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Abstract. In 2023, Basso, Maino, and Pope proposed FESTA (Fast En-
cryption from Supersingular Torsion Attacks), an isogeny-based public-
key encryption (PKE) protocol that uses the SIDH attack for decryption.
In the same paper, they proposed parameters for that protocol, but the
parameters require high-degree isogeny computations. In this paper, we
introduce QFESTA (Quaternion Fast Encapsulation from Supersingular
Torsion Attacks), a new variant of FESTA that works with better param-
eters using quaternion algebras and achieves IND-CCA security under
QROM. To realize our protocol, we construct a new algorithm to com-
pute an isogeny of non-smooth degree using quaternion algebras and the
SIDH attack. Our protocol relies solely on (2, 2)-isogeny and 3-isogeny
computations, promising a substantial reduction in computational costs.
In addition, our protocol has significantly smaller data sizes for public
keys and ciphertexts, approximately half size of the original FESTA.

1 Introduction

In recent years, isogeny-based cryptography has been actively studied as one of
the candidates for post-quantum cryptography (PQC). In particular, SIDH [31],
proposed by De Feo, Jao, and Plut, is one of the well-known isogeny-based cryp-
tosystems. Additionally, SIKE [2], a key encapsulation scheme based on SIDH,
remained an alternative candidate for NIST PQC standardization competition
until Round 4. However, recent attacks [7,36,41] broke the security of SIDH and
SIKE. These attacks find the secret isogeny from the two point images of the
isogeny by computing high dimensional isogenies.

In response, a number of cryptographic applications of attacks on SIDH have
been studied, such as SQISignHD [17], FESTA [3], SCALLOP-HD [13], and
IS-CUBE [37]. Among them, FESTA is attracting attention as an alternative
cryptosystem to SIKE. FESTA is a public-key encryption (PKE) protocol pro-
posed by Basso, Maino, and Pope. FESTA requires the computations of three
isogenies: ϕA, ϕ1, and ϕ2 of degree dA, d1, and d2, respectively. Due to their
construction, the degrees dA, d1, and d2 must be smooth integers such that
dA = dA,1dA,2 and m2

1dA,1d1+m
2
2dA,2d2 = 2b for some positive integers m1,m2,

and b. These strong constraints make the parameters of FESTA much larger than
SIDH, leading to larger data sizes of the public key and ciphertext. In addition,
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their protocol requires high-degree isogeny computations for key generation and
encryption.

In this paper, we introduce a new PKE based on FESTA that offers improved
parameters and is more efficient than FESTA since it does not require high-
degree isogeny computations. Our protocol satisfies one-wayness against chosen
plaintext attack (OW-CPA) security. The main innovation in our protocol is
the use of our new algorithm named RandIsogImages, which computes the
codomain and point images of a non-smooth degree d-isogeny from a special
elliptic curve E0. We construct this algorithm using a quaternion technique and
the SIDH attack. We provide an overview of RandIsogImages below:

1. Let O0
∼= End(E0), which is a maximal order of a quaternion algebra.

2. Let D be a smooth integer such that E0[D] ⊂ E0(Fp2) and D − d ≈ p.
3. Let P0, Q0 be a basis of E0[D].
4. Find α ∈ O0 of norm d · (D − d).
5. Formally decompose α = ρ̂ ◦ τ , where τ and ρ are isogenies of degree d and
D − d, respectively.

6. Obtain the codomain of τ and the images of arbitrary points under τ by
using Kani’s lemma (as in the SIDH attack) and α(P0), α(Q0). See 3.1 for
more details.

In our setting, we take D as a power of 2. By using our new algorithm, the
smoothness restriction for degrees dA and d1 is omitted, allowing for smaller
parameters. Note that we compute a (2, 2)-isogeny chain for this algorithm since
we rely on the SIDH attack.

Additionally, to achieve indistinguishability against chosen ciphertext attack
(IND-CCA) security under quantum random oracle model (QROM), we utilize
the Fujisaki-Okamoto transform [29]. Consequently, our protocol functions as a
key encapsulation mechanism (KEM) rather than PKE. We have named our new
KEM ‘QFESTA’ (Quaternion Fast Encapsulation from Supersingular Torsion
Attacks).

As mentioned above, the removal of the smoothness restriction allows us to
use more efficient parameters. In fact, our protocol uses less than a third of
the characteristic p and less than a half of the public key and ciphertext size
compared to the original FESTA under NIST security level 1, 3, and 5. Moreover,
our protocol only requires (2, 2)-isogeny and 3-isogeny computations, whereas
the original FESTA requires high-degree isogeny computations. (See Table 1.)
Using a significantly more efficient method to compute (2, 2)-isogeny proposed
by Dartois, Maino, Pope, and Robert [18], our method is expected to be faster
than FESTA. We have confirmed this in our implementation. See Section 5 for
details.

1.1 Related Works

In 2023, Castryck and Vercauteren proposed a polynomial-time attack on certain
parameter choices for FESTA [11]. However, their attack succeeds only when
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FESTA QFESTA

KeyGen isogenies of degrees 59 to 41161 3-isogenies and (2,2)-isogenies
Enc isogenies of degrees 3 to 3779 3-isogenies and (2,2)-isogenies
Dec (2,2)-isogenies 3-isogenies and (2,2)-isogenies

Table 1: Isogeny computations in FESTA/QFESTA for NIST security level 1.

the basis P0, Q0 of E0[2
b], which is a system parameter of FESTA satisfies a

specific condition. According to their paper, the probability of randomly chosen
P0, Q0 ∈ E0[2

b] satisfying the condition is sufficiently small. Even for an attacker
with 2λ computational time for a security parameter λ, we can chose a basis
(P0, Q0) of E0[2

b] resistant to the attack by Castryck and Vercauteren. Indeed,
we propose a method to choose such a basis as a system parameter of QFESTA.
The details of the method are given in Appendix B.

Our new algorithm RandIsogImages is similar to the following two algo-
rithms in that they both compute a non-smooth degree isogeny.

1. Algorithm presented by Fouotsa et al.[28, Algorithm 1]
2. Key generation algorithm of SQISign [20]

However, the former algorithm requires the codomain EA of the isogeny and its
endomorphism ring End(EA) as input. On the other hand, RandIsogImages
does not require such inputs, rather outputs the codomain EA. The latter algo-
rithm outputs the codomain EA as RandIsogImages, but it requires a strong
constraint that p2 − 1 has a smooth factor of size p1.25, whereas our algorithm
does not require such a strong constraint. Moreover, the latter algorithm re-
quires high-degree isogeny computations, resulting in a large computational
cost. On the other hand, RandIsogImages only requires (2, 2)-isogeny com-
putations. Since there is an efficient method to compute (2, 2)-isogenies [18],
RandIsogImages is more efficient.

1.2 Contributions

In this paper, we make the following contributions:

1. We construct the new algorithm RandIsogImages, which computes the
codomain and point images of a non-smooth degree isogeny from a special
elliptic curve E0.

2. Using our new algorithm RandIsogImages, we propose a new PKE that
has smaller data sizes and lower computational cost than FESTA.

3. We prove that our PKE is OW-CPA secure. The security proof relies on novel
security assumptions that are variants of FESTA’s security assumptions.

4. By applying the Fujisaki-Okamoto transform to our PKE, we obtain a new
KEM that is IND-CCA secure under QROM. We call this KEM ‘QFESTA’.

5. We describe a method to find parameters for QFESTA and give concrete pa-
rameters for NIST security level 1, 3, and 5. Under these parameter settings,
we analyse the public key and ciphertext sizes.
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6. Finally, we implement the proposed QFESTA in SageMath [43] as a proof-
of-concept and compare the computational time with FESTA.

1.3 Organization

In Section 2, we give some notation and background knowledge used in our pro-
tocol. In Section 3, we propose our new KEM named QFESTA and its security
is analysed in Section 4. In Section 5, we give some concrete parameters for
QFESTA and analyse the data size and the computational cost of QFESTA
under a proof-of-concept implementation. Finally, in Section 6, we give the con-
clusion of this paper.

2 Preliminaries

In this section, we summarise some background knowledge used in our protocol.

2.1 Notation

Throughout this paper, we use the following notation. We let p be a prime
number of cryptographic size, i.e., p is at least about 2256. Let f(x) and g(x) be
real functions. We write f(x) = O(g(x)) if there exists a constant c ∈ R such
that f(x) is bounded by c · g(x) for sufficiently large x. The function f(x) is
negligible if |f(x)| < x−c for all positive integers c and sufficiently large x. We
write f(x) < negl(x) if f(x) is negligible. For a finite set S, we write x ∈U S if x
is sampled uniformly at random from S. Let ⊥ be the symbol indicating failure
of an algorithm.

2.2 Isogenies

In this paper, we mainly use principally polarized superspecial abelian varieties of
dimension one or two defined over a finite field of characteristic p. Such a variety
is isomorphic to a supersingular elliptic curve, the product of two supersingular
elliptic curves, or a Jacobian of a superspecial hyperelliptic curve of genus two,
and always has a model defined over Fp2 . Therefore, we only consider varieties
defined over Fp2 .

Basic Facts. An isogeny is a rational map between abelian varieties which is a
surjective group homomorphism and has finite kernel. The degree of an isogeny φ
is its degree as a rational map and denoted by degφ. An isogeny φ is separable if
# kerφ = degφ. A separable isogeny is uniquely determined by its kernel up to
post-composition of isomorphism. For an isogeny φ : A→ B between principally
polarized abelian varieties, there exists a unique dual isogeny φ̂ such that φ̂ ◦ φ
is equal to the multiplication-by-degφ map on A.

Let A and B be principally polarized abelian varieties. If there exists an
isogeny between A and B then the dimensions of A and B are the same. If A is
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superspecial then there exists an isogeny between A and B if and only if B is a
superspecial abelian variety of the same dimension as A.

Let A be a principally polarized abelian variety and ℓ a positive integer. An
ℓ-isotropic subgroup of A is a subgroup of the ℓ-torsion subgroup A[ℓ] of A on
which the ℓ-Weil pairing is trivial. An ℓ-isotropic subgroup G is maximal if there
is no other ℓ-isotropic subgroup containing G. A separable isogeny whose kernel
is a maximal ℓ-isotropic subgroup is called an ℓ-isogeny if the dimension of the
domain is one or an (ℓ, ℓ)-isogeny if the dimension of the domain is two.

Computing Isogenies. Let A be a principally polarized abelian variety, ℓ a
positive integer, and G a maximal ℓ-isotropic subgroup of A.

If the dimension of A is one then we can compute an ℓ-isogeny φ with kernel
G by Vélu’s formulas [45]. More precisely, given A, ℓ, G, Vélu’s formulas give a
method to compute the codomain of φ in O(ℓ) operations on a field containing
the points in G. In addition, for additional input P ∈ A, we can compute φ(P ) in
O(ℓ) operations on a field containing the points in G and P . These computational
costs are improved to Õ(

√
ℓ) by Bernstein, De Feo, Leroux, and Smith [5].

If A is the Jacobian of a hyperelliptic curve of genus two and ℓ = 2 then we
can compute (2, 2)-isogeny using formulas in Smith’s Ph.D thesis [42], which is
based on Richelot isogenies [40]. Formulas of (2, 2)-isogenies for the case A is
the product of two elliptic curves is given by Howe, Leprévost, and Poonen [30].
In 2023, more efficient formulas for (2, 2)-isogenies were proposed by Dartois,
Maino, Pope, and Robert [18]. Cosset and Robert [15] gave a method to compute
(ℓ, ℓ)-isogenies for general ℓ. The computational cost of their method is O(ℓ4)
operations on a field containing the points in G.

2.3 Quaternion Algebras and the Deuring Correspondence

Quaternion Algebras. A quaternion algebra over Q is a division algebra de-
fined by Q + Qi + Qj + Qk and i2 = a, j2 = b, ij = −ji = k for a, b ∈ Q∗. We
denote it by H(a, b). We say H(a, b) is ramified at a place v of Q if H(a, b)⊗QQv

is not isomorphic to the algebra of the 2 × 2 matrices over Qv. There exists a
quaternion algebra ramified exactly at p and ∞. Such an algebra is unique up
to isomorphism. We denote it by Bp,∞.

Let α = x+yi+zj+tk ∈ H(a, b) with x, y, z, t ∈ Q. The canonical involution
of α is x − yi − zj − tk and denoted by ᾱ. The reduced norm of α is αᾱ and
denoted by n(α).

An order O of H(a, b) is a subring of H(a, b) that is also a Z-lattice of rank
4. This means that O = Zα1 + Zα2 + Zα3 + Zα4 for a basis {α1, α2, α3, α4} of
H(a, b). We denote such an order by Z⟨α1, α2, α3, α4⟩. An order O is said to be
maximal if there is no larger order that contains O.

Deuring Correspondence. Deuring [23] showed that the endomorphism ring
of a supersingular elliptic curve over Fp2 is isomorphic to a maximal order of
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Bp,∞ and gave a correspondence (Deuring correspondence) where a supersingular
elliptic E curve over Fp2 corresponds to a maximal order isomorphic to End(E).

Suppose p ≡ 3 (mod 4). This is the setting we use in our protocol. Then we
can take Bp,∞ = H(−1,−p) and an elliptic curve over Fp2 with j-invariant 1728
is supersingular. Let E0 be the elliptic curve over Fp2 defined by y2 = x3 + x.
Then j(E0) = 1728 so E0 is supersingular. We define endomorphisms ι : (x, y) 7→
(−x,

√
−1y) and π : (x, y) 7→ (xp, yp) of E0, where

√
−1 is a fixed square root of

−1 in Fp2 . The endomorphism ring of E0 is isomorphic to O0 := Z⟨1, i, i+j
2 ,

1+k
2 ⟩.

This isomorphism is given by ι 7→ i and π 7→ j. From now on, we identify End(E0)
with O0 by this isomorphism.

Some isogeny-based protocols, e.g., SQISign [20], need to compute the image
under an element in O0 represented by the coefficients with respect to the basis
(1, i, i+j

2 ,
1+k
2 ). Let P ∈ E0(Fp2) and α = x + yi + z i+j

2 + t 1+k
2 for x, y, z, t ∈

Z. Given P and x, y, z, t, one can compute α(P ) in O(logmax{|x|, |y|, |z|, |t|})
operations on Fp2 and O(log p) operations on Fp4 . The latter operations on Fp4

is necessary only for the case when the order of P is even. We need to compute
α(P0) and α(Q0) for a fixed basis P0, Q0 of E0[2

3a] for some integer a in our
protocol. In this case, by precomputing the images of P0 and Q0 under i, i+j

2 ,

and 1+k
2 , we can compute α(P0) and α(Q0) by scalar multiplications by x, y, z, t

and additions.

Computing Quaternions with Given Norm. As in the above, we let O0

be the maximal order of Bp,∞ with basis (1, i, i+j
2 ,

1+k
2 ). We need an algorithm

to compute an element in O0 of given norm in our protocol. We can use an
algorithm RepresentInteger proposed by Kohel, Lauter, Petit, and Tignol
[34]. RepresentInteger takes an integer M > p as input and outputs α ∈
Z⟨1, i, j,k⟩ ⊂ O0 such that n(α) = M . Later, De Feo, Leroux, Longa, and
Wesolowski [21] extended RepresentInteger to take output from all elements
in O0. They named the new algorithm FullRepresentInteger.

Algorithm 1 gives a pseudocode of FullRepresentInteger. This uses Cor-
nacchia’s algorithm [16, Algorithm 2.3.12], which takes a prime q as input and
outputs integers x, y such that x2 + y2 = q or ⊥ if such integers do not exist.
One can extend this to take a positive integer as input by using a well-known
relation: (x2 + y2)(z2 + t2) = (xz − yt)2 + (xt + yz)2. This extension requires
the prime factorization of the input. In general, the computational time of the
prime factorization is subexponential in the size of the input. To make our al-
gorithm work in polynomial time in log p, we use “pseudo-factorization” in our
algorithm. In particular, our extension of Cornacchia’s algorithm with input M
returns x, y such that x2 + y2 = M if and only if such integers exists and M is
the product of a smooth number and a prime. This method is used in SQISign
(see the official document [12] for details). We denote this alternate version of
Cornacchia’s algorithm by Cornacchia. Due to the failure of the factorization,
the outputs of Algorithm 1 does not contain all elements in O0 whose norm is
the input M . However, from the prime number theory (see [16, Theorem 1.1.4]
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Algorithm 1 FullRepresentIntegerO0
(M)

Require: An integer M > p.
Ensure: α ∈ O0 such that n(α) = M .

1: Let m′ = ⌊
√

4M
p
⌋ and sample a random integer z′ ∈ [−m′,m′].

2: Let m′′ = ⌊
√

4M
p
− z′2⌋ and sample a random integer t′ ∈ [−m′′,m′′].

3: Let M ′ = 4M − p(z′2 + t′2).
4: if Cornacchia(M ′) =⊥ then
5: Go back to Step 1.
6: else
7: Set (x′, y′)← Cornacchia(M ′).
8: end if
9: if x′ ̸≡ t′ mod 2 or y′ ̸≡ z′ mod 2 then
10: Go back to Step 1.
11: end if
12: return (x′ + y′i+ z′j+ t′k)/2.

for example), we can assume at least 1/ logM of all elements in O0 whose norm
is the input M could be the output of Algorithm 1.

2.4 Computing Isogenies of Dimension One from Dimension Two

In this subsection, we give algorithms to compute isogenies of dimension one us-
ing an isogeny of dimension two, which are main sub-algorithms for FESTA and
our protocol. These algorithms come from recent attacks to SIDH by [7,35,41].
We use the following theorem, which is based on Kani’s criterion [33].

Theorem 1 ([35, Theorem 1]). Let N1, N2, and D be pairwise coprime in-

tegers such that D = N1 + N2, and let E0, E1, E2, and E3 be elliptic curves

connected by the following diagram of isogenies:

E0
ψ2 //

ψ1

��

E2

ψ′
1

��
E1

ψ′
2

//

f
==

E3,

where ψ′
2 ◦ψ1 = ψ′

1 ◦ψ2, f = ψ2 ◦ ψ̂1, deg(ψ1) = deg(ψ′
1) = N1, and deg(ψ2) =

deg(ψ′
2) = N2. Then, the isogeny

Φ =

(
ψ̂1 −ψ̂2

ψ′
2 ψ′

1

)
: E1 × E2 → E0 × E3 (1)

is a (D,D)-isogeny with respect to the natural product polarizations on E1 ×E2

and E0 × E3, and has kernel {([N2]P, f(P )) | P ∈ E1[D]}.
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Conversely, a (D,D)-isogeny with kernel {([N2]P, f(P )) | P ∈ E1[D]} is of the
form ι ◦ Φ with an isomorphism ι from E0 × E3. To construct algorithms to
evaluate the isogenies in the matrix in Equation (1), we need to restrict the
possibility of ι. In particular, we assume that the codomain E3 of ψ′

1 and ψ′
2 is

not isomorphic to E0. Under this assumption, an isomorphism from E0 × E3 is

represented by

(
ι0 0
0 ι3

)
or

(
0 ι3
ι0 0

)
, where ι0 is an isomorphism from E0 and ι3

is an isomorphism from E3.
Using Theorem 1 under the above assumption, we construct two algorithms

to evaluate the isogenies in the matrix in Equation (1) by computing a (D,D)-
isogeny.

The first algorithm is for the case that we know E0 in advance and denoted by
EvalByKani. Let N1, N2 be integers coprime with each other and D = N1+N2.
Let E0, E1, E2 supersingular elliptic curves over Fp2 , (P1, Q1) a basis of E1[D],
(P2, Q2) a basis of E2[D], S1 a finite subset of E1, and S2 a finite subset of E2.
If there exist isogenies ψ1 : E0 → E1 and ψ2 : E0 → E2 such that degψ1 = N1

degψ2 = N2, P2 = ψ2 ◦ ψ̂1(P1), and Q2 = ψ2 ◦ ψ̂1(Q1), then EvalByKani with
input (N1, N2, E0, E1, E2, P1, Q1, P2, Q2;S1;S2) returns the image of S1 under

ψ̂1 and the image of S2 under ψ̂2. If such isogenies do not exist then EvalByKani
returns ⊥. The procedure for EvalByKani is as follows:

1. Compute a (D,D)-isogeny Φ with kernel ⟨([N2]P1, P2), ([N2]Q1, Q2)⟩.
2. If the codomain of Φ is not the product of elliptic curves then return ⊥.
3. Otherwise let F1 × F2 be the codomain of Φ.
4. If both of F1 and F2 are not isomorphic to E0 then return ⊥.
5. Otherwise change Φ so that the first component of the codomain is E0 by

composing an isomorphism.
6. Return the first components of Φ((R1, OE2

)) and Φ((OE1
, R2)) for R1 ∈ S1

and R2 ∈ S2, where OE is the neutral element of E for an elliptic curve E.

We use the same notation as in the previous paragraph. The second algorithm
CodomainByKani is for the case that we do not know the codomain of Φ and
that there exists an integer M > max{N1, N2} coprime with N1 and N2 such
that S1 contains a basis of E1[M ] or S2 contains a basis of E2[M ].

In this case, we can determine the order of elliptic curves in the codomain of
Φ by computing the M -Weil pairing. More precisely, we use the following fact.
For a basis R, T of E1[M ] and an isogeny ϕ : E1 → F , the M -Weil pairings
eM (R, T ) and eM (ϕ(R), ϕ(T )) satisfying eM (R, T )deg ϕ = eM (ϕ(R), ϕ(T )). This
determines deg ϕ modM .

The input of CodomainByKani is that of EvalByKani minus E0 and the
output of CodomainByKani is that of EvalByKani plus E0. The procedure
for CodomainByKani is the same in EvalByKani until Step 3. We describe
the rest of the procedure in the case that S1 = E1[D] and S2 = ∅ for simplicity
(this is the case we need in our protocol).

4. Let R, T be a basis of E1[D] in S1.
5. Let (R′

1, R
′
2) = Φ((R,OE2)) and (T ′

1, T
′
2) = Φ((T,OE2)).
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6. Compute the D-Weil pairings eD(R, T ) and eD(R′
1, T

′
1).

7. If eD(R, T )N1 = eD(R′
1, T

′
1) then return F1 and (R′

1, T
′
1). Otherwise return

F2 and (R′
2, T

′
2).

When D is smooth, P1, Q1 ∈ E1(Fp2), S1 ⊂ E1(Fp2), P2, Q2 ∈ E2(Fp2), and
S2 ⊂ E2(Fp2) the computational costs of EvalByKani andCodomainByKani
are O((#S1+#S2) logD) operations on Fp2 by using the methods stated in § 2.2.
Especially, D is a power of 2 in our case.

2.5 Cryptographic Preliminaries

In this subsection, we recall cryptographic notation, which is necessary for de-
scribing our protocol.

First, we define two cryptographic schemes, public key encryption (PKE)
and key encapsulation mechanism (KEM).

Definition 1 (Public Key Encryption (PKE)). A public key encryption
consists of a set of parameters {paramλ}λ∈N, a family of finite sets {Mλ}λ∈N,
and three polynomial-time algorithms KeyGen, Enc, and Dec such that

– KeyGen takes paramλ as input and outputs a pair (pk, sk) of keys,
– Enc takes paramλ, a public key pk, and a message m ∈ Mλ as input and

outputs a ciphertext ct,
– and Dec takes paramλ, a secret key sk, and ct as input and outputs the

message m if ct is a valid ciphertext or ⊥ otherwise.

Definition 2 (Key Encapsulation Mechanism (KEM)). A key encapsu-
lation mechanism consists of a set of parameters {paramλ}λ∈N and three poly-
nomial-time algorithms KeyGen, Encaps, and Decaps such that

– KeyGen takes paramλ as input and outputs a pair (pk, sk) of keys,
– Encaps takes a public key pk as input and outputs a pair (K, ct) of a key

and a ciphertext,
– and Decaps takes paramλ, a secret key sk, and ct as input and outputs the

key K if ct is a valid ciphertext or ⊥ otherwise.

For simplifying the notation, we omit paramλ from input of each algorithm. In
particular, we denote KeyGen(λ),Enc(pk,m), and so on.

Next, we define security notation, One-Wayness against Chosen Plaintext At-
tacks (OW-CPA) for PKE and INDistinguishability against Chosen Ciphertext
Attacks (IND-CCA) for KEM.

Definition 3 (OW-CPA). Let Π = ({paramλ}, {Mλ},KeyGen,Enc,Dec)
be a PKE. We say that Π is OW-CPA secure if, for any probabilistic polynomial-
time adversary A,

Pr

[
m = m∗

∣∣∣∣ (pk, sk)← KeyGen(λ), m ∈U Mλ,
ct← Enc(pk,m), m∗ ← A(pk, ct)

]
< negl(λ).
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Definition 4 (IND-CCA). Let Π = ({paramλ},KeyGen,Encaps,Decaps)
be a KEM and Kλ the set of the keys which Encaps with paramλ outputs. Let
Cco be an oracle such that Cco(ct′) returns Decaps(sk, ct′) for any ct′ ̸= ct.
We say that Π is IND-CCA secure if, for any probabilistic polynomial-time ad-
versary ACco(·) who can make queries to Cco,∣∣∣∣∣∣Pr

b = b∗

∣∣∣∣∣∣
(pk, sk)← KeyGen(paramλ), b ∈U {0, 1},
(K0, ct)← Encaps(pk), K1 ∈U Kλ,
b∗ ← ACco(·)(pk, ct,Kb)

− 1

2

∣∣∣∣∣∣ < negl(λ).

Cryptographic Transform. The Fujisaki-Okamoto transforms [29] are meth-
ods to transform a cryptographic protocol with “weak” security into that with
“strong” security by using cryptographic hash functions. In this paper, we use
FO ̸⊥ transform in [32], which transforms an OW-CPA PKE into an IND-CCA
KEM under the quantum random oracle model (QROM).

Let Π = ({paramλ}, {Mλ}, {Rλ},KeyGen,Enc,Dec) be a PKE, where
Rλ is randomness space for Enc. Let G = {Gλ} and H = {Hλ} be sets of
cryptographic hash functions such that Gλ :Mλ → Rλ and Hλ : {0, 1}∗ →Mλ.
Then, we define a KEM ΠFO := FO ̸⊥(Π,G,H) as follows. The parameter sets of
ΠFO are the same as Π. KeyGen of ΠFO outputs a dummy message s ∈U Mλ

in addition to the output of KeyGen of Π. A secret key of ΠFO is a pair (sk, s).
Encaps and Decaps of ΠFO are defined as follows:

– Encaps(pk)→ (K, ct):
1. m ∈U Mλ.
2. ct← Enc(pk,m;Gλ(m)).
3. K = Hλ(m, ct).
4. Return K, ct.

– Decaps((sk, s), ct)→ K:
1. m′ ← Dec(sk, ct).
2. If Enc(pk,m′;Gλ(m

′)) = ct then return Hλ(m
′, ct).

3. Else return Hλ(s, ct).

In the above setting, we can obtain an IND-CCA KEM from an IND-CPA
PKE.

Theorem 2 ([32, Theorem 1]). We use the above notation. If Π is OW-CPA
secure then ΠFO is IND-CCA secure against a quantum adversary under the
assumption that the hash functions in G,H are quantum random oracles.

2.6 FESTA

FESTA is an isogeny-based protocol proposed by Basso, Maino, and Pope [3].
This protocol is a PKE that uses EvalByKani for decryption. More precisely,
Basso et al. constructed a trapdoor one-way function (FESTA trapdoor function)
and obtained IND-CCA secure PKE by applying Optimal Asymmetric Encryp-
tion Padding (OAEP) transform [4]. In this subsection, we give an overview of
FESTA. For the detail, see [3].
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Fig. 1: A picture of FESTA.

FESTA Trapdoor Function. The core idea of FESTA is as follows. Let
E0, EA, E1, E2 be supersingular elliptic curves over Fp2 and P0, Q0 a basis of
E0[n] for a positive integer n. Let ϕA : E0 → EA, ϕ1 : E0 → E1, and ϕ2 : EA →
E2 be isogenies of degrees coprime with and less than n. If one knows the images
of P0 and Q0 under one of the isogenies then the SIDH attacks in § 2.4 reveals
the isogeny. To prevent this attack, images “masked” by matrices are published
in FESTA. More precisely, for 2 × 2 invertible matrices A and B over Z/nZ,
points (RA, SA) := A(ϕA(P0), ϕA(Q0))

⊤, (R1, S1) := B(ϕ1(P0), ϕ1(Q0))
⊤, and

(R2, S2) := B(ϕ2(RA), ϕ2(SA))
⊤ are published (see Figure 1). Since the action

of a matrix commutes with an isogeny, easy computation shows that(
R2

S2

)
=

1

deg ϕ1
BAB−1ϕ2 ◦ ϕA ◦ ϕ̂1

(
R1

S1

)
.

If AB = BA then one can remove B from the right-hand side of the above
equation. This means that the images of R1 and S1 under ϕ2 ◦ ϕA ◦ ϕ̂1 can be
computed by using only A. FESTA trapdoor function is a trapdoor function
with secret key A. In particular, the matrices A and B are chosen from diagonal
matrices in the implementation by [3]. Therefore, we only consider this case in
this paper.

To define FESTA trapdoor function precisely, we define system parameters
for it. Let dA, d1, d2 be smooth positive odd integers coprime with each other
and lager than 22λ for a security parameter λ. These are the degrees of ϕA, ϕ1,
and ϕ2, respectively. Let dA,1, dA,2,m1,m2, b be positive integers satisfying the
following condition:

dA = dA,1dA,2 and m2
1dA,1d1 +m2

2dA,2d2 = 2b.

In this setting, we let p = d1d2(dA)sff − 1 for a small cofactor f , where (dA)sf is
the square-free part of dA. This choice of p enables us to compute the isogenies in
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FESTA by operations over Fp2 . We writeMn to denote the set of 2×2 diagonal
invertible matrices over Z/nZ, and let

Ep,2b =

(E, (P,Q))

∣∣∣∣∣∣
E : a supersingular elliptic curve over Fp2

such that #E(Fp2) = (p+ 1)2,
(P,Q) : a basis of E[2b]

 .

As in the first paragraph of this subsubsection, let (E0, (P0, Q0)) ∈ Ep,2b , ϕA :
E0 → EA be an isogeny of degree dA, and (RA, SA)

⊤ = AϕA(P0, Q0)
⊤. In

addition, we choose and publish bases (K0,K
′
0) and (KA,K

′
A) of E0[d1] and

EA[d2] for computing generators of the kernels of secret isogenies. The FESTA
trapdoor function with public information EA, RA, SA is a function

f(EA,RA,SA) : Z/d1Z× Z/d2Z×M2b → Ep,2b × Ep,2b .

The secret key of this function is A and ϕA. The output of f(EA,RA,SA) with
input (n1, n2,B) is computed as follows.

1. Compute an isogeny ϕ1 : E0 → E1 with kernel ⟨K0 + [n1]K
′
0⟩.

2. Compute an isogeny ϕ2 : EA → E2 with kernel ⟨KA + [n2]K
′
A⟩.

3. Ouput (E1,B(ϕ1(P0), ϕ2(Q0))
⊤) and (E2,B(ϕ2(RA), ϕ2(SA))

⊤).

Anyone who knows the secret key (A, ϕA) can compute the inverse of this
function by using EvalByKani. We decompose ϕA into ϕA,1 and ϕA,2 of degrees
dA,1 and dA,2, respectively. Let F be the codomain of ϕA,1. We define ψ1 := [m1]◦
ϕ1◦ϕ̂A,1, ψ2 := [m2]◦ϕ1◦ϕA,2, and f := ψ2◦ψ̂1 = [m1m2]◦ϕ2◦ϕA◦ϕ̂1 (see Figure

1). Then we have degψ1 + degψ2 = 2b and [m1m2]

(
R2

S2

)
= d1A

−1f

(
R1

R2

)
.

Therefore, we can evaluate ψ̂1 and ψ̂2 by EvalByKani with input

(m2
1d1,m

2
2d2, F, E1, E2, [m1]R1, [m1]S1, [d1]A

−1(R2, S2)
⊤).

Since the images of a basis of E1[d1] under the composition ϕ̂A,1 ◦ ψ̂1 generate
kerϕ1, we can recover n1 from A and ϕA,1. Similarly, we can recover n2 from
A and ϕA,2. Finally, we compute ϕ1 from n1 and recover B by computing the
images of P0 and Q0 under ϕ1.

Security. In [3], the following three problems are defined for discussing the
one-wayness of the FESTA trapdoor function. We say that a trapdoor function
is a one-way function if there is no probabilistic polynomial-time algorithm to
invert the function from public information and the output of the function with
non-negligible probability.

Problem 1 (Decisional isogeny with scaled-torsion (DIST)). Let E0 be a super-
singular elliptic curve over Fp2 , and P0, Q0 be a basis of E0[n] for an integer n.
Fix a degree d coprime with n, and given an elliptic curve E1 and two points
P1, Q1 sampled with probability 1/2 from either distribution:
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– D0 = (E1, P1, Q1), where E1 is the codomain of uniformly sampled d-
isogeny ϕ : E0 → E1 and the points P1, Q1 are given by (P1, Q1)

⊤ =
A(ϕ(P0), ϕ(Q0))

⊤, where the matrix A ∈U Mn,
– D1 = (E1, P1, Q1), where E1 is a random elliptic curve over Fp2 with the

same order of rational points as E0, and (P1, Q1) is a random basis of E1[n],

distinguish from which distribution the values were sampled.

Problem 2 (Computational isogeny with scaled-torsion (CIST)). Let ϕ : E0 →
E1 be an isogeny of smooth degree d between supersingular elliptic curves over
Fp2 , and let n be a smooth integer coprime with d. Given E0, E1, a basis P0, Q0

of E0[n], and Aϕ(P0, Q0)
⊤, where A ∈U Mn, compute ϕ.

Problem 3 (Computational isogeny with double scaled-torsion (CIST 2)). Let
E0 be a supersingular elliptic curve defined over Fp2 , and let E′

0 be a random
supersingular elliptic curve defined over the same field. Let ϕ1 : E0 → E1 and
ϕ2 : E′

0 → E2 be two random isogenies of degrees d and d′, respectively. Let n
be an integer coprime with d, and let A be a matrix sampled as A ∈U Mn.
Given the curves E0, E

′
0, E1, E2, two bases P,Q ∈ E0[n] and P ′, Q′ ∈ E′

0, and
the points A(ϕ1(P ), ϕ1(Q))⊤ and A(ϕ2(P

′), ϕ2(Q
′))⊤, compute the isogenies ϕ1

and ϕ2.

Remark 1. To compute an isogeny ϕ : E → F as the answer of Problem 3 means
to obtain a polynomial-time algorithm that takes an arbitrary point P ∈ E as
input and outputs ϕ(P ). Note that we can compute ϕ1 and ϕ2 by executing the
SIDH attack ([41, Section 2], dimension 8 attack) when we obtain the matrix A.

Assuming the hardness of these problems for appropriate parameters, it is
claimed that the FESTA trapdoor function is a one-way function [3, Theorem 9]
and a quantum partial-domain one-way function [3, Theorem 10], i.e., it is hard
to compute the first input n1 in the input of the FESTA function from public
information and the output.

IND-CCA secure KEM. Basso et al. [3] obtained an IND-CCA KEM by
applying Optimal Asymmetric Encryption Padding (OAEP) transform [4] to
the FESTA trapdoor function. Here, we briefly explain OAEP transform. For
details on OAEP transform, see [4,24].

Let F : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m be a quantum partial-domain one-
way function. Then we obtain a KEM with message space {0, 1}n by applying
OAEP transform to F . The obtained KEM is IND-CCA secure under QROM
if n + k1 ≥ k0 and k0 − n ≈ n [24, Theorem 1]. Note that the bit length of a
message of the obtained KEM is less than about one quarter of that of an input
of the one-way function.

The bit length of an input of the FESTA trapdoor function is about log2 d1+
log2 d2 + b ≈ 8λ. Therefore, by appropriately separating the domain of the
FESTA trapdoor function and applying OAEP transform, we can obtain an
IND-CCA secure KEM with sufficiently large message space.
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3 QFESTA

This section introduces our protocol, a new PKE based on FESTA and some
quaternion algebraic techniques. The original FESTA uses Vélu’s formula [45] to
compute the secret isogenies in KeyGen and Enc. Thus, their degrees must be
smooth and divide p+1 to efficiently use Vélu’s formula. This strong constraint
makes p as large as 28λ for the security parameter λ, resulting in a large public
key and ciphertext size.

Our main idea is to evaluate point images under isogenies of non-smooth
degree not using Vélu’s formula but using FullRepresentInteger and the SIDH
attack. As a result, the size of the public key and ciphertext is nearly half of
FESTA, though our protocol requires (2, 2)-isogeny computations not only in
Dec but also in KeyGen and Enc.

Our PKE protocol described here is OW-CPA secure, and by applying FO ̸⊥

transform to the protocol, we obtain IND-CCA secure KEM. We name our new
KEM ‘QFESTA’ (Quaternion Fast Encapsulation from Supersingular Torsion
Attacks).

3.1 New Algorithm for Isogenies of Non-Smooth Degree

Here, we describe our new sub-algorithm RandIsogImages that evaluates the
codomain of a random isogeny of non-smooth degree and some point images
under the isogeny.

Let p be a prime such that p ≡ 3 mod 4 and let E0 be a supersingular elliptic
curve defined as E0/Fp2 : y2 = x3 + x. Note that End(E0) is isomorphic to

O0 = Z⟨1, i, i+j
2 ,

1+k
2 ⟩ as mentioned in § 2.3. Suppose that D is a smooth integer

such that E0[D] ⊂ E0(Fp2) and D ≈ p. Our sub-algorithm RandIsogImages
takes an integer d coprime to D satisfying D − d ≈ p and a finite subset S of
E0 as input. Then, it outputs the images of the points in S under a random
d-isogeny τ and the codomain of τ .

The idea for this sub-algorithm is to compute an endomorphism α ∈ End(E0)
of degree d · (D − d) by using FullRepresentInteger. This idea is similar to
the method proposed in [27, Appendix D]. Then, we can decompose α as α =
ρ̂ ◦ τ , where τ and ρ are the isogenies whose domains are E0 and whose degrees
are d and D − d, respectively. (See Figure 2.) Since deg τ + deg ρ = D and
gcd(deg τ,deg ρ) = 1, we can evaluate point images under the isogeny τ by using
CodomainByKani.

Especially when D = 2•, we can compute it efficiently by using Richelot
isogenies, which is an efficient method to compute (2, 2)-isogenies. Recently, a
more efficient method was proposed by Dartois, Maino, Pope, and Robert [18].
So, we useD = 2• in our protocol. We describe the sub-algorithm in Algorithm 2.

To use RandIsogImages for the construction of PKE, the output space of
RandIsogImages should be large enough and its distribution is preferable to be
uniform. Now, we discuss the output space of RandIsogImagesO0

(d,D;S). We
denote byCod(E0, d;S) the set of (E,S

′), where E is the codomain of τ and S′ =
τ(S) for all d-isogenies τ from E0. For any (E,S′) ∈ Cod(E0, d;S), there exits a
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Fig. 2: Picture of RandIsogImages.

Algorithm 2 RandIsogImagesO0
(d,D;S)

Require: Integers d,D such that gcd(d,D) = 1, D−d ≈ p, and E0[D] ⊂ E0(Fp2) and
a finite subset S ⊂ E0.

Ensure: (EA, τ(S)) for a random d-isogeny τ : E0 → EA.
1: Let α← FullRepresentIntegerO0

(d · (D − d)).
2: Take a basis P0, Q0 of E0[D].
3: (τ(S), ∅, EA)← CodomainByKani(d,D − d,E0, E0, P0, Q0, α(P0), α(Q0);S, ∅).
4: return (EA, τ(S)).

(D−d)-isogeny ρ : E0 → E with high probability since D−d ≈ p. This is due to
the heuristic that the distribution of the codomain of (D−d)-isogenies can be re-
garded as a uniform distribution consisting of approximately (D−d) supersingu-
lar elliptic curves. When D−d is smooth, this heuristic is justified by Ramanujan
property of the supersingular isogeny graphs [39]. Therefore, there exists an endo-
morphism α ∈ End(E0) via E of degree d(D−d). When FullRepresentInteger
outputs such α in step 1,RandIsogImages will output (E,S′). Though the out-
put of FullRepresentInteger does not contain all endomorphisms of degree
d(D− d), we can assume that at least 1/ log (d(D − d)) of all endomorphisms of
degree d(D − d) could be the output of FullRepresentInteger as mentioned
in Section 2.3. Therefore, the output of RandIsogImages almost contains
Cod(E0, d;S). Since the number of d-isogenies from E0 is about d, the number
of possible outputs of RandIsogImages is about d/ log (d(D − d)). More pre-
cisely, we can assume that the probability of there existing an isogeny ρ described
above would be approximately (D−d)/(p/12). Therefore, we can assume that the
number of outputs of RandIsogImages is approximately (d/ log (d(D − d))) ·
(D − d)/(p/12) = 12d(D − d)/p log (d(D − d)).

From the above argument, it seems possible to assume that the output dis-
tribution of RandIsogImages is indistinguishable from the distribution of the
codomain and the point images of uniformly sampled d-isogeny from E0. So, we
assume the hardness of Problem 4.
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Problem 4. Let E0 be a supersingular elliptic curve over Fp2 , O0
∼= End(E0),

and P0, Q0 be a basis of E0[n] for an integer n. Fix integers d,D such that
gcd(d,D) = 1, D− d ≈ p, and E0[D] ⊂ E0(Fp2). Given an elliptic curve E1 and
two points P1, Q1 sampled with probability 1/2 from either distribution:

– D′
0 = (E1, P1, Q1), the output of RandIsogImagesO0

(d,D;P0, Q0),
– D′

1 = (E1, P1, Q1) ∈U Cod(E0, d;P0, Q0),

distinguish from which distribution the values were sampled.

The hardness of Problem 1 and Problem 4 implies that of the following
problem, which is a variant of Problem 1.

Problem 5 (A variant of DIST). Let E0 be a supersingular elliptic curve over
Fp2 , O0

∼= End(E0), and P0, Q0 be a basis of E0[n] for an integer n. Fix integers
d,D such that gcd(d,D) = 1, D − d ≈ p, and E0[D] ⊂ E0(Fp2). Given an
elliptic curve E1 and two points P1, Q1 sampled with probability 1/2 from either
distribution:

– D′′
0 = (E1, P1, Q1), where (E1, P,Q) ← RandIsogImagesO0

(d,D;P0, Q0)
and (P1, Q1)

⊤ = A(P,Q)⊤, for a matrix A ∈U Mn,
– D′′

1 = (E1, P1, Q1), where E1 is a random elliptic curve over Fp2 with the
same order of rational points as E0, and (P1, Q1) is a random basis of E1[n],

distinguish from which distribution the values were sampled.

3.2 PKE Protocol

Now, we describe our PKE protocol that is OW-CPA secure. The proof of the
OW-CPA security of our protocol is given in Section 4.1. The main difference of
our protocol with FESTA is that we use non-smooth degree isogenies for ϕA,1

and ϕ1 and use 3-isogenies for ϕA,2 and ϕ2 in KeyGen and Enc. We show a
picture of our protocol in Figure 3. As in § 2.6,Mn represents the set of 2 × 2
diagonal invertible matrices over Z/nZ. Our protocol is roughly outlined below:

– Setup(1λ)→ param:
1. Find integers p, a, b, dA,1, and d1 satisfying the following conditions:
• a and b are integers satisfying 2a ≈ 3b ≈ 2λ and 2a − 3b ≈ 2λ.
• p = 23a · 3f − 1 is a prime for a small integer f .
• dA,1 = 2a − 3b and d1 = 22a + 2a · 3b + 32b.

2. Let E0/Fp2 : y2 = x3 + x and O0 = Z⟨1, i, i+j
2 ,

1+k
2 ⟩.

3. Take a basis (P0, Q0) of E0[2
3a].

4. Output a system parameter param = (p, a, b, dA,1, d1, E0,O0, P0, Q0).
– KeyGen(param)→ (pk, sk):

1. Let (EA,1, PA,1, QA,1) ← RandIsogImagesO0
(dA,1, 2

3a;P0, Q0). (De-
note the corresponding isogeny by ϕA,1.)

2. Let ϕA,2 : EA,1 → EA be a random 3b-isogeny and evaluate the points
(PA, QA) = (ϕA,2(PA,1), ϕA,2(QA,1)). (Let ϕA := ϕA,2 ◦ ϕA,1.)
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Fig. 3: A picture of our protocol.

3. Take a random diagonal matrix A ∈U M23a .
4. Let (RA, SA)

⊤ = A(PA, QA)
⊤.

5. Output a public key pk = (EA, RA, SA) and a secret key sk = (EA,1,
PA,1, QA,1,A).

– Enc(pk,m;param)→ ct:

1. Convert the message m into a diagonal matrix B ∈M23a .
2. Let (E1, P1, Q1) ← RandIsogImagesO0

(d1, 2
3a;P0, Q0). (Denote the

corresponding isogeny by ϕ1.)
3. Let (R1, S1)

⊤ = B(P1, Q1)
⊤.

4. Let ϕ2 : EA → E2 be a random 32b-isogeny and evaluate the points
(R2, S2)

⊤ = B(ϕ2(RA), ϕ2(SA))
⊤.

5. Output the ciphertext ct = (E1, R1, S1, E2, R2, S2).

– Dec(sk, ct;param)→ m:

1. Let ψ1 = ϕ1 ◦ ϕ̂A,1 and ψ2 = ϕ2 ◦ ϕA,2.
2. Let N1 = deg(ψ1) = dA,1d1 = 23a − 33b and N2 = deg(ψ2) = 33b.

3. Compute (R′
2, S

′
2) = (ψ2 ◦ ψ̂1(R1), ψ2 ◦ ψ̂1(S1)) using A.

4. Execute EvalByKani(N1, N2, EA,1, E1, E2, R1, S1, R
′
2, S

′
2;R1, S1; ∅),

and obtain (RA,1, SA,1) = (ψ̂1(R1), ψ̂1(S1)).
5. Find B ∈M23a such that (R2,A, S2,A)

⊤ = d1B(PA,1, QA,1)
⊤.

6. Convert the matrix B to the message m.

Remark 2. In our protocol, both parties should execute RandIsogImagesO0
.

Thus, we need to assume the hardness of Problem 4 in addition to the hardness of
Problem 1. Moreover, our protocol relies on both parties knowing O0

∼= End(E0).
As a result, we need to assume the hardness of Problem 1, Problem 4, and
Problem 3 with E0 restricted to the curve whose endomorphism ring is known.
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Algorithm 3 KeyGen(param)

Require: The system parameter param = (p, a, b, dA,1, d1, E0,O0, P0, Q0).
Ensure: The key pair (pk, sk).
1: Take a random matrix A ∈U M23a .
2: Let (EA,1, PA,1, QA,1)← RandIsogImagesO0

(dA,1, 2
3a;P0, Q0).

3: Take a random 3b-isogeny ϕA,2 : EA,1 → EA.
4: Compute (PA, QA) = (ϕA,2(PA,1), ϕA,2(PA,2)).
5: Compute (RA, SA)

⊤ = A(PA, QA)
⊤.

6: return pk = (EA, RA, SA) and sk = (EA,1, PA,1, QA,1,A).

Algorithm 4 Enc(pk,m;param)

Require: The public key pk = (EA, RA, SA), the message m ∈ {0, 1}3a−2, and the
system parameter param.

Ensure: The ciphertext ct.
1: Let sB = 2m+ 1 ∈ (Z/23aZ)∗ and B = diag(sB , s

−1
B ) ∈M23a .

2: Let (E1, P1, Q1)← RandIsogImagesO0
(d1, 2

3a;P0, Q0).

3: Compute (R1, S1)
⊤ = B(P1, Q1)

⊤.
4: Take a random 32b-isogeny ϕ2 : EA → E2.
5: Compute (R2, S2)

⊤ = B(ϕ2(RA), ϕ2(SA))
⊤.

6: return ct = (E1, R1, S1, E2, R2, S2).

Now, we describe the concrete algorithms for KeyGen,Enc and Dec in
Algorithm 3, 4, and 5, respectively. We denote by ‘QFESTA.PKE’ our PKE
defined by these algorithms. As for Setup, we discuss in Section 3.4.

Note that we only use the diagonal matrices of determinant 1 since we can
recover the determinant by using the 23a-Weil pairing e as follows:

e(RA, SA) = e(P0, Q0)
dA,13

b·detA.

Note again that we can evaluate the point images (RA,1, SA,1) in Algorithm 5
step 3 up to the automorphism of EA,1. When j(EA,1) ̸= 0, 1728, the auto-
morphism group of EA,1 is {±1}. Therefore, the matrix B = diag(sB , s

−1
B ) is

determined by sB ∈ (Z/23aZ)∗/{±1}. Since the following map

η : [0, 23a−2 − 1]→ (Z/23aZ)∗/{±1}, m 7→ 2m+ 1

is bijection, we choose {0, 1}3a−2 as the message space.
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Algorithm 5 Dec(sk, ct;param)

Require: The secret key sk = (EA,1, PA,1, QA,1,A), the ciphertext ct = (E1, R1, S1,
E2, R2, S2), and the system parameter param.

Ensure: The decrypted message m.
1: Let N1 = dA,1d1 and N2 = 33b.
2: Compute (R′

2, S
′
2)

⊤ = d1A
−1(R2, S2)

⊤.
3: (RA,1, SA,1)← EvalByKani(N1, N2, EA,1, E1, E2, R1, S1, R

′
2, S

′
2;R1, S1; ∅).

4: if EvalByKani returns ⊥, return ⊥.
5: Find B = diag(sB , s

−1
B ) ∈ M23a such that (RA,1, SA,1)

⊤ = d1B(PA,1, QA,1)
⊤ by

solving discrete logarithm problem.
6: if there is no such sB ∈ (Z/23aZ)∗/±1, return ⊥.
7: Let sB ← min{sB , 23a − sB}.
8: return m = (sB − 1)/2.

Correctness. We show the correctness of our PKE. In step 1-3 of Algorithm 5,
we used Theorem 1 for ψ1 = ϕ1 ◦ ϕ̂A,1, ψ2 = ϕ2 ◦ ϕA,2, N1 = dA,1d1, N2 = 33b,

and f = ψ2 ◦ ψ̂1. Here, we have N1 +N2 = dA,1d1 +33b = 23a, and the following
equation holds:

(f(R1), f(S1))
⊤ = (ϕ2 ◦ ϕA ◦ ϕ̂1(R1), ϕ2 ◦ ϕA ◦ ϕ̂1(S1))

⊤

= d1B(ϕ2 ◦ ϕA(P0), ϕ2 ◦ ϕA(Q0))
⊤

= d1BA−1(ϕ2(RA), ϕ2(SA))
⊤

= d1BA−1B−1(R2, S2)
⊤

= d1A
−1(R2, S2)

⊤ = (R′
2, S

′
2)

⊤.

Since the orders of R1, S1, R
′
2, and S

′
2 are all N1 + N2 = 23a, EvalByKani in

step 3 will succeed if the ciphertext ct is generated honestly. From the above
discussion, the correctness of our protocol follows.

Remark 3. We can efficiently compute the 3-isogenies in Step 3-4 of Algorithm 3
and Step 4-5 of Algorithm 4 by using the radical isogenies [9]. It should be noted,
however, that we require the point images, unlike the original radical isogenies.
We show the method in Appendix A.

Remark 4. In Algorithm 4, we used d1 = 22a + 2a · 3b + 32b ≈ 22λ and D =
23a ≈ 23λ as the inputs of RandIsogImages. Therefore, the number of possible
output of RandIsogImages is

12d1(D − d1)/p log (d1(D − d1)) ∈ Õ(22λ).

This seems to be more than sufficient to achieve λ-bit security. If we use D =
22a+2 instead, the number of outputs becomes approximately 2λ. Then, we can
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reduce the number of (2, 2)-isogeny computations from 3a to 2a + 2. However,
we leave a detailed analysis of the security as future work and we use D = 23a

in our implementation.

3.3 KEM Protocol

As described in § 2.6, OAEP transform reduces the message size by a quarter.
Since the message size of QFESTA.PKE is about 3λ, we cannot achieve suf-
ficiently large message space when using OAEP transform. Instead, we apply
FO ̸⊥ transform to QFESTA.PKE and obtain a new KEM. We name our new
KEM ‘QFESTA’ (Quaternion Fast Encapsulation from Supersingular Torsion
Attacks). We prove that QFESTA is IND-CCA secure in Section 4.

3.4 Parameter Finding

Here, we show how to find system parameters param = (p, a, b, dA,1, d1, E0,O0,
P0, Q0) for a given security parameter λ. The discussion of parameter sizes is
provided in § 4.2.

First, we let b = ⌈log3 2λ⌉ and a = ⌈log2(2λ + 3b)⌉, which satisfies 2a ≈ 3b ≈
2λ and 2a − 3b ≈ 2λ. Then, we let dA,1 = 2a − 3b and d1 = 22a + 2a · 3b + 32b.
Next, we find f ∈ N such that p = 23a · 3f − 1 is prime. We can try f in
ascending order until p = 23a · 3f − 1 becomes prime. Finally, we set E0 and O0

as E0/Fp2 : y2 = x3 + x and O0 = Z⟨1, i, i+j
2 ,

1+k
2 ⟩, respectively, and we find a

basis (P0, Q0) of E0[2
3a]. We show the algorithm for Setup in Algorithm 6.

Algorithm 6 Setup(1λ)

Require: The security parameter 1λ.
Ensure: A system parameter param.
1: Let S = {Set of available integers for f}.
2: Let b = ⌈log3 2λ⌉ and a = ⌈log2(2λ + 3b)⌉.
3: Let dA,1 = 2a − 3b, d1 = 22a + 2a · 3b + 32b, and f = 1.
4: while p = 23a · 3f − 1 is not prime do
5: f ← f + 1.
6: end while
7: Let E0/Fp2 : y2 = x3 + x and O0 = Z⟨1, i, i+j

2
, 1+k

2
⟩.

8: Take a basis (P0, Q0) of E0[2
3a].

9: return param = (p, a, b, dA,1, d1, E0,O0, P0, Q0)

3.5 Available Integers for f

We need to compute cube roots of elements in Fp2 for the use of radical 3-
isogenies. In the case that p + 1 is divisible by 3 and not by 9, the cube root
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computation is efficient. Therefore, it is preferable that f is not divisible by 3. For
more detail, see Appendix A.2. Additionally, it is preferable that f is odd since
we use 23a-Tate pairing to solve the discrete logarithm problem in Algorithm 5.
Thus, the set S in step 1 could be

S = {f ∈ N | gcd(f, 6) = 1, f ≤ Bf}

for a bound Bf . We can find such f around O(log 23a) = O(λ) from the prime
number theory. Therefore, we can choose the bound Bf in O(λ). Note that the
requirement of gcd(f, 6) = 1 is just a preferred condition for implementation,
not a theoretical requirement.

If we use f divisible by 3, then we can instead use radical 9-isogenies. An
efficient formula for this was given by [8]. However, the cost for the point image
computation is higher than that of radical 3-isogeny. We leave a detailed analysis
of the efficiency of radical 9-isogenies as a future work.

4 Security Analysis

In this section, we analyse the security of QFESTA. The authors of FESTA
applied OAEP to their protocol to achieve IND-CCA security. Our protocol,
however, is not suitable for OAEP. The reason is as follows. Our protocol can
be seen as a one-way trapdoor function with the domain {0, 1}3a−2. Therefore,
by applying OAEP, the message size will be about 3a/4 bits, which is about
3λ/4 bits since a ≈ λ. This message size is too small to achieve the λ-bit secu-
rity. Instead, we use the Fujisaki-Okamoto transform [29] to achieve IND-CCA
security. Throughout this section, we let dA := dA,1 · 3b and d2 := 32b.

4.1 Security Proof

In this subsection, we prove that our PKE is OW-CPA secure; thus, our QFESTA
is IND-CCA secure. Throughout this subsection, we fix a system parameter
param and a key pair (pk, sk) arbitrarily. First, we prove that our PKE is
OW-CPA secure.

Theorem 3. QFESTA.PKE is OW-CPA secure under the following assump-
tion.

Assumption 1 The following problems are hard:

(i) Problem 1 for j(E0) = 1728, d = dA, d1, and n = 23a,
(ii) Problem 3 for j(E0) = 1728, d = d1, d

′ = d2, and n = 23a,
(iii) Problem 4 for j(E0) = 1728, d = dA,1, d1, and D = n = 23a.

Proof. Assume that there exists an adversary Adv that breaks the one-wayness
of QFESTA.PKE. Note that we can assume the hardness of Problem 5 from the
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hardness of Problem 1 and Problem 4. Let (EA, RA, SA) be an input of Prob-
lem 5 for j(E0) = 1728, d = dA, and D = n = 23a and let (E1, P1, Q1) be an
input of Problem 4 for j(E0) = 1728, d = d1, and D = n = 23a. Next, we take
B ∈U Mn and a random 32b-isogeny ϕ2 : EA → E2, let (R1, S1)

⊤ = B(P1, Q1)
⊤,

and let (R2, S2)
⊤ = B(ϕ2(RA), ϕ2(SA))

⊤. From the hardness of Problem 4
and Problem 5, Adv(E1, R1, S1, E2, R2, S2) will output B regardless of whether
(EA, RA, SA) is sampled from D′′

0 or D′′
1 and whether (E1, P1, Q1) is sampled

from D′
0 or D′

1. Therefore, Adv(E1, R1, S1, E2, R2, S2) will output B even when
(EA, RA, SA) ∈ D′′

1 and (E1, P1, Q1) ∈ D′
1. In this case, (E1, R1, S1, E2, R2, S2)

can be seen as an input of Problem 3 for j(E0) = 1728, d = d1, d
′ = d2, and

n = 23a. Using B output by Adv, we can solve Problem 3 by applying the SIDH
attack in dimension 4 or 8 [41]. This is contrary to our assumption. Therefore,
QFESTA.PKE is one-way. ⊓⊔

Consequently, the following theorem immediately follows from Theorem 2 and
Theorem 3.

Theorem 4. QFESTA is IND-CCA KEM under QROM under Assumption 1.

4.2 Hardness Analysis

Here, we discuss possible attacks against QFESTA and confirm that the param-
eters we have presented are of sufficient size to achieve λ-bit security.

In our protocol, we primarily publish three types of information: elliptic
curves E0, EA, E1, E2, masked torsion points RA, SA, R1, S1, R2, S2, and the de-
grees of each secret isogeny. To obtain the plaintext m in our protocol, it is
necessary and sufficient to compute one of the three secret isogenies, namely,
ϕA, ϕ1, or ϕ2.

An efficient method for computing isogenies using masked torsion points was
introduced in [11]. However, this attack succeeds only when the basis P0, Q0 of
E0[2

3a] satisfies a specific condition and we can avoid this attack in the way
described in Appendix B. Another method is as follows:

Given: Two isogenous elliptic curve E,F , the degree d of a secret isogeny
ϕ : E → F , a basis (P,Q) of E[23a], and masked torsion points (R,S)⊤ =
A(ϕ(P ), ϕ(Q))⊤, where A ∈M23a .
Compute: The d-isogeny ϕ.

1. Take the minimum integer a′ such that 2a
′
>
√
d.

2. Let (P ′, Q′) = [23a−a′
](P,Q) ∈ E[2a

′
] and (R′, S′) = [23a−a′

](R,S) ∈ F [2a′
].

3. Guess the matrix A′ ∈M2a′ such that A ≡ A′ mod 2a
′
.

4. Compute the torsion points (ϕ(P ′), ϕ(Q′))⊤ = (A′)−1(R′, S′)⊤ and apply
the SIDH attacks in dimension 4 or 8 [41].

Since the guess in step 4 will succeed with a probability of 1/2a
′
, the computa-

tional cost of this attack is O(2a
′
) = O(

√
d). In our protocol, the degrees dA, d1,
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and d2 of the secret isogenies are greater than 22λ. Therefore, the cost of this at-
tack is O(2λ). Apart from the above methods, there is no known efficient method
to compute isogenies using masked torsion points.

Now, we focus on the problem of finding the isogeny ϕA : E0 → EA, ϕ1 :
E0 → E1, or ϕ2 : EA → E2 when given elliptic curves E0, EA, E1, E2 and each
degree dA, d1, d2. Three attack methods are considered: (i) exhaustive search of
all outputs of RandIsogImages, (ii) meet-in-the-middle strategies [1], and (iii)
computing the endomorphism ring of the elliptic curve.

(i) The number of possible outputs ofRandIsogImagesO0
(d1, 2

3a;S) is Õ(22λ)
as we explained in Remark 4. Consequently, the computational cost for
this attack is Õ(22λ). In the case of a quantum adversary, Grover’s al-
gorithm reduces the cost to Õ(2λ). Similarly, the computational cost for
RandIsogImagesO0

(dA,1, 2
3a;S) is Õ(2λ). For a quantum adversary, the

cost is Õ(2λ/2).
(ii) We discuss the computational cost of meet-in-the-middle strategies against

a d-isogeny from E to F . When the degree d can be factored as d = d′ · d′′,
we search exhaustively for d′-isogenies from E and d′′-isogenies from F . This
results in a computational cost of O(d′ + d′′). Therefore,the cost is greater
than O(d1/2). In our setting, dA, d1, and d2 is greater than 22λ. Therefore,
the attack’s cost is O(2λ). In the case of a quantum adversary, by using the
method in [44], the cost is reduced to O(22λ/3).

(iii) From the computational equivalence between the problem of finding the fixed
degree isogeny and the problem of computing the endomorphism ring [46],
we may be able to compute the dA-isogeny ϕA in polynomial time from
the endomorphism ring End(EA). Now, we discuss the way of computing
the endomorphism ring End(EA). When we find an isogeny between E0

and EA of arbitrary degree by executing Delfs-Galbraith attack [22], we
can compute End(EA) in polynomial time [25]. The cost for Delfs-Galbraith
attack is Õ(p1/2) = Õ(23λ/2) for a classical adversary. The endomorphism
ring End(EA) can also be obtained directly by the method in [26] and the
cost is also Õ(p1/2) = Õ(23λ/2) for a classical adversary. In these attacks,
the most computationally intensive task involves searching for a path in the
supersingular isogeny graph to a curve within a specific set, which has an
approximate cardinality of O(p1/2). Therefore, a quantum adversary has the
potential to reduce the computational costs of these attacks to O(p1/4) =
O(23λ/4) using Grover’s algorithm.

From the above discussion, it is likely that our parameter settings afford λ-bit
security against a classical adversary and λ/2-bit security against a quantum
adversary.

5 Efficiency

In this section, we analyse the efficiency of QFESTA. First, we provide concrete
parameters for QFESTA, then compare the data sizes of QFESTA such as public
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key size and ciphertext size with FESTA. Finally, we show the computational
cost by our proof-of-concept implementation.

5.1 Parameter

This subsection gives concrete parameters for QFESTA satisfying NIST secu-
rity level 1, 3, and 5. The parameters are generated by Algorithm 6 while we
take the set S in step 1 as S = {f ∈ N | gcd(f, 6) = 1, f ≤ 1000} (see Sec-
tion 3.5) and the security parameter as λ = 128, 192, 256, respectively. We denote
QFESTA with the parameter for NIST security level 1, 3, and 5 by ‘QFESTA-
128’, ‘QFESTA-192’, and ‘QFESTA-256’, respectively. The parameters are as
follows:

– QFESTA-128: a = 130, b = 81, p = 2390 · 3 · 55− 1.

– QFESTA-192: a = 194, b = 122, p = 2582 · 3 · 307− 1.

– QFESTA-256: a = 258, b = 162, p = 2774 · 3 · 137− 1.

5.2 Data Size

In this subsection, we compare the data sizes of FESTA and QFESTA using
the above parameters. The parameter of FESTA-128 is given in [3, Section
7.3]. As for the parameters of FESTA-192 and FESTA-256, we used the val-
ues given in the FESTA implementation at: https://github.com/FESTA-PKE/
FESTA-SageMath. Note that we used the latest version of FESTA at this time
(updated August 19th, 2023).

Now, we compare the sizes of characteristic p, public key, and ciphertext of
SIKE [2], FESTA [3], and QFESTA in Table 2. Note that all public key and
ciphertext sizes in the table are values using key compression, as in SIKE. As
shown in Table 2, all the data sizes of our protocol are much smaller than those
of FESTA. In particular, the public key and ciphertext sizes of QFESTA-128 are
less than half of those of FESTA-128.

Security Protocol p (bits) Public key (bytes) Ciphertext (bytes)

SIKEp434 434 197 236
Level 1 FESTA-128 1292 561 1122

QFESTA-128 398 247 494

SIKEp610 610 274 336
Level 3 FESTA-192 1966 864 1728

QFESTA-192 592 367 734

SIKEp751 751 335 410
Level 5 FESTA-256 2772 1246 2492

QFESTA-256 783 487 974

Table 2: Data size comparison

https://github.com/FESTA-PKE/FESTA-SageMath
https://github.com/FESTA-PKE/FESTA-SageMath
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5.3 Implementation

We provide a proof-of-concept implementation of QFESTA in SageMath [43] and
make it available at: https://github.com/hiroshi-onuki/QFESTA-SageMath.
In our implementation, we partially used the code at: https://github.com/
ThetaIsogenies/two-isogenies/tree/main/Theta-SageMath proposed in [18]
for the computation of (2, 2)-isogenies. In Dec/Decaps, both of FESTA and
QFESTA use (2, 2)-isogenies. Therefore, for the fair comparison to FESTA, we
also performed another implementation of Decaps using FESTA-SageMath for
the computation of (2, 2)-isogenies. In our implementations, (2, 2)-isogenies are
computed using the optimal known strategy ([19, Section 4.2], [14]).

Now, we show the number of isogeny computations required for FESTA and
QFESTA in Table 3 to compare the computational cost. As shown in Table 3, our
protocol does not require high-degree isogeny computations for KeyGen and
Enc, whereas FESTA requires a lot. In particular, the higher the security level,
FESTA requires higher-degree isogeny computations, making QFESTA more
scalable. As for Dec, our protocol requires more (2, 2)-isogeny computations
than FESTA. However, since our protocol uses a smaller p, the computational
cost may be lower.

Protocol (2, 2) 3 high-degree

KeyGen - - 22 (degree: 59-41161)
FESTA-128 Enc - 6 69 (degree: 5-3779)

Dec 632 - -

KeyGen 390 81 -
QFESTA-128 Encaps 390 162 -

Decaps 780 162 -

KeyGen - - 22 (degree: 31-6842881)
FESTA-192 Enc - 5 79 (degree: 5-176549)

Dec 992 - -

KeyGen 578 122 -
QFESTA-192 Encaps 578 244 -

Decaps 1156 244 -

KeyGen - - 26 (degree: 2729-44988859)
FESTA-256 Enc - 4 105 (degree: 5-513031)

Dec 1472 - -

KeyGen 774 162 -
QFESTA-256 Encaps 774 324 -

Decaps 1548 324 -

Table 3: Number of isogeny computations of each degree

Finally, in Table 4, we show the actual computational times of FESTA and
QFESTA implemented in SageMath. These are the averages of 10 run times.
As mentioned above, we use Theta-SageMath for the computation of (2, 2)-

https://github.com/hiroshi-onuki/QFESTA-SageMath
https://github.com/ThetaIsogenies/two-isogenies/tree/main/Theta-SageMath
https://github.com/ThetaIsogenies/two-isogenies/tree/main/Theta-SageMath
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isogenies. In Dec/Decaps, both of FESTA and QFESTA use (2, 2)-isogenies.
Therefore, we implemented the (2, 2)-isogenies in Decaps of QFESTA using the
FESTA implementation for the comparison. The times of this implementation
are given in parentheses. Our running environment is an Apple M1 CPU (3.2
GHz). Note that these comparisons are not rigorous since both FESTA and
QFESTA implementations are just proof-of-concept. Optimized implementation
of QFESTA in C or other languages is a future work.

Protocol KeyGen Enc/Encaps Dec/Decaps

FESTA-128 4.88 3.13 9.25
QFESTA-128 1.23 1.68 4.46

(7.88)

FESTA-192 103.34 20.90 24.58
QFESTA-192 2.80 3.81 11.82

(17.75)

FESTA-256 298.06 58.06 58.06
QFESTA-256 5.17 7.79 25.70

(35.51)

Table 4: Computational times (sec.) We use Theta-SageMath to compute (2, 2)-
isogenies. For the fair comparison, we also performed another implementation
of Decaps using FESTA-SageMath for the computation of (2, 2)-isogenies. The
times of this implementation are given in parentheses.

6 Conclusion

In this paper, we introduce QFESTA, a new variant of FESTA that works with
better parameters. The main idea of our protocol is to compute a non-smooth
degree isogeny by using FullRepresentInteger and the 2-dimensional isoge-
nies. The removal of the smoothness restriction allows us to use more efficient
parameters.

Indeed, the data sizes of the public key and ciphertext of QFESTA be-
come nearly half size of FESTA in NIST security level 1, 3, and 5. Addition-
ally, QFESTA is expected to have less computational cost since it only requires
(2, 2)-isogeny and 3-isogeny computations, whereas the original FESTA requires
high-degree isogeny computations. Especially as the security level increases, the
advantages of QFESTA expand.

As a future work, we need to analyse the number of possible outputs of
Algorithm 2 for concrete parameters and its effect on the security. For a faster
implementation of QFESTA, considering the reduction of (2, 2)-isogenies shown
in Remark 4 and radical 9-isogenies shown in Section 3.5 is also a future work.
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25. Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: reduc-
tions and solutions. In EUROCRYPT 2018: Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 329–368, 2018.
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A Computing a chain of 3-isogenies

In this section, we give an explicit algorithm to compute a chain of 3-isogenies
in the encryption of our protocol.

Let p be a prime of form 23a · 3f − 1 with positive integers a, f , let E be a
supersingular elliptic curve over Fp2 , and let b be an positive integer. Suppose
that the order of E(Fp2) is (p+1)2. Our task is computing a random 3b-isogeny
from E. More precisely, we construct a function that takes E, b, and points in
E(Fp2) as input and outputs the codomain of a 3b-isogeny φ from E and the
images of the points in input. In addition, we require that the isogeny φ is chosen
uniformly at random from 3b-isogenies from E whose kernel is cyclic.

For the case that E[3b] is not in E(Fp2), which is our case, two methods
are known for computing such a function by Fp2-operations. First is taking a
random order-3 point for each intermediate curve and computing a 3-isogeny
with kernel generated by that point. Second is radical isogenies by [9]. We use
the second in our implementation. The reason is as follows. Taking a random
order-3 point needs scalar multiplication by (p+1)/3 in an elliptic curve. Using
radial isogenies replaces this with a computation of a cube root in Fp2 . As shown
later, a cube root in Fp2 can be computed by an exponentiation by an integer
approximately p in size. Therefore, using radical isogenies is more efficient than
taking a random order-3 point.

A.1 Image under radical isogenies

It is well-known that an elliptic curve defined by y2 + a1xy + a3y = x3 has a
point (0, 0) of order 3. A radical isogeny between elliptic curves of such a form
is the following formula.

Proposition 1 ([9, Section 4]). Let E be an elliptic curve defined by y2 +
a1xy + a3y = x3 and α be a cube root of −a3. Then the codomain of an isogeny
with kernel ⟨(0, 0)⟩ is isomorphic to E′ : y2 + a′1xy + a′3y = x3, where a′1 =
−6α+ a1 and a′3 = 3a1α

2 − a21α+ 9a3.

This formula is derived from the composition of the following two isogenies. First
is an isogeny from E with kernel ⟨(0, 0)⟩ derived from Velu’s formula. Second
is an isomorphism that sends a point of order 3 to (0, 0). The choice of α from
the cube roots of −a3 corresponds to the choice of a point of order 3 in the
isomorphism. This choice determines the codomain of the next 3-isogeny.

We need to compute the image of a basis of EA[2
b] in our encryption function.

For this, we use x-coordinate-only computation as in SIKE [2]. I.e., we compute
the x-coordinates of P,Q, and P +Q for a basis P,Q of the 2b-torsion subgroup
of the domain curve in each isogeny. This is more efficient than computing the
full coordinates of P and Q because there are 4 values to compute in the full
coordinates, while x-coordinate-only computation needs 3 values. We can obtain
a formula of the image of a point under the isogeny in Proposition 1 by the
construction described in the above paragraph. In particular, the first isogeny
sends (x,−) to ((x3 + a1a3x + a23)/x

2,−) and the second (x,−) to (x − a1α +
3α2,−).
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A.2 Cube root of −a3

We can taking α at uniformly random from the cube roots of −a3 as follows.
The cube of −a3 roots are in Fp2 since the 3-torsion subgroups of the elliptic

curves which we use are defined over Fp2 . Therefore, the multiplicative order of
−a3 divides (p2 − 1)/3. Recall that we use p of form 23a · 3f − 1 with a small
cofactor f . If f is not divisible by 3, then −a3 to the power of the inverse of 3
modulo (p2 − 1)/3 is a cube root of −a3. We can randomize this by multiplying
a random cube root of unity.

In the case that f is of form 3ef ′ with f ′ prime to 3, we can compute a cube
root of −a3 as follows.

1. Pre-compute a generator g of 3e-torsion part of F×
p2 , the inverse I1 of (p2 −

1)/3e modulo 3e, and the inverse I2 of 3 modulo (p2 − 1)/3e.

2. Let t be (−a3)((p
2−1)/3e)I1 .

3. Compute the discrete logarithm h of t to the base g.
4. Then (−a3/t)I2gh/3 is a cube root of −a3.

The computational cost of the discrete logarithm above is not large since f is
small. However, that f is not divisible by 3 is preferable. The optimal choice of
a and f depends on the computational costs of Richelot isogenies and the cube
root. We leave this as future work.

A.3 Explicit algorithm

We use the same key compression as SIKE [2] (our proof-of-concept implemen-
tation uses the key compression function in the implementation of FESTA [3]),
therefore the domain and the codomain of a 3b-isogeny are represented by Mont-
gomery forms.

In addition, we require ciphertext (E1, (P1, Q1);E2, (P2, Q2)) to satisfy that
[2a−1]P1 = (0, 0) and [2a−1]P2 = (0, 0) because this property makes the compu-
tation of a glueing isogeny a little more efficient (see FromProdToJac in riche-
lot isogenies.py in the implementation of FESTA).

Transforming an elliptic curve of a Weierstrass form to a Montgomery curve
is easy. In particular, given an elliptic curve E of a Weierstrass form and an
order-4 point P on E, we can compute a Montgomery curve isomorphism to E
in which the x-coordinate of the image of P is 1, so the image of [2]P is (0, 0).
Such a Montgomery curve uniquely exists [38]. We give an explicit algorithm in
Algorithm 9.

In summary, our explicit procedure to compute a part of public key computed
by a chain of 3-isogenies is as follows.

1. Decompress a public key and obtain a Montgomery curve EA and a basis
PA, QA of EA[2

3a].
2. Take a point R uniformly at random from the order-3 points on EA.
3. Let ι be an isomorphism from EA to an elliptic E′

A curve of form y2 +
a1xy + a3y = x3 sending R to (0, 0). Compute E′

A and the x-coordinates of
the images of PA, QA, and PA +QA under ι (Algorithm 7).
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Algorithm 7 Weierstrass to curve for radical 3-isogenies

Require: An elliptic curve E : y2 + a1xy + a3y = x3 + a2x
3 + a4x+ a6, (x0, y0) ∈ E

of order 3, and a set X of the x-coordinates of points on E.
Ensure: E′ : y2 + a′

1xy + a′
3y = x3 isomorphic to E in which the image of (x0, y0) is

(0, 0) and the set X ′ of the x-coordinates of the image of points with x-coordinates
in X.

1: Let f(x, y) be y2 + a1xy + a3y − x3 + a2x
3 + a4x+ a6.

2: Let g(x, y) be f(x+ x0, y + y0) .
3: Let c1 be the coefficient of x in g and c2 be the coefficient of g.
4: Let h(x, y) be g(x, y − c1/c2x). // h(x, y) is of form y2 + a′

1xya
′
3y − x3.

5: Let E′ be the elliptic curve defined by h(x, y) = 0.
6: Let X ′ = ∅.
7: for x in X do
8: Append x− x0 to X
9: end for
10: return E′ and X ′.

Algorithm 8 Radical 3-isogeny

Require: An elliptic curve E : y2 + a1xy+ a3y = x3 and a set X of the x-coordinates
of points on E

Ensure: The codomain E′ : y2 + a′
1xy + a′

3y = x3 of an isogeny from E with kernel
⟨(0, 0)⟩ and the setX ′ of the x-coordinates of the image of points with x-coordinates
in X.

1: Sample α uniformly at random from the cube roots of −a3.
2: Let a′

1 be −6α+ a1.
3: Let a′

3 be 3a1α
2 + a2

1α+ 9a3.
4: Let X ′ = ∅.
5: for x in X do
6: Append (x3 + a1a3x+ a2

3)/x
2 + a1α− 3α2 to X.

7: end for
8: return E′ : y2 + a′

1xy + a′
3y = x3 and X ′.

4. Compute the codomain E′
2 of a 3b-isogeny ϕ2 and the x-coordinates of the

images of PA, QA, and PA +QA under ϕ2 ◦ ι (by using Algorithm 8 repeat-
edly).

5. Let κ be an isomorphism from E′
2 to the Montgomery curve E2 such that

the x-coordinate of the image of [4]PA under κ ◦ϕ2 ◦ ι is 1. Compute E2 and
the x-coordinates xP , xQ, and xP+Q of the images of PA, QA, and PA+QA

under κ ◦ ϕ2 ◦ ι (Algorithm 9).
6. Compute points P2 and Q2 whose x-coordinates are xP and xQ, respectively.
7. If the x-coordinate of P2 +Q2 is not xP+Q then change Q2 with −Q2.
8. Compress (E2, P2, Q2) as a part of ciphertext.

Note that there are other forms of elliptic curves having a formula of radical
3-isogenies. A formula on Hessian curve is given by [6] and Montgomery curve
by [38]. The most efficient choice depends not only on the efficiency of radical
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Algorithm 9 Weierstrass to Montgomery

Require: An elliptic curve E : y2+a1xy+a3y = x3+a2x
3+a4x+a6, the x-coordinate

x4 of an order-4 point on E, and a set X of the x-coordinates of points on E.
Ensure: The Montgomery E′ curve isomorphic to E in which the image of (x4,−) is

(1,−) and the set X ′ of the x-coordinates of the image of points with x-coordinates
in X.

1: Let x2 be the x-coordinate of [2](x4,−).
2: Let u be 1/(x4 − x2).
3: Let A be (a2 + (a1/2)

2 + 3x2)u.
4: Let X ′ = ∅.
5: for x in X do
6: Append x− x2 to X ′.
7: end for
8: return E′ : y2 = x3 +Ax2 + x and X ′.

formulas but also on a formula of isogenies between abelian surfaces. We leave
finding the best choice of these formulas as future work.

B Avoiding Weak Bases against Castryck-Vercauteren
Attack

In this section, we give a method to avoid weak bases against the Castryck-
Vercauteren attack [11] in QFESTA. We discuss not only polynomial time at-
tacks but also attacks with λ-bit computational complexity for a security pa-
rameter λ.

B.1 Castryck-Vercauteren Attack

We first recall the Castryck-Vercauteren attack.

Let E and E′ be elliptic curves over a finite field of characteristic p such that
there exists an isogeny φ from E to E′ of degree D. Let N be a positive integer,
(P,Q) be a basis of E[N ], and M an invertible diagonal 2×2 matrix over Z/NZ.
We assume that p, D, and N are pairwise coprime, and that E[N ] and E[D] are
contained in an extension field of the base field of E whose degree is bounded
by a polynomial in log p. We consider the following problem.

Problem 6. Given E, E′, N , (P,Q), and M(φ(P ), φ(Q))⊤, find φ(P ).

We denote M(φ(P ), φ(Q))⊤ by (S, T )⊤. Note that S = c1φ(P ) and T = c2φ(Q)
for some c1, c2 ∈ (Z/NZ)×.

Castryck and Vercauteren [11] showed that Problem 6 can be solved in poly-
nomial time in log p, logN , and logD if the basis P or Q is an eigenvector of an
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endomorphism of E. They use the following diagram of isogenies.

E1

σ∗φ

||

E

σ

~~

ω

``
φ

!!
E′

1 E′
φ∗σ

oo

In this diagram, σ∗φ and φ∗σ are push-forwards of φ and σ by σ and φ, re-
spectively, i.e., kerσ∗φ = σ(kerφ) and kerφ∗σ = φ(kerσ). We take these push-
forwards so that σ∗φ ◦ σ = φ∗σ ◦ φ. We assume that the attacker can compute
σ, ω, and φ∗σ without knowing the secret isogeny φ.

Assume that P is an eigenvector of an endomorphism σ̂ ◦ ω of E. Then we
have ([11, Lemma 3])

(deg σ)σ∗φ ◦ ω ◦ φ̂(S) = Dσ̂ ◦ ω ◦ φ∗σ(S).

Since the attacker can compute the right-hand side of the equation, he obtains
the image of S under the isogeny in the left-hand side. The same holds for T .

We denote the isogeny σ∗φ ◦ω ◦ φ̂ in the left-hand side by ψ. If P and Q are
eigenvectors of σ̂◦ω, then the attacker can compute ψ(S) and ψ(T ). Therefore, if
degψ < N2, he can compute ψ in polynomial time by using Robert’s attack [41].
In addition, if only one of P and Q is an eigenvector of σ̂◦ω and degψ < N , then
the attacker can compute ψ in polynomial time by using an extension of Robert’s
attack (see [10, §6.1]). If kerψ is cyclic then we have kerψ ∩ E′[D] = ker φ̂.
Therefore, the attacker can obtain φ from ψ in this case.

The requirement that we can compute φ∗σ without knowing φ restricts the
possibility of σ. In particular, in [11], the following two candidates for σ are
proposed.

1. The identity map on E, thus E1 = E.
2. The p-th power Frobenius map from E to the Frobenius conjugate E(p).

Thus, we consider the above two cases in the following.
The above candidates for σ and the requirement that kerψ is cyclic restrict

the possibility of ω. If σ is the identify map on E then ω must not be a scalar
multiplication. If σ is the p-th power Frobenius map π then ω must not be
the p-th power Frobenius map. These conditions are not sufficient to success
the attack, but they are necessary. To be conservative, we assume that if these
conditions are met then the attack is successful.

In summary, we assume that the Castryck-Vercauteren attack succeeds in
polynomial time in the following cases.

1. There exists ω ∈ End(E) \ Z such that one of the following holds.
(a) P and Q are eigenvectors of ω and degω < (N/D)2,
(b) P or Q is not eigenvector of ω and degω < N/D2.

2. There exists an isogeny ω : E → E(p) which is not the p-th power Frobenius
map such that one of the following holds.
(a) P and Q are eigenvectors of π̂ ◦ ω and degω < (N/D)2,
(b) P or Q is not eigenvector of π̂ ◦ ω and degω < N/D2.
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B.2 Extension to λ-bit Computational Complexity

We consider the case that the attacker has λ-bit computational complexity. There
are two extensions of the Castryck-Vercauteren attack.

The first is that the attacker guesses the images of points under ψ when using
Robert’s attack or its extension. If the attacker guesses the images of E[n] under
ψ then the condition on degω in 2.(a) above is relaxed to degω < n(N/D)2. If
the attacker guesses a point of order n in E then the condition on degω in 2.(b)
above is relaxed to degω < nN/D2.

The second is that the attacker guesses the push-forward (σ∗φ)∗ξ for an
isogeny ξ of degree n from E or E(p). In this case, the attacker requires that P
or Q is an eigenvector of σ̂ ◦ ξ̂ ◦ ω. By replacing ω with ξ̂ ◦ ω, the conditions in
the previous section are relaxed to the same as the first extension.

It takes at least about n guesses to guess any of the above information.
Therefore, if the basis (P,Q) of E[N ] does not satisfy all of the conditions in the
previous section replacing degω with degω/2λ, then the attacker cannot succeed
the attack in λ-bit computational complexity.

B.3 Avoiding Weak Bases in QFESTA

We now show a method to choice a basis of E[23a] in QFESTA so that the basis
does not satisfy the conditions in the previous subsection. In QFESTA, there
are three secret isogenies ϕA, ϕ1, and ϕ2. The domains of ϕA and ϕ1 are E0, the
curve with j-invariant 1728, and the domain of ϕ2 is EA, which depends on the
secret key.

Bases for ϕ2. The attacker does not know the endomorphism ring of EA, the
domain of ϕ2. Finding a non integer endomorphism of EA or an isogeny from EA

to E
(p)
A not the p-th power Frobenius map costs Õ(

√
p) ≈ Õ(21.5λ). Therefore,

the attacker with λ-bit computational complexity cannot find ω even without
the condition that P0 or Q0 is an eigenvector of ω or π̂ ◦ ω.

Bases for ϕA and ϕ1. In this case, the attacker knows the endomorphism ring
of E0. Therefore, we need to avoid weak bases of E0[2

3a].
The degrees of ϕA and ϕ1 are about 22λ. Since a ≈ λ, the upperbound N/D2

in the conditions in § B.1 is about 2−λ. Therefore, we can ignore the conditions
(b)’s. Consequently, it suffices to avoid bases (P0, Q0) of E0[2

3a] that satisfy one
of the following conditions.

1. There exists ω ∈ End(E0)\Z such that P0 and Q0 are eigenvectors of ω and
degω < 23λ,

2. There exists ω ∈ End(E0)\{π} such that P0 and Q0 are eigenvectors of π̂◦ω
and degω < 23λ.

As explained in § 2.3, End(E0) is isomorphic to Z⟨1, i, i+j
2 ,

1+k
2 ⟩, where i2 =

−1 and j is the Frobenius endomorphism. We show that ω with degω < 23λ is
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of the form c1 + c2i for some integers c1, c2. If the coefficient of i+j
2 or 1+k

2 in
ω is not zero then degω ≥ p/4. We have p/4 > 23λ because of the factor f in
p+ 1. Therefore, ω is of the form c1 + c2i.

Assume that P0 is an eigenvector of ω. Then there exists an integer µ such
that ω(P0) = µP0. This means that [c1 − µ+ c2i]P0 = OE0

. Since the prime 2 is
ramified in Z⟨1, i⟩, the coefficient c1−µ+ c2i is equal to 2n(1+ i)γ, where n ∈ Z
and γ ∈ Z⟨1, i⟩ such that n(γ) is odd. Then we have [2n(1 + i)]P0 = OE0

. Since
the order of [1+ i]P0 is 23a of 23a−1, we have n ≥ 33a−1. Therefore, it holds that
c2 is divisible by 23a−1. This indicates that the degree of ω is at least 26a−2, but
this is larger than 23λ. Therefore, the condition 1 in the above is not satisfied.

Consequently, it suffices to consider the condition 2 in the above. In partic-
ular, it is sufficient to check whether there exist integers c1, c2 such that P0 and
Q0 are eigenvectors of c1j+ c2k and c21 + c22 < 23λ.

We explain how to check this condition. Let Mj and Mk be the matrices
representing j and k with respect to the basis (P0, Q0), respectively, i.e.,

([j]P0, [j]Q0)
⊤ = Mj(P0, Q0)

⊤ and ([k]P0, [k]Q0)
⊤ = Mk(P0, Q0)

⊤.

Then P0 and Q0 are eigenvectors of c1j + c2k if and only if c1Mj + c2Mk is
diagonal. This condition gives simultaneous linear equations on c1 and c2, and
these solutions form a lattice in R2 determined by Mj and Mk. We can easily
find the shortest vector with respect to the Euclidean norm in this lattice since
its rank is 2. If the shortest vector has the Euclidean norm greater than 21.5λ then
we conclude that the basis (P0, Q0) is secure against the Castryck-Vercauteren
attack with λ-bit computational complexity.

In summary, our method to avoid weak bases in QFESTA is as follows.

1. Take a random basis (P0, Q0) of E0[2
3a].

2. Compute the matrices Mj and Mk.
3. Find a shortest vector in the lattice {(c1, c2) ∈ Z2 | c1Mj+c2Mk is diagonal}.
4. If the Euclidean norm of the shortest vector is greater than 21.5λ then we

use the basis (P0, Q0) in our protocol, otherwise we go back to the first step.

Since the coefficients of Mj and Mk are in Z/23aZ, the discriminant of the
lattice is about 26a and the norm of shortest vector is expected to be about 23a ≈
23λ. Therefore, we can expect that there exist many bases of E0[2

3a] that pass
the test in the above. Indeed, we have confirmed that by our implementation.
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