
OPTIKS: An Optimized Key Transparency System

Julia Len1, Melissa Chase2, Esha Ghosh2, Kim Laine2, and Radames Cruz Moreno2

1Cornell Tech, New York, NY∗
2Microsoft Research, Redmond, WA

Abstract
Key Transparency (KT) refers to a public key distribution
system with transparency mechanisms proving its correct
operation, i.e., proving that it reports consistent values for
each user’s public key. While prior work on KT systems have
offered new designs to tackle this problem, relatively little
attention has been paid on the issue of scalability. Indeed, it is
not straightforward to actually build a scalable and practical
KT system from existing constructions, which may be too
complex, inefficient, or non-resilient against machine failures.

In this paper, we present OPTIKS, a full featured and op-
timized KT system that focuses on scalability. Our system
is simpler and more performant than prior work, support-
ing smaller storage overhead while still meeting strong no-
tions of security and privacy. Our design also incorporates
a crash-tolerant and scalable server architecture, which we
demonstrate by presenting extensive benchmarks. Finally, we
address several real-world problems in deploying KT systems
that have received limited attention in prior work, including
account decommissioning and user-to-device mapping.

1 Introduction

The term Key Transparency (KT) refers to a key distribution
system – a key directory – that provides transparency guar-
antees for its operation. These transparency properties are
often implemented using cryptographic proof techniques, but
may in some cases be implemented using trusted execution
environments as well. While KT cannot prevent the system
from misbehaving (for example, making an unrequested key
update on a user’s account), it ensures any incorrect behavior
will be detected either immediately, or with a delay.

The importance of KT is particularly evident in end-to-
end encrypted (E2EE) communication. If the communication
service simply distributes the public keys of communication
partners, nothing would prevent it from inserting itself into

∗Work partially done at Microsoft Research.

the conversation as a meddler-in-the-middle (MitM) and cap-
turing traffic intended for the victim. Realizing this obvious
problem, some communication system providers have imple-
mented mitigations like security codes, which require scan-
ning QR codes for text-based messaging or reading out long
strings of numbers among participants for calls or meetings.
However, using these techniques requires manual interaction.
KT provides an automated way of checking that the users are
getting the correct keys: as it requires no user interaction, it
provides a much more usable and secure solution.

In a KT system, the server maintains the directory of user
public keys. It periodically publishes a privacy-preserving1

commitment to its current directory on a bulletin board. The
server produces a cryptographic proof of consistency along
with any keys it distributes: the purpose of this proof is to show
that the keys distributed are both the latest and consistent with
the commitment posted on the bulletin board. A KT system
supports two types of queries. The user devices can monitor
their own key history by asking for their key history and proof.
Users can also ask for the latest key of their contacts.

KT has gained significant traction, both in industry [4, 25]
and academia [6, 8, 12, 17, 18, 22, 24]. This increased inter-
est is also evident from the developing IETF standardization
effort [19]. Notably, WhatsApp [14], Apple iMessage [1],
and Proton Mail [2] recently deployed KT, with WhatsApp’s
design based on academic systems SEEMless [6] and Para-
keet [17], iMessage’s design based on CONIKS [18] and
Proton Mail’s design combining ideas from CONIKS [18],
SEEMless [6] and Parakeet [17].

While there has been a rich body of literature on KT sys-
tems, most of these prior systems lack important features like
scalability, among others. To the best of our knowledge, Para-
keet is the first paper tackling scalability challenges that arise

1Privacy: The keys maintained by a user as well as their key updates can
be sensitive information. Accordingly, academic and industry proposals [4, 6,
8, 14, 17, 18] and recent standardization efforts [19] have emphasized privacy
as an explicit goal for KT systems. Thus, we also aim for privacy as a goal of
our system: in particular, lookups for a client’s key should not leak anything
about other keys stored by the system outside of what is returned by the
lookup itself.

when moving from academic proposals to large-scale deploy-
ments. This is an important first step, but the design misses
some key attributes as well as optimizations. In this paper, we
present OPTIKS, a full-featured and optimized KT system.
We show that OPTIKS achieves the same level of security and
nearly equivalent privacy as Parakeet using a much simpler
and more scalable design.

Prior work: CONIKS, SEEMless, and Parakeet. To better
understand how we improve over prior work, we begin with
a brief technical overview of previous designs. The first KT
system with (content) privacy was CONIKS [18]. At a high
level, CONIKS works as follows: at every epoch, the server
computes a sparse Merkle tree-based hash digest of its entire
directory and publishes it. Notably, CONIKS places the key
for a client at the same position in the tree each time. Clients
are then required to check their key is correctly represented
in the digest each epoch.

SEEMless [6] removes this burden from clients by main-
taining one tree storing all current and historical key updates.
The client can then check a single tree and see exactly when
and to what values their key was updated. SEEMless also
improves privacy, by always appending any new key changes
to the tree in new (random) positions; these positions are
chosen using a verifiable random function (VRF) which guar-
antees a unique but pseudorandom position for each entry.
But, this approach increases storage over time. Moreover,
SEEMless’s design requires the server to perform compli-
cated bookkeeping that maintains, among other things, two
copies of the tree, effectively doubling the storage and update
costs. Parakeet [17] improves the storage expansion in SEEM-
less by optimizing the trees, but it still maintains two trees.
Its approach to compaction is to increase the bookkeeping
complexity by marking nodes as ready for deletion.

In more detail, SEEMless and Parakeet maintain two trees,
which [6] refers to as the all and old trees. The all tree stores
all keys ever added to the system, while the old tree only
stores stale versions of keys. When a client looks up a key, the
server provides a non-membership proof that the key’s latest
version is not in the old tree to show it is not stale. When the
client monitors its own key, it checks that all outdated key
versions are indeed added to the old tree, thus guaranteeing
that a key lookup can only return the latest key.

OPTIKS-core: Algorithmic optimizations. We first
present OPTIKS-core, a protocol which incorporates algorith-
mic optimizations over prior work. To this end, we make sev-
eral key observations. First, we cut storage in half by changing
the way the client verifies it is getting fresh keys. Second, we
consider how the protocol will be used in practice and opti-
mize for those usage patterns.

Recall that the goal of the server is to prove the key it
serves has been logged against the specified username and is
the latest version. We observe that the old tree is solely for
proving this freshness guarantee. We can therefore completely

remove the old tree by changing the freshness proofs. As our
first optimization, we note that an equivalent freshness proof
is to show that the current version is the latest version in the
tree; we can do this by giving a non-membership proof for the
next version number. This allows us to completely remove
the old tree. Since the trees are nearly equivalent sizes, our
approach immediately cuts the storage and update costs by
half compared to SEEMless and Parakeet.

For the second optimization, consider how users might in-
teract with the system. We expect that clients will occasionally
update keys and look up keys of communication partners, but
will regularly, and ideally frequently, monitor their own keys
to ensure they have not changed unexpectedly. OPTIKS-core
is thus optimized to minimize the cost of this latter, more fre-
quent operation of client monitoring, at the cost of somewhat
more expensive key lookups. This also allows us to signif-
icantly simplify the construction, which makes it easier to
explain and implement.

Specifically, we eliminate the complex marker-based book-
keeping logic in SEEMless and Parakeet by changing the
lookup and key history proofs. In particular, each key
lookup now returns membership of all key versions and non-
membership of the next version. Clients then verify all key
updates for the queried user (in Section 5, we discuss how
to reduce this overhead via client caching). Notably, client
monitoring of its own key is then the same as key lookups,
thereby reducing system complexity.

Notice that since the tree is append-only, the client only
needs to check once that each key update has been included.
After that (unless its key has changed), each time it monitors
it only needs to check that the key has not been updated to
the next version unexpectedly. This then reduces the typical
expected client monitoring cost to that of verifying a single
non-membership proof. In contrast, the cost of client moni-
toring for SEEMless and Parakeet scales with the number of
client key updates and (logarithmically) with the number of
epochs. Our approach of optimizing for the most common op-
eration thus significantly reduces expected deployment costs
and simplifies the protocol. We note that while this does
slightly increase privacy leakage, we believe this increase is
reasonable, particularly because it is further limited by the
other features we propose.

We observe that ELEKTRA [15] takes a similar approach,
although it adds the additional complexity of requiring signa-
tures and hash chains. From that perspective, our result can
be seen as extracting out and analysing security of the core
algorithm beneath ELEKTRA, without the overhead and com-
plexity that that work inherits from Keybase and from their
stronger security goals. See Section 8 for further comparison.

The OPTIKS-core protocol described so far roughly
matches with the functionality and security guarantees pro-
vided by CONIKS, SEEMless, and Parakeet.2 Importantly,

2Parakeet does deal with storage overhead, which is the first of the
OPTIKS-ext features that we will discuss.

by itself OPTIKS-core is significantly more efficient in the
most frequent expected use case of the system. However, as
discussed above, there are still significant limitations to de-
ployment. We thus also present OPTIKS-ext, which aims to
address these limitations.

OPTIKS-ext: Further improvements. Perhaps the most
significant contribution of OPTIKS-ext is its approach to lim-
iting storage growth. We modify the append-only all tree by
integrating the notion of a longer time period. For example,
if our epoch is on the order of a second, this time period
might be on the order of a month. At the beginning of each
time period, OPTIKS uses only the most recent key for each
client to construct a new tree; it then appends any subsequent
updates of the current time period to this tree. Clients are
responsible for checking their keys every time period to make
sure that the final key in each time period is indeed the same
as the first key in the next. Implementers can choose which
trees from old time periods to store and which to delete. Our
design requires that clients be online frequently enough to
perform these checks before the old time periods are deleted,
which we view as reasonable since time periods will be long.
We further note that [17] makes a similar assumption about
its users to enable compaction. Notably, however, their com-
paction mechanism is more complicated and requires more
bookkeeping compared to our time-period-based approach.
Another benefit of this design over [17] is that it offers a lim-
ited form of post-compromise security for privacy, since each
time period uses a new key for ensuring privacy. It also limits
query leakage from our design, in that the query reveals the
user’s updates only in the current time period.

We highlight that the flexibility of deleting data from old
time periods provides a trade-off in soundness guarantees. In
particular, if implementers choose to delete data from old time
periods and a user did not come online during some previous
time period to check their keys, the user gets no security
guarantee for that period. In other words, fake keys might
have been distributed on that user’s behalf during the missed
time period, and the user could not detect this. However, the
benefit of our design is that the time period is a tunable system
parameter, so that systems with greater security concerns can
elect to store data from older time periods. Thus, OPTIKS
provides a way to smoothly trade off security for more storage.

Additionally, OPTIKS addresses vital features for deploy-
ing KT that prior work does not, such as user account decom-
missioning or how to resolve the tension between external
facing human-readable usernames and internal facing UUIDs
(or equivalent identifiers) for indexing into the KT directory.
At a high level, we address these by adding additional data
structures, but this must be done carefully to avoid subtle
issues. To illustrate the subtlety, let us take the decommis-
sioning feature as an example. When a user stops using the
system, they will presumably no longer be monitoring their
own key history. Ideally, a KT system should still ensure that

a malicious service provider cannot replace their key and
impersonate them in future communications.

In OPTIKS, we enable this by maintaining an additional
tree to keep track of the decommissioned user accounts. At
first glance, this seems wasteful – one might ask why we
cannot just add the decommissioned usernames to the same
tree for each time period? This is because we want the tree of
decommissioned usernames to persist through the lifetime of
the system and not just between time periods, regardless of
whether the decommissioned user is available to monitor it.

Architectural innovation. Prior work considers a mono-
lithic service provider with no specifics on how it operates.
OPTIKS contributes a novel system architecture, where we
physically separate the query component from the update
component. This distinction enables OPTIKS to use more
optimal memory representations for the Merkle tree nodes in
each component. The benefits are numerous, including better
performance, more efficient parallelized updates, and minimal
service downtime at epoch boundaries. Many of these ideas
can improve other KT systems as well.

In more detail, for updates, we use a linked node represen-
tation, where the cost for looking up child nodes is simply
the cost of random memory access. Our experiments show
that this is at least 2.5 times more efficient than inserting in a
hash table representation. It also lends itself to a much more
efficient parallel update algorithm. For example, our experi-
ments show that parallel updates on 16 vCPUs improves our
batch update performance by 3.7x, whereas Parakeet (imple-
mented using a hash map for node storage) only achieves a
1.3x speedup. On the other hand, a hash table representation
is more practical for serving queries, as it supports very fast
partial tree node updates, essentially only requiring pulling
updated nodes from a database.

Another advantage is that this separation allows us to tai-
lor the implementation separately to the case of updates or
queries, in particular in terms of thread-safety. Instead of a
monolithic system like Parakeet, for example, that must use
extensive locking to make sure that incomplete updates do
not produce inconsistent queries, our system trivially prevents
this kind of conflict since update and query operations are
performed on different machines. We need only worry about
thread-safety within the query server and separately within
the update server, allowing us to use much lighter-weight
techniques. Indeed, our parallel update algorithm does not
use any locks at all. On the query side, we need a single lock
to indicate that some of the nodes are being updated with new
data downloaded from a backing database, minimizing any
downtime at epoch boundaries.

This separation also makes it trivial to scale the query ser-
vice horizontally, just by adding more machines. In this case
update downtime can be entirely eliminated by interleaving
the query server updates, so that there are always sufficient
machines available to respond to traffic. This does mean,

System Storage Lookup Update Audit Client
Monitoring

CONIKS [18] e ·n 1 k log(n) 1 e
SEEMless [6] 2n 3 2k log(n) 2(k+ k log(n)) v+ log(e)∗

Parakeet [17] 2n 3 2k log(n) 2(k+ k log(n)) v+ log(e)∗

OPTIKS n v+1 k log(n) k+ k log(n) 1

Figure 1: Asymptotic costs of OPTIKS in comparison with
other KT systems. For client monitoring we assume clients
may cache proofs they have already checked. We note that
(*) represents worst case cost; the exact cost is 2⌈log(v)⌉− v+
log(e).

however, that these servers may serve slightly different com-
mitments. We show how to modify our PAHD construction
so that transparency can still be maintained – another novel
feature.

A final important part in our architecture is a cache to store
recently used VRF values on the query side, as evaluating
the VRF is a heavy public-key computation. The benefit of
a cache hit is immense, providing as much as 9 times higher
query throughput for the key directory (ignoring networking
and web service overheads).

Comparison to prior KT systems. We concretize our com-
parison of OPTIKS with prior related systems in Figure 1,
which shows the algorithm asymptotics of each system. We
assume a directory with n key-value pairs and e epochs. We
also assume an update that will add k new key-value pairs,
a lookup for a key with v versions, and a client monitoring
its key when it has not changed. As we mentioned, this lat-
ter operation represents what we expect as the majority of
client monitoring cases. For simplicity, we assume no VRF
computation. Since the core data structure for each system
is a Merkle tree, we measure most operations in the number
of nodes affected. Specifically, we measure storage in the
number of nodes throughout system life, lookup and client
monitoring in the number of (non-) membership proofs to
check, update in the number of nodes to modify, and audit
in the size of proof provided to each auditor per epoch in the
number of nodes to download.

OPTIKS achieves the best performance for storage, client
monitoring, and update cost, the latter of which is the same as
CONIKS. The algorithmic optimizations of OPTIKS enables
it to halve the audit costs of SEEMless and Parakeet, although
it is still greater than the constant-time audit cost of CONIKS,
in which an auditor only needs to check the latest root of the
tree has been added to a hashchain. However, this cost comes
at the trade-off of clients needing to come online and verify
keys every epoch.

As mentioned, the increased performance of OPTIKS in
other categories comes at the trade-off of worse lookup per-
formance. However, given that we expect the typical use case
to have a single key version each time period for clients, v

is likely to be 1 in most cases, which means we expect most
clients to verify only 2 proofs when doing a lookup.

Our experiments further show that OPTIKS is significantly
more performant and scalable than prior work. For example,
for a key directory of 220 keys, a single instance of our Query
Service can serve more than 4000 queries per second at a
bandwidth of around 20 MB/s, while our Update Service/Task
can process more than 1000 updates per second while sustain-
ing a latency of one second. For a much larger key directory
of 226 keys, our Query Service can still serve 2240 queries
per second at a bandwidth of 13.89 MB/s, and our Update
Service/Task can process still around 280 updates per second;
in this case the latency remains still less than 4 seconds on
average. All of these experiments include the cost of database
access, networking, and REST API overhead. We note that
the major bottleneck for our update rate is database write
performance, since we use costly multi-table transactions to
simplify our implementation.

To summarize, we make the following contributions:

• OPTIKS-core. We first present OPTIKS-core, a KT sys-
tem that incorporates novel algorithmic optimizations
which enables it to be significantly more efficient and
performant than [6, 17, 18]. The key insight is that we
optimize for the typical use case in practice when a client
is expected to rotate its long-term key relatively infre-
quently, but where the client wants to monitor relatively
frequently to verify that this key remains unchanged.

• OPTIKS-ext. We enhance OPTIKS-core with additional
features important for deployment. The crucial features
include: keeping the core data structure compact, adding
user account decommissioning, and adding support for
multiple usernames and user devices.

• Split architecture. OPTIKS uses a novel architecture,
where the update and query services are physically sep-
arate from each other. This allows us to use different
memory representations for the Merkle tree nodes in
each of these components. We believe that our split ar-
chitecture is generally applicable to many Merkle tree-
based systems where the read and write workloads are
unbalanced.

• Experiments. We provide detailed benchmarks for our
system, dividing them into micro-benchmarks and full-
system benchmarks. To demonstrate that our system is
more scalable than prior work, we run it on benchmarks
significantly larger than any presented in prior work.

2 System Setup and Overview

Our KT system models a central server that stores a directory
of usernames and the corresponding public keys. There exist
intermittent time intervals that we refer to as epochs, which

we expect to be on the order of seconds, during which the
server updates the directory it stores with new key update
requests and posts a commitment to this data. Our system also
includes longer time intervals (e.g. a month) that we refer to as
time periods, which we will discuss in Section 5. Users of the
system can query the server to look up another user’s key(s) or
to get the history of the updates to their own key(s). We also
assume that third-party auditors (though the users can play
the role of the auditors as well) audits the commitments for
consistency. We now describe this process in more detail, with
an overview of our assumptions, the security properties we
expect such a system to meet, and a summary of our solution.

Participants. Our system has the following participants:

• Users. A user can register an account with the server and
also may permanently leave the system by decommission-
ing their account. Associated to each user is a username,
such as an email or human-readable string, that represents
their public-facing identity in the system. Also associated
to each user is an internal, unique, and static user id, such as
a UUID, that is not exposed to human users of the system.
Note that in practice a username may change or multiple
usernames may be associated with a user (e.g., if they add an
extra email to their account), so the user id always uniquely
identifies the user within the system.

• Client devices. Each user has at least one device which they
use to communicate (e.g. phones, computers, etc.), where
each device has its own public key that must be stored and
distributed by the system on the device’s behalf. We do
not assume any coordination between the user’s devices.
Clients may update their public keys, look up the keys of
other clients in the system, and also check the history of
updates to their keys. Associated to each client is an internal,
unique device id, such as a UUID, that is not exposed to
human users of the system.

• Server. The server maintains the directory mapping users to
their public keys and distributes these keys among the users
of the system when queried. It posts a public commitment
to the data each epoch. In this work, we also refer to the
server as the “service provider.”

• Auditors. Auditors verify updates made by the server are
well-formed via the publicly posted commitments. To en-
sure privacy, this verification does not involve checking
the public keys themselves are correct (indeed, this task
falls onto clients, as we mention above). Auditors can be
third-party entities or security-conscious users.

• Bulletin board. The server posts the commitments to its
directory on a public bulletin board to which other partici-
pants of the system have access. The bulletin board should
be tamper proof as well as append-only and also all partici-
pants should have a consistent view of its contents.

Assumptions. As is standard in any KT system, we assume

that the server can be malicious and distribute incorrect keys
for its users (in the hope of mounting a MitM attack). How-
ever, the server is trusted to exercise access control and not
give out every client’s public key to everyone else. In other
words, the server is trusted for privacy.

The client devices can be malicious in that they may aim
to learn private information (public keys, how often a certain
user changes her key, etc.) about other clients who are not on
their contact list.

We assume there exists at least one honest auditor who
verifies each update made by the server via commitments
posted to the bulletin board.

Our system also relies on all participants having a consis-
tent view of the commitments posted to the bulletin board,
which we highlight is a core requirement in all KT systems.
As discussed in [6, 12, 17, 18], this could be implemented, for
instance, via a gossip protocol or by posting the commitments
to a blockchain. Furthermore, we assume the clients, server,
and bulletin board have approximately synchronized clocks.

Although we do not model this, we assume that the server
enforces some kind of access control for clients querying
its system, e.g. rate limiting key lookups or executing key
lookups only if the requesting user is a contact of the user
whose key is being queried.

Our system relies on users being able to verify the history
of their key updates. Therefore, users must have some way of
keeping track of their devices and the approximate times of
their key updates. This is an assumption made of other KT
systems like SEEMless [6]. One way to facilitate this is to
enable users to add notes to their key updates, such as “added
new laptop.” Also crucial to our system is that clients must
be online to check their key history each time period. We
utilize this assumption as part of our scalability optimizations,
which we discuss in Section 5. Given that time periods are
long, we expect most clients will achieve this in practice and,
indeed, this is a common assumption of KT systems [12, 17].
Moreover, this is an improvement over many KT systems
which assume that a client must be online each epoch to
check their keys [18].

Lastly, the core data structure underlying our KT system
is a dictionary that uses a key-value abstraction. Since our
construction involves public keys, wherever possible we dis-
ambiguate between the two by referring to them either as
dictionary keys or public keys explicitly. However, where it is
clear from context, we will simply say “key” to mean either
dictionary key or public key.

Security Properties. At a high level, we expect OPTIKS to
achieve the following security properties. We present these
definitions in more detail in Section 3 and Appendix C.
• Completeness. When the server is honest, a user that looks

up another user’s key should receive the latest value of that
key, and this should be consistent with what other users of
the system see. This also means that all proofs the server

provides during a lookup must verify.
• Soundness. Assuming that all epochs are audited, the server

cannot lie about a key’s value during a lookup without the
inconsistency being caught during a history check.

• Privacy. A KT system should maintain privacy for the users
of the system and updates to their keys. We model this with
a definition that says participants of the system (excluding
the server) should not learn anything from queries to the
server except for some well-defined leakage function. For
instance, a key lookup for a user should not leak anything
about the keys of other users of the system.

3 Building Blocks

In this section, we introduce the primitives Private Au-
thenticated History Dictionaries (PAHD) and ordered Zero-
Knowledge Sets (oZKS), which form the core of our construc-
tion.

Private Authenticated History Dictionaries. We define
Private Authenticated History Dictionaries (PAHD), a new
cryptographic primitive which forms the basis for OPTIKS.
This primitive extends the authenticated history dictionary
introduced and used by VeRSA [23]. At a high level, a PAHD
enables storing and committing to data using a dictionary key-
value abstraction. A server can update what it stores, which
begins a new epoch with a new commitment to the dictionary,
by adding new key-value pairs or updating the values for
existing keys. Notably, the structure preserves the history of
changes for keys. Clients can look up a key to retrieve its latest
value, along with a proof that the value is correct. Clients can
also check the update history for a particular key to learn
when it was updated and to what values—this can be used
to verify that the recorded history of changes is accurate. We
also assume that associated with a PAHD is a randomness
space R from which a random seed can be chosen to initialize
a PAHD. We provide an informal overview of this primitive
below and a detailed description in Appendix C.
• PAHD.Init: The initialization algorithm outputs the initial

commitment to the empty dictionary.
• PAHD.Upd: The update algorithm updates the dictionary

with a set of key-value pairs and outputs the updated dictio-
nary and update proof.

• PAHD.Lkup / PAHD.VerLkup: The lookup algorithm re-
trieves the value v for key k along with a membership proof
if k is in the dictionary or non-membership proof if k is not.
The lookup verification algorithm then verifies this proof.

• PAHD.Hist / PAHD.VerHist: The history algorithm returns
the set of values that key k has been assigned over time, the
epochs during which each value was assigned, and the mem-
bership proofs for each key-value mapping. The history
verification algorithm verifies the proofs that are returned.

• PAHD.Audit: The audit algorithm verifies the update proof
between two consecutive commitments.

Security definitions. We present an overview of the security
properties that a PAHD should meet below and formalize the
definitions in Appendix C.

• Completeness. Completeness captures the following cor-
rectness properties: if a PAHD is initialized and updated
honestly, then auditing between any two epochs should suc-
ceed, the lookup for any key k should return its latest value
v and should verify, and the history check for k should re-
turn the correct history of values and the epochs they were
added and should also verify.

• Soundness. PAHD soundness guarantees that, assuming
the data store has been audited successfully by an honest
auditor each epoch, a lookup for a key k cannot return some
value v that is inconsistent with what the history algorithm
returns for k at that epoch. For a PAHD scheme that meets
soundness, this means that the server cannot lie about a
key’s value during a lookup without the inconsistency being
caught during a history check. However, this does mean
that the user who added the key must perform such history
checks to verify that the key’s value is correct.

• Privacy. The privacy goal for PAHD is that the outputs of
Upd (which is used for auditing), Lkup, and Hist should
not leak anything beyond the answer and what is specified
by a well-defined leakage function L on the directory’s
state. We model this using a real-ideal world computational
indistinguishability game where a simulator must simulate
the outputs of these algorithms using the given leakage.

To instantiate a PAHD scheme, we make use of ordered
Zero-Knowledge Sets, which we define next.

Ordered Zero-Knowledge Sets. An ordered Zero-
Knowledge Set (oZKS) is a primitive that lets a potentially
malicious prover to commit to a collection of (label, value)-
pairs such that the prover can later prove the membership or
non-membership of labels in the collection succinctly. The
primitive also enables append-only updates to the collection
of pairs. This primitive additionally requires a strict ordering
on elements inserted by attaching the epoch of insertion along
with the label-value pairs and committing to this as part of the
data. This primitive is zero-knowledge because the commit-
ment does not leak information about the collection of data
and the proofs do not leak information about any other data
in the collection.

oZKS builds on the aZKS primitive introduced in [6]. Prim-
itives closely related to oZKS were defined in [8, 17, 21]. For
a detailed description of the related notions, see Appendix B.
We provide an informal overview of this primitive below and
a detailed description in Appendix B.
• oZKS.Init: The initialization algorithm outputs an initial

commitment to the empty datastore.
• oZKS.Update / oZKS.VerifyUpd: The update algorithm

adds a set of new label-value pairs to the datastore, out-
putting the new commitment to the data and an update

proof. The update verification algorithm then verifies the
update proof between consecutive commitments.

• oZKS.Query / oZKS.Verify: The query algorithm returns
the value associated to the queried label, along with the
query proof and the epoch that the label was added (or ⊥
and a non-membership proof if the label is not a member).
The query verification algorithm verifies the value returned
by a query using the proof.

Construction. We construct an oZKS from an append-only
strong accumulator (aSA), a simulatable verifiable random
function (sVRF), and a simulatable commitment scheme
(sCS), as in [6, 17]. See definitions in Appendix A.

The aSA is constructed from a Merkle Patricia Trie and
serves to commit to a dictionary. The label-value pairs serve
as the leaves of the tree, where labels are used to specify
the location of the leaf. Instead of using the label directly
(which could leak sensitive information), we use the sVRF to
compute the positions of the labels in the tree. We then use
the sCS to commit to the label’s value; this commitment and
the epoch when the label was added serve as the value stored
for each label. For more detail see Appendix B.
Security Definitions. Just as for an aZKS, we expect an oZKS
to meet completeness, soundness, and privacy. We describe
these definitions in detail and show that our construction
meets them in Appendix B.

4 OPTIKS-core: Core OPTIKS Protocol

In this section, we describe a simple, lightweight PAHD con-
struction which we use as the core of OPTIKS, referred to
as OPTIKS-core. For simplicity, we assume that each user
has one client device and so we use usernames directly as
the dictionary keys and the corresponding cryptographic pub-
lic keys as the values. (We consider the multi-device setting
in Section 5.) Our protocol relies on an oZKS as described in
Section 3 for its core building block.
▷ PAHD.Init(r): The server chooses a random seed and ini-

tializes an empty oZKS via oZKS.Init by giving r as input.
The oZKS commitment is returned as the initial commit-
ment and the oZKS initial state is stored in the server’s
state. The server also initializes the epoch to 0 and stores
this in its state.

▷ PAHD.Upd(stt−1, [k j,v j] j): The server adds the key-value
pairs that are input to the oZKS to create a new commit-
ment to the dictionary. It first checks that all the keys to
be updated are unique; if not, it returns ⊥. In order to dif-
ferentiate between versions for a key, the server uses the
key concatenated with its version number as the oZKS la-
bel. We assume that the server keeps track of the version
number for each key in its state. Thus, for each key-value
pair (k,v), the server first checks if the key already exists
in the oZKS. If it does not, the server uses (k | 1) as the
label. Otherwise, if the key is already at version n, then

the server uses (k | n+ 1). Once all the label-value pairs
have been formed, the server adds them to the oZKS via
oZKS.Update. The server increments the epoch t− 1 in
its state to t, and the resulting oZKS commitment comt
and epoch t serves as the PAHD commitment for epoch
t: (comt , t). The oZKS update proof πupd serves as the
PAHD update proof Π

Upd
t for epoch t and is stored in the

server’s state. The server also stores in its state the new
oZKS datastore and state.

▷ PAHD.Lkup(stt ,k): For a lookup request for key k, the
server retrieves from its state the latest oZKS commitment
comt and the latest version number α for k (where α = 0 if
k is not in the PAHD). If k is in the PAHD, then the server
forms labels (k | 1), . . . ,(k | α) and calls oZKS.Query for
each label to get back [(πi,vi, ti)]αi . To retrieve the non-
membership proof πα+1 for the next version of the key (or
to prove that k is not in the dictionary when α = 0), the
server calls oZKS.Query for label (k | α+1). The server
returns either vα as the value for k if α > 0 or ⊥ otherwise.
The server returns as its lookup proof:

– Correct version i is set at epoch ti: For each i ∈ [1,α],
πi serves as the membership proof for (k | i) with value vi
and associated epoch ti in oZKS w.r.t. comt . This means
the server must return [(πi,vi, ti)]αi as part of the proof.

– Server could not have shown version α + 1: Proof
πα+1 serves as the non-membership proof for (k | α+1)
in oZKS w.r.t. comt .

▷ PAHD.VerLkup(comt ,k,v,π): The client first parses comt
as (com, t). Then it verifies each membership proof for
labels (k | i) for i ∈ [1,α] and non-membership proof for
(k | α+ 1) w.r.t. com and t via oZKS.Verify. We want to
preserve a total ordering of key versions and so wish to
prevent this from happening. Lastly, the client verifies that
the update epochs t1, . . . , tα are monotonically increasing.

▷ PAHD.Hist(stt ,k): This algorithm proceeds the same as
Lkup, except that in its syntax it explicitly returns all key
versions rather than including them in the proof. Looking
ahead, history checks will be different when we introduce
our scalability optimizations in Section 5.

▷ PAHD.VerHist(comt ,k, [(vi, ti)]ni ,Π
Ver): This algorithm

proceeds identically to that of VerLkup.
▷ PAHD.Audit(com j,com j+1, j, j + 1,ΠUpd

j+1): The audi-

tor verifies the oZKS update proof in Π
Upd
j+1 via

oZKS.VerifyUpd and then checks that j + 1 ≤ t, where
t is the current epoch.

Security and Privacy of OPTIKS-core. We formally prove
the security of privacy of OPTIKS-core in Section C.3. Here,
we give an informal description of the leakage of OPTIKS-
core. During updates, our protocol leaks the number of keys
to be updated and the set of keys that were queried to Lkup

or Hist since the previous update. Both lookups and history
checks leak the value and epoch of addition for each version of
a key. Our leakage profile is therefore nearly the same as that
for SEEMless and Parakeet, except that key lookups in their
protocols leak only the version number for the key and the
value and epoch of addition for the latest key version. Looking
ahead, we will describe how to minimize such leakage for
lookups in Section 5.

5 OPTIKS-ext: Full Featured OPTIKS

As described in Section 1, there is a lot more to making the
system deployable beyond the base protocol. Here we discuss
in detail how we address those challenges by describing our
full-featured protocol OPTIKS-ext. In particular, we describe
scalability and reliability optimizations as well as important
feature additions to our core protocol.

Reducing storage. A major downside of OPTIKS-core is
that it must store all past key updates, resulting in storage
that grows indefinitely. To avoid this, we must find a way to
safely delete old data, without compromising the transparency
guarantees. Parakeet [17] does this with a complex system
of bookkeeping. We propose a much simpler solution: we
consider time periods of a fixed length (e.g., a month). At
the beginning of each time period, we start a new PAHD
structure, copying over each key along with its latest version.
We assume that users perform a history check at least once
a time period. (The only other system to consider limiting
storage, Parakeet, makes a similar assumption.) The user is
responsible for verifying that their latest key version from the
previous time period is accurately copied to the current time
period. The service thus only needs to retain the two most
recent PAHDs—all earlier data can be archived or deleted.

Overall, this change means that lookups will only retrieve
key updates from the current time period, which may signifi-
cantly reduce lookup cost, particularly for users with frequent
updates. History checks will return key versions from the
current time period and the previous one. Finally, note that
auditors will not need to audit the transition between time
periods. We provide more details in Appendix D.

Post-compromise security. Because we generate a fresh
PAHD with a fresh server secret every time period, we get a
limited form of post-compromise security. In particular, if the
service provider’s state is revealed at some point, it will not
affect the privacy of key updates from future time periods.

Queries w.r.t. different commitments. If we want to sup-
port a very high query throughput, one option (as described
in Section 6), is to have multiple servers responding to
oZKS queries (i.e., generating oZKS membership and non-
membership proofs). However, this introduces the possibility
that these servers might be slightly out-of-sync and thus an-
swer queries w.r.t. different epochs. Note also that a PAHD

lookup response actually consists of many oZKS query re-
sponses. Thus, we must consider the possibility that these
oZKS query responses are distributed to different oZKS
servers who respond w.r.t. different epochs. One option is
to require strong consistency between servers, i.e. that they
are always answering queries w.r.t. the same epoch, but this is
expensive. Instead, we show in Appendix E that we can relax
our PAHD to account for this.

Client caching and reducing bandwidth overhead. At
the end of Section 4, we discuss how OPTIKS-core makes
storage and efficiency improvements that sacrifice some of
the efficiency and privacy of lookups. We now describe some
improvements that enable us to improve our lookup costs.

First, we observe that when a client performs a lookup, the
client can record the latest version number; on subsequent
lookups for the same key, the client only needs to retrieve
membership/non-membership proofs for subsequent versions.
The append-only property guarantees that the earlier versions
will still be in the data structure. For example, if the client has
already performed a lookup for a contact’s key in the current
time period and that key has not changed since, then the client
only needs to retrieve and verify a single non-membership
proof. If only a single key has been added since then, then the
client only needs to check a membership proof for the latest
key version and a non-membership proof.

The above cases indicate an efficiency improvement over
the lookup protocols of SEEMless and Parakeet, which require
always checking three membership/non-membership proofs.
We note that for new lookups with many key versions, our
algorithm remains more expensive; however we conjecture
this is an outlier case, especially given that lookups return key
versions only for the current time period. Clients could thus
cache the most recent version numbers for their most frequent
contacts and extend similar savings to history checks.3

For the second optimization, we note that our lookup as
described in the core protocol requires sending all of the
user’s previous public keys in order to check membership
proofs, which increases the bandwidth required for lookups.
We can avoid this by modifying our oZKS primitive so that
it checks membership proofs without also verifying the asso-
ciated value. For a lookup the client just needs to know the
current key and that the server stored prior versions of the
key; knowing the values of the old keys is unnecessary. This
would mean that lookups could send the membership proofs
for old key versions without needing to send their associated
values, reducing bandwidth.

These optimizations also reduce the leakage of lookups,
since only the most recent value of the key and the epoch of
addition for the new versions to be checked need to be leaked.

3ELEKTRA [15] does some similar client caching; in that case the goal
is to reduce the signature verification costs as well as the communication.
However, to implement this caching for ELEKTRA, the client must at least
cache the set of keys currently authorized to sign updates, hence it would
require more client storage than the caching in OPTIKS-ext.

Account decommissioning. When a user stops using the
system, they will presumably no longer be auditing their key
history. We would still like to make sure that a malicious ser-
vice provider cannot replace their key and impersonate them
in future communications. To do this, we add an additional
oZKS4 which stores the usernames that have been decom-
missioned. This oZKS will not be reset at each time period;
instead, the service provider will continue adding to the same
oZKS throughout.5 This means our storage will need to grow
with the number of decommissioned accounts, but this growth
will be much slower than the total number of key updates.
A lookup for a key will return the usual oZKS proof and an
additional proof that the associated username is not in the
decommissioned-account oZKS. When the user requests that
their account be decommissioned, we add their username to
the decommissioned-account oZKS, and return a membership
proof when this is done. See Appendix D for more details.
Trade-offs of account decommissioning. Note that account
decommissioning does have some significant trade-offs. Once
a user decommissions their account, this would be irreversible
(by design, since otherwise the server could potentially “re-
instate" the account without the user’s knowledge and use
it to impersonate the user). This also means that there is no
way for usernames to be reused – if the username is a phone
number for example, and the user gives up that phone number,
they could decommission their account, but if that number
were given to another user they would be unable to use it
for an account. This is somewhat by design – allowing ac-
count identifiers to be transferred between users significantly
complicates both the transparency and the privacy guarantees.

In settings where account reuse is determined to be ex-
tremely important, we could modify our system to allow that
at a cost of requiring some out-of-band checks and giving
up some privacy. We describe in Appendix D how this could
be done, specifically in combination with our proposals for
supporting multiple usernames as described below.

Supporting multiple devices and usernames. While our
protocol thus far has assumed that each user has a single
client device with a static username that can be mapped to
their device’s public key by the server, in practice it is often
the case that a user will have multiple devices they wish to
use with the same account. Furthermore, a user may wish to
change the usernames associated with their account, e.g. if
they use multiple email addresses, they may wish to associate
an additional email with their account.

Because we want a single account corresponding to all of
these usernames, it might seem like it makes more sense to
index the user accounts based on an internal user id. However,
this presents a serious problem for transparency, since users

4We only need an oZKS, not a full PAHD, as we do not want entries in
this datastructure to change once they have been added.

5Note that this reduces the PCS in that an attacker who gains the secret
will be able to check whether accounts have been decommissioned, and this
ability will persist even when we move to a new time period.

will have no way of knowing whether the internal user ids
they are given are correct. It is crucial that these usernames
are human-readable and human-memorable identifiers, such
as phone numbers or email addresses, which the users can
share with each other out-of-band. To understand why, let us
consider a toy example. Say, both Alice and Bob are regis-
tered with the server with their usernames alice and bob,
respectively. But, the (malicious) server tells Alice that Bob’s
username is bobfake and tells Bob that Alice’s username is
alicefake. The server can maintain 4 accounts now: alice,
bob, alicefake, and bobfake. Since Alice will monitor her
own account (alice) and Bob will monitor the account he
thinks belongs to Alice (alicefake), no inconsistency will
ever be caught by the KT system. In other words, a KT system
can only ensure that a consistent view of the history of the
key evolution is maintained for each username and that the
username is unique within the system.

To meaningfully translate this guarantee for users, it is of
paramount importance that the users know each other by the
correct usernames. However, many E2EE communication sys-
tems have an internal immutable representation of a username
(such as a Uniquely Universal Identifier, or UUID) and this
is what they use to index the directory. This UUID is differ-
ent from the public-facing username [16]. It is meaningless
to expose these UUIDs directly to human users. Moreover,
many services may choose to allow a user to pick multiple
public-facing usernames that internally represent the same
UUID (such as multiple email addresses). We argue that KT
systems should aim for the stronger goal of providing security
no matter which username a user’s contact chooses for key
lookups. Systems in deployment have acknowledged this as
an issue [4] as well but no prior work exists integrating this
into a KT system.

To address this, we change our key-update PAHD to map
device ids to public keys and add two additional data struc-
tures. The first is an oZKS6 (called username oZKS) that
maps each username to its associated user id, and the other is
a PAHD (called device-list PAHD) that maps each user id to
a list of its associated device ids. This separation also allows
a user to have multiple usernames tied to the same account in
a straightforward way.

In response to a lookup for a particular username, the ser-
vice will return the corresponding user id and a proof w.r.t.
the username oZKS, the list of devices and a proof w.r.t. the
device-list PAHD, and the current public keys for each de-
vice7 along with proofs according to the key-update PAHD.
This provides the desired transparency and has the advantage
that changing one device’s public key, adding/removing a de-

6As discussed above, we assume that usernames are not reused, and that
once a username is associated with a particular user, that never needs to
change. See Appendix D for discussion of an alternative.

7Or if the Lookup specifies a particular device, it can just return the
current key and proof for that device. In either case, it will return the list of
devices and proof w.r.t. the device-list PAHD.

vice, or adding a username requires an update to only a single
oZKS entry. Note that if we want to combine this with the
account decommissioning discussed above, we would be con-
cerned with the case where the user wants to decomission his
entire account and no longer do any monitoring. In this case
we would user a decommissioning PAHD which stores the
user ids corresponding to decommissioned accounts. When
combined with time periods, we would want the username
oZKS to be persistent and not regenerated every time period.
See Appendix D for more details.

Privacy analysis of OPTIKS-ext. We assume that the up-
date proofs are publicly available. The leakage in our system
comes from the two building blocks: oZKS and PAHD. oZKS
updates reveal the number of items added each epoch. an
oZKS query for an item reveals when that item was added, or
(in case of non-membership) allows the user to recognize if
that item is added in the future. PAHD updates reveal the com-
bined total number of items added or updated each epoch. A
PAHD query (with the second bandwidth optimization above)
for an item reveals the item’s current value, and the epochs
at which any previous updates where made. It will also allow
the user to recognize if/when that item is added later.

Based on this our OPTIKS-ext reveals the following infor-
mation: the system reveals the number of decommissioned
users in the system at every epoch (from the decomission-
ing oZKS), and the number of usernames, users, and devices
in the system at the beginning of each time period (from the
username oZKS, device-list PAHD, and key-update PAHD, re-
spectively). For each epoch it also reveals the total number of
keys updated/added, the number of device lists modified, and
the number of usernames added (from the key-update PAHD,
device-list PAHD, and username oZKS respectively). In addi-
tion, (from the PAHD query functionality and leakage) when
Bob queries for Alice’s key, he learns 1) how many devices
she has, and what their current public keys are, and 2) any
changes to her device list or public keys that have occurred
since the beginning of the current time period. He will also be
able to tell when she next updates her device list and when she
next updates each of her keys if those changes happen during
the current time period (again from PAHD query leakage),
and recognize if/when she decomissions her account (from
the decommisioning oZKS). He will learn nothing about up-
dates to Alice’s key or device list that occur outside of the
current time period.

This is incomparable to the leakage in systems like SEEM-
less or Parakeet. One the one hand, those systems only reveal
information about the single preceding key update, whereas
we may reveal information about multiple updates if they
occur in the same time period. On the other hand, they reveal
information about the preceding key update no matter how
long ago it occurred, while we limit leakage to updates oc-
curring in the same time period. We are also strictly better in
terms of leakage about future updates – we reveal when the

Service
Provider

Query Service

Update Service

Database

Client Devices
Update Task

oZKS + VRF cache

OPTIKS Architecture

Figure 2: The system overview. The boxed area indicates the
system architecture components introduced by OPTIKS.

next update occurs only if it is within same time period, while
SEEMless/Parakeet always reveal this information. SEEMless
and Parakeet also reveal information about some additional
future updates because of the complex "marker" system that
they user; we do not reveal any such information.

6 System Architecture and Implementation

Prior works consider only monolithic service providers, avoid-
ing details on how to efficiently handle both query and update
requests, as well as how to scale both aspects of the system.
We introduce an improved system architecture, which may be
applied to other Merkle tree-based KT systems as well. Our
oZKS implementation consists of roughly 5000 lines of C++.
The rest of OPTIKS consists of roughly 2000 lines of C/C++,
and roughly 1600 lines of ASP.NET.

System Components. We present a diagram with an
overview of the OPTIKS system and architecture in Figure 2.
At a high level, we physically separate the query component,
called the Query Service, from the update component, com-
posed of the Update Service and Update Task. This approach
has several benefits. To understand why, note that the ser-
vice provider of a KT system will likely need to support a
vast number of concurrent key lookups, where the same key
is likely to be queried multiple times within a short inter-
val (e.g., if a new group call or message thread is started).
However, we expect that there will be far fewer update re-
quests, which are only handled at epoch boundaries. Our split
architecture design has the benefit that it can scale each com-
ponent separately, responding more appropriately to the dif-
ferent needs of the different components. Since the different
components benefit from different data layouts and caching
mechanisms, the split architecture enables better use of com-
pute resources, ultimately resulting in improved performance.
Importantly, it avoids service interruptions for key lookups
when updates take place at each epoch change. Finally, sepa-
rating components in this way makes it easy to ensure data
consistency across the entire system, since the Update Task,
as we will describe in more detail, is the only component that
performs database transactions. Each component can be sepa-

rately scaled up through multiple parallel threads, processes,
or VMs, as needed.

In more detail, the Query Service and Update Service are
implemented as web services providing REST APIs for key
lookups and updates, respectively. The Update Task runs pe-
riodically to update data and write required changes to the
database. When the Service Provider receives key lookup or
update requests, it calls the Query Service or Update Service
API, respectively, on behalf of client devices.

Next, we go over details of the oZKS and VRF cache, as the
design of these includes most novel aspects and has a signifi-
cant impact on the other components as well. In Appendix F,
we provide more details on the Query Service, Update Service,
and Update Task.

oZKS and VRF cache. Recall that the core building block
for OPTIKS is a PAHD, which itself is built from an oZKS.
(See Appendix B for a detailed description.) We implement
the PAHD as a combination of the oZKS primitive and logic
embedded in the Query Service, Update Service, and Up-
date Task. We implement the oZKS as a C++ library, using
BLAKE2 [3] as our cryptographic hash function.

One of the important components for constructing the
oZKS is a verifiable random function (VRF), defined in more
detail in Appendix A. In short, each key that needs to be stored
is added as a label-value pair to the oZKS. The label is com-
puted using the VRF so that all labels appear random. This
means that much of the computational overhead of the system
will be from VRF and VRF proof computations, which are
expensive public key operations. Thus, a crucial challenge
of a scalable KT system is handling the ever increasing load
from VRF operations.

OPTIKS addresses this issue by integrating a built-in VRF
cache for the oZKS to store recently used VRF values and
proofs for fast repeated access. Looking ahead, this feature
enables far higher key lookup throughput for the key directory.
We implement the VRF by adapting the IRTF internet draft
ECVRF [11] to use the fast FourQ curve [10] that allows for
an extremely fast hash-to-curve implementation and variable-
base scalar multiplication, as discussed in [9].

The Query Service and the Update Task both hold local
copies (full or partial) of the oZKS data. However, these com-
ponents interact with the data in very different ways. In par-
ticular, the Query Service needs to support quick horizontal
scaling without requiring large database reads, and running
instances must be able to quickly apply targeted updates to
their internal data structures. The Update Task needs to be
optimized for updating the entire oZKS data structure accord-
ing to pending update requests. OPTIKS thus optimizes the
oZKS for each component by running in one of two modes,
one tailored to the demands of lookups and the other for up-
dates. This ability to customize the oZKS is another benefit
of our split architecture approach. The two oZKS modes are:

• Stored mode. In this mode, the Merkle tree nodes are held in

a customizable storage system, e.g., a hash table in memory
or a database with a memory cache. While this mode is
slower and has a higher memory overhead, a major benefit
of this implementation is that updates to specific nodes can
be easily retrieved from the storage as needed. Thus, the
oZKS instance running in the Query Service uses stored
mode to enable fast and flexible updates.

• Linked mode. Here, the Merkle tree nodes are all allocated in
memory in a linked tree, which allows for very fast queries
and updates. The nodes can still be mapped to storage, but
partial updates to the linked tree are difficult to implement,
making this approach unsuitable for the Query Service.
Instead, our Update Task runs the oZKS instance in linked
mode to leverage fast updates.
Our oZKS implementation includes a flexible storage mech-

anism that enables integration with almost any desired storage
back-end. We instantiate this with a Microsoft SQL Server
database with an adjustable in-memory cache. The description
of the tables used in our implementation is in Appendix G.

7 Performance Evaluation

In this section we discuss the performance of our implemen-
tation. Since the oZKS forms the core data structure which
commits to keys, we first measure benchmarks of its perfor-
mance in isolation. Next, we evaluate the full OPTIKS system
and then compare our performance to related prior work.

In our evaluation, we wish to answer the following ques-
tions about OPTIKS:
• oZKS costs: what are the computation costs and memory

overhead for lookups and updates of the oZKS?
• Lookup costs: what is the maximum number of queries per

second OPTIKS can support?
• Update costs: what is the maximum number of key updates

per second OPTIKS can support? What is the average time
required to create a new epoch?

• Comparison: how does the performance of OPTIKS com-
pare with prior related systems?

7.1 oZKS Benchmarks
We first measure performance benchmarks of the oZKS in
isolation. This includes microbenchmarks of VRF operations,
server query and update costs, and client costs. The results
are presented in Table 1.

Experimental setup. We run the oZKS benchmarks on
an Azure E16ads_v5 virtual machine, with 16 vCPUs @
2.60 GHz and 128 GB of RAM. Recall from Section 6 that the
oZKS runs in two modes: stored mode (for key lookups in the
Query Service) and linked mode (for the Update Task). For
measuring oZKS query costs, we run experiments in stored
mode on a single thread. For measuring oZKS update costs,

Size Server Query Server Update Client Query Client Update
Memory Throughput (103 queries/s) Memory Time Throughput Time Size Time Size

(# keys) (GB) Cache hit Cache miss (GB) (s) (103 updates/s) (µs) (KB) (µs) (KB)

220 0.734 143 16.7 0.517 6.66 140 102.9 2.10 12.6 1.89
222 3.54 129 15.0 2.00 27.6 144 103.4 2.27 13.7 2.06
224 14.7 120 13.9 7.95 120 132 104.2 2.44 14.7 2.23
226 60.2 112 12.4 32.0 520 126 104.8 2.67 15.6 2.40

Table 1: Benchmarks for the oZKS implementation for different numbers of keys. It includes the memory and throughput for the oZKS as
instantiated for the Query Service (stored mode); memory, time, and throughput for the oZKS as instantiated for the Update Task (linked
mode); client overhead for oZKS query and update proof verification.

we run experiments in linked mode using 16 threads. (For
details, see Appendix H.)

VRF microbenchmarks. Since the bulk of the computa-
tional overhead of the oZKS comes from VRF operations,
we first measure these. The time to compute a VRF value
(without a proof) is on average 20.5 µs. Computing the proof
takes 47.0 µs, while verifying the proof takes 95.6 µs.

Server query costs. We measure the total memory footprint
and query throughput for different oZKS sizes (i.e., number
of keys in the oZKS). Recall that the OPTIKS architecture
includes a VRF cache to reduce the overhead costs of the
server during queries. We thus measure query costs for both
VRF cache hits and misses. We performed the experiment
twice by querying for keys that are present and not present in
the oZKS; we report numbers for the slower case (generally,
for keys not present), although the difference is very small.
Overall, we find that VRF cache hits enable nearly an order
of magnitude greater oZKS query throughput for the server.

We also see from Table 1 that the stored mode oZKS used
for queries requires more memory than that of the linked
mode instantiation for updates. As explained in Section 6,
despite the benefit in smaller memory overhead, linked mode
offers less efficient updates to parts of the tree, as our Query
Service requires. However, the stored mode oZKS memory
overhead could be reduced, such as by storing only the most
commonly accessed nodes in memory or dividing the service
over several machines.

Server update costs. Our experiments insert new keys into
the oZKS in batches of at most 1024 keys starting with an
empty structure. The total number of keys added is indicated
by the leftmost column in Table 1. For different oZKS sizes,
we show the total memory footprint, the total time to insert
all keys, and the update throughput in updates per second on
16 threads. These costs include VRF computations.

Our experiments indicate high performance for the server.
Namely, with a single machine, the Query Service oZKS
can process well over ten thousand (VRF cache miss) or a
hundred thousand (VRF cache hit) queries per second. The
Update Task oZKS can sustain a similarly high throughput.

However, looking ahead, the picture changes significantly
when we deploy this in the context of a full system including
the overhead from database operations, the REST API, and
the networking protocol.

Client costs. Finally, we measure the query and update proof
verification time and data size. The experiments for querying
include the time to verify the query result, which includes
both the VRF proof and Merkle tree proof, on a single thread,
and the size of the query response. The experiments for update
include the time to verify the update proof for a single added
key on a single thread and the data size of the update proof for
a single added key. This is intended to measure the overhead
for a client to verify that its key update was added to the
system. The data sizes do not include networking protocol
overhead or the time to download the proofs. We note that
since the update proof results apply only to a single added
key, they will scale linearly with the size of the batch inserted.

Overall, the client numbers in Table 1 indicate a nearly
negligible cost from the oZKS operations. We note that a
client would perform these operations only sporadically, e.g.,
before joining an end-to-end encrypted meeting.

7.2 System Evaluation

We now evaluate a fully implemented system. We perform
smaller benchmarks to enable direct comparisons with prior
work as well as larger scale measurements to understand the
performance of OPTIKS for realistic system loads.

Experimental setup. Our system implementation omits the
Service Provider, as its role is to mainly mediate requests and
implement authentication logic. We run the Query Service, the
Update Service, the Update Task, and the database in Azure
in the West US 3 region. We use a stress tester application
running in Azure in the West US 2 region as the client.

For more technical details on the Query Service, Update
Service, and Update Task implementations, see Appendix F.

Query rate. We measure the maximum query rate, i.e., the
maximum number of key lookups per second the Query Ser-
vice could support. To test this, a small program was written

that continuously sends query requests to the REST API. The
number of instances of this program running simultaneously
was increased until the maximum query throughput was found.
We tested the maximum query rate when querying for keys
with 1 version and 10 versions in their history. We also mea-
sured the average size of the key lookup response. These
experiments were performed for key directory sizes ranging
from 1M keys to 64M keys. The results are shown in Figure 3.

One takeaway from these experiments is that the Query
Service performance is limited by networking overhead. In
particular, the key lookup throughput of the full OPTIKS
system for a single key version is much lower than that of
just the oZKS from our benchmarks in Table 1. Another
takeaway is that a key lookup for a key with many versions is
less performant than that for a key with a single version. To
explain this, we note that the communication cost is linear in
the number of key versions and logarithmic in the size of the
key directory, which adds to the overhead when querying for
keys with longer histories. In practice, however, this overhead
can be reduced by allowing client devices to cache previously
retrieved key versions. Furthermore, the Query Service can be
made more performant by scaling it horizontally to alleviate
handling so many simultaneous network connections.

Update Service and Task. We set the Update Task to ac-
tivate each second so that if no prior update is in progress,
it takes a batch of at most 1024 pending updates from the
database and starts processing them. This limits the epoch
time from below to 1 second.

We measure the maximum key update rate, i.e., the maxi-
mum number of key updates per second that can be supported.
We also measure the average time it takes to create a new
epoch. The results are in Figure 4a. They show the cost of
adding keys increases logarithmically. Most of the epochs we
observed took 1–5 seconds; some took longer due to unpre-
dictable and fluctuating database response times. The longest
epoch observed took 13 seconds.

We next measure the time needed by the Update Task to
add 100K keys with different initial directory sizes, and how
that time is spent in different operations. The results are in
Figure 4b. The Update Service/Task performance is strongly
limited by the database performance (compare to the oZKS
update performance in Table 1). Indeed, our results show that
the bulk of time is spent on database writes. For example,
when the key directory has 500K keys, nearly 95% is spent in
database operations. This cost is caused by the very expensive
(and possibly avoidable) multi-table transactions that we used
to simplify the implementation. This percentage decreases
slightly when more keys are added, and generally hovers
between 94–96%, which means that any improvement in the
database (write) performance would almost directly translate
to a performance improvement in OPTIKS.

1 2 4 8 16 32 64

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500 5.1

5.3

5.5

5.7
5.9

6.3
6.4

28.8 29.9 31.0 32.2 33.3 34.4 35.6

Keys in directory [millions]

Q
u
er
ie
s
p
er

se
co
n
d

1 key version
10 key versions

Figure 3: Key query rate as the directory grows in size from
1M to 64M, with a logarithmic scale on the x-axis. The num-
ber beside each point indicates the server response size in KB.

7.3 Comparison and Analysis

We analyze the results of our experiments and compare OP-
TIKS to Parakeet [17], the most relevant prior work. We then
compare with Merkle2 [12] and SEEMless [6].We omit com-
parison to CONIKS [18], as its client monitoring costs are
prohibitively expensive for short epochs.

For the most rigorous comparison, we directly run the most
recent public version of Parakeet, unless otherwise mentioned,
and OPTIKS on the same VM with 16 vCPUs. In all cases,
we insert into, or query from, a key directory of size 1M.

Summary. Overall, our results indicate that OPTIKS fea-
tures a large performance benefit over Parakeet. This improve-
ment comes from several core elements, most notably: (1) a
more efficient protocol; (2) the split architecture of OPTIKS
leveraging more optimal memory representations and more
efficient parallel updates; (3) a faster VRF from using a curve
that has particularly fast variable-base scalar multiplication
and hash-to-curve implementation; (4) better engineering of
performance-critical functions; and (5) a VRF cache that im-
proves the Query Service performance. We next go into more
detail on some of these improvement points.

VRF performance. The VRF value computation in Parakeet
takes roughly 50µs, whereas OPTIKS takes only 20.5µs, so
we are more than 2x faster. For proof generation, Parakeet
takes 144µs, whereas OPTIKS takes 47µs; here we are more
than 3x faster. In both cases, this is because we are using a
curve that is much better suited for the VRF computations.

Update performance. For single-threaded execution on a
hash map or hash table storage back-end, implemented both
in Parakeet and OPTIKS, our update (into key directories with
1M keys) takes 71ms per 1024 items, whereas Parakeet takes

0 10 20 30 40 50 60

100

200

300

400

500

600

700

800

900

1,000

1,100

Keys in directory [millions]

K
ey

u
p
d
at
es

p
er

se
co
n
d

1s

2s

3s

4s

5s

6s

7sKey update rate
Average epoch time

(a) Keys update rate and average epoch time when the key direc-
tory grows in size from 1M to 64M. The shaded region shows the
interquartile range for the epoch time measurements.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Keys in directory [100K]

T
im

e
[s
ec
on

d
s]

DB write DB read Other
92%

93%

94%

95%

96%

97%

DB ops [% of total]

(b) Time it takes to add 100K keys. The bar graph shows the break-
down into database operations and a category Other, which includes
the Update Task compute time. The line graph shows the database
operations as a percentage of the total time.

Figure 4: Benchmarks for the key update performance.

347ms per 1024 items. This means that, even without improve-
ments from our split architecture, OPTIKS is already 4.8x
faster for updates than Parakeet. We believe this is explained
primarily by our faster VRF and a better way to compute the
common prefix of two labels.

In our split architecture, we store the nodes in a linked
representation for the Update Task. For a single-threaded
execution this takes our time down to 28ms per 1024 items,
demonstrating the benefit of our architecture. This avoids
more costly lookups from a hash table or hash map and can
be leveraged by most Merkle tree-based transparency systems.

Another benefit is that multi-threaded batch update is much
more efficient with our linked mode. Adding multi-threading
in OPTIKS takes our update time down to 7.6ms per 1024
items (3.7x improvement), whereas adding multi-threading
in Parakeet results in only a 1.3x improvement at 270ms per
1024 items. We believe this is explained by our implementa-
tion of multi-threading that requires no locks, while Parakeet
implements multi-threading by spawning threads that need to
wait for child tasks to be completed before continuing. We
note that at this point we outperform Parakeet update perfor-
mance by more than 35x. The situation is evened out by the
full system overhead (e.g., database), but even then, compar-
ing to the results in the Parakeet paper, we achieve in many
cases up to (or over) 10x better throughput.

Lookup performance. The Parakeet paper presents no
query performance numbers. If we disable our VRF cache
and compare single-threaded executions, we reach a rate of
roughly 32 queries/s (from a 1M size key directory). Run-
ning Parakeet ourselves shows a performance of roughly 1.3

queries/s. Thus, OPTIKS is more than 24x faster.
Note, however, that our experiments are for the most com-

mon case, where we expect users’ key to not change often.
Recall that with v key versions, an OPTIKS key lookup re-
quires v+1 proofs (without any client-side caching), whereas
Parakeet always requires 3 proofs. When a user’s key does not
change, a lookup proof for OPTIKS requires only 2 Merkle
proofs per query, less than the 3 proofs required by Parakeet.
However, when a user’s key changes multiple times within a
time period, OPTIKS requires more proofs than Parakeet.

Thus, a better way to compare is to observe the cost of each
Merkle proof. Measuring per Merkle proof, we are 16x faster,
which we hypothesize is due to architectural differences be-
tween the two systems; see below for more discussion. This
means that OPTIKS is more performant for lookups than Para-
keet up to v = 3 ·16−1 = 47 key versions. With time periods,
it is unlikely typical users will require so many versions.

Enabling the VRF cache changes the situation a lot, im-
proving our performance (upon cache hit) further by around
9x. Multi-threading queries is trivial in both works. Note
that our architecture allows the query service to keep running
seamlessly while an update is being processed, whereas it is
not clear at all how Parakeet would handle that.

Engineering differences. We note that although much of
the key lookup performance improvements of OPTIKS over
Parakeet are from protocol and system improvements, some
of this gap is explained by better engineering design. In partic-
ular, the monolithic architecture of Parakeet requires it to use
excessively thread-safe constructions in its implementation.
Notably, the same system that supports queries (occasional

locking required) is also used for updates (frequent locking
required). These constructions end up being inefficient and
do not provide an ideal solution in either case. Furthermore,
Parakeet’s implementation uses many dynamic arrays for data
which creates unnecessary overhead as compared with using
statically sized arrays.

Comparison to Merkle2. Since Merkle2 does not present
full system benchmarks, we cannot directly compare the end-
to-end performance of key lookups and updates, which would
include database operations. Instead, we compare the append
and lookup throughput in [12, Fig. 13] to the oZKS update
and query throughput in Table 1. This gives a comparison of
our core data structures without the extra system overhead
costs.

For key updates, our reported update rates are more than
100 times that of Merkle2. For key lookups, we note that each
query to Query Service requires (with one key per user) two
lookups from the oZKS. Thus, for fair comparison we divide
our oZKS query rate by two to approximate our Query Service
throughput. For 220 keys, assuming VRF cache misses for the
worst case performance, OPTIKS supports 8350 queries/s,
while the Merkle2 Latest value query supports fewer than
5000 queries/s.

We next compare to the approximate memory cost reported
in [12, Fig. 12]. For 220 keys, this is 22 GB – much larger
than our 517 MB. The difference grows for larger key di-
rectories (220 is our smallest example), as Merkle2 has an
asymptotically larger memory cost.

Finally, we compare our proof sizes and verification times
to [12, Table III]. In their setting the key directory has 1 mil-
lion keys; we compare this to a slightly larger 220 size key
directory. Merkle2 has a very small append proof size of 42 B,
whereas our update proof is significantly larger at 1.89 KB.
Their lookup proof (for Latest value query) is 9.8 KB, whereas
our proof is smaller at 4.20 KB. Here we have doubled the
lookup proof size from Table 1 to account for the two oZKS
lookup proofs each query to the Query Service requires.

Comparison to SEEMless. Just as for Merkle2, SEEM-
less [6] also presents no full system benchmarks with which
we can directly compare the full system experiments of OP-
TIKS. Thus, we again compare their results to our oZKS
benchmarks in Table 1.

We first compare with their key update time [6, Figure 5].
For a key directory with 10 million keys, SEEMless reports
an average update time of slightly under 0.3 seconds. At 224

keys our average update time is roughly 7.6 milliseconds, or
just 2.5% of the time of SEEMless.

For key lookups, we compare with [6, Table 2], again di-
viding our query rates by two for fairer comparison. At 224

keys, our average query time is roughly 0.14 milliseconds,
or just 2.4% of the 6.03 milliseconds reported for SEEMless.
For query verification, our result of 104.2 microseconds is
just 1% of the 10.51 milliseconds reported in [6, Table 2].

These performance differences are much larger than the
asymptotic differences indicated in Figure 1 would suggest,
and is generally explained by our more efficient implemen-
tation. In particular, our VRF operations are between 35–63
times faster than in SEEMless due to the more efficient el-
liptic curve we use and engineering differences in the VRF
implementation itself. This has a huge impact, since a sin-
gle VRF operation in SEEMless is reported to take between
1.3–3.4 milliseconds – a significant fraction of the total time.
Note that the machine used in [6] was running at a slightly
lower clock rate than ours (2.30 GHz vs. 2.60 GHz), but had
more vCPUs. SEEMless was implemented in Java, whereas
our implementation is mostly in C++.

In SEEMless, for 10 million keys, the authors report an
average query response size of 8.40 KB. At 224 keys our
average query size is 4.88 KB, or 58% of that. Again, here we
have doubled the lookup proof size from Table 1 to account
for the two oZKS lookup proofs each query to the Query
Service requires.

8 Related Work

We have already discussed how our KT system OPTIKS com-
pares with Parakeet [17] and SEEMless [6].

Merkle2 [12] is another KT system and is currently un-
der consideration for standardization by the IETF working
group on KT [19], so we briefly compare its protocol to OP-
TIKS. However, we emphasize that Merkle2 cannot be truly
compared to OPTIKS because their assumptions make it un-
suitable for our use case, and it also lacks the strong privacy
guarantees required for KT. In particular, [12] strongly relies
on owner signing (and long term, non-resettable) signing keys
to build a KT system. Since the fundamental goal of a KT
system is building a transparent PKI for client keys, basing it
on an external PKI does not serve the purpose.

At a high level, Merkle2 trades off small update proof costs
for large storage costs, while we opt for much smaller storage
costs and larger update proof costs. We believe ours is the
right trade-off because the large storage costs of Merkle2

prove unscalable in practice, while auditing our update proofs
are still practical even at large scale. We confirm this via
experimental comparisons in Section 7.3 as well as offer a
more comprehensive asymptotic comparison in Appendix I.

Now, we briefly describe the other KT systems from the
literature. Keybase [13] was originally designed as an alter-
native to PGP key distribution and did not target privacy as a
goal. CONIKS [18] was the first academic proposal for a KT
system. The efficiency and privacy guarantees of CONIKS
were improved in SEEMless [6]. VeRSA [22] and Verdict [24]
are other KT systems that use SNARKs and RSA accumula-
tors instead of Merkle trees, making them more expensive to
deploy in practice. They also do not target privacy as a goal
and so leak update patterns of users. Chen et al. [8] was the
first paper that introduced Post Compromise Security (PCS)

for the underlying building block of our primitive: ordered
Zero-Knowledge Sets (oZKS). We describe how we achieve a
limited form of PCS security in OPTIKS-ext in Section 5.

In another recent work, ELEKTRA [15] adds privacy and
formal analysis to the Keybase approach. The result is a sys-
tem that provides stronger security in the multi-device setting
by requiring that each change to a user’s set of devices be
signed by another of their devices; this provides stronger
security against a malicious server, as long as the user has
multiple devices. ELEKTRA also adds PCS security by using
the rotatable zero-knowledge set from [8] mentioned above.
(As mentioned in Section 5, OPTIKS provides only a limited
form of PCS.) ELEKTRA provides formal definitions and
proofs for the entire system, and uses a stronger (extractabil-
ity) form of soundness definition compared with prior work.
However, with the exception of multi-device support, it does
not consider any of the issues we address in Section 5. And
since the aim of the ELEKTRA implementation was an aca-
demic prototype rather than a scalable implementation, they
did not consider the architectural optimizations that we dis-
cuss in Section 6. For example, their lookup query service
reads from the database on every query (as opposed to using
an in-memory cache), resulting in dramatically slower query
times compared to OPTIKS.

At an algorithmic level, because ELEKTRA adopts the
Keybase approach, each lookup for a username returns the
full linear history of changes to that username’s keys, which
is similar to our lookup approach. As a result, similar to our
construction, ELEKTRA also avoids the need for a second
tree to provide freshness. On the other hand, it incurs some
additional storage and computation costs from the need to
store and verify public keys and signatures.

9 Acknowledgements

We thank Vadim Eydelman, Kevin Lewi, Harjasleen Malvai
and Antonio Marcedone for their helpful feedback and com-
ments. We also thank our anonymous reviewers and shepherd
who helped us improve the quality of the paper significantly.
The first author would like to acknowledge support from the
National Science Foundation under award CNS-2120651.

References

[1] Advancing iMessage security: iMessage contact key
verification. https://security.apple.com/blog/
imessage-contact-key-verification/ (accessed:
2024-01-08).

[2] What is key transparency? https://proton.me/
support/key-transparency (accessed: 2024-01-08).

[3] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. BLAKE2: sim-

pler, smaller, fast as MD5. In Applied Cryptography
and Network Security - 11th International Conference,
ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Pro-
ceedings, Lecture Notes in Computer Science. Springer,
2013.

[4] Josh Blum, Simon Booth, Brian Chen, Oded Gal,
Maxwell Krohn, Julia Len, Karan Lyons, Anto-
nio Marcedone, Mike Maxim, Merry Ember Mou,
Armin Namavari, Jack O’Connor, Surya Rien,
Miles Steele, Matthew Green, Lea Kissner, and
Alex Stamos. E2e encryption for zoom meetings.
White Paper – Github Repository zoom/zoom-e2e-
whitepaper, Version 4.0, https://github.com/zoom/
zoom-e2e-whitepaper/blob/v4/zoom_e2e.pdf
(accessed: 2023-06-03), 2023.

[5] Philippe Camacho, Alejandro Hevia, Marcos A. Kiwi,
and Roberto Opazo. Strong accumulators from collision-
resistant hashing. In Information Security, 11th Interna-
tional Conference, ISC 2008, Taipei, Taiwan, September
15-18, 2008. Proceedings, Lecture Notes in Computer
Science. Springer, 2008.

[6] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and
Harjasleen Malvai. Seemless: Secure end-to-end en-
crypted messaging with less trust. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security CCS. ACM, 2019.

[7] Melissa Chase, Alexander Healy, Anna Lysyanskaya,
Tal Malkin, and Leonid Reyzin. Mercurial commitments
with applications to zero-knowledge sets. In Advances
in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May
22-26, 2005, Proceedings, 2005.

[8] Brian Chen, Yevgeniy Dodis, Esha Ghosh, Eli Goldin,
Balachandar Kesavan, Antonio Marcedone, and
Merry Ember Mou. Rotatable zero knowledge
sets: Post compromise secure auditable dictionaries
with application to key transparency. In Advances
in Cryptology - ASIACRYPT 2022, Cham, 2022.
Springer International Publishing. Full version:
https://eprint.iacr.org/2022/1264.

[9] Kelong Cong, Radames Cruz Moreno, Mariana Botelho
da Gama, Wei Dai, Ilia Iliashenko, Kim Laine, and
Michael Rosenberg. Labeled PSI from homomorphic
encryption with reduced computation and communica-
tion. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1135–1150, 2021.

[10] Craig Costello and Patrick Longa. Fourq: four-
dimensional decompositions on a q-curve over the

https://security.apple.com/blog/imessage-contact-key-verification/
https://security.apple.com/blog/imessage-contact-key-verification/
https://proton.me/support/key-transparency
https://proton.me/support/key-transparency
https://github.com/zoom/zoom-e2e-whitepaper/blob/v4/zoom_e2e.pdf
https://github.com/zoom/zoom-e2e-whitepaper/blob/v4/zoom_e2e.pdf
https://eprint.iacr.org/2022/1264

mersenne prime. Cryptology ePrint Archive, Report
2015/565, 2015. https://eprint.iacr.org/2015/
565.

[11] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopou-
los, and Jan Včelák. Verifiable Random Functions
(VRFs). Internet-Draft draft-irtf-cfrg-vrf-15, Internet
Engineering Task Force, 2022. Work in Progress.

[12] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Se-
ung Jin Yang, and Raluca Ada Popa. Merkle2: A low-
latency transparency log system. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 285–303.
IEEE, 2021.

[13] Keybase.io. Keybase chat. https://book.keybase.
io/docs/chat (accessed: 2022-08-03).

[14] Sean Lawlor and Kevin Lewi. Deploy-
ing key transparency at WhatsApp. https:
//engineering.fb.com/2023/04/13/security/
whatsapp-key-transparency/ (accessed: 2023-06-
02).

[15] Julia Len, Melissa Chase, Esha Ghosh, Daniel Jost, Bal-
achandar Kesavan, and Antonio Marcedone. ELEKTRA:
efficient lightweight multi-device key transparency. In
Weizhi Meng, Christian Damsgaard Jensen, Cas Cre-
mers, and Engin Kirda, editors, Proceedings of the 2023
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 2915–2929. ACM, 2023.

[16] Rohan Mahy. More Instant Messaging Interop-
erability (MIMI) message content. Internet-Draft
draft-mahy-mimi-content-02, Internet Engineering Task
Force, March 2023. Work in Progress.

[17] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto
Sonnino, Esha Ghosh, Ercan Oztürk, Kevin Lewi, and
Sean F. Lawlor. Parakeet: Practical key transparency
for end-to-end encrypted messaging. In 30th Annual
Network and Distributed System Security Symposium,
NDSS 2023, San Diego, California, USA, February 27 -
March 3, 2023. The Internet Society, 2023.

[18] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. CONIKS:
Bringing key transparency to end users. In 24th USENIX
Security Symposium, USENIX Security 2015, pages 383–
398, Washington, D.C., August 2015. USENIX Associ-
ation.

[19] Alexey Melnikov and Rohan Mahy. IETF Key Trans-
parency (draft charter). https://datatracker.ietf.
org/doc/charter-ietf-keytrans/ (accessed:
2023-06-02).

[20] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-
knowledge sets. In Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer Science.
IEEE Computer Society, 2003.

[21] Microsoft. Ordered Zero-Knowledge Set – oZKS.
https://github.com/Microsoft/oZKS (accessed:
2023-06-03), 2022.

[22] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bon-
neau, and Stefano Tessaro. Versa: Verifiable registries
with efficient client audits from rsa authenticated dic-
tionaries. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2793–2807, 2022.

[23] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bon-
neau, and Stefano Tessaro. VeRSA: Verifiable registries
with efficient client audits from RSA authenticated dic-
tionaries. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2022.

[24] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and
Srinath Setty. Transparency dictionaries with succinct
proofs of correct operation. In Proceedings of the ISOC
Network and Distributed System Security Symposium
(NDSS), February 2022.

[25] Eric S. Yuan. Zoom acquires keybase and announces
goal of developing the most broadly used enterprise
end-to-end encryption offering. https://blog.zoom.
us/zoom-acquires-keybase (accessed: 2023-06-03),
2020.

https://eprint.iacr.org/2015/565
https://eprint.iacr.org/2015/565
https://book.keybase.io/docs/chat
https://book.keybase.io/docs/chat
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://datatracker.ietf.org/doc/charter-ietf-keytrans/
https://datatracker.ietf.org/doc/charter-ietf-keytrans/
https://github.com/Microsoft/oZKS
https://blog.zoom.us/zoom-acquires-keybase
https://blog.zoom.us/zoom-acquires-keybase

A Preliminaries

Our protocol makes use of the following cryptographic primi-
tives, which are also used by SEEMless [6] and Parakeet [17].
For each, we define the primitive and give a brief overview of
the security goals each should satisfy and how we instantiate
it.

Collision-resistant hash function. We say that a hash func-
tion H : {0,1}∗→ {0,1}m is a collision-resistant hash func-
tion if it is difficult for an adversary to find two inputs x,y
such that x ̸= y and H(x) = H(y).

Append-only strong accumulator. An append-only strong
accumulator (aSA) is a primitive used to commit to a col-
lection of label-value pairs and was introduced in [6] as an
extension of strong accumulators [5] that was utilized as part
of the SEEMless protocol. It is composed of the following
algorithms:
▷ (com0,D0,st0) ← aSA.CommitDS(1λ,D): Given datas-

tore D = {(li,vi)}n
i , which is a collection of label-value

pairs, output an initial commitment to D, the data to which
it committed, and initial state.

▷ (v,π)← aSA.Query(stt ,Dt ,comt , l): Given the state, data-
store, and commitment to the datastore for current epoch t
and a label l to query, the query algorithm returns the asso-
ciated value v and query proof π, which serves as either a
membership or non-membership proof.

▷ 0/1← aSA.Verify(comt , l,v,π): The query verification al-
gorithm verifies that the value v returned from a query for
a label l is correct according to the commitment provided.

▷ (stt+1,comt+1,Dt+1,Π
Upd) ← aSA.UpdateDS(stt ,Dt ,S):

Given the state and datastore for current epoch t and a set
S of label-value pairs, update the datastore with elements
in S, outputting a new commitment and datastore as well
as an update proof.

▷ 0/1 ← aSA.VerifyUpd(com,com′,S,ΠUpd): The update
verification algorithm takes in two consecutive commit-
ments, the set S of updates between them, and the update
proof and verifies the update.
This formulation is similar to previous work [6], but in

that work the soundness requirement is described as being
the same as for oZKS - if VerifyUpd accepts, then we are
guaranteed that nothing is deleted from the set. However,
there is nothing in that definition that makes any guarantees
about the set S that is input to VerifyUpd. For our application,
we need an additional soundness property that says that the
set S provided as input to VerifyUpd actually does capture
what is being added to the directory. In particular we capture
this with a soundness game where the adversary produces two
commitments com,com′, and a sequence of commitments
and update proofs and sets between them, and wins if 1)
it produces a non-membership proof for l w.r.t. com and a
membership w.r.t. com′, but none of the update sets contain l,

or 2) it produces a proof for (l,v) w.r.t. com′, but one of the
update sets contained (l,v′) with v′ ̸= v. We call this additional
property explicit update soundness.

More formally, an SA scheme satisfies explicit update
soundness if for all PPT A∗, there exists a negligible function
ν() such that for all n,λ ∈ N:

Pr
[
(comt1 , t1,{(comi,Si,π

upd
i)}t2i=t1+1, l,v,v

′,

π,π′)← A∗(1λ) :

{aSA..VerifyUpd(comi−1,comi,Si,π
upd
i)}t2i=t1+1

∧ oZKS.Verify(comt2 , l,v
′,π′)

∧
([

oZKS.Verify(comt1 , l,v,π)

∧(v =⊥)∧ (v′ ̸=⊥)

∧(l /∈ St1+1∪ . . .∪St2)
]

∨
[
((l,v) ∈ St1)∧ (v ̸= v′)

])
≤ ν(λ).

Instantiation. We use the same aSA instantiation as used
by SEEMless [6], which builds a Merkle Patricia Trie over
the labels using a collision-resistant hash function H. At a
high level, each label in D becomes a leaf node in the Patricia
Trie, storing the associated value. A leaf node is hashed by
computing H over the label and value. An interior node is
hashed by computing H over its two child nodes. The root
node then serves as the commitment to the datastore. The
membership proof of a label l in the datastore is computed by
providing the sibling path of the associated leaf node, while
a non-membership proof of a label l′ not in the datastore is
computed by providing the sibling path and child nodes of the
node corresponding to the longest prefix of l′ in the Patricia
Trie. The aSA is updated by adding the new leaves to the
tree at the appropriate positions, changing the appropriate
hash values, and computing the updated root hash. The up-
date proof is the set of old hash values that have since been
updated, the set of new hash values that have been added, and
the set of unchanged hash values. The update is verified by
re-computing the root hashes of the old and new trees and ver-
ifying that they match the commitments and verifying that the
hashes that are changed are the roots of the subtrees formed
by the labels in update set S.

Simulatable verifiable random function. A simulatable
verifiable random function (sVRF) scheme is similar to a
pseudorandom function except that a third-party with a public
key can verify that a value was computed correctly from the
associated secret key. It is referred to as simulatable because
such a proof can be simulated by a hypothetical simulator
(such as one controlling a random oracle). An sVRF is com-
posed of the following algorithms:
▷ (pk,sk)←$ sVRF.KeyGen(1λ,r): Given randomness r, the

key generation algorithm outputs a public-secret key pair.

▷ y← sVRF.Eval(sk,x): The evaluation algorithm uses the
secret key to compute value y from input x.

▷ π← sVRF.Prove(sk,x): On input the secret key and value
x, this algorithm proves that y is indeed the value associated
to x.

▷ 0/1← sVRF.Verify(pk,x,y,π): The verification algorithm
uses the public key to verify that y is the value associated
to x.

We expect that an sVRF scheme meets the security property
of verifiability: for each secret key sk there exists a public key
pk such that for any y← sVRF.Eval(sk,x), it is possible to
compute and verify proof π that verifies that y is the value
corresponding to x w.r.t. sk. As described above, the sVRF
should also be simulatable so that a hypothetical simulator
can fake proof π that the output of sVRF.Eval(sk,x) is some
arbitrarily chosen value y.

Simulatable commitment scheme. A simulatable commit-
ment scheme (sCS) is composed of the following algorithms:

▷ com ← sCS.Commit(1λ,m ; r): The commitment algo-
rithm takes as input the security parameter λ and random-
ness r and produces the commitment over message m.

▷ τ← sCS.Open(m,r,com): Given the message m, random-
ness r, and associated commitment com, this algorithm
outputs the decommitment (or opening) value τ.

▷ 0/1 ← sCS.VerifyOpen(com,m,τ): This algorithm veri-
fies that commitment com commits to message m using
decommitment value τ.

We require that an sCS meets a hiding property, which re-
quires that the commitment should not reveal the underlying
message to which it commits. It should also meet a binding
property, which requires that a commitment cannot be opened
to two different values. Furthermore, we require that an sCS
should be simulatable so that there exists a hypothetical sim-
ulator (such as one controlling a random oracle) that could
form commitments that could later be opened to arbitrary
message m.

Instantiation. We construct an sCS using a collision-
resistant hash function H as follows: sCS.Commit(1λ,m ; r)
outputs H(m,r), sCS.Open(m,r,com) outputs τ,
and sCS.VerifyOpen(com,m,τ) simply verifies that
H(m,τ) = com. We note that we model H as a random
oracle.

B oZKS Definitions and Construction

An ordered Zero-Knowledge Set (oZKS) directly extends the
notion of an append-only zero-knowledge set (aZKS) intro-
duced in [6]. For some brief background, the aZKS primitive
builds on the notion of the zero-knowledge set [7, 20] and is
used as the core building block for SEEMless. It enables a po-
tentially malicious prover to commit to a collection of (label,

value)-pairs such that the prover can prove the membership
or non-membership of labels in the collection and enables
append-only updates to the collection of pairs. Additionally,
the primitive is zero-knowledge because the commitment
does not leak information about the collection of data and the
proofs do not leak information about any other data in the
collection.

oZKS additionally requires a strict ordering on elements
inserted by attaching the epoch of insertion along with the
label-value pairs and committing to this as part of the data.8

We formalize this primitive, which we will use as the core
building block of our protocol, although we introduce a slight
modification that allows the oZKS to be instantiated with a
random seed. This enables us to capture choosing the random-
ness used by the algorithm, rather than having the protocol
choose this, so that the randomness can be distributed or
stored (e.g., among a distributed set of servers that run the
oZKS).

A variant of this called the oZKS with compaction was in-
troduced by [17] and was used as the core building block for
Parakeet. Their definition extends that of the oZKS by also
enabling secure deletions to handle the increasing storage
requirement of oZKS. Another variant called the Rotatable
Zero-Knowledge Set was introduced by [8]; instead of se-
cure deletions, it enables the orthogonal guarantee of post-
compromise security by restoring privacy guarantees after
server compromise. We use a different (and simpler) approach
to handle growing storage costs, enabling us to incorporate
the original oZKS primitive in our design and simultaneously
achieve some limited form of post-compromise security.

In this section, we formalize the cryptographic primitive or-
dered Zero-Knowledge Set (oZKS) we describe in Section 3,
provide security definitions and a construction, and prove the
security of our construction.

Definition 1. An ordered Zero-Knowledge Set (oZKS) com-
prises the following algorithms:

• (st,com)← oZKS.Init(1λ,r): The initialization algorithm
takes as input a security parameter and random seed and
outputs internal state and a commitment to the data.

• (st′,com′,πupd)← oZKS.Update(st,S): The update algo-
rithm updates the datastore with the label-value pairs in set
S and outputs the updated state, the new commitment to
the data, and a proof πupd that the update was correct. The
update algorithm may fail and output ⊥, e.g., if the input
key-value pairs are malformed.

• 0/1 ← oZKS.VerifyUpd(com,com′, i,πupd): The update
verification algorithm takes in commitments to the data-
store before and after the update, and the epoch number of
the former commitment, and verifies the update proof.

8We would like to thank Antonio Marcedone for early discussions about
the notion of oZKS and its construction.

CompletenessA
oZKS:

r←$ R
(st,com)← oZKS.Init(1λ,r)
epno← 0 ; St← []

St[epno]← (st,com, /0)

AUpdate,Query(com)

Return 1

Update(S):

(st,com,D)← St[epno]

(st′,com′,πupd)← oZKS.Update(st,S)
If (st′,com′,πupd) =⊥ and
̸ ∃labeli, label j ∈D∪S s.t. labeli = label j :

Halt and return 0
If oZKS.VerifyUpd(com,com′,epno,πupd) = 0:

Halt and return 0
epno← epno+1
St[epno]← (st′,com′,D∪S)
Return (com′,πupd)

Query(label):

(st,com,D)← St[epno]

(π,val′, t)← oZKS.Query(st, label)

b← oZKS.Verify(com,epno, label,val′, t,π)
If (label, ·) /∈D: val←⊥
Else: val←D[label]

If val′ ̸= val or b = 0:
Halt and return 0

Return (π,val, t)

oZKS-PRIV-REALA
oZKS:

r←$ R
(st,com)← oZKS.Init(1λ,r)
epno← 0 ; St← []

St[epno]← (st0,D0)

b←$ AUpdate,Query(com)

Return b

Update(S):

(st,D)← St[epno]

If ∃(label, ·) ∈ S s.t. (label, ·) ∈D:
Return

(st′,com′,πupd)← oZKS.Update(st,S)
epno← epno+1
St[epno]← (st′,D∪S)
Return (com′,πupd)

Query(label):

(st,D)← St[epno]

(π,val, t)← oZKS.Query(st, label)

Return (π,val, t)

oZKS-PRIV-IDEALA ,S
oZKS:

com←$ SInit(1λ)

epno← 0 ; D← /0

b←$ AUpdate,Query(com)

Return b

Update(S):

If ∃(label, ·) ∈ S s.t. (label, ·, ·) ∈D:
Return

(com′,πupd)←$ SUpd(LUpd(S))
epno← epno+1
D←D∪{(label,val,epno) : (label,val)∈ S}
Return (com′,πupd)

Query(label):

If (label, ·, ·) /∈D: val, t←⊥
Else: (val, t)←D[label]

π← SQuery(label,LQuery(t, label,val))
Return (π,val, t)

Figure 5: (Left) The completeness definition for oZKS. (Center/Right) The privacy definition for oZKS.

• (π,val, t)← oZKS.Query(st, label): The query algorithm
returns the value associated to the queried label, along with
the query proof π and the epoch t that the label was added.
If label is not a member of the set, it returns ⊥ for the value
and epoch along with a proof of non-membership.

• 0/1← oZKS.Verify(com, i, label,val, t,π): The query ver-
ification algorithm verifies the value returned by a query
using the proof against the current commitment com and
current epoch number i.

Construction. Our oZKS construction is similar to that of
the aZKS from [6], except that it stores extra data about the
epochs when labels were added in order to allow for the
strict ordering of elements. It uses an append-only strong
accumulator (aSA), a simulatable verifiable random function
(sVRF), and a simulatable commitment scheme (sCS), all of
which are defined in Appendix A.

▷ oZKS.Init(1λ,r): The algorithm first generates the
sVRF key pair using (pk,sk)←$ sVRF.KeyGen(1λ,r).
Next, it builds an aSA from an empty datastore via
(com0,D0,st0)← aSA.CommitDS(1λ, /0). It forms com-
mitment com← (com0, pk) and new state st composed of
the aSA and its state, sVRF key pair, D0, com0, and epoch
t = 0 and then returns (com,st).

▷ oZKS.Update(st,S): Given new datastore entries
S = {(label1,val1), . . . ,(labeln,valn)}, the algorithm first

checks that the update would not result in a duplicate
label being added and, if it would, returns ⊥. Otherwise,
the algorithm retrieves the sVRF key pair (pk,sk) and
epoch t from its state, chooses random values r1, . . . ,rn,
and builds update set S′ ← {(l1,v1), . . . ,(ln,vn)} where
each li = sVRF.Eval(sk, labeli) and vi = (com∗i , t + 1)
for com∗i ← sCS.Commit(vali ; ri). Next, it re-
trieves the aSA state stt and datastore Dt from its
state and updates the aSA with values from S′ via
(stt+1,comt+1,Dt+1,Π

Upd)← aSA.UpdateDS(stt ,Dt ,S′).
It forms commitment com′← (comt+1, pk), update proof
πupd ← (ΠUpd,S′), and new epoch t ← t + 1, and then
updates its state with the new values to form st′. Finally, it
returns (st′,com′,πupd).

Notice that the main difference between this construction
and that of the aZKS from [6] is that the values vi added
to the aSA are composed of not just the commitment over
the values vali from the datastore but also the epoch t when
they are added.

▷ oZKS.VerifyUpd(com,com′, i,πupd): The algorithm
parses (comt , pk) ← com, (comt+1, pk′) ← com′,
and (ΠUpd,S′) ← πupd . It verifies that pk = pk′ and
that every tuple in S′ contains i + 1 as the second
element and returns 0 if not. It then returns what
aSA.VerifyUpd(comt ,comt+1,S′,ΠUpd) returns.

▷ oZKS.Query(st, label): This algorithm retrieves the
associated val of label from the datastore in its
state as well as the sVRF key pair, computes l ←
sVRF.Eval(sk, label), and computes the sVRF proof
πvr f ← sVRF.Prove(sk, label). It then queries the aSA
for l to get its membership/non-membership proof via
(v,πsa)← aSA.Query(stt ,D

′,comt , l), where stt ,D
′,comt

are retrieved from the state. If l is in the aSA, then it
parses (com∗, t∗) ← v, retrieves the associated random-
ness r used to commit to the value from its state, and
computes the opening to the commitment for the value
via τ← sCS.Open(val,r,com∗). It forms query proof π←
(l,v,πvr f ,πsa,τ) and returns (π,val, t∗). Otherwise, if l is
not in the aSA, it forms query proof π← (l,⊥,πvr f ,πsa,⊥)
and returns (π,⊥,⊥).

▷ oZKS.Verify(com, i, label,val, t,π): The algorithm parses
the oZKS query proof (l,v,πvr f ,πsa,τ)← π and the oZKS
commitment (comt , pk) ← com. It verifies the sVRF
proof sVRF.Verify(pk, label, l,πvr f) and the aSA proof
aSA.Verify(comt , l,v,πsa). If v ̸=⊥, it also parses the value
v as (com∗, t∗), which are the commitment to the value
stored in the oZKS and the epoch when it was inserted; ver-
ifies that t = t∗; and verifies the commitment to the value
sCS.VerifyOpen(com∗,val,τ). Finally, if v ̸=⊥, it verifies
that t ≤ i. If all verification succeeds, it returns 1, else 0.

Completeness. The formal experiment for completeness is
presented in Figure 5. We model completeness as a game
in which an adversary A can interact with an honest oZKS
instance. The game begins by initializing an oZKS to compute
an initial commitment and then running A , which is given the
initial commitment and access to stateful oracles that share
state to update or query the oZKS. The goal of A in the
experiment is to trigger some incorrect behavior of the oZKS
and get the experiment to return 0 (shown in bold in the game
pseudocode).

The game keeps track of the current epoch via value epno.
It also keeps track of the state, commitment, and datastore
for each epoch via dictionary St. The datastore D is a set
of label-value pairs; we note that we abuse notation to have
D[label] return the value val such that (label,val) is in D. The
Update oracle enables A to update the oZKS with set S of
label-value pairs. If Update fails, then the game checks that
it was because the labels to be added were not all unique;
otherwise, it halts and returns 0. The oracle also verifies that
the update was successful via VerifyUpd. The Query oracle
enables A to lookup a label, verifies that the value returned
matches the latest value recorded in D, and confirms that
verification of the query proof succeeds. Otherwise, the game
halts and returns 0. We measure the advantage of A in the
completeness experiment by the probability of the experiment
returning 0.

Theorem 1. Our oZKS construction satisfies completeness.

The above theorem is easy to see is true by inspection so
we do not provide the full details.

Soundness. Our oZKS soundness definition is based on that
of the aZKS primitive [6]. The goal of our definition is to
capture that once a label-value pair has been added to the
oZKS, a proof cannot later be computed that shows that either
(1) the label is not a member of the oZKS, (2) the label is
a member but with a different value, or (3) the label-value
pair was added at a different epoch than when it was actually
added. We highlight that goal (3) is the new security goal
that oZKS soundness captures over what aZKS soundness
targeted.

Specifically, the adversary produces commitments
comt1 ,comt2 from two epochs, a sequence of update proofs
between them, and query proofs for (val, t) and (val′, t ′) for
the two epochs respectively. The adversary wins if the proofs
verify and one of three cases holds: 1) the values and times
are inconsistent, i.e. val ̸= ⊥ and either val ̸= val′ or t ̸= t ′,
2) the insertion times t, t ′ are inconsistent with the epochs
in which the queries occurred, i.e. t > t1 or t ′ > t2, or 3)
it appears that the value val′ was inserted for this label in
between the two queries, but the insertion time is inconsistent
with this, i.e. val=⊥,val′ ̸=⊥ and t ′ ≤ t1.

More formally, an oZKS scheme satisfies soundness if for
all PPT A∗, there exists a negligible function ν() such that for
all n,λ ∈ N:

Pr
[
(comt1 , t1,{(comi,π

upd
i)}t2i=t1+1, label,val,val

′,

t, t ′,π,π′)← A∗(1λ) :

{oZKS.VerifyUpd(comi−1,comi, i,π
upd
i)}t2i=t1+1

∧ oZKS.Verify(comt1 , t1, label,val, t,π)

∧ oZKS.Verify(comt2 , t2, label,val
′, t ′,π′)

∧
(
[(val ̸=⊥)∧ ((val ̸= val′)∨ (t ̸= t ′))]

∨[(val ̸=⊥)∧ (t > t1)]

∨[(val′ ̸=⊥)∧ (t ′ > t2)]

∨[(val=⊥)∧ (val′ ̸=⊥)∧ (t ′ ≤ t1)]
)]
≤ ν(λ).

Theorem 2. Let our oZKS construction as defined above
in this section be parameterized with an sVRF scheme that
meets the verifiability property, a sCS scheme that meets the
binding property, and an aSA scheme that meets soundness
and explicit update soundness. Then our oZKS construction
satisfies oZKS soundness.

Proof. Recall that based on our construction, A∗ must provide
two commitments comt1 = (com, pk), comt2 = (com′, pk′)
and update proofs between them, and two query proofs π =
(l,v,πvr f ,πsa,τ) and π′ = (l′,v′,π′vr f ,π

′
sa,τ

′), where

1. sVRF.Verify(pk, label, l,πvr f),
sVRF.Verify(pk′, label, l′,π′vr f),

aSA.Verify(com, l,v,πsa), and
aSA.Verify(com′, l′,v′,π′sa) all accept, and

2. either v = val = ⊥ or v = (com∗, t) s.t.
sCS.VerifyOpen(com∗,val,τ), and

3. either v′ = val′ = ⊥ or v′ = (com∗′, t ′) and
sCS.VerifyOpen(com∗′,val′,τ′), and

4. val, t,val,′ t ′ satisfy the conditions in the soundness
game.

We then have the following four cases.

• Case 1: pk ̸= pk′.
This is impossible since all of the update proofs must be
accepting, and each VerifyUpd checks that the pk in the
commitments is unchanged.

• Case 2: pk = pk′, l ̸= l′.
This means that the sVRF verification for label, pk = pk′

accepts different values, which breaks the verifiability
of the sVRF scheme. We can thus directly reduce to the
verifiability property of the sVRF scheme.

• Case 3: pk = pk′, l = l′, val ̸=⊥ and val′ ̸=⊥, val ̸= val′,
and com∗ = com∗′.
This means that there two different openings to the same
commitment, which breaks the binding property of the
sCS scheme. We can thus directly reduce to the binding
property of the sCS scheme.

• Case 4: pk = pk′, l = l′ and either (a) val = val′ , (b)
val ̸= val′ and one of them is ⊥, or (c) val ̸= val′, neither
of them is⊥, and v ̸= v′. Then we can consider the game
winning conditions:

a. (val ̸=⊥)∧ ((val ̸= val′)∨ (t ̸= t ′))
Here we have 2 subcases: If val′ =⊥, then we must
have a nonmembership proof for l = l′ with respect
to comt2 and a membership proof with respect to
comt1 , which breaks soundness of the SA. If val′ ̸=
⊥, by this winning condition we know that either
(t ̸= t ′) or val ̸= val′; in the latter case, the since
we are in Case 4, we know that v ̸= v′. Either way,
we again break soundness of the SA, this time by
providing proofs for two different entries (v, t) and
(v′, t ′) associated with the same label l = l′.

b. [(val ̸=⊥)∧ (t > t1)]∨ [(val′ ̸=⊥)∧ (t ′ > t2)]

These are both impossible by construction since
our oZKS.Verify checks that the claimed insertion
epoch is at most the epoch number of the current
commitment.

c. (val=⊥)∧ (val′ ̸=⊥)∧ (t ′ ≤ t1)

Here we again have 2 subcases: If there was no
entry of the form (l, ·) in any of the update sets S

provided as part of the update proofs π
upd
i , then we

can break the explicit update soundness property.
If there was an entry of the form (l,(v̂, t̂)) for some
v∗ in at least one of the sets S, then it must be the
case that v̂ = v′ and t̂ = t ′, again by explicit update
soundness. Finally, because our VerifyUpd algo-
rithm checks the insertion epoch attached to every
item in S, we have that t̂ must correspond to the
time of the update in which set S was included, and
thus that t1 < t̂. Thus we again get a contradiction.

Privacy. We capture the L-privacy of an oZKS using a real-
ideal world computational indistinguishability game, which
is parameterized by leakage function L = (LUpd,LQuery). An
oZKS is private for the leakage function L if there exists a
simulator S = (SInit,SUpd,SQuery) such that for any adversary
A , the outputs of the experiments oZKS-PRIV-REAL and
oZKS-PRIV-IDEAL presented in Figure 5 are computation-
ally indistinguishable.

A is given access to two stateful oracles with shared state
to update and query the oZKS. In the real world experiment
oZKS-PRIV-REAL, the values returned to A are those gener-
ated by the actual oZKS algorithms. In contrast, in the ideal
world experiment oZKS-PRIV-IDEAL, A receives outputs
generated by S , which receives leakage from leakage func-
tion L . In both games for updates, if the queried set S gives
an invalid update by adding a label already in the oZKS, the
oracle simply returns without performing the update.

Leakage. The concrete leakage for our oZKS construction
is:

• LUpd(S): outputs |S| and the set Q of labels of items in
this update for which there had been a previous non-
membership query

• LQuery(t, label,val): outputs val, t.

Theorem 3. Let our oZKS construction as defined above in
this section be parameterized with an sVRF scheme that meets
the simulatibility property and a sCS scheme that meets the
hiding property. Then our oZKS construction satisfies oZKS
privacy with the specified leakage function above.

Proof. We define the simulator S = (SInit,SUpd,SQuery) as
follows.

• SInit(1λ): The oZKS simulator calls the sVRF simula-
tor to generate the sVRF public key pk. Next, it builds
an aSA from an empty datastore via (com0,D0,st0) ←
aSA.CommitDS(1λ, /0). It forms commitment com ←
(com0, pk) and new state st composed of the aSA and its
state, pk, D0, com0, and epoch t = 0 and then returns com.

• SUpd(|S|,Q): For each label in Q, the simulator looks up
the simulated sVRF output (which we refer to as the “leaf

string”) that was previously assigned to that label. For the re-
maining |S|− |Q| number of labels in the update, it chooses
random leaf strings as the output of the sVRF computation
and stores these in its state. It then uses the sCS simula-
tor to form the commitments com∗i and forms aSA values
vi =(com∗i , t+1). The simulator now has set S′ to add to the
aSA. It then proceeds as the rest of the Update algorithm to
call the aSA UpdateDS algorithm to update the data store
and get back the new commitment comt+1 and update proof
ΠUpd. It stores the set of label-value pairs from the updated
aSA and then returns ((comt+1, pk),(ΠUpd,S′)).

• SQuery(label,val, t): The simulator retrieves the set St of
label-value pairs in the aSA that were added during epoch t
when label was added. It also retrieves the list of labels with
their associated leaf strings. If val ̸=⊥, meaning the label
is actually in the set, and a leaf string has not already been
chosen for label, then it picks an unused leaf string l from
St and uses the sVRF simulator to get the VRF proof πvr f
that label outputs to that leaf string. Let v= (com∗, t) be the
associated value for l stored in the aSA. It then calls the sCS
simulator to get an opening τ for com∗ that outputs to the
expected value val. Next the simulator calls the aSA Query
algorithm to get the membership proof for l, forms final
proof π← (l,(com∗, t),πvr f ,πsa,τ), records the leaf string
used for label, and returns π. If val=⊥, meaning the label
is not a member of the set, and it has not already chosen
a leaf string for label, then it chooses a random leaf string
(that is not in the aSA), uses the sVRF simulator to simulate
the sVRF proof that it is the correct value for the label, calls
the aSA Query algorithm to get the non-membership proof
for l, forms final proof π← (l,⊥,πvr f ,πsa,⊥), records the
leaf string used for label, and returns π. Note that recording
the leaf string is so that the simulator can be consistent with
future query requests.

We prove that simulator S satisfies the privacy definition
with leakage L from the following sequence of game hops.

Game 0: The same as oZKS-PRIV-REAL.

Game 1: The same as Game 0, except that the commitments
stored in the aSA and their associated openings are simu-
lated. Game 1 is indistinguishable from Game 0 by the hiding
property of the sCS scheme.

Game 2: The same as Game 1, except that the sVRF public
key and VRF proofs are generated by the sVRF simulator and
the leaf strings stored in the aSA are chosen randomly instead
of computed by the sVRF scheme. Game 2 is indistinguish-
able from Game 1 by the simulatibility property of the sVRF
scheme.

By inspection, Game 2 is identical to oZKS-PRIV-IDEAL,
completing our proof.

C Private Authenticated History Dictionary

In this section, we formalize the cryptographic primitive Pri-
vate Authenticated History Dictionary (PAHD) we describe in
Section 3, provide security definitions, and prove the security
of our PAHD construction from Section 4.

C.1 Formal Definition
Definition 2. A Private Authenticated History Dictionary
(PAHD) is defined by the following set of algorithms:

• (st0,com0)←$PAHD.Init(r): The initialization algorithm
takes as input random seed r and outputs the initial com-
mitment to the empty dictionary and the initial state.

• (stt ,comt ,Π
Upd
t)←$PAHD.Upd(stt−1, [k j,v j] j): The up-

date algorithm which takes as input the current state for
epoch t−1 and a set of key-value pairs and outputs a com-
mitment to the updated dictionary, the update proof, and
state for epoch t. The update algorithm may fail and output
⊥, e.g. if the input key-value pairs are malformed.

• (v,π) ← PAHD.Lkup(stt ,k): The lookup algorithm re-
trieves the value v for key k along with a membership proof
π. If k is not a key in the dictionary, it returns value⊥ along
with a proof of non-membership.

• 0/1← PAHD.VerLkup(comt ,k,v,π): The lookup verifica-
tion algorithm verifies that the value returned from a lookup
is correct according to the commitment provided.

• ([(vi, ti)]ni=1,Π
Ver)← PAHD.Hist(stt ,k): The history algo-

rithm returns the set of values that key k has been assigned
over time, the epochs during which each value was assigned,
and the membership proofs for each key-value mapping. If
k is not a key in the dictionary, it returns value⊥ along with
a proof of non-membership.

• 0/1← PAHD.VerHist(comt ,k, [(vi, ti)]ni=1,Π
Ver): The his-

tory verification algorithm verifies that the set of values
and epochs returned from the history algorithm is correct
according to the commitment provided.

• 0/1 ← PAHD.Audit(com j,com j+1, j, j + 1,ΠUpd
j+1): The

audit algorithm takes in two commitments, their associ-
ated epochs, and the update proof ΠUpd published by the
server and outputs a boolean indicating whether the audit
was successful.

C.2 Security Definitions

Completeness. The formal experiment for completeness is
presented in Figure 6. We model completeness as a game in
which an adversary A can interact with an honest server as
a client or auditor. The game begins by initializing an empty
PAHD and then running adversary A , which is given the
initial commitment and access to stateful oracles that share
state to update the dictionary, lookup or check the history of

CompletenessA
PAHD:

r←$ R
(st,com)←$PAHD.Init(r)
epno← 0
Dir← [] ; Com← []

Com[epno]← (st,com,⊥)
AUpdate,Lkup,Hist,Audit(com)

Return 1

Update([k j ,v j] j):

(st,com, ·)← Com[epno]

(st′,com′,ΠUpd)←$PAHD.Upd(st, [k j ,v j] j)

If (st′,com′,ΠUpd) =⊥ and ̸ ∃m,n ∈ [j] s.t. km = kn:
Halt and return 0

epno← epno+1
Com[epno]← (st′,com′,ΠUpd)

For (k,v) ∈ [k j ,v j] j :
Dir[k].append((v,epno))

Return com′,ΠUpd

Lkup(k):

(st,com, ·)← Com[epno]

(v′,π)← PAHD.Lkup(st,k)
b← PAHD.VerLkup(com,k,v′,π)
If k /∈Dir: v←⊥
Else: (v, ·)←Dir[k][−1]
If v′ ̸= v or b = 0:

Halt and return 0
Return v

Hist(k):

(st,com, ·)← Com[epno]

([(v′i, t
′
i)]

n′
i ,ΠVer)← PAHD.Hist(st,k)

b← PAHD.VerHist(com,k, [(v′i, t
′
i)]

n′
i ,ΠVer)

[(vi, ti)]ni ←Dir[k]
If [(v′i, t

′
i)]

n′
i ̸= [(vi, ti)]ni or b = 0:

Halt and return 0
Return [(vi, ti)]ni

Audit(j, j+1):

If j ≥ epno: Return
(·,com j , ·)← Com[j]
(·,com j+1,Π

Upd
j+1)← Com[j+1]

b← PAHD.Audit(com j ,com j+1, j, j+1,ΠUpd
j+1)

If b = 0:
Halt and return 0

Return

PAHD-PRIV-REALA
PAHD:

r←$ R
(st0,com0)←$PAHD.Init(r)
epno← 0 ; St← []

St[epno]← st0

b←$ AUpdate,Lkup,Hist(com0)

Return b

Update([k j ,v j] j):

If ∃m,n ∈ [j] s.t. km = kn:
Return

st← St[epno]

(st′,com′,ΠUpd)←$PAHD.Upd(st, [k j ,v j] j)

epno← epno+1
St[epno]← st′

Return (com′,ΠUpd)

Lkup(k):

st← St[epno]

(v,π)← PAHD.Lkup(st,k)
Return (v,π)

Hist(k):

st← St[epno]

([(vi, ti)]ni ,Π
Ver)← PAHD.Hist(st,k)

Return ([(vi, ti)]ni ,Π
Ver)

PAHD-PRIV-IDEALA ,S
PAHD:

com0←$ SInit()

epno← 0 ; Dir← []

b←$ AUpdate,Lkup,Hist(com0)

Return b

Update([k j ,v j] j):

If ∃m,n ∈ [j] s.t. km = kn:
Return

(com′,ΠUpd)←$ SUpd(LUpd([k j ,v j] j))

epno← epno+1
For (k,v) ∈ [k j ,v j] j :

Dir[k].append((v,epno))
Return (com′,ΠUpd)

Lkup(k):

If k /∈Dir: v←⊥
Else: [(vi, ti)]ni ←Dir[k]
π← SLkup(k,LLkup(k, [(vi, ti)]ni))
Return (v,π)

Hist(k):

[(vi, ti)]ni ←Dir[k]
ΠVer ← SHist(k,LHist(k, [(vi, ti)]ni))
Return ([(vi, ti)]ni ,Π

Ver)

Figure 6: (Left) The completeness definition for PAHD. (Center/Right) The privacy definition for PAHD.

keys in the dictionary, and audit updates. The goal of A in the
experiment is to trigger some incorrect behavior of the PAHD
and get the experiment to return 0 (shown in bold in the game
pseudocode).

The game keeps track of the current epoch via value epno.
It also keeps track of other values via dictionaries Dir and
Com. Dir maps a key to a list [(vi, ti)]ni of values and epochs
it has been assigned. Com maps an epoch to a tuple of the
server state, commitment, and update proof associated with
that epoch. We also make use of the following notation for
lists and dictionaries. For a list L, L[−1] represents the last
element of the list and L.append(v) represents that value v

has been appended to the list. If a key k is not in dictionary D,
then D[k] returns ⊥.

The Update oracle enables A to add a set of keys and their
values to the dictionary. If Update fails, then the game checks
that it was because the keys to be added were not all unique;
otherwise, it halts and returns 0. The Lkup oracle enables A to
lookup key k, verifies that the value returned matches the latest
value recorded in Dir, and confirms that verification of the
lookup proof succeeds. Otherwise, the game halts and returns
0. Likewise, the Hist oracle enables A to lookup the history
of key k and halts and returns 0 if either this does not match
what is recorded in Dir or verification of the history proof

fails. And finally, the Audit oracle enables A to verify the
update proof between any two epochs and returns 0 if auditing
fails. We measure the advantage of A in the completeness
experiment by the probability of the experiment returning 0.
A PAHD satisfies completeness if for all PPT adversaries A ,
the probability that the game described outputs 0 is negligibly
small.

Soundness. Our soundness definition is based on that of
the Verifiable Key Directory (VKD) primitive from SEEM-
less [6]. The goal of our definition is to capture that, assuming
the dictionary has been honestly audited at every epoch, a
malicious server S∗ cannot lie about the value v for a key K
s.t. it is inconsistent with what is returned by a history check.

To model this, we have server S∗ return a key K and the
history of n values that have been assigned to K as well as the
epochs at which these assignments occurred. S∗ also returns
the list of all commitments and update proofs starting from
t1 when K was first added to the dictionary to tcurr, the dictio-
nary’s current epoch, and the history proof ΠVer that proves
the history of updates for K. Finally, S∗ returns an epoch t∗, a
version number j for key k, and a value v as well as lookup
proof π.

We then want to capture that if the dictionary is audited
successfully from t1 to tcurr, the history of K is verified suc-
cessfully at epoch tcurr for values and epochs [(vi, ti)]ni=1, and a
lookup is performed at epoch t∗then the following guarantees
hold:

• If t j ≤ t∗ < t j+1, then a malicious server could give out
a lookup proof that verifies that v ̸= v j is the value for K
at t∗ only with negligible probability.

• If tn ≤ t∗ ≤ tcurr, then a malicious server could give out
a lookup proof that verifies that v ̸= vn is the value for K
at t∗ only with negligible probability.

• Finally, if t∗ < t1, then a malicious server could give out
a lookup proof that verifies that v =⊥ is the value for K
at t∗ only with negligible probability.

More formally, a PAHD scheme satisfies soundness if for
all PPT S∗, there exists a negligible function ν() such that for
all λ ∈ N:

Pr
[
(K, t∗, [(vi, ti)]ni=1,Π

Ver, [(comk,Π
Upd
k)]tcurrk=min(t1, t∗),

j,(v,π))← S∗(1λ) :
PAHD.VerLkup(comt∗ ,K,v,π)

∧tcurr−1
k=min(t1, t∗) PAHD.Audit(comk,comk+1,k,k+1,ΠUpd

k+1)

∧ PAHD.VerHist(comtcurr ,K, [(vi, ti)]ni=1,Π
Ver)

∧ [[(j ∈ [1,n−1])∧ (t j ≤ t∗ < t j+1) ∧ (v ̸= v j)]

∨[(tn ≤ t∗ ≤ tcurr) ∧ (v ̸= vn)]

∨[(t∗ < t1) ∧ (v ̸=⊥)]]

∧ t1 < .. . < tn ≤ tcurr
]
≤ ν(λ).

L-Privacy. We capture what we call the L-privacy of a
PAHD scheme using a real-ideal world computational in-
distinguishability game, which is parameterized by leakage
function L = (LUpd,LLkup,LHist). A PAHD scheme is pri-
vate for the leakage function L if there exists a simula-
tor S = (SInit,SUpd,SLkup,SHist) such that for any adversary
A , the outputs of the experiments PAHD-PRIV-REAL and
PAHD-PRIV-IDEAL presented in Figure 6 are computation-
ally indistinguishable.

A is given access to three stateful oracles with shared
state to update the dictionary, lookup a key, or get the history
of a key. In the real world experiment PAHD-PRIV-REAL,
the values returned to A are those generated by the actual
PAHD algorithms. In contrast, in the ideal world experi-
ment PAHD-PRIV-IDEAL, A receives outputs generated by
S , which receives leakage from leakage function L . To avoid
trivial wins, in both games for queries to the Update oracle,
the oracle first checks that all the keys to be updated are
unique and, if not, returns ⊥.

C.3 Security of PAHD from Section 4

We now formally state and prove that our PAHD construction
from Section 4 meets completeness, soundness, and privacy.

Theorem 4. Let oZKS be an ordered Zero-Knowledge Set
satisfying oZKS completeness. Then our PAHD construction
using oZKS satisfies completeness.

The above theorem is easy to see is true by inspection so
we do not provide the full details.

Theorem 5. Let oZKS be an ordered Zero-Knowledge Set
satisfying oZKS soundness. Then our PAHD construction
using oZKS satisfies PAHD soundness.

Proof. We show that if the PAHD adversary wins, then we
can construct an adversary against the soundness security of
oZKS. Recall that each proof contains the following:

• π contains membership proofs for all versions up to α

and a non-membership proof for version α+1 for epoch
t∗ w.r.t. comt∗ .

• ΠVer contains membership proofs for all versions up to
n (with insertion times t1, . . . , tn), and a non-membership
proof for version n+1 for epoch tcurr w.r.t. comtcurr .

We have the following cases, where for each case we de-
scribe how the soundness of oZKS is broken.

• t∗ < t1 ∧ v ̸= ⊥: In this case, we have that π contains
a valid membership proof for version α ̸= 0 and a non-
membership proof for version α+1 at query time t∗ < t1.
Let us split this in the following cases:

1. α ∈ [1,n]: This would imply the underlying oZKS
has valid membership proofs for (K|α, tα,v) (as
part of π) and (K|α, t j,v j) (as part of ΠVer) where
tα < t1 ≤ t j, j ∈ [1,n]. This is impossible by oZKS
soundness.

2. α > n: This would imply that the underlying oZKS
has a valid non-membership proof for version n+1
at query time tcurr while a valid membership proof
for version n+ 1, at query time t∗ < tcurr. This is
impossible by the soundness of oZKS as well.

• tn ≤ t∗ ≤ tcurr∧v ̸= vn: In this case we have that π either
contains a valid membership proof for version α ≥ 1
and a non-membership proof for version α+1 at query
epoch t∗ or contains a non-membership proof for version
α = 1 (and v = ⊥). We can split this in the following
cases:

1. v = ⊥: In this case, we have a valid non-
membership proof for α = 1 for query epoch t∗

while a valid membership proof for α = 1 with in-
sertion epoch t1 ≤ tn ≤ t∗. This contradicts oZKS
soundness. When v ̸= ⊥, we have the following
cases.

2. α∈ [1,n−1]: In this case, we have a valid member-
ship proof w.r.t. comtcurr for version n with inser-
tion time tn, but we have a non-membership proof
for version n w.r.t comt∗ , where t∗ ≥ tn. This con-
tradicts oZKS soundness.

3. α = n: In this case, we have two valid membership
proofs for version α for two different values v ̸=
vn.This contradicts oZKS soundness.

4. α > n: In other words, α≥ n+1. In this case, we
have a non-membership proof for version n+1 at
query epoch tcurr, while a membership proof for
version n+1 at query epoch t∗ ≤ tcurr. This contra-
dicts oZKS soundness as well.

• (j ∈ [1,n− 1]) ∧ (t j ≤ t∗ < t j+1) ∧ (v ̸= v j): In this
case, we either have that π contains a valid membership
proof for version α ≥ 1 and a non-membership proof
for version α+1 at query epoch t∗ or it contains a non-
membership proof for version α = 1 (and v = ⊥). We
can split this in the following cases:

1. v = ⊥: In this case, we have a valid non-
membership proof for α = 1 for query epoch t∗.
But, as part of ΠVer, there is a valid membership
proof for version α = 1 for insertion epoch t1 ≤ t∗.
This contradicts the oZKS soundness.
When v ̸=⊥, we have the following cases.

2. α ∈ [1, j − 1]: This means there is a non-
membership proof for version α+1 at query epoch
t∗ (from π). However, there is also a membership

proof for version α+1≤ j (by our assumption that
α∈ [1, j−1]) with insertion epoch tα+1≤ t j ≤ t∗<
tcurr provided as part of ΠVer at tcurr. This contra-
dicts the oZKS soundness.

3. α = j: In this case, for the same version α we have
two valid membership proofs:one for v and one for
v j, v ̸= v j. This contradicts oZKS soundness.

4. α > j: This means we have a valid membership
proof for version j + 1 (in ΠVer) with insertion
epoch t j+1 > t∗. However, we also have a valid
membership proof for version j+1 (as part of π)
with some insertion epoch t ≤ t∗. This means, we
have two valid membership proofs for version j+1
with respect to two epoch numbers t, t j+1, t ̸= t j+1.
This contradicts oZKS soundness.

Privacy leakage. The concrete leakage for our PAHD con-
struction is:

• LUpd([k j,v j] j): outputs the number of updates j and set
Q, which is the set of keys that were queried to Lkup or
Hist and for which this is the first update since they were
queried

• LLkup(k, [(vi, ti)]ni=1): outputs [(vi, ti)]ni=1
• LHist(k, [(vi, ti)]ni=1): outputs [(vi, ti)]ni=1

Theorem 6. Let oZKS be an ordered Zero-Knowledge Set
satisfying privacy with leakage specified in Appendix B. Then
our PAHD construction satisfies privacy with the specified
leakage function above.

Proof. We define the simulator S = (SInit,SUpd,SQuery) as fol-
lows. We note that the simulator stores state, which in particu-
lar includes a table T that maps keys to their version numbers.
Furthermore, the simulator utilizes the oZKS simulator Sozks

to simulate the underlying oZKS used by the protocol.

• SInit(): The simulator initializes a new oZKS by calling
the oZKS simulator via com← Sozks

Init (1λ). It initializes the
epoch in its state to 0 and then returns (com,0).

• SUpd(LUpd([k j,v j] j)): The simulator first creates set Q′,
which will serve as part of the leakage it will provide to
the oZKS simulator Sozks. For each key k ∈Q (which recall
is the leaked set of keys for which there had been a Lkup
or Hist call since the prior update), the simulator looks up
k in table T to get the key’s version number n and then
adds label (k | n+1) to Q′. Then the simulator simulates
the oZKS commitment via (com′,πupd)←$ Sozks

Upd (j,Q′). Fi-
nally, the simulator increments the epoch in its state and
returns ((com= (com′,epno),πupd).

• π← SLkup(k, [(vi, ti)]ni=1): If k is in the table T (meaning
n > 0), then for i ∈ [n] the simulator creates oZKS label

label← (k | i) and calls πi← Sozks
Query(label,(vi, ti)) to simu-

late the membership proof for each key version. It then sim-
ulates the non-membership proof via πn+1← Sozks

Query((k | n+
1),⊥). It returns as the lookup proof [(πi,vi, ti)]ni and πn+1.
Otherwise, if k is not in the table, then it simulates a single
non-membership proof via π← Sozks

Query((k | 1),⊥) and re-
turns π. The simulator also stores in table T that the version
for key k is n.

• ΠVer← SHist(k,LHist(k, [(vi, ti)]ni=1)): This proceeds identi-
cally to SLkup except that if n > 0, then the lookup proof is
simply [πi]

n+1
i=1 since the key values and the insertion epochs

are explicitly returned by the algorithm.

We prove that simulator S satisfies the privacy defini-
tion with leakage L with a direct reduction to the privacy
of oZKS with the leakage specified in Appendix B. In
particular, we show that if there exists adversary APAHD

that can distinguish between games PAHD-PRIV-REAL and
PAHD-PRIV-IDEAL, then we can construct adversary AoZKS

that can distinguish between games oZKS-PRIV-REAL and
oZKS-PRIV-IDEAL. We construct AoZKS as follows:

• Recall that AoZKS gets as input the initial oZKS commit-
ment com as input. AoZKS begins by running APAHD with
input (com,0epno = 0). AoZKS also keeps as part of its
state the version number for each key that is added and
updated by APAHD and the current epoch number epno.

• When APAHD makes a query to Update, then AoZKS re-
trieves the version for each key to be updated, constructs
the appropriate oZKS label for the key, and adds the label
together with its value to set S. It then calls its own Update
oracle on input S to get back (com′,πupd). It increments
the epno and returns (com= (com′,epno),πupd) to APAHD.
AoZKS also updates the version number for the keys that
were updated in its state.

• When APAHD makes a query to Lkup, then AoZKS retrieves
the version number n for the key from its state and creates
the appropriate oZKS label for each key version. It then
queries its oracle Query with each label to get back (πi,vi, ti)
as the membership proofs and queries for label (k | n+1) to
get the non-membership proof. If the key is in the dictionary,
it returns the latest key version vn and the membership
proofs and non-membership proof; otherwise, it returns ⊥
as the key value and the single non-membership proof.

• For queries to Hist, AoZKS proceeds the same as for queries
to Lkup except that the values and the insertion epochs for
each key version is returned explicitly instead of as part of
the lookup proof.

When AoZKS plays game oZKS-PRIV-REAL, then no-
tice that APAHD gets back outputs from the oZKS
algorithms, and so this is indistinguishable to game
PAHD-PRIV-REAL for APAHD. Likewise, when AoZKS plays

game oZKS-PRIV-IDEAL, then notice that APAHD gets
back outputs from the oZKS simulator, and so this is in-
distinguishable to game PAHD-PRIV-IDEAL for APAHD.
Thus, if APAHD can distinguish between the two games,
then AoZKS can distinguish between oZKS-PRIV-REAL and
oZKS-PRIV-IDEAL, completing the proof.

D Details on OPTIKS-ext Protocol

Here we describe more details to protocol extensions made
for OPTIKS-ext, which were first described in Section 5.

Reducing storage via time periods. We reduce storage and
improve scalability by creating a new PAHD each time period.
This requires the following modifications to OPTIKS-core:

▷ Update: When the time period changes, the service will
perform a separate update operation. This operation will
not include any new updates, but will only serve to initialize
the new time period. The service will look up the most
recent public key for each client, add these values into the
new PAHD, and then post the resulting commitment as
the first commitment of the new time period. Subsequent
updates will proceed as in the core protocol.

▷ Lookup: is as in the core system. However, note that now
the PAHD only includes updates from the current time
period. Since the core lookup is linear in the number of
key updates that the queried user has performed, this may
significantly reduce the cost, particularly for users with
frequent key updates.

▷ History: We will only provide history for the current and
previous time period. History checks will return the key
history for the current time period as well as a key history
w.r.t. the last commitment in the previous time period. The
client will verify the proofs and verify that the last key
in the previous time period matches the initial key in the
current time period.

▷ Audit: Is as before, with the exception that the auditors do
not have to audit the transition between the last commit-
ment of one time period and the first commitment of the
next.

Account decommissioning. We modify the protocol as fol-
lows to enable account decommissioning:

▷ Update: Each epoch the service will publish two
commitments—a PAHD commitment to the current public
key directory and history for this time period, and an oZKS
commitment to the set of decommissioned usernames. Also
note that when a new time period starts, the initial PAHD
for the new time period does not need to include any de-
commissioned usernames.

▷ Lookup: If the username has been decommissioned,
Lookup will return a proof that the username is included
in the decommissioned oZKS. Otherwise, it will return a

proof for the current public key according to the PAHD and
a proof of non-membership in the decommissioned oZKS.

▷ History: History will return the key history according
to the PAHDs as before, as well as a membership/non-
membership proof in the decommissioned-account oZKS.
History verification will ignore any history after the epoch
at which the username was added to the decommissioned-
account oZKS.

▷ Audit: Will verify proofs for transitions between each pair
of PAHD commitments and between each pair of oZKS
commitments. In the transition between time periods, the
auditors need to check that the oZKS remains unchanged.

Account decommissioning with username reuse. Here we
propose a modification for the case where we want to allow
usernames to be reused after they are decommissioned (e.g.
if the user wants to reinstate a decommissioned account or if
the username is something like a phone number which can be
transferred to a different user).

First, we would replace the username oZKS with a user-
name PAHD. Recall, our username oZKS maintains a map-
ping between usernames and user ids, where the user ids are
the unique internal representation for a user account. Now, we
will replace this with a PAHD which would store a mapping
from each username to either a user id or a special NULL
value indicating that this username has been removed from
the user’s account. All users when querying the username
PAHD would be given the full history of values associated
with the username and would verify that they alternate be-
tween user ids and the NULL value, thus guaranteeing that
each user removes the user id before it is transferred to a new
user. The client would need to be modified to show a very
strong notification whenever it finds a username which has
been removed and re-added. In that case the querying user
should be instructed to verify out-of-band whether the queried
user had decommissioned and reactivated their account and
to ensure that queried the user (re)started their account after
the most recent time that the username was re-added.

This does have the privacy consequence of letting the query-
ing user and the new owner of the username learn exactly
when the username was previously added and removed by
other users (although not which users this corresponds to or
anything about their associated devices or keys). We leave
open the problem of minimizing leakage further, but note that
some leakage of this sort seems to be an inevitable trade-off
for allowing username reuse in this context.

Supporting multiple devices and usernames. Recall that
we change our key-update PAHD to map device ids to public
keys and add two additional structures: the username OZKS
which maps each username to its associated user id and the
device-list PAHD which maps each user id to a list of its
associated device ids.

We then modify the protocol as follows:

▷ Update: Each epoch the service will publish three commit-
ments9: one for the username oZKS, one for the device-list
PAHD, and one for the key-update PAHD. These will reset
each time a new time period starts. Assuming that user-
names are not recycled, we note that a username is only
ever mapped to a single user id; see the account decom-
missioning with account reuse discussion above for an
alternative.

▷ Lookup: Lookup will return a proof for the current public
key for each device according to the key-update PAHD,
a proof for the list of devices according to the device-list
PAHD, and a proof for the user id according to the username
OZKS.10

▷ History: History will return the user id mapping, the history
of device-lists, and the history of key updates for each
device.

▷ Audit: Will verify proofs for transitions between each pair
of key-update PAHD commitments, each pair of device-list
PAHD commitments, and each pair of username OZKS
commitments.

E PAHD Using Different Commitments

As we describe in Section 5, a PAHD lookup response is com-
posed of many oZKS query responses. One optimization is
to have multiple servers handle these oZKS responses, but
it could be that the oZKS servers are slightly out of sync
and thus might form proofs with respect to different commit-
ments. In this section, we show that we can relax our PAHD
formalization to allow for lookup proofs using different com-
mitments and still achieve soundness. We first update the
definition for PAHD to include these commitments and de-
scribe changes to the protocol from that described in Section 4.
We then provide an updated soundness definition for this new
syntax and prove that our updated algorithm meets this defini-
tion. Since the updated definitions and proofs of completeness
and privacy are nearly identical to those in Appendix C, we
only provide the updated soundness analysis.

Definition and Construction. We describe the changes to
our PAHD definition and construction, namely for lookups
and history checks. Updates and audits remain the same as
in our original construction. Since oZKS membership and
non-membership proofs may be w.r.t. different commitments,
part of the lookup proof contains which commitments were
used for the oZKS proofs. Then instead of the single latest
commitment, the lookup verification algorithm takes as input
all commitments up to the latest epoch t.

9When combined with account decommissioning as described above,
this will total 4 commitments, with the additional commitment from the
decommissioned-account oZKS.

10This does reveal some extra information to the querier in that learning
the list of devices is not strictly necessary. However, it allows for an efficient
solution and the privacy loss seems tolerable.

The other major change is that lookup outputs an additional
value t ′, which represents the epoch for which the latest key
version may be considered valid, since the commitments used
for the lookup proof may be slightly stale. In essence, this is
the epoch of the commitment for which the non-membership
proof is proven. To see why, consider the following example.
Bob looks up Alice’s key, which is at version 5. Bob receives
oZKS membership proofs for versions 1 through 5 and a
non-membership proof for version 6. Let us say that the mem-
bership proof for version 5 is proven w.r.t. the commitment at
epoch 10, yet the non-membership proof is computed slightly
later so that it is proven w.r.t. the commitment at epoch 11.
Assuming that the append-only property of the oZKS is main-
tained, then we can say that version 5 is also valid for epoch
11 since we know there is no version 6 at that point.

Now, conversely, consider if the membership proof for ver-
sion 5 is proven for epoch 11, while the server computing the
non-membership proof is slightly stale and computes this for
epoch 10. Then we can only say that version 5 is valid for
epoch 10 and we cannot say anything for epoch 11 because
the non-membership proof does not specify that there is no
version 6 at epoch 11. In particular, version 6 could have been
added precisely at epoch 11, making version 5 slightly stale.
Therefore, we specify for the user during a lookup request at
which epoch the version returned may be considered valid.

▷ (v,π, t ′)← PAHD.Lkup(stt ,k): Upon receiving a lookup
request for key k, the server retrieves from its state the
latest version number α for k (where α = 0 if k is not in the
PAHD). If k is in the PAHD, then the server forms labels
(k | 1), . . . ,(k | α) and calls oZKS.Query for each label
to get back [(πi,vi, ti)]αi w.r.t. latest commitment comi at
the time of retrieval. To retrieve the non-membership proof
πα+1 for the next version of the key (or to prove that k is not
in the dictionary when α = 0), the server calls oZKS.Query
for label (k | α+1) w.r.t. commitment comα+1. The server
returns either vα as the value for k if α > 0 or ⊥ otherwise.
The server returns as its lookup proof:

– Correct version i is set at epoch ti: For each i ∈ [1,α],
πi serves as the membership proof for (k | i) with value vi
and associated epoch ti in oZKS w.r.t. comi. This means
the server must return [(πi,vi, ti)]αi as part of the proof.

– Server could not have shown version α + 1: Proof
πα+1 serves as the non-membership proof for (k | α+1)
in oZKS w.r.t. comα+1.

Note that as part of this proof, the server indicates which
commitments were used.
It also indicates the epoch t ′ associated with comα+1, with
respect to which, the non-membership proof was produced.
Notice that t ′ also represents the epoch for which the key
version α is valid. The server checks that t ′ ≥ tα+1. if not,
the server reruns the algorithm to generate the oZKS proofs.
Similarly, if generation fails for any of the membership

proofs (i.e. if the server handling that proof is sufficiently
out of date that it doesn’t have the latest updates to this
label), then similarly we query the server again to get a
more updated proof.

▷ 0/1 ← PAHD.VerLkup([comi]
t
i=1,k,v, t

′,π): The lookup
verification algorithm now takes as input all prior com-
mitments up until the latest epoch t. (See remark below.)
The client verifies each membership proof for labels (k | i)
w.r.t. comi for i ∈ [1,α] and non-membership proof for
(k | α+1) w.r.t. comα+1 via oZKS.Verify.
As before, the client verifies that the update epochs t1, . . . , tα
are monotonically increasing. Lastly, the client parses
comα+1 as (com, t), and verify t = t ′ and that for epoch
tα when version α was added, it is true that tα ≤ t ′. This
latter check verifies that key version α was added before
the non-membership proof was formed.

▷ ([(vi, ti)]ni=1, t
′′,ΠVer) ← PAHD.Hist(stt ,k): This algo-

rithm proceeds the same as Lkup, except that in its syntax
it explicitly returns all key versions rather than including
them in the proof and outputs t ′′ as the epoch with respect
to which, the history is valid.

▷ 0/1 ← PAHD.VerHist([comi]
t
i=1,k, [(vi, ti)]ni=1, t

′′,ΠVer):
This algorithm proceeds identically to that of VerLkup.

Soundness. We now present the updated soundness defini-
tion. Recall that this definition requires malicious server S∗

to return values such that if a user has n key versions and a
lookup was performed between versions j and j+1, then the
lookup returns a key version that is inconsistent with what a
history check would later return. To update this definition, we
now also require S∗ to return epoch t ′, which represents the
epoch for which the version returned by the lookup may be
considered valid and t ′′, which represents the epoch for which
the version returned by the history may be considered valid.

More formally, a PAHD scheme satisfies soundness if for
all PPT S∗, there exists a negligible function ν(·) such that
for all λ ∈ N:

Pr
[
(K, [(vi, ti)]ni=1,Π

Ver, [(comk,Π
Upd
k)]tcurrk=0,

t ′, t ′′, t∗, j,(v,π))← S∗(1λ) :

PAHD.VerLkup([comi]
t∗
i=0,K,v, t ′,π)

∧tcurr−1
k=0 PAHD.Audit(comk,comk+1,k,k+1,ΠUpd

k+1)

∧ PAHD.VerHist([comi]
tcurr
i=0 ,K, [(vi, ti)]ni=1, t

′′,ΠVer)

∧ t ′ ≤ t∗

∧ [[(j ∈ [1,n−1])∧ (t j ≤ t ′ < t j+1) ∧ (v ̸= v j)]

∨[(tn ≤ t ′ ≤ t ′′) ∧ (v ̸= vn)]

∨[(t ′ < t1) ∧ (v ̸=⊥)]]

∧ t1 < .. . < tn ≤ t ′′ ≤ tcurr
]
≤ ν(λ).

Remark 1. Here we define VerLkup to take all the commit-

ments starting from the beginning for simplicity. This can be
compressed to only take the a subset of those commitments
needed to verify the proof. In that case the above soundness
definition could be relaxed to only run Audit starting from the
first commitment used in VerLkup. Alternatively, if we modify
the construction to form a vector commitment to the roots as
in [8], we can allow the VerLkup to take only the most recent
commitment.

Theorem 7. Let oZKS be an ordered Zero-Knowledge Set
satisfying oZKS soundness. Then our PAHD construction w.r.t.
different commitments using oZKS satisfies PAHD soundness.

Proof. We show that if the PAHD adversary wins, then we
can construct an adversary against the soundness security of
oZKS. Recall that each proof contains the following:

• π contains membership proofs for all versions up to α

and a non-membership proof for version α+1 for epoch
t ′ w.r.t. comt ′

• ΠVer contains membership proofs for all versions up to n
and a non-membership proof for version n+1 for epoch
t ′′ w.r.t. comt ′′ .

We have the following cases, where for each case we de-
scribe how the soundness of oZKS is broken.

• t ′ < t1 ∧ v ̸= ⊥: In this case, we have that π contains a
valid membership proof for version α ̸= 0 and a non-
membership proof for version α+ 1 for epoch t ′ < t1.
Let us split this in the following cases:

1. α ∈ [1,n]: This would imply the underlying oZKS
has valid membership proofs for (K|α, tα,v) (as
part of π) and (K|α, t j,v) (as part of ΠVer) where
tα < t ′ < t1 ≤ t j, j ∈ [1,n]. This is impossible by
oZKS soundness.

2. α > n: This would imply that the underlying oZKS
has a valid non-membership proof for version n+1
for query epoch t ′′ while a valid membership proof
for version n+1, with insertion epoch ≤ t ′. This
is impossible by the soundness of oZKS as well
since we have t ′ ≤ t ′′.

• tn ≤ t ′ ≤ t ′′∧ v ̸= vn: In this case we have that π either
contains a valid membership proof for version α ≥ 1
and a non-membership proof for version α+1 at query
epoch t∗ or contains a non-membership proof for version
α = 1 (and v = ⊥). We can split this in the following
cases:

1. v = ⊥: In this case, we have a valid non-
membership proof for α = 1 for the epoch returned
by the server for query: t ′ while a valid membership
proof for α = 1 with insertion epoch t1 ≤ tn ≤ t ′.
This contradicts oZKS soundness.

2. v ̸= ⊥ and α ∈ [1,n− 1]: In this case, we have
a valid membership proof w.r.t. comt ′′ for ver-
sion n with insertion time tn, but we have a non-
membership proof for version n w.r.t comt ′ , where
t ′ ≥ tn. This contradicts oZKS soundness.

3. v ̸=⊥ and α = n: In this case, we have two valid
membership proofs for version α for two different
values v ̸= vn.This contradicts oZKS soundness.

4. v ̸= ⊥ and α > n: In other words, α ≥ n+ 1. In
this case, we have a non-membership proof for ver-
sion n+1 at query epoch t ′′, while a membership
proof for version n+1 at query epoch t ′ ≤ t ′′. This
contradicts oZKS soundness as well.

• (j ∈ [1,n−1])∧ (t j ≤ t ′ < t j+1)∧ (v ̸= v j): In this case,
we either have that π contains a valid membership proof
for version α ≥ 1 and a non-membership proof for
version α + 1 at query epoch t ′ or it contains a non-
membership proof for version α = 1 (and v = ⊥). We
can split this in the following cases:

1. v = ⊥: In this case, we have a valid non-
membership proof for α = 1 for query epoch t ′.
But, as part of ΠVer, there is a valid membership
proof for version α = 1 for insertion epoch t1 ≤ t ′.
This contradicts the oZKS soundness.

2. v ̸= ⊥ and α ∈ [1, j− 1]: This means there is a
non-membership proof for version α+1 for query
epoch t ′ (from π). However, there is also a member-
ship proof for version α+1 with insertion epoch
tα+1 ≤ t j ≤ t ′ provided as part of ΠVer . This con-
tradicts the oZKS soundness.

3. v ̸=⊥ and α = j: In this case, for the same version
α we have two valid membership proofs: one for
v and one for v j, v ̸= v j. This contradicts oZKS
soundness.

4. v ̸= ⊥ and α > j: This means we have a valid
membership proof for version j+1 (in ΠVer) with
insertion epoch t j+1 > t ′. However, we also have a
valid membership proof for version j+1 (as part of
π) with the insertion epoch t ≤ t ′. This means, we
have two valid membership proofs for version j+1
with respect to two epoch numbers t, t j+1, t ̸= t j+1
This contradicts oZKS soundness.

F Further Details on Query and Update Com-
ponents

Query Service. The data used by the Query Service, includ-
ing public keys and other metadata, is stored in the database,

from which updates are retrieved to memory when the epoch
changes. Holding a copy separate from that of the Update Task
is important to avoid service interruptions on epoch changes.
The Query Service also includes an in-memory cache for
faster responses, in which it stores some subset of the oZKS
and associated data. Looking ahead, in our experiments the
cache is large enough to hold the entire oZKS.

Since the Query Service needs to be able to handle a high
volume of queries, it is essential for it to have a low compu-
tational overhead. To aid in this, the Query Service utilizes
the VRF cache that stores the most recently requested VRF
proofs. The Merkle tree proofs themselves are impractical to
cache, but we note that they are much faster to construct than
the VRF proofs even for very large oZKS instances.

In practice, one can run an arbitrary number of Query Ser-
vice instances to improve scalability. For example, each in-
stance could serve a different subset of the oZKS labels. In this
case, the different Query Services may respond with respect to
slightly different epochs, since they are not guaranteed to be
exactly synchronized. While we limit our experiments to run-
ning a single instance, we describe how OPTIKS may be up-
dated to accommodate multiple Query Service instances while
still maintaining transparency guarantees in Appendix E.

Experimental setup. The Query Service was implemented
in two components. The first is a front-facing web server that
provides the Query REST API, hosted in Azure in a P3V3
service plan (1 machine with 8 vCPUs and 32 GB of RAM).
The second is a back-end component that holds the oZKS in
memory. This runs in an Azure virtual machine (E16ads_v5,
with 16 vCPUs @ 2.60 GHz and 128 GB of RAM) that runs
a web server providing an internal REST API that the front-
facing server calls to obtain lookup proofs.

Both Query Service components were multi-threaded by
the ASP.NET runtime. They access a Microsoft SQL Server
2022 Enterprise database, running on an Azure E16ds_v4
virtual machine with 16 vCPUs and 128 GB of RAM.

Update Service and Task. The update component of the
OPTIKS architecture is responsible for handling update re-
quests to the key directory of the system. We split this into
the Update Service and Update Task, where each handles dif-
ferent parts of the update process. In particular, the Update
Service is a REST API that receives update requests from the
Service Provider and processes them by writing them to the
database. It is completely independent of the oZKS. Instead,
the Update Task is responsible for interfacing with the oZKS
to update it. It reads the incoming updates from the database
and adds them as a batch to the oZKS to form a new epoch.
The updated oZKS is then saved to the database, along with
additional information. The Update Task runs over scheduled
intervals, which can be configured depending on the service
load. The Merkle tree insert operations in the oZKS update
process are parallelizable across multiple threads, allowing
the Update Task to (almost) fully leverage the compute power

available to it. For more details, see Appendix H.
The main reason to divide updates into these two compo-

nents is because this enables better scaling of each individual
component based on system requirements. For instance, the
Update Service is a very simple REST API that is scaled
simply by adding more servers to handle incoming requests.
However, scaling the Update Task is far more challenging.
Since it writes updates to the oZKS, the only way to scale
the Update Task is to partition the oZKS so that different
machines may handle updates to each partition.

Experimental setup. The Update Service was implemented
in a web server that provides the Update REST API, hosted
in Azure in a P3V3 service plan (1 machine with 8 vCPUs
and 32 GB of RAM). The Update Task was implemented in a
separate Azure virtual machine (E16ads_v5, with 16 vCPUs
@ 2.60 GHz and 128 GB of RAM). The Update Service was
multi-threaded by the ASP.NET runtime and the Update Task
was run on 16 threads.

G Database Details

The following are the database tables used for our implemen-
tation of OPTIKS:

• The User-Versions table contains one record per client
device and key version, describing the full key history
information and other relevant metadata.

• The Batch-to-Update table contains one record per each
pending key update. The Update Service writes these
and the Update Task reads and clears them.

• The Cached-Updates table is written to by the Update
Task. It contains information for the Query Service for
updating its local oZKS.

• The Update-Proofs table stores update proofs as com-
puted and stored there by the Update Task. It also holds
the corresponding oZKS root commitment.

• The Tree-Nodes table ensures crash resilience of the
system. It stores a complete copy of the oZKS that al-
lows any in-memory representations to be easily rebuilt.
The Update Task updates the Tree-Nodes as it finishes
processing.

H Parallelizing oZKS Insertions

Insert operations into the oZKS are parallelizable. As the
Merkle tree gets populated, the node labels at the top of the
tree will not change. For example, if we have an empty tree
and insert labels 0x0000, 0x0001, 0x8000 and 0x8001, the
root will have two children with labels 0 and 1. No matter
how many more labels are inserted to the tree, the labels of the
children of the root will not change. We group the labels that
we intend to insert into the oZKS by their first bit, and launch
two threads: one that inserts the labels whose first bit is 0, and

one that inserts the labels whose first bit is 1. As more labels
are inserted, the tree becomes populated with more top-level
nodes whose labels will not change, and we may be able the
next time to launch four threads instead of two. The first part
of the update process is then to check how many threads are
possible to launch. Next, we group the labels to insert and
insert them using their assigned threads. Finally, the top nodes
are recomputed after the update threads are complete.

Using this same principle it would be possible to launch
multiple Update Tasks to update different parts of the tree,
if the tree was very large and could not fit in the memory of
a single machine. The tree would be partitioned as it grows
and its top nodes become constant. This would of course
require a synchronization mechanism between the different
Update Tasks to coordinate the computation of the top node
hashes and publishing the root hash and append proofs. In our
experiments, the tree is not that large, so we only parallelize
updates within a single Update Task instance.

I Comparison of OPTIKS with Merkle2

The design for Merkle2 incorporates a forest of chronological
Merkle trees where each key-value pair forms a leaf. Each
internal node of this tree is associated with a separate prefix
tree that stores key-value pairs arranged in lexicographic order
that appear in the subtree rooted at the internal node.

The benefit of this design is that update proof sizes remain
smaller in their structure because every epoch is an extension
of those before it with nodes in the same order as before. For
n key-value pairs, this means that auditing requires checking
O(log(n)) hashes. To minimize storage costs, however, our
tree changes between epochs and internal nodes are also up-
dated. Thus, for the audit proof in OPTIKS, auditors must
download both the k nodes that have been added and the
O(k log(n)) roots of unchanged subtrees, which represent the
nodes that have not been changed.

Nevertheless, these small update proof sizes come at the
cost of significantly larger storage requirements. Merkle2

requires O(n2log(n)) of unoptimized storage which can be
optimized to O(n log(n)) storage. In contrast, OPTIKS only
ever needs O(n) storage. Indeed, our experimental results
in Section 7 support that OPTIKS requires far less storage.

For lookup costs, if a key has ℓ versions, then the proof size
for Merkle2 is O(ℓ+ log2(n)) in the unoptimized case, where
the user must check ℓ signatures and log2(n) membership or
non-membership proofs. Merkle2 offers an alternative algo-
rithm that avoids checking the ℓ signatures but this assumes
that each client must have a separate master key pair which it
can never lose or change. We do not view such an assumption
as tenable in practice.

OPTIKS instead requires lookup proofs of size O(ℓ log(n))
(excluding VRF proofs, which Merkle2 does not use because
it does not target privacy). When a client has few key versions
such that ℓ < log(n), then our lookup cost is less than that of

Merkle2. However, we do note that if a client has a particularly
large number of key updates for a given time period, then the
lookup cost for OPTIKS can be more expensive than Merkle2.
Our experimental results in Section 7 measure the former case
and show that our lookup proof size is indeed smaller in this
case.

	Introduction
	System Setup and Overview
	Building Blocks
	OPTIKS-core: Core OPTIKS Protocol
	OPTIKS-ext: Full Featured OPTIKS
	System Architecture and Implementation
	Performance Evaluation
	oZKS Benchmarks
	System Evaluation
	Comparison and Analysis

	Related Work
	Acknowledgements
	Preliminaries
	oZKS Definitions and Construction
	Private Authenticated History Dictionary
	Formal Definition
	Security Definitions
	Security of PAHD from Section 4

	Details on OPTIKS-ext Protocol
	PAHD Using Different Commitments
	Further Details on Query and Update Components
	Database Details
	Parallelizing oZKS Insertions
	Comparison of OPTIKS with Merkle2

