1, U2). It generates (P ′, Q′) ← Rand(G,H,P,Q). If Tb[m] = 0, it assigns (U1, U2) ←
(P ′, Q′). If Tb[m] = 1, it computes (U1, U2)

T ← (P ′, Q′)T + (Y ∗, Z∗)T .

Random Oracle Hc(T̃ , p̃k ,m) : ADDH responds as in Game2 or Game3.

Random Oracle Hagg((Y,Z), L) : ADDH responds as in Game2 or Game3.

Signing Oracle: ADDH responds as in Game2 or Game3.

Output: ADDH returns 1 if F wins the game. Otherwise, it returns 0.

We show that |Pr[Game2 = 1] − Pr[Game3 = 1]| = AdvddhG (ADDH). We can prove this equality by proving
the followings.

(i): Pr[Game2 = 1] is equal to the probability that ADDH outputs 1 conditioned on (G,H,P,Q) is a non-DH
tuple.

(ii): Pr[Game3 = 1] is equal to the probability that ADDH outputs 1 conditioned on (G,H,P,Q) is a DH
tuple.

The differences between the behavior of ADDH and the behavior of the challenger in Game2 or Game3 are
the way to generate pp in Setup and the way to generate (U1, U2) in Hck(m). It is clear that the difference
in Setup does not affect the probability of F winning the game. Therefore, to prove the above (i) and (ii),
it is sufficient to prove the following (I) and (II), respectively.

(I): The distribution of the responses of Hck(m) in Game2 is identical to the distribution of the responses
of Hck(m) in ADDH conditioned on (G,H,P,Q) is a non-DH tuple.

(II): The distribution of the responses of Hck(m) in Game3 is identical to the distribution of the responses
of Hck(m) in ADDH conditioned on (G,H,P,Q) is a DH tuple.

15

Below, we prove (I) and (II).

(I): In Game2, the challenger chooses (U1, U2)
$← G2 independently of Tb[m]. ADDH generates (P ′, Q′)

by Rand(G,H,P,Q), assigns (U1, U2)
T ← (P ′, Q′)T if Tb[m] = 0, and computes (U1, U2)

T ← (P ′, Q′)T +
(Y ∗, Z∗)T if Tb[m] = 1. Because of the property of Rand, conditioned on (G,H,P,Q) is a non-DH tuple,
(P ′, Q′) is uniformly distributed over G2. Then, (P ′, Q′)T + (Y ∗, Z∗)T is also uniformly distributed over
G2. Therefore, the responses of Hck(m) of ADDH are uniformly distributed over G2 in both cases where
Tb[m] = 0 and Tb[m] = 1. Therefore, (I) holds.

(II): In Game3, the challenger chooses ρ
$← Zq, assigns (U1, U2)

T ← ρ(G,H)T if Tb[m] = 0, and computes
(U1, U2)

T ← ρ(G,H)T + (Y ∗, Z∗)T if Tb[m] = 1. ADDH generates (P ′, Q′) by Rand(G,H,P,Q), assigns
(U1, U2)

T ← (P ′, Q′)T if Tb[m] = 0, and assigns (U1, U2)
T ← (P ′, Q′)T + (Y ∗, Z∗)T if Tb[m] = 1. Because

of the property of Rand, conditioned on (G,H,P,Q) is a DH tuple, (P ′, Q′) satisfies that P ′ is uniformly
distributed over G and (G,H,P ′, Q′) is a DH tuple. Thus, the distribution of (P ′, Q′)T is identical to the
distribution of ρ(G,H)T where ρ is uniformly chosen from Zq. Therefore, (II) holds.

From the above, we obtain |Pr[Game2 = 1]−Pr[Game3 = 1]| = AdvddhG (ADDH). Since AdvddhG (ADDH) ≤
ε′ holds when G is a (t′, ε′)-DDH group, then we obtain |Pr[Game2 = 1]− Pr[Game3 = 1]| ≤ ε′.

Now we consider the running time of ADDH. We assume that tmul time is required for one scalar
multiplication in G, and unit time is required for the other non-cryptographic operations. In Setup, ADDH

computes 2 scalar multiplications to generate pk . For time to answer random oracle queries, we consider
only the case of Hc because Hc takes a longer time than Hck and Hagg. To respond to a query to Hc, ADDH

makes one query to Hck and executes O(1) other non-cryptographic operations. 4 scalar multiplications and
O(1) other non-cryptographic operations are required for one query to Hck. Thus, in total, A executes 4
scalar multiplications and O(1) other non-cryptographic operations to respond to one query to Hc. For each
signing query, there are at most 6N scalar multiplications, one query to Hck, one query to Hc, N queries to
Hagg, and O(N) other non-cryptographic operations, thus totally 6qSNtmul + O(qSN) time is required for
responding to all signing queries. In Check, there are 2N + 6 scalar multiplications, one query to Hck, one
query to Hc, N queries to Hagg, and O(N) other non-cryptographic operations. From these evaluations and
the fact that ADDH runs F once, we obtain tF ≥ t′ − (4qH + 6qSN + 2N + 12)tmul −O(qH + qSN).

Proposition 4.6. Pr[Game3 = 1] = Pr[Game4 = 1].

To prove Proposition 4.6, we use the following lemma.

Lemma 4.7. Let Gameeqv be the following game between a challenger and a distinguisher A.

Setup: The challenger chooses (G, q, G). It sends (G, q, G) to A and receives H ∈ G and x ∈ Zq from A.
It computes (Y,Z)T ← x(G,H)T and initializes a table TS [·]. It chooses a bit b

$← {0, 1}.

Oracles: The challenger allows A to access to the following oracles concurrently at most qS times. Note
that A is allowed to make only one query for each session identifier I, which is included in each query
to oracles.

Σeqv1(b, ·, ·): As a query, the challenger receives a session identifier I and ρ ∈ Zq. It computes
(U1, U2)

T ← ρ(G,H)T + (Y,Z)T . It responds as follows.

Case b = 0: It chooses r, z
$← Zq and computes T ← z(U1, U2)

T + r(G,H)T . It stores TS [I] ←
((U1, U2), ρ, r, z, T) and returns T .

Case b = 1: It chooses α, β
$← Zq and computes T ← α(G,H)T + β(Y, Z). It stores TS [I] ←

((U1, U2), ρ, α, β, T) and returns T .

Σeqv2(b, ·, ·): As a query, the challenger receives a session identifier I and c ∈ Zq. If TS [I] is empty,
then it return ⊥. Otherwise, it responds as follows.

Case b = 0: The challenger looks up ((U1, U2), ρ, r, z, T) from TS [I], computes s← xc+r mod q
and returns (z, s).

16

Case b = 1: The challenger looks up ((U1, U2), ρ, α, β, T) from TS [I], computes z ← β+ c mod q
and s← α− zρ mod p and returns (z, s).

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then A wins this game.

The advantage of A is defined as

Adveqv(A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

For any computationally unbounded distinguisher A, Adveqv(A) = 0 holds.

Before we prove Lemma 4.7, we explain the intuition of the proof.
To prove this lemma, we should prove that, in Gameeqv, the statistical distance between the distribution

of a distinguisher’s view in the case where b = 0 and the distribution of a distinguisher’s view in the case
where b = 1 is equal to 0. However, it is hard to prove it directly because a distinguisher can concurrently
access stateful oracles.

To overcome this difficulty, we prove Lemma 4.7 step by step. We resolve the difficulty arising from
concurrently accessing by using the hybrid argument. To carry out this strategy, we consider the intermediate
game Gameeqv,k in which a distinguisher is allowed to access the stateful oracles that switch behavior on
the k-th query. Moreover, to evaluate the advantage of a distinguisher in this game, we consider the simple
game Gameeqv0 in which a distinguisher needs to make all queries to the interactive oracles first of all the
game. We prove the advantage of a distinguisher in Gameeqv0 is 0 (in Lemma 4.8), and by using this, we
prove the advantage of a distinguisher in Gameeqv,k is also 0.

Now we start the proof of Lemma 4.7. First, we prove the following lemma.

Lemma 4.8. We consider the following game Gameeqv0 between a challenger and a distinguisher A.

Setup: The challenger chooses (G, q, G). It sends (G, q, G) to A and receives H ∈ G and x, ρ, c ∈ Zq from

A. It computes (Y, Z)T ← x(G,H)T and (U1, U2)
T ← ρ(G,H)T +(Y,Z)T . It chooses a bit b

$← {0, 1}.
It allows A to access to the following oracle only once.

Oracle Σeqv0(b): The challenger responds as follows.

Case b = 0: The challenger chooses r, z
$← Zq, computes T ← z(U1, U2)

T + r(G,H)T and s← xc+ r
mod q and returns (T, z, s).

Case b = 1: The challenger chooses α, β
$← Zq and computes T ← α(G,H)T + β(Y, Z), z ← β + c

mod q, and s← α− zρ mod q and returns (T, z, s).

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then A wins this game.

The advantage of A is defined as

Adveqv0(A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

For any computationally unbounded algorithm A, Adveqv0(A) = 0 holds.

proof of Lemma 4.8. For W ∈ {V ∈ G2|V = v(G,H)T , v ∈ Zq}, let log(G,H)W be the element w ∈ Zq s.t.

W = w(G,H)T . Below, we write Σeqv0’s response (T, z, s) using matrices and vectors with Zq coefficients.

• In the case b = 0, the response of Σeqv0 satisfies T = z(U1, U2)
T + r(G,H)T = (r + (ρ+ x)z)(G,H)T

and s = xc+ r (mod q) where r, z
$← Zq. Thus, we obtainlog(G,H) T

z
s

 =

1 ρ+ x
0 1
1 0

(
r
z

)
+

 0
0
xc

 . (1)

17

• In the case b = 1, the response of Σeqv0 satisfies T = α(G,H)T +β(Y,Z)T = (α+βx)(G,H)T , z = β+c

(mod q) and s = α− zρ (mod q) where α, β
$← Zq. Thus, we obtainlog(G,H) T

z
s

 =

1 x
0 1
1 −ρ

(
α
β

)
+

 0
c
−cρ

 . (2)

The advantage of A in Gameeqv0 is equal to the statistical distance between the distribution of the
response of Σeqv0 in the case b = 0 and that in the case b = 1. Therefore, to prove Adveqv0(A) = 0 for any
computationally unbounded algorithm A, we prove that the distribution of (log(G,H) T, z, s)

T in Eq. (1) is

identical to that in Eq. (2) when r, z
$← Zq and α, β

$← Zq.
For a matrix C, let Im(C) denote the column space of C. Let D0 and D1 be the column spaces as follows.

D0 = Im

1 ρ+ x
0 1
1 0

 , D1 = Im

1 x
0 1
1 −ρ

 .

Note that the distribution of (log(G,H) T, z, s)
T in Eq. (1) and that in Eq. (2) are identical if and only if

D0 + (0, 0, xc)T = D1 + (0, c,−cρ)T

holds, where the above equality means the equality of the left and the right affine subspaces. Furthermore,
the above equality holds when the followings hold.

• D0 = D1.

• (0, 0, xc)T − (0, c,−cρ)T ∈ D0.

Now, we prove D0 = D1 by showing D0 ⊆ D1 and D1 ⊆ D0. For any d0 ∈ D0, we can write d0 as follows:

d0 = r

1
0
1

+ z

ρ+ x
1
0


= r

1
0
1

+ z

ρ0
ρ

− z
ρ0
ρ

+ z

ρ+ x
1
0


= (r + zρ)

1
0
1

+ z

 x
1
−ρ

 ∈ D1.

where r, z ∈ Zq. Thus, any d0 ∈ D0 is in D1. This implies D0 ⊆ D1. On the other hand, for any d1 ∈ D1,
we can write d1 as follows:

d1 = α

1
0
1

+ β

 x
1
−ρ


= α

1
0
1

− β
ρ0
ρ

+ β

ρ0
ρ

+ β

 x
1
−ρ


= (α− βρ)

1
0
1

+ β

ρ+ x
1
0

 ∈ D0.

18

where α, β ∈ Zq. Thus, any d1 ∈ D1 is in D0. This implies D1 ⊆ D0.
Next, we show (0, 0, xc)T − (0, c,−cρ)T ∈ D0. This holds because, for (0, 0, xc)T and (0, c,−cρ)T , we

have  0
0
xc

−
 0

c
−cρ

 =

 0
0
xc

+

c(ρ+ x)
0
0

−
c(ρ+ x)

0
0

−
 0

c
−cρ


= c(x+ ρ)

1
0
1

− c
ρ+ x

1
0

 ∈ D0.

Now we show Lemma 4.7 from the above lemma.

Proof of Lemma 4.7. We consider the following Gameeqv,k where k ∈ [1, qS].

Setup: The challenger chooses (G, q, G). It sends (G, q, G) to Aeqv,k and receives H ∈ G and x ∈ Zq from

Aeqv,k. It computes (Y, Z)T ← x(G,H)T . It initializes tables TS [·]. It chooses a bit b
$← {0, 1}.

Oracles: The challenger allows Aeqv,k to access to the following oracles concurrently at most qS times. Note
that A is allowed to make only one query for each session identifier I, which is included in each query
to oracles.

Σeqv1,k(b, ·, ·): As a query, the challenger receives a session identifier I and ρ ∈ Zq. It computes
(U1, U2)

T ← ρ(G,H)T + (Y,Z)T . It responds as follows.

Case I > k or (I = k) ∧ (b = 0): The challenger responds as Σeqv1(0, ·, ·) in Gameeqv.

Case I < k or (I = k) ∧ (b = 1): The challenger responds as Σeqv1(1, ·, ·) in Gameeqv.

Σeqv2,k(b, ·, ·) The challenger receives a session identifier I and c ∈ Zq as a query. If TS [I] is empty,
then it return ⊥. Otherwise, it responds as follows.

Case I > k or (I = k) ∧ (b = 0): The challenger responds as Σeqv2(0, ·, ·) in Gameeqv.

Case I < k or (I = k) ∧ (b = 1): The challenger responds as Σeqv2(1, ·, ·) in Gameeqv.

Guess: Finally, Aeqv,k outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then Aeqv,k wins this game.

Then, the advantage of Aeqv,k in the above game is defined as

Adveqv,k(Aeqv,k) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

We show that Adveqv,k(Aeqv,k) = 0 for any computationally unbounded algorithm Aeqv,k and any k ∈ [1, qS]
from Lemma 4.8. To show this, we construct a distinguisher Aeqv0 in Gameeqv0 in Lemma 4.8 from Aeqv,k

as follows.

Setup: Aeqv0 receives (G, q, G), sends it to Aeqv,k and receives (H,x) from Aeqv,k. It computes (Y,Z)T ←
x(G,H)T . It initializes a table TS [·] to ∅.

Oracles: The challenger allows Aeqv,k to access to the following oracles concurrently at most qS times.

Σ′
eqv1,k(·, ·, ·): Aeqv0 receives (I, ρ) as a query and computes (U1, U2)

T ← ρ(G,H)T + (Y, Z)T . It
responds as follows.

Case I > k: Aeqv0 responds as Σeqv1(0, ·, ·) in Gameeqv.

Case I < k: Aeqv0 responds as Σeqv1(1, ·, ·) in Gameeqv.

Case I = k: Aeqv0 chooses c′
$← Zq and outputs (H,x, ρ, c′). It obtains (T, z, s) by accessing to

Σeqv0, stores TS [I]← (z, s, c′) and returns T .

19

Σ′
eqv2,k(·, ·): Aeqv0 receives (I, c) as a second query. If TS [I] is empty, it returns ⊥. Otherwise, it

responds as follows.

Case I > k: Aeqv0 responds as Σeqv2(0, ·, ·) in Gameeqv.

Case I < k: Aeqv0 responds as Σeqv2(1, ·, ·) in Gameeqv.

Case I = k: Aeqv0 looks up (z, s, c) from TS [I]. If c ̸= c′, then it halts with output 0. Otherwise,
it returns (z, s)

Output: Eventually, it receives a guess b′ from Aeqv,k and returns b′.

Aeqv0 outputs Aeqv,k’s guess b
′ if it does not halt because of c = c′ in Σ′

eqv2,k in the case where I = k. So,
we get the following equation.

Adveqv0(Aeqv0) = |Pr[b′ = 1 ∧ c = c′|b = 1]− Pr[b′ = 1 ∧ c = c′|b = 0]| (3)

where b is a bit which Σeqv0 has.
Since Σeqv0 generates T without using c′ in both cases where b = 0 and b = 1, Aeqv,k obtain no information

about c′ before Aeqv,k makes a query (k, c) to Σ′
eqv2,k. Also, c′ is uniformly chosen from Zq. Therefore, we

have Pr[c = c′|b = 1] = Pr[c = c′|b = 0] = 1/q. Then, we obtain

|Pr[b′ = 1 ∧ c = c′|b = 1]− Pr[b′ = 1 ∧ c = c′|b = 0]|

=
1

q
|Pr[b′ = 1|c = c′ ∧ b = 1]− Pr[b′ = 1|c = c′ ∧ b = 0]| . (4)

In the k-th query to Σ′
eqv1,k, conditioned on c = c′, Σeqv0 generates (T, z, s) in the same way to Σeqv1 and

Σeqv2. Thus, for all b ∈ {0, 1}, conditioned on c = c′, the distribution of the responses of Σ′
eqv1,k and Σ′

eqv2,k

is identical to the distribution of the responses of Σeqv1,k(b, ·, ·) and Σeqv1,k(b, ·, ·), respectively. Then, from
Eqs. (3) and (4), we have

Adveqv0(Aeqv0) =
1

q
Adveqv,k(Aeqv,k). (5)

From Lemma 4.8, Adveqv0(Aeqv0) = 0 holds. Therefore, for any computationally unbounded algorithm
Aeqv,k and any k ∈ [1, qS], Adveqv,k(Aeqv,k) = 0.

From here, we evaluate Adveqv(A), which is the advantage of A in Gameeqv. By the hybrid argument,
we get

Adveqv(A) ≤
qS∑
i=1

Adveqv,k(A).

Since Adveqv,k(A) = 0 for all k ∈ [1, qS], we have Adveqv(A) ≤ 0. Also Adveqv(A) ≥ 0 because the advantage
is a non-negative real number. Therefore, we obtain Adveqv(A) = 0.

Now we prove Proposition 4.6 by using this lemma.

proof of Proposition 4.6. We construct a distinguisher Aeqv in the game Gameeqv in Lemma 4.7 from F as
follows.

Setup: Aeqv receives (G, q, G). It chooses H
$← G and assigns (G, q, G,H) to (G, q, G,H) of a public

parameter pp. It sets up pk and tables as in Game3 or Game4. It returns (H, sk). It initializes a
counter ctr ← 1. It runs F on inputs pp and pk .

Random Oracle Hck(m): Aeqv responds as in Game3 or Game4.

Random Oracle Hc(T̃ , p̃k ,m) : Aeqv responds as in Game3 or Game4.

20

Random Oracle Hagg((Y,Z), L) : Aeqv responds as in Game3 or Game4.

Signing Oracle: In the case where Tb[m] = 0, Aeqv responds as in Game3 or Game4. In the case where
Tb[m] = 1, instead of S(pp, i, sk , L,m), it executes Round 1 and Round 2 as follows.

Round 1: Aeqv generates p̃k as in S(pp, i, sk , L,m). It looks up ρ from Ttd[m]. For all i ∈ nh, it re-
peats the following steps. It sets Ii ← ctr, obtains Ti by querying (Ii, ρ) to Σeqv1, computes ctr ←
ctr + 1. After completing steps for all i ∈ nh, it stores TΣ[Is] ← (m,L, p̃k , nh, {(Ti, ti, Ii)}i∈nh

)
and returns {Ti}i∈nh

.

Round 2: Aeqv looks up (m,L, p̃k , nh, {(Ti, ti, Ii)}i∈nh
) from TΣ[Is], computes T̃ and c as in S(pp, i, sk , L,m).

For all i ∈ nh, it obtains (si, zi) by querying (Ii, tic) to Σeqv2. It returns {(zi, si)}i∈nh
.

Output: Aeqv returns 1 if F wins the game. Otherwise, it returns 0.

For Signing Oracle of Aeqv, the distribution of responses is the same as in Game3 when b = 0 where b is a
bit chosen by the challenger in Gameeqv. That also is the same as that in Game4 when b = 1. Thus, we have

Adveqv(Aeqv) = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|
= |Pr[Game3 = 1]− Pr[Game4 = 1]|

where b′ is Aeqv’s output. From Lemma 4.7, we have Adveqv(Aeqv) = 0. Thus, we obtain Pr[Game3 = 1] =
Pr[Game4 = 1].

Proposition 4.9. If G is a (t′, ε′)-DDH group, then

|Pr[Game4 = 1]− Pr[Game5 = 1]| ≤ ε′, and
tF ≥ t′ − (3qH + 6qSN + 3qS + 2N + 6)tmul

−O(qH + qSN)

where tmul is the time for a scalar multiplication in G.

proof of Proposition 4.9. We construct a distinguisher A′
DDH who solves the DDH problem by running F

internally as follows.

Setup: A′
DDH receives (G,H, Y, Z) ∈ G4. For a public parameter pp, it uses H instead of uniformly choosing

H from G. For a public key pk , it assigns (pk , sk)← ((Y,Z),⊥). The rest of pp and tables are set up
as in Game4 or Game5. It runs F on inputs pp and pk .

Random Oracle Hck(m): A′
DDH responds as in Game4 or Game5.

Random Oracle Hc(T̃ , p̃k ,m) : A′
DDH responds as in Game4 or Game5.

Random Oracle Hagg((Y,Z), L) : A′
DDH responds as in Game4 or Game5.

Signing Oracle: A′
DDH responds as in Game4 or Game5.

Output: A′
DDH returns 1 if F wins the game. Otherwise, it returns 0.

In the case where Tb[m] = 0, A′
DDH can respond to Signing Oracle though A′

DDH does not have the secret
key because the secret key is unnecessary for executing Round 1 and Round 2 is not executed.

If (G,H, Y, Z) is a DH tuple, the distribution of pk is the same as that in Game4. If (G,H, Y, Z) is a
non-DH tuple, the distribution of pk is the same as that in Game5. Then, we have

AdvddhG (A′
DDH) = |Pr[b′ = 1|(G,H,P,Q) is a DH tuple]− Pr[b′ = 1|(G,H,P,Q) is a non-DH tuple]|

= |Pr[Game4 = 1]− Pr[Game5 = 1]|

21

where b′ is A′
DDH’s output. From the assumption that G is a (t′, ε′)-DDH group, we have AdvddhG (A) ≤ ε′.

Therefore, we obtain |Pr[Game4 = 1]− Pr[Game5 = 1]| ≤ ε′.
Now we consider the running time of A′

DDH. In one signing query, there are at most 6N scalar
multiplications, O(N) other non-cryptographic operations, a query to Hc, a query to Hck, and O(N)
queries to Hagg. For random oracle queries, we only evaluate the cost of Hck because Hck is more ex-
pensive than Hc and Hagg. In one query to Hck, there are 2 scalar multiplications and O(1) other non-
cryptographic operations. In Check, it computes 2N + 6 scalar multiplications and O(N) other non-
cryptographic operations. From these evaluations and the fact that A′

DDH runs F once, we obtain tF ≥
t′ − (3qH + 6qSN + 3qS + 2N + 6)tmul −O(qH + qSN).

Proposition 4.10. Pr[Game5 = 1] = Pr[Game6 = 1]

proof of Proposition 4.10. The difference between Game5 and Game6 is that, in Game6, the challenger defines
Hagg(L[i], L) for all i ∈ [1, n]. Since the challenger gives F only Tagg[(Y,Z), L], where ((Y,Z), L) is queried,
this change does not affect the probability of F winning the game. Thus, we have Pr[Game5 = 1] =
Pr[Game6 = 1].

Proposition 4.11. Pr[Game6 = 1] ≤ (2qH + qS + 2)/q

proof of Proposition 4.11. At the end of Game6, F outputs m∗, L∗, and σ̃∗ = (c∗, z̃∗, s̃∗). If F wins, then
(Y ∗, Z∗) ∈ L∗, Tb[m

∗] = 0, and σ̃∗ is a valid forgery on m∗ under (U1, U2) = Hck(m
∗). Then, there exists

c∗ = Hc(T̃
∗, p̃k

∗
,m∗) in Tc s.t.

(a) T̃ ∗ = z̃∗(U1, U2)
T + s̃∗(G,H)T − c∗ · p̃k

∗
,

(b) p̃k
∗
is the aggregated key computed from L∗,

(c) (U1, U2)
T = ρ∗(G,H)T .

Below, we show that F can make such a query with probability at most (2qH + qS + 2)/q.
To evaluate the probability, we rewrite the right-hand of the equation in (a) by (G,H)T and (Y ∗, Z∗)T .

Since (G,H, Y ∗, Z∗) in Game6 is a non-DH tuple, (G,H)T and (Y ∗, Z∗)T are linearly independent. Then,

we can denote the aggregated key p̃k
∗
as ϕ∗ (G,H)

T
+ ψ∗ (Y ∗, Z∗)

T
where ϕ∗, ψ∗ ∈ Zq. Substituting the

above and (c) in the equation in (a), we have

T̃ ∗ = (z̃∗ρ∗ + s̃∗ − c∗ϕ∗) (G,H)T − c∗ψ∗ (Y ∗, Z∗)
T
. (6)

Since (G,H)T and (Y ∗, Z∗)T are linearly independent, the values of coefficients (z̃∗ρ∗ + s̃∗ − c∗ϕ∗) and

c∗ψ∗ which make Eq. (6) hold are uniquely determined at the point where (T̃ ∗, p̃k
∗
,m∗) is queried to Hc.

Moreover, the values of ϕ∗ and ψ∗ are uniquely determined at the same point since the query includes p̃k
∗
.

For the coefficient c∗ψ∗, c∗ is determined by Hc and ψ∗ is also determined by Hagg.
Here, we evaluate Pr[Game6 = 1]. For R ∈ G2, let ϕ(R) and ψ(R) be the elements in Zq s.t. R =

ϕ(R)(G,H)T + ψ(R)(Y ∗, Z∗)T . Let Eagg be the event where there exists at least one random oracle query

Hagg((Y
′, Z ′), L′) s.t. (Y ∗, Z∗) ∈ L′ and ψ(p̃k

′
) = 0 for the aggregated key p̃k

′
computed from L′. Then, we

have

Pr[Game6 = 1] = Pr[Game6 = 1 ∧ Eagg] + Pr[Game6 = 1 ∧ Eagg]

≤ Pr[Eagg] + Pr[Game6 = 1 ∧ Eagg]. (7)

Also, let Echal be the event where there exists at least one random oracle query c′ = Hc(T̃
′, p̃k

′
,m′) s.t.

ψ(p̃k
′
) ̸= 0, Tb[m

′] = 0, and ψ(T̃ ′) = c′ψ(p̃k
′
). If Game6 = 1 occurs, Tb[m

∗] = 0 holds from the winning

conditions. Also, if Game6 = 1 occurs, there exists at least one random oracle query to Hc making ψ(T̃ ∗) =

22

c∗ψ(p̃k
∗
) hold since F ’s output satisfies Eq. (6). There is no query Hagg((Y

′, Z ′), L′) s.t. (Y ∗, Z∗) ∈ L′

and ψ(p̃k
′
) = 0 when Eagg occurs. Thus, if Eagg occurs, then ψ(p̃k

∗
) ̸= 0 holds. Therefore, if Game6 = 1

and Eagg occur, then Echal occurs. Then, we have Pr[Game6 = 1 ∧ Eagg] ≤ Pr[Echal]. Applying this fact to
Eq. (7), we obtain

Pr[Game6 = 1] ≤ Pr[Eagg] + Pr[Echal]. (8)

First, we evaluate Pr[Eagg]. For an aggregate key p̃k
′
computed from L′, ψ(p̃k

′
) =

∑n′

i=1 t
′
iψ(L

′[i]) holds
where n′ is the number of the public keys in L′ and t′i = Hagg(L

′[i], L′). Since the challenger defines the value

t′i for all i ∈ [1, n′] when L′ is first queried to Hagg, {t′i}n
′

i=1 is uniformly chosen from Zn′

q after {ψ(L′[i])}n′

i=1

is fixed. If L′ includes (Y ∗, Z∗), there exists at least one i s.t. ψ(L′[i]) ̸= 0. Thus, per one query to Hagg,∑n′

i=1 t
′
iψ(L

′[i]) = 0 holds with probability at most 1/q. Since at most qH + qS +1 public key lists appear in
Tagg, we obtain

Pr[Eagg] ≤ (qH + qS + 1)/q. (9)

Next, we evaluate Pr[Echal]. Let Echal,j be the event where the j-th random oracle query c′j = Hc(T̃
′
j , p̃k

′
j ,m

′
j)

satisfies following conditions.

Ej,1 : ψ(p̃k
′
j) ̸= 0, Ej,2 : Tb[m

′
j] = 0, and Ej,3 : ψ(T̃ ′

j) = c′jψ(p̃k
′
j).

Note that there are at most qH + 1 queries Hc(T̃
′, p̃k

′
,m′) s.t. Tb[m

′] = 0. From this fact and the union
bound, we have

Pr[Echal] ≤
qH+1∑
i=1

Pr[Echal,j]

=

qH+1∑
i=1

Pr[Ej,1 ∧ Ej,2 ∧ Ej,3]

≤
qH+1∑
i=1

Pr[Ej,3|Ej,1 ∧ Ej,2]. (10)

As described previously, at the point where (T̃ ′
j , p̃k

′
j ,m

′
j) is queried to Hc, the value of ψ(T̃

′
j) and ψ(p̃k

′
j) are

fixed. Also, conditioned on Ej,1 ψ(p̃k
′
j) ̸= 0 holds. Thus, conditioned on Ej,1 and Ej,2, before c

′
j is chosen, c

′
j

making ψ(T̃ ′
j) = c′jψ(p̃k

′
j) hold is determined uniquely. Since c′j is uniformly chosen from Zq independently

of the j-th random oracle query, Pr[Ej,3|Ej,1 ∧ Ej,2] is at most 1/q. From this and Eq. (10), we have

Pr[Echal] ≤
qH+1∑
i=1

1/q = (qH + 1)/q. (11)

From Eqs. (8), (9), and (11), we obtain

Pr[Game6 = 1] ≤ (2qH + qS + 2)/q.

5 Performance Comparison

In this section, we compare our scheme with other related two-round multi-signature schemes, which are
proven secure in the PPK model based on the DL, DDH, or OMDL assumptions, e.g., MuSig2 [7], DWMS [8],

23

HBMS [9], LK [10], MuSig-DN [6], TZ [24], mBCJ [5], PW-1 [23], and PW-2 [23]. We remark the followings on
HBMS and mBCJ. For HBMS, in [9], Bellare and Dai showed the security proof of HBMS under and without
using the AGM. Especially, we call the former HBMS-AGM. For mBCJ, instead of the original mBCJ, we use
a modified mBCJ which is proven secure in the PPK model. This is because the original mBCJ is proven
secure in the key verification model. For more details, see B.

We compare the underlying group sizes for 128-bit security. Thus, we need to estimate the requirements
of the sizes of the underlying groups considering the reduction loss under 128-bit security for all schemes. We
also compare whether there exists the NIST standardized EC that enables a parameter choice with 128-bit
security, which is called the recommended EC hereafter. The way to estimate the size of the underlying
group considering the reduction loss for 128-bit security is described in Section 5.1. Table 1 summarizes the
comparison.

5.1 Estimation of the Underlying Group Size

Here, we explain how to estimate |q|128 which is the size of the underlying group G for 128-bit security.
We estimated |q|128 by the following steps:

Step 1. We obtained inequalities εP ≥ Bp(εF , qs, qH , N, q) and tP ≤ Bt(tF , qs, qH , N, q) from the security
proof, where Bp and Bt are functions derived by the security proof, εP and tP are the success probability
and the running time of an algorithm for solving an underlying problem P , respectively, and εF and
tF are the success probability and the running time of a forger, respectively.

Step 2. We derived the inequality tP /εP ≤ Bt(tF , qs, qH , N, q)/Bp(εF , qs, qH , N, q) =: Bt/p(tF , εF , qs, qH , N, q)
from the previous step.

Step 3. We solved
√
q = Bt/p(2

128, 1, 230, 280, 215, q) for q and set |q|128 ← ⌈log2 q⌉.7

In Step 3, we assumed tDL/εDL = tDDH/εDDH = tOMDL/εOMDL =
√
q. This assumption is natural

because of the following two facts. The first fact is that the best-known attack for solving the DDH problem
and the OMDL problem is to solve the DL problem. The second one is that the known fastest algorithm
for solving the DL problem is Pollard’s ρ algorithm [45], which requires O(

√
q) scalar multiplications in G.

Also, in the same step, we consider the setting where qH = 280, qs = 230, and N = 215. We set qH = 280

referring to a recent collision attack [46] to SHA-1 with complexity 261.2 with a margin. We set qS = 230 for
a large scenario as in [47]. We set N = 215 for a large-scale setting.8

Remarks for Estimation. We estimate |q|128 according to the steps described above and show the results
of this estimation in Column 8 in Table 1. Here, we should remark on the following points for this estimation.

For MuSig2 (ν ≥ 4), we suppose ν = 4 where ν is a unique parameter.
For MuSig2 and DWMS, we obtained Bp and Bt from [9, Appendix A]. For HBMS-AGM, we obtained Bp

and Bt from [9, Theorem 7.1]. For LK, we obtained Bp and Bt from [10, Theorem 4.1]. For Bt of this, we
suppose tP = tF because there is no evaluation of the running time of the reduction and the fact that the
reduction runs a forger only one time. For MuSig-DN, we obtained Bp and Bt from [9, Appendix A]. For
Bp and Bt of this scheme, the terms except for constants and the ones related to the DL assumption were
ignored. For HBMS, we obtained Bp and Bt from [9, Theorem 3.2, 3.4, and 7.2]. For TZ, we obtained Bp

and Bt from [24, Theorem 2]. For mBCJ, we obtain Bp and Bt from Theorem B.1. For PW-1 and PW-2, we
obtained Bp and Bt from [23, Theorem 3.5 and 3.3], respectively.

For MuSig2 (ν = 2), DWMS, HBMS-AGM, LK, and PW-1 the results of their estimation of |q|128 are
257, 258, or 260. We chose the P-256 curve as the recommended EC, even though the order of this curve is
slightly smaller for 128-bit security. We ignore the very small exceedance of the group size, whose effects on
concrete security are small.

7To simplify the calculation, we ignore non-dominant terms in Bt/p.
8This large-scale setting had little effect on the estimation here because the terms related to N in Bt/p are not dominant.

24

5.2 Comparison

We compare the efficiency of the related two-round multi-signature schemes in Table 1 under provably secure
parameters.

First, we compare our scheme to the schemes having large reduction loss which are proven secure without
using the AGM, i.e., MuSig2 (ν ≥ 4), MuSig-DN, HBMS, TZ, and mBCJ. Among these schemes, our scheme
has the most efficient signature size and communication complexity. More concretely, |σ̃|128 of ours is reduced
by about 22% from MuSig2 (ν ≥ 4) and MuSig-DN, about 60% from HBMS, and about 45% from TZ and
mBCJ. Moreover, we can use NIST standardized P-384 to ensure 128-bit security for our scheme, while other
schemes have no such standardized EC. These benefits are because the DDH assumption enables us to prove
the security without the rewinding technique. However, remind that the DDH assumption is a stronger (not
weaker) computational assumption than the DL assumption. For MuSig2 (ν ≥ 4), the AOMDL assumption
is also stronger than the DL assumption. Multi-signatures of MuSig2 (ν ≥ 4) and MuSig-DN consist of only
an element in G and an element in Zq, whose form is the same as the ordinary Schnorr signature. Thus, these
schemes are more compatible with a currently deployed scheme than the other schemes. For MuSig2 (ν ≥ 4)
and TZ, the first round of signing protocols can be executed before a message to be signed is determined.

Next, we compare our scheme to the schemes proven secure in the AGM, i.e., MuSig2 (ν = 2), DWMS,
HBMS-AGM, and LK. The signature size and the communication complexity of these schemes are more
efficient than ours. Concretely, |σ̃|128 of our scheme is 2.2 times longer than MuSig2 (ν = 2) and DWMS
and 1.5 times longer than HBMS-AGM and LK. This is because these schemes are proven secure without
rewinding by using AGM and achieve tight security.9 Our scheme also does not require rewinding to prove
the security because of the DDH assumption, while ours has the reduction loss yielded from the technique of
the proof of the RSA-FDH signature scheme by Coron. Thus, |q|128 of ours is larger than the other schemes.
Note that our scheme does not require the AGM. For MuSig2 (ν = 2) and DWMS, the signature size is most
efficient among all the two-round schemes.

Finally, we compare our scheme to PW-1 and PW-2. To ensure 128-bit security, PW-1 can use P-256,
and PW-2 and our scheme can use P-384. The signature size and communication complexity of our scheme
are the most efficient among these schemes. The signature size of ours is reduced by about 67% and 40%
from PW-1 and PW-2, respectively. The communication complexity of ours is reduced by about 57% and
41% from PW-1 and PW-2, respectively. PW-1 does not support key aggregation. All schemes are proven
secure under the DDH assumption in the random oracle model. Thus, our scheme can be considered an
improvement on PW-1 and PW-2 under provably secure parameters.

Conclusion of Comparison. The above comparison shows a trade-off between the efficiency and the
strength of underlying assumptions and one between the efficiency and the necessity of the AGM.

Among schemes that do not need the AGM to prove their security, in concrete security, our scheme
achieves the smallest signature size and the communication complexity. Moreover, our scheme has a rec-
ommended EC, i.e., P-384, for 128-bit security. This fact makes the implementation of our scheme easier
because we do not need to design a new suitable EC.

6 Implementation Results

In this section, we explain our machine implementation of the proposed scheme and the evaluation of the
running time of our implementation. The result of our evaluation shows that our proposed scheme can be
implemented easily in a real-world environment with reasonable running time in practice. We show the
detailed results of our evaluation in Table 2.

Environment. Our implementation is written in C++. We implemented our scheme by using the mcl
library [48] and P-384 for the EC. We used g++ version 9.4.0 for compilation. We evaluated the running
time of algorithms of our scheme on a computer provided with a 1.30GHz Intel(R) Core(TM) i7-1065G7
CPU and 16.0 GB of RAM and running WSL2 on Windows 10 Home version 21H2.

9HBMS-AGM can eliminate the reduction loss caused by the technique of Coron [42] due to the AGM. For more details,
see [9, Appendix I].

25

Table 2: Execution Time Evaluation of Our Scheme under P-384 (in milliseconds).

N = 3 N = 5 N = 10 N = 15 N = 50 N = 100

Key Generation.
Kg 4.6× 10−1 4.7× 10−1 4.8× 10−1 4.9× 10−1 5.1× 10−1 5.2× 10−1

Signing Protocol.

Round 1 (Computing p̃k) 1.4 2.5 5.0 8.0 29 64
Round 1 (Others) 1.0 1.1 1.1 1.1 1.1 1.2

Round 2 1.7× 10−2 2.0× 10−2 2.7× 10−2 3.5× 10−2 9× 10−2 1.7× 10−1

Aggregate 1.8× 10−4 2.2× 10−4 3.0× 10−4 4.1× 10−4 1× 10−3 2× 10−3

Verification.

Vf without p̃k 3.0 4.1 6.9 9.6 31 66

Vf with p̃k 1.5 1.6 1.6 1.6 1.7 1.7

Settings. Here, we describe the details of the setting of the evaluation. In Table 2, we show the average
time of the 1000 loops of executions under a fixed public parameter. As a message to be signed, we generated
a random alphabet string of 100 characters for each loop by using the command mt19937 in the random
library. We set the size of a message as above considering the size of the hash value (256 bits) of a transaction
to be signed in Bitcoin with a margin. We evaluated the running time for the setting where N are 3, 5, 10,
15, 50, and 100. The cases where N are 3, 5, 10, and 15 are the typical numbers of signers for Multi-Sig
Wallets, and the cases where N are 50 and 100 are larger-scale settings, respectively.

We measured Round 1 of the signing protocol in two phases. Specifically, one phase is computing the

aggregated key p̃k from a public-key list L, and the other phase is computing other computations. For the

verification, we measured the time for the verification algorithm without p̃k shown in Section 4.1 and for the

one given an aggregated key p̃k instead of a public-key list L.

Results. The key generation took about 0.5 ms. This can be regarded as the time of two scalar multipli-
cations in G.

The total running times of whole algorithms in the signing protocol are about 2.4, 3.6, 6.1, and 9.1 ms
under the settings N = 3, 5, 10, and 15, respectively. For the settings where N = 50 and N = 100, those are
about 30.1 ms and 65.2 ms, respectively. From these results, notice that the time of the scalar multiplication
in G is a dominant factor for running time. There are 2N scalar multiplications in Round 1 of the signing

protocol for the computation of an aggregated key p̃k . By precomputing p̃k , Round 1 took only about 1 ms
because it needs 4 scalar multiplications irrelevantly to N . Since there is no scalar multiplication in Round
2 and Aggregate, they were completed within 0.2 ms even when N = 100.

For Vf without p̃k , which is the normal verification, it was completed within 10 ms when N = 15. Also,
it took about 66 ms even when N = 100. Since the verification needs only 6 scalar multiplications by using

p̃k , Vf with p̃k took about 1.6 ms irrelevantly to N .
The above result shows that each algorithm is completed within 100ms even when N = 100. This can

be regarded as sufficiently reasonable running time in practice.

Comparison. Here, we compare the computation time with those of PW-2, which can be implemented
under P-384 for 128-bit security. For this comparison, we estimate the computation time of PW-2. From
the result of the above implementation, we assume that one scalar multiplication in G takes 0.25 ms.

Since the key generation algorithm and the computation of the aggregated key in PW-2 are the same as
ours, the computation time of these is identical to ours. Moreover, because the time of computation of the
aggregated key is dominant when the aggregated key is not pre-computed, the computation time of PW-2
is close to ours in large-scale settings. For example, when N is 100, the computation time of an aggregated
key is about 64 ms, which is as same as that of our scheme shown in Table 2. Below, we consider the case
where the aggregated key is pre-computed. Because there are 11 scalar multiplications in Round 1 except
for the computation of the aggregated key, Round 1 (Others) takes about 2.75 ms. This time is about 2.75

times greater longer than ours. Since the verification needs 13 scalar multiplications by using p̃k , Vf with

p̃k of PW-2 takes about 3.25 ms, which is more than twice as long as ours.

26

From the above comparison, our scheme improves the computation time compared to PW-2 in the setting
when N is small.

Communication Time. In this part, we estimate the communication time of our scheme and PW-2 and
compare them. We consider the case where each signer is connected to a hub by WAN. We suppose the
WAN environment whose bandwidth is 100 Mbps and latency is 30 ms.

As the result of the estimation, latency is dominant even when N = 100 for both schemes. In other words,
there is a small difference in the communication times between both schemes. Specifically, the communication
time for each round of our scheme is about 61 ms, and the communication time for each round of PW-2 is
about 62 ms. For both schemes, 60 ms of these communication times is the latency.

Here, we show how we derived communication times of both schemes. In our signing protocol, in the
first round, each signer sends 2 elements in G to the hub and receives 2(N − 1) elements in G from the hub,
and in the second round, it sends 2 elements in Zq to the hub and receives 2(N − 1) elements in Zq from
the hub. Then, when N is 100, the communication time for the first round is 770/(100× 103) + 30 + 770×
99/(100 × 103) + 30 ≈ 61 ms, and that for the second round is 768/(100 × 103) + 30 + 768 × 99/(100 ×
103) + 30 ≈ 61 ms. In PW-2, in the first round, each signer sends 3 elements in G to the hub and receives
3(N − 1) elements in G from the hub, and in the second round, it sends 4 elements in Zq to the hub and
receives 4(N − 1) elements in Zq from the hub. Then, when N is 100, the communication time for the first
round is 1155/(100 × 103) + 30 + 1155 × 99/(100 × 103) + 30 ≈ 62 ms, and that for the second round is
1536/(100× 103) + 30 + 1536× 99/(100× 103) + 30 ≈ 62 ms.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR22M1, Japan JST AIP Acceleration
Research JPMJCR22U5, Japan, JSPS KAKENHI Grant Numbers JP18K11292, JP18K11293, JP18H01438,
JP18K18055, JP19H01109, JP22KJ1366, JP23H00479.

References

[1] K. Itakura and K. Nakamura, “A public-key cryptosystem suitable for digital multisignatures,” NEC
research & development, 1983.

[2] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup multisignatures: extended abstract,” CCS
2001, pp.245–254, ACM, 2001.

[3] M. Bellare and G. Neven, “Multi-signatures in the plain public-key model and a general forking lemma,”
CCS 2006, pp.390–399, ACM, 2006.

[4] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple schnorr multi-signatures with applications
to bitcoin,” Des. Codes Cryptogr., vol.87, no.9, pp.2139–2164, 2019.

[5] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs, “On the security
of two-round multi-signatures,” IEEE S&P 2019, pp.1084–1101, IEEE, 2019.

[6] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille, “Musig-DN: Schnorr multi-signatures with verifiably
deterministic nonces,” CCS 2020, pp.1717–1731, ACM, 2020.

[7] J. Nick, T. Ruffing, and Y. Seurin, “Musig2: Simple two-round schnorr multi-signatures,” CRYPTO
2021, LNCS, vol.12825, pp.189–221, Springer, 2021.

[8] H.K. Alper and J. Burdges, “Two-round trip schnorr multi-signatures via delinearized witnesses,”
CRYPTO 2021, LNCS, vol.12825, pp.157–188, Springer, 2021.

27

[9] M. Bellare and W. Dai, “Chain reductions for multi-signatures and the HBMS scheme,” ASIACRYPT
2021, LNCS, vol.13093, pp.650–678, Springer, 2021.

[10] K. Lee and H. Kim, “Two-Round Multi-Signatures from Okamoto Signatures.” Cryptology ePrint
Archive, Paper 2022/1117, 2022.

[11] A. Boldyreva, “Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme,” PKC 2003, LNCS, vol.2567, pp.31–46, Springer, 2003.

[12] A. Boldyreva, C. Gentry, A. O’Neill, and D.H. Yum, “Ordered multisignatures and identity-based
sequential aggregate signatures, with applications to secure routing,” CCS 2007, pp.276–285, ACM,
2007.

[13] D. Le, A. Bonnecaze, and A. Gabillon, “Multisignatures as secure as the diffie-hellman problem in
the plain public-key model,” Pairing-Based Cryptography-Pairing 2009, LNCS, vol.5671, pp.35–51,
Springer, 2009.

[14] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential aggregate signatures and
multisignatures without random oracles,” EUROCRYPT2006, LNCS, vol.4004, pp.465–485, Springer,
2006.

[15] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Securing multiparty signatures against
rogue-key attacks,” EUROCRYPT 2007, LNCS, vol.4515, pp.228–245, Springer, 2007.

[16] R.E. Bansarkhani and J. Sturm, “An efficient lattice-based multisignature scheme with applications to
bitcoins,” CANS 2016, LNCS, vol.10052, pp.140–155, Springer, 2016.

[17] C. Ma and M. Jiang, “Practical lattice-based multisignature schemes for blockchains,” IEEE Access,
vol.7, pp.179765–179778, 2019.

[18] M. Fukumitsu and S. Hasegawa, “A lattice-based provably secure multisignature scheme in quantum
random oracle model,” ProvSec 2020, LNCS, vol.12505, pp.45–64, Springer, 2020.

[19] I. Damg̊ard, C. Orlandi, A. Takahashi, and M. Tibouchi, “Two-round n-out-of-n and multi-signatures
and trapdoor commitment from lattices,” PKC 2021, LNCS, vol.12710, pp.99–130, Springer, 2021.

[20] C. Boschini, A. Takahashi, and M. Tibouchi, “Musig-L: Lattice-based multi-signature with single-round
online phase,” CRYPTO 2022, LNCS, vol.13508, pp.276–305, Springer, 2022.

[21] National institute of standards and technology, “FIPS Pub 186-4 Federal Information Processing Stan-
dards Publication Digital Signature Standard (DSS),” 2013.

[22] C. Schnorr, “Efficient identification and signatures for smart cards,” CRYPTO 1989, LNCS, vol.435,
pp.239–252, Springer, 1989.

[23] J. Pan and B. Wagner, “Chopsticks: Fork-free two-round multi-signatures from non-interactive assump-
tions.” Cryptology ePrint Archive, Paper 2023/198, 2023.

[24] S. Tessaro and C. Zhu, “Threshold and multi-signature schemes from linear hash functions.” Cryptology
ePrint Archive, Paper 2023/276, 2023.

[25] D. Kales and G. Zaverucha, “An attack on some signature schemes constructed from five-pass identifi-
cation schemes,” CANS 2020, LNCS, vol.12579, pp.3–22, Springer, 2020.

[26] K. Sakumoto, T. Shirai, and H. Hiwatari, “Public-key identification schemes based on multivariate
quadratic polynomials,” CRYPTO 2011, LNCS, vol.6841, pp.706–723, Springer, 2011.

28

[27] G. Fuchsbauer, E. Kiltz, and J. Loss, “The algebraic group model and its applications,” CRYPTO 2018,
LNCS, vol.10992, pp.33–62, Springer, 2018.

[28] M. Zhandry, “To label, or not to label (in generic groups),” CRYPTO 2022, LNCS, vol.13509, pp.66–96,
Springer, 2022.

[29] C. Zhang, H. Zhou, and J. Katz, “An analysis of the algebraic group model,” ASIACRYPT 2022, LNCS,
vol.13794, pp.310–322, Springer, 2022.

[30] J.P. Aumasson and W. Meier, “Zero-sum distinguishers for reduced keccak-f and for the core functions
of luffa and hamsi,” Presented at the rump session of CHES 2009, 2009.

[31] D. Khovratovich and I. Nikolic, “Rotational cryptanalysis of ARX,” FSE 2010, LNCS, vol.6147, pp.333–
346, Springer, 2010.

[32] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer, “Rebound distinguishers: Re-
sults on the full whirlpool compression function,” ASIACRYPT 2009, LNCS, vol.5912, pp.126–143,
Springer, 2009.

[33] H. Gilbert and T. Peyrin, “Super-sbox cryptanalysis: Improved attacks for aes-like permutations,” FSE
2010, LNCS, vol.6147, pp.365–383, Springer, 2010.

[34] E. Goh, S. Jarecki, J. Katz, and N. Wang, “Efficient signature schemes with tight reductions to the
diffie-hellman problems,” J. Cryptol., vol.20, no.4, pp.493–514, 2007.

[35] M. Bellare and G. Neven, “New multi-signature schemes and a general forking lemma,” 2005. https:

//soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf.

[36] M. Fukumitsu and S. Hasegawa, “A tightly secure ddh-based multisignature with public-key aggrega-
tion,” Int. J. Netw. Comput., vol.11, no.2, pp.319–337, 2021.

[37] A. Bagherzandi, J.H. Cheon, and S. Jarecki, “Multisignatures secure under the discrete logarithm
assumption and a generalized forking lemma,” CCS 2008, pp.449–458, ACM, 2008.

[38] T. Okamoto, “Provably secure and practical identification schemes and corresponding signature
schemes,” CRYPTO 1992, LNCS, vol.740, pp.31–53, Springer, 1992.

[39] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs: Short proofs for
confidential transactions and more,” IEEE S&P 2018, pp.315–334, IEEE, 2018.

[40] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova, “On the (in)security of ROS,” EURO-
CRYPT 2021, LNCS, vol.12696, pp.33–53, Springer, 2021.

[41] T.P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” CRYPTO
1991, LNCS, vol.576, pp.129–140, Springer, 1991.

[42] J. Coron, “On the exact security of full domain hash,” CRYPTO 2000, LNCS, vol.1880, pp.229–235,
Springer, 2000.

[43] M. Bellare, A. Boldyreva, and S. Micali, “Public-key encryption in a multi-user setting: Security proofs
and improvements,” EUROCRYPT 2000, LNCS, vol.1807, pp.259–274, Springer, 2000.

[44] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing efficient protocols,”
CCS 1993, pp.62–73, ACM, 1993.

[45] J.M. Pollard, “Monte Carlo methods for index computation mod p,” Mathematics of Computation,
vol.32, pp.918–924, 1978.

29

https://soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf
https://soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf

[46] G. Leurent and T. Peyrin, “SHA-1 is a shambles: First chosen-prefix collision on SHA-1 and application
to the PGP web of trust,” USENIX Security Symposium 2020, pp.1839–1856, USENIX Association,
2020.

[47] R. Gay, D. Hofheinz, L. Kohl, and J. Pan, “More efficient (almost) tightly secure structure-preserving
signatures,” EUROCRYPT 2018, LNCS, vol.10821, pp.230–258, Springer, 2018.

[48] S. Mitsunari, “mcl - a portable and fast pairing-based cryptography library.,” 2022/Apr/10 v1.60.
https://github.com/herumi/mcl.

A General Forking Lemma

Here, we review the General Forking Lemma [3].

Lemma A.1 (General Forking Lemma [3]). Let Q ≥ 1 be an integer, and C a set of size |C| ≥ 2,
where |C| is the size of C. Let IG be a randomized algorithm that is called the input generator and A be a
randomized algorithm that, on input (x, h1, . . . , hQ) where x is an input of the forking lemma generated by IG,
and hi ∈ H for ∀i ∈ [1, Q], runs at most tA time and returns (I, σ) ∈ [0, Q]×{0, 1}∗. The accepting probability
of A, denoted acc, is defined as the probability that J ≥ 1 in the experiment x

$← IG, ρ
$← R, h1, . . . , hQ

$←
H, (J, σ)← A(x, h1, . . . , hQ; ρ) where R is the set of random tapes. The forking algorithm FA(x) associated
to A is the randomized algorithm that takes input x proceeds as follows:

1. ρ
$← R

2. h1, . . . , hQ
$← H

3. (J, σ)← A(x, h1, . . . , hQ; ρ)

4. If J = 0, then return (0, ∅, ∅)

5. h′J , . . . , h
′
Q

$← H

6. (J ′, σ′)← A(x, h1, . . . , hJ−1, h
′
J , . . . , h

′
Q; ρ)

7. If (J = J ′ ∧ hJ ̸= hJ′) return (1, σ, σ′).

8. Else return (0, ∅, ∅).

Let

frk = Pr[b = 1 : x
$← IG, (b, σ, σ′)

$← FA(x)].

Then,

frk ≥ acc ·
(
acc

Q
− 1

|C|

)
.

B mBCJ

Drijvers et al. proposed a secure two-round MS scheme mBCJ [5]. This scheme was constructed by applying
the patch to the insecure MS scheme BCJ [37]. They showed the construction and the security proof that
mBCJ is secure under the DL assumption in the key verification model. Moreover, they roughly described
how to modify mBCJ to be secure in the PPK model. We can obtain a variant scheme of mBCJ which is
secure in the PPK model by applying the way. However, there are no concrete construction and no formal
security proof.

In this section, we show the construction and the security of the variant of mBCJ.

30

https://github.com/herumi/mcl

Pg(1λ)→ pp. On input the security parameter 1λ, the public parameter generation algorithm chooses
(G, q, G), hash functionsHc : {0, 1}∗ → Zq, andHck : {0, 1}∗ → G3, and outputs pp = (G, q, G,Hc, Hck).

Kg(pp)→ (pk , sk). On input pp, the key generation algorithm chooses x
$← Zq, computes X ← xG, and

outputs a public key pk = X and a secret key sk = x.

⟨{S(pp, i, sk i, L,m)}ni=1⟩ → σ̃. Each signer proceeds with the signing protocol as follows.

Round 1: Each signer computes ck = (P,Q,R) ← Hck(m), chooses (ri, αi, βi)
$← Z3

q, computes
ti,1 ← αiG+ βiQ, and ti,2 ← αiP + βiR+ riG and broadcasts (ti,1, ti,2) to the cosigners.

Round 2 Each signer receives {(tj,1, tj,2)}j∈{1,...,n}\{i} from the cosigners. It computes t̃1 ←
∑n

j=1 tj,1,

t̃2 ←
∑n

j=1 tj,2, ci ← H(Xi, t̃1, t̃2, L,m), and si ← xici + ri mod q and broadcasts (αi, βi, si).

Aggregate Each signer receives {(αj , βj , sj)}j∈{1,...,n}\{i} from the cosigners. It computes α̃ ←∑n
j=1 αj mod q, β̃ ←

∑n
j=1 βj mod q, and s̃ ←

∑n
j=1 sj mod q. It also computes ci ←

H(Xi, t̃1, t̃2, L,m) for all i ∈ [1, n] and Ã← s̃G−
∑n

i=1 ciXi. It outputs σ̃ = (Ã, s̃, α̃, β̃).

Vf(pp, {pk j}nj=1, σ̃,m)→ {0, 1}. On input pp, {pk j}nj=1, σ̃, and m, the verification algorithm computes ck =

(P,Q,R) ← Hck(m), t̃1 ← α̃G + β̃Q, t̃2 ← α̃P + β̃R + Ã, and cj ← H(Xj , t̃1, t̃2, L,m) for all j. It

outputs 1 if Ã = s̃G−
∑n

i=1 ciXi holds. Otherwise, it outputs 0.

The following theorem states that this variant of mBCJ is secure under the DL assumption in the PPK
model.

Theorem B.1. If there exists a forger F who (tF , qS , qH , N, εF)-breaks mBCJ, then there exists an algorithm
B which solves the DL problem with probability at least ε in time at most t s.t.

ε ≥ (1− qS/q)2 ε2F/(qHe2(qS + 1)2)− 1/q, and

t ≤ 2tF + (6qH + 12qS + 2N + 16)texp +O(N(qS + qH)),

where e is the base of the natural logarithm and tmul is the time of an scalar multiplication in G.

Proof. We construct B which solves the DL problem using F . B on input (G, q, G) and X, which are a
parameter and an instance of the DL problem, outputs x s.t. X = xG.

To construct B, we construct another algorithm A as follows. On input (G, q, G,X), a random tape ρ
and h1, . . . , hqH+qS+1 ∈ Zq, it internally runs F on input (G, q, G) and X as a public parameter pp and a
public key pk . It initiates a counter ctr = 1, tables Tck[·], Tc[·], Tt[·], TΣ[·], and TM [·] to ∅, where Tck[·] and
Tc[·] are random oracle tables for Hck and Hc, respectively, and Tt[·] is a table to store the trapdoor of the
commitment key. Also, it responds to random oracle queries and signing queries as follows.

Random Oracle Hck(m): It returns Tck[m] if Tck[m] is already defined. If Tck[m] is undefined, it responds
as follows. It chooses a bit b which becomes 1 with probability δ = qS/(qS + 1). If b = 1, it chooses

(ω1,1, ω1,2, ω1,3)
$← Z3

q, computes P ← ω1,1G, Q ← ω1,2G, and R ← ω1,3X. If b = 0, it chooses

(ω0,1, ω0,2, ω0,3)
$← Z3

q, computes P ← ω0,1G, Q ← ω0,2X, and R ← ω0,3G. It assigns Tck[m] ←
(P,Q,R), and Tt[m]← (b, ωb,1, ωb,2, ωb,3) and returns Tck[m].

Random Oracle Hc(Xi, t̃1, t̃2, L,m): If Tck[m] is undefined, it makes a query Hck(m). If Tc[Xi, t̃1, t̃2, L,m]
is already defined, it returns h where (h, J) = Tc[Xi, t̃1, t̃2, L,m]. If Tc[Xi, t̃1, t̃2, L,m] is undefined, it
responds as follows.

Case X ∈ L: For j s.t. X ̸= Xj ∈ L, it chooses cj
$← Zq and assigns Tc[Xj , t̃1, t̃2, L,m] ← (cj , 0).

After that, for j s.t. X = Xj ∈ L, it assigns Tc[Xi, t̃1, t̃2, L,m]← (hctr, ctr) and sets ctr ← ctr+1.
It returns h where (h, J) = Tc[Xi, t̃1, t̃2, L,m].

Case X /∈ L: It chooses c
$← Zq, assigns Tc[Xi, t̃1, t̃2, L,m]← (c, 0) and returns c.

31

Signing Queries: It receives (Is,m,L) as a query. IfX /∈ L, it returns ⊥. It executes the following protocol.
Note that it executes the protocol multiple times if there are multiple public keys s.t. X = Xi ∈ L.
At the end of Round 1, it stores TΣ[Is]← (m,L, nh, {(ti,1, ti,2, ui, vi, wi)}i∈nh

) where nh is the set of
the indies of the signers who have X as public keys. If Round 2 is completed, it sets TM [m]← 1.

Round 1: It makes a query Hck(m) if Tck[m] is undefined. It looks up (P,Q,R) from Tck[m], chooses

(ui, vi, wi)
$← Z3

q, computes ti,1 ← uiG and ti,2 ← viG− wiX and broadcasts (ti,1, ti,2).

Round 2: It receives (Is, {(tj,1, tj,2)}j∈{1,...,n}\nh
), looks up (m,L, nh, {(ti,1, ti,2, ui, vi, wi)}i∈nh

) from
TΣ[Is], and (b, ωb,1, ωb,2, ωb,3) from Tt[m]. If (b = 0) or (b = 1 ∧ ω1,3 = 0), it halts with output
(0, ∅). Otherwise, it computes t̃1 ←

∑n
j=1 tj,1, t̃2 ←

∑n
j=1 tj,2, ci ← H(Xi, t̃1, t̃2, L,m), βi ←

(ci − wi)/ω1,3 mod q, αi ← ui − ω1,2βi mod q, and si ← vi − ω1,1αi mod q. It broadcasts
(αi, βi, si).

If F ’s forgery (m∗, L∗, σ̃∗ = (Ã∗, s̃∗, α̃∗, β̃∗)) does not satisfy the conditions of Check in the game of the
security definition or b = 0 where (b, ωb,1, ωb,2, ωb,3) = Tt[m

∗], then A halts with output (0, ∅). Otherwise,

A can get a forgery (m∗, L∗, σ̃∗ = (Ã∗
1, s̃

∗, α̃∗, β̃∗)) s.t. X ∈ L∗, TM [m∗] ̸= 1, Vf(pp, L∗, σ̃∗,m∗) = 1, and
(0, ω0,1, ω0,2, ω0,3) = Tt[m

∗]. Let J be the integer s.t. (c, J) = Tc[X, t̃
∗
1, t̃

∗
2, L

∗,m∗]. It outputs (J, σ =

(L∗, ω0,1, ω0,2, ω0,3, s̃
∗, α̃∗, β̃∗, {cj}|L

∗|
j=1)) where (cj , Ij) = Tc[Xj , t̃

∗
1, t̃

∗
2, L

∗,m∗].
From Lemma B.2, the distribution of A’s responses in Signing Queries is identical to the distribution

of the honest signer’s responses.
Let acc be the probability that A outputs J > 0. Also, we define the following events.

• E1: F ’s forgery satisfies the conditions of Check in the game of the security definition.

• E2: F ’s forgery satisfies b = 0 where (b, ωb,1, ωb,2, ωb,3) = Tt[m
∗].

• E3: A halts because of b = 0 in Signing Queries.

• E4: A halts because of (b = 1 ∧ ω1,3 = 0) in Signing Queries.

Then, we obtain the following equations.

acc = Pr[E1 ∧ E2 ∧ E3 ∧ E4]

= Pr[E3] Pr[E4|E3] Pr[E1|E3 ∧ E4] Pr[E2|E1 ∧ E3 ∧ E4]

E3 means that, for all messages m chosen by F as signing queries, the bit b becomes 1 when Tck[m] is
determined. In the both cases b = 0 and b = 1, the distributions of the responses of Tck[m] are identical.
Because b = 1 occurs with probability δ, and F makes at most qS signing queries, Pr[E3] ≥ δqS .

Conditioned on E3, b = 1 holds with probability 1 for all messages m queried in Signing Queries. Thus,
Pr[E4|E3] is equal to the probability that ω1,3 ̸= 0 for all messages m queried in Signing Queries. Then,
we get Pr[E4|E3] = (1− 1/q)

qS .
Conditioned on E3 ∧ E4, A does not halt in Signing Queries. Thus, Pr[E1|E3 ∧ E4] = εF .
Because the distribution of Hck(·) is independent of the value of bits, and Round 2 on m∗ has never

been executed in Signing Queries, F cannot know the value of the bit for m∗. Thus, the event that b = 0
for m∗ happens with probability 1− δ. Therefore, Pr[E2|E1 ∧E3 ∧E4] = 1− δ. From the above, we obtain
acc ≥ δqS (1− 1/q)

qS εF (1− δ) . Since we set δ = qS/(qS + 1), we have

acc =
1

(1 + 1/qS)
qS (1− 1/q)

qS εF
1

qS + 1

≥ (1− qS/q) εF/(e(qS + 1))

by using the facts that (1 + 1/qS)
qS < e for qS ≥ 0, where e is the base of the natural logarithm, and

(1 + a)b ≥ 1 + ab for a ≥ −1 and a natural number b.

32

Let tA be the running time of A. We assume that tmul time is required for one scalar multiplication in
G, and unit time is required for the other non-cryptographic operations. A runs F at once.

For time to answer random oracle queries, we consider only the case of Hc because Hc takes a longer time
than Hck. A makes one query to Hck and executes O(N) other non-cryptographic operations to respond to
a query to Hc. Three scalar multiplications and O(1) other non-cryptographic operations are required for
one random oracle query to Hck. Thus, in total, A executes three scalar multiplications and O(N) other
non-cryptographic operations to respond to one random oracle query to Hc. In each signing query, A needs
to execute one random oracle query to Hck, three scalar multiplications, and O(N) other non-cryptographic
operations. The verification involves at most (N+5) scalar multiplications, one random oracle query to Hck,
and O(N) other non-cryptographic operations. Also A needs O(N) other non-cryptographic operations to
output (J, σ) after checking F ’s output. Therefore, in total A runs at most tF + (3qH + 6qS +N + 8)texp +
O(N(qS + qH)).
B runs the forking algorithm FA(G, q, G,X) according to Lemma A.1. If FA(G, q, G,X) succeeds in out-

putting (1, σ, σ′), B can obtain σ = (L∗, ω0,1, ω0,2, ω0,3, s̃
∗, α̃∗, β̃∗, {cj}|L

∗|
j=1) and σ

′ = (L′∗, ω′
0,1, ω

′
0,2, ω

′
0,3, s̃

′∗,

α̃′∗, β̃′∗, {c′j}
|L′∗|
j=1) s.t. (L∗, ω0,1, ω0,2, ω0,3, {cj}j∈K∗) = (L′∗, ω′

0,1, ω
′
0,2, ω

′
0,3, {c′j}j∈K′∗), X ∈ L∗, (ci = cj) ∧

(c′i′ = c′j′)∧(ci ̸= ci′) for all i, j ∈ [1, |L∗|]\K∗ and i′, j′ ∈ [1, |L′∗|]\K ′∗, α̃∗G+β̃∗(ω0,2X) = α̃′∗G+β̃′∗(ω′
0,2X),

and

α̃∗(ω0,1G) + β̃∗(ω0,3G) + s̃∗G−
|L∗|∑
j=1

cjXj = α̃′∗(ω0,1G) + β̃′∗(ω′
0,3G) + s̃′∗G−

|L′∗|∑
j=1

c′jX
′
j

where K∗ and K ′∗ are the sets of the indices s.t. X ̸= Xi ∈ L∗ and X ̸= Xi ∈ L′∗, respectively. According
to the above conditions, B can obtain the following equations

(α̃∗ − α̃′∗)G = (β̃′∗ − β̃∗)ω0,2X, and

((α̃∗ − α̃′∗)ω0,1 + (β̃∗ − β̃′∗)ω0,3 + (s̃∗ − s̃′))G = −(|L∗| − |K∗|)(c− c′)X

where c and c′ are ci and c
′
i for some i ∈ [1, |L∗|]\K∗ and some i ∈ [1, |L′∗|]\K ′∗, respectively. (|L∗|−|K∗|) ̸= 0

holds because L∗ includes at least one X. B computes and outputs the discrete logarithm x of X as follows.

Case (β̃′∗ ̸= β̃∗) ∧ (ω0,2 ̸= 0): B outputs x as (α̃∗ − α̃′∗)/((β̃′∗ − β̃∗)ω0,2).

Case (β̃′∗ ̸= β̃∗) ∧ (ω0,2 = 0): In this case, α̃∗ = α̃′∗ holds. Thus, B outputs x as −((β̃∗ − β̃′∗)ω0,3 + (s̃∗ −
s̃′))/((|L∗| − |K∗|)(c− c′)).

Case β̃′∗ = β̃∗: In this case, α̃∗ = α̃′∗ holds. Thus, B outputs x as −(s̃∗ − s̃′)/((|L∗| − |K∗|)(c− c′))

We evaluate the success probability and the running time of B. Because B can output the solution
of the DL problem if FA(G, q, G,X) outputs (1, σ, σ′), B can solve the DL problem with the probability
that FA(G, q, G,X) outputs (1, σ, σ′) in time as same as the running time of FA(G, q, G,X). Applying the
Lemma A.1, B solves the DL problem with probability at least ε s.t.

ε ≥ acc (acc/qH − 1/q)

≥ acc2/qH − 1/q

≥ (1− qS/q)2 ε2F/(qHe2(qS + 1)2)− 1/q.

Because B runs A twice, the running time of B is at most twice as long as the running time of A Thus, the
running of B is at most 2tF + (6qH + 12qS + 2N + 16)texp +O(N(qS + qH)).

The following Lemma states that, for the algorithm A in the above proof, the distribution of responses
in Signing Queries is identical to th e distribution of the hoenst signer’s responses. Since we can prove
this lemma in the similar way used to prove Lemma 4.7 of our proposed scheme, we omit the proof of this
lemma.

33

Lemma B.2. Let GamemBCJ
eqv be the following game between a challenger and a distinguisher A.

Setup: The challenger chooses (G, q, G). It sends (G, q, G) to A and receives x ∈ Zq from A. It computes

X ← xG and initializes a table TS [·]. It chooses a bit b
$← {0, 1}.

Oracles: The challenger allows A to access to the following oracles concurrently at most qS times. Note
that A is allowed to make only one query for each session identifier I, which is included in each query
to oracles.

Σeqv1(b, ·, ·): As a query, the challenger receives a session identifier I and (ω1, ω2, ω3) ∈ Z3
q. It com-

putes computes P ← ω1G, Q← ω2G, and R← ω3X. It responds as follows.

Case b = 0: It chooses r, α, β
$← Zq and computes t1 ← αG + βQ, and t2 ← αP + βR + rG. It

stores TS [I]← ((P,Q,R), (ω1, ω2, ω3), r, α, β, t1, t2) and returns (t1, t2).

Case b = 1: It chooses u, v, w
$← Z3

q and computes t1 ← uG and t2 ← vG − wX. It stores
TS [I]← ((P,Q,R), (ω1, ω2, ω3), u, v, w, t1, t2) and returns (t1, t2).

Σeqv2(b, ·, ·): As a query, the challenger receives a session identifier I and c ∈ Zq. If TS [I] is empty,
then it return ⊥. Otherwise, it responds as follows.

Case b = 0: The challenger looks up ((P,Q,R), (ω1, ω2, ω3), r, α, β, t1, t2) from TS [I], computes
s← xc+ r mod q and returns (α, β, s).

Case b = 1: The challenger looks up ((P,Q,R), (ω1, ω2, ω3), u, v, w, t1, t2) from TS [I], computes
β ← (c−w)/ω3 mod q, α← u−ω2β mod q, and s← v−ω1α mod q and returns (α, β, s).

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ holds, then A wins this game.

The advantage of A is defined as

AdvmBCJ
eqv (A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

For any computationally unbounded distinguisher A, AdvmBCJ
eqv (A) = 0 holds.

34

	Introduction
	Importance of Concrete Security for Parameter Choice
	Concrete Security of Existing DL-Based Multi-Signature Schemes
	Our Contribution
	Related Works
	Concurrent Work

	Technical Overview
	Existing Non-Tight Secure Two-Round Schemes
	DDH-Based Lossy Identification
	Naive Approach and Difficulty
	Our Solutions

	Preliminaries
	Notation
	Hardness Assumption
	Randomizing Algorithm of (non-)DH tuple
	Multi-Signatures
	Security Definition of Multi-Signatures

	Proposed Scheme
	Our Proposed Scheme
	Security

	Performance Comparison
	Estimation of the Underlying Group Size
	Comparison

	Implementation Results
	General Forking Lemma
	mBCJ

