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Abstract. Thangavel and Varalakshmi proposed an enhanced DNA and
ElGamal cryptosystem for secure data storage and retrieval in cloud.
They modified ElGamal algorithm which it calls enhanced ElGamal cryp-
tosystem. We prove that their enhanced ElGamal scheme, which does
not require two random numbers by data owner. Although the attacker
is unable to find out what message the data owner gave to the data user.
However, the attackers can still confuse the issue of sending messages
to data users. On the other hand, this scheme can not against insider
attack, therefore it is insecure.

Keywords: Enhanced ElGamal Cryptosystem - Forgery Attack - Jam-
ming Attac - Redundancy.

1 Introduction

Digital signatures have become very important with the advent of electronic
commerce. Digital signatures provide authentication and data integrity when
agreement is required with signer and verifier. There have been several schemes
using digital signatures that have been proposed. One scheme that was proposed
by Shieh [16] in 2000 used two multi-signatures and was based on the method
of Nyberg-Rueppel [12]. This method enabled the receiver to verify and decrypt
the message. One advantage was that it used less bandwidth. Another advan-
tage was that message redundancy and one way hash did not have to be used.
The problem was that this method was not secure and was subject to forgery
attack, thus requiring much crypto-analysis improvement [24]. A new digital
signature method was presented by Zhang and Wang [25] that had message re-
covery, but did not require message redundancy or a one-way hash. One claim
they made was that their message could resist forgery. There are the same vul-
nerabilities in articles such as Wong-Chan scheme [20], KCDSA scheme [7] [14],
and Cramer-Shoup scheme [4]. Due to limited conditions, this study lists parts
of good contributions, sud as Arbiter PUFs topic [1, 13, 15], Formal verification
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topic [10, 17, 6], and Others [8,23,22]; but is a little different then what is dis-

cussed in this article, please see Table 1. However, in this paper, we will show
that their method is still insecure and will not prevent a forgery attack.

Table 1. Related Literatures

Arbiter PUF's Formal Method Others

Becker[1] Stefanowicz et al.[17] Liu et al.[§]

Podeti et al.[13] Liu & Venkatesh[10] Yu & Ciesielski [23]
Santikellur & Chakraborty[15] Khan[6] Yang et al.[22]

2 The XOR Operation in Two’s Complement

Exclusive Or (XOR) is sometimes used in cryptography as a mixing function
with Feistel network systems or a one time pad. It can also be used to detect
an overflow of a signed binary operation. If the left most bit of the result is
not the same as the number of digits to the left, than that mean an overflow
has occurred. If there is an overflow, XORing those two bits will produce a “1”.
For what it is worth, XORing can be used to swap two variables in computers
by using the XOR, swap algorithm. However, this is not used in practice, but is
considered merely a curiosity. In the following, the author describes the practical
issues of a bitwise XOR operation on two variables based on two’s complement
computer system. He demonstrates that when taking the algebraic properties of
XOR into account, new attacks can occur. As an example, he uses two variants
of public parameter [8], if XOR is interpreted as free symbol, such as parring,
then according to [8] this scheme is insecure.

2.1 Two’s Complement System

NOTATION:

@: denote bitewise exclusive-or operation.
()10: denote decimal expression.

()2: denote binary expression.

[Pr]: express probability.

The two’s compliment system is used in subtraction because the operands
are always added together. Thus, there is no need for additional circuitry to
determine if the sign of the second operand is plus or minus. Also, the two’s
compliment of zero is zero: inverting the “0”s produces all “1”s, and adding “1”
gives back “0”. Two examples are shown in Table 2 and Table 3.

In [18], Thijssen and Vink show how two’s complement arithmetic can be based
on mapping the binary arithmetic onto a set of residue classes modulo 2”. In
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Table 2. Example of both odd numbers.
(187)10 = (10111011)5.

(241)10 = (11110001 )s.
(187)10 @ (241)10 = (01001010)5.
(187 )10@(241)10 (74)10.
(=87)10 = (1111111101000101)5.
(=241)10 = (1111111100001111)5.
(—187)10 & (—241)10 = (0000000001001010)2.
(—187)10 ® (—241)10 = (74)10.

Table 3. Example of both even numbers.
(108)10 = (01101100)5.

(116)10 (01110100)2.
(108)10 &3] (116)10 (00011000)2.
(108)10 (&5} (116)10 = (24)10.
(7108)10 = (1111111110010100)2.
( 116)10 (1111111110001100)2.
(—108)10 ® (—116)10 = (00011000)>.
(*108)1 EB( 116)10 = (24)10.

the two’s complement system the integers m from the domain DF: —2"~1 <
m < 2771 — 1 are mapped onto [m] (mod 2"). This residue class is represented
by R%(m), which is the smallest non-negative integer in the residue class [m)]
(mod 2™). So, it can be written

0<m<2" ! —1 <= RY(m)=m. (1)
—2""1 <m < —1 <= Ry(m) =2" +m. 2)

The binary representation of the integer number m is the same to the integer
number RY(m).

2.2 The XOR Operation

Chevaler et al. first proposed an NP decision procedure for protocol insecurity
with XOR in 2005 [2], but they appled their framework to an intruder that
exploits properties of certain encryption modes such as cipher block chaining
(CBCQ).

1. The Boolean Algebra Expression

Table 4 describes the XOR truth table. The XOR operation can be expressed as
In the remainder of this section, we assume A, B, C' are n bits numbers and F5
represents the set {0,1}. We reexpress Equation (3)

A®B=(-AANB)V(AA-B), (3)

to
A® B=AB+ AB. (4)
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And rewrite the express as Equation (5).
A®B=Ry(A)® R} (B), A, Be Dj. (5)

It is a very common component in digital circuit or logic, and often used to many
fields such as adder, cryptosystem, image process and so on.

Table 4. The XOR truth table

ABAGB
00 O
01 1
10 1
11 0

2. The Galois Field Expression

Theorem 1. Let & be an operation on the set X. It is called commutative if
AdB=B®dA, VA, B € X.

n—1
Proof. Set, A <> R} (A) = Z a;2' a; € Fy,
i=0

n—1
B+ Ry(B) = b2',b; € Fy.
=0

So, A® B = R}(A) ® R2(B)
n—1 . n—1 )
=) a2 @) b2’

=0 1=0

n—1
i=0
n—1
For the same reason, B® A = Z(b’ D a;) - 2.
i=0
Since a;, b; € Fy, then, a; ® b; = a; + b; (rnod 2),
bi ®a; = a; +b; (mod 2),
Hence b; ® a; = a; ® b;.
Therefore A® B =B & A.

Theorem 2. Let & be an operation in the set X. It is called associative if (A&
B)oC=Ad(Ba(C) forall A,B€ X.
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n—1 n—1
Proof. set,A < R3(A) = Z(aiQi)7 B < Ry(B) = Z(bﬂz‘)’ C & Ry(C) =
n—1 =0 i=0
Z(C’i2i)7 A;, bi, C; € FQ.
i=0
So, (A® B)®C = (R}(A) ® R¥(B)) @Rn(o)
n—1
—Z (a; ® b;)2 @Ze,%
n— 1 4
= Z[(ai ®b; ;)2
=0
n—1
= [(ai +b; +¢;) (mod 2)]2°
i=0

The same reason, we have,

Ao (BaC) = Z a; +b; +¢;) (mod 2)]2°

Thus, (AEBB)@C’:A@(B@C).

n bits

———
Theorem 3. If A= B, then A® B =0000...0000.
n—1 ) n—1 )
Proof. Set, A < R§(A) = (a;2"), B > Ry(B) =Y _(b:2"), ai, bj, € Fa.

i=0 i=0
Then, A® B = RQ(A) ® R3(B)

*Z [(a; + b;) (mod 2)]2¢

If A=B, thatlsaszl, 0<i<n-—1,
Then, a; +b; =0 (mod 2).

n bits

——
We have A @ B =0000...0000 .

n—1 bits

——
Theorem 4. If A, B are odd integer, (A) @ (—A) =1111...1110, and

n—1 bits

(B)® (—B) =1111...1110, then (A® B) = (—A® —B).

Proof. Because of the symmetry, we assume A > 0. So, A +» R¥(A) = Z(aﬂi),
a; € Fy.

Suppose A is odd, so, R3(A) =129 + Z(aﬂi), a; € Fy,
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Ao Ry(-A)=2"— A

n—1

n—1
=@2"-1)—A+1=>2-> a2 +1, while (e = 1) = (1-1)2° +
=0

=0
n—1 n—1
> (l—a)2 +1-20=1-204) (1-a,)2’
i=1 i=1

n—1
Therefore, A&—A = R§(A)&RE(—A) = [(1+1) (mod 2)]-2°+ > [(1 - a; + a;)
(mod 2)] - 2 -

n—1
=0-204> 2
i=1

n—1 bits

——
=1111...1110.

n—1 bits

——
For the same reason, B&® —B =1111...1110.
Then, A® (—A) = B® (—B).

n bits

So, (A® (—A)) & (B & (—B)) =0000. .. 0000.

n bits

———
Promptly, (A® B) ® (—A @ —B) =0000...0000 .
Thus, A B=—-A% —B.

Theorem 5. If A, B are even integers, where 4 | A, B and 8 1 A, B, then
ApB=-Ad —-B.

Proof. We also assume, A > 0, then set
n—1
A4 RE(A) = A= (a;2"), a; € Fy.

i=0
Since A is even number and 4|A, but 81 A

n—1
Therefore A 4+ RE(A) =0-2040-2'+1-22 4+ " a;2", a; € F(2),
=3
—AG RM-A)=2"—A
=2 1—A+1
n—1 n—1
=372 —(0-2040-21+1-224+ ) q;2)+1-2°
1=0 1=3
n—1

=1-2041-2140-224+) (1—-a;)2 +1
=3
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n—1
=0-2040-2" +1-224 > (1 —a;)2".
=3
So, A® —A = R}(A) ® Ry(—A)
n—1 )
=(0®0)-20+(000)- 2"+ (1@®1) 22+ ((1—a;) ®a;)2’
=3
n—1
=0-2040-2140-224 > 2
=3
n—3 bits
—
=1111...1000.

n—3 bits

—
For the same reason, B & —B =1111...1000.
Explicitly A@ —A =B ¢ —B.
n bits
———
Then (A® —A) ® (B @ —B) =0000...0000.
According from commutative law, we get A@ B=—-A& —B.

Theorem 6. If A, B are even integers, where 4t A, B but 4 | |A — B|, then
A B=-Ad—-B.

n—1

Proof. We also assume, A > 0, then set A <> RJ(A)=A= Z(aﬂi), a; € Fy
=0

Since A is even number and 4 1 A, so

n—1
Ao RB(A) =0-2041-21 4+ a2, a; € F.
1=2

—A RM(—-A)=2"— A

—(2"—1)—A+1

n—1

=> 2 -A+1

1=0
n—1
=(1-0)-224+(1—1)-21+> (1—a)2 +1
1=2
n—1
=0-2040-2" + ) (1-a;)2"
=2

Namely A @ —A = R5(A) @ Ry (—A)

:(0@0)'20+(1@0)‘21+Ti[(1*ai)@ai]'Zi

=2
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n—1
=0-2041-20 ) 2
i=2
n—1 bits
———
=1111...110.

n—1 bits

—
For the same reason, we have B¢ —B =1111...110.
Hence A® —A=B® —B.

n bits

—TN—
Then (A® —A) ® (B @ —B) =0000...0000.
Thisistosay A B=—-A® —B.

3 Review of Unreliable Zhang-Wang Scheme

A signature scheme was proposed by Zhang and Wang [25] in 2005 that did
not use a one-way hash function. In this scheme, the signer would randomly
select their private key ‘a’ where ged(z,p— 1) = 1, and then would compute the
public key y = ¢g* (mod p). In this scheme, there are two phases: the signature
generation phase and verification phase which are described in the next section.

3.1 Signature Generation Phase:

Suppose the signer wants to sign the message M, and then he executes the
following steps:

Step 1. The signer computes
s=(y+M)M C0dP=D - (mod p). (6)
Step 2. The signer chooses a random number k € Z7_; and computes
r=M-s-g~% (mod p). (7)
Step 3. The signer computes ¢ where
stt=a' - [k—(r®s)] (modp—1). (8)

Step 4. The signer transmits parameters (s, r, t) of M to the verifier.

3.2 Verification Phase:

When the verifier receives parameters (s, r, t) by signer, hey can check the
validity of the signature by doing the following:

Stepl. The verifier computes

M =yt g™ 571 (mod p). (9)
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Step2. The verifier checks

s=(y+ MM medpr=b (10d p). (10)
If it holds, it shows that the signature (s, r, t) is valid.
Proof.

M =yt g™ 571 (mod p).
=yt M-s-g7%. g™ . 571 (mod p).
= gk—(r@s) .M - g—k—s-(r@s) (mod p)_
=M (mod p). (11)

3.3 Our Attack Method

We analyze the probability of the parameters r and the s.
r, s are both odd numbers, the [Pr = 1].
(r,s) = ¢ r,s are one odd and one even, the [Pr = 1].

r, s are both even numbers, the [Pr = 1].

A forger wants to fake a validation signature, then she executes the following steps:

Step 1. Set
r=—r (12)

Step 2. Set
s = —s. (13)

Step 3. Set
t'=2s+t. (14)

Step 4. Foger sends (r', s’, t') signatures to Bob, and successful forge the signature.

Proof.

M L ys’+t’ () _g(r’@s’) . (S/)—l (mod p).
=y M () g g ()T (mod p).
B0 6L g TR (mod p).

g
=M (mod p). (15)

4 Review of Unreliable Hwang et al.’s Scheme

In 2002, Hwang et al. [5] proposed an ElGamal-like cryptosystem for enciphering large
messages scheme, the detailed as following.
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4.1 The ElGamal Cryptosystem

The ElGamal [3] cryptosystem based on discrete logarithms and proposed in 1985.
Let p is a large prime number, and ¢ is primitive root where g € Z,, and compute
the public key y; = ¢ (mod p). The z; denotes secret key. Here p, g and y are public
information, the x; and r are private information. If user u; want to deliver the message
m(0 < m < p—1) to uj, u; randomly chooses an integer r and then encrypts m as
below:

b=g" (mod p). (16)
c=m-y; (mod p). (17)

u; sends (b, ¢) to uj. When u; receives (b, ¢), u; decrypts c as follows:
m=c-(b")"" (mod p). (18)

The cipher ¢ depends on two issues: the original plaintext m, and a random integer
r. A second random number 7 is mapped from another cipher text ¢, but from the
same plaintext m. The ElGamal cryptosystem has two restrictions: the first one is the
random number r which cannot be repeated, and the second restriction is that the
message r must be less than p — 1.

4.2 The Hwang et al.’s Scheme

Let ‘p’ be a large prime number and let ‘g’ be an element of GF(p). Each user u; will
randomly chose a private key z; (which is an element of Z,). The user then computes

[7psl]

the public key y; = ¢®* (mod p). Variables “p”, “g”, and “y” are public information.
Any user u; who wants to send a message m; would use the following steps:

Step 1. Slice plaintext m; into ¢ pieces mi,ma,- -+ ,ms. Each piece is 512 bits long.
Step 2. Generate two random integers r1 and r2, where 1 < 1,72 < p—1, and compute
b1 and by as follows:

b1 =g7  (mod p). (19)
bo =g (mod p). (20)

Step 3. Compute Cj,j =1,2,---,t as follows:
Cj=m; - (4" ® (y*)")  (mod p). (21)
Step 4. Send {b1,b2,Cj,7 =1,2,--- ,t} to the receiver through a public channel.

After receiving {b1,b2,Cj,7 = 1,2,--- ,¢} from the sender, the receiver recovers the
plaintext m; from following:

m; = Cy - (% @ (65)% )" (mod p). (22)
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4.3 Security Analysis

A practical secure anonymous user authentication scheme was proposed by Lyuu et.
al [11] and Wang et.al [19] which described several attacks. In Hwang’s scheme, there
are vulnerabilities when the XOR operation is combined with the two’s complement
number system. The related articles can be found in [8] [9] [21]. The authors describe
follow situations.

; both odd numbers, the [Pr = 1].
(yi*, (¥;*)*) = { one odd and even numbers, [Pr = 3].
both even numbers, the [Pr = 1].

J

[~

The attacker can easy to fake the valid parameters (y. !, (y;2 )Zj) where 3 @ (y]?)?
(—yl* @ —(y?)?). She does follow steps:

Step 1. Set —r = —y.*. ‘
Step 2. Set —s = —(y72)?.
Cj=my-(r@s) (modp)

m; - (—r @ —s) (mod p). (23)

(11

From Theorem 1 to Theorem 6, we obtain C; = m;-(r®s) (mod p) = mj-(—rd—s)
(mod p) are both odd numbers or even numbers where they matches specified rules.
Now, it clearly describes from equation (23). The attacker successfully executes the
forgery attack.

4.4 Other Unreliable Examples

The Cramer-Shoup Strong-RSA Signature Scheme Revisited, proposed by Fischlin [4]
in 2003, gave Type II and Type III forgery attacks. Here,

hl_aj h;mj@H(mi))y; == hl_ahz_(a@H(m))yr (mod n). (24)

We see the scheme format is based on the ‘(A @ B) = (—A & —B)’ style in which
two variables are numeric. We can, therefore, use our methodology to fake a valid
parameter /signature under two’s complement number system. In [7] and [14], these
situations also existed.

5 Conclusions

The XOR operation is a good way to prevent the “multiplicative property of alge-
bra” attacks. There are three advantages: 1) reduced costs, 2) easy hardware imple-
mentation and 3) increased speed. However, according to our analysis, they are both
insecure. Mathematical methods are one way to determine if the scheme is correct. A
mathematical proof can determine if the resulting “logical inference” is consistent with
the previous stage, but cannot guarantee if there are defects in the ”logical inference”
process. In this paper, the author has used some examples such as the Zhang Wang sig-
nature scheme, Hwang’s scheme, and the Cramer Shoup Strong RSA signature scheme
revised because they used exclusive or bitwise operation.
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