
Lookup Arguments: Improvements, Extensions and Applications
to Zero-Knowledge Decision Trees

Matteo Campanelli1 , Antonio Faonio2 , Dario Fiore3 , Tianyu Li4 , and Helger Lipmaa5

1 Matter Labs matteo@matterlabs.dev
2 EURECOM faonio@eurecom.fr

3 IMDEA Software Institute dario.fiore@imdea.org
4 Delft University of Technology tianyu.li@tudelft.nl

5 University of Tartu helger.lipmaa@gmail.com

Abstract. Lookup arguments allow to prove that the elements of a committed vector come from a
(bigger) committed table. They enable novel approaches to reduce the prover complexity of general-
purpose zkSNARKs, implementing “non-arithmetic operations” such as range checks, XOR and AND
more efficiently. We extend the notion of lookup arguments along two directions and improve their
efficiency: (1) we extend vector lookups to matrix lookups (where we can prove that a committed
matrix is a submatrix of a committed table). (2) We consider the notion of zero-knowledge lookup
argument that keeps the privacy of both the sub-vector/sub-matrix and the table. (3) We present new
zero-knowledge lookup arguments, dubbed cq+, zkcq+ and cq++, more efficient than the state of the
art, namely the recent work by Eagen, Fiore and Gabizon named cq. Finally, we give a novel application
of zero-knowledge matrix lookup argument to the domain of zero-knowledge decision tree where the
model provider releases a commitment to a decision tree and can prove zero-knowledge statistics over
the committed data structure. Our scheme based on lookup arguments has succinct verification, prover’s
time complexity asymptotically better than the state of the art, and is secure in a strong security model
where the commitment to the decision tree can be malicious.

1 Introduction

General-purpose zero-knowledge succinct arguments of knowledge (zkSNARKs) promise to efficiently and
succinctly prove any kind of NP-statement while keeping privacy, integrity and verifiability guarantees.
Thanks to their generality, a great number of real-world applications can be performed with built-in se-
curity. The two-step recipe for building a brand new zero-knowledge application typically consists of first
describing the application in a low-level constraint system (for example, Rank-1 Constraint System [4] or
Plonk arithemization [18]) and then use the latest fully-developed zkSNARK as backend. Unfortunately,
most often, the unfolded circuit of the applications at hand becomes huge and, thus, the proving time could
become unfeasible for real-world applications.

Lookup arguments [6,13,31,37,38] are a novel approach to reducing the size of unfolded circuits, bringing
back to the real world many interesting applications. Briefly and informally, a lookup argument allows to
trade sub-circuits evaluations for lookup into their truth tables. For example, instead of having n different
sub-circuits describing the computation of a hash function in the final unfolded circuit, the protocol designer
could define n different custom gates that perform efficient lookup operations in the truth table of such a
hash function. More concretely, lookup arguments are used in current zkSNARKs for representing “non-
arithmetic operations” that cannot be expressed efficiently through the finite field operations supported
by the zkSNARK, such as range checks, XOR and AND (see for example [6,17]). Very recently, the work
of Arun, Setty and Thaler [3] shows how to use lookup arguments to create SNARKs for virtual-machine
executions, namely a new SNARK scheme, called Jolt, that allows verification of the correct execution of a
computer program specified with an assembly language. Informally, in Jolt, the truth table of each assembly
instruction is encoded in a (predefined and highly structured) table. Then, lookup arguments enforce the
correct instructions execution, namely checking the inputs and outputs described by their truth tables.

https://orcid.org/0000-0001-8184-4704
https://orcid.org/0000-0002-7152-6478
https://orcid.org/0000-0001-7274-6600
https://orcid.org/0000-0003-1206-1022
https://orcid.org/0000-0001-8393-6821

In this work, we advance on lookup arguments in multiple ways. We propose new lookup arguments that
improve over the state of the art [13]. One of our schemes enjoys, almost for free, an extended notion of
zero-knowledge, which we call fully zero-knowledge, which protects the privacy of arbitrary commitments to
the tables. Orthogonally, we consider two natural extensions from vectors to matrices and give constructions
for such extensions. Finally, we motivate the extensions to matrix and to fully zero-knowledge by giving a
new application to privacy-preserving machine learning that crucially relies on them.

New Lookup Arguments based on cq. In a lookup argument, the prover aims to show that each
coefficient of a (short) committed vector f of size n belongs to the (large) table t of size N ≫ n. Since
N ≫ n, one of the desiderata of lookup arguments is that the prover’s computation does not depend on
N . Following a fast-pace line of recent works, Eagen, Fiore, and Gabizon [13] proposed an efficient lookup
argument called cq (cq for cached quotients). Notably, cq’s prover’s computation is quasi-linear in n, while
the proof size and verifier’s computation are constant (e.g., proofs are 3840 bits, when using the standard
BLS12-381 elliptic curve). In spite of appearing nearly optimal in efficiency, cq comes with two shortcomings.
The first one is that it is not designed to have zero knowledge in mind. The second, more technical, one
is that its use in larger protocols likely requires additional proof elements and pairing computations.6 In
this work, we propose a new lookup argument, dubbed cq+, that addresses all these shortcomings of cq and
even achieves better efficiency. Namely, cq+ achieves (standard) zero-knowledge at no overhead: it has the
same prover’s computation of cq and shorter proofs (3328 bits, and 2944 bits without ZK). Additionally, we
consider two variations of cq+: the first, dubbed zkcq+, is fully zero-knowledge, while the second, dubbed
cq++, has shorter proofs. Both schemes require in verification only one pairing computation more than cq+.

Lookup Arguments for Matrices. A lookup argument could be used to show that a database f is a selec-
tion of the rows of a database t. However, to naively use lookup arguments for such an application, each row
of the database must be efficiently encoded in one single field element (supported by the lookup argument).
We consider two natural extensions to matrices. We focus on Kate et al. [24] polynomial commitment (also
known as KZG commitment scheme) adapted to matrices. We give two lookup arguments for matrices that
internally call a lookup argument for KZG commitments. (We find this modularity useful given the current
fast pace of the research on lookup arguments.)The first scheme allows proving that a committed database
f is a selection of the rows of a committed database t, the second one allows proving that f is a selection of
a projection of a database t.

A New Approach to Zero-Knowledge for Decision Trees. We show an application of fully zero-
knowledge matrix lookup arguments to zero-knowledge for decision trees (zkDT). We improve over the
framework of Zhang et al. [39], which showed zkSNARKs for evaluations of committed decision trees and
zkSNARKs for accuracy of committed decision trees. The former kind of zero-knowledge protocols can prove
that a committed decision tree T, on input a vector x, outputs a label v, while the latter schemes enable to
validate the accuracy (namely, the ratio of true positives) of a decision tree on a given dataset.

Our framework can instantiate different kinds of statistics over committed decision trees, including evalu-
ation and accuracy. Our design decouples the computation of the committed decision tree and the performed
statistics. This allows for a plug-and-play approach. For security, we extend the notion of security from [39]
considering possibly maliciously generated commitments to decision trees.

Our Contributions. We can summarize our contributions as follows:

1. A zero-knowledge lookup argument that improves the state of the art for arbitrary tables [13].
2. A construction for zero-knowledge matrix lookup argument based on zero-knowledge (vector) lookup

arguments for KZG-based vector commitment.
3. A new paradigm for proving decision tree classification in zero-knowledge. We can instantiate our

paradigm with our matrix lookup arguments and obtain speedups of two orders of magnitude for proving
time compared to previous work.

6This is due to the fact that cq assumes an SRS of the same size as the table t, and this allows avoiding a degree
check. This condition, though, is often not guaranteed (e.g., in a SNARK for constraint systems larger than such a
table).

2

4. Strengthening the security model for zero-knowledge decision trees: we formalize a setting where the
commitment to a decision tree may not be trusted.

1.1 Technical Overview

Our Zero-Knowledge Lookup Arguments. Similarly to cq, cq+ uses the technique of logarithmic
derivates of Haböck [22]. However, we diverge from cq early, introducing several novel ideas that allow
us to improve on cq’s efficiency. One of the differences is that, while cq uses Aurora’s sumcheck [5] twice,
our cq+ only runs it once. Nicely, this technique allows us to kill two birds with one stone, in fact, cq+ does
not require any additional low-degree tests. We give a more detailed technical overview in Section 4.1.

Matrix lookup from vector lookup. To commit to a matrix, we can commit the concatenation of the rows
of the matrix. Our matrix lookup arguments label all the entries of such a vectorization with the coordinates
of each cell of the sub-matrix F into the bigger table T. Similarly, in the precomputation phase, they label
each cell in the big table T with its coordinate. To prove that the k-th row of F appears in T, we show
that the labelled matrix F∗ = (ij , j, Fk,j)j∈[d] is a sub-matrix of labeled table T∗ = (i, j, Ti,j)i,j and that
i1 = i2 = · · · = id (in particular ij = k), where d is the number of columns of the matrices. Notice that the
first claim can be proved efficiently with a (non-succinct) matrix commitment for matrices with N · d rows
and 3 columns following techniques from [6], while the second claim can be efficiently expressed through
polynomial equations following techniques from [9]. In particular, for the first part, given a challenge ρ← F,
the prover hashes h(F∗) =

∑3
i=1 ρi−1 · F∗

i to a single column (where F∗
i are the columns of F∗). Since h(·)

is a universal hash function, if h(F∗) is a subvector of h(T∗), then with overwhelming probability, F∗ is a
submatrix of T∗, thus reducing matrix lookup argument to vector lookup. For the second part, we notice that
the first column F∗

1 of F∗ is a step function, thus we first commit to the shift of F∗
1 and then show that the

difference between the shifted column and the column F∗
1 is a function that has zeros in well-defined positions.

More details in Section 5.2. The second scheme goes even further and proves that a matrix F with d′ columns
and d′ < d is a submatrix of T. As before, we set F∗ = (i, j, Fi,j)i∈R,j∈D for subset R = {r1, . . . , rd′} ⊂ [N]
and D ⊂ [d]. Additionally, using the technique of shifted polynomials, F∗

2,id′+j = F∗
2,(i+1)d′+j = rj for any

i, j. More details in Appendix D. Both of our compilers preserve quasi-linear running time in n thanks to
the linear homomorphic property of KZG commitments.

Our Approach to ZK for Decision Trees. A decision tree is an algorithm that performs a sequence of
adaptive queries reading from its input and outputs a value. At each query, the algorithm moves from a node
in the tree to one of its children, and the output is defined by the label of the reached leaf. Two important
parameters are the total number of nodes Ntot and the number of features d of the inputs. Following the
work of Chen et al. [10], we can efficiently (although redundantly) encode a decision tree as a matrix with
Ntot rows and 2d + 1 columns. An evaluation of a decision tree under this alternative representation consists
of locating the row corresponding to the correct leaf and then showing that the input vector matches all the
constraints described by such a row. Thus, we can commit to a decision tree by committing to its matrix
encoding, and to prove correct evaluation, we can commit to the single row corresponding to the correct
leaf and prove with a matrix lookup argument that the committed row is indeed a leaf of the committed
decision tree. Once isolated such a row, we can then prove that the input vector matches all the constraints
described by the row. Notice that our strategy scales well with the number of different evaluations. In fact,
to prove statements which involve multiple input vectors for the decision tree, we can commit at proving
time to a matrix whose rows correspond to the entries of the leaves reached by the evaluations (instead of
committing to a single row). Thanks to the efficiency property of the matrix lookup argument, the prover
time complexity is independent of the size of decision trees.

Beyond a Trusted Commitment to the Tree. A malicious committer could commit to a matrix that
contains a row that matches a leaf with a label, let’s say, 0, and another row that matches the same leaf but
where it maliciously assigns the label 1. Now, such a bogus commitment to a decision tree could allow the
malicious prover to show both T(x) = 0 and T(x) = 1. The problem is that the committed matrix does not
encode a decision tree. To solve this problem, we show a set of sufficient algebraic conditions (cf. Section 6.2)

3

for a matrix to encode a decision tree. We can check efficiently these algebraic conditions through a general-
purpose zkSNARKs for R1CS (see for example [5,7,20,28,30,32,33]). However, the number of constraints is
O(dN2

tot), and thus the prover time complexity is quadratic in the number of nodes. The algebraic constraints
we propose are essentially linear equations between matrices and Hadamard-product equations, which are
the kind of equation checks performed in R1CS-based zkSNARKs. In fact, if we gave up on the privacy of the
decision tree7, we could define an R1CS circuit that depends on the tree-structure of the decision tree, and
we would go down to O(dNtot) number of constraints. We show that we can restore zero-knowledge using
this approach, by privately committing to such an R1CS-like circuit and prove in zero-knowledge that the
circuit belongs to a well-defined family of circuits (defined by the algebraic constraints in Section 6.2). In
particular, we use the techniques from Zapico et al. [37] for committing to a basic matrix, namely a matrix
whose rows are elementary vectors, and to prove its basic-matrix structure and the permutation argument
from Plonk [18] to prove the rows of the matrix are all different.

1.2 Related Work

Lookup Arguments. Lookup arguments were introduced by Bootle, Cerulli, Groth, Jakobsen and Maller
[6]. The state-of-art for lookup arguments for arbitrary tables8 is the recent work of Eagen, Fiore, Gabizon
[13] named cq and based on the technique of logarithmic derivates of Haböck [22]. cq has prover complexity
proportional only to the size of the smaller vector and independent of the bigger table assuming pre-processing
for table. To our knowledge, all lookup arguments with similar efficiency properties are based on the Kate
et al. (commonly known as KZG) polynomial commitment scheme [24]. Among these, we mention Caulk+
by Posen and Kattis [31] (based on Caulk [37] by Zapico et al.) and Baloo [38] by Zapico et al.. The latter
work introduces the notion of Commit-and-Prove Checkable Subspace Argument (extending over [32]) that
we use for our (extractable) commitment scheme (cf. Section 6.3).

Comparison with [13]. As previously mentioned, we diverge from cq, introducing several novel ideas that
allow us to improve on cq’s efficiency. As the end result, cq+’s communication is about 14% (or even 23%
in a variant without the ZK) better than cq’s. All other efficiency parameters of cq+ are similar to cq’s.
Moreover, we propose cq++, a batched variant of cq+. cq++ saves 23% (or 33%, in a variant without ZK)
communication compared to cq. A slight drawback of cq++ is that the verifier has to execute one more
pairing. We emphasize that cq is already almost optimally efficient, and thus improving on it is non-trivial.

Concurrent Work. Choudhuri et al. [12] very recently introduced the notion of segment lookup arguments
which, besides some syntactical differences, matches the simpler of our notions of matrix lookup arguments.
Additionally, in [12], they show, in our lingo, a matrix lookup argument based on cq. Their matrix lookup
argument is less efficient than ours; we defer to Table 1 for more details. Interestingly, in the same paper,
the authors build a general-purpose zkSNARK based on Plonk and matrix lookup, which they call Sublonk,
showing another application for matrix lookup arguments. The main feature of Sublonk is that the prover’s
running time grows with the size of the active part of the circuit, namely the part of the circuit activated by
its execution on a given instance. Sublonk makes black-box use of the underlying matrix lookup argument.
Thus, we can plug in our scheme to obtain a more efficient version of Sublonk.

Privacy-Preserving Machine Learning. We focus on the related work on zero-knowledge proofs for
decision trees and, more in general, for machine learning algorithms. The main related work for decision
trees is the paper of Zhang et al. [39], where they introduce the notions of zero-knowledge proofs for decision
tree predictions and accuracy. Besides decision trees, zero-knowledge proofs and verifiable computation for
machine learning is a vibrant area of research (see for example [1,15,23,25,29,35,36]).

7Specifically, giving up only to the privacy of the structure of the decision tree while keeping private the values
of the thresholds and labels

8Recently, Setty, Thaler and Wahby [34] introduced a new lookup argument for a restricted subclass of tables.
Their work is extremely efficient, and in particular more efficient than cq, for such a restricted class of tables. On the
other hand, cq can handle arbitrary tables. For this reason, we refer to cq as the state-of-art for arbitrary tables.

4

Comparison with [39]. Briefly, the main techniques of [39] consist of an authenticated data structure for
committing to decision trees and highly-tuned R1CS circuits to evaluate the authenticated data structure
in zero-knowledge. More in detail, they commit to a decision tree with a labelled Merkle Tree whose labelled
nodes are the nodes of the decision tree. This commitment scheme is binding and hiding and allows for
path openings (with proof size proportional to the length of the path). On top of this authenticated data
structure, they use general-purpose zkSNARKs for R1CS to prove, for example, the knowledge of a valid
opening for a path and the labelling of the leaf. While the basic ideas are simple, the paper needs to solve
many technical details and presents many optimizations which are necessary to obtain a practical scheme.
The backend general-purpose zero-knowledge scheme they use is Aurora [5]. Thanks to this choice and because
of the Merkle-Tree approach, their zero-knowledge scheme has a transparent setup and is presumably post-
quantum secure.

Their security model stipulates that the decision tree is adversarially chosen, but the commitment to a
decision tree is honestly generated. On the other hand, in our security model, we require the commitment
scheme to be extractable, thus allowing for maliciously generated commitments. Notice that, besides improv-
ing security, our definitional choices allow for more efficient design. In fact, the (proof for the) extractable
commitment is generated only once, let’s say in an offline phase, while the (multiple) proofs of evaluation,
in the online phase, can leverage extra security properties offered by the extractable commitment and thus
faster.

For comparison with our work, we consider the extractability of their scheme for decision tree evaluation.
This is not immediate: the main reason is that the witness for the zkSNARK is a single path from the
root to the evaluated leaf (which could be extracted) while, to obtain our notion of extractability, it would
be required to extract the full decision tree. Additionally, their authenticated data structure could allow
to commit (and prove statements) to 2-fan-in direct-acyclic graphs (DAGs), which are more general than
trees9. We believe their second scheme for the accuracy of decision trees can be proved secure in our model.
In fact, proposed as an efficiency optimization, their second scheme computes a consistency check over the
full decision tree. Thanks to this, we could extract the full tree from the zkSNARK. We also believe that our
techniques could be integrated into theirs. Our approach separating the extractable commitment from the
“online-stage” of the zero-knowledge proof could be adapted to their scheme for accuracy (thus improving
its efficiency). Interestingly, by using our approach, their scheme could be interpreted as an application of a
lookup argument based on [6] and [5] to decision trees. The main difference is this: our scheme runs lookup
arguments over the leaves associated with the evaluation vectors, while the scheme in [39] requires lookups
for paths from the root to the leaves associated with the evaluation vectors.

For other points of comparison efficiency-wise (we refer the reader to Section 6.5 for more details), we
mention that their commitments require hashing only, while ours requires multiexponentations in a group.
Therefore, their commitment stage is faster than ours. Our proof size is concretely smaller (few kilobytes
vs hundreds of kilobytes). To compare proving time, we start from observing the asymptotic advantages of
our solutions: their prover is linear in the size of the tree and in the complexity of a hash function; ours
is sublinear in all these dimensions. This results in concretely faster proving times despite the fact that
our prover requires group operations and theirs only field operations. This is a consequence of removing
the constants deriving from the hash function size, the sublinearity in the tree and of the efficient lookup
argument instantiations10. Our improvements also translate to a better verification time. Our estimates show
improvements of almost one order of magnitude for proving time (regardless of the underlying backend proof
systems for [39]; see Appendix A) and two orders of magnitude for verification time.

9We believe that this does not pose any problems neither for correctness nor for soundness, as indeed, one could
argue this is a feature rather than a bug.

10As a bottleneck, the dependency [39] has on the hash function is one that is hard to remove. Applying a hash
function optimized for SNARK constraints, e.g. the one we used to experimentally run [39]—SWIFFT—nonetheless
yields high constants in practice regardless of the proof system used as a backend.

5

2 Preliminaries

We denote matrices with capital and bold, for example, M, and vectors with lowercase and bold, for example,
v. We denote with ◦ the Hadamard product between two matrices/vectors of the same size, while · is
reserved for the matrix-vector/vector-vector multiplication. Given two vectors a, b we define a < b if and
only if ∀i : ai < bi (and similarly for ≤). We denote by ∥ the concatenation by columns of two matrices. We
denote by F a finite field, by F[X] the ring of univariate polynomials, and by F<d[X] (resp. F≤d[X]) the set of
polynomials in F[X] of degree < d (resp. ≤ d). For any subset S ⊆ F, we denote by ν S(X) def=

∏
s∈S(X−s) the

vanishing polynomial of S, and by λS
s (X) the s-th Lagrange basis polynomial, which is the unique polynomial

of degree at most |S| − 1 such that for any s′ ∈ S, it evaluates to 1 if s = s′ and to 0 otherwise. Any
multiplicative subgroup of a finite field is cyclic. Thus, given a group H, we can find an element ω that
generates the subgroup H. For convenience, given a subgroup H of order n we denote with ωn a fixed
generator of H. If H ⊆ F is a multiplicative subgroup of order n, then its vanishing polynomial has a
compact representation ν H(X) = (Xn − 1) and λH

i (X) = ν H(X)ωi−1
n /(n(X − ωi−1

n)). Both ν H(X) and
λH

i (X) can be evaluated in O(log n) field operations. For any vector v ∈ Fn, we denote by vH(X) the low
degree encoding (LDE) in H of v , i.e., the unique degree-(|H| − 1) polynomial such that, vH(ωi−1

n) = vi,
when the subgroup H is clear from the context, we simply write v(X). Similarly, we consider the k-degree
randomized low-degree encoding (RLDE) in H of a vector v ∈ Fn to be a randomized polynomial of the form
v̂H(X) = vH(X) + ν H(X)ρv(X) for a random polynomial ρv of degree k. Sometimes, we will not explicitly
mention the degree of the randomizer. In this case, the reader should assume that the degree is set to be the
minimum degree necessary to keep zero-knowledge of v in the presence of evaluations (on points outside of
H) of the polynomial v̂.

A type-3 bilinear group G is a tuple (q,G1,G2,GT , e, P1, P2). G1,G2 and GT are groups of prime order
q. P1, P2 are generators of G1,G2. e : G1 × G2 → GT is an efficiently-computable non-degenerate bilinear
map, and there is no efficiently computable isomorphism between G1 and G2. We use the implicit notation
[a]i := aPi, for elements in Gi, i ∈ {1, 2, T} and set PT := e(P1, P2).

2.1 Commit-and-Prove SNARKs

A commitment scheme is a tuple of algorithm CS = (KGen, Com) where the first algorithm samples a com-
mitment key ck and the second algorithm, upon input of the commitment key, a message p and opening
material ρ, outputs a commitment c. The basic notions of security for the commitment scheme are (perfect)
hiding and (computational) binding. The former property states that no (unbounded) adversary can distin-
guish commitments of two different messages when the opening materials are sampled at random from their
domain, the latter property states that no (polynomial time) adversary, upon input of the commitment key,
can find two different messages and two opening materials that commit to the same commitment.

Following Groth et al. [21], we define a relation R verifying triple (pp; x; w). We say that w is a witness
to the instance x being in the relation defined by the parameters pp when (pp; x; w) ∈ R (equivalently, we
sometimes write R(pp; x; w) = 1). For example, the parameters pp could be the description of a bilinear
group, or additionally contain a commitment key for a commitment scheme or a common reference string.
Whenever it is clear of the context, we will write R(x; w) as a shortcut for R(pp; x; w).

Briefly speaking, Commit-and-Prove SNARKs (CP-SNARKs) are zkSNARKs whose relations verify pred-
icates over commitments [8]. Given a commitment scheme CS, we consider relations R whose instances are
of the form x = ((cj)j∈[ℓ], x̂), where we can un-ambiguously parse the witness w = ((pj)j∈[ℓ], (ρj)j∈[ℓ]) for
some ℓ ∈ N with ∀j : pj is in the domain of a commitment scheme CS, and such that there exists a PT
relation R̂ such that let ŵ = (pj)j∈[ℓ]:

R(pp; x; w) = 1 ⇐⇒ R̂(pp; x̂; ŵ) = 1 ∧ ∀j ∈ [ℓ] : cj = Com(ck, pj , ρj).

We refer to a relation R̂ as derived above as a Commit-and-Prove (CP) relation. Given a CP-relation R̂ and
a commitment scheme CS, we can easily derive the associated NP-relation R. Instances of NP-relations may

6

contain only commitments. Therefore, using the notation above, the instances of the associated CP-relation
are empty strings ε, namely, R̂ is a predicate over the committed witness. To avoid cluttering the notation,
in these cases, we may omit the (empty) instance and simply write R̂(pp, ŵ).

A CP-SNARK for R̂ and commitment scheme CS is a zkSNARK for the associated relationR as described
above. More in detail, we consider a tuple of algorithms CP = (KGen, Prove, Verify) where:

– KGen(ck)→ srs is a probabilistic algorithm that takes as input a commitment key ck for CS and it outputs
srs := (ek, vk, pp), where ek is the evaluation key, vk is the verification key, and pp are the parameters for
the relation R (which include the commitment key ck).

– Prove(ek, x, w) → π takes an evaluation key ek, a statement x, and a witness w such that R(pp, x, w)
holds, and returns a proof π.

– Verify(vk, x, π) → b takes a verification key, a statement x, and either accepts (b = 1) or rejects (b = 0)
the proof π.

In some cases, the KGen algorithm would simply (and deterministically) re-parse the commitment key ck
information. In these cases, we might omit KGen and refer to the CP-SNARK as a tuple of two algorithms.

Zero-Knowledge in the SRS (and RO) model. The zero-knowledge simulator S of a CP-SNARK is
a stateful PPT algorithm that can operate in three modes. (srs, stS) ← S(0, 1λ, d) takes care of generating
the parameters and the simulation trapdoor (if necessary). (π, stS) ← S(1, stS , x) simulates the proof for a
statement x. (a, stS) ← S(2, stS , s) takes care of answering random oracle queries. The state stS is shared
and updated after each operation. We define zero-knowledge similarly to [14,19]:

Definition 1 (Zero-Knowledge). We say that a CP-SNARK CP for a CP-relation R̂ and commitment
scheme CS is (perfect) zero-knowledge if there exists a PPT simulator S such that for all adversaries A and
for all d ∈ N:

Pr

 ck← CS.KGen(1λ, d)
srs← CP.KGen(ck)
AProve(srs,·,·),RO(·)(srs) = 1

 ≈ Pr
[

(srs, stS)← S(0, ppG)
AS1(·,·),S2(·)(srs) = 1

]

where S1,S2 are stateful (wrapper) algorithms that share their state st = (stS ,QRO) where stS is initially set
to be the empty string, and QRO is initially set to be the empty set, such that:

– S1(x, w) denotes an oracle that first checks (pp, x, w) ∈ R where pp is part of srs and then runs the first
output of S(1, stS , x).

– S2(s) denotes an oracle that first checks if the query s is already present in QRO and in case answers
accordingly, otherwise it returns the first output a of S(2, stS , s). The oracle updates QRO by adding the
tuple (s, a) to the set.

Knowledge Soundness. Our definition of knowledge soundness is in the algebraic group model [16]. An
algorithm A is called algebraic if for all group elements that A outputs, it additionally provides the repre-
sentation relative to all previously received group elements. That is, if elems is the list of group elements
that A has received, then for any group element z in output, the adversary must also provide a vector r such
that z = ⟨r, elems⟩. We define the notion of knowledge soundness in the algebraic model.

Definition 2 (Knowledge Soundness in the AGM). A CP-SNARK is knowledge extractable in the
Algebraic Group Model if for any PT algebraic adversary, there exists a PT extractor E that receives in input
the algebraic representations r1, . . . , rl of A and such that:

Pr

ck← CS.KGen(1λ, d); srs← CP.KGen(ck);
(x, π, r1, . . . , rl)← A(srs); w ← E(srs, r1, . . . , rl)
Verify(srs, x, π) ∧ ¬R(pp, x, w)

 ≤ negl(λ)

7

Indexed Relations and Universal CP-SNARKs. We extend the notion of relations to indexed relations
[11]. We define a PT indexed relation R verifying tuple (pp, ind, x, w). We say that w is a witness to the
instance x being in the relation defined by the pp and index ind when (pp, ind, x, w) ∈ R (equivalently, we
sometimes write R(pp, ind, x, w) = 1).

Briefly, we say that a CP-SNARK is universal if there exists a deterministic algorithm Derive that takes
as input an srs and an index ind, and outputs a specialized reference string srsind = (vkind, ekind) where
vkind is a succinct verification key and ekind is a proving key for such an index. Moreover, we require that the
verifier Verify (resp. the P) of a Universal CP-SNARK takes as additional input the specialized verification
key vkind (resp. the specialized ekind). We refer to Appendix B for more details.

2.2 Extractable Commitment Schemes

An extractable commitment scheme for a domain D = {Dλ}λ is a commitment scheme equipped with a
CP-SNARK that proves the knowledge of an opening of the commitments.

Definition 3. Given a domain D, CS = (KGen, Com, VerCom) is an extractable commitment scheme for the
domain D if there exist two algorithms Com′, Prove′ such that Com(ck, p, ρ) executes (1) c ← Com′(ck, p, ρ)
and (2) π ← Prove′(ck, c, (p, ρ)) and outputs (c, π), and (Prove′, VerCom) is a CP-SNARK for the commitment
scheme (KGen, Com′) and for the CP-Relation R̂open defined below:

R̂open = {pp; ε; p : p ∈ Dλ}.

2.3 Polynomial, Vector and Matrix Commitment Schemes

We use the KZG polynomial commitment scheme of [24] described below:

KGen(1λ, d1, d2) samples a type-3 pairing group with security level λ and outputs commitment key ck :=
((

[
si

]
1)i∈[d1], (

[
si

]
2)i∈[d2],) for random secrets s ∈ Zq.

Com(ck, p) outputs [p(s)]1.

We notice that the above commitment scheme is not hiding and it is extractable11 for the domain of poly-
nomial of degree d1 in the algebraic group model of [16] under the power discrete logarithm assumption
(PDL), which informally states that find s is hard given a freshly sampled commitment key, see Definition 11
for details. The commitment scheme allows for a very efficient CP-SNARK Πeval = (Proveeval, Verifyeval) for
the CP-relation R̂eval = {(x, y; p): p(x) = y}. In particular, the prover Proveeval upon input the SRS ck, an
instance ([p(s)]1 , x, y) and the witness p, computes the unique polynomial w such that the equation below
holds and outputs [w(s)]1 as its proof:

p(X) = w(X) · (X − x) + y.

On the other hand, the verifier Verifyeval upon input the SRS ck, an instance (c, x, y) and a proof π, checks
e(c− [y]1 , [1]2) = e(π, [s− x]2).

Vector and Matrix commitment schemes. From a polynomial commitment scheme, we can define a
vector commitment. Specifically, let H be multiplicative subgroup of F with order N , and let ωN be a fixed
generator of H. We can commit to vector v by committing to the low degree encoding of v over H. Namely,
[vH(s)]1 is a commitment to v. The commitment key should additionally contain the description of the

11As argued in [7], we can define a vacuous CP-SNARK for opening in the AGM where the prover does nothing
and the verifier checks that the commitment is a valid group element. However, Lipmaa et al. [27] recently defined
AGMOS, a more realistic variant of the AGM where the algebraic adversary can obliviously sample group elements.
They pointed out that KZG is only extractable after the prover has successfully opened the commitment at some
point. In this case, such a vacuous CP-SNARK is not sufficient. We leave it to further work to prove the security of
our protocols in AGMOS.

8

subgroup H to allow for verification. Notice that such a commitment scheme is not hiding. We can make it
hiding by committing to a RLDE of v over H instead of its LDE. We can easily adapt the CP-SNARK for
Reval to spot-opening of a committed vector.

We define the vectorization of a matrix M ∈ Fn×d to be the vector m̄ ∈ Fn·d which is the concatenation
of the rows of M. Namely, for any i ∈ [n], j ∈ [d], we define m̄d·i+j = Mi,j . To commit to a matrix M, we
commit to its vectorization m̄. Notice that, additionally, the commitment key should contain the values n
and d, and the subgroup H should be of cardinality n · d.

3 Zero-Knowledge Matrix Lookup Arguments

Given two vectors f , t, we say that f is a sub-vector of t if there exits a (multi) set K = {k1, . . . , kn} such
that f j = tkj for any j. We write f ≺ t to denote that f is a sub-vector of t. Notice we diverge from the usual
notion of sub-vector. Namely, we assume that a sub-vector f may contain multiple copies of an element in t
and, moreover, any permutation of f is a sub-vector of t. We extend the notion of sub-vectors to matrices.
We say that a matrix F ∈ Fn×d is a (rows) sub-matrix of a matrix T ∈ FN×d if F parsed as a Fd-vector
of length n is a sub-vector of T parsed as a Fd-vector of length N . In other words, F is a matrix whose
rows are also rows in T. Similarly, given a multi set K = {k1, . . . , kl} we can define the sub-matrix F|K as
the sub-matrix of F which j-th row is the row Fkj . Notice that our notion of sub-matrix is not standard.
Besides the differences mentioned for the notion of sub-vector, we consider the special case where the number
of columns of F and T are the same. This is sufficient for our application. However, for completeness, in
Appendix D.1, we consider the more general case where F may be a selection of a projection of T. We call
the latter the rows-columns sub-matrix relationship. We consider the following indexed CP-relation, where
we will refer to T as the table and to F as the sub-vector (or sub-matrix):

R̂zklookup := {pp; (N, d, n); ε; (T, F) : F ≺ T, |T| = N × d, |F| = n× d}, (1)

Previous work focuses on d = 1, namely the lookup argument for vector commitments, where the table T is
public. Moreover, some of the previous work did not focus on zero-knowledge. Namely, previous work focused
on (ZK or not) CP-SNARKs for the following CP-relation:

R̂lookup := {pp; (t, n); ε; f : f ≺ t, |f | = n}. (2)

A fully zero-knowledge lookup argument for a commitment scheme CS is a CP-SNARK for the CP-relation
R̂zklookup and for the commitment scheme CS. We use the adjective fully zero-knowledge to distinguish
our definition from the definition from previous work. State-of-the-art lookup arguments have prover time
complexity independent of the length of the table and quasi-linear (or even linear) on the length of the sub-
vector. To obtain such a property, all the lookup arguments for arbitrary tables in previous work precompute
the table T, producing auxiliary material that is then used during the proving phase. Thus, using the
notational framework of Universal SNARK, the precomputation is handled by the Derive algorithm (since t
is in the index).

Definition 4. A tuple of algorithm CP = (KGen, Derive, Prove, Verify) is a lookup argument for a commit-
ment scheme CS if (1) CP forms a CP-SNARK for R̂lookup and CS, (2) Derive is a F-linear function (with
respect to the proving key in its output) and the commitment scheme is linearly homomorphic and (3) Prove
has running time poly(n, λ).
We define an additional algorithm Preproc to handle our stronger privacy requirement. Similarly to Derive,
the algorithm Preproc performs an offline preprocessing — both algorithms are necessary only for speeding
up the proving and verification algorithms. The difference is that Derive works over public information,
meanwhile Preproc works over private information12.

12Alternatively, one could define one single algorithm Derive that handles both public and private data. In this
case, one needs to redefine the Universal SNARK’s framework to handle zero knowledge correctly. Our definition
instead is only functional as we require that Preproc, Prove form a two-step prover algorithm for a Universal SNARK.

9

Definition 5. A tuple of algorithm CP = (KGen, Derive, Preproc, Prove, Verify) is a fully zero-knowledge
lookup argument for a matrix commitment scheme CS if (1) (KGen, Derive, Prove′, Verify) forms a CP-SNARK
for R̂zklookup and CS where Prove′ is the algorithm that upon witness (T, F, ρT , ρM) such that T|K = F first
runs (auxj)j∈[N] ← Preproc(srs, T, ρT) and then runs Prove with witness (F, ρM , (auxj)j∈K)); (2) Preproc is
a F-linear function and the commitment scheme is linearly homomorphic and (3) Prove has running time
poly(nd, λ).

4 Our New Zero-Knowledge Lookup Arguments

In this section, we present our new lookup arguments for KZG-based vector commitments. Let the com-
mitment ct and cf , to the vectors t and f respectively, be KZG commitments to randomized low-degree
encodings of t and f . We denote these polynomials T(X) and F(X), respectively. Since t and f have different
sizes, we interpolate them over two multiplicative subgroups of F: K of order N and H of order n ≤ N . In
our construction, we need n | N ; however, this usually holds in practice where both n and N are powers of
two. Hence, we have

T(X) :=
N∑

j=1
tjλK

j (X) + ρT · ν K(X), F(X) :=
n∑

i=1
f iλ

H
i (X) + ρF(X) · ν H(X)

Above, ρF(X) is a random polynomial of degree < bF so that cf = [F(s)]1 is perfectly hiding. Furthermore, our
lookup arguments work (and are zero-knowledge) for any choice of bF ≥ 0; this property matters whenever
the commitment cf is generated by other protocols with their own zero-knowledge requirements (e.g., cf may
come from a SNARK construction where bF is carefully set to meet the number of leaked evaluations of F(X)
in that protocol). Our lookup arguments achieve zero knowledge without leaking additional evaluations of
F(X).

On the other hand, if ρT ←$ F is a random field element, then ct = [T(s)]1 is a perfectly hiding commit-
ment to t. Otherwise, if ρT = 0, we capture the case of public tables (that is the common use case of lookup
arguments).

We use the following lemma from [22].

Lemma 1 (Set inclusion, [22]). Let F be a field of characteristic p > N , and suppose that (ai)N
i=1, (bi)N

i=1
are arbitrary sequences of field elements. Then {ai} ⊆ {bi} as sets (with multiples of values removed), if and
only if there exists a sequence (mi)i=1 of field elements from Fp ⊆ F such that∑N

i=1
1

X−ai
=

∑N
i=1

mi

X−bi
(3)

in the function field F(X). Moreover, we have equality of the sets {ai} = {bi}, if and only if mi ̸= 0, for
every i = 1, . . . , N .

Roadmap. For the sake of presentation, we first describe our main lookup argument cq+, which works for
a public table t, thus meeting Definition 4. This protocol is fully described in Fig. 1 and explained in the
next section. Next, we discuss an optimized variant, cq++. Finally, in Section 4.2 we show how to obtain the
protocol meeting the fully zero-knowledge notion of Definition 5.

4.1 cq+ Lookup Argument

For ease of exposition, we present our protocol as a public coin interactive argument. We can compile it into
a CP-SNARK using the Fiat-Shamir heuristic.

Setup. We assume a universal srs = ((
[
sj

]
1)N1

j=0, (
[
sj

]
2)N2

j=0)) for any N1 ≥ N + max(bF , 1) − 1 and N2 ≥
N + max(bF , 1) + 1, where bF is the degree of the randomization polynomial ρF(X) explained earlier.

10

Round 1. Our interactive lookup protocol cq+ starts the same as cq [13]. Namely, based on Lemma 1, the
prover computes the multiplicities vector m such that

∑N
j=1

mj

tj+X =
∑n

i=1
1

f i+X , and sends to the verifier a
commitment [m(s)]1 to a randomized low-degree encoding m(X) of m over K.

Round 2. The verifier sends a random challenge β. At this point, the goal of the prover is to convince the
verifier that ∑N

j=1
mj

tj+β =
∑n

i=1
1

f i+β (4)

which, by Schwartz-Zippel, implies the polynomial identity over F[X] and thus f ≺ t by Lemma 1. To this
end, the prover commits to randomized low-degree encodings of the two vectors containing the terms of the
two sums, i.e.,

A(X), B(X) s.t. Aj = A(ωj−1
N) = mj

tj+β and Bi = B(ωi−1
n) = 1

f i+β . (5)

In order to prove the well-formedness of A(X) and B(X), as in cq, the prover commits to the polynomials
QA(X) = (A(X)(T(X) + β) −m(X))/ν K(X) and QB(X) = (B(X)(F(X) + β) − 1)/ν H(X). As we discuss
later, we compute a commitment to QA(X) using the cached quotients technique of [13] to meet the efficiency
requirement (3) of Definition 4.

From this point, our protocol diverges from cq. At this point of the protocol, cq would proceed by ap-
plying Aurora’s univariate sumcheck on both A(X) and B(X) to prove the correctness of results A(0) =∑

j A(ωj−1
N)/N and B(0) =

∑
i B(ωi−1

n)/n and then the verifier would check that the results are equal.
In cq+, we instead apply Aurora’s univariate sumcheck on a scaled sum of A(X) and B(X) and prove

that the result is zero. More precisely, we define C(X) := A(X)−ϑ−1B(X)z(X) where we denote ϑ := N/n
and z(X) := ν K\H(X) and use the following lemma (see Appendix C for its proof).

Lemma 2.
∑N

j=0 A(ωj−1
N) =

∑n
i=0 B(ωi−1

n) iff
∑N

j=0 C(ωj−1
N) = 0.

The lemma relies on the observation that the polynomial ∆(X) := ϑ−1B(X)z(X) encodes over K the same
vector encoded by B(X) over H, i.e.,

(
1

f i+β

)
i
, but in different positions; while in the rest of positions it

encodes zeros. Thus,
∑N

j=0 ∆(ωj−1
N) =

∑n
i=0 B(ωi−1

n). Moreover, multiplying B(X) by z(X) gives us for free
a low-degree test on B(X).

Thus, towards proving (4), we use Aurora’s sumcheck on C(X) to show

∃RC(X) ∈ F≤N−2[X], QC(X) s.t. C(X) = RC(X)X + QC(X)ν K(X) . (6)

However, we do not send commitments to these two polynomials but use alternative techniques that allow
us to obtain both zero knowledge and an efficient degree check on RC(X). More precisely, to obtain zero-
knowledge, we use the sparse ZK sumcheck technique from Lunar [7]: the prover commits to a polynomial
S(X) := RSX + ρSν K(X), with the idea that in the next round we perform a sumcheck on C(X) + η2S(X),
for a random challenge η to be chosen by the verifier in the following round. Actually, although for ease of
expositions we introduced the use of S(X) here; this polynomial is computed and committed as [S(s)]1 in
round 1. In summary, in round 2, the prover sends [A(s), B(s), QB(s)]1.

Round 3. The verifier sends random challenges γ, η. In this round, the prover’s goal is to show that

A(X)(T(X) + β)−m(X) = QA(X)ν K(X), (7)
B(X)(F(X) + β)− 1 = QB(X)ν H(X), (8)
A(X)− ϑ−1B(X)z(X) + η2S(X)− (RC(X) + η2RS)X =QC,S(X)ν K(X) (9)

where QC,S(X) = QC(X) + η2ρS in (9). To prove equation (7), we use the cached quotient technique of [13]
to compute a commitment [QA(s)]1 using n scalar group multiplications (see below).

To prove equation (8), notice that we already sent QB(X); thus, using a linearization trick and random
point evaluations, we set Bγ = B(γ) and we show B(X) evaluates to Bγ on γ, D(X) := Bγ(F(X) + β)− 1−

11

QB(X)ν H(γ) evaluates at 0 on γ. We batch these claims using the verifier’s challenge η. Namely, we send
the KZG-evaluation proof P (X) := ((B(X)−Bγ) + ηD(X))/(X − γ).

To prove equation (9), we apply a novel idea that allows obtaining, for free, a degree check on RC(X).
We set the polynomial U(X) = (Xµ − 1) where µ = N1 − N + 2 and ask the prover to send R∗

C(X) =
(RC(X) + η2RS)U(X). To balance this, we multiply the rest of equation (9) by U(X), obtaining

(A(X)− ϑ−1B(X)z(X) + η2S(X))U(X)−R∗
C(X)X =QC,S(X)ν K(X)U(X) (10)

To further optimize this, we batch equations (7) and (10) by using the verifier’s random challenge η (and
multiplying (7) by U(X)), finally obtaining:

A(X) · T(X)U(X) + ((β + η)A(X)−m(X) + η2S(X)) · U(X)

− η

ϑ
B(X) · z(X)U(X)−Q(X)ν K(X)U(X) = ηR∗

C(X) ·X (11)

The idea of this batching is that after multiplying (7) by U(X), both equations aim to prove that the
left-hand side is divisible by ν K(X) and thus we can send a single quotient polynomial Q(X) = QA(X) +
ηQC(X) + η2ρS .

To summarize, in round 3, the prover sends [P (s), R∗
C(s), Q(s)]1 and Bγ .

Verification. The verifier proceeds as described in Verify of Fig. 1. The verification Item (ii) is a standard
technique to check the batched evaluation proof [P (s)]1. The verification Item (i) instead implements the
check of Eq. (11) using pairings. Doing this requires the verifier to have in the verification key the G2 elements
[T(s)U(s)]2 as well as [U(s), z(s)U(s), ν K(s)U(s)]2. Therefore, we let Derive compute all these elements and
include them in the verification key.
Prover efficiency. We discuss how the prover algorithm can be implemented with O(n) scalar multiplica-
tions in G1 and O(n log n) F operations. First, one can easily see that by preprocessing the computation of
the elements

[
λK

j (s)
]

1 and [ν K(s)]1 and by using the n-sparsity of m, it is possible to compute [m(s), A(s)]1
using 2(n + 1) scalar multiplications. Computing QB(X) is the only step that requires time O(n log n) (in
field operations). Computing [B(s), QB(s), P (s)]1 requires ≈ 3n scalar multiplications.

Computing the commitments [R∗
C(s)]1 and [QA(s)]1 with ≈ 2n and n scalar multiplications, respectively,

can be achieved thanks to the cached quotients and, again, the sparseness of m. Following [13], in Derive for
t, we compute and store

[Qj(s)]1 where Qj(X) := (T(X)−tj)λK
j (X)

ν K(X) .

Then, we use this auxiliary input to compute, with n + 1 scalar multiplications,

[QA(s)]1 ←
∑

mj ̸=0 Aj [Qj(s)]1 + [ρA(T (s) + β)− ρm]1 . (12)

The correctness of QA(s) is due to∑N
j=1 AjQj(X) =

∑N
j=1

Aj(T(X)−tj)λK
j (X)

ν K(X)

=
∑N

j=1
Aj(T(X)+β)λK

j (X)
ν K(X) −

∑N
j=1

Aj(tj+β)λK
j (X)

ν K(X)
(5)= (T(X) + β)

∑N
j=1

AjλK
j (X)

ν K(X) −
∑N

j=1
mjλK

j (X)
ν K(X)

= (A(X)−ρAν K(X))(T(X)+β)−m(X)+ρmν K(X)
ν K(X)

= QA(X)− ρA(T (X) + β) + ρm .

Using a similar technique, in Derive we can precompute
[
(rKj (s))N

j=1, (rHi (s))n
i=1

]
1 where

{
rKj (X) = λK

j (X)−λK
j (0)

X U(X)
}

j∈[N]
,

and
{

rHi (X) = λH
i (X)z(X)−λH

i (0)
X U(X)

}
i∈[n]

, and use them to compute [R∗
C(s)]1 in 2n scalar multiplications.

12

Thus, the prover’s computation is dominated by 8n scalar multiplications, which was also the case in cq
that did not achieve zero-knowledge and assumed A(X) to be of degree < N .
cq++: a variant with a shorter proof. We can further optimize cq+ by applying one more batching
technique that consists of sending a single group element [P ∗(s)]1 = [P (s) + R∗

C(s)]1 and in merging the two
verification equations ((i)) and ((ii)) as follows:

e
(
[A(s)]1 , [T(s)U(s)(s− γ)]2

)
· e

([
(β + η)A(s)−m(s) + η2S(s)

]
1 , [U(s)(s− γ)]2

)
·

e
(

η
ϑ

[B(s)]1 , [z(s)U(s)(s− γ)]2
)−1 · e

(
[Q(s)]1 , [ν K(s)U(s)(s− γ)]2

)−1 ·

e
(
η [B(s) + ηD(s)−Bγ]1 , [s]2

)
= e

(
η [P ∗(s)]1 , [s(s− γ)]2

)
.

This change also requires some small changes. First, we require in the srs to have N2 ≥ N + max(bF , 1) + 2.
Second, the verification key vkN,n computed by Derive must include

[
(skU(s), skz(s)U(s), skν K(s)U(s))1

k=0
]

2.
Third, the table-dependent verification key for t should include

[
(skT(s)U(s))1

k=0
]

2.

Overall efficiency. Assume that we use a standard curve like BLS12-381, where elements of G1 (resp., F)
are g1 = 384 (resp., f = 256) bits long. Then, in cq+, the communication is 8g1 + 1f (3328 bits) and in cq++,
7g1 + 1f (2944 bits). The prover executes ≈ 8n scalar multiplications. Verifier has to execute 5 pairings in
cq+ or 6 in cq++. Importantly, two or three of the pairings are with the standard G2 element (depending on
the variant, [1, x]2 or

[
1, x, x2]

2). Hence they can be batched with other pairings in the master protocol and
essentially come for free.

If one does not wish ZK, we can remove [S(s)]1 from the argument, and proof size is 7g1 + 1f (2944 bits)
in cq+, and 6g1 + 1f (2560 bits) in cq++.

To compare, in cq [13] (that is not ZK), the communication is 8g1+3f (3840 bits), the prover’s computation
is ≈ 8n scalar multiplications, and the verifier has to execute 5 pairings. Hence, even cq+ (with ZK) has
better communication than cq (without ZK) while having the same cost in the rest of the parameters.

Security. In the following theorem, we argue the security of cq+ (see Appendix C for the proof and the
definition of the Power Discrete Logarithm (PDL) assumption); the proof of cq++ is very similar.

Theorem 1. The protocol cq+ from Fig. 1 is a lookup argument according to Definition 4. Specifically, cq+

is knowledge-sound in the AGM and ROM under the (N1, N2)-PDL assumption (see Definition 11), and,
furthermore, the protocol is zero-knowledge.

4.2 Our fully zero-knowledge lookup argument

In this setting we have T(X) =
∑N

j=1 = tjλK
j (X) + ρT · ν K(X) where ρT ←$ F and ct = [T(s)]1. We

need only slight modifications to turn cq+ to a fully zero-knowledge lookup argument. We refer to the
modified lookup argument as zkcq+, formally described in Fig. 8 in Appendix C.2. First, we defer, from
Derive to Preproc, the computation of all the table-dependent group elements. Namely, Preproc(srs, t, ρT)
computes ([Qj(s))]1)N

j=1 and c̃t ← [T(s)U(s)]2. The latter group element is included as part of the proof
at proving time by the algorithm Prove. As consequence, Verify needs to additionally run the pairing check
e([1]1 , c̃t) = e(ct, [U(s)]2) to verify the well-formedness of the commitment ct. In the proof of knowledge
soundness, this check allows us to ensure that the polynomials extracted from ct and c̃t are of the form
T∗(X) and T∗(X)U(X) for some T∗(X); thus, after verifying this we can apply virtually the same proof of
Theorem 1.

5 Our Matrix Lookup Argument

We show a compiler from a fully zero-knowledge vector lookup argument for KZG-based vector commitment
to a fully zero-knowledge matrix lookup for the (succinct) KZG-based matrix commitment from Section 2.3.
The same construction applies for lookup argument as in Definition 4.

13

Derive(srs, t, n): // Assume that |t| = N = |K|, n = |H| and n | N , srs = (
[
(sj)j∈[N1]

]
1 ,

[
(sj)j∈[N2]

]
2) for any

N1, N2 ≥ N + max(bF , 1)− 1.
Set µ = N1 −N + 2; define U(X) := (Xµ − 1), ϑ = N/n, and z(X) = ν K\H(X);
Define T(X) :=

∑N

j=1 = tjλK
j (X);

Let
{

rK
j (X) =

λK
j (X)−λK

j (0)
X

U(X)
}

j∈[N]
,

{
rH

i (X) = λH
i (X)z(X)−λH

i (0)
X

U(X)
}

i∈[n]
,

and
{

Qj(X) =
(T(X)−tj)λK

j (X)
ν K(X)

}
j∈[N]

.

Compute ekt,n :=
[
(rK

j (s))N
j=1, (rH

i (s))n
i=1, U(s), ν K(s), sν K(s), (Qj(s))N

j=1, T(s)
]

1;
Compute vkt,n := [1, U(s), z(s)U(s), ν K(s)U(s), T(s)U(s)]2;
Return (ekt,n, vkt,n).

Prove(ekN,n, cf , (f , ρF(X))): //cf =
[∑

i
f iλ

H
i (s) + ρF(s)ν H(s)

]
1, deg(ρF) = bF .

Compute m = (m1, . . . , mN) s.t. ∀j : tj appears mj times in f ; samples ρm ←$ F;
Compute [m(s)]1 ←

∑N

j=1 mj ·
[
λK

j (s)
]

1 + ρm · [ν K(s)]1; // n scalar mults
Sample RS , ρS ←$ F and compute [S(s)]1 ← RS · s + ρS · ν K(s);
β ← RO(vkN,n∥(ct, cf)∥ [m(s)]1) //Fiat-Shamir challenge.
Sample ρA ←$ F, ρB(X)←$ F≤1[X];
Let Aj ← mj/(tj + β) ∀j = 1, . . . , N and Bi ← 1/(f i + β) ∀i = 1, . . . , n;
Compute [A(s)]1 ←

∑N

j=1 Aj

[
λK

j (s)
]

1 + ρA · [ν K(s)]1;
Compute [B(s)]1 ←

∑n

i=1 Bi

[
λH

i (s)
]

1 + [ρB(s) · ν H(s)]1;
Compute QB(X)← (B(X)(F(X) + β)− 1)/ν H(X) and [QB(s)]1;
(γ, η)← RO(β∥ [A(s), B(s), QB(s), S(s)]1);//Fiat-Shamir challenge.
Compute Bγ ← B(γ), D(X)← Bγ · (F(X) + β)− 1−QB(X)ν H(γ);
Compute P (X)← ((B(X)−B(γ)) + ηD(X))/(X − γ) and [P (s)]1; // KZG-proof for (8).
Compute [R∗

C(s)]1 ←
∑

mj ̸=0 Aj ·
[
rK

j (s)
]

1 − ϑ−1 ∑n

i=1 Bi ·
[
rH

i (s)
]

1 + η2RS · [U(s)]1
Compute [QA(s)]1 ←

∑
mj ̸=0 Aj · [Qj(s)]1 + [ρA(T (s) + β)− ρm]1;

Compute [QC(s)]1 ←
[
ρA + ϑ−1ρB(s)

]
1;

Compute [Q(s)]1 ← [QA(s)]1 + η [QC(s)]1 + η2 [ρS]1;
Return π = ([m(s), S(s), A(s), B(s), QB(s), P (s), R∗

C(s), Q(s)]1 , Bγ).

Verify(vkt,n, cf , π):
Compute [D(s)]1 ← Bγ(cf + [β]1)− [1]1 − ν H(γ) [QB(s)]1.
Return 1 if and only if the following holds:
(i) e([A(s)]1 , ct) · e((β + η) · [A(s)]1 − [m(s)]1 + η2 [S(s)]1 , [U(s)]2) · e(η/ϑ · [B(s)]1 , [z(s)U(s)]2)−1 ·

e([Q(s)]1 , [ν K(s)U(s)]2)−1 = e(η · [R∗
C(s)]1 , [s]2),

(ii) e([B(s)]1 + η [D(s)]1 − [Bγ]1 , [1]2) = e([P (s)]1 , [s− γ]2)

Fig. 1. Our zero-knowledge lookup argument cq+.

5.1 The Straw Man Solution

An alternative approach to commit to a matrix is to one-by-one vector commit to its columns. The obvious
shortcoming is that the commitment scheme is not succinct in the number of columns. Nonetheless, this
approach already results in a matrix lookup argument (under the assumption that the vector commitment
is linearly homomorphic). In particular, consider the lookup argument that hashes together the columns tj

of the table T and the columns f j of the sub-matrix F using a random challenge ρ computing vectors

t∗ =
∑

j

tjρj−1 f∗ =
∑

j

f jρj−1.

14

Scheme Preprocessing Proof size Time (P) Time (V)
mtxlongprf[zkcq+] (Section 5.1) O(dN log N)F,G (d + 9)g1 + 1f O(nd)G1 + O(nd log n)F dG1 + 7P

mtx[zkcq+] (Fig. 2) O(dN log dN)F,G 16g1 + 2f O(nd)G1 + O(nd log(nd))F 13P
[12] O(dN log dN)F,G 20g1 + 6f O(nd log nd)G1 + O(nd log(nd))F 23P

Table 1. Summary of efficiency of our constructions for matrix lookups. The relation considered is parametrized
with table size of size N × d and looked-up submatrix of size n× d. P is the cost of one pairing. Proof size includes
commitment to the witness.

Notice that by Schwartz-Zippel lemma we that f∗ ≺ t∗ implies F ≺ T with overwhelming probability. Thus,
we could run a vector lookup argument over (f∗, t∗), thanks to the linear homomorphic property of the
commitment scheme the verifier can compute commitments to f∗ and t∗ and verify the proof. Notice the
prover time complexity is poly(n, d, λ) thanks to the F-linearity of the precomputation algorithm. However,
the verification time is linear in in the number of columns. We show in the next section how to restore
succinct verification time and commitment size.

5.2 Our scheme

In Fig. 2 we describe our scheme mtx[CP] that runs internally a lookup argument CP for KZG-based vector
commitment scheme. The proof of the following theorem is in Appendix D. In the description of the scheme,
we let K (resp. H) be a multiplicative subgroup of F of order N · d (resp. of order n · d), we let ω := ωn·d be
the fixed generator for H and we consider the following matrices and polynomial:

1. the matrix R ∈ FN×d where Ri,j = i,
2. for any k the matrix C(k) ∈ Fk×d where Ci,j = j.
3. Let ν H̄(X) be the vanishing polynomial of H̄={ωd·i+j : j ∈ [1, d− 1], i ∈ [n]}.

Theorem 2. The lookup argument mtx[CP] defined in Fig. 2 is knowledge-sound in the AGM and ROM
under the (N ·d, N ·d)-PDL assumption and assuming that CP is knowledge-sound. Furthermore, the protocol
is zero-knowledge assuming CP is zero-knowledge.

A row-column Matrix Lookup Argument. In Appendix D.1 we consider the rows-columns sub-matrix
relation where F ≺ T if and only if there exist (multi)sets R = {r1, . . . , rn} and C = {c1, . . . , cd} with
Fi,j = Tri,cj , and give an rows-columns matrix-lookup argument system mtx∗[CP] for such a relation.
Briefly, the main difference with the scheme in this section is that we commit to an additional vector σ̄C

which is the concatenation of the vector (c1, . . . , cd) for n times, prove in zero-knowledge its tensor structure,
and show that f̄∗ = f̄ + ρ · σ̄C + ρ2 · σ̄ is a sub-vector of t̄∗.

5.3 Concrete Efficiency

In Table 1, we describe the complexity of proving a matrix lookup in a table T described by a matrix of size
N × d. The size of the submatrix we are looking up in the larger table is n× d. In Appendix F, we describe
a breakdown of efficiency measurements for our fully zero-knowledge construction (mtx[zkcq+]). Our naive
scheme, the one derived from the observations in Section 5.1, and the scheme in Appendix D.1 have efficiency
analyses which follow similarly. The values for [12] are taken directly from the paper, the number of pairings
in verification is computed by simple inspection of the protocol, the extra O(log nd) factor in the number of
exponentiations in G1 for the prover arises from their sub-protocol adapted from [37].

15

Derive(srs, N, d, n):
Let f̄ , r̄N , c̄N and c̄n be vectorizations of the matrices F, R, C(N) and C(n).
Compute cr,N ← Com(ck, r̄N), cc,N ← Com(ck, c̄N) and cc,n ← Com(c̄n).
Compute (ek′, vk′)← CP.Derive(srs, Nd, nd).
Return (ek′, vkn) where vkn = (cr,N , cc,N , cc,n, [ν H̄(s)]2 , vk′).

Preproc(srs, T, ρT):
Let t̄ be vectorization of the matrix T.
Compute (auxT,j)j∈[Nd] ← CP.Preproc(srs, t̄, ρT),
(auxR,j)j∈[Nd] ← CP.Preproc(srs, r̄N),
(auxC,j)j∈[Nd] ← CP.Preproc(srs, c̄N).
Let auxi = (auxT,di+j , auxR,di+j , auxC,di+j)j∈[d].
Return (auxi)i∈[N].

Prove(ek, (cT, cF), F, (auxj)j∈K): //T|K = F, K = {k1, . . . , kn}.
Let S be s.t. Si,j = ki for i∈ [n], j∈ [d].
Let σ(X) be the randomized low-degree encoding over H = ⟨ω⟩ of the vectorization of S.
Compute w(X) such that σ(ω ·X)− σ(X) = w(X) · ν H̄(X).
(ρ, ζ)← RO(vkn∥(cT, cF)∥(cR,n, cR′,n, cw)). //Fiat-Shamir challenge.
Compute z ← σ(ω · ζ).
Compute proofs πR and πR′ for R̂eval(ω · ζ, z; σ(X)) = 1 and R̂eval(ζ, z; σ(ω ·X)) = 1;
Let π∗ proof for R̂zklookup((N · d, n · d); ε; (̄t∗

, f̄ ∗)) = 1 where

t̄∗ = t̄ + ρ · c̄N + ρ2 · r̄N f̄ ∗ = f̄ + ρ · c̄n + ρ2 · σ̄ (13)

Return π = ([σ(s)]1 , [σ(ω · s)]1 , [w(s)]1 , πR, πR′ , π∗, z).

Verify(vkn, (cT, cF), π):
Parse the proof π = (cR,n, cR′,n, cw, πR, πR′ , π∗, z).
(ρ, ζ)← RO(vkn∥(cT, cF)∥(cR,n, cR′,n, cw)). //Fiat-Shamir challenge.
Compute c∗

T ← cT + ρcc,N + ρ2cr,N and c∗
F ← cF + ρcc,n + ρ2cR,n.

Return 1 if the following checks hold (else 0):
(i) Verifyeval(ck, (cR,n, ω · ζ, z)) = 1,

(ii) Verifyeval(ck, (cR′,n, ζ, z)) = 1,
(iii) e(cR′,n − cR,n, [1]2) = e(cw, [ν k̄(s)]2),
(iv) CP.Verify(srs, vk′, (c∗

T, c∗
F), π∗) = 1.

Fig. 2. Our Matrix Lookup Argument mtx[CP].

6 Zero-Knowledge Decision Tree Statistics

A decision tree is an algorithm that, upon an input, performs a finite sequence of adaptive queries on the
input and eventually outputs a value. Concretely, we consider binary decision trees where the inputs are
vectors in [B]d for natural numbers d and B, where the queries are comparisons and the outputs (often
called the labels) are in [B]. We let Ntot be the number of nodes in a decision tree T, and we index the root
node with 1. A binary tree with Ntot nodes and where each node has either zero children or exactly two
children, has Nleaf := (Ntot + 1)/2 leaf nodes, and the remaining Nint = Ntot−Nleaf nodes are called internal
nodes (including the root node). We index the internal nodes of the decision tree with numbers in [Nint]. The
computation of a decision tree T upon input x, denoted as T(x), consists of a traversal of the tree from the
root node to a leaf. During the traversal, the computation fetches, from each internal node i, a threshold ti

and a feature index ei ∈ [d]. If xei < ti, the computation continues recurring on the left child of node i, and
otherwise, to the right child. Once reaches a leaf, the computation outputs the label vi assigned to the leaf
i as the final output.

16

Therefore, seen as a data structure, a decision tree T is made by a binary tree (namely, the structure of
the tree), by the values di, ti for each internal node i, and by the label vi for each leaf node i. We refer to
this encoding of a tree as the standard encoding. We define TNtot,B,d to be the set of decision trees with Ntot
nodes that maps vector in [B]d to the co-domain F.
Quasi-Complete Decision Tree. We define the notion of quasi-complete decision tree. The difference with
a standard tree is that during the traversal, the computation fetches from each internal node i two vectors
Ei and Ti, we call the vector Ei ∈ {0, 1}d the feature vector associated to the node i and vector Ti ∈ [B]d
the threshold vector associated to the node i. The computation continues recurring on the left child of node
i if ∀j ∈ [d] : Ei,j = 1 ⇒ xj < Ti,j , on to the right child of the node i if ∀j ∈ [d] : Ei,j = 1 ⇒ xj ≥ Ti,j ,
or outputs ⊥ if neither of the two conditions holds. The pseudo-code of the evaluation of a quasi-complete
decision tree is in Fig. 10 in Appendix E.

Similarly to decision trees, we define T ∗
Ntot,B,d to be the set of quasi-complete decision trees with Ntot

nodes that maps feature vector in [B]d to the co-domain F. Notice that when for any node j the (row) vector
Ej is an elementary vector (namely with only one position set to 1) then the quasi-complete decision tree is
indeed a standard decision tree thus TNtot,B,d ⊂ T ∗

Ntot,B,d.
The class of quasi-complete decision trees defines a correct but not complete computational model. In

fact, every input is either correctly labelled to one label or to the error message ⊥. Being a more general
class of computation than standard decision trees, it is easier to decide whether a data structure is a quasi-
complete decision tree than to decide if it is a standard decision tree. This allows for faster prover time. On
the other hand, an adversary that commits to (strictly) quasi-complete decision tree (namely, a decision tree
in T ∗

Ntot,B,d \ TNtot,B,d) cannot prove contradicting statements, in particular, we require that it cannot prove
any statistics on an input x whenever T(x) = ⊥.

6.1 Security Model
We consider the scenario where a model producer commits to a decision tree T, the model producer can
delegate the computation of statistics on a set of data points and predictions over T to a server, a user can
obtain such statistics. Informally, we require integrity of the computation, namely the statistics are correctly
computed over the set of data points and predictions over the committed decision tree T, and privacy, namely
the user does not learn anything more than the validity of such statistics.

We consider an adversarial model where either the model producer and the server can be corrupted,
or the user is corrupted. Previous work considered only the case where the model producer is honest [39]
(and either the server or user are corrupted). Notice that a corrupted model producer could commit to a
useless/bogus decision tree. Unfortunately, we cannot do anything to prevent that. On the other hand, we
would like to prevent the corrupted model producer and corrupted server can convince the user of the validity
of incoherent statistics. For example, an attacker should not be able to convince the user that simultaneously
T(x) = 1 and T(x) = 0 for a data point x.

To formalize such property, we use the notion of knowledge soundness for argument systems. In particular,
we require that whenever the verifier is convinced (w.r.t. a commitment c) of the statistic over a set of data
points, there must exist an extractor that outputs an opening of the commitment to a decision tree T where
such a statistic over such data is correct. Notice the commitment to the decision tree is binding. Thus we
must obtain coherent statistics over many queries on the same committed decision tree. To optimize the
efficiency of the statistic evaluations, we split in two parts the generation of a valid commitment from the
evaluation of a proof for a given tuple statistic/data points.
Definition 6. Let S be an arbitrary set of tuples (S, m) such that S : [B]m → {0, 1}∗ and m ∈ N where S is
an efficiently computable function (a statistic). A (commit-and-prove) decision-tree-statistic argument for a
set of statistics S is a tuple zkDT = (KGen, Com, VerCom, Derive, Prove, Verify) where:
(i) CSDT = (KGen, Com, VerCom) define an extractable commitment scheme for the domain T ∗ of (quasi-

complete) decision tree. In particular, KGen takes in input a natural number Ntot the maximum number
of nodes, and the natural numbers B and d, besides the security parameter and generates a commitment
key for the set T ∗

B,d,Ntot
.

17

(ii) CPDT = (Derive, Prove, Verify) define a Universal CP-SNARK for the indexed CP-relation R̂DTstat defined
below.

R̂DTstat =
{

pp; (S, m); y, (xj)j∈[m]); T : y = S(T(x1), . . . , T(xm)),
∀i : T(xi) ̸= ⊥, (S, m) ∈ S

}
.

6.2 The Extended Encoding of Decision Trees

We introduce an alternative encoding of a decision tree as a data structure before presenting our zero-
knowledge decision-tree statistics argument. We follow the work of Chen et al. [10]. In particular, we define
a d-dimensional box as a tuple of vectors in [B + 1]d, where the first vector defines the left bounds and
the second vector defines the right bounds. We say that a vector x ∈ [B]d is contained in a box (b←, b→) if
b← ≤ x < b→. We can assign to each node of a decision tree a d−dimensional box. In particular, we denote
with (N←

i , N→

i) the box assigned to the i-th node in the tree and with N←, N→ the tuple of matrices of all the
boxes of a decision tree (mapping the i-th row to the box of i-th node).

We can associate a (quasi-complete) decision tree to a tuple of matrices, below we define such a relation:

Definition 7. Given a quasi-complete decision tree T with Ntot nodes and given matrices N←, N→, we say
that (N←, N→) is a boxes-encoding of T if

1. N←

1 = 0 and N→

1 = B + 1, where 0 (resp. 1 and B) is the vector of all 0 (resp. of all 1 and of all B).
2. Let p ∈ [Nint] be the index of a node and let l and r respectively be the indexes of the left child and right

child of the node with index p.

N←

l −N←

p = 0 N→

r −N→

p = 0 (14)
Ep ◦ (N→

l −Tp) = 0 Ep ◦ (N←

r −Tp) = 0 (15)
(1−Ep) ◦ (N→

l −N→

p) = 0 (1−Ep) ◦ (N←

r −N←

p) = 0 (16)

The computation, through a boxes-encoding, of a decision tree T(x) consists in finding the index k of the leaf
whose box contains x and outputs the label associated with such a leaf. For a quasi-complete decision tree,
such an index k might not exist. We formalize this in the next definition and prove such a computational
equivalence in the next lemma whose proof is in Appendix E.

Definition 8. Let T be a quasi-complete decision tree with Ntot nodes (with domain [B]d) and (N←, N→) be
a boxes-encoding of T. For any x ∈ [B]d, if x is contained in the box of a leaf of T define the index of the
leaf as kT(x) such that x is contained in (N←

kT(x), N→

kT(x)) else kT(x) is set to ⊥.

Whenever it is clear from the context, we will omit the subscript T and write k(x) to refer to such an index.

Lemma 3. Let T be a quasi-complete decision tree with Ntot nodes and (N←, N→) be a boxes-encoding of T.
Let v be the vector of the labels assigned to the leaf nodes of T, namely for any i ∈ [Nint + 1, Ntot], we have
vi as the label assigned to the i-th leaf. For any x ∈ [B]d, T(x) = vk(x) or T(x) = ⊥.

As corollary of the above lemma, we have that the boxes of leaf do not overlap because no vector x can
be contained in more than one of the boxes of the leaves.

Before giving the next definition, we set some notation: given a decision tree, we say that node p splits
at coordinate i∗ ∈ [d] if i∗ is a coordinate where p’s left and right child boundaries are different, namely,
N→

p,i ̸= N→

ℓ,i and N←

p,i ̸= N←

r,i where ℓ and r are the left and right child of p. We are ready to describe our
(more redundant but ZKP-friendly) encoding of a quasi-complete decision tree.

Definition 9. Let T be a quasi-complete decision tree with Ntot nodes. Let T = (N←, N→, v, L, R, E) be a
tuple of matrices (described below). We say that T is an extended encoding of T if the following conditions
hold:

18

x = (x1, x2, x3)

v4
x2 < 5?

2

3

v6
x3 < 1?

v7
x3 ≥ 1?

x1 < 3?

v5
x1 ≥ 3?

x2 ≥ 5?

Fig. 3. Example of decision tree (d = 3, Nint = 3, Ntot = 7). x is the input to the tree. Internal nodes are marked by
their (circled) index only, otherwise the subscript in the labels (vi-s) marks their index. The root is implicitly indexed
as node 1.

L =
0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

Ntot

Nint R =
0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

N← =

0 0 0

0 5 0

0 5 0

0 0 0

3 5 0

0 5 0

0 5 1

d

Ntot N→ =

B + 1 B + 1 B + 1

B + 1 B + 1 B + 1

3 B + 1 B + 1

B + 1 5 B + 1

B + 1 B + 1 B + 1

3 B + 1 1

3 B + 1 B + 1

E =

0 1 0

1 0 0

0 0 1

d

Nint

Fig. 4. Matrix examples for decision tree in Fig. 3. Notice that the boundaries in N← and N→ consist of a half-open
interval that is greater or equal to N← and less than N→ (e.g. 0 ≤ x1 < 3 for node 3). Notice how the Hadamard
product of a row of 1−E can be used to show two sibling boxes are the same except in one coordinate, e.g. for nodes
6 and 7 we use the third row of 1−E (node 3 is their parent) to show that it should hold (1−E)3 ◦ (N←

6−N←
7) = 0

and (1−E)3 ◦ (N→
6 −N→

7) = 0. Also, for the split coordinate, the right bound of the left child should equal the left
bound of the right child and equal the threshold of their parent. For example, for node 2, the right bound of the left
child (node 3) for x1 is (E2 ◦ (L ·N→)2)1 = 3. Similarly, for the right child, we have (E2 ◦ (R ·N←)2)1 = 3. We have
the threshold for node 2 and x1 is T2,1 = 3.

(i) (N←, N→) is a boxes-encoding of T;
(ii) v is the vector of the labels assigned to the leaf nodes of T;

(iii) L (resp. R) is the Nint×Ntot bit matrix whose p-th row is the elementary vector eT
ℓ (resp. eT

r) if ℓ is the
left (resp. r is the right) child of node p’s in T,

(iv) E ∈ {0, 1}Nint×d is the bit matrix such that its p-th row and i column is 1 iff the node p splits at coordinate
i.

Let Encode be the algorithm that, given a quasi-complete decision tree T, computes the extended encoding of
T.

19

Let the matrices P←, P→ ∈ FNint×d describe the boxing encodings of the internal nodes, and F←, F→ ∈ FNleaf ×d

describe the boxing encodings of the leaves. Thus:

N← =
((

P←

F←

))
and N→ =

((
P→

F→

))
.

The function Encode in Definition 9 is injective but not surjective. In the next lemma (whose proof is in
Appendix E), we give sufficient conditions for belonging in the image of Encode.

Lemma 4. Consider a tuple (N←, N→, L, R, E, v) such that the following constraints hold:

a) The following equations hold:

N←

1 = 0, N→

1 = B + 1, (17)
L ·N← = P← , R ·N→ = P→, (18)
E ◦ (L ·N→ −R ·N←) = 0 (19)
(1−E) ◦ (P← −R ·N←) = 0, (1−E) ◦ (P→ − L ·N→) = 0 (20)

b) All the boxes are not empty. Namely, for all i, j we have N←

i,j < N→

i,j.
c) The matrix

(
L=
R

)
is a (row) permutation of the (squared) matrix (0∥INtot−1) (the matrix whose rows are

the row vectors (ei)i∈[2,Ntot] of length Ntot).

Then there exists a quasi-complete decision tree T with Ntot nodes such that Encode(T) = (N←, N→, L, R, E, v).

6.3 Extractable Commitment to Decision Trees

In a nutshell our commitment procedure on input a decision tree computes the encoding described in Sec-
tion 6.2, then it commits to the matrices F←, F→ and v and prove in zero-knowledge the constraints from
Lemma 4. We can implement the latter zero-knowledge proof using a general-purpose R1CS circuit describ-
ing the constraints of the lemma, however, the size of the circuit would be O(dN2

tot), in fact, we would need
to commit to the remaining matrices P←, P→, L, R and E and we would need already O(dN2

tot) multiplication
gates for Eq. (18). We show how to remove the quadratic dependency from the number of total nodes. The
main idea is to notice that L and R have sparsity linear in Ntot, thus we can use techniques from [38] to
commit to such sparse matrices and then prove in zero-knowledge that the constraints in Item c) of Lemma 4
hold for the committed matrices. The remaining constraints can be proved in O(dNtot log(dNtot)).

The building blocks. Consider the following (indexed) CP-relations:

R̂lin = {pp; ε; (M, N, R) : M ·N = R} (21)
R̂had = {pp; ε; (M, N) : M ◦N = 0} (22)
R̂perm =

{
pp; (N, i(X)); ε; p(X) : ∃π,∀j ∈ [N] : i(π(ωj)) = p(ωj)

}
(23)

R̂shift =
{

pp; S; ε; (v, u) : vi = u(i+S (mod |u|))
}

(24)
R̂range =

{
pp; (B, n, d); ε; X : X ∈ [B]n×d

}
(25)

R̂sm =
{

pp : K; ε; M : M|K = 0
}

(26)

Our scheme uses CP-SNARKs for all the relations above as building blocks. The first three relations are
standard, and CP-SNARKs for them can be found in the related work. Given a CP-SNARK for R̂lin, we
can define a CP-SNARK for R̂shift in fact that the shifting operator can be described through a linear
transformation. The latter linear transformation can be public, thus the underlying CP-SNARK (for R̂lin)
does not need to be zero-knowledge w.r.t. the first matrix M, in particular, a commitment to such a matrix
could be part of the index polynomials. A CP-SNARK for R̂range can be realized using our lookup argument

20

and considering the table b = (j)j∈[B] and proving that the vectorization x̄ of X is such that x̄ ≺ b.
Finally, a CP-SNARK for R̂sm can be easily realized by committing to a matrix T̄ such that T̄K = T
and 0 everywhere else and to the vanishing polynomial in ν K in G2 as part of the index. At proving time,
the prover returns as proof a commitment to the quotient polynomial q such that f ′(X) = q(X) · ν K(X)
where f ′(X) is the polynomial associated to the matrix M − T̄ . At verification time the verifier checks
e(cM − cT̄, [1]2) = e(π, [ν K]2).

For the CP-SNARK for R̂lin, we require two different commitment schemes, one for the first matrix and
one for the other two. In particular, we consider an alternative way to commit to matrices following the work
of [32,38]. Let M be a basic matrix, namely a matrix whose rows are elementary vectors. Let H be any fixed
subgroup with |H| ≥ Ntot

13 of F with generator ω. For any basic matrix M ∈ {0, 1}n×k and n, k ∈ N, let
colM(X) be the (low-degree) polynomial such that colM(ωi) = ωj where the i-th row of M is the vector e⊤

j

(notice that colM is the LDE of the vector whose i-th element is the value ωj). We define the sparse (hiding)
commitment of a matrix M as a (hiding) polynomial commitment of colM. Namely, we define:

sparseCom(ck, M, ρ) := Com(ck, colM, ρ).

Notice that, by the above definition, a sparse commitment to a basic matrix M has a dual interpretation (as
a sparse matrix or as a vector col).

Let CPlin be a CP-SNARK for the R̂lin relation where the first matrix is committed using sparseCom while
the other matrices are committed with the matrix commitment scheme from Section 2.3. An instantiation
of such a scheme can be found for the matrix-times-vector case (namely, N ∈ Fn×1) in Baloo by [38] (see
Sections 5.2, 5.3 and 5.4 of the paper). We show a generalization to matrix-times-matrix case in Appendix E.4.
We write M to underline that the matrix M is committed with a sparse matrix commitment. For example,
we can write (pp, ε; M , N, R) ∈ R̂lin to identify the statement that there are commitments cM , cN , cR where
the first is a sparse matrix commitment and that open to M, N and R with M ·N = R.

Let CPhad be a CP-SNARK for the R̂had relation where all the matrices are committed using the com-
mitment scheme from Section 2.3. Notice that a CP-SNARK for our matrix commitment scheme for such a
CP-relation derives directly from CP-SNARK for vector commitment. Finally, let CPperm be a CP-SNARK
for the CP-relation R̂perm. The permutation argument of Plonk [18] is a CP-SNARK for such a relation.

The Extractable Commitment to Decision Tree. We define our extractable commitment scheme for
the domain of quasi-complete decision trees. The main idea is, as part of the proof of opening, to commit
to the matrices L and R through sparse commitments to basic matrices and then prove the linear relations
from Lemma 4 in zero-knowledge with a complexity that is linear in the sparsity of the matrices and the
dimension d. The additional constraints on the two matrices L and R are proved using the permutation
argument. To improve readability, we list below shortcuts used in the protocol’s description.

F̄← :=
(

0=
F←

)
, F̄→ :=

(
0=
F→

)
, P̄← :=

(
P←

=
0

)
, P̄→ :=

(
P→

=
0

)
,

L̄ :=
(

L=
0

)
, R̄ :=

(
R=
0

)
, R :=

(
0=
R

)
, Ē :=

(
E=
0

)
The padding for the matrices make them all to have Ntot rows. Moreover, we let B be the matrix whose first
row is the vector (B + 1, . . . , B + 1) and the remaining rows are set to 0, and we let b(X) be the LDE of
the vectorization of such a matrix. This polynomial can be computed in O(d log d) operations, however, for
simplicity, we commit to the polynomial at key-generation phase. We let id be the low-degree polynomial
that evaluates id(ωi) = ωi+1 for i ∈ [Ntot − 1] (equivalently, the commitment [id(s)]1 is a sparse-matrix
commitment to the matrix (0∥INtot−1)).

Theorem 3. The commitment scheme CSDT defined in Fig. 5 is hiding and it is an extractable commitment
scheme for the domain {T ∗

Ntot,B,d}Ntot,d,B in the AGM and assuming the building blocks are knowledge-sound
and zero-knowledge.

13Alternatively, we can consider the same subgroup used for the matrix commitment and thus |H| = Ntot · d.

21

KGen(1λ, (Ntot, B, d)):
Sample a type-3 pairing group ppG with security level λ.
Set ck′ ← (ppG, (

[
si

]
1)i∈[N1], (

[
si

]
2)i∈[N2] for random secrets s←$ Zq.

Compute srssm,1 ← CPsm.Derive(ck′, [Nint]), srssm,2 ← CPsm.Derive(ck′, (Nint, Ntot]) and srssm,3 ← CPsm.Derive(ck′, {1}).
Compute srsperm ← CPperm.Derive(ck′, (Ntot − 1, id)).
Compute srsrange ← CPrange.Derive(ck′, (B, Ntot, d)).
Compute srsshift ← CPshift.Derive(ck′, Nint).
Return ck := (ck′, [b(s)]1 , srsperm, srsrange, srsshift, (srssm,j)j∈[3]).

Com(ck, T, ρT):
Compute (L, R, E, N←, N→, v)← Encode(T), parses ρT as (ρv, ρ←, ρ→).
cv ← Com(ck, v, ρv). // Parse v as a Ntot × d matrix whose last d− 1 columns are empty.
c← ← Com(ck, F̄←, ρ←), c→ ← Com(ck, F̄→, ρ→), c′

← ← Com(ck, P̄←, ρ←), c′
→ ← Com(ck, P̄→, ρ→).

cln ← Com(ck, L̄ ·N→,), crn ← Com(ck, R̄ ·N←) and cE ← Com(ck, E).
cL ← sparseCom(ck, L̄), cR ← sparseCom(ck, R̄) and c′

R ← sparseCom(R).
Let colL̄, colR̄ and colR be the underlying polynomials.
Prove the following statements, let π = (π1, . . . , π16) be the proofs.

π1, . . . , π4 : (L̄ , N←, P̄←), (L̄ , N→, L̄ ·N→), (R̄ , N→, P̄→), (R̄ , N←, R̄ ·N←) ∈ R̂lin,

π5, π6, π7 : (Ē, L̄ ·N→ − R̄ ·N←), (1− Ē, P← − R̄ ·N←), (1− Ē, P→ − L̄ ·N→) ∈ R̂had,

π8, π9 : ((B, Ntot, d); N→ −N← − 1) ∈ R̂range, (Ntot − 1, id; colL̄(X) + colR(X)) ∈ R̂perm,

π10 : (Nint, colR̄, colR) ∈ R̂shift,

π11, . . . , π16 : (N1; F̄←), (N1; F̄→), (N2; P̄←), (N2; P̄→), (N3; P̄←), (N3; P̄→ −B) ∈ R̂sm.

Return (c←, c→, cv), π where π = (c′
←, c′

→, cln, crn, cE , cL, cR, c′
R, π) .

Verify(ck, cT):
Let cT = (c←, c→, cv, π) and parse π. Let cN,← ← c← + c′

← and cN,→ ← c→ + c′
→.

1. Verify π1, π2, π3, π4 w.r.t. (cL, cN,←, c′
←), (cL, cN,→, cln), (cR, cN,→, c′

→), (cR, cN,←, crn).
2. Verify π5, π6, π7 w.r.t. (cE , cln − crn), ([1]1 − cE , c′

← − crn), ([1]1 − cE , c′
→ − cln).

3. Verify π8, π9 w.r.t. ((B, Ntot, d); cN,→ − cN,← − [1]1) and (Ntot − 1, id; cL + c′
R).

4. Verify π10 w.r.t. (Nint; (cR, c′
R)).

5. Verify π11, . . . , π16 w.r.t. ([Nint], c←),([Nint], c→),((Nint, Ntot], c′
←),((Nint, Ntot], c′

→),({1}, c′
←), ({1}, c′

→− [b(s)]1).

Fig. 5. Our extractable commitment CSDT . The value N1 ≥ Ntot · d, N1 and N2 are big enough to support all the
building-block.

Efficiency. The extractable commitment in this section has constant proof size when the CP-SNARK for
R̂lin is instantiated with the building block described in Appendix E.4. Its proving time is O(dNtot log(dNtot))
when applied to a decision tree with d features and Ntot nodes. Notice that Ntot is usually at least one order
of magnitude larger than d.

6.4 CP-SNARK for Statistics on Decision Trees

Consider the scheme CPDT in Fig. 6 based on the following building blocks:

1. Let CPlookup∗ be a CP-SNARK for the indexed CP-relation:

R̂lookup∗ =
{

pp; (N, d, n); ε; (Tj)j∈[m], (Fj)j∈[m] : (F1∥ . . . ∥Fm) ≺ (T1∥ . . . ∥Tm)
∀j : |Tj | = N × d, |Fj | = n× d

}
2. Let CPrange be a CP-SNARK for the indexed CP-relation R̂range in Eq. (25).
3. Let CPstat be a CP-SNARK for the following indexed CP-relation:

R̂stat = {pp, (S, m); y; v : S(v) = y ∧ |v| = m}

22

Derive(srs, (S, m)):
Compute srs(S,m) ← CPstat.Derive(ck, (S, m)), srsm ← CPlookup∗.Derive(ck, Ntot, d, m).
Compute srs(B,m,d) ← CPrange.Derive(ck, (B, m, d)) with values B, d contained in srs.
Return the specialized SRSs.

Prove(srs, (cT, y, (xj)j∈[m]), (T, ρT)):
Parse cT = (c←, c→, cv) and ρT = (ρ←, ρ→, ρv).
Let ki = kT(xi) and K = {k1, . . . , km}, where kT(·) as defined in Definition 8.
Compute matrix commitments c1, c2, c3 to the matrices (F̄←)|K , (F̄→)|K , v|K .
Compute a proof πzklookup that

(m; ε; ((F̄←, F̄→, v), (F̄←)|K , (F̄→)|K , v|K)) ∈ R̂lookup∗.

Compute a (not hiding) commitment to the matrix X whose rows are the vectors (xj)j∈[m].
Compute proofs π←

range and π→
range for the following two statements:

((B, m, d); X− (F̄←)|K) ∈ R̂range, ((B, m, d); (F̄→)|K −X− 1) ∈ R̂range.

Compute a proof πstat that ((S, m); y; v|K)) ∈ R̂stat.
Return (c1, c2, c3, πzklookup, π←

range, π→
range, πstat).

Verify(srs, vk(S,m), (cT, y, (xj)j∈[m]), πT):
Parse the proof πT = (c1, c2, c3, πzklookup, π←

range, π→
range, πstat).

Compute cX ← Com(ck, X) where X is the matrix whose rows are the vectors (xj)j∈[m]. Return 1 if the
following statements hold (else 0):
1. CPlookup∗.Verify(srs, vkm, (c1, c2, c3, c←, c→, cv), πzklookup) = 1

2. CPrange.Verify(srs, vk(B,m,d), (cX − c1), π←
range) = 1 and

CPrange.Verify(srs, vk(B,m,d), (c2 − cX − [1]1), π→
range) = 1

3. CPstat.Verify(srs, vk(S,m), (c3, y), πstat) = 1

4. VerCom(ck, cT) = 1.

Fig. 6. Our CP-SNARK CPDT . The pre-processing algorithm runs the preprocessing of the matrix lookup argument
on F̄←, F̄→, v and openings ρT = (ρ←, ρ→, ρv).

Notice, we can easily define a CP-SNARK for R̂lookup∗ on top of our compiler from Section 5. Namely, we
batch together the matrices Tj and the matrices Fj using a random challenge, as described in Section 5.1,
and then we run our matrix lookup argument. As corollary of Theorem 3 and the theorem below, we have
that the CPDT and the commitment scheme CSDT from the previous section define a decision-tree statistic
argument.

Theorem 4. CPDT = (Derive, Prove, Verify) in Fig. 6 defines an Universal CP-SNARK for the indexed
CP-relation R̂DTstat.

6.5 Efficiency and Concrete Instantiations

We discuss how to instantiate our scheme above, the resulting system has a universal trusted setup.

– CPlookup∗ can be instantiated with our construction mtx[zkcq+] from Section 3;
– CPrange can be implemented through a (vector) lookup in a table of size B where the subvector being

looked up is of size m 14;
14The idea is to consider the table b = (j)j∈[B] and prove, through a lookup argument, that that x̄ ≺ b where x̄

is the vectorization of X.

23

Scheme Commit Time Prover Time Verifier Time Proof Size
[39] O(Ntot)|H| Õ(md + Ntot log m + Ntot|Hcirc|)F O(md)F O(log2(md))f

Our solution Õ(dNtot)(G + F) Õ(md)(G + F) O(m)G + O(1)P O(1)(g1 + f)
Table 2. Comparison between our solution and [39] for zero-knowledge decision tree accuracy. Parameters are d
(number of attributes), m (size of sample), |H| is the cost of hash function invocation (such as SHA256); |Hcirc| is the
cost of a hash function invocation as a circuit; P is the cost of one pairing. Notation Õ(f) refers to O(f log f). This
table does not include the one-time cost of preprocessing for the prover (see Table 1 for concrete costs). Notice that
the asymptotics in the row for our construction account for just the commitment algorithm and the extractability
proof. The asymptotics reported for [39] are actually a lower bound and do not include some additional factors in
their complexity, such as tree height. Dominated factors, such as B and k (input and output size of decision tree
respectively), are also not included in the asymptotics.

– CPstat can be implemented through a general-purpose commit-and-prove SNARK, such as [2,7]. For
concreteness, and to minimize proof size, in the remainder of this document, we consider the proof
scheme CP-LunarLite from [7] (Section 9.4).

We can provide an upper bound on the total proof size for the instantiations above to 20G1 elements15 per
each of the proof above (this is a loose upper bound)—see Table 1 in this work, Table 1 and Section 9.4 in [7].
On a concrete curve like BLS12-381 this yields a total proof size of at most approximately 3.84KB (this is
a generous lower bound). For comparison, the proof size in [39] is of the order of hundreds of kilobytes.
Decision Tree Accuracy. In the specific case of proving decision tree accuracy we prove that a decision
tree is able to correctly estimate a specific fraction of a given data sample. Namely we consider the statistic
that upon input (vj)j∈[m], (yj)j∈[m] computes

∑
j eqk (vj , yj) /m, vj = T(xj) for j ∈ [m] where k ∈ N is a

small constant and eqk is the function returning 1 when its two arguments, of size k, are equal16; otherwise
it returns 0. Thanks to Theorem 4 this can be reduced to a CP-SNARK for the following relation17:

Racc =
{

(m, k);
(
(yj)j∈[m], n∗)

; (vj)j∈[m] : n∗ =
∑

j

eqk (vj , yj)
}

(27)

Even with an R1CS-based (Rank-1 Constraint System) general purpose SNARK, the relation above can be
implemented very efficiently.

Our estimates show improvements of almost one order of magnitude for proving time and two orders of
magnitude for verification time for representative choices of parameters (see Appendix G for details). Our
prover runs in the order of a few seconds; our verifier in the order of 100ms. The construction in [39] in
contrast has a prover running in the order of minutes (2-5m) and a verifier running in the order of 10s18.

Acknowledgements This work has received funding from the MESRI-BMBF French-German joint project
named PROPOLIS (ANR-20-CYAL-0004-01), the Dutch Research Council (NWO) under Project Spark!
Living Lab (439.18.453B), the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme under project PICOCRYPT (grant agreement No. 101001283), and
from the Spanish Government MCIN/AEI/ 10.13039/501100011033/ under projects PRODIGY (TED2021-
132464B-I00) and ESPADA (PID2022-142290OB-I00). The last two projects are co-funded by European
Union FEDER and NextGenerationEU/PRTR funds.

Matteo Campanelli worked on this project while affiliated with Protocol Labs. We thank Melek Onën for
her contributions during the early stages of this project and Moumita Dutta for pointing out a typo.

15We approximate the size of field elements with that of G1 elements.
16In typical applications of decision trees the labels are integer values belonging to a small domains, for example,

either booleans or bytes.
17Here expressed as a sum instead of a fraction. Since the size of the sample is public this is equivalent.
18These estimates refer to running times on an AWS EC2 c5.9xlarge. This architecture is comparable to the one

used in [39].

24

References

1. Ali, R.E., So, J., Avestimehr, A.S.: On polynomial approximations for privacy-preserving and verifiable relu
networks (2021), https://arxiv.org/abs/2011.05530

2. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: ECLIPSE: Enhanced
compiling method for pedersen-committed zkSNARK engines. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022, Part I. LNCS, vol. 13177, pp. 584–614. Springer, Heidelberg (Mar 2022). https://doi.org/10.1007/978-
3-030-97121-2˙21

3. Arun, A., Setty, S., Thaler, J.: Jolt: Snarks for virtual machines via lookups. Cryptology ePrint Archive, Paper
2023/1217 (2023), https://eprint.iacr.org/2023/1217

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 90–108. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40084-1˙6

5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transparent succinct
arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128.
Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-17653-2˙4

6. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S.K., Maller, M.: Arya: Nearly linear-time zero-knowledge proofs for
correct program execution. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp.
595–626. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03326-2˙20

7. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodŕıguez, H.: Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part III. LNCS, vol. 13092, pp. 3–33. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-92078-
4˙1

8. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and composition of succinct zero-knowledge
proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2075–2092. ACM Press (Nov
2019). https://doi.org/10.1145/3319535.3339820

9. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with linear-time prover and high-degree
custom gates. In: EUROCRYPT 2023, Part II. pp. 499–530. LNCS, Springer, Heidelberg (Jun 2023).
https://doi.org/10.1007/978-3-031-30617-4˙17

10. Chen, H., Zhang, H., Si, S., Li, Y., Boning, D.S., Hsieh, C.: Robustness verification of tree-based models. In:
Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) NeurIPS 2019. pp.
12317–12328. Curran Associates, Inc., Red Hook, NY, USA (December 2019), https://proceedings.neurips.
cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html

11. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Preprocessing zkSNARKs with universal
and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768.
Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1˙26

12. Choudhuri, A.R., Garg, S., Goel, A., Sekar, S., Sinha, R.: Sublonk: Sublinear prover plonk. Cryptology ePrint
Archive, Paper 2023/902 (2023), https://eprint.iacr.org/2023/902

13. Eagen, L., Fiore, D., Gabizon, A.: cq: Cached quotients for fast lookups. Cryptology ePrint Archive, Report
2022/1763 (2022), https://eprint.iacr.org/2022/1763

14. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the Fiat-Shamir transform. In:
Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (Dec
2012). https://doi.org/10.1007/978-3-642-34931-7˙5

15. Feng, B., Qin, L., Zhang, Z., Ding, Y., Chu, S.: ZEN: An optimizing compiler for verifiable, zero-knowledge neural
network inferences. Cryptology ePrint Archive, Report 2021/087 (2021), https://eprint.iacr.org/2021/087

16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Heidelberg (Aug 2018).
https://doi.org/10.1007/978-3-319-96881-0˙2

17. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for lookup tables. Cryptology ePrint
Archive, Report 2020/315 (2020), https://eprint.iacr.org/2020/315

18. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-bases for oecumenical nonin-
teractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.
org/2019/953

19. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir bulletproofs are non-malleable
(in the algebraic group model). In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS,
vol. 13276, pp. 397–426. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07085-3˙14

25

https://arxiv.org/abs/2011.05530
https://doi.org/10.1007/978-3-030-97121-2_21
https://doi.org/10.1007/978-3-030-97121-2_21
https://eprint.iacr.org/2023/1217
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-031-30617-4_17
https://proceedings.neurips.cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/cd9508fdaa5c1390e9cc329001cf1459-Abstract.html
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2023/902
https://eprint.iacr.org/2022/1763
https://doi.org/10.1007/978-3-642-34931-7_5
https://eprint.iacr.org/2021/087
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-031-07085-3_14

20. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S.
(eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (May 2016).
https://doi.org/10.1007/978-3-662-49896-5˙11

21. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings
with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 698–728. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96878-0˙24

22. Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology ePrint Archive, Report 2022/1530
(2022), https://eprint.iacr.org/2022/1530

23. Kang, D., Hashimoto, T., Stoica, I., Sun, Y.: Scaling up trustless DNN inference with zero-knowledge proofs
(2022), https://doi.org/10.48550/arXiv.2210.08674

24. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (Dec 2010).
https://doi.org/10.1007/978-3-642-17373-8˙11

25. Lee, S., Ko, H., Kim, J., Oh, H.: vcnn: Verifiable convolutional neural network based on zk-snarks. IEEE Trans.
Dependable Secur. Comput. pp. 1–17 (2023). https://doi.org/10.1109/TDSC.2023.3348760

26. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (Mar 2012).
https://doi.org/10.1007/978-3-642-28914-9˙10

27. Lipmaa, H., Parisella, R., Siim, J.: Algebraic Group Model with Oblivious Sampling. In: Rothblum, G., Wee,
H. (eds.) TCC 2023 (4). LNCS, vol. 14372, pp. 363–392. Springer, Cham, Taipei, Taiwan (Nov 29–Dec 2 2023).
https://doi.org/https://doi.org/10.1007/978-3-031-48624-1˙14

28. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: From univariate sumcheck to updatable ZK-SNARK. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 249–278. Springer, Heidelberg (Dec
2022). https://doi.org/10.1007/978-3-031-22966-4˙9

29. Liu, T., Xie, X., Zhang, Y.: zkCNN: Zero knowledge proofs for convolutional neural network predictions
and accuracy. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2968–2985. ACM Press (Nov 2021).
https://doi.org/10.1145/3460120.3485379

30. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs from linear-size universal
and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019. pp. 2111–2128. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

31. Posen, J., Kattis, A.A.: Caulk+: Table-independent lookup arguments. Cryptology ePrint Archive, Report
2022/957 (2022), https://eprint.iacr.org/2022/957

32. Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable SNARKs. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 774–804. Springer, Heidelberg, Virtual Event (Aug 2021).
https://doi.org/10.1007/978-3-030-84242-0˙27

33. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704–737. Springer, Heidelberg (Aug 2020).
https://doi.org/10.1007/978-3-030-56877-1˙25

34. Setty, S., Thaler, J., Wahby, R.: Unlocking the lookup singularity with lasso. Cryptology ePrint Archive, Paper
2023/1216 (2023), https://eprint.iacr.org/2023/1216

35. Wang, H., Hoang, T.: ezdps: An efficient and zero-knowledge machine learning inference pipeline. PoPETs
2023(2), 430–448 (2023). https://doi.org/10.56553/popets-2023-0061

36. Weng, J., Weng, J., Tang, G., Yang, A., Li, M., Liu, J.: pvcnn: Privacy-preserving and verifi-
able convolutional neural network testing. IEEE Trans. Inf. Forensics Secur. 18, 2218–2233 (2023).
https://doi.org/10.1109/TIFS.2023.3262932

37. Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.: Caulk: Lookup arguments in
sublinear time. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 3121–3134. ACM Press
(Nov 2022). https://doi.org/10.1145/3548606.3560646

38. Zapico, A., Gabizon, A., Khovratovich, D., Maller, M., Ràfols, C.: Baloo: Nearly optimal lookup arguments.
Cryptology ePrint Archive, Report 2022/1565 (2022), https://eprint.iacr.org/2022/1565

39. Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for decision tree predictions and accuracy.
In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 2039–2053. ACM Press (Nov 2020).
https://doi.org/10.1145/3372297.3417278

26

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://eprint.iacr.org/2022/1530
https://doi.org/10.48550/arXiv.2210.08674
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1109/TDSC.2023.3348760
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/https://doi.org/10.1007/978-3-031-48624-1_14
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3319535.3339817
https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2023/1216
https://doi.org/10.56553/popets-2023-0061
https://doi.org/10.1109/TIFS.2023.3262932
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565
https://doi.org/10.1145/3372297.3417278

Supplementary Material

A On Applying Other Backends to [39]

Here we elaborate on why applying different backends (e.g., Groth16 [20] or Marlin [11]) does not substantially
change our comparison with [39]. This is particularly true for proving time, for which the main bottleneck of
the approach in [39] lies in the number of constraints, which stems from the essence of their “tree-visiting”
approach. This results in dependence on the size of the hash function among other metrics, as discussed in
the introduction.

We verify this claim by running [39] on Groth16—one of the most optimized, highly succinct proof
systems—instead of Aurora (the main backend originally described [39]) and using their original code19.
When running it over Groth16 we observe that the scheme in [39] runs in ≈ 3 minutes. If one wanted to use
a universal setup scheme (e.g., Marlin) these numbers would be at least 4x as large. As a comparison, we
recall that the ballpark of our scheme is 15-30s (pg30). This results in approximately an order of magnitude
difference between our scheme and Marlin applied to [39]. Note that this comparison is apple-to-apple: it is
on the same architecture, on the parameters referred at 24, and using the original code for [39].

The above observations are for proving time. For other dimensions—verification and proof size—applying
a scheme like Marlin to [39] would obtain numbers close to ours. For proof size these numbers may be
marginally better than ours.

B Additional Material on Section 2

Definition 10 (Universal CP-SNARK). A universal CP-SNARK for an indexed relation R is a tuple
of algorithms Π = (KGen, Derive, Prove, Verify) where

– Derive is a deterministic algorithm that takes as input an srs (which includes relation parameters pp)
produced by KGen, an index ind, and outputs specialized SRS srsind = (ekind, vkind). The length of vkind

is poly(λ, log |ind|).
– Consider the relation R′ such that R′(pp, (ind, x), w) ⇐⇒ R(pp, ind, x, w), the tuple of algorithms

(KGen, Prove, Verify′) is an argument system for the relation R′ and Verify′ is the algorithm that upon in-
put srs, instance (ind, x) and a proof π, first runs Derive on srs and index ind, then runs Verify(vkind, x, π).

C Additional Material on Section 4

Lemma 2.
∑N

j=0 A(ωj−1
N) =

∑n
i=0 B(ωi−1

n) iff
∑N

j=0 C(ωj−1
N) = 0.

Proof. Recall that we denote C(X) := A(X)− 1
ϑ B(X)z(X), ϑ := N/n and z(X) := ν K\H(X). Define

∆(X) := A(X)− C(X) = 1
ϑ B(X)z(X) .

For any j ∈ [N], ∆(ωj−1
N) = 1

ϑ B(ωj−1
N)z(ωj−1

N). Now, z(ωj−1
N) = 0 when ωj−1

N /∈ H (i.e., ϑ ∤ j − 1) and
z(ωj−1

N) = ϑ otherwise. Hence,

∆(ωj−1
N) =

{
0 , ωj−1

N /∈ H (i.e., ϑ ∤ j − 1) ,

B(ωj−1
N) , ωj−1

N ∈ H (i.e., ϑ | j − 1) .

Writing j − 1 = (i− 1)ϑ in the last case, we get that when ϑ | j − 1,

∆(ωj−1
N) = B(ωj−1

N) = B(ω(i−1)ϑ
N) = B(ωi−1

n) = Bi .

Thus,

∆(ωj−1
N) =

{
0 , ϑ ∤ (j − 1) ,

B(ωi−1
n) , j − 1 = (i− 1)ϑ .

19Available at https://github.com/TAMUCrypto/ZKDT_release.

29

https://github.com/TAMUCrypto/ZKDT_release

Hence, the “low-degree part” of ∆(X) only depends on the values of B(X) on the subgroup H and hence,
we do not have to perform a low-degree test on B(X). Moreover,

∑N
j=0 ∆(ωj−1

N) =
∑n

i=0 B(ωi−1
n). Thus,∑N

j=0 C(ωj−1
N) =

∑N
j=0 A(ωj−1

N)−
∑n

i=0 B(ωi−1
n). This proves the claim. ⊓⊔

C.1 Security Proofs of cq+

Knowledge-Soundness. We prove knowledge-soundness in the AGM under the standard PDL assumption.
We give a complete proof for cq+; the proof for cq++ follows from that and the known polynomial commitment
batching lemmas.

Definition 11 (Power Discrete Logarithm [26]). Let d1(λ), d2(λ) ∈ poly(λ). A bilinear group generator
GroupGen is (d1, d2)-PDL (Power Discrete Logarithm) secure if for any non-uniform PPT A, Advpdl

d1,d2,GroupGen,A(λ) :=

Pr
[

pp← GroupGen(1λ); s←$ F∗ : A
(

pp,
[
(si)d1

i=0

]
1

,
[
(si)d2

i=0

]
2

)
= s

]
= negl(λ) .

Theorem 5. Assume U(X) ∤ X. Let N1 ≥ N + b − 1 and N2 ≥ N + 1. Then the interactive protocol cq+

from Fig. 1 is knowledge-sound in the AGM under the (N1, N2)-PDL assumption.

Proof. Let A be an algebraic knowledge-soundness adversary that, after interacting with the honest verifier,
outputs the following group elements:

[m(s), A(s), B(s), QB(s), S(s), P (s), R∗
C(s), Q(s)]1 ,

with explanations, showing that the outputs are evaluations of polynomials m, A, B, QB , S, P, R∗
C , Q that all

have degree ≤ N1. Moreover, m(X) and S(X) do not depend on β, γ, η, while (A(X), B(X), QB(X)) depend
on β, and (P (X), R∗

C(X), Q(X)) depend on β, γ, η. The adversary also returns one field element Bγ (the
claimed value of B(γ)).

As usual in the AGM proofs, one has two cases: an information-theoretic and a computational case (a
reduction to PDL). One writes down a polynomial form of the verifier’s equations (two equations V1 and
V2 in the current case), such that the verifier accepts iff V1(s) = V2(s) = 0. Here, the coefficients of V1
and V2 can be computed from the outputs of the extractor. In the information-theoretic case, we consider
the possibility that both V1 and V2 are zero polynomials and show that A must have been honest. In the
computational case, we analyze the case that either V1(X) or V2 is a non-zero polynomial, but the verifier
still accepts, i.e., V1(s) = V2(s) = 0. We then construct a reduction to the security of PDL.

Information-theoretic case. By the second verification equation in Fig. 1,

V2(X) := B(X) + ηD(X)−Bγ − P (X) · (X − γ)

is a zero polynomial. Thus,
(X − γ) | (B(X) + ηD(X)−Bγ) .

Since neither B(X) or D(X) depends on η, we get by the Schwartz-Zippel lemma that (X−γ) | (B(X)−Bγ)
and (X − γ) | D(X). Hence, B(γ) = Bγ and D(γ) = 0. Recalling that D(X) = B(γ)(F(X) + β) − 1 −
QB(X)ν H(γ), we get

B(γ)(F(γ) + β)− 1 = QB(γ)ν H(γ) .

Since neither B(X) or QB(X) depends on γ, by the Schwartz-Zippel lemma,

B(X)(F(X) + β)− 1 = QB(X)ν H(X)

as a polynomial. Matching the left and right-hand sides for the values of X = ωi−1
n , we get

Bi = 1
f i + β

.

30

Next, from the first verification equation, we get that the following polynomial V1(X) is a zero polynomial:

V1(X) :=
(

A(X)T(X) + (β + η)A(X)−m(X)−
η
ϑ

B(X)z(X) + η2S(X)−Q(X)ν K(X)

)
· U(X)− ηR∗

C(X)X .

Since U(X) ∤ X, we get that U(X) | R∗
C(X). Since deg U(X) = µ = N1 −N + 2, R∗

C(X) = RC(X)U(X)
for some polynomial RC(X) of degree ≤ N − 2. Thus,

A(X)T(X) + (β + η)A(X)−m(X)− η
ϑ B(X)z(X) + η2S(X)

= ηRC(X)X + Q(X)ν K(X) .

Recalling that C(X) = A(X)− 1
ϑ B(X)z(X), we get

A(X)(T(X) + β)−m(X) + ηC(X) + η2S(X) = ηRC(X)X + Q(X)ν K(X) .

Here, only Q(X) = Q(X, η) and RC(X) = RC(X, η) depend on η (and γ) while other polynomials do not.
Let Y be the indeterminate corresponding to η, and let us write Q and RC as bivariate polynomials in X
and Y . By applying the Schwartz-Zippel lemma again,

A(X)(T(X) + β)−m(X) + Y C(X) + Y 2S(X) = Y RC(X, Y)X + Q(X, Y)ν K(X)

as a polynomial.
Setting Y = 0, we get

A(X)(T(X) + β)−m(X) = Q(X, 0)ν K(X) .

Considering the values of X = ωj−1
N again, we get

Aj = mj

tj + β
.

On the other hand, define Q̂(X) := (Q(X, Y)−Q(X, 0))/Y and r̂C(X) := (RC(X, Y)−RC(X, 0))/Y . Thus,

A(X)(T(X) + β)−m(X) + Y C(X) + Y 2S(X)

= Y (r̂C(X, Y)Y + RC(X, 0)) ·X +
(

Q̂(X, Y)Y + Q(X, 0)
)
· ν K(X) .

Ignoring addends that do not depend on Y , we get

C(X) + Y S(X) = (r̂C(X, Y)Y + RC(X, 0)) ·X + Q̂(X, Y)ν K(X) enspace.

Replace now Y by any constant, say Y = 0. Thus,

C(X) = RC(X, 0)X + Q̂(X, 0)ν K(X) .

Since degX RC(X, Y) ≤ N − 2, by the Aurora’s sumcheck,

N∑
j=1

Cj = 0 .

By Lemma 2,
N∑

j=1
Aj =

n∑
i=1

Bi .

Next, we already expressed Aj and Bi as mj/(tj + β) and 1/(f j + β). Thus,

N∑
j=1

mj

tj + β
=

n∑
i=1

1
f j + β

.

31

Since mj does not depend on β, we can apply the Schwartz-Zippel lemma, obtaining
N∑

j=1

mj

tj + X
=

n∑
i=1

1
f i + X

.

By Haböck’s lemma (Lemma 1), this means that { f i } ⊆ { tj }. Hence, the adversary is honest. This proves
the information-theoretical case.

Computational case. In this case, one of V1 and V2 is a non-zero polynomial but V1(s) = V2(s) = 0.
W.l.o.g., assume V1 ̸= 0 (since deg V1 > deg V2, this results in a stronger PDL assumption). Note that
deg V1 ≤ N1 + N + (N1 − N + 2) = 2(N1 + 1). We construct the following (N1, N2)-PDL adversary B.
B

([
(si)N1

i=0

]
1

,
[
(si)N2

i=0

]
2

)
uses its as the SRS for A. B then invokes A, playing the honest verifier and

obtaining a protocol transcript. Since A is algebraic, it returns explanations, i.e., polynomials m, . . . , Q.
Given these polynomials, B can compute all coefficients of V1. Hence, B has a known non-zero polynomial V1
of degree 2(N1 + 1), such that V1(s) = 0. B now uses a standard probabilistic polynomial-time root-finding
algorithm over finite fields to obtain all roots of V1, and tests which root equals s by using its input. Hence,
B can compute s and thus break (N1, N2)-PDL.

Analyzing both cases finishes the proof. ⊓⊔

Zero-Knowledge. We prove the zero-knowledge property of cq+; the proof for cq++ is nearly identical and
is omitted.
Theorem 6. The interactive protocol cq+ from Fig. 1 is honest-verifier zero-knowledge.
Proof. To prove the theorem we first describe the simulator and then argue why its simulation is indistin-
guishable from a honestly generated proof.

We present the simulator in Fig. 7. What Sim does is to generate the commitments [m(s), A(s), B(s)]1 as
in the prover algorithm but by setting Aj = Bi = mj = 0. Next, it samples the remaining elements following
the correct distribution that makes the verification equations accept.

Let us argue about each element, output by the simulator:
– m(s) (resp. A(s)) is masked by random value ρm (resp. ρA); this perfectly hides m(X) (resp. A(X))

since only one evaluation of it (at X = s) is known.
– B(s) is masked by a degree-1 random polynomial; this perfectly hides B(X) since only two evaluations

of it (at X = s and X = γ) are known.
– QB(s) is computed as in the interactive protocol.
– S(s) is computed as in the interactive protocol.
– P (s) is computed as in the interactive protocol.
– R∗

C(s) is computed as in the interactive protocol in the case Aj = Bi = 0. Note that the pair (S(s), R∗
C(s))

is uniformly random due to the choice of RS and ρS .
– Q(s) is chosen so that it makes the verifier accept. To check it, let us rewrite the first verification equation

in cq++ but in discrete logarithms:

A(s)T(s)U(s) +
(
(β + η)A(s)−m(s)+η2S(s)

)
U(s)−

η

ϑ
B(s)z(s)U(s)−Q(s)ν K(s)U(s) = ηR∗

C(s)s

Writing in simulator chosen A(X), B(X), m(X), S(X), and R∗
C(X), this is equivalent to

ρA(s)ν K(s)T(s)U(s)+(
(β + η)ρA(s)ν K(s)− ρm(s)ν K(s)+η2 (sRS(s) + ν K(s)ρS(s))

)
U(s)−

η

ϑ
ρB(s)ν K(s)U(s)−Q(s)ν K(s)U(s) = η2RS(s)U(s)s

Cancelling η2RS(s)U(s)s and dividing the rest by ν K(s)U(X), it is equivalent to

Q(s) = (β + η + T(s))ρA(s)− η

ϑ
ρB(s)− ρm(s)+η2ρS(s) .

32

Sim(s, (N, n), (ct, cf), [T(s)]1):

1. ρm ←$ F; m(s)← ρmν K(s);
2. RS , ρS ←$ F; S(X)← XRS(X) + ρSν K(X);
3. Send [m(s), S(s)]1;
4. Obtain β;
5. ρA ←$ F; A(s)← ρAν K(s);
6. ρB(X)←$ F≤1[X]; B(s)← ρB(s)ν K(s);
7. [QB(s)]1 ← (B(s)(cf + β [1]1)− 1)/ν H(s);
8. Send [A(s), B(s), QB(s)]1;
9. Obtain γ, η;

10. [D(s)]1 ← B(γ)(cf + β [1]1)− 1− ν H(γ) · [QB(s)]1;
11. // Note that D(s) =

(
B(γ) − B(s)ν H(γ)

ν H(s)

)
(F(s) + β) − 1 + ν H(γ)

ν H(s) ;
// Replacing s with γ, we get that D(γ) = 0;

Claim Dγ ← 0;
Claim Bγ ← B(γ) = ρB(γ)ν K(γ);

12. [P (s)]1 ←
1

s−γ
((B(s)−B(γ)) [1]1 + η [D(s)]1);

13. R∗
C(s)← η ·RS · U(s);

14. Choose Q(s) that makes the verifier accept:
[Q(s)]1 ← ρA(s)(β + η + [T(s)]1)− η

ϑ
ρB(s)− ρm(s)+η2ρS(s);

15. Send [P (s), R∗
C(s), Q(s)]1 , Bγ .

Fig. 7. Simulator of cq+

C.2 Our fully zero-knowledge lookup argument

We describe the protocol zkcq+ in Fig. 8. We remark that Preproc computes the value c̃t which is included
in the proof. This is just syntatic sugar, and it is only necessary for matching the syntax of CP-SNARK. In
practical implementations, the value c̃t could be posted together with ct, and their well-formedness could
verified only once.

D Additional Material on Section 5

Theorem 2. The lookup argument mtx[CP] defined in Fig. 2 is knowledge-sound in the AGM and ROM
under the (N ·d, N ·d)-PDL assumption and assuming that CP is knowledge-sound. Furthermore, the protocol
is zero-knowledge assuming CP is zero-knowledge.

Proof. Notice that the vectorization operator is linear, moreover that Preproc applies a linear function to the
precomputation through CP of the vectorizations of the matrices T, R, C(N). Thus the Preproc is F-linear
when Preproc′ is F-linear.

The algorithm Prove makes O(n log n) field operations and group multiplications and additions to com-
pute σ, w, πR, πR′ and makes O(n) field operations to compute z. The proofs πR and πR′ take O(n log n)
field operations and group multiplications and additions. Notice that Prove does not need to compute t̄∗

, f̄∗

to compute the proof π∗. In fact, to compute such a proof, the prover needs only:

(aux∗
j)j∈K = (auxM,j)j∈K + ρ · (auxC,j)j∈K + ρ2 · (auxR,j)j∈K ,

which, thanks to the F-linearity of CP.Preproc, are valid auxiliary information for (̄t∗
, f̄∗) and then it runs

the prover of CP whose running time is poly(n · d, λ).
Completeness is almost straightforward. Let K = {k1, . . . , kn} be such that T|K = F notice that for any

i and for any j we have Tki,j + ρj + ρ2ki = Fi,j + ρj + ρ2Si,j . In fact, Tki,j = Fi,j by the hypothesis for

33

Derive(srs, N, n): // Assume that n | N , srs = (
[
(sj)j∈[N1]

]
1 ,

[
(sj)j∈[N2]

]
2) for any N1 ≥ N +max(bF , 1)−1 and N2 ≥ N +max(bF , 1)+

1.
Set µ = N1 −N + 2; define U(X) := (Xµ − 1), ϑ = N/n, and z(X) = ν K\H(X);

Let
{

rK
j (X) =

λK
j (X)−λK

j (0)
X

U(X)
}

j∈[N]
, and

{
rH

i (X) = λH
i (X)z(X)−λH

i (0)
X

U(X)
}

i∈[n]
;

Compute ekN,n :=
[
(rK

j (s))N
j=1, (rH

i (s))n
i=1, U(s), ν K(s), sν K(s), (xi)n+bF −1

i=0
]

1
Compute vkN,n := [1, U(s), z(s)U(s), ν K(s)U(s)]2
Return (ekN,n, vkN,n).

Preproc(srs, t, ρT):
Define T(X) :=

∑N

j=1 = tjλK
j (X) + ρT · ν K(X), and compute c̃t ← [T(s)U(s)]2;

Compute auxt := (t,
[
(Qj(s))N

j=1, T(s)
]

1);
Return (auxt, c̃t).

Prove(ekN,n, (ct, cf), auxt, (f , ρF(X))): //cf =
[∑

i
f iλ

H
i (s) + ρF(s)ν H(s)

]
1, deg(ρF) = bF .

Compute m = (m1, . . . , mN) s.t. ∀j : tj appears mj times in f ; samples ρm ←$ F;
Compute [m(s)]1 ←

∑N

j=1 mj ·
[
λK

j (s)
]

1 + ρm · [ν K(s)]1; // n scalar mults
Sample RS , ρS ←$ F and compute [S(s)]1 ← RS · s + ρS · ν K(s);
β ← RO(vkN,n∥(ct, cf)∥ [m(s)]1) //Fiat-Shamir challenge.
Sample ρA ←$ F, ρB(X)←$ F≤1[X];
Let Aj ← mj/(tj + β) ∀j = 1, . . . , N and Bi ← 1/(f i + β) ∀i = 1, . . . , n;
Compute [A(s)]1 ←

∑N

j=1 Aj

[
λK

j (s)
]

1 + ρA · [ν K(s)]1;
Compute [B(s)]1 ←

∑n

i=1 Bi

[
λH

i (s)
]

1 + [ρB(s) · ν H(s)]1;
Compute QB(X)← (B(X)(F(X) + β)− 1)/ν H(X) and [QB(s)]1;
(γ, η)← RO(β∥ [A(s), B(s), QB(s), S(s)]1);//Fiat-Shamir challenge.
Compute Bγ ← B(γ), D(X)← Bγ · (F(X) + β)− 1−QB(X)ν H(γ);
Compute P (X)← ((B(X)−B(γ)) + ηD(X))/(X − γ) and [P (s)]1;
Compute [R∗

C(s)]1 ←
∑

mj ̸=0 Aj ·
[
rK

j (s)
]

1 − ϑ−1 ∑n

i=1 Bi ·
[
rH

i (s)
]

1 + η2RS · [U(s)]1
Compute [QA(s)]1 ←

∑
mj ̸=0 Aj · [Qj(s)]1 + [ρA(T (s) + β)− ρm]1;

Compute [QC(s)]1 ←
[
ρA + ϑ−1ρB(s)

]
1;

Compute [Q(s)]1 ← [QA(s)]1 + η [QC(s)]1 + η2 [ρS]1;
Return π = (c̃t, [m(s), S(s), A(s), B(s), QB(s), P (s), R∗

C(s), Q(s)]1 , Bγ).

Verify(vkN,n, (ct, cf), π):
Compute [D(s)]1 ← Bγ(cf + [β]1)− [1]1 − ν H(γ) [QB(s)]1.
Return 1 if and only if the following holds:
(i) e([A(s)]1 , ct) · e((β + η) · [A(s)]1 − [m(s)]1 + η2 [S(s)]1 , [U(s)]2) · e(η/ϑ · [B(s)]1 , [z(s)U(s)]2)−1 · e([Q(s)]1 , [ν K(s)U(s)]2)−1 =

e(η · [R∗
C(s)]1 , [s]2),

(ii) e([B(s)]1 + η [D(s)]1 − [Bγ]1 , [1]2) = e([P (s)]1 , [s− γ]2)
(iii) e([1]1 , c̃t) = e(ct, [U(s)]2)

Fig. 8. Our fully zero-knowledge lookup argument zkcq+.

completeness and Si,j = ki by inspection of the prover’s algorithm. Moreover, we have that σ(ωX)− σ(X)
evaluated in ωdi+j is equal to Si,j+1 − Si,j = 0 for j ∈ {1, d − 1} and Si+1,0 − Si,d otherwise. Thus the
polynomial σ(ωX)− σ(X) is divisible by ν H̄(X).

As for zero-knowledge, by randomizing σ by summing ν K(X) ·r(X) where r is a random polynomial with
deg(r) = 2, we have that the values σ(s), σ(ζ), σ(ω · s) are uniformly distributed. In particular, one could
sample random value z and random group elements for cR,n, cR′,n and use the zero-knowledge simulator of
the proof of evaluation and the zero-knowledge simulator of CP.

We focus on knowledge soundness in the AGM. Notice that the prover and verifier algorithm define a
one-round public-coin protocol where we applied the Fiat-Shamir transform.

The adversary outputs valid representations for the proof elements that we can parse as polynomials.
Let σ̃1(X) and σ̃2(X) be the polynomials underlying the commitments cR,n and cR′,n notice that by the

34

verification equations in Items (i) and (ii) there exist two polynomials W1 and W2 such that:

σ̃1(X)− z = W1(X)(X − ω · ζ) (28)
σ̃2(X)− z = W2(X)(X − ζ) (29)

By change of variable we have σ̃1(ωX) − z = W1(ωX)(ω · X − ω · ζ) = ωW1(ωX)(X − ζ), and thus
σ1(ωX)− σ̃2(X) is divisible by (X− ζ). Since ζ is sampled uniformly at random after σ̃1 and σ̃2 are defined,
by the Swartz-Zippel Lemma we have that σ̃1(ωX) = σ̃2(X).

By the pairing equation in Item (iii) we have

σ1(ωX)− σ1(X) = W3(X)ν H̄(X)

and thus for any i, j with j ∈ [1, d − 1] we have σ1(ωd·i+j+1) = σ1(ωd·i+j). The latter implies that there
exists a multi-set20 of indexes K = {k1, . . . , kn} such that σ1(ωd·i+j) = ki.

Finally, consider the vectors t̂, f̂ with elements in F3 such that t̂d·i+j = (Ti,j , C(N)
i,j , Ri,j) and f̂d·i+j =

(Fi,j , C(n)
i,j , σ1(ωd·i+j)). Notice that f̂ ≺ t̂ if and only if T|K = F. Moreover, the Swartz-Zippel Lemma

implies that the family of hash functions with signature F3 → F that maps (x0, x1, x2) to
∑

ρixi with key ρ
sampled uniformly at random over F form a universal hash function family, namely for any x, x′ such that
x ̸= x′ Pr[h(x) = h(x′)] = 1/q. Notice that, the vectors t̂ and f̂ are fully defined before ρ is sampled. Thus
by union bound over all the tuples of coordinates of f̂ and t̂ and by the universal hash property, we have
that with 1−Ω(nd/q) probability f̄∗ ≺ t̄∗ implies that f̂ ≺ t̂.

D.1 Rows-Columns Matrix Lookup

In this section we consider a more general notion of the sub-matrix relation, to which we refer as (rows-
columns) sub-matrix relation, where F ≺ T with F ∈ Fn×d, T ∈ FN×D and N, D, n, d ∈ N holds true if and
only if there exist (multi)sets R = {r1, . . . , rn} and C = {c1, . . . , cd} with Fi,j = Tri,cj for any i, j. Similar
to the notion of rows sub-matrix, we define T|R×C be the sub-matrix of T such that (T|R×C)i,j = Tri,cj

for
any i, j. We realize an argument system for the relation:

R̂′
zklookup =

{
pp; (N, D, n, d); ε; T, F : F ≺ T

|Tj | = N ×D, |F| = n× d

}
Notice that we are not zero-knowledge neither with respect of the number of columns nor the number of
rows of the sub-matrix F.

In Fig. 9 we describe our second scheme mtx∗[CP] for rows-columns matrix lookup, namely a matrix
lookup argument w.r.t. the more general relation described above, the that runs internally a lookup argument
CP for KZG-based vector commitment scheme. In the description of the scheme, we let K (resp. H) be a
multiplicative subgroup of F of order N ·D (resp. of order n · d), we let ω := ωn·d be the fixed generator for
H and we consider the following matrices and polynomial:

1. the matrix R ∈ FN×d where Ri,j = i,
2. for any k the matrix C(k) ∈ Fk×d where Ci,j = j.
3. Let ν R(X) be the vanishing polynomial of the set HR = {ωd·i+j : j ∈ [1, d− 1], i ∈ [n]}.
4. Let ν H(X) be the vanishing polynomial of the multiplicative subgroup H.

Theorem 7. The lookup argument mtx∗[CP] defined in Fig. 9 is knowledge-sound in the AGM and ROM
under the (N ·d, N ·d)-PDL assumption and assuming that CP is knowledge-sound. Furthermore, the protocol
is zero-knowledge assuming CP is zero-knowledge.

20K is a multiset because there might exist i, k such that ki = kj .

35

Derive(srs, N, d, n):
Let t̄, f̄ , r̄N , c̄N and c̄n be vectorizations of the matrices T, F, R, C(N) and C(n).
Compute cr,N ← Com(ck, r̄N) and cc,N ← Com(ck, c̄N).
Compute (ek′, vk′)← CP.Derive(srs, Nd, nd).
Return (ek′, vkn) where vkn = (cr,N , cc,N , [ν R(s)]2 , vk′).

Preproc(srs, T):
Compute (auxT,j)j∈[Nd] ← CP.Preproc(srs, t̄),
(auxR,j)j∈[Nd] ← CP.Preproc(srs, r̄N),
(auxC,j)j∈[Nd] ← CP.Preproc(srs, c̄N).
Let auxi = (auxT,di+j , auxR,di+j , auxC,di+j)j∈[d].
Return (auxi)i∈[N].

Prove(ek, (cT, cF), F, (auxj)j∈K): //T|R×C = F, R = {r1, . . . , rn}, C = {c1, . . . , cd}.
Let SR be s.t. SR

i,j = ri for i∈ [n], j∈ [d]. Let SC be s.t SC
i,j = cj for i∈ [n], j∈ [d].

Let σR(X) (resp. σC(X)) be a randomized LDE over H of the vectorization of SR (resp. SC).
Compute wR(X) such that σR(ω ·X)− σR(X) = wR(X) · ν R(X).
Compute wC(X) such that σC(ωd ·X)− σC(X) = wC(X) · ν H(X).
(ρ, ζ)← RO(vkn∥(cT, cF)∥(cR,n, cR′,n, cw)). //Fiat-Shamir challenge.
Compute zR ← σ(ω · ζ), zC ← σ(ωd · ζ).
Compute proofs πR and πR′ for R̂eval(ω · ζ, zR; σR(X)) = 1 and R̂eval(ζ, zR; σ(ω ·X)) = 1;
Compute proofs πC and πC′ for R̂eval(ωd · ζ, zC ; σC(X)) = 1 and R̂eval(ζ, zC ; σ(ωd ·X)) = 1;
Let π∗ proof for R̂zklookup((N · d, n · d); ε; (̄t∗

, f̄ ∗)) = 1 where

t̄∗ = t̄ + ρ · c̄N + ρ2 · r̄N f̄ ∗ = f̄ + ρ · σ̄C + ρ2 · σ̄R (30)

Return π = ([σ(s)]1 , [σ(ω · s)]1 , [w(s)]1 , πR, πR′ , π∗, z).

Verify(vkn, (cT, cF), π):
Parse the proof π = (cR,n, cR′,n, cw, πR, πR′ , π∗, z).
(ρ, ζ)← RO(vkn∥(cT, cF)∥(cR,n, cR′,n, cw)). //Fiat-Shamir challenge.
Compute c∗

T ← cT + ρcc,N + ρ2cr,N and c∗
F ← cF + ρcc,n + ρ2cR,n.

Return 1 if the following checks hold (else 0):
(i) Verifyeval(ck, (cR,n, ω · ζ, z)) = 1,

(ii) Verifyeval(ck, (cR′,n, ζ, z)) = 1,
(iii) e(cR′,n − cR,n, [1]2) = e(cw, [ν k̄(s)]2),
(iv) CP.Verify(srs, vk′, (c∗

T, c∗
F), π∗) = 1.

Fig. 9. Our rows-columns Matrix Lookup Argument mtx∗[CP].

36

Procedure T(x):

n← 1 // root node

while n is not a leaf do
fetch En, Tn

if ∀j ∈ [d] : En,j = 1⇒ xj < Tn,j then n← left child of n

elseif ∀j ∈ [d] : En,j = 1⇒ xj ≥ Tn,j then n← right child of n

else return ⊥
fetch vn from v // Vector of all the labels

return vn

Fig. 10. The pseudo-code of an evaluation of a quasi-complete decision tree.

The proof of the theorem is very similar to the proof of Theorem 2, the only difference is that the prover
additionally shows that σC(X) has a well-defined tensor-product structure that we prove in the next lemma.

Lemma 5. Let H = ⟨ω⟩ be a multiplicative subgroup of F of order n · d with d ≥ 1, there exists c of length
d such that σC(X) is the LDE of c⊗ 1 (over H) if and only if σC(ωd ·X)− σC(X) ≡ 0 mod ν H(X).

Proof. The first implication is easy. In fact, let σC(X) be the LDE of c ⊗ 1 then σC(ω(i+1)·d+j mod nd) =
σC(ωi·d+j mod nd) for any i and j ∈ [d]. We can prove the other direction by induction.

Let ν i(X) be the vanishing polynomial of the set Hi = {ωj : 0 ≤ j < i · d}, we can show that if
σ̄(X) := σC(ωd · X) − σC(X) ≡ 0 mod ν i(X) and i ≤ n then ∃c, d such that ωC(X) is the LDE of
(c⊗ 1i∥d) and 1i has length i.

– For i = 1 the statement is trivially true because ∀j ∈ [d] : σC(ωd+j) = σC(ωj) thus there exists c, d such
that σC is the LDE of c∥c∥d.

– For n ≥ i > 1 we have that σ̄(X) ≡ 0 mod ν i(X) implies σ̄(X) ≡ 0 mod ν i−1(X), thus σC is the LDE
of c ⊗ 1i−1∥d. We need to show that d = c∥d′ for some vector d′. Notice that σC(ωd · ω(i−1)·d+j) −
σC(ω(i−1)·d+j) = 0 for j ∈ [d] thus, if i < n, the first d coordinates of d agree with the last d coordinate
of c⊗ 1i−1, which means that d = c∥d′ for some d′, if i = n the first d coordinates of d agree with the
first d coordinates of c⊗ 1n−1, which means that d = c.

E Additional Material on Section 6

E.1 The Extended Encoding of Decision Trees

Lemma 3. Let T be a quasi-complete decision tree with Ntot nodes and (N←, N→) be a boxes-encoding of T.
Let v be the vector of the labels assigned to the leaf nodes of T, namely for any i ∈ [Nint + 1, Ntot], we have
vi as the label assigned to the i-th leaf. For any x ∈ [B]d, T(x) = vk(x) or T(x) = ⊥.

Proof. Let n1, . . . , ns be the nodes traversed by the computation of T(x), we prove that x is contained in
(N←

nj
, N→

nj
) for any j or T (x) = ⊥. Notice that n1 is the root, namely n1 = 1, and by (1) of Definition 7 we

clearly have x is contained in (N←

1, N→

1). Moreover, assume that at the i-th step, x is contained in (N←

ni
, N→

ni
).

If ∀j ∈ [d] : Eni,j = 1 ⇒ xj < Tni,j then ni+1 is the left child of ni and because of Eqs. (14) and (15) we
have that x is contained in (N←

ni+1
, N→

ni+1
). Similarly, if ∀j ∈ [d] : Eni,j = 1 ⇒ xe ≥ Tni,j , then ni+1 is the

right child of ni and because of Eqs. (14) and (16) we have that x is contained in (N←

ni+1
, N→

ni+1
). Otherwise,

we have T(x) = ⊥.
Because of Eqs. (15) and (16) the boxes of the left and right children are disjoint (namely, there isn’t

any x that is contained in both boxes). Thus by induction on the structure of the tree, the set of the boxes
of all the leaves are pair-wise disjointed. This implies that if T(x) ̸= ⊥ then k(x) is uniquely defined. Thus
ns is equal to k(x). ⊓⊔

37

Lemma 4. Consider a tuple (N←, N→, L, R, E, v) such that the following constraints hold:

a) The following equations hold:

N←

1 = 0, N→

1 = B + 1, (17)
L ·N← = P← , R ·N→ = P→, (18)
E ◦ (L ·N→ −R ·N←) = 0 (19)
(1−E) ◦ (P← −R ·N←) = 0, (1−E) ◦ (P→ − L ·N→) = 0 (20)

b) All the boxes are not empty. Namely, for all i, j we have N←

i,j < N→

i,j.
c) The matrix

(
L=
R

)
is a (row) permutation of the (squared) matrix (0∥INtot−1) (the matrix whose rows are

the row vectors (ei)i∈[2,Ntot] of length Ntot).

Then there exists a quasi-complete decision tree T with Ntot nodes such that Encode(T) = (N←, N→, L, R, E, v).

Proof. First, notice that the constraint in Eq. (17) is necessary by definition of box-encoding of a tree.
From Item c), for any p ∈ [Nint], Lp and Rp are elementary vectors, so there exists unique l, r such that

Li,l = 1, Ri,r = 1. Since Ntot − 1 = 2Nint and L ∪ R = [2, Ntot], the rows of the matrix
(

L
R

)
are linearly

independent. As a result, all internal nodes have one left child and one right child.
We define a procedure that, upon the input data structure (N←, N→, L, R, E, v) such that the hypothesis

of the lemma holds, computes an (alleged) quasi-complete decision tree. We then show that the latter is
indeed a quasi-complete decision tree, namely, that (I) the resulting (indirect) graph is acyclic and the
number of edges in the graph is Ntot − 1 (thus, it is a tree), moreover, the out-degree of any of the nodes is
either 2 or 0 (thus it is a binary tree), and (II) for each internal node p, the procedure defines the feature
vector Ep ∈ {0, 1}d and threshold vector Tp ∈ [B]d.

– Start with a fully disconnected graph with Ntot nodes. For any p ∈ [Nint], let l, r be the unique indexes
such that Lp,l = 1 and Rp,r = 1. Add the direct edge (p, l) and (p, r) to the direct graph.

– Set T← E ◦ (L ·N→). For any p, the p-th row of T and E are the feature and threshold vectors for p.
– Associate to the leaves the labels v. Namely, for any i > Nint, the i-th node gets assigned the label vi.

We notice that for any p, Ep, Tp are well defined. In fact

Ep ◦ (N→

l −Tp) = Ep ◦ (N→

l − (L ·N→)p) = 0

where the first equation comes by definition of Tp and the second by definition of L. Notice that, by hypothesis
of the lemma, we have Tp = R ·N←. Thus, with the same derivation as above, we have Ep ◦ (N←

r −Tp) = 0.
By definition of L (resp. R) and Eq. (20) we readily derive that Eq. (16) holds for E. Thus we have then
proved condition (II).

We can focus on proving condition (I). First notice, it is easy to check that the out-degree of any of the
nodes is at most 2, by definition of the procedure described above. Notice that the number of edges added
by the procedure is the added number of rows in L and R, namely Ntot − 1 = 2Nint. Thus we need to prove
that the procedure did not add twice the same edge. This could only happen if there is a node p ∈ [Nint]
such that for the same child node i, Lp,i = Rp,i = 1. However, we have proved that all internal nodes have
one left and one right child. Given that the number of elements in (L, R) is Ntot− 1, we have that any child
node i can not serve as a child node more than one time. In other words, for any child node i, we have the
only p ∈ [Nint] such that Lp,i = 1 or Rp,i = 1.

Define Pi :=
∑

j |N
→

i,j−N←

i,j | as the “potential” associated to the box (N←

i , N→

i) over the integers. For any
p ∈ [Nint] with Lp,l = 1 and Rp,r = 1, we have Pp > Pl and Pp > Pr. For the former, namely Pp > Pl, notice
that because of Eqs. (18) to (20) and Item b), for any ei with all Ep,ei = 1, we have it holds that N←

p,ei
=

N←

l,ei
< N→

l,ei
< N→

r,ei
= N→

p,ei
, and thus N→

p,ei
−N←

p,ei
> N→

l,ei
−N←

l,ei
while, N→

p,ej
−N←

p,ej
= N→

l,ej
−N←

l,ej

for the other indexes ej with all Ep,ej
= 0. The latter, namely that Pp > Pr, follows similarly. Assume there

38

exists a cycle in (the indirect generalization of) the graph produced by the procedure described above, and
let (j1, . . . , jk = j1) be such a cycle. First, notice that because of the constraint in Item c), every node has
an in-degree at most 1 in the direct graph. Thus, if a cycle exists in the indirect graph, there is a cycle in
the direct graph as well. Moreover, by construction, all the edges in the graph are of the form (p, l) or (p, r)
for p ∈ [Nint]. We have for any k that Pjk

< Pjk+1 and thus Pj1 < Pj1 which reaches a contradiction. Thus
there are no cycles in the graph.

E.2 Extractable Commitment to Decision Trees

Theorem 3. The commitment scheme CSDT defined in Fig. 5 is hiding and it is an extractable commitment
scheme for the domain {T ∗

Ntot,B,d}Ntot,d,B in the AGM and assuming the building blocks are knowledge-sound
and zero-knowledge.

Proof (Sketch.). We can prove hiding by relying on the hiding of the matrix commitment scheme and the
zero-knowledge of the underlying CP-SNARKs21.

By definition of extractable commitment we can interpret the commitment function as a first sub-
procedure that generates a (binding) commitment and second procedure that generates a proof. By inspection
of the algorithm, we can divide the commitment function above in this way. We need to prove knowledge
soundness in the AGM for the derived CP-SNARK.

The extractor, using the algebraic representations, extract polynomials from the commitments c←, c→, cv,
the commitments c′

←, c′
→, the sparse commitments cL, cR and the commitment cE . From such polynomials,

the extractor can derive matrices (N←, N→, L, R, E, v). In particular, the matrix N← is defined as the sum of
the (padded) matrices F← extracted from c← and P← extracted from c′

← (similarly for N→). We show that the
constraints of Lemma 4 hold, thus the extractor can compute a valid quasi-complete decision tree T from
the extracted extended encoding.

The validity of the proofs π11, . . . , π14 enforce that N← (resp. N→) stacks the matrix P← on to of F← (resp.
P→ on top of F→). Moreover, the validity of the proofs π15, π16 enforce the constraint Eq. (17), as otherwise
we would either break the knowledge soundness of CPsm or the binding property of the matrix commitment
scheme.

The validity of the proofs π1 and π3 implies that Eq. (18) indeed holds, as otherwise we would either
break the knowledge soundness of CPlin or the binding property of the matrix commitment scheme.

The validity of the proof π2 (resp. π4) implies that the commitments cln (resp. crn) open to the matrix
L̄·N→ (resp. R̄ ·N←), this coupled with the validity of the proof π5 imply the constraints in Eqs. (19) and (20).
Again, we can formally prove this by a first reduction to the biding property of the matrix commitment
(showing that the knowledge extractors for π2, π4 and π5 should output the same matrices as computed by
the algebraic representations), and then to the knowledge soundness of CPlin and CPhad.

The validity of the proof π8 implies Item b) in a straightforward manner. The validity of the proofs π9
and π10 and the definition of the polynomial id(X) by the KGen algorithm imply Item c). In particular set
c′(X) def= colL̄(X) + colR(X), we have c′(hi) = colL̄(hi) and c′(hi+Nint) = colR̄(hi) for i ∈ [Nint]. Moreover,
c′(X) is a permutation of i(X) which, by definition, represents a sparse commitment of the matrix whose
rows are the elementary vectors (ej+1)j∈[Ntot−1].

Proof. We can prove hiding by relying on the hiding of the matrix commitment scheme and the zero-
knowledge of the underlying CP-SNARKs22.

By definition of extractable commitment we can interpret the commitment function as a first sub-
procedure that generates a (binding) commitment and second procedure that generates a proof. By inspection
of the algorithm, we can divide the commitment function above in this way. We prove knowledge soundness
in the AGM for the derived CP-SNARK.

21Notice that, using higher degrees for the randomizers of the commitments, hiding would still hold even if the
proofs leaked evaluation points (see the notion of leaky-zero-knowledge from [7]) from the commitments in π

22Notice that, using higher degrees for the randomizers of the commitments, hiding would still hold even if the
proofs leaked evaluation points (see the notion of leaky-zero-knowledge from [7]) from the commitments in π

39

The extractor EDT, using the algebraic representations, extract polynomials from the commitments
c←, c→, cv, the commitments c′

←, c′
→, the sparse commitments cL, cR and the commitment cE . From such poly-

nomials, the extractor can derive matrices (N←, N→, L, R, E, v). In particular, the matrix N← is defined as
the sum of the matrices F̄← extracted from c← and P̄← extracted from c′

← (similarly for N→). We show that the
constraints of Lemma 4 hold, thus the extractor can compute a valid quasi-complete decision tree T from the
extracted extended encoding. We proceed with a sequence of hybrids where H0 is the extractability game
for CSDT that returns 1 if the verifier accepts the proof and the extractor fails to produce a valid witness.
In the next hybrids we sometimes reduce to the (N1, N2)-PDL assumption (see Definition 11).

Hybrid H1. The Hybrid H1 is the same as H0 but it additionally runs the extractor w.r.t. instances
([Nint], c←), ([Nint], c→), ((Nint, Ntot], c′

←), ((Nint, Ntot], c′
→) let F̃←, F̃→, P̃← and P̃→ be the extracted matrices the

hybrid returns 0 if either F̃← or F̃→ have the first Nint rows set to 0 or P̃← or P̃→ have the last Ntot − Nint
rows set to 0 or the matrices are not the valid opening for the respective commitments c←, c→, c′

← and c′
→. It is

easy to see that Pr[H0 = 1] ≤ Pr[H1 = 1] = negl(λ) where the negligible factor comes from the knowledge
soundness of CPsm.

Hybrid H2. The Hybrid H2 is the same as H1 but it additionally returns 0 if F̃← ̸= F← or F̃→ ̸= F→ or
P̃← ̸= P← or P̃→ ̸= P→. Let E1 be the event that one of previous dis-equations holds true. We have that
Pr[H0 = 1] ≤ Pr[H1 = 1] + Pr[E1]. Notice the event E1 implies an attacker against the binding property of
the matrix commitment scheme, thus Pr[E1] = negl(λ).

In the next hybrids we can iteratively use the same proof strategy of the previous hybrids by first relying on
the knowledge soundness of one of the CP-SNARKs and then on the binding property of the commitment
scheme. Thus from now on we implicitly assume that the matrices extracted by the extractors of the CP-
SNARKs match the matrices extracted by the extractor EDT.

Hybrid H3. The Hybrid H3 is the same as H2 but it additionally returns 0 if N←

1 ̸= 0 or N→

1 ̸= (B +
1, . . . , B + 1). By the knowledge soundness of CPsm we have that both F̄←1 and P̄←1 equal the row vector 0,
thus N←

1 = 0. Similarly for N→

1 however here we notice that we prove that (N→ + B)1 equals to 0 and F̄→1
equals to 0 and thus N→

1 is the row vector (B + 1, . . . , B + 1).

Notice that when H3 = 1 the constraint Eq. (17) of Lemma 4 holds.

Hybrid H4. The Hybrid H4 is the same as H3, but it additionally (runs the extractor w.r.t. instance-proof
tuple (cL, cN,←, c′

←), π1, such extractor exists because of the knowledge soundness of CPlin) and returns 0
if L · N← ̸= P←. The distinghuishing event between H3 and H4 is the event the extractor fails to extract
a valid witness, thus if CPlin is knowledge-sound (and the matrix commitment is binding) then Pr[H3] ≤
Pr[H4] + negl(λ).

Hybrid H5. The hybrid H5 is the same as H4, but it additionally (runs the extractor w.r.t. instance-proof
tuple (cR, cN,→, c′

→), π3) returns 0 if R ·N→ ̸= P→ . Similarly to the previous hybrids, this hybrid is negligibly
close to H4 because of the knowledge-soundness of CPlin (and the binding property of the commitment
scheme).

Notice that when H5 = 1 the constraint Eq. (18) of Lemma 4 holds.

Hybrid H6. The hybrid H6 is the same as H5, but it additionally returns 0 if L̄ ·N→ is not a valid opening
for cln or R̄ ·N← is not a valid opening for crn. We can prove Pr[H5 = 1] ≤ Pr[H6 = 1] + negl(λ) based on
the knowledge soundness of CPlin.

Hybrid H7. The hybrid H7 is the same as H6, but it additionally returns 0 if

Ē · (L̄ ·N→ − R̄ ·N←) ̸= 0 ∨ 1− Ē · (P← − R̄ ·N←) ̸= 0 ∨ 1− Ē · (P→ − L̄ ·N→) ̸= 0.

Leveraging the conditions from H6 on cln and crn, using knowledge soundness of CPhad and the binding of
the matrix commitment scheme we have Pr[H6 = 1] ≤ Pr[H7 = 1] + negl(λ).

40

Notice that when H7 = 1 the constraints of Eqs. (19) and (20) of Lemma 4 hold.

Hybrid H8. The Hybrid H8 is the same as H7, but it additionally returns 0 if N→ −N← − 1 /∈ [B]Ntot×d.
By the binding property of the commitment scheme and by the knowledge soundness of CPrange we have
Pr[H7] ≤ Pr[H8] + negl(λ).
Notice that when H8 = 1 we have that N←

i,j < N→

i,j for any i, j (namely, the constraint in Item b) of Lemma 4
holds).

Hybrid H9. The Hybrid H9 is the same as H8, but it additionally extracts the (sparse) matrices L̄, R and
returns 0 if L̄ + R is not a permutation of the matrix (0∥INtot−1). We reduce to knowledge soundness of
CPperm noticing that the polynomial id(X) in the indexer of the instance ((Ntot − 1, id), cL + c′

R) is a valid
representation (according to the sparse matrix commitment scheme) of the sparse-matrix (0∥INtot−1).

Hybrid H10. The Hybrid H10 is the same as H9, but it returns 0 if R is not a shift of R̄. By the knowledge
soundness of CPshift we have that the probability of the two hybrids is negligibly close.

Notice that if H10 = 1 then all constraints in Lemma 4 are satisfied thus there must exist a valid quasi-
complete decision tree T with Ntot nodes associated to the extracted matrices returned by the extractor,
which is in contradiction with the winning condition of the adversary, thus the probability of H10 = 1 is
equal to 0.

E.3 CP-SNARK for Statistics on Decision Trees

Theorem 4. CPDT = (Derive, Prove, Verify) in Fig. 6 defines an Universal CP-SNARK for the indexed
CP-relation R̂DTstat.

Proof. Zero-knowledge follows easily from the hiding of the commitments c1, c2, c3 and the zero-knowledge
of the three CP-SNARKs. In particular, the zero-knowledge simulator could sample the commitments by
commiting to dummy values and run the zero-knowledge simulators of the three CP-SNARKs.

We recall that c← (resp. c→) commits to the matrix F̄← (resp. F̄→) whose first Nint rows are filled with 0
and the remaining submatrix is F← (resp. F→).

The completeness follows by Lemma 3, the homomorphic properties of the matrix commitment scheme
and the completeness of the CP-SNARKs. In particular, the lemma implies that c3 commits to the vector
(T(xj))j∈[m], moreover by definition of kT, the matrix (X − F̄←|K) contains non negative numbers smaller
than B and the matrix (F̄→|K −X− 1) contains non negative numbers smaller than B.

For knowledge soundness, we define the extractor of the CP-SNARK to be the same as the extractor ECom
of the extractable commitment scheme. We proceed with a sequence of hybrids where H0 is the knowledge
soundness game for the CPDT with extractor ECom.

Hybrid H1. Let T̃ (and opening material (ρv, ρ←, ρ→)) be the extracted quasi-complete decision tree, the
hybrid H1 additionally computes (N←, N→, v, L, R, E) ← Encode(T̃) and sets F̄←, F̄→ be the sub-matrices
(relative to the leaf) of N←, N→ and returns 0 if v, F̄←, F̄→ (and their opening materials) do not commit to
cv, c←, c→. It is easy to see that Pr[H0] ≤ Pr[H1] + negl(λ), where the latter negligible value depends on the
error of the extractable decision-tree commitment scheme.

Hybrid H2. The hybrid H2 is the same as H1 but it additionally runs the extractor of CPlookup∗ extracting
matrices M̃1, M̃2, m̃3, F̃←, F̃→, ṽ and it outputs 0 if (M̃1∥M̃2∥m̃3) ̸≺ (F̃←∥F̃→∥ṽ). It is easy to see that
Pr[H1] ≤ Pr[H2] + negl(λ), where the latter negligible value depends on the knowledge soundness error of
CPlookup∗.

Hybrid H3. The hybrid H3 is the same as H2 but it additionally returns 0 if (F̃←, F̃→, ṽ) ̸= (F̄←, F̄→, v),
where the former matrices are extracted from the extractor of CPlookup∗ and the latter from the extractor
of the extractable commitment. It is easy to see that Pr[H2] ≤ Pr[H3] + negl(λ), because the distinguishing
event allows to break the binding property of the matrix commitment scheme.

41

Hybrid H4. The hybrid H4 is the same as H3 but that additionally returns 0 if (X − M̃1) ̸∈ [B]m×d.
To show Pr[H3] ≤ Pr[H4] + negl(λ) we can follow the same two-fold strategy of the previous two hybrids,
namely we can (1) define a sub-hybrid experiment where we run the extractor of CPrange and return 0 if the
extracted matrix is not in the range thus reducing to the extractability of CPrange and (2) we can show that
the extracted matrix must be equal to X − M̃1 because of the binding and homomorphic property of the
matrix commitment scheme.

Hybrid H5. Similarly to the previous item, the hybrid H5 additionally returns 0 if (M̃2−X−1) ̸∈ [B]m×d.
We can show Pr[H4] ≤ Pr[H5] + negl(λ) in a very similar manner to the previous step.

Hybrid H6. Let K be the set of indexes such that (M̃1∥M̃2∥m̃3) = (F̄←∥F̄→∥v)|K . The hybrid H6 addition-
ally returns 0 if K ̸= {kT̃(x1), . . . , kT̃(xm)}. By the change introduced in H1 and by Lemma 3 for any i ̸= j
the boxes (F←

i, F→
i) and (F←

j , F→
j) do not overlap. Thus for any i ∈ [m] there must exists only one index ki

such that (M̃1)i = F̄←ki
(resp. (M̃2)i = F̄←ki

), moreover by the changes introduced in H4 and H5 we have
that F̄←ki

≤ xi < F̄→ki
, thus such a unique index ki must be equal to kT̃(xi). We have Pr[H6] = Pr[H5].

Hybrid H7. The hybrid H7 additionally returns 0 if y ̸= S((m̃3)1, . . . , (m̃3)m). Similarly previous hybrids
we can reduce to the biding of the vector commitment to prove that the vector m̃3 is the same that the
knowledge extractor of CPstat would compute and then reduce to the knowledge soundness of CPstat. Thus,
we have Pr[H6] ≤ Pr[H7] + negl(λ).

We show that the probability for H7 is 0, we can now conclude the proof by chaining the equations
proved in the previous steps. Because of the changes in H2 and H3, in H7 we have that m̃3 = v|K , moreover,
by the check introduced in H6 we have that K = {kT̃(x1), . . . , kT̃(xm)}. Notice this already implies that
∀j : T(xj) ̸= ⊥. Moreover, because of the check introduced in H7 we have y = S(vkT̃(x1), . . . , vkT̃(xm)). These
last two implications negate the winning condition of the knowledge soundness of CPDT , thus Pr[H7] = 0.

E.4 CP-SNARKs for Linear Relations with Sparse Matrix Commitment

Let M be a basic matrix, namely a matrix whose rows are elementary vectors. Let H be the subgroup of
F generated by h and defined in the commitment key for the vector commitment23. For any basic matrix
M ∈ {0, 1}k×n and k, n ∈ N, let colM(X) be the (low-degree) polynomial such that colM(hi) = hj where the
i-th row of M is the vector e⊤

j (notice that colM can also be interpreted as a vector whose i-th element is the
value hj). We define the sparse (hiding) commitment of a matrix M as a (hiding) polynomial commitment
of colM. Namely, we define:

sparseCom(ck, M, ρ) := Com(ck, colM, ρ).

We write M to underline that the matrix M is committed with a sparse matrix commitment. Our goal is
to realize a CP-SNARK for the relation:

R̂lin =
{

pp; ε; (M , N, R) : M ·N = R, N ∈ Fn×d
}

.

Our building blocks are CP-SNARKs CP′ and CP′′ for the relations:

R̂′
lin =

{
pp; ε; (M , n, r) : M · n = r, n ∈ Fn·d}

,

R̂′′
lin =

{
pp; M; ε; (n, r) : M · n = r, n ∈ Fn·d}

.

Notice that above n is a vector, while n is an integer. The difference between the two relations is that in
the first M is part of the witness while in the second M is part of the index. Notice that an instantiation of
CP′ can be found in Baloo [38] while instantiations of CP′′ can be derived easily from zkSNARKs for R1CS
based on holographic polynomial IOP such as [7,21,32]. The prover time complexity for the latter scheme
depends quasi-linearly on the sparsity of the matrix M.

23We assume |H| ≥ k, n.

42

Gadget Matrices, Operators and Vectorizations. Consider the matrix Īn,d which stacks d identity
matrices In of size n, namely Īn,d = In⊗1 where 1 is of length d. Consider the linear operator r that maps a
matrix A to the vectorization row-by-row of A, similarly, consider the linear operator c that maps a matrix
A to the vectorization column-by-column of A. Finally, we consider the permutation matrix P such that for
any A we have:

P · r(A) = c(A) (31)

We also recall that to compute a matrix commitment of A we are implicitly computing a vector commit to
r(A).

Let M⊗ I be the tensor-product of M and I, namely the following matrix:

M⊗ I =

 M 0 0

0
. . . 0

0 0 M

It is not hard to prove that the following holds:

M ·N = R ⇐⇒ (M⊗ I) · c(N) = c(R). (32)

Moreover if M ∈ {0, 1}k×n is a basic matrix then :

colM⊗I(hk·i+j) = colM(hj) + n · i.

Namely, the (k · i + j)-row of M⊗ I contains the j-th row vector of M shifted of n · i columns. The equation
above can be translated in the vector domain. Namely, if we let c the evaluation over H of colM(X) and c′

the evaluation over H of colM⊗I(X) we have that:

In,d · c = c′ − s

where the shifting vector s is such that sk·i+j = n · i for all i, j ∈ N and j < k. Thus for any basic matrix
M ∈ {0, 1}k×n and for any d we have:

M′ = M⊗ Id ⇐⇒ Īn,d · colM = colM′ − s. (33)

Our Scheme. Our CP-SNARK scheme is shown in Fig. 11.

Theorem 8. The CP-SNARK defined in Fig. 11 is zero-knowledge and knowledge sound.

Proof (Proof Sketch.). Zero-knowledge is trivially implied by the zero-knowledge of the CP-SNARK CP′

and CP′′ and by the hiding property. As for knowledge soundness, we let the extractor be the same of CP′′

on instance (cM ′ , cN,c, cR,c). Because of the knowledge soundness of π3 and by Eq. (33) we have that the
extracted matrix M′ is of the form M′ = M ⊗ I. Because of the knowledge soundness of π1 and π2 and
Eq. (31) we have that the commitments cN,c and cR,c commits to c(N) and c(R). Finally, because of the
knowledge soundness of π4 we have that M′ · c(N) = c(R) and thus because of Eq. (32) we have that the
extracted witness (once parsed adequately) is valid for the relation.

F Efficiency Breakdown for our Matrix Lookup Arguments

– Proof size. Our protocol requires one zkcq+proof (9g1 +1f), plus: three KZG commitments, four group
elements (πR and πR′), and one field element. The total proof size is 16g1 + 2f.

– Proving time. In addition to the zkcq+prover (requiring O(nd) group operations and O(nd log(nd))
field operations) the prover performs:

43

KGen(ck):
Run the keygen algorithms of CP′ and CP′′. Moreover, derive proving and verification keys for the matrix Īn,d and for the
matrix P.

Prove(srs, (cM , cN , cR), (M , N, R), (ρM , ρN , ρR)):
Commit cR,c ← Com(ck, c(R)), cN,c ← Com(ck, c(N)).
Prove that (P; ε; r(R), c(R)) ∈ R̂′′

lin.
Prove that (P; ε; r(N), c(N)) ∈ R̂′′

lin.
Compute M′ = M⊗ I and commit cM′ ← sparseCom(ck, M′).
Prove (̄In,d; ε; colM, colM′ − s) ∈ R̂′′

lin.
Prove (ε; M′ , c(N), c(R)) ∈ R′

lin.

Verify(srs, (cM , cN , cR), π):
Parse π = (cM′ , cR,c, π1, π2, π3).
Verify the proofs:
1. π1 with instance (cR, cR,c) and verification key for P (for CP′)
2. π2 with instance (cN , cN,c) and verification key for P (for CP′)
3. π3 with instance (cM′ − Com(ck, s), cM) and verification key for Īn,d (for CP′).
4. π4 with instance (cM′ , cN,c, cR,c) (for CP′′).

Fig. 11. Our CP-SNARK scheme for linear relations with sparse matrix commitments.

• field operations required to compute polynomial evaluations for w, σ and ν K̄(X). We have deg(w) =
n, deg(σ) = n · d and deg(ν K̄(X)) = n · d.

• three multiexponentiations of size n in order to compute [σ(s)]1 , [σ(κ · s)]1 , [w(s)]1; notice that we
use the sparsity of σ (see definition of σ) (we ignore the masking factors for simplicity).

• four multiexponentiations of size n · d in order to compute group elements πR and πR′ (two batched
KZG proofs in zero-knowledge).

– Verification time. In addition to the steps for zkcq+’s verifier (requiring 7 pairings), verification
requires: a constant number of group operations and six pairings (we use the fact that we can batch
some of the pairing equations). The total number of pairings performed by the verifier is 13.

G Details on the Experimental Evaluation

Here we provide details on the machines, their running times, and the concrete efficiency analysis for esti-
mates.

For the experimental parameters referred to in the main text:

– Our proving time if run on our machine (hereafter OM) is below 4s.
– Our proving time if run on machine from [39] (hereafter TM) is below 13s (at least 9x faster than the

approach in [39])

We stress that these are quite pessimistic upper bounds. Below we detail how these numbers are derived.

G.1 Details on the Machines and Their Running Times

A setup of the machines can be found at:

https://aws.amazon.com/ec2/instance-types/

As mentioned in footnote 18,OM is an EC2 c5.9xlarge and TM is an EC2 c5n.2xlarge.
On OM, an MSM of size 100K in G1 is approximately 140ms (using arkworks; we derived these numbers

running the Zkalc framework on OM24). On TM, the same MSM requires approx 450ms.
24https://zka.lc/

44

https://aws.amazon.com/ec2/instance-types/
https://zka.lc/

G.2 Details on Analysis and Estimates

We can break down the proving time in the following sub-pieces:

Total time = time(commitments) + time(zklookup) + time(zkrange) + time(zkstat)

Parameters of interest: d = 50, m = 2000 and k = 10 (see paragraphs starting on page 24 for definitions).
Below MSM(x) stands for one multi-scalar multiplication of size x. To estimate field operations we use the
conservative cost assumption 4Fops ≤ 1G1ops. MSMs are in G1.

Time(commitments):

– c1, c2, c3, cX : 2MSM(md) + 1MSM(d) + 1MSM(md)

Time(zklookup):

– zkcq+: 7MSM(md) (see Section 4.1, Section 4.2 and Appendix C)
– matrix lookup (non-zkcq+ part of the proof): 3MSM(m) + 4MSM(md) (see Fig. 2 and Appendix F)

Time(zkrange):

– Batched cq+: 7MSM(md) (see Section 4.1)

Time(zkstat):

– The main computation in zkstat involves proving relation in Equation 27. Even with an R1CS-based
(Rank-1 Constraint System) general purpose SNARK, this relation can be implemented very efficiently
For example, an upper bound on a naive implementation is ≈ m · k (with a very small multiplicative
constant). This number accounts for implementing the equality predicate (bit decomposition and bit
equality checks, done m times) and a sum of m bits (which can be described with a single constraint row
in an R1CS). For representative values of m and k—respectively 2000 and 10 (see Figure 5 in [39])—
this roughly corresponds to 20K constraints which results in an additional proving time of only tens of
milliseconds. .

Final sum: Summing the above, we obtain: 17MSM(md) + 3MSM(m) + 1MSM(d). This quantity is for
cryptographic operations. In order to also account for field operations, we apply our cost assumption from
above and add an additional 25% cost. The concrete numbers we obtain are those stated above.

45

	Lookup Arguments: Improvements, Extensions and Applications to Zero-Knowledge Decision Trees
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Commit-and-Prove SNARKs
	2.2 Extractable Commitment Schemes
	2.3 Polynomial, Vector and Matrix Commitment Schemes

	3 Zero-Knowledge Matrix Lookup Arguments
	4 Our New Zero-Knowledge Lookup Arguments
	4.1 cq+ Lookup Argument
	4.2 Our fully zero-knowledge lookup argument

	5 Our Matrix Lookup Argument
	5.1 The Straw Man Solution
	5.2 Our scheme
	5.3 Concrete Efficiency

	6 Zero-Knowledge Decision Tree Statistics
	6.1 Security Model
	6.2 The Extended Encoding of Decision Trees
	6.3 Extractable Commitment to Decision Trees
	6.4 CP-SNARK for Statistics on Decision Trees
	6.5 Efficiency and Concrete Instantiations

	A On Applying Other Backends to CCS:ZFZS20
	B Additional Material on sec:preliminiaries
	C Additional Material on sec:vectorlookup
	C.1 Security Proofs of cq+
	C.2 Our fully zero-knowledge lookup argument

	D Additional Material on sec:mtxlookupcompiler
	D.1 Rows-Columns Matrix Lookup

	E Additional Material on sec:zkDT
	E.1 The Extended Encoding of Decision Trees
	E.2 Extractable Commitment to Decision Trees
	E.3 CP-SNARK for Statistics on Decision Trees
	E.4 CP-SNARKs for Linear Relations with Sparse Matrix Commitment

	F Efficiency Breakdown for our Matrix Lookup Arguments
	G Details on the Experimental Evaluation
	G.1 Details on the Machines and Their Running Times
	G.2 Details on Analysis and Estimates

