
Leaky McEliece: Secret Key Recovery From
Highly Erroneous Side-Channel Information

Marcus Brinkmann1 , Chitchanok Chuengsatiansup2 , Alexander May1 ,
Julian Nowakowski1 , and Yuval Yarom1

1 Ruhr University Bochum
2 The University of Melbourne

Abstract. The McEliece cryptosystem is a strong contender for post-
quantum schemes, including key encapsulation for confidentiality of key
exchanges in network protocols.

A McEliece secret key is a structured parity check matrix that is trans-
formed via Gaussian elimination into an unstructured public key. We
show that this transformation is a highly critical operation with respect
to side-channel leakage. We assume leakage of the elementary row opera-
tions during Gaussian elimination, motivated by actual implementations
of McEliece in real world cryptographic libraries (Classic McEliece and
Botan).

We propose a novel algorithm to reconstruct a secret key from its public
key with information from a Gaussian transformation leak. Even if the
obtained side-channel leakage is extremely noisy, i.e., each bit can be
flipped with probability as high as τ ≈ 0.4, our algorithm still succeeds
to recover the secret key in a matter of minutes for all proposed (Classic)
McEliece instantiations. Remarkably, for high-security McEliece param-
eters, our attack is more powerful in the sense that it can tolerate even
larger τ .

Technically, we introduce a novel cryptanalytic decoding technique that
exploits the high redundancy exhibited in the McEliece secret key. This
allows our decoding routine to succeed in reconstructing each column
of the secret key successively. Our result stresses the necessity to well
protect highly structured code-based schemes such as McEliece against
side-channel leakage.

Keywords: McEliece · Gaussian elimination · Side-channel leakage ·
Key recovery with hints

1 Introduction

The seminal work of Kocher [27] demonstrated that implementations of crypto-
graphic schemes may leak intermediate states of the algorithm, compromising
the security of the schemes. Since then, many so called side-channel attacks have
been demonstrated, exploiting various side channels [18,27,30,33] and breaking
a large number of implementations [10,11,26,33,34,43].
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Because side channels are usually accidental, i.e., they are not designed to
leak, information obtained through side channels is often noisy and incomplete.
Over the years several methods have been devised to recover the full secret,
exploiting the inherent redundancy in some cryptographic schemes [15]. Most
of the research in this area focuses on traditional schemes, such as AES [36],
RSA [12,13,21–23,35,45], and variations of the Digital Signature Algorithm [24,
31,32].

Within the context of post-quantum schemes, secret recovery from noisy
or partial information has also seen significant interest, e.g., with regard to
side channels in HQC [25, 37], Kyber and New Hope [7], BIKE, Rainbow and
NTRU [17], and the Fujisaki-Okamoto transform [20,42].

Specifically for McEliece, Strenzke et al. [41] propose exploiting potential
power side channels in the polynomial multiplication and polynomial evaluation
during key generation, particularly during the generation of the parity check
matrix. A side-channel attack on the McEliece secret key presented by Stren-
zke [40] uses a timing side channel in the decryption routine. A recent attack
on the Classic McEliece implementation reveals the secret key using a power
side channel in a decryption oracle [19]. Yet another attack shows the use of an
electromagnetic side channel for revealing the plaintext of a message [28].

Practical Erasure and Error Rates. In the classical setting, RSA secret
keys can be recovered from partial information with regard to different leakage
models. Heninger and Shacham [22] recover the secret key even if bits are cleared
with an erasure rate of 0.73, as long as the remaining known bits are evenly
distributed at known positions. A more challenging setting is when there are
no known bits, but bits can be flipped with a certain error rate τ < 1

2 . This
model was analysed by Henecka et al. [21], allowing for error rates from τ ≈ 0.08
for factorization recovery up to τ ≈ 0.24 for recovery of RSA CRT keys. These
error rate were further improved by Paterson et al. [35], who also considered the
asymmetric case where bit flips in either direction (1 to 0, vs. 0 to 1) can have
different probabilities.

While RSA is known to be vulnerable to partial information leakage, post-
quantum schemes are believed to be more leakage-resistant. This view was chal-
lenged by Esser et al. [17], who found recovery attacks on BIKE, Rainbow and
NTRU under erasure and bit-flip error models. Allowing for an attack complex-
ity of 80 bits, they achieved secret key recovery with erasure rates up to 0.730
for BIKE, 0.890 for rainbow, and 0.422 for NTRU, as well as with error rates up
to 0.200 for BIKE, 0.270 for Rainbow, and 0.019 for NTRU. Earlier, Albrecht et
al. [7] reported secret key recovery under a cold-boot attack with error rate 0.017
for Kyber and 0.032 for New Hope.

McEliece Secret Key Recovery From Public Key Generation. In this
work, we turn our attention to partial key recovery in code-based cryptography.
We investigate the McEliece cryptosystem, focusing on the key generation step,
and in particular on the creation of the public key from the private key. We
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note that due to the relatively large size of the keys, many implementations do
not store them. Instead, implementations tend to store only the random seed
originally used when the key was first generated, and reconstruct the keys when-
ever these are required. Thus, we can expect this step to be repeated multiple
times. Moreover, depending on the implementation, the adversary may be able
to initiate key reconstruction, for example by querying a server for the public
key.

One of the main steps of reconstructing the public key of McEliece is to per-
form Gaussian elimination on a binary matrix, i.e., over F2. The algorithm scans
the matrix and performs addition of rows in a pattern that depends on the value
of the scanned bit. Consequently, finding out when the Gaussian elimination
adds rows is equivalent to recovering the bits of the matrix.

1.1 Our Contributions

Secret Key Recovery From Noisy Leak Gauss Elimination. We present a
novel attacker model on McEliece public key generation, where the attacker can
observe the internal state of Gaussian elimination, with an error rate τ < 1

2 .For
this attacker model, we propose a novel algorithm that can correct bit-flip errors
as high as τ ≈ 0.4, vastly exceeding error rates reported in related work for
attacks on RSA and a variety of post quantum schemes. This demonstrates that
McEliece key generation is highly sensitive to leakage in the Gaussian elimination
step. We also show that the achievable error correction increases with higher
security parameters for McEliece. Intuitively, this is caused by the fact that the
redundancy of McEliece keys grows with the security level.

Using Codes to Break Codes. In our attack, we introduce a novel cryptan-
alytic decoding technique, where we construct a code that contains all possible
candidate columns of the McEliece secret key, and use this code to correct er-
rors in the leaked execution matrix of Gaussian successively column by column.
Because of the high redundancy in the parity check matrix of the Goppa code,
the candidate code is extremely sparse. This results in a very large decoding
radius, and thus a large theoretical upper bound of correctable errors (τ ≈ 0.427
for high-security McEliece parameters). We analyse the success probability of
our algorithm with only few heuristic assumptions, and show that based on our
leakage model, the correctable error is quite close to the theoretical upper bound
of our approach (0.398 vs. 0.427 for high-security McEliece parameters).

Implementing and Evaluating Sendrier’s Support Splitting Algorithm.
A McEliece key is defined by a so-called Goppa polynomial and a list of Goppa
points. It is well-known that if the Goppa polynomial and the set of Goppa
points, but not their order, is known to the attacker, the Support Splitting
Algorithm (SSA) [38] can (heuristically) be used to efficiently find the secret
key. We can make good use of this in our attack for some parameter sets and
implementations. However, to our knowledge, there is no implementation of the
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algorithm publicly available. So we contribute a fully working implementation
of SSA in SageMath, and verify heuristically that it is efficient for the specific
case of McEliece parameter sets.

Practical Evaluation of Leakage Potential. We investigate two real-world
implementations of McEliece, the one in the Botan cryptographic library [1],
which has been recognized by the German Federal Institute for Information Se-
curity [2], and the reference implementation of the Classic McEliece submission
to the NIST Post-Quantum Cryptography Standardization Project [8]. The for-
mer implementation does not use constant-time coding practices and is therefore
vulnerable to side-channel attacks that leak control flow [4,5,44,45] and memory
access patterns [29,33]. The latter implementation is designed to be resistant to
microarchitectural side-channel attacks. However, the programming pattern it
uses for constant-time conditional operations amplifies power and electromag-
netic leakage [6,16,30]. Thus, we conclude that both implementations may leak
the locations of row additions during Gaussian elimination. For our experiments,
we patch both implementations to introduce synthetic leaks based on our anal-
ysis of their leakage potential.

Implementation and Experimental Verification. We implement our attack
against both libraries, Botan and Classic McEliece. The source code for our
attack, the implementation of the Support Splitting Algorithm, as well as the
artifacts used for the evaluation, are available at:

https://github.com/lambdafu/Leaky-McEliece

In a large-scale experiment, we measure the success rate and runtime of our at-
tack on a variety of proposed security parameters. We find that the success rates
are in agreement with our analysis, thus verifying our heuristic assumptions.
The algorithm is also very fast. Full secret key recovery for the high-security
parameter set takes only 2 minutes and 11 seconds.

1.2 Outline

This work is organized as follows: In Section 2, we introduce notations for ma-
trices, Hamming spaces and codes. We also describe McEliece keys, and briefly
recall how to attack McEliece via the Support Splitting Algorithm. In Section 3,
we describe how McEliece key generation uses Gaussian elimination, and define
our leakage model. After that, we introduce our attack in Section 4. In Section 5,
we give a theoretical upper bound on the error rate and analyze the success prob-
ability of our attack. In Section 6, we apply our attack on two implementations,
Botan and Classic McEliece, patched with a synthetic leak. Our experiments
confirm the correctness of our heuristic analysis.

 https://github.com/lambdafu/Leaky-McEliece 
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2 Preliminaries

This section describes mathematical notations we use throughout the paper. It
also presents some background on the McEliece cryptosystem and on coding
theory.

2.1 Notations

Matrices. Let A ∈ Zk×n be a (k × n)-matrix. We use computer algebra nota-
tions to address the entries of A. We write A[i, j] for the entry of A in row i
and column j. More generally, A[i1:i2, j1:j2] denotes the submatrix of A formed
by the i1-th to i2-th rows and j1-th to j2-th columns (inclusively). In particular,
the i-th row is denoted by A[i, 1:n], and the j-th column by A[1:k, j]. If the
dimensions are clear from the context, we frequently use the short hand nota-
tions A[i, :] and A[:, j] for the i-th row and j-th column, respectively. The j-th
unit vector is denoted by ej .

Hamming Space. For x,y ∈ Fn
2 we denote their Hamming distance by∆(x,y).

The n-dimensional Hamming ball around x ∈ Fn
2 with radius r ≥ 0 is defined as

B(x, r) := {y ∈ Fn
2 | ∆(x,y) ≤ r} . We denote the volume of an n-dimensional

Hamming ball with radius r ∈ N as

V n(r) =

r∑
i=0

(
n

i

)
.

For r ≤ n
2 , we have

V n(r) ≈
(
n

r

)
≈ 2H(r/n)n, (1)

where H : [0, 1] → [0, 1] denotes the binary entropy function. Notice that the
approximations made in Equation (1) suppress only small polynomial factors
in n, see, e.g., [14, Lemma 17.5.1].

We define the inverse binary entropy function H−1 as the inverse of H re-
stricted to the interval [0, 1

2 ]. That is, for y ∈ [0, 1], we define x = H−1(y) as the
unique real number x ∈ [0, 1

2 ] satisfying H(x) = H(1− x) = y.

Codes. A (binary) code C of length n is a subset of Fn
2 . Theminimum distance d

of a code C is defined as
d := min

c,c′∈C,
c̸=c′

∆(c, c′).

The decoding radius of a code C with minimum distance d is defined as ⌊d−1
2 ⌋.

Equivalently, the decoding radius is defined as the largest radius r ∈ N, for which
no Hamming balls B(c, r) around codewords c ∈ C overlap. Let x = c+ e ∈ Fn

2

be an erroneous codeword, where c ∈ C. If ∆(x, c) ≤ ⌊d−1
2 ⌋, then c is the unique

codeword closest to x.
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The Hamming bound states that for every code C with distance d it holds
that

V n

(⌊
d− 1

2

⌋)
≤ 2n

|C|
.

For codes with ⌊d−1
2 ⌋ < n

2 , this yields (together with the approximations from
Equation (1)) the asymptotic bound⌊

d− 1

2

⌋
≤ H−1

(
1− log |C|

n

)
· n, (2)

where log(·) denotes the base-2 logarithm.
A code is called linear if it is a linear subspace of Fn

2 . Every linear code of

dimension k can be defined via a parity check matrix H ∈ F(n−k)×n
2 , satisfying

C =
{
c ∈ Fn

2 | H · cT = 0
}
.

2.2 McEliece Keys

McEliece Secret to Public Key Transformation. Let us fix a finite field F2m .
A McEliece secret key is defined via

(1) a list L of n ≤ 2m distinct Goppa points L = (α1, . . . , αn) ∈ Fn
2m , and

(2) an irreducible Goppa polynomial g ∈ F2m [x] of degree t.

From L and g, we obtain the parity check matrix

H(L, g) :=



1

g(α1)

1

g(α2)
. . .

1

g(αn)

α1

g(α1)

α2

g(α2)
. . .

αn

g(αn)
...

...
. . .

...

αt−1
1

g(α1)

αt−1
2

g(α2)
. . .

αt−1
n

g(αn)


∈ Ft×n

2m . (3)

Let us fix an F2-basis (1, γ, . . . , γ
m−1) for F2m , i.e., we write every F2m -element

as a0 + a1γ + . . .+ am−1γ
m−1 with ai ∈ F2. Let

σ : F2m → Fm
2 , a0 + a1γ + . . . , am−1γ

m−1 7→ (a0, . . . , am−1)
T (4)

denote the canonical vector space embedding into column vectors. We extend σ
to vectors and matrices over F2m by applying σ coordinate-wise. Applying σ on
H yields a secret binary parity check matrix

H ∈ Ft×n
2m

σ7−→ Hsk ∈ Ftm×n
2 ,

where Hsk defines our (n− tm)-dimensional linear code C ⊆ Fn
2 .

The secret parity check matrix Hsk is now turned into a public parity check
matrix by transforming the matrix to systematic form Hpk = (Itm|A) via Gaus-
sian elimination. For ease of notation, we assume that rank(Hsk[1:tm, 1:tm]) =
tm. We detail the Gaussian elimination in the Section 3. The matrices Hsk

and Hpk form the McEliece secret and public keys, respectively.
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Parameter Sets. The suggested Classic McEliece parameter sets from the
NIST submission [9] are displayed in Table 1. We also include two test param-
eter sets for faster calculation in experiments. Botan supports any choice of
parameters with m ≤ 15.

Table 1: Classic McEliece parameter sets and two test parameter sets.

Name (n, t,m) Name (n, t,m)

mceliece348864 (3488, 64, 12) toyeliece51220 (512, 20, 9)

mceliece460896 (4608, 96, 13) toyeliece102450 (1024, 50, 10)

mceliece6960119 (6960, 119, 13)

mceliece6688128 (6688, 128, 13)

mceliece8192128 (8192, 128, 13)

2.3 Support Splitting

Two codes C,C ′ ⊆ Fn
2 are called permutation equivalent if there exists a permu-

tation matrix P ∈ Fn×n
2 such that

C ′ = {c ·P | c ∈ C} .

In other words, C and C ′ are permutation equivalent if C ′ can be derived by
permuting the coordinates of the codewords c ∈ C. Two parity check matri-
ces H,H′ define permutation equivalent codes if and only if there exists an
invertible matrix G ∈ Fn×n

2 and a permutation matrix P ∈ Fn×n
2 such that

H′ = G ·H ·P.

Given two parity check matrices H,H′ of two permutation equivalent linear
codes C,C ′, Sendrier’s Support Splitting Algorithm (SSA) [38] recovers the cor-
responding permutation matrix P. While nothing is proven about the complex-
ity of SSA, it is conjectured that for random codes, the algorithm runs in time
roughly O(n3), i.e., for random codes, SSA appears to be highly efficient.3

Support Splitting in McEliece. It is well-known that SSA can be used to
attack the McEliece cryptosystem, in a scenario where the attacker obtains the
Goppa polynomial g(x) along with the set of Goppa points {α1, . . . , αn} (but
without their correct order L = (α1, . . . , αn)). Given g(x) and the set of Goppa

3 More precisely, it is conjectured that SSA has runtime O(n3+2hn2 logn), where h is
the dimension of the so-called hull of C. For random codes, h is with high probability
a small constant. Typically, h ∈ {0, 1, 2}.
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points, the attacker can construct a parity check matrix H′ ∈ Ft×n
2m , which, up

to the order of columns, is identical to the matrix H(L, g) from Equation (3). In
particular,

H′ = H(L, g) ·P,

for some permutation matrix P ∈ Fn×n
2 .

Let G ∈ Fn×n
2 be the invertible matrix that corresponds to the Gaussian

elimination, which transforms Hsk = σ(H(L, g)) into Hpk, i.e.,

Hpk = G ·Hsk = G · σ(H(L, g)).

Then it holds that

σ(H′) = σ(H(L, g)) ·P = G−1 ·Hpk ·P.

Hence, the known matrices σ(H′) and Hpk generate permutation equivalent
codes. Thus, by running SSA on σ(H′) and Hpk, the attacker can efficiently
recover P. Knowledge of P then reveals the secret key via Hsk = σ(H′) ·P−1.

3 Our Attack Model: Monitoring Gaussian Elimination

Gaussian Elimination. Let us look at a simplified high-level version of Gaus-
sian elimination to illustrate our attack model. On input of a matrix

Hsk ∈ Ftm×n
2 , with rank(Hsk[1:tm, 1:tm]) = tm,

Gaussian elimination transformsHsk via elementary row operations into a matrix
in systematic form, i.e., into a matrix

Hpk = (Itm|A) ∈ Ftm×n
2 .

The core component of Gaussian elimination is a subroutineEliminate-Column
that on input of a matrix Hj ∈ Ftm×n

2 and an index j ∈ {1, . . . , tm}, transforms
the j-th column of Hj into the j-th unit vector eTj . A straight-forward imple-
mentation of Eliminate-Column is given in Algorithm 1.

To bring Hsk into systematic form Hpk, Gaussian elimination simply sets

H1 := Hsk, (5)

Hj+1 := Eliminate-Column(Hj , j) for j = 1, . . . , tm, (6)

Hpk := Htm+1,

as depicted in Algorithm 2.4

4 Notice that the call to Eliminate-Column in Line 3 of Gaussian-Elimination
never returns Fail since we require rank(Hsk[1 : tm, 1 : tm]) = tm.
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Algorithm 1 Eliminate-column

Input: Hj ∈ Ftm×n
2 , j ∈ {1, . . . , tm}

Output: Hj+1 ∈ Ftm×n
2 with Hj+1[:, j] = eT

j , and
Hj+1 = Gj ·Hj for some invertible Gj ∈ Ftm×tm

2 ,
or Fail.

1: Hj+1 := Hj

2: if Hj+1[j, j] ̸= 1 then ▷ ensure Hj+1[j, j] = 1
3: Find minimal k ∈ {j + 1, . . . , tm} with Hj+1[k][j] = 1.
4: if no such k exists then
5: return Fail
6: end if
7: Hj+1[j, :] := Hj+1[j, :] +Hj+1[k, :] ▷ add k-th to j-th row
8: end if
9: for i = 1, . . . , tm, j ̸= i do
10: if Hj+1[i, j] = 1 then ▷ ensure Hj+1[i, j] = 0 for i ̸= j
11: Hj+1[i, :] := Hj+1[i, :] +Hj+1[j, :] ▷ add j-th to i-th row
12: end if
13: end for
14: return Hj+1

Algorithm 2 Gaussian-Elimination

Input: Hsk ∈ Ftm×n
2 with rank(Hsk[1 : tm, 1 : tm]) = tm

Output: systematic form Hpk = (Itm|A) ∈ Ftm×n
2 of Hsk,

1: H1 := Hsk

2: for j = 1, . . . , tm do
3: Hj+1 := Eliminate-column(Hj , j)
4: end for
5: return Hpk := Htm+1

Our Attack Vector. Eliminate-Column’s row addition in Line 11 of Algo-
rithm 1 is triggered by the if-statement in Line 10. This if-statement is our attack
vector. We assume that we have access to a noisy side channel, which allows us to
monitor whether Line 11 gets executed. By that, the side channel reveals noisy
variants of the matrix entries Hj [i, j] where i ̸= j, i.e., the non-diagonal entries
of the j-th column of each Hj .

The j-th columns of all Hj ’s form our so-called execution matrix. Since we
assume that our monitoring process is noisy, we define our leak matrix as an
erroneous version of the execution matrix (see Definition 1 below). Notice that
since our leak does not reveal the diagonal entries Hj [j, j], the diagonal entries
of our leak matrix L are drawn uniformly at random.

Definition 1 (Execution Matrix and Leak Matrix). We define the exe-
cution matrix as

E :=
(
H1[:, 1] | H2[:, 2] | . . . | Htm[:, tm]

)
∈ Ftm×tm

2 .
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The leak matrix is an error-prone version of the execution matrix. More pre-
cisely, for all 1 ≤ i, j ≤ tm we have

L[i, j] := E[i, j] + e[i, j] = Hj [i, j] + e[i, j], (7)

where e[i, j] ∈ F2 and for some error probability τ ≤ 1
2 :

Pr[e[i, j] = 1] =

{
τ for i ̸= j
1
2 for i = j

.

In other words, we have a Bernoulli-distributed error e[i, j] ∼ B(τ) for all but
the diagonal entries. For simplicity of exposition, we call the leak matrix a B(τ)-
disturbed version of the execution matrix (thereby ignoring the diagonal issue).

Note that for τ = 1
2 , the matrix L is uniformly random and does not provide

any information. As our leak matrix is crucial for understanding our attack, let
us make some simple, but important structural observations. To this end, let us
introduce one more definition.

Definition 2 (Transformation Matrix). For all 1 ≤ j ≤ tm, we define
the j-th transformation matrix Gj ∈ Ftm×tm

2 as the unique, invertible matrix,
satisfying

Hj+1 = Gj ·Hj ,

corresponding to the elementary row operations of Eliminate-column(Hj , j).

Lemma 1. For all 1 ≤ j ≤ tm, the j-th column L[:, j] contains a B(τ)-disturbed
version of

E[:, j] = Hj [:, j] = Gj−1 · . . . ·G1 ·Hsk[:, j].

Proof. By Equations (5) and (6), we obtain

Hj = Gj−1 · . . . ·G1 ·Hsk, (8)

for every 1 ≤ j ≤ tm. Plugging in Equation (8) into Equation (7), the statement
follows. ⊓⊔

Remark 1. Given the j-th column E[:, j] = Hj [:, j] of the execution matrix E,
we can efficiently compute the j-th transformation matrix Gj as follows:

1. We pick an arbitrary matrix M ∈ Ftm×n
2 , whose j-th column is identical

to Hj [:, j], e.g., M = (0j−1|Hj [:, j]|0tm−j).
2. We run Eliminate-column(M, j), and monitor all its elementary row op-

erations.
3. We apply the exact same row operations to Itm.

The resulting matrix is identical to Gj .

Of course, our simplified Gaussian-Elimination is not protected at all
against leakage of Eliminate-Column’s operation in Line 11. However, we
show in Section 6 that more involved state-of-the-art implementations also do
not provide sufficient leakage resistance.
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4 Our Attack: Decoding the Leak Matrix

On a high level, our algorithm for recovering the secret keyHsk from the leak ma-
trix L works as follows: Given L, we successively recover all columns of the execu-
tion matrix E ∈ Ftm×tm

2 . As shown in Remark 1, the columns E[:, 1], . . . ,E[:, tm]
then reveal the invertible transformation matrices G1, . . . ,Gtm, satisfying

Hpk = Gtm · . . . ·G2 ·G1 ·Hsk.

These in turn allow us to easily recover the secret key via

Hsk = G−1
1 ·G−1

2 · . . . ·G−1
tm ·Hpk.

In more detail, we proceed as follows.

Recovery of E[:, 1]. We begin with recovery of the first column E[:, 1]. To this
end, we compute a (non-linear) code5

C1 :=

{
σ

(
1

b
(1, a, a2, . . . , at−1)

)
| a, b ∈ F2m , b ̸= 0

}
⊆ Ftm

2 . (9)

By Equation (3), our code C1 contains all potential candidates for the columns
of the secret key Hsk. In particular, C1 contains all candidates for the first
column E[:, 1] of our execution matrix E, since by definition E[:, 1] = Hsk[:, 1]
(see Equation (5)).

Interestingly, C1 is a very small subset of Ftm
2 : By Table 1, we obtain for all

Classic McEliece parameter sets

|C1| < 22m ≤ 226, but |Ftm
2 | = 2tm ≥ 2768.

Hence, we can easily construct and store C1 in practice. Moreover, when mak-
ing the mild assumption that the codewords c ∈ C1 are distributed somewhat
uniformly in Ftm

2 , we can expect C1 to have a rather large decoding radius.
By Lemma 1, the first leak matrix column L[:, 1] is a B(τ)-disturbed version of

E[:, 1]. Therefore, as long as our error rate τ is not too large, E[:, 1] ∈ C1 is likely
the codeword closest to L[:, 1]. Thus, to recover E[:, 1] with high probability, we
simply decode L[:, 1] to the closest codeword c ∈ C1.

In Section 5, we thoroughly analyze the success probability of this approach.
We experimentally verify in Section 6 that it performs well in practice.

Code Update and Recovery of E[:, 2]. After recovering E[:, 1], we obtain
the second execution matrix column E[:, 2] as follows:

By Lemma 1, the second leak matrix column L[:, 2] contains a B(τ)-disturbed
version of

E[:, 2] = G1 ·Hsk[:, 2]. (10)

5 Recall that σ : F2m → Fm
2 is the canonical vector space embedding from Equa-

tion (4), which we apply here coordinate-wise to the vector 1
b
(1, a, a2, . . . , at−1).
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We recover G1 from E[:, 1] via Eliminate-Column, as shown in Remark 1, and
update our code C1 by multiplying it with G1. That is, we construct the code

C2 := G1 · C1 = {G1 · c | c ∈ C1} . (11)

Since C1 contains all potential candidates for the columns of the secret key Hsk,
the updated code C2 then contains (by Equation (10)) all candidates for E[:, 2].
Analogously to the recovery of the first column E[:, 1], we recover the second
column E[:, 2] ∈ C2 with high probability by simply decoding L[:, 2] to the
closest codeword c ∈ C2.

Inductively Recovering E[:, j] for j > 2. We proceed inductively with
reconstruction of the remaining E[:, j]’s:

Suppose we have already recovered E[:, 1], . . .E[:, j − 1] and constructed
the corresponding transformation matrices G1, . . . ,Gj−1 along with the codes
C1, . . . , Cj−1 where

Ci := Gi−1 · Ci−1 = {Gi−1 · c | c ∈ Ci−1} , i ≥ 2.

Using Remark 1, we recover the transformation matrix Gj−1 from E[:, j − 1].
We multiply Cj−1 with Gj−1 to obtain the code

Cj = Gj−1 · Cj−1 = Gj−1 · . . . ·G2 ·G1 · C1.

The resulting code Cj then contains all candidates for the j-th column

E[:, j] = Gj−1 · . . . ·G2 ·G1 ·Hsk[:, j].

Since L[:, j] is a B(τ)-disturbed version of E[:, j], we then recover E[:, j] ∈ Cj

with high probability by decoding L[:, j] to the closest codeword c ∈ Cj .

Codebook Reduction. Recall that the first execution matrix column E[:, 1] is
identical to the first secret key columnHsk[:, 1]. Thus, after recoveringE[:, 1] from
our leak matrix L, we can easily read off the first Goppa point α1 from E[:, 1]
(see Equation (3)).

Since the n Goppa points α1, . . . , αn are distinct, this allows us to slightly
reduce the size of the code C2, and thereby improve the runtime of our attack:
Instead of using the code C2 := G1 · C1 from Equation (11), we first remove all
2m − 1 codewords

σ

(
1

β
(1, a, a2, . . . , at−1)

)
with a = α1

from C1, and then multiply the resulting code by G1. Clearly, our smaller code
of size |C1| − (2m − 1) still contains all candidates for the second column H[:, 2].
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By doing some additional bookkeeping, we can also recover the Goppa points αi,
for i = 2, . . . , tm, and thereby further decrease the size of our codes per each
recovered column. To this end, we simply define a family of so-called codebooks

CB1 :=

{(
σ

(
1

b
(1, a, a2, . . . , at−1)

)
, a, b

)
| a, b ∈ F2m , b ̸= 0

}
,

CBj := {(Gj−1 · c, a, b) | (c, a, b) ∈ CBj−1, a ̸= αj−1} j > 1,

in which we

1. keep track of the a’s and b’s that define our codewords c ∈ Cj , and
2. remove all codewords that are defined via already recovered Goppa points.

Notice that CBj ⊆ Cj × F2m × F2m , i.e., the first component of each code-
book CBj forms a subcode of Cj . Furthermore, the first component of each CBj

still contains all candidates for the column E[:, j].

Algorithm 3 MaxLikelihood-Decode

Input: j-th column L[:, j] ∈ Ftm
2 of leak matrix,

codebook CB = {(ci, ai, bi)}i=1,...,|CB| ⊂ Ftm
2 × F2m × F2m

Output: (c, a, b) ∈ CB with codeword c closest to L[:, j]

1: cmin := (c1, a1, b1)
2: dmin := ∆(c1,L[:, j])
3: for i = 2, . . . , |CB| do
4: if (∆(ci,L[:, j]) < dmin) then
5: cmin := (ci, ai, bi)
6: dmin := ∆(ci,L[:, j])
7: end if
8: end for
9: return cmin

To efficiently decode the columns L[:, j] via our codebooks to E[:, j], we use
our algorithm MaxLikelihood-Decode as shown in Algorithm 3.

Our codebook-based approach slightly reduces the size of our codes by 2m−1
per recovered column E[:, j]. A more significant size reduction, however, can be
achieved after recovering the first t+1 columns: When recovering a column E[:, j]
via MaxLikelihood-Decode, the algorithm’s output (c, a, b) reveals not only
the j-th Goppa point a = αj , but also b = g(αj), i.e., the evaluation of the Goppa
polynomial g(x) at αj . After recovering the first t+1 columnsE[:, 1], . . .,E[:, t+1],
we thus obtain the pairs

(α1, g(α1)), . . . , (αt+1, g(αt+1)).

These t+ 1 pairs uniquely determine the degree-t Goppa polynomial g(x).
Given the tuples (αi, g(αi)), i = 1, . . . , t+ 1, we efficiently compute g(x) via

Lagrange interpolation. Knowledge of g(x) then allows us to filter out all tuples

(c, a, b) with b ̸= g(a)
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from our codebooks. In other words, we define

CBj := {(Gj−1 ·c, a, b) | (c, a, b) ∈ CBj−1, a ̸= αj−1, b = g(a)}, j ≥ t+2. (12)

The resulting codebooks are of size |CBj | < 2m, i.e., less than the square root of
our initial codebook CB1 with |CB1| = 2m(2m − 1).

Special Case of Known Goppa Points. As shown in Table 1, the parameter
set mceliece8192128 has (n,m) = (8192, 13). Therefore 2m = n, which implies
that {α1, . . . , αn} = F2m , i.e., the set of Goppa points is the whole field. If
we succeed to compute g(x), we may apply the Support Splitting algorithm to
efficiently recover the secret key. This in turn implies that in the case of n = 2m,
we only have to correctly decode t + 1 columns via MaxLikelihood-Decode
before successfully recovering g(x) via Lagrange interpolation and L via Support
Splitting — and thus the whole secret key. In particular, in the case of n = 2m,
our side channel has to leak only the first t+1 iterations of Eliminate-Column’s
for-loop.

More generally, we can always apply Support Splitting when we know the
set of Goppa points. This occurs, for instance, when a McEliece implementation
generates the Goppa points deterministically. As we show in Section 6.2, this is
the case for the cryptographic library Botan.

Putting Everything Together. Our complete attack Secret-Key-Recovery
that recovers the secret key Hsk from our leak matrix L is given in Algorithm 4.

5 Analysis

In this section, we analyze for which size of the error τ our algorithm Secret-
Key-Recovery succeeds to recover the secret key Hsk with good success prob-
ability. We start by giving a simple asymptotic upper bound on the error rate τ
that Secret-Key-Recovery can tolerate. Interestingly, this bound depends
only on the McEliece parameter t, and, surprisingly, increases with t. In other
words, the higher the McEliece security level, the more errors we can allow in
our leak matrix.

After explaining why that is the case, we proceed with a thorough analysis
of the success probability of Secret-Key-Recovery. We end this section by
showing that our simple asymptotic upper bound quite accurately matches the
actual error rates that we obtain from our more thorough probability analysis.

5.1 A Simple Asymptotic Upper Bound on τ

In a nutshell, our algorithm Secret-Key-Recovery successively recovers each
column E[:, j] of our execution matrix by decoding the corresponding leak matrix
column L[:, j] to the closest candidate in some codebook CBj .
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Algorithm 4 Secret-Key-Recovery

Input: public key Hpk ∈ Ftm×n
2 ,

leak matrix L ∈ Ftm×tm
2 (see Definition 1)

Output: secret key Hsk ∈ Ftm×n
2

1: CB :=
{(

σ
(
1
b
(1, a, a2, . . . , at−1)

)
, a, b

)
| a, b ∈ F2m , b ̸= 0

}
⊆ Ftm

2 × F2m × F2m .
2: for j = 1, . . . , tm do
3: (Hj [:, j], αj , βj) := MaxLikelihood-Decode(L[:, j],CB)
4: Recover Gj from Hj [:, j]. ▷ See Remark 1.
5: CB := {(Gj · c, a, b) | (c, a, b) ∈ CB, a ̸= αj}
6: if j = t+ 1 then
7: Interpolate g(x) ∈ F2m [x] from (α1, β1) . . . , (αt+1, βt+1), where βi = g(αi).
8: if set of Goppa points {α1, . . . , αn} known then
9: Recover Hsk via Support Splitting.
10: return Hsk.
11: else
12: CB := {(c, a, b) ∈ CB | b = g(a)}
13: end if
14: end if
15: end for
16: return Hsk := G−1

1 ·G−1
2 · . . . ·G−1

tm ·Hpk

Let dj := ∆(L[:, j],E[:, j]), and let rj be the decoding radius of the code
defined by codebook CBj . We decode correctly with probability 1 if and only if

dj ≤ rj , for every j = 1, . . . , tm.

Together with Equation (2), this yields the following asymptotic necessary con-
dition for the correctness of Secret-Key-Reocvery:

dj ≤ H−1

(
1− log |CBj |

tm

)
· tm, for every j = 1, . . . , tm.

Using |CB1| ≈ 22m, we can also use the simpler necessary condition

d1 ≤ H−1

(
1− 2

t

)
· tm. (13)

By Lemma 1, L[:, 1] is a B(τ)-disturbed version of E[:, 1]. Therefore, d1 is B(τ)-
distributed. For simplicity, let us assume that d1 achieves its expected value
E[d1] = τtm. Then Equation (13) translates to

τ < H−1

(
1− 2

t

)
. (14)

We visualize the upper bound from Equation (14) in Figure 1 as a function
of t. Figure 1 shows that for typical McEliece with t ∈ [64, 128], as in Table 1,
we obtain an upper bound for τ between roughly 0.39 and 0.42.
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Fig. 1: Upper bound from Equation (14) for 64 ≤ t ≤ 128.

Growh of τ . From Figure 1, we see that, quite remarkably, our upper bound
for the error rate τ actually increases with t. Hence, the bound suggests that
for larger security levels of McEliece we can tolerate larger errors τ in our leak
matrix. Let us briefly explain this phenomenon.

Each secret key columnHsk[:, j] is uniquely defined by some Goppa point αj ∈
F2m and the corresponding Goppa polynomial evaluation g(αj) ∈ F2m (see Equa-
tion (3)). Since any field element from F2m can be represented by m bits, this
shows that each secret key column contains only 2m bits of information. In other
words, we have redundancy of

(t− 2)m

tm
= 1− 2

t

per bit of Hsk[:, j] ∈ Ftm
2 .

Recall that the columns E[:, j] of our execution matrix are of the form

E[:, j] = Gj−1 · . . . ·G2 ·G1 ·Hsk[:, j].

Since the transformation matrices Gi are invertible, it follows that each E[:, j]
contains exactly as much information as the corresponding secret key column
Hsk[:, j]. Hence, also in every execution matrix column E[:, j], a (1− 2

t )-fraction
of the bits is redundant. Therefore, the larger t gets, the more redundant gets
our execution matrix — making it easier to decode the leak matrix L.

Remark 2. Our discussion on the growth of τ yields a nice interpretation of our
upper bound from Equation (14): Since L ∈ Ftm×tm

2 is a B(τ)-disturbed version
of E, we obtain uncertainty H(τ) per bit of L. In contrast, we have redundancy(
1− 2

t

)
per bit of E. Hence, our bound from Equation (14) simply requires that

the uncertainty of L does not exceed the redundancy of E.
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5.2 Analysis of Success Probability

What mainly prevents our attack from reaching the upper bound from Equa-
tion (14) in practice is that the error does not always match its expected value.
This variance has to be taken into account. Let us now precisely determine the
success probability of our algorithm Secret-Key-Recovery.

Decoding a Single Column. We start by analyzing the success probability
of correctly decoding a single leak column L[:, j] to the corresponding execution
matrix column E[:, j].

Let dj := ∆(L[:, j],E[:, j]). We decode correctly if L[:, j] has distance at least
dj + 1 to any other codeword c ∈ CBj \ {E[:, j]}.6 Conversely, we may decode
incorrectly only if any L[:, j] hits a point inside a Hamming ball B(c, dj). To
ease the analysis of the probability of this event, let us introduce the following
heuristic assumption.

Assumption 1 We assume that the points c ∈ Ftm
2 in our codebook CBj ⊆

Ftm
2 × F2m × F2m are independent and uniformly at random distributed in Ftm

2 .

Lemma 2. Let p(dj) denote the probability

p(dj):=Pr[L[:, j] decodes correctly to E[:, j]|L[:, 1], . . .L[:, j−1] decoded correctly],

where dj := ∆(L[:, j],E[:, j]). Under Assumption 1 we obtain

p(dj) =

(
1− V tm(dj)

2tm

)|CBj\{E[:,j]}|

. (15)

Proof. Let c ∈ CBj \ {E[:, j]} be arbitrary. Let Ec denote the event that L[:, j]
decodes (incorrectly) to c. Event Ec implies that L[:, j] hits one of the V tm(dj)
points inside the Hamming ball of radius dj around c.

By Assumption 1, E[:, j] ∈ CBj is uniformly distributed and therefore L[:, j]
as well (since, by Lemma 1, L[:, j] is a B(τ)-disturbed version of E[:, j]). Thus, Ec

happens with probability V tm(dj) ·2−tm. Conversely, L[:, j] does not decode to c
with probability

1− V tm(dj)

2tm
.

The column L[:, j] decodes correctly if and only if it does not decode to any
incorrect c ∈ CBj \ {H[:, j]}. By Assumption 1, the events Ec are independent
for all c. Thus,

p(dj) =
∏

c∈CBj\E[:,j]

1− V tm(dj)

2tm
=

(
1− V tm(dj)

2tm

)|CBj\{E[:,j]}|

. ⊓⊔

We verify the validity of Assumption 1 experimentally in Section 6 by showing
that the actual success probability closely matches Lemma 2.

6 For simplicity, we take some notational liberty throughout this section by identifying
codebook elements (c, α, β) ∈ CBj with their first component c.
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Decoding All Columns. Secret-Key-Recovery succeeds to output the
secret key Hsk if it correctly decodes L[:, 1], . . . ,L[:, tm]. For the j-th column,
this happens with probability p(dj). Hence, Secret-Key-Recovery’s success
probability is given by

Pr[Success] :=

tm∏
j=1

tm∑
dj=0

p(dj) · Pr[∆(L[:, j],E[:, j]) = dj ]. (16)

It remains to determine the distribution of the random variable ∆(L[:, j],E[:, j]).
Since, L[:, j] is a B(τ)-disturbed version of E[:, j], dj is B(τ)-distributed. As

a consequence, we have

Pr[∆(L[:, j],E[:, j]) = d] =

(
tm

d

)
· τd · (1− τ)tm−d (17)

for all 1 ≤ j ≤ tm.
Using Lemma 2 together with Equations (16) and (17), we obtain Secret-

Key-Recovery’s success probability as

Pr[Success] =

tm∏
j=1

tm∑
dj=0

(
1− V tm(dj)

2tm

)|CBj\{E[:,j]}|

·
(
tm

dj

)
· τdj · (1− τ)tm−dj .

Recall that for each codebook CBj we have |CBj | < 22m. Furthermore, for j ≥
t + 2, we have |CBj | < 2m, since after t + 1 recovered columns we interpolate
the Goppa polynomial and then reduce the codebook size (see Equation (12)).
Therefore, we obtain

Pr[Success] >

 tm∑
dj=0

(
1− V tm(dj)

2tm

)22m

·
(
tm

dj

)
· τdj · (1− τ)tm−dj

t+1

·

 tm∑
dj=0

(
1− V tm(dj)

2tm

)2m

·
(
tm

dj

)
· τdj · (1− τ)tm−dj

tm−(t+1)

.

(18)

For the special case of known Goppa points, we stop decoding after t+1 iterations
in Secret-Key-Recovery. Therefore, we require only the first factor from
Equation (18), i.e.,

Pr[Success] ≥

 tm∑
dj=0

(
1− V tm(dj)

2tm

)22m

·
(
tm

dj

)
· τdj · (1− τ)tm−dj

t+1

.

Table 2 shows the largest error rate τ for which Equation (18) is at least 1
2 .

Interestingly, the error rates match the information theoretical upper bound
from Equation (14) quite accurately. In fact, the larger the McEliece parameters
get, the more accurate Equation (14) becomes.
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Table 2: Largest error rate τ for which Equation (18) gives success probability
at least 1

2 compared to the upper bound from Equation (14).

Name Equation (18) Equation (14) Difference

toyeliece51220 0.261 0.316 0.055

toyeliece102450 0.340 0.383 0.043

mceliece348864 0.360 0.396 0.036

mceliece460896 0.384 0.415 0.031

mceliece6960119 0.395 0.424 0.029

mceliece6688128 0.398 0.427 0.029

mceliece8192128 0.398 0.427 0.029

6 Experimental Verification

To validate our attack model and the practical efficiency of our attack we inves-
tigate two concrete implementations of McEliece:

1. The reference implementation of Classic McEliece [8], a 4th-round submis-
sion to the NIST’s Post-Quantum Cryptography Standardization Project [3].

2. The cryptographic library Botan [1], which has been recognized by the
German Federal Institute for Information Security as a secure implemen-
tation [2].

In both libraries, the details of Gaussian elimination during public-key generation
are considerably different from the naive description in Algorithm 2.

For Classic McEliece, these differences require us to slightly modify the
recovery of the transformation matrices Gj in our algorithm Secret-Key-
Recovery. The necessary modifications are, however, straight-forward. For
Botan, the differences do not require any changes at all. Hence, even though
real-world implementations of Gaussian elimination are quite different from our
naive Algorithm 2, our attack also applies to them.

In the following sections, we describe the substantial differences between our
naive Algorithm 2, Classic McEliece and Botan, and discuss the potential for
leakages in our attacker model (Sections 6.1 and 6.2). Additionally, we explain
the details of our attack implementation (Section 6.3). Furthermore, we show
our experimental results to validate the practical efficiency of our approach, and
the correctness of our heuristic Assumption 1 (Sections 6.4 and 6.5).

6.1 Classic McEliece

Algorithm 5 outlines the operation of Gaussian elimination in the reference im-
plementation of Classic McEliece [8].



20 M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom

Algorithm 5 Gaussian Elimination from Classic McEliece Key Generation

Input: H ∈ Ftm×n
2

Output: (Itm|A) or Fail

1: for j = 1, . . . , tm do
2: for i = j + 1, . . . , tm do ▷ Begin of diagonal stage
3: mask := H[i, j] +H[j, j]
4: H[j, :] := H[j, :] +mask ·H[i, :]
5: end for ▷ End of diagonal stage
6: if H[j, j] ̸= 1 then
7: return Fail ▷ can not bring H into systematic form
8: end if
9: for i = 1, . . . , tm, i ̸= j do ▷ Begin of zero stage
10: mask := H[i, j] ▷ Potential leak: mask
11: H[i, :] := H[i, :] +mask ·H[j, :]
12: end for ▷ End of zero stage
13: end for

Like the naive Gaussian elimination in Algorithm 2, Classic McEliece iterates
over the first tm columns to bring the matrix into a systematic form. For each
column, the algorithm ensures two conditions. The first one, the diagonal stage
(Lines 2–5), is to ensure H[j, j] = 1. The second one, the zero stage (Lines 9–12),
ensures that H[i, j] = 0 for i ̸= j.

To minimize timing side-channel leaks in the first stage (the diagonal stage),
the implementation adds in the j-th iteration a fixed number of tm − j rows
to the j-th row, i.e., the number of row additions only depends on the index j,
but not on secret data. Similarly, the second stage of column elimination (the
zero stage) also performs a constant number of row additions in each iteration
to minimize timing side-channel leaks.

Thus, the Classic McEliece implementation does more row additions than
our naive Algorithm 2. In our algorithm Secret-Key-Recovery, we have to
account for these additional row additions when recovering a transformation
matrix Gj from the corresponding execution matrix column E[:, j].

Potential Leak Analysis. While the implementation contains neither secret-
dependent branches nor secret-dependent memory access patterns, and is there-
fore protected against traditional timing-based side-channel attacks, leaks through
other side channels remain possible. Specifically, the row addition operations con-
ditionally add either a zero row or arbitrary values to a row, depending on the
value of mask = H[i, j]. These two cases have very different Hamming weights.
In a zero row all bits are zero, whereas in arbitrary values roughly half the bits
are one.7 Moreover, when adding a zero row, the algorithm does not change
the contents of memory, whereas in the other case the contents changes. Thus,

7 More accurately, the j − 1 bits left of the diagonal of the non-zero row added when
processing column j are all zero, but the n− j bits to the right are random. Hence
the Hamming weight of this row is expected to be (n− j)/2.
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the Hamming distance between the values in memory and the values written
depends on whether the algorithm adds a zero row or not.

The power consumption and the electromagnetic emanations observed during
program execution correlate with the Hamming weight of the data that the
program processes and with the Hamming distance between old and new values
when writing to memory. Consequently, constant-time implementations tend to
leak through these channels [6, 30].

6.2 Botan

Algorithm 6 outlines the operation of Gaussian elimination for McEliece key
generation in the cryptographic library Botan version 3.1.1 [1].

Botan’s implementation of Gaussian elimination is considerably different
from the naive one in Algorithm 2. Although we can identify the two stages,
diagonal stage (Lines 5–12) and zero stage (Lines 24–28), there is also a swap
stage (Lines 13–22). The swap stage allows Botan to avoid failing key gener-
ation, when the first tm columns of H do not have full rank. It does so by
considering all columns of H (as opposed to only the first tm columns in our
Algorithm 2). Suitable columns for the systematic form are swapped to indices
n−tm+1, n−tm+2, . . . , n, while columns that are linearly dependent to already
chosen columns are swapped to indices n− tm, n− tm−1, . . . , n− tm− failcount,
where failcount is the number of unsuitable columns. As a result, key generation
can succeed more often compared to the naive approach.

The final result is a slightly different systematic form Hpk = (A|Itm), and
a permutation π that is applied to the list of Goppa points L to adjust the
secret key according to the column swaps made by Botan’s Gaussian elimination.
As our leakage model only depends on the zero stage of Gaussian elimination,
which is run after the final position of a column has been decided, the order of the
leaked data, however, perfectly matches the order of the entries in the (adjusted)
secret key. In other words, the column swaps do not require any changes in our
algorithm Secret-Key-Algorithm.

As another difference, Botan’s zero-stage iterates over all rows i ̸= j in an
unusual order. This needs to be taken into account when constructing the leak
matrix L from the leak data, but otherwise has no effect on our attack.

Potential Leak Analysis. Our investigation of Gaussian elimination in Botan
reveals that the implementation contains conditional branches, depending on
secret data. This indicates that Botan implementation has potential to be vul-
nerable to side-channel attacks.

Unlike the Classic McEliece implementation that ensures the same number of
iterations even when selectively add rows containing certain values, Botan simply
uses branch statements to select specific rows to perform addition. Furthermore,
when the row addition is performed, there is also an associated memory access
pattern. Therefore, through side channels, it is possible to determine whether
the branch condition to perform row operation is evaluated to true. To be more
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Algorithm 6 Gaussian Elimination from Botan Key Generation

Input: H ∈ Ftm×n
2

Output: ((A|Itm), π) or Fail

1: failcount := 0
2: c := n ▷ Take columns one-by-one from right.
3: π := [1, . . . , n] ▷ Remember secret key adjustments, see text.
4: for j = 1, . . . , tm do
5: for i = j, . . . , tm do ▷ Begin of diagonal stage.
6: if H[i, c] = 1 then
7: if i ̸= j then
8: H[j, :] := H[j, :] +H[i, :]
9: end if
10: break
11: end if
12: end for ▷ End of diagonal stage.
13: if H[j, j] ̸= 1 then ▷ Begin of swap stage.
14: failcount := failcount+ 1
15: if failcount = n− tm then
16: return Fail ▷ can not bring H into systematic form
17: else
18: π[n− tm+ 1− failcount] := c ▷ c unsuitable, move to A part of H.
19: c := c− 1
20: goto line 5
21: end if
22: end if ▷ End of swap stage.
23: π[n− tm+ j] := c ▷ c suitable, move to Itm part of H.
24: for i = j + 1, j + 2, . . . , tm, j − 1, j − 2, . . . , 1 do ▷ Begin of zero stage.
25: if H[i, c] = 1 then ▷ Potential leak: whether H[i, c] = 1
26: H[i, :] := H[i, :] +H[j, :]
27: end if
28: end for ▷ End of zero stage.
29: c := c− 1
30: end for
31: return (H, π)

precise, there is a potential leak of whether H[i, c] = 1 in Line 25 of Algorithm 6
— completely analogous to our simplified leak model from Section 3.

Botan’s Choice of Goppa Points. We finish our description of Botan with
an observation about its choice of Goppa points. Instead of choosing those values
at random, Botan chooses those Goppa points from a predictable set depending
on n. The procedure is as follows. First, it chooses a random permutation of
the numbers 0, 1, 2, . . . , n − 1. Then, it maps each number to a corresponding
entry in a Gray code using a deterministic function. Finally, Botan interprets
these numbers as elements in F2m to form the list of Goppa points L. As a
consequence, the set of Goppa points is known up to the order of its elements,
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and the Support Splitting algorithm can be used to optimize the attack for any
value of n, not only for n = 2m. Therefore, only the first t+ 1 columns have to
be leaked and recovered. As such, the success probability only depends on the
first t+ 1 columns.

Thanks to the predictable set of Goppa points, the initial codebook can also
be optimized by removing all those values for αj that do not occur in the first n
entries in the Gray code. Note that the initial code has a size of |CB1| = n(2m−1)
as opposed to 2m(2m−1). This reduces the attack complexity up to a factor of 2
in the common case of 2m−1 < n < 2m.

6.3 Implementation

We implement our attack and provide the source code that is used to generate
all artefacts in a Git repository:

https://github.com/lambdafu/Leaky-McEliece

To generate leak data, we patch the Botan and Classic McEliece reference
implementations to artificially leak the entries E[i, j], where i ̸= j, of the execu-
tion matrix that are not on the diagonal, without error. Then, we simulate the
error by flipping the leaked bits with adjustable probability τ before running our
attack.

While we would have preferred a SageMath implementation, we opted for
C++, because some of the required operations, like the generation and update of
the size-22m codebook, do not have efficient support in SageMath. Our imple-
mentation uses bit-packing for columns to group packs of 64 rows into a single
machine word. This reduces memory usage and allows for more efficient codebook
updates. All operations over columns, including decoding and row additions, are
parallelized (using [39]). The generated candidate matrices are cached, allowing
for fast startup times when attacking multiple keys from the same parameter
set.

6.4 Experiments

A single experiment is defined by a target implementation (Classic McEliece or
Botan), a McEliece parameter set (n, t,m), an error probability τ , a random seed
s1 for the (leaky) key generation: s1 7→ (L, g) 7→ Hsk 7→ (Hpk,E), and a second
random seed s2 for the error perturbation: (s2, τ) 7→ e. The experiment targets
recovering Hsk from L := E+ e (see Definition 1, in particular, Equation (7)).

We perform all computations on a Dual AMD Epyc 7763 with 2 TB memory
and 128 cores. In our experiments, we set the error rate τ to be in the range
of 0.00–0.50 with an incremental step of 0.01. (For larger parameter sets, we only
considered error rates in the range 0.30–0.50.) For each error rate, we repeat the
experiment 100 times with independent random seeds. The average success rate
is plotted as a function of the error rate τ in Figure 2.

 https://github.com/lambdafu/Leaky-McEliece 
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From these measurements, we used linear interpolation to determine the
maximum error probability for which the success probability of the attack is
larger than 1

2 . These threshold values are given in Table 3. The same table also
presents the average execution time.

Table 3: Experiment execution time and the threshold error rate τThreshold, where
the success probability crosses 1

2 , based on linear interpolation of neighbouring
measurements.

Classic McEliece Botan

Name Wall Time τThreshold Wall Time τThreshold

toyeliece51220 4sec 0.260 3sec 0.261

toyeliece102450 5sec 0.340 5sec 0.340

mceliece348864 19sec 0.361 15sec 0.360

mceliece460896 1min 30sec 0.384 46sec 0.386

mceliece6960119 2min 1sec 0.395 1min 20sec 0.395

mceliece6688128 2min 10sec 0.397 1min 22sec 0.400

mceliece8192128 2min 11sec 0.398 1min 41sec 0.398

Results. Our experimental verification shows that the success probability of
our attack on Classic McEliece and Botan is very well aligned with our model,
as shown in Figure 2.

We note that the execution time of the attack on Classic McEliece is slightly
slower than attacking Botan (see Table 3). This can be easily explained by the
extra row additions performed by Classic McEliece, and the smaller codebook
size (due to the deterministic Goppa point generation). In practice, this makes
our attack on Botan 25%–50% faster compared to that of Classic McEliece.

The applicability of support splitting and the reduced codebook size nomi-
nally improves the success probability for our attack on Botan by a small amount.
However, the effect is marginal and not visible in our experimental data.

6.5 Support Splitting

In a setting where the Goppa points α1, . . . , αn are known (e.g., when n = 2m or
when using an implementation with deterministic Goppa point generation, such
as Botan), our algorithm Secret-Key-Recovery uses the Support Splitting
algorithm (SSA) as a subroutine.

To the best of our knowledge, there is no open source implementation of SSA
available. In particular, there seems to be no publicly available data showing how
SSA performs on Classic McEliece parameter sets.
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Fig. 2: Comparison between experimental results (dots) and estimates from
Equation (18) (curves) for our attack on Classic McEliece (left) and Botan (right)
parameter sets. Horizontal axes show the error probability τ of the leak. Vertical
axes show the success probability of our attack.
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Since the runtime analysis in Sendrier’s original paper is only heuristic, it is
important to verify that SSA is indeed efficient for McEliece parameters. To this
end, we implement the SSA in SageMath and run it on various parameter sets.
The results are depicted in Table 4. As the table shows, the algorithm is highly
efficient. Even for the high-security parameter sets, the algorithm terminates in
less than 5 minutes.

Table 4: Average, minimal and maximal runtime of our Support Splitting im-
plementation on 10 random instances per parameter set.

Name tavg tmin tmax

toyeliece51220 < 1sec < 1sec 2sec

toyeliece102450 3sec 1sec 4sec

mceliece348864 32sec 13sec 45sec

mceliece460896 52sec 22sec 1min 40sec

mceliece6960119 2min 30sec 51sec 4min 10sec

mceliece6688128 2min 2sec 47sec 3min 9sec

mceliece8192128 3min 1sec 1min 12sec 4min 50sec
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5. Acıiçmez, O., Gueron, S., Seifert, J.: New branch prediction vulnerabilities in
OpenSSL and necessary software countermeasures. In: IMACC. Lecture Notes in
Computer Science, vol. 4887, pp. 185–203. Springer (2007)

https://botan.randombit.net/doxygen/code__based__key__gen_8cpp_source.html
https://botan.randombit.net/doxygen/code__based__key__gen_8cpp_source.html
https://www.bsi.bund.de/dok/9060550
https://www.bsi.bund.de/dok/9060550
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography


28 M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom

6. Alam, M., Yilmaz, B.B., Werner, F., Samwel, N., Zajic, A.G., Genkin, D., Yarom,
Y., Prvulovic, M.: Nonce@Once: A single-trace EM side channel attack on several
constant-time elliptic curve implementations in mobile platforms. In: EuroS&P.
pp. 507–522. IEEE (2021)

7. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3),
173–213 (2018)

8. Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram, V., von Maurich,
I., Misoczki, R., Niederhagen, R., Persichetti, E., Peters, C., Sendrier, N., Szefer,
J., Tjhai, C.J., Tomlinson, M., Wang, W.: Classic McEliece. https://classic.
mceliece.org/mceliece-sage-20221023.tar.gz (2022)

9. Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram, V., von Mau-
rich, I., Misoczki, R., Niederhagen, R., Persichetti, E., Peters, C., Sendrier, N.,
Szefer, J., Tjhai, C.J., Tomlinson, M., Wang, W.: Classic McEliece: conservative
code-based cryptography: design rationale (2022), https://classic.mceliece.

org/mceliece-rationale-20221023.pdf

10. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
- A cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (Aug 2016). https://doi.org/10.1007/978-3-662-53140-2 16

11. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: ESORICS.
Lecture Notes in Computer Science, vol. 6879, pp. 355–371. Springer (2011)

12. Chuengsatiansup, C., Feutrill, A., Sim, R.Q., Yarom, Y.: RSA key recovery from
digit equivalence information. In: ACNS. Lecture Notes in Computer Science, vol.
13269, pp. 193–211. Springer (2022)

13. Coppersmith, D.: Finding a small root of a univariate modular equation. In: EU-
ROCRYPT. Lecture Notes in Computer Science, vol. 1070, pp. 155–165. Springer
(1996)

14. Cover, T.M.: Elements of information theory. John Wiley & Sons (1999)

15. De Micheli, G., Heninger, N.: Recovering cryptographic keys from partial informa-
tion, by example. IACR ePrint 2020/1506 (2020)

16. Erata, F., Piskac, R., Mateu, V., Szefer, J.: Towards automated detection of
single-trace side-channel vulnerabilities in constant-time cryptographic code. In:
EuroS&P. pp. 687–706. IEEE (2023)

17. Esser, A., May, A., Verbel, J.A., Wen, W.: Partial key exposure attacks on
BIKE, rainbow and NTRU. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part III. LNCS, vol. 13509, pp. 346–375. Springer, Heidelberg (Aug 2022).
https://doi.org/10.1007/978-3-031-15982-4 12

18. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44371-2 25

19. Guo, Q., Johansson, A., Johansson, T.: A key-recovery side-channel attack on
classic mceliece implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(4), 800–827 (2022)

20. Guo, Q., Nabokov, D., Nilsson, A., Johansson, T.: SCA-LDPC: A code-based
framework for key-recovery side-channel attacks on post-quantum encryption
schemes. Cryptology ePrint Archive, Report 2023/294 (2023), https://eprint.
iacr.org/2023/294

https://classic.mceliece.org/mceliece-sage-20221023.tar.gz
https://classic.mceliece.org/mceliece-sage-20221023.tar.gz
https://classic.mceliece.org/mceliece-rationale-20221023.pdf
https://classic.mceliece.org/mceliece-rationale-20221023.pdf
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-662-44371-2_25
https://eprint.iacr.org/2023/294
https://eprint.iacr.org/2023/294


Leaky McEliece 29

21. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(Aug 2010). https://doi.org/10.1007/978-3-642-14623-7 19

22. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (Aug 2009). https://doi.org/10.1007/978-3-642-03356-8 1

23. Howgrave-Graham, N.: Finding small roots of univariate modular equations re-
visited. In: IMACC. Lecture Notes in Computer Science, vol. 1355, pp. 131–142.
Springer (1997)

24. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptogr. 23(3), 283–290 (2001)

25. Huang, S., Sim, R.Q., Chuengsatiansup, C., Guo, Q., Johansson, T.: Cache-timing
attack against HQC. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(3), 136–
163 (2023)

26. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 243–268 (2020)

27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-68697-5 9

28. Lahr, N., Niederhagen, R., Petri, R., Samardjiska, S.: Side channel informa-
tion set decoding using iterative chunking - plaintext recovery from the “classic
McEliece” hardware reference implementation. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part I. LNCS, vol. 12491, pp. 881–910. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64837-4 29

29. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy. pp. 605–622.
IEEE Computer Society (2015)

30. Nascimento, E., Chmielewski, L., Oswald, D.F., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. In: SAC. Lecture Notes in
Computer Science, vol. 10532, pp. 99–119. Springer (2016)

31. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptol. 15(3), 151–176 (2002)

32. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signa-
ture algorithm with partially known nonces. Des. Codes Cryptogr. 30(2), 201–217
(2003)

33. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: CT-RSA. Lecture Notes in Computer Science, vol. 3860, pp. 1–20.
Springer (2006)

34. Park, A., Shim, K., Koo, N., Han, D.: Side-channel attacks on post-quantum sig-
nature schemes based on multivariate quadratic equations - Rainbow and UOV -.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 500–523 (2018)

35. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic ap-
proach to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (Dec 2012).
https://doi.org/10.1007/978-3-642-34961-4 24

36. Riebler, H., Kenter, T., Plessl, C., Sorge, C.: Reconstructing AES key schedules
from decayed memory with FPGAs. In: FCCM. pp. 222–229. IEEE Computer
Society (2014)

37. Schamberger, T., Holzbaur, L., Renner, J., Wachter-Zeh, A., Sigl, G.: A power side-
channel attack on the reed-muller reed-solomon version of the hqc cryptosystem.
In: Post-Quantum Cryptography. pp. 327–352 (2022)

https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/978-3-642-34961-4_24


30 M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom

38. Sendrier, N.: Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

39. Shoshany, B.: A C++17 thread pool for high-performance sci-
entific computing. arXiv e-prints arXiv:2105.00613 (May 2021).
https://doi.org/10.5281/zenodo.4742687

40. Strenzke, F.: A timing attack against the secret permutation in the McEliece
PKC. In: Sendrier, N. (ed.) The Third International Workshop on Post-Quantum
Cryptography, PQCRYPTO 2010. pp. 95–107. Springer, Heidelberg (May 2010).
https://doi.org/10.1007/978-3-642-12929-2 8

41. Strenzke, F., Tews, E., Molter, H.G., Overbeck, R., Shoufan, A.: Side channels
in the McEliece PKC. In: Buchmann, J., Ding, J. (eds.) Post-quantum cryptog-
raphy, second international workshop, PQCRYPTO 2008. pp. 216–229. Springer,
Heidelberg (Oct 2008). https://doi.org/10.1007/978-3-540-88403-3 15

42. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-
encryption: A generic power/EM analysis on post-quantum KEMs. IACR TCHES
2022(1), 296–322 (2022). https://doi.org/10.46586/tches.v2022.i1.296-322

43. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Çetin Kaya.,
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