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Abstract

A non-interactive ZK (NIZK) proof enables verification of NP statements without revealing
secrets about them. However, an adversary that obtains a NIZK proof may be able to clone this
proof and distribute arbitrarily many copies of it to various entities: this is inevitable for any
proof that takes the form of a classical string. In this paper, we ask whether it is possible to rely
on quantum information in order to build NIZK proof systems that are impossible to clone.

We define and construct unclonable non-interactive zero-knowledge proofs (of knowledge) for
NP. Besides satisfying the zero-knowledge and proof of knowledge properties, these proofs
additionally satisfy unclonability. Very roughly, this ensures that no adversary can split an
honestly generated proof of membership of an instance x in an NP language L and distribute
copies to multiple entities that all obtain accepting proofs of membership of x in L. Our result
has applications to unclonable signatures of knowledge, which we define and construct in this work;
these non-interactively prevent replay attacks.
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1 Introduction

Zero-knowledge (ZK) [GMR89] proofs allow a prover to convince a verifier about the truth of
an (NP) statement, without revealing secrets about it. These are among the most widely used
cryptographic primitives, with a rich history of study.

Enhancing Zero-knowledge. ZK proofs for NP are typically defined via the simulation paradigm.
A simulator is a polynomial-time algorithm that mimics the interaction of an adversarial verifier
with an honest prover, given only the statement, i.e., x ∈ L, for an instance x of an NP language L.
A protocol satisfies zero-knowledge if it admits a simulator that generates a view for the verifier,
which is indistinguishable from the real view generated by an honest prover. This captures the
intuition that any information obtained by a verifier upon observing an honestly generated proof,
could have been generated by the verifier “on its own” by running the simulator.

Despite being widely useful and popular, there are desirable properties of proof systems that
(standard) simulation-based security does not capture. For example, consider (distributions over)
instances x of an NP language L where it is hard to find an NP witness w corresponding to a given
instance x. In an “ideal” world, given just the description of one such NP statement x ∈ L, it is
difficult for an adversary to find an NP witness w, and therefore to output any proofs of membership
of x ∈ L. And yet, upon obtaining a single proof of membership of x ∈ L, it may suddenly become
feasible for an adversary to make many copies of this proof, thereby generating several correct
proofs of membership of x ∈ L.

Unfortunately, this attack is inevitable for classical non-interactive proofs: given any proof
string, an adversary can always make multiple copies of it. And yet, there is hope to prevent such
an attack quantumly, by relying on the no-cloning principle.

Indeed, a recent series of exciting works have combined cryptography with the no-cloning
principle to develop quantum money [Wie83, AC13, FGH+12, Zha19a, Kan18], quantum tokens for
digital signatures [BS16], quantum copy-protection [Aar09, AP21, ALL+21, CLLZ21], unclonable
encryption [Got03, BL20, AK21, MST21, AKL+22], unclonable decryption [GZ20], one-out-of-many
unclonable security [KN23], and more. In this work, we combine zero-knowledge and unclonability
to address a question first posed by Aaronson [Aar09]:

Can we construct unclonable quantum proofs?
How do these proofs relate to quantum money or copy-protection?

1.1 Our Results

We define and construct unclonable non-interactive zero-knowledge proofs of knowledge (NIZKPoK).
We obtain a construction in the common reference string (CRS) model, as well as one in the
quantum(-accessible) random oracle model (QROM). The CRS model allows a trusted third-party
to set up a structured string that is provided to both the prover and verifier. On the other hand, the
QROM allows both parties quantum access to a truly random function O.

In what follows, we describe our contributions in more detail.

1.1.1 Definitional Contributions

Before discussing how we formalize the concept of unclonability for NIZKs, it will be helpful to
define hard distributions over NP instance-witness pairs.
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Hard Distributions over Instance-Witness Pairs. Informally, an efficiently samplable distribution
over instance-witness pairs of a language L is a “hard” distribution if given an instance sampled
randomly from this distribution, it is hard to find a witness. Then, unclonable security requires
that no adversary given an instance x sampled randomly from the distribution, together with an
honestly generated proof, can output two accepting proofs of membership of x ∈ L.

More specifically, a hard distribution (X ,W) over RL satisfies the following: for any polynomial-
sized (quantum) circuit family {Cλ}λ∈N,

Pr
(x,w)←(Xλ,Wλ)

[Cλ(x) ∈ RL(x)] ≤ negl(λ).

For the sake of simplifying our subsequent discussions and definitions, let us fix a NP language
Lwith corresponding relationR. Let (X ,W) be some hard distribution overR.

A Weaker Definition: Unclonable Security. For NIZKs satisfying standard completeness, sound-
ness and ZK, we define a simple, natural variant of unclonable security as follows. Informally, a
proof system satisfies unclonable security if, given an honest proof for an instance and witness pair
(x,w) sampled from a hard distribution (X ,W), no adversary can produce two proofs that verify
with respect to x except with negligible probability.

Definition 1.1. (Unclonable Security of NIZK). A NIZK proof (Setup,Prove,Verify) satisfies un-
clonable security if for every language L and every hard distribution (X ,W) over RL, for every
poly-sized circuit family {Cλ}λ∈N,

Pr
(x,w)←(Xλ,Wλ)

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)
π1,π2←Cλ(x,π)

]
≤ negl(λ).

In the definition above, we aim to capture the intuition that one of the two proofs output by
the adversary can be the honest proof they received, but the adversary cannot output any other
correct proof for the same statement. Of course, such a proof is easy to generate if the adversary
is able to find the witness w for x, which is exactly why we require hardness of the distribution
(X ,W) to make the definition non-trivial.

We also remark that unclonable security of proofs necessitates that the proof π keep hidden any
witnesses w certifying membership of x in L, as otherwise an adversary can always clone the proof
π by generating (from scratch) another proof for x given the witness w.

A Stronger Definition: Unclonable Extractability. We can further strengthen the definition above
to require that any adversary generating two (or more) accepting proofs of membership of x ∈ L
given a single proof, must have generated one of the two proofs “from scratch” and must therefore
“know” a valid witness w for x. This will remove the need to refer to hard languages.

In more detail, we will say that a proof system satisfies unclonable extractability if, from any
adversary A that on input a single proof of membership of x ∈ L outputs two proofs for x, then we
can extract a valid witness w from A for at least one of these statements with high probability. Our
(still, simplified) definition of unclonable extractability is as follows.

Definition 1.2 (Unclonable Extractability.). A proof (Setup,Prove,Verify) satisfies unclonable secu-
rity there exists a QPT extractor E which is an oracle-aided circuit such that for every language L
with corresponding relationRL and for every non-uniform polynomial-time quantum adversary
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A, for every instance-witness pair (x,w) ∈ RL and λ = λ(|x|), such that there is a polynomial p(·)
satisfying:

Pr

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Aλ(crs,x,π,z)

]
≥ 1

p(λ)
,

there is also a polynomial q(·) such that

Pr
[
(x,wA) ∈ RL|wA ← EA(x)

]
≥ 1

q(λ)
.

In fact, in the technical sections, we further generalize this definition to consider a setting where
the adversary obtains an even larger number (say k− 1) input proofs on instances x1, . . . , xk−1, and
outputs k or more proofs. Then we require the extraction of an NP witness corresponding to any
proofs that attempt to “clone” honestly generated proofs (i.e. the adversary outputs two or more
proofs w.r.t. the same instance xi ∈ {x1, . . . , xk−1}). All our theorem statements hold w.r.t. this
general definition. Finally, we also consider definitions and constructions in the quantum-accessible
random oracle model (QROM); these are natural generalizations of the definitions above, so we do
not discuss them here.

We also show that the latter definition of unclonable extractability implies the former, i.e.
unclonable security. Informally, this follows because the extractor guaranteed by the definition of
extractability is able to obtain a witness w for x from any adversary, which contradicts hardness of
the distribution (X ,W). We refer the reader to Appendix A for a formal proof of this claim.

1.1.2 Realizations of Unclonable NIZK, and Relationship with Quantum Money

We obtain realizations of unclonable NIZKs in both the common reference string (CRS) and the
quantum random oracle (QRO) models, assuming public-key quantum money mini-scheme and
other (post-quantum) standard assumptions. We summarize these results below.

Theorem 1.3 (Informal). Assuming public-key quantum money mini-scheme, public-key encryption,
perfectly binding and computationally hiding commitments, and adaptively sound NIZK proofs for NP, there
exists an unclonable NIZKPoK scheme in the CRS model.

Theorem 1.4 (Informal). Assuming public-key quantum money mini-scheme and honest verifier zero-
knowledge proofs of knowledge (HVZKPoKs) for NP, there exists an unclonable NIZKPoK scheme in the
QROM.

Theorem 1.5 (Informal). Assuming public-key quantum money mini-scheme, public-key encryption,
post-quantum perfectly binding and computationally hiding commitments, and simulation-sound NIZK
proofs for NP, there exists an unclonable signature of knowledge in the CRS model.

Is Quantum Money necessary for Unclonable NIZKs? Our work builds unclonable NIZKs for
NP by relying on any (public-key) quantum money scheme (mini-scheme), in conjuction with other
assumptions such as NIZKs for NP. Since constructions of public-key quantum money mini-scheme
are only known based on post-quantum indistinguishability obfuscation [AC13, Zha19b], it is
natural to wonder whether the reliance on quantum money is inherent. We show that this is indeed
the case, by proving that unclonable NIZKs in fact imply public-key quantum money mini-scheme.

Theorem 1.6 (Informal). Unclonable NIZKs for NP imply public-key quantum money mini-scheme.
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1.1.3 Applications

Unclonable Signatures of Knowledge. A (classical) signature scheme asserts that a message m has
been signed on behalf of a public key pk. However, in order for this signature to be authenticated,
the public key pk must be proven trustworthy through a certification chain rooted at a trusted
public key PK. However, as [CL06] argue, this reveals too much information; it should be sufficient
for the recipient to only know that there exists a public key pk with a chain of trust from PK. To
solve this problem, [CL06] propose signatures of knowledge which allow a signer to sign on behalf of
an instance x of an NP-hard language without revealing its corresponding witness w. Such signatures
provide an anonymity guarantee by hiding the pk of the sender.

While this is ideal for many applications, anonymity presents the following downside: a
receiver cannot determine whether they were the intended recipient of this signature. In particular,
anonymous signatures are more susceptible to replay attacks. Replay attacks are a form of passive
attack whereby an adversary observes a signature and retains a copy. The adversary then leverages
this signature, either at a later point in time or to a different party, to impersonate the original
signer. The privacy and financial consequences of replay attacks are steep. They can lead to data
breach attacks which cost millions of dollars annually and world-wide [IBM23].

In this work, we construct a signature of knowledge scheme which is the first non-interactive
signature in the CRS model that is naturally secure against replay attacks. Non-interactive, replay
attack secure signatures have seen a lot of recent interest including a line of works in the bounded
quantum storage model [BS23b] and the quantum random oracle model [BS23a]. Our construction
is in the CRS model and relies on the hardness of NP problems, plausible cryptographic assump-
tions, and the axioms of quantum mechanics. We accomplish this by defining unclonable signatures
of knowledge: if an adversary, given a signature of a message m with respect to an instance x, can
produce two signatures for m which verify with respect to the same instance x, then our extractor
is able to extract a witness for x.

Our construction involves showing that an existing compiler can be augmented using unclon-
able NIZKs to construct unclonable signatures of knowledge. The authors of [CL06] construct
signatures of knowledge from CPA secure dense cryptosystems [SP92, SCP00] and simulation-
sound NIZKs for NP [Sah99, SCO+01]. Signatures of knowledge are signature schemes in the
CRS model for which we associate an instance x in a language L. This signature is simulatable,
so there exists a simulator which can create valid signatures without knowledge of a witness for
x. Additionally, the signature is extractable which means there is an extractor which is given a
trapdoor for the CRS and a signature, and is able to produce a witness for x. We show that, by
switching the simulation-sound NIZKs for unclonable simulation-extractable NIZKs (and slightly
modifying the compiler), we can construct unclonable signatures of knowledge.

Relationship with Revocation. A recent exciting line of work obtains certified deletion for time-
lock puzzles [Unr14], non-local games [FM18], information-theoretic proofs of deletion with
partial security [CW19], encryption schemes [BI20, BK23], device-independent security of one-
time pad encryption with certified deletion [KT20], public-key encryption with certified dele-
tion [HMNY21], commitments and zero-knowledge with certified everlasting hiding [HMNY22],
and fully-homomorphic encryption with certified deletion [Por22, BK23, BKP23, BGG+23]. While
certified everlasting deletion of secrets has been explored in the context of interactive zero-knowledge
proofs [HMNY22], there are no existing proposals for non-interactive ZK satisfying variants of certi-
fied deletion. Our work provides a pathway to building such proofs.
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In this work, we construct a quantum revocable anonymous credentials protocol by way of the
hardness of NP problems, plausible cryptographic assumptions, and the axioms of quantum
mechanics. Our work follows a line of work on (classical) revocation for anonymous credentials
schemes [BCC+09, CKS10, AN11].

In particular, our construction involves noting that NIZK proof systems that are unclonable can
also be viewed as supporting a form of certified deletion/revocation, where in order to delete, an
adversary must simply return the entire proof. In other words, the (quantum) certificate of deletion
is the proof itself, and this certificate can be verified by running the NIZK verification procedure on
the proof. The unclonability guarantee implies that an adversary cannot keep with itself or later
have the ability to generate another proof for the same instance x. In the other direction, in order to
offer certifiable deletion, a NIZK must necessarily be unclonable. To see why, note that if there was
an adversary who could clone the NIZK, we could use this adversary to obtain two copies, and
provably delete one of them. Even though the challenger for the certifiable deletion game would be
convinced that its proof was deleted, we would still be left with another correct proof.

1.2 Related Works

This work was built upon the foundations of and novel concepts introduced by prior literature. We
will briefly touch upon some notable such results in this section.

Unclonable Encryptions. Unclonable encryption [Got03, BL20, AK21, MST21, AKL+22] imagines
an interaction between three parties in which one party receives a quantum ciphertext and splits
this ciphertext in some manner between the two remaining parties. At some later point, the key of
the encryption scheme is revealed, yet both parties should not be able to simultaneouly recover
the underlying message. While our proof systems share the ideology of unclonability, we do not
have a similar game-based definition of security. This is mainly due to proof systems offering more
structure which can take advantage of to express unclonability in terms of simulators and extractors.

Signature Tokens. Prior work [BS17] defines and constructs signature tokens which are signatures
which involve a quantum signing token which can only be used once before it becomes inert.
The setting they consider is where a client wishes to delegate the signing process to a server,
but does not wish the server to be able to sign more than one message. They rely on quantum
money [AC13] and the no-cloning principle to ensure the signature can only be computed once.
For our unclonable signatures of knowledge result, we focus on the setting where a client wishes to
authenticate themselves to a server and wants to prevent an adversary from simultaneously, or
later, masquerading as them.

One-shot Signatures. The authors of [AGKZ20] introduce the notion of one-shot signatures which
extend the concept of signature tokens to a scenario where the client and server only exchange
classical information to create a one-use quantum signature token. They show that these signatures
can be plausibly constructed in the CRS model from post-quantum indistinguishability obfusca-
tion. Unless additional measures for security, which we discussed in our applications section, are
employed, classical communication can be easily copied and replayed at a later point. In contrast,
we prevent an adversary from simultaneously, or later, authenticating with the client’s identity.
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Post-quantum Fiat-Shamir. Our QROM results are heavily inspired by the recent post-quantum
Fiat-Shamir result [LZ19] which proves the post-quantum security of NIZKs in the compressed
quantum(-accessible) random oracle model (compressed QROM). These classical NIZKs are the
result of applying Fiat-Shamir to post-quantum sigma protocols which are HVZKPoKs. We further
extend, and crucially rely upon, their novel proof techniques to prove extractability (for PoK) and
programmability (for ZK) to achieve extractability and programmability for some protocols which
output quantum proofs.

2 Technical Overview

In this section, we give a high-level overview of our construction and the techniques underlying
our main results.

2.1 Unclonable Extractable NIZKs in the CRS Model

Our construction assumes the existence of public-key encryption, classical bit commitments where
honestly generated commitment strings are perfectly binding, along with

• Public-key quantum money mini-scheme (which is known assuming post-quantum iO [Zha19b]).
At a high level, public-key quantum money mini-scheme consists of two algorithms: Gen
and Ver. Gen on input a security parameter, outputs a quantum banknote |$⟩ along with a
classical serial number s. Ver is public, takes a quantum money banknote, and outputs either
a classical serial number s, or ⊥ indicating that its input is an invalid banknote. The security
guarantee is that no efficient adversary given an honest banknote |$⟩ can output two notes
|$1⟩ and |$2⟩ that both pass the verification and have serial numbers equal to that of |$⟩.

• Post-quantum NIZKs for NP, which are known assuming the post-quantum hardness of LWE.
These satisfy (besides completeness) (1) soundness, i.e., no efficient prover can generate
accepting proofs for false NP statements, and (2) zero-knowledge, i.e., the verifier obtains no
information from an honestly generated proof beyond what it could have generated on its
own given the NP statement itself.

Construction. Given these primitives, the algorithms (Setup,Prove,Verify) of the unclonable ex-
tractable NIZK are as follows.

SETUP(1λ): The setup algorithm samples a public key pk, the common reference string crs of a
classical (post-quantum) NIZK for NP, along with a perfectly binding, computationally hiding
classical commitment to 0λ with uniform randomness t, i.e. c = Com(0λ; t). It outputs (pk, crs, c).

PROVE: Given the CRS (pk, crs, c), instance x and witness w, output (|$⟩ , s, ct, π) where

• The state |$⟩ ← Gen is generated as a quantum banknote with associated serial number s.

• The ciphertext ct = Encpk(w;u) is an encryption of the witness w with randomness u.

• The proof string π is a (post-quantum) NIZK for the following statement using witness (w, u):

EITHER (∃w, u : ct = Encpk(w;u) ∧RL(x,w) = 1) OR (∃r : c = Com(s; r)) ,

where we recall that pk and c were a part of the CRS output by the Setup algorithm.
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VERIFY: Given CRS (pk, crs, c), instance x and proof (|$⟩ , s, ct, π), check that (1) Ver(|$⟩) outputs s
and (2) π is an accepting NIZK proof of the statement above.

Analysis. Completeness, soundness/proof of knowledge and ZK for this construction follow
relatively easily, so we focus on unclonable extractability in this overview. Recall that unclonable
extractability requires that no adversary, given an honestly generated proof for x ∈ L, can split
this into two accepting proofs for x ∈ L (as long as it is hard to find a witness for x). Towards
a contradiction, suppose an adversary splits a proof into 2 accepting proofs (|$1⟩ , s1, ct1, π1),
(|$2⟩ , s2, ct2, π2). Then,

• If s1 = s2 = s, the adversary given one bank note with serial number s generated two valid
banknotes |$⟩1 and |$⟩2 that both have the same serial number s. This contradicts the security
of quantum money.

• Otherwise, there is a bit b such that sb ̸= s. Then, consider an indistinguishable hybrid where
the adversary obtains a simulated proof generated without witness w as follows: (1) sample
quantum banknote |$⟩with serial number s, (2) sample public key pk along with secret key
sk, (3) generate c = Com(s; t), ct = Encpk(0;u), (4) generate proof π using witness t (since
c = Com(s; t)) instead of using witness w. Send common reference string (pk, crs, c) and proof
(|$⟩ , s, ct, π) to the adversary. Now, the proof that the adversary generates with sb ̸= s must
contain ctb = Encpk(w;u), since c being generated as a commitment to s ̸= sb along with the
perfect binding property implies that ( ̸∃ r : c = Com(sb; r)). That is, given instance x, the
adversary can be used to compute a witness w for x by decrypting ciphertext ctb, thereby
contradicting unclonable extractability.

Having constructed unclonable extractable arguments in the CRS model, in the next section,
we analyze a construction of unclonable extractable arguments in the QROM.

2.2 Unclonable Extractable NIZK in the QROM

We now turn our attention to the QRO setting in which we demonstrate a protocol which is provably
unclonable. Our construction assumes the existence of public-key quantum money mini-scheme
and a post-quantum sigma protocol for NP. A sigma protocol (P,V) is an interactive three-message
honest-verifier protocol: the prover sends a commitment message, the verifier sends a uniformly
random challenge, and the prover replies by opening its commitment at the locations specified by
the random challenge.

Construction. The algorithms (PROVE, VERIFY) of the unclonable extractable NIZK in the QROM
are as follows.

PROVE: Given an instance x and witness w, output (|$⟩ , s, α, β, γ) where

• The quantum banknote |$⟩ is generated alongside associated serial number s.

• P is run to compute the sigma protocol’s commitment message as α given (x,w) as input.

• The random oracle is queried on input (α, s, x) in order to obtain a challenge β.

• P is run, given as input (x,w, α, β) and its previous internal state, to compute the sigma
protocol’s commitment openings as γ.
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VERIFY: Given instance x and proof (|$⟩ , s, α, β, γ), check that (1) the quantum money verifier
accepts (|$⟩ , s), (2) the random oracle on input (α, s, x) outputs β, and (3) V accepts the transcript
(α, β, γ) with respect to x.

Analysis. Since the completeness, proof of knowledge and zero-knowledge properties are easy
to show, we focus on unclonable extractability. Suppose an adversary was able to provide two
accepting proofs π1 = (|$1⟩ , s1, α1, β1, γ1) and π2 = (|$2⟩ , s2, α2, β2, γ2) for an instance x for which
it received an honestly generated proof π = (|$⟩ , s, α, β, γ). Then,

• Suppose s1 = s2 = s. In this case, the adversary given one bank note with serial number s
generated two valid banknotes |$⟩1 and |$⟩2 that both have the same serial number s. This
contradicts the security of quantum money.

• Otherwise, there is a bit b ∈ [1, 2] such that sb ̸= s. By the zero-knowledge property of the
underlying HVZK sigma protocol, this event also occurs when the proof π that the adversary
is given is replaced with a simulated proof. Specifically, we build a reduction that locally
programs the random oracle at location (α, s, x) in order to generate a simulated proof for the
adversary. Since the adversary’s own proof for sb ̸= s is generated by making a distinct query
(αb, sb, x) ̸= (α, s, x), the programming on (α, s, x) does not affect the knowledge extractor
for the adversary’s proof, which simply rewinds the (quantum) random oracle to extract a
witness for x, following [LZ19]. This allows us to obtain a contradiction, showing that our
protocol must be unclonable.

2.3 Unclonable NIZKs imply Quantum Money Mini-Scheme

Finally, we discuss why unclonable NIZKs satisfying even the weaker definition of unclonable
security (i.e., w.r.t. hard distributions) imply public-key quantum money mini-scheme. Given an
unclonable NIZK, we build a public-key quantum money mini-scheme as follows.

Construction. Let (X ,W) be a hard distribution over a languageL ∈ NP. Let Π = (Setup,Prove,Verify)
be an unclonable NIZK protocol for L.

GEN(1λ): Sample (x,w) ← (X ,W), crs ← Setup(1λ, x), and an unclonable NIZK proof π as
Prove(crs, x, w). Output quantum banknote |$⟩ = π, and associated serial number s = (crs, x).
VER(|$⟩ , s): Given a quantum banknote |$⟩ and a classical serial number s as input, parse |$⟩ = π
and s = (crs, x), and output the result of Verify(crs, x, π).

Analysis. The correctness of the quantum money scheme follows from the completeness of the
unclonable NIZK Π. We will now argue that this quantum money scheme is unforgeable. Suppose
an adversary A given a quantum banknote and classical serial number (|$⟩ , s) was able to output
two banknotes (|$0⟩ , |$1⟩) both of which are accepted with respect to s. We can use A to define a
reduction to the uncloneability of our NIZK Π as follows:

• The NIZK uncloneability challenger outputs a hard instance-witness pair (x,w), a common
reference string crs, and an unclonable NIZK π to the reduction.

• The reduction outputs a banknote (|$⟩ , s) to the adversary, where |$⟩ = π and s = (crs, x). It
receives two quantum banknotes (|$0⟩ , |$1⟩) from A, and finally outputs two proofs (π0, π1)
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where π0 = |$0⟩ and π1 = |$1⟩.

If A succeeds in breaking unforgeability, then the quantum money verifier accepts both banknotes
(|$⟩0 = π0, |$⟩1 = π1), with respect to the same serial number s = (crs, x). By syntax of the
verification algorithm, this essentially means that both proofs (π0, π1) are accepting proofs for
membership of the same instance x ∈ L, w.r.t. crs, leading to a break in the unclonability of NIZK.

2.4 Unclonable Signatures of Knowledge

Informally, a signature of knowledge has the following property: if an adversary, given a signature
of a message m with respect to an instance x, can produce two signatures for m which verify with
respect to the same instance x, then the adversary must know (and our extractor will be able to
extract) a witness for x.

We obtain unclonable signatures of knowledge assuming the existence of an unclonable ex-
tractable simulation-extractable NIZK for NP. Simulation-extractability states that an adversary
which is provided any number of simulated proofs for instance and witness pairs of their choosing,
cannot produce an accepting proof π for an instance x which they have not queried before and
where extraction fails to find an accepting witness w. Our unclonable extractable NIZK for NP in
the CRS model can, with some extra work, be upgraded to simulation-extractable.

We informally describe the construction of signatures of knowledge from such a NIZK below.

Construction. Let (Setup,P,V) be non-interactive simulation-extractable, adaptive multi-theorem
computational zero-knowledge, unclonable-extractable protocol for NP. LetR be the NP relation
corresponding to L.
SETUP: The setup algorithm samples a common reference string crs of an unclonable-extractable
simulation-extractable NIZK for NP. It outputs crs.
SIGN: Given the CRS crs, instance x, witness w, and message m, output signature π where

• The proof string π is an unclonable-extractable simulation-extractable NIZK with tag m using
witness w of the following statement:

(∃w : (x,w) ∈ R) .

VERIFY: Given CRS crs, instance x, message m, and signature π, check that π is an accepting NIZK
proof with tag m of the statement above.
Analysis. The simulatability (extractability) property follows from the zero-knowledge (resp.
simulation-extractability) properties of the NIZK. Suppose an adversary A given a signature σ was
able to forge two signatures σ1 = π1 and σ2 = π2, and, yet, our extractor was to fail to extract a
witness w from A. Then,

• Either both proofs π1 and π2 are accepting proofs for membership of the same instance w.r.t.
crs. However, this contradicts the unclonability of the NIZK.

• Otherwise there exists a proof πi (where i ∈ {1, 2}) for an instance whichA has not previously
seen a proof for. We can switch to a hybrid where our signatures contain simulated proofs for
the NIZK. But now, we have that the verifier accepts a proof for an instance which A has not
seen a simulated proof for and, yet, we cannot extract a witness from A. This contradicts the
simulation extractability of the NIZK.
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Roadmap. In Section 4, we define and construct unclonable NIZKs in the CRS model, and in
Section 5, in the QROM. Along the way, we also show that unclonable NIZKs imply quantum
money (in the CRS and QRO model respectively). Later, we show how to define and construct
unclonable signatures of knowledge from unclonable NIZKs in the CRS model.

3 Preliminaries

3.1 Post-Quantum Commitments and Encryption

Definition 3.1 (Post-Quantum Commitments). Com is a post-quantum commitment scheme if it
has the following syntax and properties.
Syntax.

• c← Com(m; r): The polynomial-time algorithm Com on input a message m and randomness
r ∈ {0, 1}r(λ) outputs commitment a c.

Properties.

• Perfectly Binding: For every λ ∈ N+ and every m,m′, r, r′ such that m ̸= m′,

Com(m; r) ̸= Com(m′; r′).

• Computational Hiding: There exists a negligible function negl(·) for every unbounded-size
quantum circuit D, every sufficiently large λ ∈ N+, and every m,m′,∣∣∣∣∣ Pr

r
$←{0,1}r(λ), c←Com(m;r)

[D(c) = 1]− Pr
r

$←{0,1}r(λ), c′←Com(m′;r)

[D(c′) = 1]

∣∣∣∣∣ ≤ negl(λ).

Theorem 3.2 (Post-Quantum Commitment). [LS19] Assuming the polynomial quantum hardness of
LWE, there exists a non-interactive commitment with perfect binding and computational hiding (Defini-
tion 3.1).

Definition 3.3 (Post-Quantum Public-Key Encryption). (Gen,Enc,Dec) is a post-quantum public-
key encryption scheme if it has the following syntax and properties.
Syntax.

• (pk, sk) ← Gen(1λ): The polynomial-time algorithm Gen on input security parameter 1λ

outputs a public key pk and a secret key sk.

• c← Enc(pk,m; r): The polynomial-time algorithm Enc on input a public key pk, message m

and randomness r ∈ {0, 1}r(λ) outputs a ciphertext c.

• m← Dec(sk, c): The polynomial-time algorithm Dec on input a secret key sk and a ciphertext
c outputs a message m.

Properties.

• Perfect Correctness: For every λ ∈ N+ and every m, r,

Pr
(pk,sk)←Gen(1λ)

[Dec(sk,Enc(pk,m; r)) = m] = 1.
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• Indistinguishability under Chosen-Plaintext (IND-CPA) Secure: There exists a negligible
function negl(·) such that for every polynomial-size quantum circuit A = (A0,A1) and every
sufficiently large λ ∈ N+∣∣∣∣∣∣∣∣∣∣

Pr
(pk,sk)←Gen(1λ)

(m0,m1,ζ)←A0(1λ,pk)
c←Enc(pk,m0)

[A1(1
λ, c, ζ) = 1]− Pr

(pk,sk)←Gen(1λ)
(m0,m1,ζ)←A0(1λ,pk)

c←Enc(pk,m1)

[A1(1
λ, c, ζ) = 1]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

3.2 Sigma protocols

Definition 3.4 (Post-Quantum Sigma Protocol for NP). [LZ19] Let NP relationR with correspond-
ing language L be given such that they can be indexed by a security parameter λ ∈ N.

Π = (P = (P.Com,P.Prove),V = (V.Ch,V.Ver)) is a post-quantum sigma protocol if it has the
following syntax and properties.
Syntax. The input 1λ is left out when it is clear from context.

• (α, st) ← P.Com(1λ, x, w): The probabilistic polynomial-size circuit P.Com on input an in-
stance and witness pair (x,w) ∈ Lλ outputs a commitment α and an internal prover state
st.

• β ← V.Ch(1λ, x, α): The probabilistic polynomial-size circuit V.Ch on input an instance x
outputs a uniformly random challenge β.

• γ ← P.Prove(1λ, x, w, st, β): The probabilistic polynomial-size circuit P.Prove on input an
instance and witness pair (x,w) ∈ Lλ, an internal prover state st, and a challenge β outputs
the partial opening (to α as indicated by β) γ.

• V.Ver(1λ, x, α, β, γ) ∈ {0, 1}: The probabilistic polynomial-size circuit V.Ver on input an
instance x, a commitment α, a challenge β, and a partial opening γ outputs 1 iff γ is a valid
opening to α at locations indicated by β.

Properties.

• Perfect Completeness. For every λ ∈ N and every (x,w) ∈ Rλ,

Pr
(α,st)←P.Com(x,w)

β←V.Ch(x,α)
γ←P.Prove(x,w,st,β)

[V.Verify(x, α, β, γ) = 1] = 1

• Computational Honest-Verifier Zero-Knowledge with Quantum Simulator. There exists
a quantum polynomial-size circuit Sim and a negligible function negl(·) such that for every
polynomial-size quantum circuit D, every sufficiently large λ ∈ N, and every (x,w) ∈ Rλ,∣∣∣∣∣∣∣∣∣ Pr

(α,st)←P.Com(x,w)
β←V.Ch(x,α)

γ←P.Prove(x,w,st,β)

[D(x, α, β, γ) = 1]− Pr
(α,β,γ)←Sim(1λ,x)

[D(x, α, β, γ) = 1]

∣∣∣∣∣∣∣∣∣ ≤ negl(λ).
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• Proof of Knowledge with Quantum Extractor. There exists an oracle-aided quantum
polynomial-size circuit Ext, a constant c, a polynomial p(·), and negligible functions negl0(·),
negl1(·) such that for every polynomial-size quantum circuit A = (A0,A1) where

– A0(x) is a unitary Ux followed by a measurement and

– A1(x, |st⟩ , β) is a unitary Vx,β onto the state |st⟩ followed by a measurement,

and every x with associated λ ∈ N satisfying

Pr
(α,|st⟩)←A0(x)

β←{0,1}λ
γ←A1(x,|st⟩,β)

[V.Ver(x, α, β, γ) = 1] ≥ negl0(λ)

we have

Pr
[
(x,ExtA(x)(x)) ∈ Rλ

]
≥ 1

p(λ)
·

 Pr
(α,|st⟩)←A0(x)

β←{0,1}λ
γ←A1(x,|st⟩,β)

[V.Ver(x, α, β, γ) = 1]− negl0(λ)


c

− negl1(λ).

When we say Ext has oracle access to A(x), we mean that Ext has oracle access to both
unitaries Ux, Vx,β and their inverses U †x, V

†
x,β .

• Unpredictable Commitment. There exists a negligible function negl(·) such that for every
sufficiently large λ ∈ N and every (x,w) ∈ Rλ,

Pr
(α,st)←P.Com(x,w)
(α′,st′)←P.Com(x,w)

[α = α′] ≤ negl(λ).

We note that the unpredictable commitment property in the definition above may appear to be
an unusual requirement, but this property is w.l.o.g. for post quantum sigma protocols as shown
in [LZ19]. In particular, any sigma protocol which does not have unpredictable commitments,
can be modified into one that does: the prover can append a random string r to the end of their
commitment message α, and the verifier can ignore this appended string r when they perform their
checks.

3.3 NIZKs in the CRS model

We consider the common reference string model.

Definition 3.5 (Post-Quantum (Quantum) NIZK for NP in the CRS Model). Let NP relationR with
corresponding language L be given such that they can be indexed by a security parameter λ ∈ N.

Π = (Setup,P,V) is a non-interactive post-quantum (quantum) zero-knowledge argument for
NP in the CRS model if it has the following syntax and properties.
Syntax. The input 1λ is left out when it is clear from context.

• crs← Setup(1λ): The probabilistic polynomial-size circuit Setup on input 1λ outputs a com-
mon reference string crs.
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• π ← P(1λ, crs, x, w): The probabilistic (quantum) polynomial-size circuit P on input a common
reference string crs and instance and witness pair (x,w) ∈ Rλ, outputs a proof π.

• V(1λ, crs, x, π) ∈ {0, 1}: The probabilistic (quantum) polynomial-size circuit V on input a
common reference string crs, an instance x, and a proof π outputs 1 iff π is a valid proof for x.

Properties.

• Perfect Completeness. For every λ ∈ N and every (x,w) ∈ Rλ,

Pr
crs←Setup(1λ)
π←P(crs,x,w)

[V(crs, x, π) = 1] = 1.

• Adaptive Computational Soundness. There exists a negligible function negl(·) such that for
every polynomial-size quantum circuit A and every sufficiently large λ ∈ N,

Pr
crs←Setup(1λ)
(x,π)←A(crs)

[V(x, crs, π) = 1 ∧ x ̸∈ Lλ] ≤ negl(λ).

• Adaptive Computational Zero-Knowledge. There exists a probabilistic (quantum) polynomial-
size circuit Sim = (Sim0,Sim1) and a negligible function negl(·) such that for every polynomial-
size quantum circuitA, every polynomial-size quantum circuit D, and every sufficiently large
λ ∈ N, ∣∣∣∣∣∣∣∣∣∣

Pr
crs←Setup(1λ)
(x,w,ζ)←A(crs)
π←P(crs,x,w)

[D(crs, x, π, ζ) = 1]− Pr
(crs,td)←Sim0(1λ)
(x,w,ζ)←A(crs)
π←Sim1(crs,td,x)

[D(crs, x, π, ζ) = 1]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Theorem 3.6 (Post-Quantum NIZK argument for NP in the CRS Model). [PS19] Assuming the
polynomial quantum hardness of LWE, there exists a non-interactive adaptively computationally sound,
adaptively computationally zero-knowledge argument for NP in the common reference string model (Defini-
tion 3.5).

Definition 3.7 (Post-Quantum (Quantum) Simulation-Sound NIZK for NP in CRS Model). Let NP
relation R with corresponding language L be given such that they can be indexed by a security
parameter λ ∈ N.

Π = (Setup,P,V) is a post-quantum (quantum) non-interactive simulation-sound, adaptive
multi-theorem computational zero-knowledge protocol for NP in the CRS model if it has the
following syntax and properties.

• Π is a post-quantum (quantum) non-interactive zero-knowledge argument for NP in the CRS
model (Definition 3.5).

• Adaptive Multi-Theorem Computational Zero-Knowledge. [FLS90] There exists a prob-
abilistic (quantum) polynomial-size circuit Sim = (Sim0, Sim1)

1 and a negligible function

1Sim1 ignores the second term (a witness w) in the queries it receives from A.
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negl(·) such that for every polynomial-size quantum circuitA, every polynomial-size quantum
circuit D, and every sufficiently large λ ∈ N,∣∣∣∣∣ Pr

crs←Setup(1λ)
[AP(crs,·,·)(crs) = 1]− Pr

(crs,td)←Sim0(1λ)
[ASim1(crs,td,·)(crs) = 1]

∣∣∣∣∣ ≤ negl(λ).

• Simulation Soundness. [Sah99, SCO+01] Let Sim = (Sim0,Sim1) be the simulator given by
the adaptive multi-theorem computational zero-knowledge property. There exists a negligible
function negl(·) such that for every oracle-aided polynomial-size quantum circuitA and every
sufficiently large λ ∈ N,

Pr
(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)

[V(crs, x, π) = 1 ∧ x ̸∈ Q ∧ x ̸∈ L] ≤ negl(λ),

where Q is the list of queries from A to Sim1.

REMARK 3.1. In Definition 3.7, adaptive multi-theorem computational zero-knowledge implies
adaptive computational zero-knowledge.

REMARK 3.2. As defined in Definition 3.7, a simulation-sound zero-knowledge protocol has adap-
tive computational soundness (Definition 3.5).

Theorem 3.8 (Simulation Sound Compiler). [SCO+01] Given one-way functions and a single-theorem
NIZK proof system for NP, then there exists a non-interactive simulation sound, adaptively multi-theorem
computationally zero-knowledge proof for NP in the common reference string model (Definition 3.7).

Corollary 3.9 (Post-Quantum Simulation Sound NIZK for NP). Assuming the polynomial quantum
hardness of LWE, there exists a post-quantum non-interactive simulation sound, adaptively multi-
theorem computationally zero-knowledge proof for NP in the common reference string model
(Definition 3.7).

Proof. This follows from Theorem 3.6 and Theorem 3.8.

3.4 NIZKs in the QRO model

We now consider the quantum random oracle model. For sake of completeness, we briefly outline
a definition for a quantum random oracle.

Definition 3.10. A quantum random oracleO is a random function which support quantum queries
and allows for the following accesses:

• Query Access. On input a message, O outputs a uniformly random value. This is the usual
access provided. When quantum access may be invoked, we denote the oracle as |O⟩.

• Programmability Access. Given programmability access, O can be set to output a specified
value on a specified input. An arbitrary number of distinct points can be programmed.

• Extractability Access. Given extractability access, specific queries to |O⟩ can be read.
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Definition 3.11 ((Quantum) Post-Quantum NIZKPoK for NP in QROM). [LZ19] Let O be a
random oracle. Let NP relationRwith corresponding language L be given such that they can be
indexed by a security parameter λ ∈ N.

Π = (P,V) is a (quantum) non-interactive zero-knowledge proof of knowledge protocol with
respect to a random oracle if it has the following syntax and properties.
Syntax. The input 1λ is left out when it is clear from context.

• π ← PO(1λ, x, w): The random oracle-aided (quantum) probabilistic polynomial-size circuit
P on input an instance and witness pair (x,w) ∈ Rλ, outputs a proof π.

• VO(1λ, x, π) ∈ {0, 1}: The random oracle-aided (quantum) probabilistic polynomial-size
circuit V on input an instance x and a proof π, outputs 1 iff π is a valid proof for x.

Properties.

• Perfect Completeness. For every λ ∈ N and every (x,w) ∈ Rλ,

Pr
O

π←PO(x,w)

[VO(x, π) = 1] = 1.

• Zero-Knowledge with Quantum Simulator. There exists a quantum polynomial-size circuit
Sim which ignores its second input and a negligible function negl(·) such that for every oracle-
aided polynomial-size quantum circuit D which is limited to making queries (x, ω) ∈ Rλ on
input 1λ, and every sufficiently large λ ∈ N,∣∣∣∣Pr[DSim,|OSim⟩(1λ) = 1

]
− Pr
O
[DPO,|O⟩(1λ) = 1]

∣∣∣∣ ≤ negl(λ)

where Sim simulates the random oracle |OSim⟩.

• Proof of Knowledge with Quantum Extractor. There exists an oracle-aided quantum
polynomial-size circuit extractor Ext that simulates a random oracle |OExt⟩, a constant c,
a polynomial p(·), and negligible functions negl0(·), negl1(·) such that for every polynomial-
size quantum circuit A and every x with associated λ ∈ N satisfying

Pr
O

π←A|O⟩(x)

[VO(x, π) = 1] ≥ negl0(λ)

we have

Pr
[
(x,ExtA

|OExt⟩(x)(x)) ∈ Rλ

]
≥ 1

p(λ)
·

 Pr
O

π←A|O⟩(x)

[VO(x, π) = 1]− negl0(λ)

c

− negl1(λ).

Theorem 3.12 (NIZKPoK in QROM [Unr17, LZ19]). Let Π be a post-quantum sigma protocol (Defini-
tion 3.4). The Fiat-Shamir heuristic applied to Π yields a classical post-quantum NIZKPoK in the QROM
(Definition 3.11).
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3.5 Quantum Money

Definition 3.13 (Public Key Quantum Money Mini-Scheme). [AC13, Zha19b] (Gen,Ver) is a public
key quantum money scheme if it has the following syntax and properties.
Syntax.

• (|$⟩ , s)← Gen(1λ): The quantum polynomial-time algorithm Gen on input security parameter
1λ outputs a quantum banknote |$⟩ along with a classical serial number s.

• Ver(|$⟩ , s) ∈ {0, 1}: The quantum polynomial-time algorithm Ver on input a quantum ban-
knote |$⟩ and a classical serial number s outputs 1 or 0.

Properties.

• Perfect Correctness: For every λ ∈ N+,

Pr
(|$⟩,s)←Gen(1λ)

[Ver(|$⟩ , s) = 1] = 1.

• Unforgeable: There exists a negligible function negl(·) such that for every sufficiently large
λ ∈ N+ and every polynomial-size quantum circuit A,

Pr
(|$⟩,s)←Gen(1λ)

(|$0⟩,s0,|$1⟩,s1)←A(|$⟩,s)

[s0 = s1 = s ∧ Ver(|$0⟩ , s0) = 1 ∧ Ver(|$1⟩ , s1) = 1] ≤ negl(λ).

• Unpredictable Serial Numbers: There exists a negligible function negl(·) such that for every
sufficiently large λ ∈ N,

Pr
(|$⟩,s)←Gen(1λ)
(|$′⟩,s′)←Gen(1λ)

[s = s′] ≤ negl(λ).

REMARK 3.3 (Unpredictable Serial Numbers). The unpredictable serial numbers property follows,
w.l.o.g., from unforgeability. We will briefly outline the reduction. Say that Gen produced two
quantum banknotes |$⟩ and |$′⟩which had the same serial number s with noticeable probability.
Then an adversary A that receives (|$⟩ , s) from Gen could run Gen again to produce (|$′⟩ , s) with
noticeable probability. This means that Awould have produced two quantum banknotes |$⟩ and
|$′⟩which Verify would accept with respect to the same serial number that A received, s.

Theorem 3.14 (Quantum Money from Subspace Hiding Obfuscation [AC13, Zha19b]). If injective
one-way functions and post-quantum iO exist, then public-key quantum money exists (Definition 3.13).

Definition 3.15 (Public Key Quantum Money Mini-Scheme in QROM). (Gen,Ver) is a public key
quantum money scheme with respect to a quantum random oracle O if it has the following syntax
and properties.
Syntax.

• (|$⟩ , s)← GenO(1λ): The random oracle-aided quantum polynomial-time algorithm Gen on
input a security parameter 1λ outputs a quantum banknote |$⟩ along with a classical serial
number s.
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• VerO(|$⟩ , s) ∈ {0, 1}: The random oracle-aided quantum polynomial-time algorithm Ver on
input a quantum banknote |$⟩ and a classical serial number s outputs 1 or 0.

Properties.

• Perfect Correctness: For every λ ∈ N+,

Pr
(|$⟩,s)←GenO(1λ)

[VerO(|$⟩ , s) = 1] = 1.

• Unforgeable: There exists a negligible function negl(·) such that for every sufficiently large
λ ∈ N+ and every random oracle-aided polynomial-size quantum circuit A,

Pr
(|$⟩,s)←GenO(1λ)

(|$0⟩,s0,|$1⟩,s1)←AO(|$⟩,s)

[s0 = s1 = s ∧ VerO(|$0⟩ , s0) = 1 ∧ VerO(|$1⟩ , s1) = 1] ≤ negl(λ).

• Unpredictable Serial Numbers: There exists a negligible function negl(·) such that for every
sufficiently large λ ∈ N,

Pr
(|$⟩,s)←GenO(1λ)

(|$′⟩,s′)←GenO(1λ)

[s = s′] ≤ negl(λ).

The unpredicable serial number property is w.l.o.g., just as above.

3.6 Quantum Signature of Knowledge

Definition 3.16 (Quantum SimExt-secure Signature [CL06]). Let NP relationR with corresponding
language L be given such that they can be indexed by a security parameter λ ∈ N. Let a message
spaceM be given such that it can be indexed by a security parameter λ ∈ N.

(Setup,Sign,Verify) is a SimExt-secure quantum signature of knowledge of a witness with
respect to L andM if it has the following syntax and properties.
Syntax. The input 1λ is left out when it is clear from context.

• (crs, td)← Setup(1λ): The probabilistic polynomial-time algorithm Setup on input 1λ outputs
a common reference string crs and a trapdoor td.

• σ ← Sign(1λ, crs, x, w,m): The polynomial-time quantum algorithm Sign on input a common
reference string crs, an instance and witness pair (x,w) ∈ Rλ, and a message m ∈ Mλ,
outputs a signature σ.

• Verify(1λ, crs, x,m, σ) ∈ {0, 1}: The polynomial-time quantum algorithm Verify on input a
common reference string crs, an instance x, a message m ∈Mλ, and a signature σ, outputs 1
iff σ is a valid signature of m with respect to crs,Rλ, and x.

Properties.

• Correctness: For every sufficiently large λ ∈ N, every (x,w) ∈ Rλ, and every m ∈Mλ,

Pr
crs←Setup(1λ)

σ←Sign(crs,x,w,m)

[Verify(crs, x,m, σ) = 1] = 1.
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• Simulation: There exists a quantum polynomial-size circuit simulator Sim = (Sim0, Sim1),
where Sim1 ignores its second query input (a witness w), and a negligible function negl(·)
such that for every polynomial-size quantum circuit A and every sufficiently large λ ∈ N,∣∣∣∣∣ Pr

(crs,td)←Sim0(1λ)
[ASim1(crs,td,·,·)(crs) = 1]− Pr

crs←Setup(1λ)
[ASign(crs,·,·,·)(crs) = 1]

∣∣∣∣∣ ≤ negl(λ).

• Extraction: Let Sim = (Sim0,Sim1) be the simulator given by the simulation property. There
exists a quantum polynomial-size circuit Ext and a negligible function negl(·) such that for
every oracle-aided polynomial-size quantum circuit A and every sufficiently large λ ∈ N,

Pr
(crs,td)←Sim0(1λ)

(x,m,σ)←ASim1(crs,td,·,·)(crs)
w←Ext(crs,td,x,m,σ)

[Verify(crs, x,m, σ) = 1 ∧ (x,m) ̸∈ Q ∧ (x,w) ̸∈ Rλ] ≤ negl(λ)

where Q is the list of queries from A to Sim1.

4 Unclonable Non-Interactive Zero-Knowledge in the CRS Model

4.1 Simulation-Extractable Definition

Definition 4.1 (Post-Quantum (Quantum) Simulation-Extractable NIZK for NP in CRS Model). Let
NP relationR with corresponding language L be given such that they can be indexed by a security
parameter λ ∈ N.

Π = (Setup,P,V) is a post-quantum (quantum) non-interactive simulation-extractable zero-
knowledge argument for NP in the CRS model if it has the following syntax and properties.

• Π is a post-quantum (quantum) non-interactive simulation sound, adaptive multi-theorem
computational zero-knowledge argument for NP in the CRS model (Definition 3.7).

• Simulation Extractability. Let Sim = (Sim0, Sim1) be the simulator given by the adaptive
multi-theorem computational zero-knowledge property. There exists a (quantum) polynomial-
time circuit Ext and a negligible function negl(·) such that for every oracle-aided polynomial-
size quantum circuit A and every λ ∈ N,

Pr
(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[V(crs, x, π) = 1 ∧ x ̸∈ Q ∧ (x,w) ̸∈ R] ≤ negl(λ),

where Q is the list of queries from A to Sim1.

REMARK 4.1. As defined in Definition 4.1, a simulation-extractable zero-knowledge protocol has
simulation soundness [Sah99, SCO+01], is a proof of knowledge, and has adaptive computational
soundness (Definition 3.5).
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Simulation-Extractable Non-Interactive ZK for L ∈ NP

Let Π = (Setup,P,V) be a non-interactive simulation sound, adaptively multi-theorem com-
putationally zero-knowledge protocol for NP, and (Gen,Enc,Dec) be a post-quantum perfectly
correct, IND-CPA secure encryption scheme. LetR be the relation with respect to L ∈ NP.

SETUP(1λ): Compute (pk, sk) ← Gen(1λ), and (crsΠ, tdΠ) ← Π.Setup(1λ). Output (crs =
(pk, crsΠ), td = (sk, tdΠ)).
PROVE(crs, x, w):

• Compute ct = Enc(pk, w; r) for r sampled uniformly at random.

• Let xΠ = (pk, x, ct) be an instance of the following language LΠ:

{(pk, x, ct) : ∃(w, r) : ct = Enc(pk, w; r) ∧ (x,w) ∈ R}.

• Compute proof πΠ ← Π.P(crsΠ, xΠ, (w, r)) for language LΠ.

• Output π = (ct, πΠ).

VERIFY(crs, x, π):

• Output Π.V(crsΠ, xΠ, πΠ).

Figure 1: Unclonable Non-Interactive Quantum Protocol for L ∈ NP

Theorem 4.2 (Post-Quantum Simulation-Extractable NIZK for NP in the CRS Model). Let NP
relationR with corresponding language L be given.

Let Π = (Setup,P,V) be a non-interactive post-quantum simulation sound, adaptively multi-theorem
computationally zero-knowledge protocol for NP (Definition 3.7). Let (Gen,Enc,Dec) be a post-quantum
perfectly correct, IND-CPA secure encryption scheme (Definition 3.3).

(Setup,P,V) as defined in Figure 1 will be a non-interactive post-quantum simulation-extractable,
adaptively multi-theorem computationally zero-knowledge argument for L in the common reference string
model (Definition 4.1).

Proof. Perfect Completeness. Completeness follows from the perfect completeness of Π.

Adaptively Multi-theorem Computationally Zero-Knowledge. Let Π.Sim = (Π.Sim0,Π.Sim1) be
the adaptive multi-theorem computationally zero-knowledge simulator of Π. We define Sim0 with
oracle access to Π.Sim0 as follows:

Input: 1λ.
(1) Compute (pk, sk)← Gen(1λ).
(2) Send 1λ to Π.Sim0. Receive (crsΠ, tdΠ) from Π.Sim0.
(3) Output (crs = (pk, crsΠ), td = (sk, tdΠ)).

We define Sim1 with oracle access to Π.Sim1 as follows:
Input: crs = (pk, crsΠ), td = (sk, tdΠ), x.
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(1) Compute ct = Enc(pk, 0; r) for r sampled uniformly at random.
(2) Define xΠ = (pk, x, ct).
(3) Send (crsΠ, tdΠ, xΠ) to Π.Sim1. Receive πΠ.
(4) Output π = (ct, πΠ).
Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be given such

that ∣∣∣∣∣ Pr
crs←Setup(1λ)

[AP(crs,·,·)(crs) = 1]− Pr
(crs,td)←Sim0(1λ)

[ASim1(crs,td,·)(crs) = 1]

∣∣∣∣∣ ≥ 1

p(λ)
. (1)

We will first switch the honest proofs for simulated proofs, using the adaptive multi-theorem
zero-knowledge of Π. Later, we will see how we can switch the encryption of a valid witness to an
encryption of 0, by using the security of the encryption scheme.

Towards this end, we define an intermediary circuit B = (B0,B1) which encrypts a valid
witness, but provides simulated proofs through Π.Sim1. We define B0 to be equivalent to Sim0. We
define B1 with oracle access to Π.Sim1 as follows:

Input: crs = (pk, crsΠ), td = (sk, tdΠ), x, w.
(1) Compute ct = Enc(pk, w; r) for r sampled uniformly at random.
(2) Define xΠ = (pk, x, ct).
(3) Send (crsΠ, tdΠ, xΠ) to Π.Sim1. Receive πΠ.
(4) Output π = (ct, πΠ).

Claim 4.3. There exists a negligible function negl(·) such that for every oracle-aided polynomial-size
quantum circuit A,∣∣∣∣∣ Pr

crs←Setup(1λ)
[AP(crs,·,·)(crs) = 1]− Pr

(crs,td)←B0(1λ)
[AB1(crs,td,·,·)(crs) = 1]

∣∣∣∣∣ ≤ negl(λ).

We will later see a proof of Claim 4.3. For now, assuming that this claim holds, by Equation (2),
this claim, and a union bound, there exists a polynomial p′(·) such that∣∣∣∣∣ Pr

(crs,td)←B0(1λ)
[AB1(crs,td,·,·)(crs) = 1]− Pr

(crs,td)←Sim0(1λ)
[ASim1(crs,td,·)(crs) = 1]

∣∣∣∣∣ ≥ 1

p′(λ)
.

We define a series of intermediary hybrids starting from encrypting all real witnesses to
encrypting all zeros. The first intermediary hybrid switches the encryption sent in the last query
from an encryption of a witness to an encryption of 0. We continue switching the encryption in the
second to last query and so on, until we’ve switched the first proof that the adversary makes.

Let q(·) be a polynomial denoting the maximum number of queries that Amakes. By a union
bound and Equation (2), there must exist a hybrid indexed by i (where we switch the ciphertext in
the ith proof from encrypting a witness to encrypting 0) where A first distinguishes between the
two ciphertexts with advantage 1/(p′(λ)q(λ)). That is,∣∣∣∣∣ Pr

crs←Setup(1λ)
[ASim

(i+1)
1 (crs,·,·)(crs) = 1]− Pr

(crs,td)←Setup(1λ)
[ASim

(i)
1 (crs,td,·)(crs) = 1]

∣∣∣∣∣ ≥ 1

p′(λ)q(λ)
. (2)

where Sim
(j)
1 is a stateful algorithm which sends real proofs for the first j − 1 queries and sends

simulated proofs for the remaining queries.
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We can use A to define a reduction that breaks the IND-CPA security of the encryption scheme
as follows:

Reduction: to IND-CPA of encryption scheme given oracle access to A, Sim0, and Sim1.
Hardwired with: i.
(1) Compute (pk, sk)← Gen(1λ).
(2) Compute (crsΠ, tdΠ)← Π.Sim0(1

λ).
(3) Define crs = (pk, crsΠ) and td = (sk, tdΠ).
(4) Send crs to A.
(5) On the first i− 1 queries (x,w) from A: send π ← B0(crs, x, w) to A.
(6) On the ith query (x,w) from A: send (w, 0) to the challenger, receive ct from the
challenger, define xΠ = (pk, x, ct), send (crsΠ, tdΠ, xΠ) to Π.Sim1, receive πΠ from Π.Sim1,
and send π = (ct, πΠ) to A.
(7) On any queries (x,w) after the ith: send π ← Sim1(crs, td, x) to A.
(8) Output the result of A.

The view of A matches that of Sim(i+1)
1 or Sim

(i)
1 . As such, this reduction should have the same

advantage at breaking the IND-CPA security of the encryption scheme. We reach a contradiction.
Now, all that remains to prove that our earlier claim holds.

Proof of Claim 4.3. Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be
given such that∣∣∣∣∣ Pr

crs←Setup(1λ)
[AP(crs,·,·)(crs) = 1]− Pr

(crs,td)←B0(1λ)
[AB1(crs,td,·,·)(crs) = 1]

∣∣∣∣∣ ≥ 1

p(λ)
.

We define a reduction to the multi-theorem zero-knowledge property of Π as follows:
Reduction: to multi-theorem zero-knowledge of Π given oracle access to A.
(1) Compute (pk, sk)← Gen(1λ).
(2) Receive (real or simulated) crsΠ from the challenger.
(3) Send crs = (pk, crsΠ) to A.
(4) On query (x,w) fromA: compute ct = Enc(pk, w; r) for r samples uniformly at random,
send xΠ = (pk, x, ct) to the challenger, receive (real or simulated) πΠ from the challenger,
send π = (ct, πΠ) to A.
(5) Output the result of A.

The view of A matches that of Setup and P or B0 and B1. As such, this reduction should have
the same advantage at breaking the multi-theorem zero-knowledge property of Π. We reach a
contradiction, hence our claim must be true.

This concludes our proof. Hence our protocol must be multi-theorem zero-knowledge.

Simulation Extractable. Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive multi-theorem compu-
tationally zero-knowledge simulator of Π. Let Sim = (Sim0,Sim1) be the simulator, with oracle
access to Π.Sim, as defined in the proof that Figure 1 is adaptive multi-theorem computational
zero-knowledge. We define Ext as follows:

Input: crs = (pk, crsΠ), td = (sk, tdΠ), x, π = (ct, πΠ).
(1) Output Dec(sk, ct) as w.
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Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be given such
that

Pr
(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[V(crs, x, π) = 1 ∧ x ̸∈ Q ∧ (x,w) ̸∈ R] ≥ 1

p(λ)
,

where Q is the list of queries from A to Sim1. Since V accepts the output of A, then Π.V must accept
(crsΠ, xΠ, πΠ). Since x ̸∈ Q, then xΠ which contains x must not have been sent as a query to Π.Sim1.
By the definition of Ext and the perfect correctness of the encryption scheme, xΠ ̸∈ LΠ. Hence, we
have that

Pr
(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ ̸∈ QΠ ∧ xΠ ̸∈ LΠ] ≥
1

p(λ)
,

where QΠ is the list of queries, originating fromA, that Sim1 makes to Π.Sim1. We define a reduction
to the simulation soundness property of Π as follows:

Reduction: to simulation soundness of Π given oracle access to A.
(1) Compute (pk, sk)← Gen(1λ).
(2) Receive crsΠ from the challenger.
(3) Send crs = (pk, crsΠ) to A.
(4) On query x from A: compute ct = Enc(pk, 0; r) for r samples uniformly at random,
send xΠ = (pk, x, ct) to the challenger, receives πΠ from the challenger, send π = (ct, πΠ)
to A.
(5) Receive (x, π = (ct, πΠ)) from A. Define xΠ = (pk, x, ct).
(6) Output (xΠ, πΠ).

The view of A matches that of Sim0 and Sim1. As such, this reduction should have the same
advantage at breaking the simulation soundness property of Π. We reach a contradiction, hence
our protocol must be simulation extractable.

Corollary 4.4 (Post-Quantum Simulation-Extractable NIZK for NP in the CRS Model). Assuming
the polynomial quantum hardness of LWE, there exists a simulation-extractable, adaptively multi-
theorem computationally zero-knowledge argument for NP in the common reference string model
(Definition 4.1).

Proof. This follows from Corollary 3.9 and Theorem 4.2.

4.2 Unclonability Definitions

We consider two definitions of unclonability for NIZKs. The first one, motivated by simplicity,
informally guarantees that no adversary given honestly proofs for “hard” instances is able to output
more than one accepting proof for the same instance.

Definition 4.5 ((Quantum) Hard Distribution). Let an NP relationR be given. (X ,W) is a (quantum)
hard distribution overR if the following properties hold.

• Syntax. (X ,W) is indexable by a security parameter λ ∈ N. For every choice of λ ∈ N, the
support of (Xλ,Wλ) is over instance and witness pairs (x,w) such that x ∈ L, |x|= λ, and
(x,w) ∈ R.
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• Hardness. For every polynomial-sized (quantum) circuit family A = {Aλ}λ∈N,

Pr
(x,w)←(Xλ,Wλ)

[(x,Aλ(x)) ∈ R] ≤ negl(λ).

Definition 4.6. (Unclonable Security for Hard Instances). A proof (Setup,P,V) satisfies unclonable
security for a language L with corresponding relation RL if for every polynomial-sized quan-
tum circuit family {Cλ}λ∈N, and for every hard distribution {Xλ,Wλ}λ∈N over RL, there exists a
negligible function negl(·) such that for every λ ∈ N,

Pr
(x,w)←(Xλ,Wλ)

[
V(crs, x, π1) = 1

∧
V(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←P(crs,x,w)
π1,π2←Cλ(x,π)

]
≤ negl(λ).

We will now strengthen this definition to consider a variant where from any adversary A
that on input a single proof of membership of x ∈ L outputs two proofs for x, we can extract a
valid witness w for x with high probability. In fact, we can further generalize this definition to a
setting where the adversary obtains an even larger number (say k − 1) input proofs on instances
x1, . . . , xk−1, and outputs k or more proofs. Then we require the extraction of an NP witness
corresponding to any proofs that are duplicated (i.e. two or more proofs w.r.t. the same instance
xi ∈ {x1, . . . , xk−1}). We write this definition below.

Definition 4.7 ((k − 1)-to-k-Unclonable Extractable NIZK). Let security parameter λ ∈ N and
NP relationRwith corresponding language L be given. Let Π = (Setup,P,V) be given such that
Setup,P and V are poly(λ)-size quantum algorithms. We have that for any (x,w) ∈ R, (crs, td) is the
output of Setup on input 1λ, P receives an instance and witness pair (x,w) along with crs as input
and outputs π, and V receives an instance x, crs, and proof π as input and outputs a value in {0, 1}.

Π is a non-interactive (k − 1)-to-k-unclonable zero-knowledge quantum protocol for language
L if the following holds:

• Π is a quantum non-interactive zero-knowledge protocol for language L (Definition 3.5).

• (k − 1)-to-k-Unclonable with Extraction: There exists an oracle-aided polynomial-size quan-
tum circuit E such that for every polynomial-size quantum circuit A, for every tuple of k − 1
instance-witness pairs (x1, ω1), . . . , (xk−1, ωk−1) ∈ R, for every x where we define

– I ⊆ [k − 1] such that |I|≥ 1, xi = x for all i ∈ I, and xι ̸= x for all ι ̸∈ I, and

– J ⊆ [k] such that |J |≥ max{2, |I|}, xj = x for all j ∈ J , and xι ̸= x for ι ̸∈ J ,

such that there is a polynomial p(·) where

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[∧
ι∈J

V(crs, x, π̃ι) = 1

]
≥ 1

p(λ)
,

then there is also a polynomial q(·) such that

Pr
w←EA(x1,...,xk−1,x,I,J )

[(x,w) ∈ R] ≥ 1

q(λ)
.
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We describe a useful lemma to compare our two definitions.

Lemma 4.8. Let Π = (Setup,P,V) be a 1-to-2-unclonable with extraction, non-interactive zero-
knowledge quantum protocol (Definition 4.7). Then, Π satisfies Definition 4.6.

For a proof of Lemma 4.8, we refer to Appendix A.

4.3 Unclonable NIZK Implies Public-Key Quantum Money Mini-Scheme

Public-Key Quantum Money Mini-Scheme

Let (X ,W) be a hard distribution over a language L ∈ NP. Let Π = (Setup,P,V) be an
unclonable non-interactive zero-knowledge protocol for L.

GEN(1λ): Sample a hard instance-witness pair (x,w) ← (X ,Y), a common reference string
crs← Setup(1λ, x), and a proof π ← P(crs, x, w). Output (|$⟩ = π, s = (crs, x)).
VERIFY(|$⟩ , s): Parse |$⟩ = π and s = (crs, x). Output V(crs, x, π).

Figure 2: Public-Key Quantum Money Mini-Scheme from an Unclonable Non-Interactive Quantum
Protocol

Theorem 4.9. Let (X ,W) be a hard distribution over a languageL ∈ NP. Let Π = (Setup,P,V) satisfy Def-
inition 4.6. Then (Setup,P,V) implies a public-key quantum money scheme mini-scheme (Definition 3.13)
as described in Figure 2.

Proof. Perfect Correctness. This follows directly from the perfect completeness of Π.
Unforgeability. Let p(·) be a polynomial and A be a quantum polynomial-time adversary such that
for an infinite number of λ ∈ N+,

Pr
(|$⟩,s)←Gen(1λ)

(|$0⟩,s0,|$1⟩,s1)←A(|$⟩,s)

[s0 = s1 = s ∧ Ver(|$0⟩ , s0) = 1 ∧ Ver(|$1⟩ , s1) = 1] ≥ 1

p(λ)
.

We construct a reduction that breaks the uncloneability definition. The challenger samples
a hard instance-witness pair (x,w)← (X ,Y), a common reference string crs← Setup(1λ, x), and
a proof π ← P(crs, x, w). The challenger then forwards (crs, x, π) to the reduction. The reduction
then sets |$⟩ = π and s = (crs, x). The reduction sends (|$⟩ , s) to the adversary A who returns back
(|$0⟩ , s0, |$1⟩ , s1). The reduction then parses and sets πi = |$i⟩ for i ∈ {0, 1}. The reduction then
sends π0 and π1 back to the challenger.

When the serial numbers are the same, s = s0 = s1, we have that the common reference
string and instance will be the same for all the proofs π, π0, π1. The quantum money state can be
parsed as the proof as shown in the construction. When the verification algorithm of the quantum
money algorithm accepts both quantum money states |$0⟩ and |$1⟩ with respect to s, we know
that that V would accept both proofs π0 and π1 with respect to (crs, x). As such, we will have that
the advantage that A has at breaking the unforgeability of our quantum money scheme directly
translates to the advantage of the reduction at breaking the uncloneability of Π.
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4.4 Construction and Analysis of Unclonable NIZK from Public-Key Quantum Money

Unclonable Non-Interactive ZK for L ∈ NP

Let Π = (Setup,P,V) be a non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge protocol for NP, Com be a post-quantum perfectly binding,
computationally hiding commitment scheme, and (NoteGen,Ver) be a public-key quantum
money scheme. LetR be the relation with respect to L ∈ NP.

SETUP(1λ): Sample the common reference string (crsΠ, tdΠ) ← Π.Setup(1λ), and s∗, r∗ uni-
formly at random. Define c = Com(s∗; r∗) and output (crs = (crsΠ, c), td = tdΠ).
PROVE(crs, x, w):

• Compute a quantum note and associated serial number (|$⟩ , s)← NoteGen.

• Let xΠ = (c, x, s) be an instance of the following language LΠ:

{(c, x, s) : ∃z : (x, z) ∈ R ∨ c = Com(s; z)}.

• Compute proof πΠ ← Π.P(crsΠ, xΠ, w) for language LΠ.

• Output π = (|$⟩ , s, πΠ).

VERIFY(crs, x, π):

• Check that Ver(|$⟩ , s) outputs 1 and that Π.V(crsΠ, xΠ, πΠ) outputs 1.

• If both checks pass, output 1. Otherwise, output 0.

Figure 3: Unclonable Non-Interactive Quantum Protocol for L ∈ NP

Theorem 4.10. Let k(·) be a polynomial. Let NP relationR with corresponding language L be given.
Let (NoteGen,Ver) be a public-key quantum money mini-scheme (Definition 3.13) and Com be a

post-quantum commitment scheme (Definition 3.1). Let Π = (Setup,P,V) be a non-interactive post-
quantum simulation-extractable, adaptive multi-theorem computational zero-knowledge protocol for NP
(Definition 4.1).

(Setup,P,V) as defined in Figure 3 will be a non-interactive quantum simulation-extractable, adaptive
multi-theorem computationally zero-knowledge, and (k − 1)-to-k-unclonable with extraction protocol for L
in the common reference string model (Definition 4.7).

Proof. Perfect Completeness. Completeness follows from perfect correctness of the public key
quantum money scheme, and perfect completeness of Π.
Adaptive Multi-Theorem Computational Zero-Knowledge. Let Π.Sim = (Π.Sim0,Π.Sim1) be the
adaptive multi-theorem computationally zero-knowledge simulator of Π. We define Sim0 with
oracle access to Π.Sim0 as follows:
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Input: 1λ.
(1) Send 1λ to Π.Sim0. Receive (crsΠ, tdΠ) from Π.Sim0.
(2) Sample s∗, r∗ uniformly at random. Define c = Com(s∗; r∗).
(3) Output crs = (crsΠ, c) and td = tdΠ.

We define Sim1 with oracle access to Π.Sim1 as follows:
Input: crs = (crsΠ, c), td = tdΠ, x.
(1) Sample (|$⟩ , s)← NoteGen(1λ).
(2) Define xΠ = (c, x, s). Send (crsΠ, tdΠ, xΠ) to Π.Sim1. Receive πΠ from Π.Sim1.
(3) Output π = (|$⟩ , s, πΠ).
Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be given such

that ∣∣∣∣∣ Pr
crs←Setup(1λ)

[AP(crs,·,·)(crs) = 1]− Pr
(crs,td)←Sim0(1λ)

[ASim1(crs,td,·)(crs) = 1]

∣∣∣∣∣ ≥ 1

p(λ)
.

We define a reduction to the multi-theorem zero-knowledge property of Π as follows:
Reduction: to zero-knowledge of Π given oracle access to A.
(1) Receive (real or simulated) crsΠ from the challenger.
(2) Sample s∗, r∗ uniformly at random. Define c = Com(s∗; r∗) and crs = (crsΠ, c).
(3) Send crs to A.
(4) On query (x,w) from A: sample (|$⟩ , s) ← NoteGen(1λ), define xΠ = (c, x, s) and
wΠ = w, send (xΠ, wΠ) to the challenger, receive (real or simulated) πΠ from the challenger,
define π = (|$⟩ , s, πΠ), send π to A.
(5) Output the result of A.

The view of Amatches that of our protocol in Figure 3 or Sim0 and Sim1. As such, this reduction
should have the same advantage at breaking the adaptive multi-theorem computational zero-
knowledge property of Π. We reach a contradiction, hence our protocol must be multi-theorem
zero-knowledge.

Simulation-Extractability. Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive multi-theorem computa-
tionally zero-knowledge simulator of Π. Let Π.Ext be the simulation-extraction extractor of Π with
respect to Π.Sim. Let Sim = (Sim0,Sim1) be the simulator, with oracle access to Π.Sim, as defined in
the proof that Figure 3 is adaptive multi-theorem computational zero-knowledge. We define Ext
with oracle access to Π.Ext as follows:

Input: crs = (crsΠ, c), td = tdΠ, x, π = (|$⟩ , s, πΠ).
(1) Define xΠ = (c, x, s). Send (crsΠ, tdΠ, xΠ, πΠ) to Π.Ext. Receive wΠ from Π.Ext.
(2) Output wΠ as w.
Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be given such

that
Pr

(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[V(crs, x, π) = 1 ∧ x ̸∈ Q ∧ (x,w) ̸∈ R] ≥ 1

p(λ)
,

where Q is the list of queries from A to Sim1. Since Sim1 forwards oracle queries to Π.Sim1 which
contain any query it receives from A, we know that xΠ ̸∈ QΠ where QΠ is the list of queries from
Sim1 to Π.Sim1. Furthermore, since V accepts the output π from A, then Π.V must accept the proof
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πΠ. As such, we have that

Pr
(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ ̸∈ QΠ ∧ (x,w) ̸∈ R] ≥ 1

p(λ)
. (3)

However, we make the following claim which is in direct contradiction with Equation (3).

Claim 4.11. Let Ext be as defined earlier, in the current proof of simulation-extractability. There
exists a negligible function negl(·) such that for every polynomial-size quantum circuit B,

Pr
(crs,td)←Sim0(1λ)

(x,π)←BSim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ ̸∈ QΠ ∧ (x,w) ̸∈ R] ≤ negl(λ)

where Q is the list of queries from B to Sim1.

Proof of Claim 4.11. We proceed by contradiction. Let a polynomial p(·) and an oracle-aided polynomial-
size quantum circuit B be given such that

Pr
(crs,td)←Sim0(1λ)

(x,π)←BSim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ ̸∈ QΠ ∧ (x,w) ̸∈ R] ≥ 1

p(λ)
(4)

where Q is the list of queries from B to Sim1. Given Equation (4), we may be in one of the two
following cases: either the extractor Π.Ext extracts wΠ from B such that (xΠ, wΠ) ̸∈ RΠ, or the
extractor Π.Ext extracts wΠ from B such that (xΠ, wΠ) ∈ RΠ. We consider these two scenarios
separately and show that each reaches a contradiction.
Scenario One

Say that the extractor Π.Ext extracts wΠ from B such that (xΠ, wΠ) ̸∈ RΠ. By applying a union
bound to Equation (5), we have that this event could happen with at least 1/2p(λ) probability.
Symbolically,

Pr
(crs,td)←Sim0(1λ)

(x,π)←BSim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ ̸∈ QΠ ∧ (xΠ, wΠ) ̸∈ RΠ] ≥
1

2p(λ)
. (5)

By using the advantage of B in this game, we can show a reduction that breaks the simulation-
extractability of Π. We will now outline this reduction.

Reduction: to simulation-extractability of Π given oracle access to B.
(1) Receive crsΠ from the challenger.
(2) Sample s∗, r∗ uniformly at random. Define c = Com(s∗; r∗).
(3) Define crs = (crsΠ, c) and td = tdΠ. Send crs to B.
(4) On query x from B: sample (|$⟩ , s) ← NoteGen(1λ), define xΠ = (c, x, s), send xΠ to
the challenger, receive πΠ from the challenger, define π = (|$⟩ , s, πΠ), and send π to B.
(5) Receive (x, π = (|$⟩ , s, πΠ)) from B. Define xΠ = (c, x, s).
(6) Output (xΠ, πΠ).

29



Given the event in Equation (5) holds, then the reduction will return an accepting proof πΠ for an
instance xΠ which it has not previously queried on and, yet, the extraction Π.Ext will fail. With
advantage 1/2p(λ)), the reduction will succeed at breaking simulation-extractability of Π, thus
reaching a contradiction.
Scenario Two

Alternatively, say that the extractor Π.Ext extracts wΠ from B such that (xΠ, wΠ) ∈ RΠ. By
applying a union bound to Equation (3), we have that this event could happen with at least 1/2p(λ)
probability. In summary, we have that

Pr
(crs,td)←Sim0(1λ)

(x,π)←BSim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[Π.V(crsΠ, xΠ, πΠ) = 1 ∧ xΠ ̸∈ QΠ ∧ (x,w) ̸∈ R ∧ (xΠ, wΠ) ∈ RΠ] ≥
1

2p(λ)
. (6)

Since Ext outputs w = wΠ, by the definition of LΠ and the perfect binding of Com, we must have
that B has found an opening to the commitment c in the crs, that is that s = s∗ and wΠ = r∗. We
can use B to break the hiding of the commitment. We will now outline this reduction.

Reduction: to hiding of Com given oracle access to B.
(1) Compute (crsΠ, tdΠ)← Π.Sim0(1

λ) from the challenger.
(2) Sample s0, s1 uniformly at random. Send (s0, s1) to the challenger. Receive c.
(3) Define crs = (crsΠ, c) and td = tdΠ. Send crs to B.
(4) On query x from B: compute π ← Sim1(crs, td, x), and send π to B.
(5) Receive (x, π = (|$⟩ , s, πΠ)) from B.
(6) Compute w ← Ext(crs, td, x, π).
(7) If s = sb for b ∈ {0, 1}, then output b. Else, output sb for b chosen uniformly at random.

Given the event in Equation (5) holds, then the reduction will, with advantage 1/q(λ) for some
polynomial q(·), succeed at breaking the hiding of Com, thus reaching a contradiction.

Since Equation (3) directly contradicts Claim 4.11 which we have proven, then we have reached
a contradiction. Therefore, the protocol must be simulation extractable.

Unclonable Extractability. Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive multi-theorem computa-
tionally zero-knowledge simulator of Π. Let Π.Ext be the simulation-extraction extractor of Π with
respect to Π.Sim. Let Sim = (Sim0,Sim1) be the simulator, with oracle access to Π.Sim, as defined in
the proof that Figure 3 is adaptive multi-theorem computational zero-knowledge. Let Ext be the
extractor, based on Sim, as defined in the proof that Figure 3 is simulation-extractable. We define E
with oracle access to Sim, Ext, and some A as follows:

Hardwired: x1, . . . , xk−1, x, I, J
(1) Send 1λ to Sim0. Receive (crs, td) from Sim0.
(2) For ι ∈ [k − 1]: send (crs, td, xι) to Sim1, and receive πι from Sim1.
(3) Send (crs, {xι, πι}ι∈[k−1]) to A. Receive {x̃ι, π̃ι}ι∈[k] from A.
(4) Define j′ uniformly at random from J .
(5) Output Ext(crs, td, x̃j′ , π̃j′) and w.
Let A, (x1, w1), . . . , (xk−1, wk−1) ∈ R, x, I ⊆ [k − 1], J ⊆ [k], polynomial p(·), and negligible

function negl1(·) be given such that the verifier V accepts all proofs which A outputs indexed by I,
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and the extractor E is unable to extract a valid witness. Restated more formally, that is that both

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[∧
ι∈J

V(crs, x, π̃ι) = 1

]
≥ 1

p(λ)
, and (7)

Pr
w←EA(x1,...,xk−1,x,I,J )

[(x,w) ∈ R] ≤ negl1(λ). (8)

Given Equation (7), we may be in one of the two following cases: either A generate two
accepting proofs which have the same serial number as an honestly generated proof, or A does not.
We consider these two scenarios separately and show that each reaches a contradiction.
Scenario One

Say that A generates two accepting proofs which have the same serial number as an honestly
generated proof. By applying a union bound to Equation (7), we have that this event could happen
with at least 1/2p(λ) probability. Symbolically,

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[∧
ι∈J

V(crs, x, π̃ι) = 1
∧
∃i ∈ I ∃j, ℓ ∈ J s.t. si = s̃j = s̃ℓ

]
≥ 1

2p(λ)
.

(9)
Through a hybrid argument, we can fix indices i ∈ I and j, ℓ ∈ J which gives us the same event
with an advantage of 1/(2k3p(λ)). By using the advantage of A in this game, we can show a
reduction that breaks the unforgeability of the quantum money scheme. We will now outline this
reduction.

Reduction: to unforgeability of quantum money scheme given oracle access to A and O.
Hardwired with: (x1, w1), . . . , (xk−1, wk−1), x, I, J , i, j, ℓ.
(1) Compute (crs, td)← Setup(1λ) where crs = (crsΠ, c).
(2) Receive (|$⟩ , s)← NoteGen from the challenger.
(3) Define |$⟩ℓ = |$⟩, sℓ = s, and xΠ = (c, xℓ, sℓ). Compute πΠ,ℓ ← Π.P(crsΠ, xΠ, wℓ).
Define πℓ = (|$⟩ℓ , sℓ, πΠ,ℓ).
(4) Define πι ← P(crs, xι, wι) for ι ∈ [k − 1] \ {ℓ}.
(5) Send {xι, πι}ι∈[k−1] to A.

(6) Receive {x̃ι, π̃ι}ι∈[k] from A. Parse π̃i = (|̃$i⟩, s̃i, π̃Π,i) and π̃j = (|̃$j⟩, s̃j , π̃Π,j).

(7) Send (|̃$i⟩, |̃$j⟩) to the challenger.
Given the event in Equation (9) holds (for the afore mentioned fixed indices), then the reduction
will return two quantum money states with the same serial number as the challenger sent. With
advantage 1/(2k3p(λ)), the reduction will succeed at breaking unforgeability of the quantum money
scheme, thus reaching a contradiction.
Scenario Two

Alternatively, say that A does not generate two accepting proofs which have the same serial
number as an honestly generated proof. By the pigeon-hole principle, this means that A generates
an accepting proof with a serial number which is not amongst the ones it received. By applying a
union bound to Equation (7), we have that this event could happen with at least 1/2p(λ) probability.
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In summary, we have that

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], πι←P(crs,xι,wι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[∧
ι∈J

V(crs, x, π̃ι) = 1
∧
∃j ∈ J s.t. s̃j ̸∈ {sι}ι∈[k−1]

]
≥ 1

2p(λ)
. (10)

Through an averaging argument, we can fix index j ∈ J which gives us the same event with an
advantage of 1/(2kp(λ)). We will now switch to a hybrid where we provide A with simulated
proofs at indices I.

Claim 4.12. There exists a polynomial q(·) such that

Pr
(crs,td)←Sim0(1λ)

∀ι∈[k−1], πι←Sim1(crs,td,xι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[(∧
ι∈J

V(crs, x, π̃ι) = 1

) ∧
s̃j ̸∈ {sι}ι∈[k−1]

]
≥ 1

q(λ)
. (11)

We will later see a proof of Claim 4.12. For now, assuming that this claim holds, by the definition
of E , Equation (8), and Equation (11), there exists a polynomial q′(·) such that

Pr
(crs,td)←Sim0(1λ)

∀ι∈[k−1], πι←Sim1(crs,td,xι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

b′
$←J

w←Ext(crs,td,x̃b′ ,π̃b′ )

[(∧
ι∈J

V(crs, x, π̃ι) = 1

)
∧ s̃j ̸∈ {sι}ι∈[k−1] ∧ (x,w) ̸∈ R

]
≥ 1

q′(λ)
.

We will additionally have that j′ = j with advantage at least 1/(kq′(λ)). Since V accepts π̃j with
respect to x, Π.V must accept π̃Π,j with respect to x̃Π,j = (c, x, s̃j). Since s̃j ̸∈ {sι}ι∈[k−1], we have
that Π.Sim1, through Sim1, has not previously received x̃Π,j as a query. As such, we have that

Pr
(crs,td)←Sim0(1λ)

∀ι∈[k−1], πι←Sim1(crs,td,xι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

w←Ext(crs,td,x̃j ,π̃j)

[Π.V(crsΠ, x̃Π,j , π̃Π,j) = 1 ∧ x̃Π, ̸∈ QΠ ∧ (x,w) ̸∈ R] ≥ 1

kq′(λ)
. (12)

We now define B with oracle access to A and Sim1
2:

Hardwired: x1, . . . , xk−1, j
Input: crs
(1) For ι ∈ [k − 1]: send xι to Sim1, and receive πι from Sim1.
(2) Send (crs, {xι, πι}ι∈[k−1]) to A. Receive {x̃ι, π̃ι}ι∈[k] from A.
(3) Output (x̃j , π̃j).

Given that the event in Equation (12) holds, then B contradicts Claim 4.11. Thus, all that remains to
be proven is Claim 4.12.

2Here, B is given oracle access to Sim1 which has the terms (crs, td) fixed by the output of Sim0.
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Proof of Claim 4.12. We proceed by contradiction. Let negl(·) be a negligible function such that

Pr
(crs,td)←Sim0(1λ)

∀ι∈[k−1], πι←Sim1(crs,td,xι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[(∧
ι∈J

V(crs, x, π̃ι) = 1

) ∧
s̃j ̸∈ {sι}ι∈[k−1]

]
≤ negl(λ). (13)

By Equation (10) and Equation (13), there exists a polynomial q∗(·) such that∣∣∣∣∣∣∣∣∣∣
Pr

(crs,td)←Setup(1λ)
∀ι∈[k−1], πι←P(crs,xι,wι)

{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[(∧
ι∈J

V(crs, x, π̃ι) = 1

) ∧
s̃j ̸∈ {sι}ι∈[k−1]

]

− Pr
(crs,td)←Sim0(1λ)

∀ι∈[k−1], πι←Sim1(crs,td,xι)
{x̃ι,π̃ι}ι∈[k]←A(crs,{xι,πι}ι∈[k−1])

[(∧
ι∈J

V(crs, x, π̃ι) = 1

) ∧
s̃j ̸∈ {sι}ι∈[k−1]

]∣∣∣∣∣∣∣∣∣∣
≥ 1

q∗(λ)
. (14)

By using the advantage of A in this game, we can show a reduction that breaks the multi-theorem
zero-knowledge of Figure 3. We will now outline this reduction.

Reduction: to multi-theorem zero-knowledge of our protocol given oracle access to A.
Hardwired: (x1, w1), . . . , (xk−1, wk−1), j
(1) Receive (real or simulated) crs from the challenger.
(2) For ι ∈ [k − 1]: send (xι, wι) to the challenger, and receive (real or simulated) πι from
the challenger.
(3) Send (crs, {xι, πι}ι∈[k−1]) to A. Receive {x̃ι, π̃ι}ι∈[k] from A.

(4) Parse π̃b = (|̃$b⟩, s̃b, π̃Π,b).
(5) Output

(∧
ι∈J V(crs, x, π̃ι) = 1

) ∧
s̃j ̸∈ {sι}ι∈[k−1].

Given that A is able to change its output dependent on which of the two worlds in Equation (14)
that it is in, then the reduction will be able to distinguish between receiving honest proofs or
simulated proofs. With advantage 1/q∗(λ), the reduction will succeed at breaking the adaptive
multi-theorem computational zero-knowledge of our protocol, thus reaching a contradiction.

By completing the proofs of our claim, we have concluding the proof of our theorem statement.

Corollary 4.13. Assuming the polynomial quantum hardness of LWE, injective one-way functions
exist, and post-quantum iO exists, there exists a non-interactive adaptive knowledge sound,
adaptive computationally zero-knowledge, and (k − 1)-to-k-unclonable with extraction protocol
for NP in the common reference string model (Definition 4.7).

Proof. This follows from Theorem 3.2, Corollary 4.4, Theorem 3.14, and Theorem 4.10.

We have thus shown that Figure 3 is an unclonable NIZK PoK in the CRS model as defined
according to our proposed unclonability definition, Definition 4.7.

In the upcoming sections, we will consider unclonable proof systems in the QROM.
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5 Unclonable NIZK in the Quantum Random Oracle Model

5.1 A Modified Sigma Protocol

We will begin by introducing a slightly modified sigma protocol. In the coming sections, our
construction will involve applying Fiat-Shamir to this modified protocol.

Theorem 5.1. Let a post-quantum sigma protocol with unpredictable commitments Π be given (see Def-
inition 3.4). Let RΠ be an NP relation. Let R = {((x,S), w) : (x,w) ∈ RΠ ∧ S ≠ ∅}. We argue
that the following protocol will be a post-quantum sigma protocol with unpredictable commitments (see
Definition 3.4):

• P.Com(1λ, (x,S), w): Sends (x, α, s) to V where (α, st) ← Π.P.Com(1λ, x, w) and s is sampled
from S.

• V.Ch(1λ, (x,S), (x, α, s)): Sends β to P where β ← Π.V.Ch(1λ, x, α).

• P.Com(1λ, (x,S), w, st, β): Sends γ to V where γ ← Π.P.Prove(1λ, x, w, st, β).

• V.Ver(1λ, (x,S), (x, α, s), β, γ): Outputs 1 iff s ∈ Support(S) and Π.V.Ver(1λ, x, α, β, γ) = 1.

Proof. Perfect completeness This follows directly from the perfect completeness of Π.

Proof of Knowledge with Quantum Extractor. Let Π.Ext be the proof of knowledge quantum
extractor for Π. Let constant cΠ, polynomial pΠ(·), and negligible functions negl0,Π(·), negl1,Π(·) be
given such that for any quantum AΠ = (A0,Π,A1,Π) where

• A0,Π(x) is a unitary Ux followed by a measurement and

• A1,Π(x), |st⟩ , β) is a unitary Vx,β onto the state |st⟩ followed by a measurement,

and any x with associated λ ∈ N satisfying

Pr
(α,|st⟩)←A0,Π(x)

β←{0,1}λ
γ←A1,Π(x,|st⟩,β)

[Π.V.Ver(x, α, β, γ) = 1] ≥ negl0,Π(λ) (15)

we have

Pr
[
(x,Π.ExtAΠ(x)(x)) ∈ RΠ

]

≥ 1

p(λ)
·

 Pr
(α,|st⟩)←A0,Π(x)

β←{0,1}λ
γ←A1,Π(x,|st⟩,β)

[Π.V.Ver(x, α, β, γ) = 1]− negl0,Π(λ)


cΠ

− negl1,Π(λ).

We define Ext 3 with oracle-access to Π.Ext and some A as follows:
3An extractor whose local code is implementable as a simple unitary which allows for straightforward rewinding.
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Input: x, S.
(1) Given (x, α, s) from AΠ: send α to Π.Ext, receive β from Π.Ext, and send β to AΠ.
(2) Upon receiving γ from AΠ: send γ to Π.Ext.
(3) Output the result of Π.Ext as w.
We define the following set of parameters: c = cΠ, p(·) = pΠ(·), negl0(·) = negl0,Π(·) and

negl1(·) = negl1,Π(·).

Let polynomial-size quantum circuit A = (A0,A1) and (x,S) be given such that

Pr
((x,α,s),|st⟩)←A0(x,S)

β←{0,1}λ
γ←A1((x,S),|st⟩,β)

[V.Ver((x,S), (x, α, s), β, γ) = 1] ≥ negl0(λ).

We now define AΠ = (A0,Π,A1,Π) with oracle-access to A. A0,Π is hardwired with S , takes input x,
sends (x,S) to A0, receives ((x, α, s), |st⟩) from A0, and outputs (α, |st⟩). A1,Π is hardwired with S ,
takes input (x, |st⟩ , β), sends ((x,S), |st⟩ , β) to A1, receives γ from A1, outputs γ. By the structure
of our proof and definition of our verifier, this means that

Pr
(α,|st⟩)←AA0

0,Π(x,S)
β←{0,1}λ

γ←AA1
1,Π((x,S),|st⟩,β)

[Π.V.Ver(x, α, β, γ) = 1]

≥ Pr
((x,α,s),|st⟩)←A0(x,S)

β←{0,1}λ
γ←A1((x,S),|st⟩,β)

[V.Ver((x,S), (x, α, s), β, γ) = 1] ≥ negl0(λ)

which satisfies the constraint in Equation (15). This means we have, when combined with our
definition of Ext, that

Pr
[
((x,S),ExtA(x,S)(x,S)) ∈ R

]
= Pr

[
(x,Π.ExtAΠ(x,S)(x)) ∈ RΠ

]

≥ 1

pΠ(λ)
·


Pr

((x,α,s),|st⟩)←AA0
0,Π(x,S)

β←{0,1}λ

γ←AA1
1,Π((x,S),|st⟩,β)

[Π.V.Ver(x, α, β, γ) = 1]− negl0,Π(λ)



cΠ

− negl1,Π(λ)

≥ 1

pΠ(λ)
·

 Pr
((x,α,s),|st⟩)←A0(x,S)

β←{0,1}λ
γ←A1((x,S),|st⟩,β)

[V.Ver((x,S), (x, α, s), β, γ) = 1]− negl0,Π(λ)


cΠ

− negl1,Π(λ)

≥ 1

p(λ)
·

 Pr
((x,α,s),|st⟩)←A0(x,s)

β←{0,1}λ
γ←A1((x,s),|st⟩,β)

[V.Ver((x, s), (x, α, s), β, γ) = 1]− negl0(λ)


c

− negl1(λ).
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Thus showing that our protocol is a proof of knowledge protocol.

Computational Honest-Verifier Zero-Knowledge with Quantum Simulator. Let Π.Sim be the
computational honest-verifier zero-knowledge quantum simulator for Π. We define Sim with oracle
access to Π.Sim as follows:

Input: x, S.
(1) Compute (α, β, γ)← Π.Sim(1λ, x).
(2) Sample s from S.
(3) Output ((x, α, s), β, γ).

Let a polynomial p(·), a polynomial-size quantum circuit D, λ ∈ N, and ((x,S), w) ∈ R be given
such that ∣∣∣∣∣∣∣∣∣ Pr

((x,α,s),st)←P.Com((x,S),w)
β←V.Ch((x,S),(x,α,s))
γ←P.Prove((x,S),w,st,β)

[D((x,S), (x, α, s), β, γ) = 1]

− Pr
((x,α,s),β,γ)←Sim(1λ,(x,S))

[D((x,S), (x, α, s), β, γ) = 1]

∣∣∣∣∣ ≥ 1

p(λ)
.

We define a reduction to the zero-knowledge property of Π as follows:
Reduction: to zero-knowledge of Π given oracle access to D.
Hardwired with: x, S.
(1) Receive (real or simulated) (α, β, γ) from the challenger.
(2) Sample s from S.
(3) Send ((x, α, s), β, γ) to D. Receive b from D.
(4) Output b.

When the challenger sends a real (or simulated) proof for Π, the reduction generates a proof that is
identical to the real (resp. simulated) proof. As such, this reduction preserves the distinguishing
advantage of D. This reaches a contradiction against the zero-knowledge property of Π. Hence,
our protocol must be zero-knowledge.

Unpredictable Commitment. Let neglΠ(·) be a negligible function for the unpredictable commit-
ment property of Π.

Let a polynomial function p(·), λ ∈ N, and ((x,S), w) ∈ R be given such that

Pr
((x,α,s),st)←P.Com((x,S),w)

((x,α′,s′),st′)←P.Com((x,S),w)

[(α, s) = (α′, s′)] ≥ 1

p(λ)
.

By the definition of the honest prover P.Com,

Pr
(α,st)←Π.P.Com(x,w)
(α′,st′)←Π.P.Com(x,w)

[α = α′] ≥ Pr
((x,α,s),st)←P.Com((x,S),w)

((x,α′,s′),st′)←P.Com((x,S),w)

[(α, s) = (α′, s′)] ≥ 1

p(λ)

which is a contradiction. Hence our protocol must have unpredictable commitments.
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Corollary 5.2. The Fiat-Shamir heuristic applied to the post-quantum sigma protocol defined in
Theorem 5.1 yields a classical post-quantum NIZKPoK Π′ in the QROM (Definition 3.11).

Proof. This follows by Theorem 5.1 and Theorem 3.12.

5.2 Unclonability Definitions

Unclonable NIZKs in the quantum random oracle model are defined analogously to the CRS model
– we repeat these definitions in the QRO model for completeness below.

Definition 5.3. (Unclonable Security for Hard Instances). A proof (P,V) satisfies unclonable
security with respect to a quantum random oracle O if for every language Lwith corresponding
relation RL, for every polynomial-sized quantum circuit family {Cλ}λ∈N, and for every hard
distribution {Xλ,Wλ}λ∈N over RL, there exists a negligible function negl1(·) such that for every
λ ∈ N,

Pr
(x,w)←(Xλ,Wλ)

π←PO(x,w)
π1,π2←Cλ(x,π)

[
VO(x, π1) = 1

∧
VO(x, π2) = 1

]
≤ negl1(λ).

Definition 5.4 ((k− 1)-to-k-Unclonable Extractable NIZK in QROM). Let security parameter λ ∈ N
and NP relationRwith corresponding language L be given. Let Π = (P,V) be given such that P
and V are poly(λ)-size quantum algorithms. We have that for any (x, ω) ∈ R, P receives an instance
and witness pair (x, ω) as input and outputs π, and V receives an instance x and proof π as input
and outputs a value in {0, 1}.

Π is a non-interactive (k − 1)-to-k-unclonable NIZKPoK protocol for language L with respect
to a random oracle O if the following holds:

• Π is a NIZKPoK protocol for language L in the quantum random oracle model (Defini-
tion 3.11).

• (k − 1)-to-k-Unclonable with Extraction: There exists an oracle-aided polynomial-size quan-
tum circuit E such that for every polynomial-size quantum circuit A, for every tuple of k − 1
instance-witness pairs (x1, ω1), . . . , (xk−1, ωk−1) ∈ R, for every x where we define

– I ⊆ [k − 1] such that |I|≥ 1, xi = x for all i ∈ I, and xι ̸= x for all ι ̸∈ I, and

– J ⊆ [k] such that |J |≥ max{2, |I|}, xj = x for all j ∈ J , and xι ̸= x for ι ̸∈ J ,

such that there is a polynomial p(·) where

Pr
O

∀ι∈[k−1], πι←PO(xι,ωι)

{x̃ι,π̃ι}ι∈[k]←AO({πι}ι∈[k−1])

[∧
ι∈J

VO(x, π̃ι) = 1

]
≥ 1

p(λ)
,

then there is also a polynomial q(·) such that

Pr
w←EA(x1,...,xk−1,x,I,J )

[(x,w) ∈ R] ≥ 1

q(λ)
.
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Similar to the previous section, we have the following lemma.

Lemma 5.5. Let Π = (Setup,P,V) be a a non-interactive 1-to-2-unclonable zero-knowledge quan-
tum protocol (Definition 5.4). Then, Π satisfies Definition 5.3.

For a proof of Lemma 5.5, we refer to Appendix A.

5.3 Unclonable NIZK Implies Public-Key Quantum Money in QROM

Public-Key Quantum Money Mini-Scheme

Let O be a quantum random oracle. Let (X ,W) be a hard distribution over a language L ∈ NP.
Let Π = (P,V) be an unclonable non-interactive zero-knowledge protocol for L in the QROM.

GENO(1λ): Sample a hard instance-witness pair (x,w) ← (X ,Y) and a proof π ← PO(x,w).
Output (|$⟩ = π, s = x).
VERIFYO(|$⟩ , s): Parse |$⟩ = π and s = x. Output VO(x, π).

Figure 4: Public-Key Quantum Money Mini-Scheme from an Unclonable Non-Interactive Quantum
Protocol

Theorem 5.6. Let O be a quantum random oracle. Let (X ,W) be a hard distribution over a language
L ∈ NP. Let Π = (P,V) be a 1-to-2 unclonable non-interactive perfectly complete, computationally
zero-knowledge protocol for L in the QRO model (Definition 5.4).

Then (P,V) implies a public-key quantum money mini-scheme in the QRO model (Definition 3.15) as
described in Figure 4.

Proof. Perfect Correctness. This follows directly from the perfect completeness of Π.
Unforgeability. Let p(·) be a polynomial and A be a quantum polynomial-time adversary such that
for an infinite number of λ ∈ N+,

Pr
(|$⟩,s)←GenO(1λ)

(|$0⟩,s0,|$1⟩,s1)←AO(|$⟩,s)

[s0 = s1 = s ∧ VerO(|$0⟩ , s0) = 1 ∧ VerO(|$1⟩ , s1) = 1] ≥ 1

p(λ)
.

We construct a reduction that breaks the uncloneability definition (Definition 5.3) which we
show (in Appendix A) is implied by our definition (Definition 5.4). The challenger, with access to
random oracle O, samples a hard instance-witness pair (x,w)← (X ,Y) and a proof π ← PO(x,w).
The challenger then forwards (x, π) to the reduction, which also has oracle access to O. The
reduction then sets |$⟩ = π and s = x. The reduction sends (|$⟩ , s) to the adversary A who returns
back (|$0⟩ , s0, |$1⟩ , s1). The reduction then parses and sets πi = |$i⟩ for i ∈ {0, 1}. The reduction
then sends π0 and π1 back to the challenger.

When the serial numbers are the same, s = s0 = s1, we have that the instance will be the
same for all the proofs π, π0, π1. The quantum money state can be parsed as the proof as shown
in the construction. When the verification algorithm of the quantum money algorithm accepts
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both quantum money states |$0⟩ and |$1⟩ with respect to s, we know that that VO would accept
both proofs π0 and π1 with respect to x. As such, we will have that the advantage that A has at
breaking the unforgeability of our quantum money scheme directly translates to the advantage of
the reduction at breaking the uncloneability of Π.

5.4 Construction and Analysis

Lemma 5.7. Let λ, k ∈ N and a public-key quantum money mini-scheme (NoteGen,Ver) be given.
Let points q1, . . . , qk with the following structure be given: a point q contains a serial number s
sampled according to NoteGen(1λ).

The points q1, . . . , qk must be distinct with overwhelming probability.

Proof. Each point contains a serial number sampled according to the quantum money generation
algorithm, NoteGen(1λ). By the unpredictability of the serial numbers of quantum money (Defini-
tion 3.13), all k honestly generated serial numbers must be distinct with overwhelming probability.
Hence, these k points will be distinct with overwhelming probability.

Unclonable NIZK for NP in the QROM

Let O be a random oracle. Let Π = (P = (P.Com,P.Prove),V = (V.Ch,V.Ver)) be a
post-quantum sigma protocol with unpredictable commitments (see Definition 3.4), and
(NoteGen,Ver) be a public-key quantum money mini-scheme (see Definition 3.13). Let R
be the relation with respect to L ∈ NP.
PROVEO(x, ω):

• Compute a quantum note and associated serial number (|$⟩ , s)← NoteGen(1λ).

• Compute (α, ζ)← P.Com(x, ω).

• Query O at (x, α, s) to get β.

• Compute γ ← P.Prove(x, ω, β, ζ).

• Output π = (|$⟩ , s, α, β, γ).

VERIFYO(x, π):

• Check that Ver(|$⟩ , s) outputs 1.

• Check that O outputs β when queried at (x, α, s).

• Output the result of V.Ver(x, α, β, γ).

Figure 5: Unclonable Non-Interactive Quantum Protocol for L ∈ NP in the Quantum Random
Oracle Model

We now introduce our construction in Figure 5 and prove the main theorem of this section.
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Theorem 5.8. Let k(·) be a polynomial. Let NP relationR with corresponding language L be given.
Let (NoteGen,Ver) be a public-key quantum money mini-scheme (Definition 3.13) and Π = (P,V) be a

post-quantum sigma protocol (Definition 3.4).
(P,V) as defined in Figure 5 will be a non-interactive knowledge sound, computationally zero-knowledge,

and (k − 1)-to-k-unclonable with extraction protocol for L in the quantum random oracle model (Defini-
tion 3.11).

Proof. Let the parameters and primitives be as given in the theorem statement. We argue that
completeness follows from the protocol construction in Figure 5, and we prove the remaining
properties below.

Proof of Knowledge. Let ExtFS be the extractor for Π′ in Corollary 5.2 (where Π instantiates
Theorem 5.1). LetRFS be the relation for Π′ with respect toR. Let constant cFS , polynomial pFS(·),
and negligible functions negl0,FS(·), negl1,FS(·) be given such that for any quantum AFS and any
(x,S) with associated λ ∈ N satisfying

Pr
O

πFS←A
|O⟩
FS (x,S)

[VOFS((x,S), πFS) = 1] ≥ negl0,FS(λ) (16)

we have

Pr

[
(x,Ext

A|O⟩
FS (x,S)

FS (x,S)) ∈ RFS

]

≥ 1

pFS(λ)
·

 Pr
O

πFS←A
|O⟩
FS (x,S)

[VOFS((x,S), πFS) = 1]− negl0,FS(λ)


cFS

− negl1,FS(λ).

Let S be the distribution of serial numbers as output by NoteGen(1λ). We define Ext 4 with
oracle-access to ExtFS , O, and some A as follows:

Hardwired with: S.
Input: x.
(1) Given an oracle-query (x, α, s) from A: send (x, α, s) to O, receive β from O, and send
β to A.
(2) Upon receiving π = (|$⟩ , s, α, β, γ) from A: send πFS = ((x, α, s), β, γ) to ExtFS .
(3) Output the result of ExtFS as w.
We define the following set of parameters: c = cFS , p(·) = pFS(·), negl0(·) = negl0,FS(·) and

negl1(·) = negl1,FS(·).

Let polynomial-size quantum circuit A and x be given such that

Pr
O

π←A|O⟩(x)

[VO(x, π) = 1] ≥ negl0(λ).

Let AFS be defined with oracle-access to some A and O as follows:
4An extractor whose local code is implementable as a simple unitary which allows for straightforward rewinding.
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Input: x, S.
(1) Given a query (x, α, s) from A: send (x, α, s) to O, receive β from O, and send β to A.
(2) Upon receiving π = (|$⟩ , s, α, β, γ) from A: output πFS = ((x, α, s), β, γ).

By the structure of our proof and definition of our verifier, this means that

Pr
O

πFS←A
A(x),|O⟩
FS (x,S)

[VOFS((x,S), πFS) = 1] ≥ Pr
O

(|$⟩,πFS)←A|O⟩(x,S)

[VOFS((x,S), πFS) = 1 ∧ Ver(|$⟩ , s) = 1]

= Pr
O

π←A|O⟩(x)

[VO(x, π) = 1] ≥ negl0(λ) = negl0,FS(λ)

which satisfies the constraint in Equation (16). This means we have, when combined with our
definition of Ext and S, that

Pr
[
(x,ExtExtFS(x),|O⟩,A(x)(x)) ∈ R

]
= Pr

[
((x,S),ExtA

A(x),|O⟩
FS (x,S)

FS (x,S)) ∈ RFS

]

≥ 1

pFS(λ)
·

 Pr
O

πFS←A
A(x),|O⟩
FS (x,S)

[VOFS((x,S), πFS) = 1]− negl0,FS(λ)


cFS

− negl1,FS(λ)

≥ 1

pFS(λ)
·

 Pr
O

π←A|O⟩(x)

[VO(x, π) = 1]− negl0,FS(λ)

cFS

− negl1,FS(λ)

=
1

p(λ)
·

 Pr
O

π←A|O⟩(x)

[VO(x, π) = 1]− negl0(λ)

c

− negl1(λ).

Thus showing that our protocol is a proof of knowledge protocol.

Zero-Knowledge. Let SimFS be the simulator for Π′ in Corollary 5.2 (where Π instantiates The-
orem 5.1). Let RFS be the relation for Π′ with respect to R. We define Sim with oracle-access to
SimFS and program access to some random oracle O as follows:

Input: x (ignores any witnesses it may receive).
(1) Sample (|$⟩ , s)← NoteGen(1λ).
(2) Let S be the distribution where all probability mass is on s.
(3) Compute ((x, α, s), β, γ) ← Π.Sim(x,S). Allow Π.Sim to program O at (x, α, s) to
return β.
(5) Output π = (|$⟩ , s, α, β, γ).
Let an oracle-aided distinguisher D which can only make queries (x,w) ∈ R, and a polynomial

p(·) be given such that∣∣∣∣Pr [DSim,|O⟩(1λ) = 1
]
− Pr
O

[
DPO,|O⟩(1λ) = 1

]∣∣∣∣ ≥ 1

p(λ)
. (17)

We define a reduction to the zero-knowledge property of Π′ as follows:
Reduction: to zero-knowledge of Π′ given oracle access to D and program access to O.
For every (x,w) from D:
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(1) Sample (|$⟩ , s)← NoteGen(1λ).
(2) Let S be the distribution where all probability mass is on s.
(3) Send ((x,S), w) to the challenger. Receive ((x, α, s), β, γ) from the challenger. The
challenger will have already programmed O at (x, α, s) to return β.
(4) Output π = (|$⟩ , s, α, β, γ).
Output the result of D.

The view of D matches that of our protocol in Figure 5 or Sim. As such, our reduction should have
the same advantage at breaking the zero-knowledge property of Π′. We reach a contradiction,
hence our protocol must be zero-knowledge.

Unclonable Extractability. Let Ext be the quantum circuit of the extractor we defined earlier (in our
proof that Figure 5 is a proof of knowledge). Let Sim be the quantum circuit of the simulator that
we defined earlier (in our proof that Figure 5 is a zero-knowledge protocol). We define an extractor
E with oracle-access to some A as follows:

Hardwired with: some choice of I ⊆ [k − 1], J ⊆ [k], x1, . . . , xk−1 ∈ R, x.
(1) Samples ℓ ∈ J uniformly at random.
(2) Instantiates a simulatable and extractable random oracle O. Runs Ext on O throughout
the interaction with A (which may involve rewinding, in which case we would rewind
A and repeat the following steps). Require that Ext extracts with respect to the ℓth proof
output by A.
(3) Compute πι ← Sim(xι) for ι ∈ [k − 1] where we store all points Sim would program
into a list P .
(4) Send {πι}ι∈[k−1] to A.
(5) For every query from A, if the query is in P , then reply with the answer from P . Else,
forward the query to O and send the answer back to A. Let Ô denote this modified
random oracle.
(6) Receive {x̃ι, π̃ι}ι∈[k] from A. Send π̃ℓ to Ext.
(7) Outputs the result of Ext as w.
Let A, (x1, w1), . . . , (xk−1, wk−1) ∈ R, x, I ⊆ [k − 1], J ⊆ [k], polynomial p(·), and negligible

function negl1(·) be given such that the verifier V accepts all proofs indexed by J whichAO outputs
and the extractor E is unable to extract a valid witness. Restated more formally, that is that both

Pr
O

∀ι∈[k−1], πι←PO(xι,ωι)

{x̃ι,π̃ι}ι∈[k]←AO({πι}ι∈[k−1])

[∧
ι∈J

VO(x, π̃ι) = 1

]
≥ 1

p(λ)
, and (18)

Pr
w←EA({xι,ωι}ι∈[k−1]\I ,x,I,J )

[(x,w) ∈ R] ≤ negl1(λ). (19)

Given Equation (18), we may be in one of the two following cases: either A generates two
accepting proofs which have the same serial number as a honestly generated proof, or A does not.
We consider these two scenarios separately and show that each reaches a contradiction.
Scenario One

Say that A generates two accepting proofs which have the same serial number as an honestly
generated proof. By applying a union bound to Equation (18), we have that this event could happen
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with at least 1/2p(λ) probability. Symbolically,

Pr
O

∀ι∈[k−1], πι←PO(xι,ωι)

{x̃ι,π̃ι}ι∈[k]←AO({πι}ι∈[k−1])

[∧
ι∈J

VO(x, π̃ι) = 1
∧
∃i ∈ I ∃j, ℓ ∈ J s.t. si = s̃j = s̃ℓ

]
≥ 1

2p(λ)
. (20)

Through a hybrid argument, we can fix indices i ∈ I and j, ℓ ∈ J which gives us the same event
with an advantage of 1/(2k3p(λ)). By using the advantage of A in this game, we can show a
reduction that breaks the unforgeability of the quantum money scheme. We will now outline this
reduction.

Reduction: to unforgeability of quantum money scheme given oracle access to A and O.
Hardwired with: (x1, w1), . . . , (xk−1, wk−1), x, I, J , i, j, ℓ.
(1) Receive (|$⟩ , s)← NoteGen from the challenger.
(2) Define |$⟩i = |$⟩ and si = s. Sample (|$⟩ι , sι) ← NoteGen(1λ) for ι ∈ [k − 1] \ {i}.
Compute (αι, ζι) ← Π.P.Com(xι, wι), query O at (xι, αι, sι) to get βι, compute γι ←
Π.P.Prove(xι, wι, βι, ζι), and define πι = (|$⟩ι , sι, αι, βι, γι) for ι ∈ [k − 1].
(3) Send {πι}ι∈[k−1] to A.
(4) Receive {x̃ι, π̃ι}ι∈[k] from A.

(5) Send (|̃$⟩j , |̃$⟩ℓ) to the challenger.
Given the event in Equation (20) holds, then the reduction will return two quantum money states
with the same serial number as the challenger sent. With advantage 1/(2k3p(λ)), the reduction will
succeed at breaking unforgeability of the quantum money scheme, thus reaching a contradiction.
Scenario Two

Alternatively, say that A does not generate two accepting proofs which have the same serial
number as an honestly generated proof. By the pigeon-hole principle, this means that A generates
an accepting proof with a serial number which is not amongst the ones it received. By applying a
union bound to Equation (18), we have that this event could happen with at least 1/2p(λ) probability.
In summary, we have that

Pr
O

∀ι∈[k−1], πι←PO(xι,ωι)

{x̃ι,π̃ι}ι∈[k]←AO({πι}ι∈[k−1])

[∧
ι∈J

VO(x, π̃ι) = 1
∧
∃j ∈ J s.t. s̃j ̸∈ {sι}ι∈[k−1]

]
≥ 1

2p(λ)
. (21)

Through an averaging argument, we can fix index j ∈ J which gives us the same event with an
advantage of 1/(2kp(λ)). We will now switch to a hybrid where we provide A with simulated
proofs at indices I.

Claim 5.9. There exists a polynomial q(·) such that

Pr
{πι}ι∈[k−1]←Sim(x1,...,xk−1)

{x̃ι,π̃ι}ι∈[k]←ASim({πι}ι∈[k−1])

[∧
ι∈J

VSim(x, π̃ι) = 1
∧

s̃j ̸∈ {sι}ι∈[k−1]

]
≥ 1

q(λ)
. (22)

We will later see a proof of Claim 5.9. For now, assuming that this claim holds, we can define
an adversary from which Ext can extract a valid witness for x.

43



Claim 5.10. There exists a polynomial q′(·) such that

Pr
w←EA({xι,ωι}ι∈[k−1]\I ,x,I,J )

[(x,w) ∈ R] ≥ 1

q′(λ)
. (23)

We will soon see a proof for Claim 5.10. Meanwhile, if this claim is true, then we will have
a direct contradiction with Equation (19). Thus, all that remains to be proven are the two claims:
Claim 5.9 and Claim 5.10. We start by proving the former claim.

Proof of Claim 5.9. We first need to argue that our strategy is well-defined, that we will be able to
independently program these k points. Then we can argue the indistinguishability of switching one-
by-one to simulated proofs. We will argue that our simulator will run in expected polynomial time.
By Lemma 5.7, the k points which our simulator will program will be distinct with overwhelming
probability. Furthermore, since we assumed that our quantum random oracle can be programmed
at multiple distinct points Definition 3.10, our simulator is well-defined.

We now argue indistinguishability of the simulated proofs from the honestly generated proofs
via a hybrid argument. Suppose for sake of contradiction that the probability difference between
Equation (21) and Equation (22) was 1/p′(λ) for some polynomial p′(·). We construct a series of
consecutive hybrids for each i ∈ [k − 1] where we switch the ith proof from prover generated to
simulated. By this hybrid argument, there must be some position ℓ ∈ [k − 1] where switching the
ℓth proof has a probability difference of at least 1/(kp′(λ)). We now formalize a reduction which
can distinguish between these two settings:

Reduction: to zero-knowledge of our protocol given oracle access to A and some O.
Hardwired with: (x1, w1), . . . , (xℓ−1, wℓ−1), x, I, J , j, ℓ.
(1) Receive (real or simulated) π from the challenger and mediated query access to a (real
or simulated, respectively) random oracle O.
(2) Define πℓ = π. Compute πι ← PO(xι, wι) for ι ∈ [ℓ − 1]. Compute πι ← Sim(xι) for
ι ∈ {ℓ+ 1, . . . , k − 1}where we store all points Sim would program into a list P .
(3) Send {πι}ι∈[k−1] to A.
(4) For every query from A, if the query is in P , then reply with the answer from P . Else,
forward the query to O and send the answer back to A. Let Ô denote this modified
random oracle.
(5) Receive {x̃ι, π̃ι}ι∈[k] from A.

(6) If VÔ(x, π̃ι) = 1 for all ι ∈ J and s̃j ̸∈ {sι}ι∈[k−1], then output 1. Else, output 0.
We first argue that the view that the reduction provides to Amatches one of the games: where

all proofs up to the ℓth are simulated or where all proofs up to and including the ℓth are simulated.
By Lemma 5.7, the point computed or programmed by the challenger will be distinct from the
points which the reduction programs. As such, the reduction is allowed to modify 5 the oracle
which A interfaces with (see step (4)). In summary, Awill be provided access to an oracle that is
consistent with all of the proofs it receives.

Given that A has a view which directly matches its expected view in either game, then the
reduction’s advantage is the same as A’s advantage which is at least 1/(kp′(λ)). This is a con-
tradiction with the zero-knowledge property of our protocol. Thus, our original claim must be
true.

5In more detail, the reduction can construct a unitary which runs the classical code in step (4). This can then be
applied in superposition to a query sent by A.
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Now, we continue on to proving the latter claim.

Proof of Claim 5.10. Given that Claim 5.9 holds, this implies that

Pr
{πι}ι∈[k−1]←Sim(x1,...,xk−1)

{x̃ι,π̃ι}ι∈[k]←ASim({πι}ι∈[k−1])

[∧
ι∈J

VSim(x, π̃ι) = 1

]
≥ 1

q(λ)
, and (24)

Pr
{πι}ι∈[k−1]←Sim(x1,...,xk−1)

{x̃ι,π̃ι}ι∈[k]←ASim({πι}ι∈[k−1])

[
s̃j ̸∈ {sι}ι∈[k−1]

]
≥ 1

q(λ)
. (25)

We define a reduction to the proof of knowledge property of our protocol, which we subsequently
will refer to as P̃ (borrowing notation from the definition of PoK in Definition 3.11), as follows:

Reduction: to proof of knowledge of our protocol given oracle access to A and some O.
Hardwired with: I, J , x1, . . . , xk−1, x, j.
(1) Sample ℓ from J uniformly at random.
(2) Receive query access to a (real or extractable) random oracle O.
(3) Compute πι ← Sim(xι) for ι ∈ [k − 1] where we store all points Sim would program
into a list P .
(4) Send {πι}ι∈[k−1] to A.
(5) For every query from A, if the query is in P , then reply with the answer from P . Else,
forward the query to O and send the answer back to A. Let Ô denote this modified
random oracle.
(6) Receive {x̃ι, π̃ι}ι∈[k] from A.
(7) Output π̃ℓ.
First we must argue that A’s view remains identical to the game which appears in both

Equation (24) and Equation (25). The oracle which A interfaces with (see step (4)) will be consistent
with all of the proofs it receives.

By Equation (24), we have that our adversary P̃ will be able to produce an accepting proof with
noticeable probability. That is that,

Pr
π̃ℓ←P̃A,|O⟩(1λ)

[
VP̃(x, π̃ℓ) = 1

]
≥ 1

q(λ)
.

Say that the output proof (denoted by π̃ℓ) has a serial number which differs from the serial numbers
in the proofs provided to A (denoted by {πι}ι∈[k−1]). In this case, the verification algorithm V
should succeed with the same probability even given oracle access to the unmodified random
oracle (denoted by O). We have that

Pr
π̃ℓ←P̃A,|O⟩(1λ)

[
VO(x, π̃ℓ) = 1

∣∣∣ s̃ℓ ̸∈ {sι}ι∈[k−1]] = Pr
π̃ℓ←P̃A,|O⟩(1λ)

[
VP̃(x, π̃ℓ) = 1

]
≥ 1

q(λ)
.

Through Equation (25), we reach the conclusion that

Pr
π̃ℓ←P̃A,|O⟩(1λ)

[
VO(x, π̃ℓ) = 1

]
≥ Pr

π̃ℓ←P̃A,|O⟩(1λ)

[
VO(x, π̃ℓ) = 1

∣∣∣ s̃ℓ ̸∈ {sι}ι∈[k−1]] · Pr
π̃ℓ←P̃A,|O⟩(1λ)

[
s̃j ̸∈ {sι}ι∈[k−1]

]
· Pr [ℓ = j]

≥ 1

kq(λ)2
.
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By the definition of a proof of knowledge (Definition 3.11) which have some parameters polynomial
p∗(·) and negligible functions negl0(·) and negl1(·), we have that there exists some polynomial q′(·)
such that

Pr
[
(x,ExtP̃

A,|O⟩(x)(x)) ∈ Rλ

]
≥ 1

p∗(λ)
·

(
Pr

π̃ℓ←P̃A,|O⟩(1λ)

[
VO(x, π̃ℓ) = 1

]
− negl0(λ)

)c

− negl1(λ) ≥
1

q′(λ)
.

We now compare the reduction P̃ to the extractor E . Only steps (1) and (6) differ. If we consider the
extractor Ext with oracle access to P̃, then this whole extraction strategy is identical to that in the
definition of E (when hardwired with the same ℓ). Hence, by this modularity, we will have that

Pr
w←EA(x1,...,xk−1,x,I,J )

[(x,w) ∈ R] = Pr
[
(x,ExtP̃

A,|O⟩(x)(x)) ∈ Rλ

]
≥ 1

q′(λ)

which completes the proof of our claim.

By completing the proofs of our claims, we have concluding the proof of our theorem statement.

Corollary 5.11. Assuming the injective one-way functions exist, and post-quantum iO exists, there
exists a non-interactive knowledge sound, computationally zero-knowledge, and (k − 1)-to-k-
unclonable with extraction protocol for NP in the quantum random oracle model (Definition 5.4).

Proof. This follows from Theorem 3.14 and Theorem 5.8.

We have thus shown that Figure 5 is an unclonable NIZK PoK in the ROM model as defined
according to our unclonability definition, Definition 5.4.

6 Unclonable Signatures of Knowledge

6.1 Definition

Definition 6.1 (Unclonable Extractable SimExt-secure Signatures of Knowledge). Let NP relationR
with corresponding language L be given such that they can be indexed by a security parameter
λ ∈ N. Let a message spaceM be given such that it can be indexed by a security parameter λ ∈ N.

(Setup,Sign,Verify) is an unclonable signature of knowledge of a witness with respect to L and
M if it has the following properties:

• (Setup, Sign,Verify) is a quantum Sim-Ext signature of knowledge (Definition 3.16).

• (k − 1)-to-k-Unclonable with Extraction: There exists an oracle-aided polynomial-size quan-
tum circuit E such that for every polynomial-size quantum circuit A, for every tuple of
k− 1 instance-witness pairs (x1, ω1), . . . , (xk−1, ωk−1) ∈ R, every {mι ∈Mλ}ι∈[k−1], for every
(x,m) where we define

– I ⊆ [k − 1] such that |I|≥ 1, (xi,mi) = (x,m) for all i ∈ I, and (xι,mι) ̸= (x,m) for all
ι ̸∈ I, and

– J ⊆ [k] such that |J |≥ max{2, |I|}, (xj ,mj) = (x,m) for all j ∈ J , and (xι,mι) ̸= (x,m)
for ι ̸∈ J ,
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such that there is a polynomial p(·) where

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], σι←Sign(crs,xι,ωι,mι)
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

[∧
ι∈J

Verify(crs, x,m, σ̃ι) = 1

]
≥ 1

p(λ)
,

then there is also a polynomial q(·) such that

Pr
w←EA({xι,mι}ι∈[k−1],x,I,J )

[(x,w) ∈ R] ≥ 1

q(λ)
.

6.2 Construction

Unclonable Signature of Knowledge with CRS

Let (Setup,P,V) be non-interactive simulation-extractable, adaptive multi-theorem compu-
tational zero-knowledge, unclonable-extractable protocol for NP. Let R be the relation with
respect to L ∈ NP.
SETUP(1λ): (crs, td)← Π.Setup(1λ).
SIGN(crs, x, w,m):

• Let xΠ = (x,m) be an instance and wΠ = w be its corresponding witness for the following
language LΠ:

{(x,m) : ∃w : (x,w) ∈ R}.

• Compute π ← Π.P(crs, xΠ, wΠ).

• Output σ = π.

VERIFY(crs, x,m, σ): Output Π.V(crs, (x,m), π).

Figure 6: Unclonable Signature of Knowledge in CRS model

Theorem 6.2. Let Π = (Setup,P,V) be a non-interactive simulation-extractable, adaptive multi-theorem
computational zero-knowledge, unclonable-extractable protocol for NP (Definition 4.7).

(Setup,Sign,Verify) in Figure 6 is an unclonable-extractable SimExt-secure signature of knowledge
(Definition 6.1).

Proof of Theorem 6.2. Correctness follows naturally. It remains to prove simulateability, extractabil-
ity, and unclonable extractability.

Simulateable. Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive multi-theorem computationally
zero-knowledge simulator of Π. We define Sim0 with oracle access to Π.Sim0 as follows:

Input: 1λ.
(1) Send 1λ to Π.Sim0. Receive (crs, td) from Π.Sim0.
(2) Output crs and td.
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We define Sim1 with oracle access to Π.Sim1 as follows:
Input: crs, td, x, m.
(1) Define xΠ = (x,m). Send (crs, td, xΠ) to Π.Sim1. Receive π from Π.Sim1.
(2) Output σ = π.
Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be given such

that ∣∣∣∣∣ Pr
(crs,td)←Sim0(1λ)

[ASim1(crs,td,·,·)(crs) = 1]− Pr
crs←Setup(1λ)

[ASign(crs,·,·,·)(crs) = 1]

∣∣∣∣∣ ≥ 1

p(λ)
.

We define a reduction to the multi-theorem zero-knowledge property of Π as follows:
Reduction: to zero-knowledge of Π given oracle access to A.
(1) Receive (real or simulated) crs from the challenger.
(2) Send crs to A.
(3) On query (x,w,m) from A: send xΠ = (x,m) to the challenger, receives (real or
simulated) π from the challenger, send σ = π to A.
(4) Output the result of A.
The view of A matches that of our protocol in Figure 6 or Sim0 and Sim1. As such, this re-

duction should have the same advantage at breaking the adaptive multi-theorem computational
zero-knowledge property of Π. We reach a contradiction, hence our protocol must be simulateable.

Extractable. Let Π.Sim = (Π.Sim0,Π.Sim1) be the adaptive multi-theorem computationally zero-
knowledge simulator of Π. Let Π.Ext be the simulation extractable extractor of Π defined relative to
Π.Sim. Let Sim = (Sim0, Sim1) be the simulator given by the simulation property which uses Π.Sim.
We define Ext with oracle access to Π.Ext as follows:

Input: crs, td, x, m, σ = π.
(1) Define xΠ = (x,m).
(2) Send (crs, td, xΠ, π) to Π.Ext. Receive wΠ = w from Π.Ext.
(3) Output w.
Let a polynomial p(·) and an oracle-aided polynomial-size quantum circuit A be given such

that

Pr
(crs,td)←Sim0(1λ)

(x,m,σ)←ASim1(crs,td,·,·)(crs)
w←Ext(crs,td,x,m,σ)

[Verify(crs, x,m, σ) = 1 ∧ (x,m) ̸∈ Q ∧ (x,w) ̸∈ Rλ] ≥
1

p(λ)

where Q is the list of queries from A to Sim1. If Verify accepts the output of A, then Π.V must
accept (crs, xΠ, π). If (x,m) ̸∈ Q, then since xΠ contains x,m, xΠ must not be in the queries asked
to Π.Sim1. Since (x,w) ̸∈ R, then xΠ ̸∈ LΠ by the definition of LΠ. As such, it must necessarily be
the case that (xΠ, wΠ) ̸∈ RΠ. Hence, we have that

Pr
(crs,td)←Sim0(1λ)

(x,m,σ)←ASim1(crs,td,·,·)(crs)
w←Ext(crs,td,x,m,σ)

[Π.V(crs, xΠ, π) = 1 ∧ xΠ ̸∈ QΠ ∧ (xΠ, wΠ) ̸∈ RΠ] ≥
1

p(λ)

where QΠ is the list of queries, originating fromA, that Sim1 makes to Π.Sim1. We define a reduction
to the simulation extraction property of Π as follows:
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Reduction: to simulation extraction of Π given oracle access to A.
(1) Receive crs from the challenger.
(2) Send crs to A.
(3) On query (x,w,m) from A: send xΠ = (x,m) to the challenger, receives π from the
challenger, send σ = π to A.
(4) Receive (x,m, σ = π) from A. Define xΠ = (x,m).
(5) Output (xΠ, π).
The view of Amatches that of Sim0 and Sim1. As such, this reduction should have the same

advantage at breaking the extraction property of Π. We reach a contradiction, hence our protocol
must be extractable.

Unclonable Extractability. Let Π.Sim be the adaptive multi-theorem computationally zero-knowledge
simulator of Π. Let Π.Ext be the simulation extractable extractor of Π defined relative to Π.Sim.
Let Π.E be the unclonable extractor of Π. We define E with oracle-access to Π.E , Π.Sim, Π.Ext, and
some A as follows:

Input: {xι,mι}ι∈[k−1], x, m, I, J
(1) Define xΠ,ι = (xι,mι) for ι ∈ [k − 1].
Sample b uniformly at random from {0, 1}.
If b = 0, then execute the following code:
(2) Sample ℓ ∈ [k − 1], i, j ∈ [k] uniformly at random.
(3) Send ({xΠ,ι}ι∈[k−1], xΠ,ℓ, {ℓ}, {i, j}) to Π.E . Receive (crs, {πι}ι∈[k−1]) from Π.E .
(4) Send (crs, {σι = πΠ,ι}ι∈[k−1]) to A. Receive {x̃ι, m̃ι, σ̃ι = π̃ι}ι∈[k] from A. Define
x̃Π,ι = (x̃ι, m̃ι) for ι ∈ [k].
(5) Send {xΠ,ℓ, x̃Π,ι, π̃ι}ι∈[k] to Π.E . Receive wΠ = w from Π.E .
(6) Output w.
Otherwise, if b = 1, then execute the following code:
(2) Receive (crs, td) from Π.Sim0.
(3) For ι ∈ [k − 1]: send (crs, td, xΠ,ι = (xι,mι)) to Π.Sim1, receive πι from Π.Sim1, and
define σι = πι.
(4) Sample j ∈ [k] uniformly at random.
(5) Send (crs, td, x̃Π,j , π̃j) to Π.Ext. Receive wΠ from Π.Ext.
(6) Output wΠ.
LetA, (x1, w1), . . . , (xk−1, wk−1) ∈ R, {mι ∈Mλ}ι∈[k−1], x, m, I ⊆ [k− 1], J ⊆ [k], polynomial

p(·), and negligible function negl(·) be given such that the verification algorithm Verify accepts the
signatures output by Awhich are indexed by I which A outputs, and the extractor E is unable to
extract a valid witness. Formally, that is that both

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], σι←Sign(crs,xι,ωι,mι)
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

[∧
ι∈J

Verify(crs, x,m, σ̃ι) = 1

]
≥ 1

p(λ)
, and (26)

Pr
w←EA({xι,mι}ι∈[k−1],x,m,I,J )

[(x,w) ∈ Rλ] ≤ negl(λ). (27)

If Verify accepts the signatures {σ̃ι}ι∈J with respect to (x,m) from A, then Π.V must accept the
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proof {π̃ι}ι∈J with respect to {x̃Π,ι = (x,m)}ι∈J . This means that Equation (26) implies that

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], σι←Sign(crs,xι,ωι,mι)
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

[∧
ι∈J

Π.V(crs, x̃Π,ι = (x,m), π̃ι) = 1

]
≥ 1

p(λ)
. (28)

There are two scenarios which could arise: either A sends two accepting proofs at some indices i
and j where the instance for the unclonable NIZK matches one that it received at index ℓ (x̃Π,i =
x̃Π,j = xΠ,ℓ), or there exists an accepting proof at some index j which has an instance for which
it has not seen an unclonable NIZK proof for (x̃Π,j ̸∈ {xΠ,ι}ι∈I). We consider these two scenarios
separately.
Scenario One

Say that A sends two accepting proofs at some indices i and j where the instance for the
unclonable NIZK matches one that it received at index ℓ (x̃Π,i = x̃Π,j = xΠ,ℓ). We could fix some
indices i, j ∈ [k] and ℓ ∈ [k− 1] by a hybrid argument to get the following from Equation (28) and a
union bound,

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], σι←Sign(crs,xι,ωι,mι)
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

 ∧
ι∈{i,j}

Π.V(xΠ,ℓ, π̃ι) = 1

 ≥ 1

2k3 · p(λ)
. (29)

With probability 1/2, E makes use of Π.E algorithm. Given that E is using Π.E , if E ’s extracted
witness has the property that (x,w) ̸∈ R, then no matter which xΠ (containing x) is given to Π.E ,
they cannot have extracted any valid witness wΠ (namely because E outputs w contained in wΠ).
With probability 1/k3, E will sample i, j and ℓ correctly. As such, we have that

Pr
w←EA({xι,mι}ι∈[k−1],x,m,I,J )

[(xΠ,ℓ, wΠ) ∈ Rλ] ≤ negl(λ).

We will show that we will directly contradict the unclonability of the NIZK protocol Π. We define a
reduction to the unclonability of Π as follows:

Reduction: to unclonability of Π given oracle access to A.
Hardwired with: {xι,mι}ι∈[k−1], I, J , i, j, ℓ
(1) Define xΠ,ι = (xι,mι) for ι ∈ [k − 1].
(2) Send ({xΠ,ι}ι∈[k−1], xΠ,ℓ, {ℓ}, {i, j}) to the challenger.
We note that the following code is re-windable by the challenger, as necessary:
(3) Receive (crs, {πι}ι∈[k−1]) from the challenger. Define and σι = πΠ,ι for ι ∈ [k − 1].
(3) Send (crs, {σι}ι∈[k−1]) to A. Receive {x̃ι, m̃ι, σ̃ι = π̃ι}ι∈[k] from A.
(4) Output {x̃Π,ι, π̃ι}ι∈[k] where x̃Π,ι = (x̃ι, m̃ι) for ι ∈ [k].

The view of A matches either the real or the simulated game. Additionally, the challenger may
run the honest extractor. As such, this reduction should have the same advantage at breaking the
unclonability property of Π. This reaches a contradiction.
Scenario Two

Say that A sends an accepting proof at some index j which has an instance for which it has
not seen an unclonable NIZK proof for (x̃Π,j ̸∈ {xΠ,ι}ι∈I). We can fix this index j ∈ J , by a union
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bound and hybrid argument, get that

Pr
(crs,td)←Setup(1λ)

∀ι∈[k−1], σι←Sign(crs,xι,ωι,mι)
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

[Π.V(crs, x̃Π,j , π̃ι) = 1 ∧ x̃Π,j ̸∈ {xΠ,ι}ι∈I ] ≥
1

2k · p(λ)
. (30)

We now switch to a hybrid where the proofs in the signatures are simulated.

Claim 6.3. There exists a polynomial p′(·) such that

Pr
(crs,td)←Π.Sim0(1λ)

∀ι∈[k−1], πι←Π.Sim1(crs,td,xΠ,ι=(xι,mι))
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

[Π.V(crs, x̃Π,j , π̃ι) = 1 ∧ x̃Π,j ̸∈ {xΠ,ι}ι∈I ] ≥
1

p′(λ)
.

We will soon see a proof of Claim 6.3. Meanwhile, if this claim is true, then we can make the
following reduction to the simulation extractability of Π. If x̃Π,j ̸∈ {xΠ,ι}ι∈I , then x̃Π,j must not be
in the queries E asks to Π.Sim1. Hence,

Pr
(crs,td)←Π.Sim0(1λ)

∀ι∈[k−1], πι←Π.Sim1(crs,td,xΠ,ι=(xι,mι))
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

[Π.V(crs, x̃Π,j , π̃ι) = 1 ∧ x̃Π,j ̸∈ QΠ] ≥
1

p′(λ)

where QΠ is the list of queries that are made to Π.Sim1.
With probability 1/2, E makes use of Π.Sim algorithm. Given that E is using Π.Sim, we can

make the following statement from Equation (27): since (x,w) ̸∈ R, then if Ext extracts from
π̃Π,j (which happens with 1/k probability), (x̃Π,j , wΠ) ̸∈ RΠ. Hence, we have that there exists a
polynomial q(·) such that

Pr
(crs,td)←Π.Sim0(1λ)

∀ι∈[k−1], πι←Π.Sim1(crs,td,xΠ,ι)
{x̃ι,m̃ι,σ̃ι}ι∈[k]←A(crs,{σι}ι∈[k−1])

wΠ←Π.Ext(crs,td,x̃Π,j ,π̃j)

[Π.V(crs, x̃Π,j , π̃j) = 1 ∧ x̃Π,j ̸∈ QΠ ∧ (x̃Π,j , wΠ) ̸∈ RΠ] ≥
1

q(λ)
. (31)

We define a reduction to the simulation extraction property of Π as follows:
Reduction: to simulation extraction of Π given oracle access to A.
Hardwired with x1,m1, . . . , xk−1,mk−1, j
(1) Receive crs from the challenger.
(2) For ι ∈ [k − 1]: send xΠ,ι = (xι,mι) to the challenger, receives πι from the challenger,
and define σι = πι.
(3) Send (crs, {σι}ι∈[k−1]) to A. Receive {x̃ι, m̃ι, σ̃ι}ι∈[k] from A.
(4) Output (x̃Π,j , πj).
The view of Amatches that in Equation (31). As such, this reduction should have the same

advantage at breaking the extraction property of Π. We reach a contradiction. As such, it only
remains to prove Claim 6.3.

Proof of Claim 6.3. Assume for the sake of contradiction that the claim is false. This means there is
an inverse polynomial gap between the game in Claim 6.3 and Equation (30). We define a reduction
to the multi-theorem zero-knowledge property of Π as follows:
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Reduction: to zero-knowledge of Π given oracle access to A.
(1) Receive (real or simulated) crs from the challenger.
(2) For ι ∈ [k − 1]: send xΠ,ι = (xι,mι) to the challenger, receives (real or simulated) πι
from the challenger, and define σι = πι.
(3) Send (crs, {σι}ι∈[k−1]) to A. Receive {x̃ι, m̃ι, σ̃ι}ι∈[k] from A.
(4) Output Π.V(crs, x̃Π,j , π̃ι) = 1 ∧ x̃Π,j ̸∈ {xΠ,ι}ι∈I .
The view of A matches that of our protocol in Figure 6 or Sim0 and Sim1. As such, this

reduction should have the same advantage at breaking the adaptive multi-theorem computational
zero-knowledge property of Π. We reach a contradiction.

We reach a contradiction in both scenarios, hence our protocol must be unclonable.

Corollary 6.4. Assuming the polynomial quantum hardness of LWE, injective one-way functions
exist, post-quantum iO exists, there exists an unclonable SimExt-secure signature of knowledge
(Definition 6.1).

Proof. This follows from Corollary 4.13 and Theorem 6.2.

6.3 Revocable Anonymous Credentials

In this section, we will see how to use unclonable signatures of knowledge to construct an anony-
mous credentials scheme which has a natural revocation property.

Definition 6.5 (Revocable Anonymous Credentials). (IssuerKeyGen, Issue,VerifyCred,Revoke,Prove,
VerRevoke) is a revocable anonymous credentials scheme with respect to some set of accesses
{Sλ}λ∈N if it has the following syntax and properties.

Syntax. The input 1λ is left out when it is clear from context.

• (nym, sk) ← IssuerKeyGen(1λ): The probabilistic polynomial-time algorithm IssuerKeyGen is
run by the issuer of the credentials. It takes input 1λ; and outputs a pseudonym nym with a
secret key sk.

• cred← Issue(1λ, nym, sk, access): The polynomial-time quantum algorithm Issue is run by the
issuer of the credentials. It takes input the issuer’s keys nym and sk as well as the requested
access access ∈ Sλ; and outputs a quantum credential cred along with a classical identifier id.

• VerifyCred(1λ, nym, access, cred) ∈ {0, 1}: The polynomial-time quantum algorithm VerifyCred
is run by a verifier of the user’s credentials. It takes input the issuer’s pseudonym nym, the
requested access access ∈ Sλ, and a credential cred; and outputs 1 iff cred is a valid credential
for access access with respect to nym.

• revnotice ← Revoke(1λ, nym, sk, access): The polynomial-time quantum algorithm Revoke is
run by the issuer of the credentials. It takes input the issuer’s keys nym and sk, and the access
access being revoked; and outputs a notice of revocation revnotice.

• π ← Prove(1λ, nym, revnotice, cred): The polynomial-time quantum algorithm Prove is run by
the user of the credentials. It takes input the issuer’s pseudonym nym, and a revocation notice
revnotice, and the credential to be revoked cred which is identified by revnotice; and outputs a
proof of revocation π.
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• VerRevoke(1λ, nym, sk, access, revnotice, π) ∈ {0, 1}: The polynomial-time quantum algorithm
VerRevoke is run by the issuer of the credentials. It takes input the issuer’s keys nym and sk,
the access access being revoked, the revocation notice revnotice, and a proof of revocation π;
and outputs 1 iff π is a valid proof that the user’s access to the credential identified by id has
been revoked.

Properties.

• Correctness: For every sufficiently large λ ∈ N, and every access ∈ Sλ,

Pr
(nym,sk)←IssuerKeyGen(1λ)
cred←Issue(1λ,nym,sk,access)

[VerifyCred(1λ, nym, access, cred) = 1] = 1.

• Revocation: For every polynomial-size quantum circuit A, there exists a negligible function
negl(·) such that for sufficiently large λ ∈ N, and every access ∈Mλ

Pr
(nym,sk)←IssuerKeyGen(1λ)
cred←Issue(1λ,nym,sk,access)

revnotice←Revoke(1λ,nym,sk,access)
π,cred′←A(1λ,nym,revnotice,cred)

[
VerRevoke(1λ,nym,sk,access,revnotice,π)=1∧

VerifyCred(1λ,nym,access,cred′)=1

]
≤ negl(λ).

REMARK 6.1. Unlike previous literature, the users that get issued credentials do not have their
own identity. We also define algorithms for a three-message revocation process as opposed to the
polynomial-message revocation process defined in the literature.

We now introduce a construction based on unclonable signatures of knowledge.

Theorem 6.6. Let (X ,W) be a hard-distribution of instance and witness pairs for some NP relation. Let
{Sλ}λ∈N be some set of accesses. Let (Setup, Sign,Verify) be an unclonable-extractable SimExt-secure
signature of knowledge for message space {Sλ}λ∈N (Definition 6.1).

(IssuerKeyGen, Issue,VerifyCred,Revoke,Prove,VerRevoke) defined in Figure 7 is a revocable anony-
mous credentials scheme (Definition 6.5).

Proof Sketch. The correctness of this revocable anonymous credentials scheme follows from the
correctness of the unclonable signature of knowledge scheme.

We will now sketch the proof of revocation. Say that there exists an adversary A, access access,
and polynomial p(·) such that, with probability at least 1/p(λ): (1) π passes the revocation check,
and (2) cred′ passes the credential check. This means that both π and cred′ are valid signatures with
respect to the same crs, x, and access that the signature cred was issued under. This satisfies the “if”
condition of the unclonability property of the unclonable signature of knowledge. As such, there
exists a polynomial q(·) such that the unclonable signature of knowledge’s extractor can produce
a witness w for x with probability at least 1/q(λ). However, this contradicts the hardness of the
distribution (X ,W). Hence, our protocol must have the revocation property.

Corollary 6.7. Assuming the polynomial quantum hardness of LWE, injective one-way functions ex-
ist, post-quantum iO exists, and the hardness of NP, there exists a revocable anonymous credentials
scheme (Definition 6.5).

Proof. This follows from Corollary 6.4 and Theorem 6.6.
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Revocable Anonymous Credentials

Let (X ,W) be a hard-distribution of instance and witness pairs for some NP relation. Let
{Sλ}λ∈N be some set of accesses. Let (Setup,Sign,Verify) be an unclonable-extractable SimExt-
secure signature of knowledge for message space {Sλ}λ∈N (Definition 6.1).
ISSUERKEYGEN(1λ):

• (crs, td)← Setup(1λ).

• (x,w)← (X ,W).

• Output nym = (crs, x) and sk = (td, w).

ISSUE(nym, sk, access):

• σ ← Sign(crs, x, w, access).

• Output cred = σ.

VERIFYCRED(nym, access, cred):

• Output Verify(crs, x, access, σ).

REVOKE(nym, sk, access):

• Output revnotice = access.

PROVE(nym, revnotice, cred):

• Output π = cred.

VERIFYREVOKE(nym, sk, access, revnotice, π):

• Output VerifyCred(nym, access, cred).

Figure 7: Revocable Anonymous Credentials
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NP relations. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata,
Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzer-
land, July 9-15, 2000, Proceedings, volume 1853 of Lecture Notes in Computer Science,
pages 451–462. Springer, 2000.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge
without interaction (extended abstract). In 33rd Annual Symposium on Foundations of
Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 427–436.
IEEE Computer Society, 1992.

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 129–146. Springer, 2014.

[Unr17] Dominique Unruh. Post-quantum security of fiat-shamir. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 65–95. Springer, 2017.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

[Zha19a] Mark Zhandry. How to record quantum queries, and applications to quantum in-
differentiability. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes
in Computer Science, pages 239–268. Springer, 2019.

[Zha19b] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 408–438. Springer, 2019.

58



A A Reduction Between Unclonability Definitions

A.1 In the CRS model

For completeness, here we repeat the definitions of unclonability.

Definition A.1. (Unclonable Security for Hard Instances). A proof (Setup,Prove,Verify) satisfies
unclonable security if for every language L with corresponding relationRL, for every polynomial-
sized quantum circuit family {Cλ}λ∈N, and for every hard distribution {Xλ,Wλ}λ∈N overRL, there
exists a negligible function negl(·) such that for every λ ∈ N,

Pr
(x,w)←(Xλ,Wλ)

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)
π1,π2←Cλ(x,π)

]
≤ negl(λ).

Definition A.2. (1-to-2 Unclonable Extractability) A proof (Setup,Prove,Verify) satisfies unclonable
security there exists a QPT extractor E which is an oracle-aided circuit such that for every language
L with corresponding relationRL and for every non-uniform polynomial-time quantum adversary
A, for every instance-witness pair (x,w) ∈ RL and λ = λ(|x|), such that there is a polynomial p(·)
satisfying:

Pr

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Aλ(crs,x,π,z)

]
≥ 1

p(λ)
, (32)

there is also a polynomial q(·) such that

Pr
[
(x,wA) ∈ RL|wA ← EA(x)

]
≥ 1

q(λ)
. (33)

Claim A.3. Any protocol satisfying Definition A.2 also satisfies Definition A.1.

Proof. Suppose there exists a protocol Π = (Setup,Prove,Verify) satisfying Definition A.2.
Suppose towards a contradiction that Π does not satisfy Definition A.1. This implies that there

is a QPT adversary Â, auxiliary input ẑ = {ẑλ}λ∈N, a hard distribution (X ,W) over RL, and a
polynomial p(·) such that

Pr
(x,w)←(X ,W)

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Âλ(crs,x,π,ẑ)

]
≥ 1

p(λ)
. (34)

Let S denote the set of instance-witness pairs {(x,w) ∈ (X ,W)} that satisfy

Pr

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Âλ(crs,x,π,ẑ)

]
≥ 1

2p(λ)
. (35)

First, we claim that

Pr
(x,w)←(X ,W)

[(x,w) ∈ S] ≥ 1

2p(λ)
(36)
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Suppose not, then by Equation (35),

Pr
(x,w)←(X ,W)

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Âλ(crs,x,π,ẑ)

]
<

1

2p(λ)
+

1

2p(λ)
.

contradicting Equation (34). Thus, Equation (36) must be true.
Consider the extractor E guaranteed by Definition A.2. Given a sample (x,w)← (X ,W), we

will show that there is a polynomial p′(·) such that

Pr
(x,w)←(X ,W)

[EÂ(x, ẑ) ∈ RL(x)] ≥
1

p′(λ)
(37)

which suffices to contradict hardness of the distribution (X ,W), as desired.
Towards showing that Equation (37) holds, recall by Definition A.2 that for every NP instance-

witness pair (x,w) such that there is a polynomial p(·) satisfying:

Pr

[
Verify(crs, x, π1) = 1

∧
Verify(crs, x, π2) = 1

∣∣∣∣∣ crs←Setup(1λ)
π←Prove(crs,x,w)

π1,π2←Âλ(crs,x,π,ẑ)

]
≥ 1

p(λ)
,

there is also a polynomial q(·) such that

Pr
[
RL(x,w) = 1|w ← E Â(x, ẑ)

]
≥ 1

q(λ)

This implies that there is a polynomial q(·) such that for every (x,w) ∈ S,

Pr
[
RL(x,w) = 1|w ← E Â(x, ẑ)

]
≥ 1

q(λ)

This, combined with Equation (36) implies that

Pr
(x,w)←(X ,W)

[RL(x,w) = 1|w ← E Â(x, ẑ)] ≥ 1

2p(λ)q(λ)

which proves Equation (37) as desired.

A.2 In the QRO model

For completeness, here we repeat the definitions of unclonability.

Definition A.4. (Unclonable Security for Hard Instances). A proof (Prove,Verify) satisfies unclon-
able security with respect to a quantum random oracleO if for every languageLwith corresponding
relation RL, for every polynomial-sized quantum oracle-aided circuit family {Cλ}λ∈N, and for
every hard distribution {Xλ,Wλ}λ∈N over RL, there exists a negligible function negl(·) such that
for every λ ∈ N,

Pr
(x,w)←(Xλ,Wλ)

[
VerifyO(x, π1) = 1

∧
VerifyO(x, π2) = 1

∣∣∣∣∣π←ProveO(x,w)
π1,π2←Cλ(x,π)

]
≤ negl(λ).
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Definition A.5. (1-to-2 Unclonable Extractability) A proof (Prove,Verify) satisfies unclonable
security with respect to a quantum random oracle O there exists a QPT extractor E which is an
oracle-aided circuit such that for every language Lwith corresponding relationRL and for every
non-uniform polynomial-time quantum adversary A, for every instance-witness pair (x,w) ∈ RL
and λ = λ(|x|), such that there is a polynomial p(·) satisfying:

Pr

[
VerifyO(x, π1) = 1

∧
VerifyO(x, π2) = 1

∣∣∣∣∣ π←ProveO(x,w)

π1,π2←AO
λ (x,π,z)

]
≥ 1

p(λ)
, (38)

there is also a polynomial q(·) such that

Pr
[
(x,wA) ∈ RL|wA ← EA

|O⟩
(x)
]
≥ 1

q(λ)
. (39)

Claim A.6. Any protocol satisfying Definition A.5 also satisfies Definition A.4.

Proof. Suppose there exists a protocol Π = (Prove,Verify) satisfying Definition A.5.
Suppose towards a contradiction that Π does not satisfy Definition A.4. This implies that

there is a QPT adversary Âwith oracle access to some quantum random oracle O, auxiliary input
ẑ = {ẑλ}λ∈N, a hard distribution (X ,W) overRL, and a polynomial p(·) such that

Pr
(x,w)←(X ,W)

[
VerifyO(x, π1) = 1

∧
VerifyO(x, π2) = 1

∣∣∣∣∣ π←ProveO(x,w)

π1,π2←ÂO
λ (x,π,ẑ)

]
≥ 1

p(λ)
. (40)

Let S denote the set of instance-witness pairs {(x,w) ∈ (X ,W)} that satisfy

Pr

[
VerifyO(x, π1) = 1

∧
VerifyO(x, π2) = 1

∣∣∣∣∣ π←ProveO(x,w)

π1,π2←ÂO
λ (x,π,ẑ)

]
≥ 1

2p(λ)
. (41)

First, we claim that

Pr
(x,w)←(X ,W)

[(x,w) ∈ S] ≥ 1

2p(λ)
(42)

Suppose not, then by Equation (41),

Pr
(x,w)←(X ,W)

[
VerifyO(x, π1) = 1

∧
VerifyO(x, π2) = 1

∣∣∣∣∣ π←ProveO(x,w)

π1,π2←ÂO
λ (x,π,ẑ)

]
<

1

2p(λ)
+

1

2p(λ)
.

contradicting Equation (40). Thus, Equation (42) must be true.
Consider the extractor E guaranteed by Definition A.5. Given a sample (x,w)← (X ,W), we

will show that there is a polynomial p′(·) such that

Pr
(x,w)←(X ,W)

[EÂ(x, ẑ) ∈ RL(x)] ≥
1

p′(λ)
(43)

which suffices to contradict hardness of the distribution (X ,W), as desired.
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Towards showing that Equation (43) holds, recall by Definition A.5 that for every NP instance-
witness pair (x,w) such that there is a polynomial p(·) satisfying:

Pr

[
VerifyO(x, π1) = 1

∧
VerifyO(x, π2) = 1

∣∣∣∣∣ π←ProveO(x,w)

π1,π2←Â
|O⟩
λ (crs,x,π,ẑ)

]
≥ 1

p(λ)
,

there is also a polynomial q(·) such that

Pr
[
RL(x,w) = 1|w ← E Â(x, ẑ)

]
≥ 1

q(λ)

This along with Equation (40) implies that there is a polynomial q(·) such that for every (x,w) ∈ S,

Pr
[
RL(x,w) = 1|w ← E Â(x, ẑ)

]
≥ 1

q(λ)

This, combined with Equation (42) implies that

Pr
(x,w)←(X ,W)

[RL(x,w) = 1|w ← E Â(x, ẑ)] ≥ 1

2p(λ)q(λ)

which proves Equation (43) as desired.
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