
Round-Robin is Optimal:
Lower Bounds for Group Action Based Protocols

Daniele Cozzo1, Emanuele Giunta1,2

1 IMDEA Software Institute, Spain
{daniele.cozzo, emanuele.giunta}@imdea.org

2 Universidad Politecnica de Madrid, Spain.

Abstract. An hard homogeneous space (HHS) is a finite group acting
on a set with the group action being hard to invert and the set lacking
any algebraic structure. As such HHS could potentially replace finite
groups where the discrete logarithm is hard for building cryptographic
primitives and protocols in a post-quantum world.
Threshold HHS-based primitives typically require parties to compute the
group action of a secret-shared input on a public set element. On one
hand this could be done through generic MPC techniques, although they
incur in prohibitive costs due to the high complexity of circuits evaluating
group actions known to date. On the other hand round-robin protocols
only require black box usage of the HHS. However these are highly se-
quential procedures, taking as many rounds as parties involved. The high
round complexity appears to be inherent due the lack of homomorphic
properties in HHS, yet no lower bounds were known so far.
In this work we formally show that round-robin protocols are optimal.
In other words, any at least passively secure distributed computation of
a group action making black-box use of an HHS must take a number
of rounds greater or equal to the threshold parameter. We furthermore
study fair protocols in which all users receive the output in the same
round (unlike plain round-robin), and prove communication and compu-
tation lower bounds of Ω(n log2 n) for n parties. Our results are proven
in Shoup’s Generic Action Model (GAM), and hold regardless of the
underlying computational assumptions.

 mailto:daniele.cozzo@imdea.org, mailto:emanuele.giunta@imdea.org

Table of Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Our Techniques . 6
1.3 Related Work . 7

2 Preliminaries 8
2.1 Notation . 8
2.2 Hard Homogeneous Space . 8
2.3 Shoup’s Generic Action Model . 9

3 Technical Lemmas 9
3.1 Sequentiality Lemma . 9
3.2 Interactive Protocols . 10
3.3 Interactive Sequentiality Lemma . 11

4 Round Lower Bound 12

5 Fair Protocols Lower Bounds 13
5.1 Fair Protocols . 13
5.2 Refined Interactive Sequentiality Lemma . 14
5.3 Tall Sub-tree Property . 15
5.4 Main Result . 16

6 Conclusions 24

A CSIDH Group Action 28

B Optimal Fair Protocols 29

C Postponed Proofs 32
C.1 Sequentiality Lemma . 32
C.2 Properties . 35
C.3 Interactive Sequentiality Lemma . 35
C.4 Refined Interactive Sequentiality Lemma . 38
C.5 Tall Sub-tree Properties . 40

1 Introduction

It is known from the ‘80s that Shor’s algorithms [Sho94] on a powerful enough
quantum computer solves in polynomial time the hidden subgroup problem for
abelian groups of which Factoring and Discrete Logarithm (DL) are particular
instances. This poses a menace to existing public-key cryptography and has
motivated the exploration and study of post-quantum cryptographic problems.

One potential candidate are hard homogeneous spaces (HHS), where a finite
group G acts on a set E through an action ⋆ : G×E → E which is hard to invert.
These resemble prime order groups where the group action corresponds to the ex-
ponentiation. However, unlike groups, in HHS the set E lacks a group structure,
making it immune to Schor’s algorithms. So far the only known practical and ver-
satile instantiations come from the Commutative Supersingular Diffie-Hellman
(CSIDH) key-exchange, based on isogenies between supersingular elliptic curves.
Remarkably, recent attacks [CD23, MMP+23, Rob23] directed at SIDH, a differ-
ent family of isogeny-based key exchange, did not affect the security of CSIDH.

Over the last years CSIDH has been used to build a variety of primitives. Ex-
amples include cryptosystems [Sto12, MOT20, FP21], signatures [DG19, BKV19,
EKP20, ABCP23a] and identification schemes [BCP21] as well as more advanced
primitives such as ID-based signatures [SD21], adaptor signatures [TMM21],
oblivious transfer [LGD21], linkable ring signatures [BKP20], group signatures
[BDK+22] and importantly threshold schemes [DM20, CS20, BDPV21, CM22,
ABCP23a, ABCP23b, ABCP23c].

HHS-based threshold schemes in particular have gained a lot of attention
as post-quantum alternatives to replace currently deployed solutions. Typically
protocols based on group action involve the evaluation of s ⋆E for a secret shared
s ∈ G and a public set element E. However, as opposed to the DL group setting,
parties with shares si cannot simply compute si ⋆E locally and aggregate them
to get s ⋆E in a single round due to the lack of group structure in E . Because of
such a limitation, only two orthogonal approaches are know to date.

One is through generic multi-party computation (MPC) techniques. These
require to express the group action as an explicit arithmetic circuit and then com-
pute it gate-by-gate, theoretically achieving constant round complexity in the
number of parties. The downside though is that either round or communication
complexity highly depends on the multiplicative depth of the circuit, for instance
when using protocol based respectively on linear secret sharing schemes or gar-
bled circuits. Unfortunately, currently known circuits for CSIDH (Algorithm 2
in [CLM+18]) are not MPC-friendly, as they involve extensive looping over se-
cret shared values. Hence the MPC approach does not appear to be practical
yet.

On the other hand there are round-robin protocols. These require users to
sequentially apply (a function of) their secret share on a given set element. An
example to compute s = s1 + . . .+ s4 acting on E0 among 4 parties is given in
Figure 1. The main advantage of such procedures is that they only make black-
box usage of the HHS, avoiding the overheads of generic MPC. However, they
require as many rounds as users involved in the computation, which in a t out

of n secret sharing would amount to t rounds. This solution then appears hard
to scale.

E0 E1 E21 E321 E4321 = s ⋆ E0
s1 s2 s3 s4

P1 P2 P3 P4

Fig. 1. Round-robin protocol for four parties. Here Ei1i2...it = (si1 +si2 + · · ·+sit)⋆E0

Given the current unsatisfactory state of the art, we ask whether best of both
worlds constructions exist. In other words:

Is it possible to securely compute the group action of a t out of n secret
shared group element through black-box usage of the HHS with less than

t rounds of communication?

1.1 Our Contributions

We answer the above question in the negative proving the following lower bounds:

Round Lower Bound. We show that any protocol which, given a t out of n
secret shared s, attempts to compute f(s) ⋆E0 making only black-box usage of
the group action either:

– Requires t or more rounds of communication3

– Is insecure against t− 1 passively corrupted users, which can recover f(s).

The notion of black-box group action is formalized through Shoup’s Generic
Action Model (GAM) recently proposed in [DHK+23]. Here set elements are
represented by random labels, and actions are computed through oracle calls
to Oact. We prove this by describing for any k round protocol an explicit PPT
adversary which, provided a transcript and the secret inputs of k users, recovers
f(s). Our result cannot therefore be circumvented by

– Using external hardness assumptions. Our adversary is PPT, not only poly-
nomially bounded in the number of queries to Oact, and it could be used by
any reduction to efficiently break the underlying assumption.

– Using element’s representation, because this is already allowed in the GAM.

The only way we see to avoid our lower bound is through explicit usage of a
circuit for the group action. In this case generic MPC techniques can be applied
to improve asymptotic round complexity, however incurring in the overheads
discussed previously.

3 Including one round to broadcast the result to other users.

Round-optimal Fair Protocols Lower Bounds. Although we prove round-robin
protocols to be optimal in the GAM, in concrete applications they present some
vulnerabilities. The most notable one is that only the last user receives the result.
That party may then refuse to share it with the others or an adversary could
cause him to crash, forcing the protocol to restart4. For this reason variants have
been proposed [DM20] in which all parties get the output in the same round (we
call such protocols fair).

A trivial solution would be to run n parallel round robin protocols (see Fig-
ure 2 for an example with n = 4), but this would require O(n2) communication
and computation.

E0 E1 E21 E321 E4321 = s ⋆E0
s1 s2 s3 s4

E0 E2 E32 E432 E1432 = s ⋆E0
s2 s3 s4 s1

E0 E3 E43 E143 E2143 = s ⋆E0
s3 s4 s1 s2

E0 E4 E14 E214 E3214 = s ⋆E0
s4 s1 s2 s3

Fig. 2. Fair Round-robin protocol for four parties. Naive approach.

A better one, the binary splitting strategy [DM20], allows computing only
n(1 + log2 n) group actions and communicating n(1 + log2 n) − 2 set elements,
at least when the number of parties is a power of two. An example for n = 4 is
shown in Figure 3.

E0

E1

E3

E21

E43

E321

E421

E143

E243

E4321 = s ⋆E0

E3421 = s ⋆E0

E2143 = s ⋆E0

E1243 = s ⋆E0

s1

s3
s4

s2
s3
s4

s1
s2

s4

s3

s2

s1

Fig. 3. Fair round-robin protocol for four parties. Optimal strategy.

We show that in the GAM this strategy is optimal for n a power of two,
assuming the protocol does not allow n−1 honest-but-curious parties to recover
f(s). More precisely, we prove that any n rounds protocol5 in the GAM com-
puting s ⋆E0 among n parties, with s being a function of user’s private input,
satisfying

– No set of n− 1 can recover s

4 Or, in honest majority, to publicly reconstruct this user’s secret share.
5 Due to our first result, this is also the best round complexity in this case.

– All users obtain the output in the last round

involves at least n(1 + log2 n) action evaluations and the communication of at
least n(1 + log2 n)− 2 set elements. As for the previous result, this lower bound
holds in spite of the computational assumptions and the usage of element’s
representation.

1.2 Our Techniques

Our results are both based on the fact that in the GAM every computed set
element is either randomly sampled or returned by the oracle call Oact(a,D)
with a ∈ G and a previously computed D ∈ E . This allows us to construct
a graph among set elements6 where there is an edge from D to E if D was
computed before E and E = Oact(a,D). In particular if there exists a path from
D to E then, knowing the group elements used in all queries associated to the
edges of this path, one can compute a ∈ G such that a ⋆D = E by taking their
sum.

Round-Robin Lower Bound. Our proof consists of two steps. First, we show that
a path from E0 to f(s) ⋆E0 exists with high probability. Second, we prove that
among all paths from E0 to f(s) ⋆E0 there exists w.h.p. one involving for each
round queries performed by at most one user. Because the protocol has k rounds,
this path can involve queries of at most k users. Our result then follows because
these k users can then jointly compute f(s) as described above.

The first step, which we call Sequentiality Lemma7, is proved observing that
the output is either connected to E0 or to a randomly sampled element E′. In the
first case, we get the thesis. In the second case, all parties can jointly compute
a ∈ G such that a ⋆E′ = Eout as observed. However Eout = f(s) ⋆E0 implies
that E′ = (−a+f(s)) ⋆E0, meaning that parties successfully inverted the group
action for a random element E′, which is supposed to be hard. Hence this case
only happens with negligible probability.

The main idea in the second step instead is that the order in which parties are
executed within a round does not affect the protocol. A path containing queries
of at most one user for each round can then be constructed by induction. Given
F a set element computed by Pi at round r, we can assume Pi was executed
before any other user (so its queries occurs before any other user’s ones in the
same round). In this way, given a path from E0 to F , all the queries in the path
at round r can only come from Pi. The remaining queries at previous rounds
can then be handled through the inductive hypothesis.

Optimality of Fair Round-Robin. Regarding fair protocols, we exploit the fact
that all parties eventually return the output Eouti . A first approach to bound
computation would be to find a path from E0 to each Eouti , and count the total
6 More precisely we later introduce a relation “→” among query indices.
7 Because it implies that computing a ⋆E0 can only be done through sequential ap-

plications of the group action starting from E0.

number of queries involved. If we only had one path this would work: Since
we assume the protocol to have n rounds and that no subset of n − 1 users
can recover f(s), all users must contribute to this path by performing at least
a query as discussed above. As a consequence each path contains Ω(n) queries.
The issue however is that when many paths are considered, they may potentially
share a large fraction of associated queries.

We address through the following critical abstraction: To each path connect-
ing E0 with Eouti we associate the sequence πi(1), . . . , πi(n) of users performing
queries in this path. Up to carefully choosing the paths, πi(r) is then the index
of the only user performing queries at round r which contributes to the chosen
path from E0 to Eouti . Our key observation is then that8 two paths can share
the same queries at round r only if πi and πj share the same prefix of length r.
In other words, shared queries only occurs if for the first r rounds the two paths
involve the same users in the same order.

With this crucial result we can then link the total number of queries to
properties of the prefix tree of π1, . . . , πn. We then shift our focus to the study of
this graph. Because π1, . . . , πn can be proved to be permutations, their prefix tree
must satisfy what we call the tall sub-tree (TS) property. Namely a tree is tall
if all leaves have the same distance from the root and its height is greater than
the number of leaves. A tree where all its sub-trees are tall is TS. We eventually
translate our communication and computation lower bounds into bounds for TS
trees and prove them with elementary graph-theoretic techniques.

Interestingly, the connection between TS trees and optimal fair protocols
turned out to be more than a mere proof artifact: in the Appendix, Section B,
we informally show how from any optimal TS tree one can derive optimal fair
protocols to reconstruct an additive secret sharing over commutative group ac-
tions (such as CSIDH).

1.3 Related Work

The study of idealized models of computation dates back to the formalization of
Shoup’s [Sho97] and Maurer’s [Mau05] Generic Group Models, where in the for-
mer group elements are labeled with random strings while in the latter no label
is ever provided. In these frameworks many primitives were shown to be impos-
sible including VDFs [RSS20], efficient accumulators [SGS20], signature schemes
[DHH+21, CFGG22], vector commitments [CFGG22] and NIZKs [Giu23]. All
these results are limited to Maurer’s GGM either because the primitive is known
to exists in Shoup’s GGM, or because negative results in Shoup’s GGM are typ-
ically harder, such as the IBE impossibility [PRV12, Zha22]. Moreover all these
negative results are proved providing an unbounded adversary restricted to per-
form at most polynomially many GGM queries. This means that using non
group theoretic assumptions could be enough to bypass them. We remark that
our results instead do not suffer from such a limitation.

8 up to choosing paths satisfying a rather technical minimality condition.

Regarding group actions, a Shoup-like model was proposed in [DHK+23]
capturing the concrete case of CSIDH, in which quadratic twists are efficiently
computable, through an external oracle. Our result is based on their model, but
we will not use for simplicity their twisting oracle. Instead we capture twists
by allowing non-commutative and non-free actions as proposed in [BGZ23]. We
discuss this further in the Appendix, Section A.

Conversely a Maurer-like model for group actions was proposed in [BGZ23]
and used to prove lower bounds on identification schemes. These apply to sig-
nature and zero-knowledge proofs obtained via the Fiat-Shamir transform. We
stress that like any negative result in Maurer-like models, their bounds on in-
teractive identification schemes only hold if set elements representation is never
used. We again remark that this is not the case in our results.

2 Preliminaries

2.1 Notation

λ is the security parameter and a function of λ is negligible if it approaches zero
faster than the inverse of any polynomial. For a Turing machine A, y ← A(x)
means y was deterministically computed on input x, whereas y ←$ A(x) means
y was computed probabilistically. These must not be confused with “→” and
“ ”, two relations we define in Sections 3.1 and 3.3. x ∼ X is a random variable
with support X . H(x) is the Shannon’s entropy of x and I(x; y) is the mutual
information between x and y, defined as H(x) − H(x|y). x ←$ X means x is
uniformly sampled from X . For a finite group, denoted by (G,+), we always use
additive notation and denote by 0 the identity element. We will not implicitly
assume groups to be commutative or prime order.

2.2 Hard Homogeneous Space

Here we recall the notion of possibly non-commutative group actions.

Definition 1. An action of a finite group (G,+) on a set E is given by a map
⋆ : G× E → E satisfying the following properties:

1. Identity: 0 ⋆ E = E for all E ∈ E.
2. Associativity: (h+ g) ⋆ E = h ⋆ (g ⋆ E) for every h, g ∈ G and E ∈ E.

The action is transitive if for all E1, E2 ∈ E there exists g ∈ G such that E2 =
g ⋆ E1. If g is unique the action is called free.

For a group action to be effectively computable we further assume that decid-
ing membership in G, E and equality between elements in G and E is efficient.
Moreover sampling uniformly from both sets, computing the operations and in-
verses in G, and the group action ⋆ is also efficient.

Typically, the set E equipped with an effective group action ⋆ is called Homo-
geneous Space if ⋆ is transitive and free. However we will extend this notion to

actions that are not necessarily free. This, in line with the approach of [BGZ23],
allows for instance encoding quadratic twists for CSIDH as the action of specific
group elements, as discussed in the Appendix, Section A.

For a PPT A adversary we define the advantage for the vectorization and
parallelization problems as

AdvVec (A) = Pr

[
g = g′

∣∣∣∣ g ←$ G, E ←$ E , E′ = g ⋆E

g′ ← A(E,E′)

]
,

AdvPar (A) = Pr

Et = (g + h) ⋆E

∣∣∣∣∣∣
g, h←$ G, E ←$ E
Eg ← g ⋆E, Eh ← h ⋆E

Et ← A(E,Eg, Eh)

 .

Definition 2. An homogeneous space is called hard if the vectorization and par-
allelization problems are hard. That is, if for any PPT adversary A there exists
negligible functions εvec, εpar such that

AdvVec(A) ≤ εvec(λ), AdvPar(A) ≤ εpar(λ).

2.3 Shoup’s Generic Action Model

In order to capture generic usage of the group action, we use an adaptation
of Shoup’s Generic Group Model [Sho97]. In this setting the group action ⋆ :
G × E → E is modeled through an oracle Oact. Initially a random injective
labeling function σ : E → {0, 1}µ is sampled and users receive E0 = σ(E′

0) the
encoding of an element in E . Action queries are then replied to with

Oact(a,E) =

{
σ(a ⋆E′) If E = σ(E′)

⊥ If E /∈ Imσ

We do not provide an oracle to test membership in σ(E) as this can be checked
querying Oact(0, E), which returns E if E ∈ σ(E) and ⊥ if E /∈ σ(E). We further
remark that if µ = log2 |E|+O(log λ) the model allows sampling random elements
of unknown “discrete logarithm” in base E0. Conversely if µ = log2 |E| + Ω(λ)
sampling random elements is computationally hard.

In relation to previously proposed models [DHK+23, BGZ23] for generic
group actions, ours allows parties to have an explicit representation for set ele-
ments as done in [DHK+23] and as opposed to [BGZ23]. However, as in [BGZ23]
we allow non-free and non-commutative group actions in order to encode exter-
nal operations such as quadratic twists as particular action evaluations. In this
sense we do not need a separate oracle to capture twists as done in [DHK+23].

3 Technical Lemmas

3.1 Sequentiality Lemma

In this section we present our starting point, the Sequentiality Lemma, stating
that any procedure computing s ⋆E0 can obtain the right result only through

sequential applications of the group action to E0. A full proof of this Lemma
can be found in the Appendix, Section C.1.

First let us introduce some notation. Given A a PPT algorithm with oracle
access to Oact initially receiving E0 and performing q queries, we denote these
with Ek ← Oact(ak, Dk) for k ∈ {1, . . . , q}. Next we introduce a relation →
among indices {0, . . . , q}.

k1 → k2 ⇔ k1 < k2, Ek1 = Dk2 .

Intuitively this means that the k1-th set element was used to compute the k2-th.
Note this relation is not yet a (strict) partial order as it is not transitive, but its
transitive closure is. This is explicitly defined as

i→+ j ⇔ ∃k1, . . . , km : k1 → k2 → . . .→ km, k1 = i, km = j

The lemma then ensures that if an algorithm computes s ⋆E0 for a known s in
the GAM, with high probability s ⋆E0 is the output of some query, say the k-th
(meaning s ⋆E0 = Ek), and 0→+ k.

Lemma 1. For any A PPT algorithm with oracle access to Oact making at most
q queries and any s ∈ G, such that (s, Eout)← A(E0) then

Pr
[
Eout = s ⋆E0, ∄k

(
Eout = Ek, 0→+ k

)]
≤ εvec(2q)+

1

|E| − (q + 1)
:= εseq(q)

where εvec(q) is the advantage of breaking the vectorization problem in q queries,
see Definition 2.

3.2 Interactive Protocols

The main limitation of the Sequentiality Lemma is that it only applies to a single
machine. Here we introduce notation for interactive protocols in the GAM in
order to extend in the next section this result to the interactive case.

An interactive protocol is defined by n PPT machines P1, . . . , Pn with ac-
cess to point-to-point (i.e. non-broadcast9) communication channels. We assume
them to be synchronous and simultaneous i.e. such that messages from all par-
ties are atomically sent at the beginning of each round and delivered at the end.
To formally describe this model we initially call trs0 =⊥ and inductively define
for initial inputs x1, . . . , xn the messages sent and transcript at round r as

Mr,i ←$ Pi(xi, trsr−1), trsr = (trsr−1,Mr,1, . . . ,Mr,n)

where Mr,i = (M
(1)
r,i , . . . ,M

(n)
r,i) is the tuple of messages sent by Pi, and in

particular M (j)
r,i is the message Pi sends to Pj . To ensure parties only use message

9 Even though broadcast could be achieved simply sending the same message to all
parties, as we only focus on semi-honest adversaries.

delivered to them, we assume Pj can only read entries of the form M
(j)
r,i in trs

for any r and i.
Regarding the interaction with the GAM we denote Er,i,j ← Oact(ar,i,j , Dr,i,j)

the j-th query made by Pi to Oact during the r-th round. As done in Section 3.1
we then define a relation among the indices (r, i, j) and (r′, i′, j′) which indi-
cates that the result from the former was used as input in the latter. Formally

(r, i, j) (r′, i′, j′) ⇔ (r < r′ ∨ (r = r′, i = i′, j < j′)) ∧ Er,i,j = Dr′,i′,j′ .

This condition on the indices says that one query precedes another one only if
it was performed on a previous round, or if both were asked in the same round
by the same party Pi one before the other. Like →, the relation is not yet
a (strict) partial order. However its transitive closure is. This is explicitly
defined as (r, i, j) + (r′, i′, j′) ⇔

⇔ ∃(r1, i1, j1), . . . , (rt, it, jt) :
(r1, i1, j1) . . . (rt, it, jt), (r1, i1, j1) = (r, i, j), (rt, it, jt) = (r′, i′, j′).

Finally, to further include E0 in this relation, which might be technically never
queried, we could either assume that parties initially query E0 ← Oact(0, E0), or
more simply say that

0 (r, i, j) ⇔ Dr,i,j = E0.

We conclude this section with two elementary properties of . The proofs
appears for completeness in the Appendix, Section C.2.

Lemma 2. Let (r1, i1, j1) . . . (rt, it, jt). Then

Ert,it,jt = (art,it,jt + . . .+ ar1,i1,j1) ⋆Dr1,i1,j1 .

Lemma 3. Let 0 (r1, i1, j1) . . . (rt, it, jt). Then

|{i1, . . . , it}| ≤ |{r1, . . . , rt}|.

3.3 Interactive Sequentiality Lemma

In this section we state the Interactive Sequentiality Lemma, which extends
Lemma 1. This applies to a set of parties P1, . . . , Pn each holding an input
si ∈ {0, 1}poly(λ) and wishing to compute f(s1, . . . , sn) ⋆E0 for a given function
f . Informally it states that the result must, up to negligible probability, come
from the sequential application of Oact to E0 and that such sequence of queries
involves at most one player for each round.

Lemma 4. Let P1, . . . , Pn be a k round protocol in the GAM and f a function
such that given inputs s1, . . . , sn ∼ {0, 1}poly(λ) there exists Pi which at round k
returns Eout = f(s1, . . . , sn) ⋆E0. Then

Pr
[
∃(r′, i′, j′) : Eout = Er′,i′,j′ , 0 + (r′, i′, j′)

]
≥ 1− (k + 1) · εseq(q)

where q is an upper bound on the total number of queries performed.

A full proof of this lemma appears in the Appendix, Section C.3.

4 Round Lower Bound

We now present our first result for distributed computation over black box HHS.
We assume that parties P1, . . . , Pn initially receive a secret input si ∈ {0, 1}poly(λ)
and a public function f and execute a protocol compute f(s1, . . . , sn) ⋆E0 in
Shoup’s GAM. In this setting then we will prove that if such computation only
requires k rounds, then a subset of k users can passively collude, and recover
f(s1, . . . , sn).

Evaluating the group action of a t out of n secret shared group element
s ∈ G is then a specific case of interest, as it affects threshold signatures and
cryptosystems. This is captured by our result setting f as the reconstruction
function. More concretely, for n out of n additive secret sharing, f(s1, . . . , sn) is
simply the sum of all shares. Similarly, for t out of n Shamir secret sharing f is

f(s1, . . . , sn) =
∑

i∈R
λi,Rsi

with R being a reconstruction set of size t and λi,R ∈ Z the Lagrange coeffi-
cients10. In all these cases, since any set with less than t users is not entitled
to recover s, our result implies that passive security cannot be achieved with
less than t rounds. Finally, this will further imply the optimality of round-robin
protocols in such cases.

Theorem 1. Let P1, . . . , Pn be a k-round protocol in the GAM and f a function
such that on input s1, . . . , sn ∼ {0, 1}poly(λ) there exists Pi returning at round k
the element Eout = f(s1, . . . , sn) ⋆E0.

Then up to probability (k + 1)εseq there exists S ⊆ {1, . . . , n} and a PPT
machine A such that, calling ρi the random coins of Pi

1. |S| ≤ k
2. s′ ← A(trs, {si, ρi}i∈S) with s′ ⋆E0 = Eout.

Proof. We begin by applying the Interactive Sequentiality Lemma 4, stating
that up to probability (k+1)εseq there exists (r, i, j) such that Eout = Er,i,j and
0 + (r, i, j). Next let (r1, i1, j1), . . . (rt, it, jt) = (r, i, j) be a chain for the above
relation, i.e.

0 (r1, i1, j1) . . . (rt, it, jt).

We define S = {i1, . . . , it} the set of users involved in the chain11. To upper
bound the size of S we use Lemma 3: because the protocol has k round, |S| ≤
|{r1, . . . , rt}| ≤ k. Next we provide an explicit description of A computing s′

from {si, ρi}i∈S and trs. Initially A executes Pi with i ∈ S for all rounds. In this
way it performs all queries (r1, i1, j1), . . . , (rt, it, jt) and in particular knows the
group elements used in those queries. The sum s′ of all these group elements
then is such that s′ ⋆E0 = Eout. A formal description is provided in Figure 4.
10 These can be defined for G if ZN has an exceptional set of size at least n, with N

being the order of G.
11 Note |S| may be smaller than t if there are repetitions among i1, . . . , it.

AOact(trs, {si, ρi}i∈S)

1 : Compute trs0, trs1 . . . , trsr from trs

2 : // Execute all users in S. Note that at round r′ users get trsr′−1

3 : For all i′ ∈ S and r ∈ {1, . . . , k}:
4 : Run POact

i′ (si′ , trsr′−1; ρi′)

5 : // Compute s′ from the users’ queries

6 : Find (r1, i1, j1), . . . (rt, it, jt) such that 0 (r1, i1, j1) . . . (rt, it, jt)

7 : Retrieve queried group elements ar1,i1,j1 , . . . , art,it,jt

8 : Return s′ ← art,it,jt + . . .+ ar1,i1,j1

Fig. 4. Adversary A computing s′ such that s′ ⋆E0 = Eout

Since the query (rα, iα, jα) for α ∈ {1, . . . , t} is performed by Piα at round
rα, then A also performs this query as by construction iα ∈ S and A runs
POact
iα

(siα , trsrα−1; ρiα) in line 4. Finally, by Lemma 2

s′ ⋆E0 = (art,it,jt + . . .+ ar1,i1,j1) ⋆E0 = Ert,it,jt = Eout.

This completes the proof.

5 Fair Protocols Lower Bounds

5.1 Fair Protocols

As proven in the previous section, round-robin protocols achieve the best round
complexity in the GAM. These however do not achieve fairness even against
weak adversaries. Indeed, since only the last user gets the result, it can simply
halt instead of communicating it to others. Remarkably, in order to carry out
this attack, an adversary only needs to be able to

– corrupt only 1 user.
– deviate from the protocol only through crashes.

Moreover, it does not even have to be rushing, i.e. able to receive for each round
honest users’ messages before computing and sending its own.

In this section we will study protocols that address this issue, and eventually
provide communication and computation lower bounds for them in the GAM.
More specifically we focus on protocols among n users to compute a function of
all parties’ private inputs acting on a given set elements such that:

1. it prevents n− 1 honest-but-curious users from reconstructing the secret,
2. in honest executions, all parties obtain their output in the last round,
3. it requires exactly n rounds of communication (i.e. it is round optimal ac-

cording to Theorem 1).

We immediately observe that these simple restrictions, the second one being
necessary for fairness in general, imply fairness against the weak class of attacks
described above. The idea is that if an adversary obtains the output before the
n-th round, and then crashes the corrupted party, then using Theorem 1, one
could find a subset of n−1 or less users who are able to recover the secret group
element. Conversely, if it crashes at round n, as we assumed it not to be rushing,
it can only halt after sending its own messages. Hence all parties eventually get
their output as well.

Noticeably, the above argument does not imply that fair protocols have to
be round-optimal. Even more so, as our lower bounds will only apply to round-
optimal protocols, this leaves open the possibility that fair solutions with sub-
optimal round complexity but better communication and computational costs
exist. Since our techniques do not seem to easily generalize in such case, we leave
this as an interesting open question.

Finally, it may appear as uninteresting in practice to only study security
against such a weak class of attacks. We remark that, as we will prove lower
bounds for these protocols, our results applies to stronger models of corruption
as well.

5.2 Refined Interactive Sequentiality Lemma

In order to provide our second lower bound we will need an improved ver-
sion of the Interactive Sequentiality Lemma, Section 3.3. First let us recall
its statement. Given n parties with inputs s1, . . . , sn jointly computing Eout =
f(s1, . . . , sn) ⋆E0, Lemma 4 states that up to negligible probability, Eout = Er,i,j

and 0 + (r, i, j). Let (r1, i1, j1), . . . , (rt, it, jt) be a chain of queries for 0 +

(r, i, j), i.e. such that

0 (r1, i1, j1) (r2, i2, j2) . . . (rt, it, jt) = (r, i, j).

In our improved lemma we will show that this chain can be chosen so that the
first query occurring at round rα is minimal among all queries performed in the
same round rα with respect to the relation +. This means that the set elements
used to perform this minimal query was not computed in the same round by Piα .
This property will prove useful when studying communication lower bounds, as
it roughly implies that the set element used in minimal queries highly depends
on messages previously received. More formally we give the following definition:

Definition 3. Given P1, . . . , Pn PPT defining a k rounds protocol, and a se-
quence of queries (r1, i1, j1), . . . , (rt, it, jt) such that

0 (r1, i1, j1) . . . (rt, it, jt)

we call this a refined chain if for all r ∈ {r1, . . . , rt} there exists an index α such
that (rα, iα, jα) is minimal among all queries of the form (rα, · , ·) with respect
to +.

Lemma 5. Let P1, . . . , Pn be a k round protocol in the GAM and f a function
such that on inputs s1, . . . , sn ∼ {0, 1}poly(λ), there exists Pi which at round k
returns Eout = f(s1, . . . , sn) ⋆E0. Up to probability (k+1)εseq then Eout = Er,i,j

and there exists a refined chain such that 0 + (r, i, j).

The proof appears in the Appendix, Section C.4.

5.3 Tall Sub-tree Property

Our technique to study fair protocols will be to associate a tree with special
properties to the protocol, and translate bounds for the tree size to communica-
tion and computation lower bounds. In this section we therefore introduce the
tall sub-tree (TS for short) property for tree graphs, and lower bound their size.

Informally a tree is tall if all leaves have the same distance from the root,
and its height is higher than the number of leaves. A tree then satisfies the TS
property if all its (non-trivial) sub-trees are tall. To be more formal we introduce
some notation. Given T = (V,E) a tree, height(T) is its height (the longest path’s
length) and leaves(T) its number of leaves. Tv for v ∈ V is the sub-tree rooted
in v.

Definition 4. A tree T = (V,E) is tall if all leaves have the same distance from
the root and either |V | = 1 or height(T) ≥ leaves(T). T satisfies the tall sub-tree
(TS) property if Tv is tall for all v ∈ V .

Fig. 5. Examples of non-TS (left), tall but non-TS (center) and TS (right) trees.

Proposition 1. Let T = (V,E) be a TS tree with height(T) = m and leaves(T) =
n. Then

|E| ≥ m+ n log2 n.

We quickly observe that because in any tree |V | = |E| + 1, the Proposition
above could be restated as |V | ≥ m + 1 + n log2 n. Next we prove a bound for
the number of nodes of distance at least two from the root.

Proposition 2. Let T = (E, V) a TS tree with height(T) = m and leaves(T) =
n. Furtherfore let V≥2 the set of nodes with distance at least two from the root.
Then

|V≥2| ≥ m+ n log2 n− 2.

Proofs for Proposition 1 and 2 appears in the Appendix, section C.5.

5.4 Main Result

We are finally ready to state and prove our second lower bound for fair pro-
tocols with optimal round complexity. Regarding our notation, we remind that
µ denotes the GAM label size, i.e. the number of bits used to represent set el-
ements, and that trs denotes the tuple of messages exchanged throughout the
protocol’s execution. In order to give meaningful lower bound on the commu-
nication complexity we define for the tuple of messages M

(i)
r received by Pi at

round r

ℓ(M (i)
r) := H(M (i)

r | trsr−1) ℓtot =
∑k

r=1

∑n

i=1
ℓtot(M

(i)
r).

Roughly ℓ(·) represent the amount of information contained in M
(i)
r given all

previous messages, and lower bound the information Pi receives conditioned only
to messages it previously saw. Hence ℓtot lower bounds the total information sent
throughout the protocol.

Theorem 2. Let P1, . . . , Pn be an n-round protocol in the GAM and f a func-
tion such that on input s1, . . . , sn ∼ {0, 1}poly(λ), every Pi returns at last round
the element Eouti = f(s1, . . . , sn) ⋆E0. If there exists no set S ⊆ {1, . . . , n}
and adversary A satisfying the conditions of Theorem 1 then up to probability
(n+ 1)εseq, calling q the total number of Oact queries

q ≥ n(1 + log n), ℓtot ≥ (n(1 + log n)− 2) ·
(
µ− q

2µ−1 − q

)
.

As for Theorem 1, this result readily generalizes to protocol reconstructing
the action of a t out of n secret shared value, which requires exactly t rounds
and at least a subset of t users get the output. In such case the protocol must
involve at least t(1 + log2 t) queries and no less than ≈ t(1 + log2)µ bits of
communication.

Proof. The proof consists of four steps:

1. Observing that any chain for 0 + outi contains at least a query from each
user. In particular we can associate to each chain a permutation πi assigning
to round r the (only) user whose round r queries appears in the chain.

2. Given π1, . . . , πn permutations we build their prefix tree and show it is a TS
tree, see Section 5.3. In particular it contains at least n(1 + log1 n) nodes,
excluding the root.

3. Using Lemma 5, we find refined chains for 0 + outi so that the prefix tree
of the associated permutations π1, . . . , πn satisfies a certain minimality con-
dition. Then we build an injective function f from the nodes (root excluded)
to the set of query indexes. By Proposition 1 this yields q ≥ n(1 + log n).

4. Proving each M
(i)
r must have enough information about set element which

figures as input in queries in Im f performed by Pi at round r+1. The bound
on ℓtot is then a consequence of Proposition 2.

Regarding the first step, we begin with the following claim, stating that each
chain for 0 + outi must contain queries from all users and cannot skip any
round.

Claim 1 For all (r1, i1, j1), . . . , (rt, it, jt) such that

0 (r1, i1, j1) . . . (rt, it, jt) = outi

then {i1, . . . , it} = {1, . . . , n} = {r1, . . . , rt}.

Using this, for all chains (r1, i1, j1), . . . , (rt, it, jt) for 0 + outi we define a
function πi associating to each round rα the user iα who performed at least one
query in the chain at that round

πi : {1, . . . , n} → {1, . . . , n} : πi(rα) = iα ∀α ∈ {1, . . . , t}.

This is a function because implies there is at most one user performing queries
for each round and, by Claim 1, πi is defined for all r. In fact this is a permutation
as stated in the next claim, which completes the first step.

Claim 2 For all (r1, i1, j1), . . . , (rt, it, jt) chain for 0 + outi, πi is a bijection
and πi(n) = i.

Regarding the second step, assuming 0 + outi for all i, we can define
π1, . . . , πn for any choice of chains realizing these relations. We then construct
their prefix tree. This is done by defining for each r ∈ {0, . . . , n} an equivalence
relation where πi is equivalent to πj if the two functions agree on the first r eval-
uations. Note that for r = 0 all permutations are equivalent and, due to Claim 2,
for r = n no two distinct permutations are. Then the equivalence classes are

[πi]r = {πj : πj(1) = πi(1), . . . , πi(r) = πj(r)} .

For the sake of clarity we notice that [πi]0 = {π1, . . . , πn} and, by Claim 2,
[πi]n = {πi}. With this notation their prefix tree T = (V,E) is defined as

vi,r := ([πi]r, r)

V = {vi,r : i ∈ {1, . . . , n}, r ∈ {0, . . . , n}}
E = {(vi,r, vi,r+1) : i ∈ {1, . . . , n}, r ∈ {1, . . . , n− 1}} .

i.e. the class [πi]r+1 is connected to the class [πi]r it refines. We conclude the
second step with the next claim.

Claim 3 If 0 + outi for all i ∈ {1, . . . , n}, then for all chains realizing them
and associated permutations π1, . . . , πn, their prefix tree T is a TS tree with
height(T) = n and leaves(T) = n.

For the third step we use Lemma 5. Since each Pi returns Eouti = f(s1, . . . , sn) ⋆E0,
up to probability (n+1)εseq, for all i there exists a refined chain for 0 + outi, see

Definition 3. Conditioning on this event, we can chose n refined chains with as-
sociated permutations π1, . . . , πn so that, calling Vt = {vi,r : i ∈ {1, . . . , t}, r ∈
{0, . . . , n}}, the tuple

(|V1|, |V2|, . . . , |Vn|)

is minimal w.r.t. the lexicographic order. This means that for any other choice
of refined chains, the associated permutations π′

1, . . . , π
′
n defines a prefix tree

T ′ = (V ′, E′) so that either |Vt| = |V ′
t | for all t or there exists a t such that

|V1| = |V ′
1 | ∧ . . . ∧ |Vt| = |V ′

t | ∧ |Vt+1| < |V ′
t+1|.

Using this we will construct an injective function f from the tree nodes
(excluding the root) to the set of query indices. Each node v = ([πi]r, r) for
some πi will be mapped to a query that is:

– in the chain for 0 + outi used to construct π,
– minimal among round r queries, with respect to +.

Claim 4 There exists refined chains for 0 + outi so that, calling T = (V,E)
the resulting prefix tree and V ∗ the set of nodes excluding the root, there exists
f : V ∗ → N3 such that

1. For each v ∈ V there exist r, i, j so that v = vi,r and f(v) = (r, πi(r), j) is a
query in the chain used to construct πi. Moreover f(v) is minimal w.r.t. +

among all queries of the form (r, · , ·).
2. f is injective.

3. Calling ar,i,j , Dr,i,j the input of Oact in the (r, i, j)-th query, then

Df(u) = Df(v) ⇒ ∃w : (w, u), (w, v) ∈ E.

The first two properties combined implies that the set of queries contains at least
|V ∗| = |E| ≥ n(1 + log2 n) elements, where the last bound follows from Claim 3
and Proposition 1.

Finally we go through the last step. In order to bound communication we
first bound the number of minimal queries using different set elements as input
performed by Pi at round r. Next we will prove M

(i)
r−1 has to contain enough

information about these elements. Toward this goal we define Ur,i as the set of
nodes to which f associate a query performed by Pi at round r, and ∆r,i the
collection of set elements used in those queries.

Ur,i := {v ∈ V : ∃j : f(v) = (r, i, j)} ∆r,i := {Df(v) : v ∈ Ur,i}

First we give a bound on the size of ∆r,i.

Claim 5
∑n−1

r=1

∑n
i=1 |∆r+1,i| ≥ n(1 + log2 n)− 2.

Then, we relate the size of ∆r+1,i with the entropy in M
(i)
r

Claim 6 With the previous notation,

H
(
M (i)

r

∣∣∣ trsr−1

)
≥ |∆r+1,i| ·

(
µ− q

2µ−1 − q

)
.

This eventually concludes the proof of Theorem 2 because

ℓtot =
∑n−1

r=1

∑n

i=1
ℓ(M (i)

r)

≥
∑n−1

r=1

∑n

i=1
|∆r+1,i| ·

(
µ− q

2µ−1 − q

)
≥ (n(1 + n log2 n)− 2) ·

(
µ− q

2µ−1 − q

)
.

Proof of Claim 1. Assume by contradiction that there exists a chain for 0 +

outi such that S := {i1, . . . , it} ⊊ {1, . . . , n}. Then, as shown in the proof of
Theorem 1, the adversary A described in Figure 4 on input trs and (si, ρi)i∈S ,
with ρi being the random coins of Pi, recovers s′ such that s′ ⋆E0 = Eouti . This
contradicts the assumption that such a pair (S,A) does not exist.

Next, using Lemma 3 and the fact that the protocol has n rounds,

n = |{i1, . . . , it}| ≤ |{r1, . . . , rt}| = n ⇒ {r1, . . . , rt} = {1, . . . , n}.

Proof of Claim 2. We begin showing that πi is a total function from {1, . . . , n}.
Let α < β be two indexes such that rα = rβ . Because (rα, iα, jα)

+ (rβ , iβ , jβ),
by the definition of +, rα = rβ implies iα = iβ . Hence πi associate the same
value to rα and rβ . Moreover, by Claim 1, for each r ∈ {1, . . . , n} there exists an
α such that r = rα. As a consequence πi is well defined function with domain
{1, . . . , n}.

Next we observe that Imπi = {i1, . . . , it} = {1, . . . , n} where we used again
Claim 1, implying that πi : {1, . . . , n} → {1, . . . , n} is a surjective function
between finite sets of the same size, and therefore also a bijection.

Finally, since the query outi is performed by Pi, it has the form (rt, i, jt). If
rt < n then we would find a chain with {r1, . . . , rt} of size strictly smaller than
n, contradicting Claim 1. Therefore rt = n and πi(n) = πi(rt) = i.

Proof of Claim 3. T is a tree because each node vi,r is connected to the root by
the path (

(vi,0, vi,1) , . . . , (vi,r−1, vi,r)
)
,

with vi,0 = ({π1, . . . , πn}, 0) being equal for all i, and each node has in-degree 1
because

(vj,r−1, vi,r) , (vk,r−1, vi,r) ∈ E :


vi,r = ([πi]r, r)

vj,r−1 = ([πj]r−1, r − 1)

vk,r−1 = ([πk]r−1, r − 1)

⇒ πj(x) = πi(x) = πk(x) ∀x ∈ {1, . . . , r − 1}
⇒ [πj]r−1 = [πk]r−1 ⇒ vj,r−1 = vk,r−1.

By construction the leaves of T are vi,n with i ranging from 1 to n, and these
are all distinct. Indeed for i ̸= j we have πi(n) = i ̸= j = πj(n) implying
vi,n ̸= vj,n. Thus leaves(T) = n. Moreover each leaf has distance n from the
root, so height(T) = n.

Next we show that the sub-tree of vi,r = ([πi]r, r) is a tall tree. By previous
observations its height is n − r. If r = n the node is a leaf and it is trivially
tall. Conversely let vj1 , . . . , vjn be all the leaves of this sub-tree, so that vjα =
([πjα]n, n). Then for all α we have that vi,r = vjα,r because from both nodes
there exists a path to vjα,n, and there exists no path connecting the two nodes.
As a consequence

[πi]r = [πj1]r = . . . = [πjm]r.

Hence πj1 , . . . , πjm have the same values when evaluated on the indexes from 1
to r. Moreover, since these are all permutations, their value on n (as we assumed
n > r) must differ from their value on previous points. Thus

{πj1(n), . . . , πjm(n)} ∩ {πi(1), . . . , πi(r)} = ∅
⇒ {j1, . . . , jm} ∩ {πi(1), . . . , πi(r)} = ∅

where the implication uses Claim 2. Since j1, . . . , jm are all distinct by construc-
tion, πi(1), . . . , πi(r) are all distinct as πi is a bijection, and all these indexes lies
in the range {1, . . . , n} we conclude

|{j1, . . . , jm}| + |{πi(1), . . . , πi(r)}| ≤ n ⇒ m+ r ≤ n ⇒ m ≤ n− r.

The sub-tree of vi,r is therefore tall, concluding the claim’s proof.

Proof of Claim 4. We recall Vt = {vi,r : i ∈ {1, . . . , t}, r ∈ {0, . . . , n}} and
further define V ∗

t = Vt \ {v1,0}, i.e. the set of vertices in Vt without the root. To
prove the claim we proceed by induction on t showing the existence of a function
f : V ∗

t → N3 satisfying the required properties.
If t = 1, we set f(v1,r) = (r, π1(r), j) to be the query in the refined chain, see

Definition 3, minimal w.r.t. + among queries performed at round r. Then f is
injective over V ∗

1 and satisfies the first condition by construction. Regarding the
third property if Df(v1,r) = Df(v1,r′)

with r < r′ then we could create a shorter
chain skipping round r, thus violating Claim 1. Hence r = r′, and in particular
v1,r, v1,r′ are the same, meaning that v 7→ Df(v) is injective over V ∗

1 and thus
satisfies the third property.

Assuming the statement to be true for t− 1, i.e. that we have f : V ∗
t−1 → N3

satisfying the three properties, we show f can be extended to V ∗
t . To so, let jr be

such that (r, πt(r), jr) is the minimal query at round r of the chain for 0 + outt.
We then define for all vi,r ∈ V ∗

t \ V ∗
t−1 the function to be f(vi,r) = (r, πt(r), jr).

The first property is thus satisfied by construction.
Next we show f is injective. If f(vi,r) = f(vi′,r′) then r = r′ from the first

property12. By inductive hypothesis f is injective over V ∗
t−1. Without loss of

12 r and r′ are the first component of respectively the LHS and the RHS.

generality we can then assume vi′,r′ ∈ V ∗
t \ V ∗

t−1, in which case t = i′. In order
to prove vi,r = vt,r we proceed by contradiction assuming the two nodes to be
different.

This implies that vi,r ∈ V ∗
t−1. With loss of generality we can further assume

because of the first property that f(vi,r) = (r, πi(r), j
∗) is a minimal query at

round r for 0 + outi. This implies that there exist refined chains for the relations

0 + (r, πt(r), jr)
+ outt 0 + (r, πi(r), j

∗) + outi.

Since (r, πt(r), jr) = (r, πi(r), j
∗) we can combine the first half of the second

chain with the second half of the first one to obtain a new refined chain for
0 + outt. Let π̂t be the associated permutations. By construction π̂t(x) = πi(x)

for all x ∈ {1, . . . , t}, and in particular [π̂t]r = [πi]r. Hence, calling T̂ = (V̂ , Ê)
the prefix tree for π1, . . . , π̂t, . . . , πn, we will show it violates our minimality
condition on T . Indeed

– |V ∗
t−1| = |V̂ ∗

t−1|, because the first t − 1 permutations used to build T, T̂ are
the same.

– |V ∗
t | ≥ |V ∗

t−1| + (n − r + 1), because vt,r ∈ V ∗
t−1 \ V ∗

t and in particular,
vt,r′ /∈ V ∗

t−1 for r′ > r, or else vt,r′ = vi,r′ for some i < t which implies
vt,r = vi,r ∈ V ∗

t−1. Hence

{vi,r, . . . , vi,n} ⊆ V ∗
t \ V ∗

t−1 ⇒ |V ∗
t \ V ∗

t−1| ≥ (n− r + 1)

– |V̂ ∗
t | ≤ |V̂ ∗

t−1| + (n − r), because [π̂t]r = [πi]r implies [π̂t]r′ = [πi]r′ for all
r′ ≤ r. Hence, again for all r′ ≤ r, v̂t,r′ = v̂i,r′ ∈ V̂ ∗

t−1 and in particular

V̂ ∗
t \ V̂ ∗

t−1 ⊆ {v̂t,r+1, . . . , v̂t,n} ⇒ |V̂ ∗
t \ V̂ ∗

t−1| ≤ n− t.

Combining the three relations we conclude that our minimality assumption on
T is violated because

|V̂ ∗
t | ≤ |V̂ ∗

t−1|+ (n− r) < |V ∗
t−1|+ (n− r + 1) ≤ |V ∗

t |.

This means that the assumption vi,r ̸= vt,r leads to a contradiction, implying
that vi,r = vt,r and that f is injective.

To conclude we need to prove the third property holds for f . Let Df(vi,r) =
Df(vi′,r′)

. We study two cases:

1. r ̸= r′. Then without loss of generality r < r′ and by the first property vi,r,
vi′,r′ are such that f(vi,r) = (r, πi(r), j) and f(vi′,r′) = (r′, πi′(r

′), j′) are
minimal queries in their respective rounds with respect to +. Among the
queries appearing in the chain for 0 + outi let (r′′, i′′, j′′) be the predecessor
of (r, πi(r), j), i.e. such that

0 + (r′′, i′′, j′′) (r, πi(r), j)
+ outi.

Note that since (r, πi(r), j) is minimal among the queries at round r, we must
have r′′ < r. Then if we call Er′′,i′′,j′′ the output of Oact for query (r′′, i′′, j′′),

by the definition of we have Er′′,i′′,j′′ = D(r,πr(i),j). Therefore, again by
the definition of +

Er′′,i′′,j′′ = D(r′,πr′ (i
′),j′), ∧ r′′ < r′ ⇒

⇒ 0 + (r′′, i′′, j′′) (r′, i′, j′) + outi′ .

Since r′′ < r < r′ the resulting chain would not include any query from
round r, contradicting Claim 1. Therefore r ̸= r′ is impossible.

2. r = r′. By the inductive hypothesis if both vertices lie in V ∗
t−1 the property

holds, so without loss of generality assume vi′,r ∈ V ∗
t \ V ∗

t−1 and f(vi,r) =
(r, πi(r), jr), i.e. that the image of vi,r is a query on the chain for 0 + outi.
We will denote pi the predecessor of f(vi,r) on the refined chains for 0 +

outi. This means we have

0 + pi → f(vi,r)
+ outi

Then by how was defined Epi
= Df(vi,r) = Df(vt,r) and by minimality of

f(vi,r) among the queries occurring at round r, pi occurs at a round strictly
smaller than r. Thus pi f(vt,r) and in particular we can find a chain for

0 + pi → f(vt,r)
+ outt

that is equal to the chain for 0 + outi until query pi. Calling π̂t the associ-
ated permutation we would then have [π̂t]r−1 = [πi]r−1 since the chains are
equal until round r−1 (we use Claim 1 to observe pi occurs at round r−1).
Finally assume that for the current chain chosen for 0 + outt the nodes vi,r
and vt,r are no siblings (otherwise the claim is proven), i.e. vi,r−1 ̸= vt,r−1,
we distinguish two cases:
– vt,r−1 /∈ V ∗

t−1. Then as done previously we can use π̂t to build a pre-
fix tree T̂ = (V̂ , Ê) with |V̂t| < |Vt|, which contradicts our minimality
assumption.

– vt,r−1 ∈ V ∗
t−1. Again using the new path we can build a prefix tree such

that for all t′ < t

|V ∗
t′ | = |V̂ ∗

t′ | |V ∗
t | = |V ∗

t−1|+(n−r+1) |V̂ ∗
t | ≤ |V̂ ∗

t−1|+(n−r+1).

with the first equality holding as we are only replacing πt with π̂t and
using the same π1, . . . , πt−1 in both prefix trees, the second one because
vt,r−1 ∈ V ∗

t \ V ∗
t−1 while vt,r−1 ∈ V ∗

t−1, and the third because v̂t,r−1 =

v̂i,r−1 ∈ V̂ ∗
t−1. We thus conclude |V̂t| ≤ |Vt| while preserving the size of

smaller sub-trees.
Replacing the chain for 0 + outt, we finally have that for the new tree
v̂i,r−1 = v̂i,r−1. Notice that this change occurs only once since there can
only be one node vi,r ∈ Vt \ Vt−1 with vi,r−1 ∈ Vt−1. Furthermore after
the change we still have v̂i,r ∈ V̂t \ V̂t−1 with v̂i,r−1 ∈ V̂t−1 because

v̂t,r ∈ V̂ ∗
t−1 ⇒ |V̂ ∗

t | ≤ |V̂ ∗
t−1|+ (n− r) < |V ∗

t−1|+ (n− r + 1) = |V ∗
t |

⇒ |V̂t| < |Vt|

contradicting our minimality assumption. Therefore, all remaining nodes
in V̂t \ V̂t−1 falls into the previous case.

This concludes the proof of the Claim.

Proof of Claim 5. Calling V≥2 as in Section 5.3 the set of nodes of distance at
least 2 from the root we observe that

V≥2 =
⋃n

r=2

⋃n

i=1
Ur,i

Indeed given v ∈ V≥2 ⊆ V ∗, by Claim 4 there exists r, i, j such that v = vi,r
and f(v) = (r, i, j), implying r ≥ 2 and v ∈ Ur,i. Next we show |Ur,i| = |∆r,i|.
To do so it suffices to show that the map v 7→ Df(v) is injective over Ur,i. Let
u, v ∈ Ur,i such that Df(u) = Df(v). By Claim 4 they must have the same
parent. In particular if u = ([πℓ]r, r) and v = ([πℓ′]r, r) then having the same
parent implies

[πℓ]r−1 = [πℓ′]r−1, πℓ(r) = i = πℓ′(r) ⇒ [πℓ]r = [πℓ′]r ⇒ u = v

where the second and third equality follows since u, v ∈ Ur,i. Finally, using
Proposition 2 and Claim 3 stating that T is a TS tree we conclude∑n−1

r=1

∑n

i=1
|∆r+1,i| =

∑n

r=2

∑n

i=1
|∆r,i| ≥ |V≥2| ≥ (n− 2) + n log2 n.

Proof of Claim 6. In the following we denote input = (s1, . . . , sn, ρ1, . . . , ρn, E0)
where si, ρi are the private input and random coins of Pi. Furthermore, we will
denote

Γr+1,i,j = {Er+1,i,j′ : j′ < j} ∪ {Dr+1,i,j′ : j′ < j}

We furthermore index ∆r+1,i = {Dr+1,i,j1 , . . . , Dr+1,i,jm}. Then

H
(
M (i)

r

∣∣∣ trsr−1

)
≥ H

(
M (i)

r

∣∣∣ trsr−1, input
)

≥
m∑

α=1

I
(
M (i)

r ;Dr+1,i,jα

∣∣∣ trsr−1, input, {Dr+1,i,jβ}
α−1
β=1

)
≥

m∑
α=1

I
(
M (i)

r ;Dr+1,i,jα

∣∣∣ trsr−1, input, Γr+1,i,jα

)
.

We will then lower bound each of these terms. The key observation is that,
given M

(i)
j , trsr−1, input and Γr+1,i,j , the execution of Pi becomes deterministic

until the next query to Oact is performed, meaning that Dr+1,i,j is univocally
determined. Therefore, if ∆r,i = {Dr+1,i,j1 , . . . , Dr+1,i,jm}, we have that

H
(
Dr+1,i,jα

∣∣∣M (i)
r , trsr−1, input, Γr+1,i,jα

)
= 0.

Conversely we observe that before round r, Dr+1,i,jα was not returned as an out-
put by Oact, or else we could build a chain for Dr+1,i,jα skipping round r, which

violates Claim 1. Moreover by the minimality of Dr+1,i,jα (see Claim 4), this set
elements was not computed previously on the same round by Pi, meaning that is
does not belong in Γr+1,i,jα . Moreover Dr+1,i,jα is independent from the random
coins and inputs of parties (which are sampled before any query is ever made to
Oact). Hence we conclude that Dr+1,i,jα conditioned to trsr−1, input, Γr+1,i,jα is
uniform in the set of not-yet queried labels, which has size 2µ − 2q. Thus

H(Dr+1,i,jα | trsr−1, input, Γr+1,i,jα) ≥ log2(2
µ − 2q)

≥ µ− 2q

2µ − 2q
= µ− q

2µ−1 − q
.

Where second inequality follows since log(x) is concave and for all x > y > 0

1

x
≤ log(x)− log(y)

x− y
≤ 1

y

replacing x = 2µ and y = 2µ − 2q. As the mutual information is the difference
of the above quantities, we have that µ− q

2µ−1−q lower bounds each term in the
summation above. We can therefore conclude

H
(
M (i)

r

∣∣∣ trsr−1

)
≥ m · q

2µ−1 − q
≥ |∆r+1,i| ·

q

2µ−1 − q
.

6 Conclusions

In conclusion we proved two lower bounds for multi-party computation in the
GAM, i.e. through black box usage of a group action. First, protocols that are
at least passively secure cannot perform better than Round-Robin in terms of
round complexity. Second, fair computation, in the sense of Section 5.1, requires
Ω(n log2 n) computation and communication complexity. Remarkably, both re-
sults still hold under any computational assumptions, and even if parties make
explicit use of the bit representation of elements in E .

In the context of threshold protocols, including those for digital signatures
and public-key encryptions schemes, these bounds hinder the scalability to large
sets of parties. In these cases, if lower round complexity or communication is
required, our result could be bypassed only through explicit usage of a circuit
implementing the group action. General purpose MPC techniques for instance
would apply in such case. Therefore future research in this direction should ei-
ther focus on reducing the complexity for computing group actions (e.g. lowering
the multiplicative depth), or on designing specialized non-black box protocols.

Finally, we leave two open questions related to fair protocols: First, as men-
tioned in Section 5.1, our lower communication and computation lower bounds
only affect round-optimal constructions. We thus ask whether increasing the
round complexity allows violating our bounds. Secondly, our result is tight only
for n users with n being a power of 2. More generally we conjecture optimal
solutions to require

n(1 + log2 n) ≤ q ≤ n(1 + log2 n) + c · n

many queries, for a tight constant c. We numerically estimate c ≈ 0.087 for
n ≤ 224 and leave the question of whether such condition holds in general to
future studies.

Acknowledgments

This work received funding from projects from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gram under project PICOCRYPT (grant agreement No. 101001283), from SE-
CURING Project (ref. PID2019-110873RJ-I00), from the Spanish Government
under projects PRODIGY (TED2021-132464B-I00) and ESPADA (PID2022-
142290OB-I00). The last two projects are co-funded by European Union EIE,
and NextGenerationEU/PRTR fund.

References

ABCP23a. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. Csi-
shark: Csi-fish with sharing-friendly keys. In Leonie Simpson and Mir
Ali Rezazadeh Baee, editors, Information Security and Privacy - 28th Aus-
tralasian Conference, ACISP 2023, Brisbane, QLD, Australia, July 5-7,
2023, Proceedings, volume 13915 of Lecture Notes in Computer Science,
pages 471–502. Springer, 2023.

ABCP23b. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. Prac-
tical robust dkg protocols for csidh. In Mehdi Tibouchi and XiaoFeng
Wang, editors, Applied Cryptography and Network Security, pages 219–247,
Cham, 2023. Springer Nature Switzerland.

ABCP23c. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. VSS
from distributed ZK proofs and applications. IACR Cryptol. ePrint Arch.,
page 992, 2023.

BCP21. Karim Baghery, Daniele Cozzo, and Robi Pedersen. An isogeny-based
ID protocol using structured public keys. In Maura B. Paterson, editor,
Cryptography and Coding - 18th IMA International Conference, IMACC
2021, Virtual Event, December 14-15, 2021, Proceedings, volume 13129 of
Lecture Notes in Computer Science, pages 179–197. Springer, 2021.

BDK+22. Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Fed-
erico Pintore. Group signatures and more from isogenies and lattices:
Generic, simple, and efficient. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 95–
126. Springer, Heidelberg, May / June 2022.

BDPV21. Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Vercauteren.
CSI-RAShi: Distributed key generation for CSIDH. In Jung Hee Cheon
and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 12th Inter-
national Workshop, PQCrypto 2021, pages 257–276. Springer, Heidelberg,
2021.

BGZ23. Dan Boneh, Jiaxin Guan, and Mark Zhandry. A lower bound on the length
of signatures based on group actions and generic isogenies. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 507–531. Springer, Heidelberg, April 2023.

BKP20. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II,
volume 12492 of LNCS, pages 464–492. Springer, Heidelberg, December
2020.

BKV19. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 227–247. Springer, Heidelberg, December
2019.

CD23. Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, Advances in Cryp-
tology - EUROCRYPT 2023 - 42nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Lyon, France,
April 23-27, 2023, Proceedings, Part V, volume 14008 of Lecture Notes in
Computer Science, pages 423–447. Springer, 2023.

CFGG22. Dario Catalano, Dario Fiore, Rosario Gennaro, and Emanuele Giunta. On
the impossibility of algebraic vector commitments in pairing-free groups. In
Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part II, volume
13748 of LNCS, pages 274–299. Springer, Heidelberg, November 2022.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: an efficient post-quantum commutative group action. In
Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology
- ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Aus-
tralia, December 2-6, 2018, Proceedings, Part III, volume 11274 of Lecture
Notes in Computer Science, pages 395–427. Springer, 2018.

CM22. Fabio Campos and Philipp Muth. On actively secure fine-grained access
structures from isogeny assumptions. In Jung Hee Cheon and Thomas Jo-
hansson, editors, Post-Quantum Cryptography - 13th International Work-
shop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceed-
ings, volume 13512 of Lecture Notes in Computer Science, pages 375–398.
Springer, 2022.

CS20. Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret
keys to produce an actively secure distributed signing protocol. In Jin-
tai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020, pages 169–186. Springer,
Heidelberg, 2020.

DG19. Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signa-
tures from class group actions. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789.
Springer, Heidelberg, May 2019.

DHH+21. Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven
Schäge, and Bogdan Ursu. On the impossibility of purely algebraic sig-
natures. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III,
volume 13044 of LNCS, pages 317–349. Springer, Heidelberg, November
2021.

DHK+23. Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, Jonas
Lehmann, and Doreen Riepel. Generic models for group actions. In Alexan-

dra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume
13940 of LNCS, pages 406–435. Springer, Heidelberg, May 2023.

DM20. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assump-
tions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 187–212.
Springer, Heidelberg, May 2020.

EKP20. Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy CSI-
FiSh: Efficient signature scheme with tight reduction to decisional CSIDH-
512. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 157–186.
Springer, Heidelberg, May 2020.

FP21. Tako Boris Fouotsa and Christophe Petit. SHealS and HealS: Isogeny-
based PKEs from a key validation method for SIDH. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093
of LNCS, pages 279–307. Springer, Heidelberg, December 2021.

Giu23. Emanuele Giunta. On the impossibility of algebraic nizk in pairing-free
groups", booktitle="advances in cryptology – crypto 2023. pages 702–730,
Cham, 2023. Springer Nature Switzerland.

LGD21. Yi-Fu Lai, Steven D. Galbraith, and Cyprien Delpech de Saint Guilhem.
Compact, efficient and UC-secure isogeny-based oblivious transfer. In Anne
Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 213–241. Springer, Heidelberg, Oc-
tober 2021.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

MMP+23. Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. A direct key recovery attack on SIDH. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceed-
ings, Part V, volume 14008 of Lecture Notes in Computer Science, pages
448–471. Springer, 2023.

MOT20. Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. SiGamal: A super-
singular isogeny-based PKE and its application to a PRF. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492
of LNCS, pages 551–580. Springer, Heidelberg, December 2020.

PRV12. Periklis A. Papakonstantinou, Charles Rackoff, and Yevgeniy Vahlis. How
powerful are the DDH hard groups? Electron. Colloquium Comput. Com-
plex., page 167, 2012.

Rob23. Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 472–
503. Springer, 2023.

RSS20. Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions re-
quire hidden-order groups. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 155–180.
Springer, Heidelberg, May 2020.

SD21. Surbhi Shaw and Ratna Dutta. Identification scheme and forward-secure
signature in identity-based setting from isogenies. In Qiong Huang and
Yu Yu, editors, Provable and Practical Security - 15th International Con-
ference, ProvSec 2021, Guangzhou, China, November 5-8, 2021, Proceed-
ings, volume 13059 of Lecture Notes in Computer Science, pages 309–326.
Springer, 2021.

SGS20. Gili Schul-Ganz and Gil Segev. Accumulators in (and beyond) generic
groups: Non-trivial batch verification requires interaction. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of
LNCS, pages 77–107. Springer, Heidelberg, November 2020.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings of the 35th Annual Symposium on Founda-
tions of Computer Science, pages 124–134, 1994.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

Sto12. Anton Stolbunov. Cryptographic schemes based on isogenies. 2012.
TMM21. Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. Post-quantum

adaptor signature for privacy-preserving off-chain payments. In Nikita
Borisov and Claudia Díaz, editors, FC 2021, Part II, volume 12675 of
LNCS, pages 131–150. Springer, Heidelberg, March 2021.

Zha22. Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022.

A CSIDH Group Action

Here we recall the (only known) efficient instantiation of a HHS, namely CSIDH.
Let p be the prime p = 4 · f

∏r
i=1 ℓi − 1, where ℓ1, . . . , ℓr are the first r odd

prime numbers and f is a cofactor chosen so that p is a prime. Let E0 be the
supersingular elliptic curve E0/Fp : y2 = x3 + x. Let EndFp

(E0) be the ring of
endomorphisms of E0 that are defined over Fp. Since p ≡ 3 mod 4, this ring is
isomorphic to the order O = Z[

√
−p] via the Frobenius element π. By abuse of

notation, we will identify EndFp
with O.

From O we can construct the ideal class group cl(O), which consists of the
invertible ideals on O modulo the non-zero principal ideals. Given an element
a ∈ cl(O) one can construct the subgroup

E[a] :=
⋂
φ∈a

Ker(φ).

This gives an action of cl(O) on the class of supersingular elliptic curves E in
the isogeny class of E0:

⋆ : cl(O)× E E

(a, E) E0/E0[a]

which is free and transitive [CLM+18].
The following problems are conjecturally hard to solve, even for a quantum

computer: Group action inverse problem (GAIP): Given E,E′ ∈ E , find the ideal
class a ∈ cl(O) such that E′ = a ⋆ E.

Group action computational Diffie-Hellman problem: Given E,E′, E′′ ∈ E ,
find the elliptic curve a⋆b⋆E, where a, b ∈ cl(O) are such that E′ = a⋆E,E′′ =
b ⋆ E.

The structure of the class group for the 511-bit prime p = 4 ·587 ·
∏73

i=1 ℓi−1,
was explicitly determined by [BKV19] to be the cyclic group (Z,+), with N ≈√
p ≈ 2257, a generator being g = (3, π−1). This way cl(O) can be identified with

the integers modulo N and the identification a 7→ ga is efficiently computable.
Thus we can write the action of an ideal a⋆E as a⋆E, where a = ga.This makes
CSIDH-512 an HHS, according to definition in Section 2.2.

The choice of the curve E0, means that all the curves in the isogeny class of
E0 have the Montgomery form y2 = x3 + Ax2 + X for a A ∈ Fp. This is very
convenient in parctice, as it means that any elliptic curve can be represented with
a single field element. Another important implication is that, in this family, twists
are also efficiently computable. The quadratic twist of EA : y2 = x3 + Ax2 + x
being isomorphic to E−A : y2 = x3 −Ax2 + x. From a group action perspective,
this means that computing −a ⋆ E from a ⋆ E can be done efficiently.

Modelling the twists From now on we will generally refer to quadratic twists
as twists. Note that twists are not captured by the above group action. To do
so, we take the semidirect product of ZN with Z2:

G′ = Z2 ⋉ ZN .

Where one defines the group operation ◦ via

(s1, g1) ◦ (s2, g2) = (s1s2, g1 + (−1)s2g2).

Note that (G′, ◦) is not commutative. The action of G′, ◦ on the set E is defined
as

(s, g) ⋆ (h ⋆ E0) := (g + (−1)sh) ⋆ E0.

The action of (1, 0) on E corresponds to the application of a twist on E. Note
that this action is not free, as (0, 0) ⋆ E0 = (1, 0) ⋆ E0 = E0.

B Optimal Fair Protocols

Our lower bound for fair computation “in the exponent” proved in Section 5.4
states that any such protocol has to perform at least n(1 + log2 n) action eval-
uations and communicate roughly n log2 n set elements. This bound is met by
the binary splitting strategy in [DM20] for group of users that are a power of 2.
When dealing with a number of users that is not a power of two, this strategy
could be adapted. However this requires subgroups of different size, which will

not conclude their computation in the same number of rounds. So, to preserve
round optimality, one must carefully interleave the computation done by the two
groups.

In this section we explain how the proof of Theorem 1 could be used to
provide a constructive and different way to find fair protocols with optimal
communication and computation for any set of users. First, recall that the proof
initially associate to each user’s output a chain, which induce a permutation
among users, describing in which order users acts on the chain. Next, given this
permutations, we prove that their prefix tree is a TS tree, see Section 5.3, and
use Proposition 1 to get computation and communication bounds.

Here we show that the process could be reversed when parties wish to com-
pute (s1+. . .+sn) ⋆E0 given s1, . . . , sn ∈ G. The idea is starting with an optimal
TS tree with the lowest number of nodes possible, find a labeling of the tree with
indexes in {1, . . . , n} (root excluded) so that each path is a permutation with
leaves assuming different values, and use this to build our protocol. This guar-
antees the resulting procedure to be optimal since its associated prefix tree is
the TS tree we started with, which has already the minimum number of nodes.

3 Parties Protocol. Instead of formalizing this, we provide an example for 3
parties. All TS trees with 3 leaves have at least 3 · (1 + log2 3) + 1 ≈ 8.8 nodes.
In Figure 6 (left graph) we present an example with 9 nodes, which is therefore
optimal.

∅

3 1

2 1 2

1 2 3

Fig. 6. Optimal TS-tree with 3 leaves (left), and a labeling (right).

Next we find for this tree a labeling with indexes in {1, . . . , n} such that each
label is contained in each path exactly once, meaning in particular that each
path is associated to a permutation. Finally we define a protocol assigning to
each node a set element. The root is assigned to E0, and if a node has label i
we assign to it si ⋆(·) applied on the set element associated to its parent. So in
this example, the right and left children of the root will be assigned to s1 ⋆E0

and s3 ⋆E0.
Finally, this defines a protocol in which all the set elements associated to

nodes at distance r from the root are computed at round r. We described the
protocol in Figure 7.

P1(s1)

1 : E1 ← s1 ⋆E0

2 : Send E1 to P2

3 : E1,3 ← s1 ⋆E3

4 : Send E1,3 to P2

5 :

6 :

7 : E1,2,3 ← s1 ⋆E2,3

P2(s2)

1 :

2 :

3 : E1,2 ← s2 ⋆E1

4 : E2,3 ← s2 ⋆E3

5 : Send E1,2 to P3

6 : Send E2,3 to P1

7 : E1,2,3 ← s2 ⋆E1,3

P3(s3)

1 : E3 ← s3 ⋆E0

2 : Send E3 to P1, P2

3 :

4 :

5 :

6 :

7 : E1,2,3 ← s3 ⋆E1,2

Fig. 7. Parties P1, P2, P3 computing (s1 + s2 + s3) ⋆E0.

We observe that for 3 players our bound requires that

q ≥ 3 (1 + log2 3) ≈ 7.8 ℓtot ≳ (1 + 3 log2 3)µ ≈ 5.8µ

hence our protocol achieving q = 8 and ℓtot = 6µ is essentially optimal.

5 Parties Protocol. For 5 parties we can repeat all steps performed in the previous
case. Initially we find an optimal TS tree with 5 leaves, which should have at
least 5·(1+log2 5)+1 ≈ 17.6 nodes. We describe a tree with 18 nodes in Figure 8
(left).

∅

5 1

2

3

5 4

4 5

4

3 1

2 1 2

1 2 3

Fig. 8. Optimal TS-tree with 5 leaves (left), and its labeling (right).

As done before we can then label each node in such a way that each path
contains all indices from 1 to 5, shown in Figure 8 (right). Note that it can be
proven that such labeling exists for any TS tree with height(T) = leaves(T).
Finally, we obtain a fair protocol among 5 users by assigning E0 to the root,
and to each node with label i the element si ⋆(·) applied to the set element

associated to its parent. The protocol is then defined by letting parties compute
at round r the element associated to nodes with distance r from root.

Although we do not explicitly write the protocol this time, we observe it
would require q = 17 group action evaluations and ℓtot = 15µ, which is consistent
with our lower bounds:

q ≥ 5 · (1 + log2 5) ≈ 16.6 ℓtot ≳ (3 + 5 log2 5)µ ≈ 14.6µ.

C Postponed Proofs

C.1 Sequentiality Lemma

Proof of Lemma 1. In the following we will use E ⊆ {0, 1}µ to denote the set of
labels and E ′ the set in our group action, so that ⋆ : G×E ′ → E ′ and σ : E ′ → E
is the labeling function. We further denote with abuse of notation ⋆ : G×E → E
the action defined by Oact.

We begin proving that if Eout is not a label returned by Oact, then

Pr [Eout = s ⋆E0 |Eout /∈ {E0, . . . , Eq}] ≤
1

|E| − (q + 1)
.

This holds because if s ⋆E0 ∈ {E0, . . . , Eq} or Eout /∈ E then the probability of
Eout = s ⋆E0 is zero. Conversely, when these two events do not occur, A correctly
guessed the label s ⋆E0 given only the image of σ (the labeling function) on q+1
different points. Since σ : E ′ → E is uniformly sampled

Pr [Eout = s ⋆E0 |Eout, s ⋆E0 ∈ E \ {Ei}qi=0] ≤
1

|E| − (q + 1)
.

Next, we assume Eout = Ek for some k ∈ {0, . . . , q}. To conclude we need
to prove that the probability of Eout = k but not 0 →+ k is negligible. We do
so by reducing to the discrete logarithm problem. The idea is that since →+ is
a partial order on a finite set, there exists a minimal element h →+ k that is
non-zero. Since Eh was not obtained through the action oracle, the adversary
must have randomly sampled its representation and in particular it has (almost)
no information on its discrete logarithm in base E0. However because h →+ k
the adversary has to know a ∈ G for which a ⋆Eh = Ek = s ⋆E0, implying that
Eh = (−a+ s) ⋆E0, i.e. that it can find the discrete logarithm of E0.

More formally we provide a reduction B to the vectorization problem in the
GAM described in Figure 9. At a high level B(E0, H) lazily simulate a GAM
oracle through a labeling function σ̃.

Every time A makes a query to the GAM on a previously seen set element
the query is stored in Q. Conversely, if a query is done on the representation
of a point D̃ not yet obtained through other queries, B either rejects with the
same probability Oact would, or internally maps D̃ to the set element r ⋆H with
r uniformly sampled in G, storing the tuple (r,D) in a set C, and then performs
the requested query invoking Oact.

Finally, if A returns the right output Eout = Ek but 0 ̸→+ k, then B uses the
information in Q and C to break the vectorization problem. To sum up the set
Q and C respectively contain:

Q: GAM queries of the form (a,D,E), meaning that E = a ⋆D, as well as trivial
relations of the form (0, E,E).

C: Challenges (r,D) with D = r ⋆H, created when A query a point not previ-
ously seen.

BOact(E0, H)

1 : Setup a partial function σ̃ : {0, 1}µ → {0, 1}µ ∪ {⊥}, initially σ̃ = ∅
2 : Sample Ẽ0 ←$ {0, 1}µ and set σ̃(Ẽ0) = E0

3 : Initialize two sets Q = {(0, E0, E0)}, C = ∅
4 : Run A(Ẽ0)

5 : When A queries Oact(ai, D̃i):
6 : If D̃i /∈ Dom(σ̃):
7 : Let pi be the probability that D̃i is a valid set element
8 : With probability 1− pi: Set σ̃(D̃i) =⊥
9 : Else:

10 : Sample ri ←$ G such that ri ⋆H /∈ {E0, . . . , Ei−1}
11 : Set Di ← ri ⋆H and σ̃(D̃i) = Di

12 : Store C ← C ∪ {(ri, Di)} and Q ← Q∪ {(0, Di, Di)}
13 : Get Di ← σ̃(D̃i) and Ei ← Oact(ai, Di)

14 : For all (b,Dj , Di) ∈ Q store Q ← Q∪ {(ai + b,Dj , Ei)}
15 : Sample Ẽi ←$ {0, 1}µ \ Dom(σ̃) and set σ̃(Ẽi) = Ei

16 : Answer the query with A ← Ẽi

17 : When (s, Ẽout)← A:
18 : If Ẽout /∈ {Ẽ0, . . . , Ẽq}: Return ⊥.
19 : Find k such that Ẽout = Ẽk

20 : If 0→+ k: Return ⊥
21 : Let Ek ← σ̃(Ẽk) and find (a,Dj , Ek) ∈ Q and (r,Dj) ∈ C
22 : If Ek ̸= Oact(s, E0): Return ⊥
23 : Return the group element −(a+ r) + s

Fig. 9. Reduction B using A to break the vectorization problem.

Initially observe that B perfectly simulates the Oact oracle since for previ-
ously queried elements, for which a representation σ̃ was chosen, the operation is
consistent with Oact, while queries on set element not previously obtained from

the oracle do not gives errors with probability

pi =
|Im (σ̃ \ {⊥})|
2µ − |Dom(σ̃)|

.

and in this case the obtained element is different from previously queried ones.
To continue, we break down the proof in the following sequence of claims:

Claim 1 For all (a,Dj , Ei) ∈ Q then a ⋆Dj = Ei.

Claim 2 For all (r,Di) ∈ C then Di = r ⋆H.

Claim 3 Given h ∈ {1, . . . , q} that is minimal with respect to →+ then after the
h-th query (0, Dh, Dh) ∈ Q and (r,Dh) ∈ C.

Claim 4 Given h ∈ {1, . . . , q} that is minimal with respect to →+, then h→+ k
implies that (a,Dh, Ek) ∈ Q.

To see why these Claims implies the thesis, let us assume that the three
condition on steps 18, 20 and 22 are false. Then Ẽout = Ek and 0 ̸→+ k. Since→+

is a partial order on a finite set, there exists a minimal h→+ k and, importantly,
h ̸= 0. From Claim 4 we have that (a,Dh, Ek) ∈ Q, which by Claim 1 means
Ek = a ⋆Dh. Similarly by Claim 3, (r,Dh) ∈ C which by Claim 2 means Dh =
r ⋆H. Since we assumed all three final checks to fail, we further have that Ek =
s ⋆E0, meaning that

s ⋆E0 = Ek = a ⋆Dh = (a+ r) ⋆H ⇒ H = (−(a+ r) + s) ⋆E0.

That is, B returns the correct value. Finally observe that the three final condi-
tions are false if

Ẽout = s ⋆E0 ∧ Ẽout = Ẽk ∧ 0 ̸→+ k.

Hence, switching to the original notation

Pr
[
Eout = s ⋆E0, Eout = Ek, 0 ̸→+ k

]
≤ Adv(B) ≤ ε(2q)

which completes the proof.

Proof of Claim 1. By induction, initially (0, E0, E0) satisfies the hypothesis. Fur-
thermore the tuple (0, Di, Di) added in step 12 also satisfies the hypothesis.
Assume this holds for all elements in Q when (ai + b,Dj , Ei) is added. Then
(b,Dj , Di) ∈ Q implies Di = b ⋆Dj so Ei = ai ⋆Di = (ai + b) ⋆Dj .

Proof of Claim 2. Follows by construction.

Proof of Claim 3. Since h is minimal, the h-th query Ẽh = ah ⋆ D̃h is such that
D̃h was never returned by B through the action queries, meaning that before
the h-th query D̃h /∈ Dom(σ̃). By construction then (0, Dh, Dh) and (rh, Dh) are
added to Q, C respectively.

Proof of Claim 4. Since h is minimal, when Dh is queried, (0, Dh, Dh) ∈ Q
and after B computes the correct query, (ah, Dh, Eh) is added in Q. Next, by
definition of →+ there exists indices i1, . . . , im with i1 = h, im = k such that
D̃ij = Ẽij . By induction we will prove that for all j there exists some a ∈ G
such that (a,Dh, Eij) ∈ Q. Assuming this holds for j, when (aij+1

, D̃ij+1
) we

have that D̃ij+1
= Ẽij so Dij+1

= σ̃(D̃ij+1
) = Eij . Thus by construction, in step

14 B will add (aij+1
, Dh, Eij+1

).

C.2 Properties

Proof of Lemma 2. By induction on t. If t = 1 we only have one query and
Dr1,i1,j1 = Er1,i1,j1 by definition. Assuming the thesis for t− 1 we have that

Ert,it,jt = art,it,jt ⋆Drt,it,jt

= art,it,jt ⋆Ert−1,it−1,jt−1

= art,it,jt ⋆

((∑1

α=t−1
arα,iα,jα

)
⋆Dr1,i1,j1

)
=

(∑1

α=t
arα,iα,jα

)
⋆Dr1,i1,j1 .

Proof of Lemma 3. We prove the statement by induction on t. For t = 1 it is
trivially true as 1 = |{i1}| = |{r1}|. Assuming the statement is true for t, then
for t+ 1 we have

(rt, it, jt) (rt+1, it+1, jt+1).

We prove the inductive case studying two cases:

– rt < rt+1. Then rt+1 is larger than all r0, . . . , rt, therefore

|{r1, . . . rt+1}| = 1 + |{r1, . . . , rt}| ≥ 1 + |{i1, . . . , it}| ≥ |{i1, . . . , it+1}|.

– rt = rt+1. Then it = it+1 meaning that both sets do not increase in size,
therefore

|{r1, . . . , rt+1}| = |{r1, . . . , rt}| ≥ |{i1, . . . , it}| ≥ |{i1, . . . , it+1}|.

C.3 Interactive Sequentiality Lemma

Proof of Lemma 4. In order to bridge the Sequentiality Lemma in this context
we wrap the execution of the distributed protocol within an environment Ω.
This will take as input all si, execute parties and manage messages delivery. A
full description of Ω appears in Figure 10

Because Ω forwards parties’ queries to Oact we can define a partial function
ξ : N3 → N so that the j-th query of Pi at round r corresponds to the ξ(r, i, j)-
th query of Ω. From the correctness of the distributed protocol we have that
Eout = f(s1, . . . , sn) ⋆E0. By Lemma 1, up to probability εseq(q), Eout is the

ΩOact(s1, . . . , sn)

1 : Set trs0 ←⊥
2 : For all r ∈ {1, . . . , k − 1}:
3 : For all i ∈ {1, . . . , n}:
4 : Mr,i ← POact

i (si, trsr−1)

5 : // Update the view at the end of a round

6 : trsr ← trsr−1 ∪ {Mr,i}ni=1

7 : // For the last round, execute all parties until we get the output

8 : For i ∈ {1, . . . , n}:
9 : If Eout ← POact

i (si, trsk−1):
10 : Return (f(s1, . . . , sn), Eout)

Fig. 10. Environment Ω executing P1, . . . , Pn to compute Eout = f(s1, . . . , sn) ⋆E0.

output of the ξ(r′, i′, j′)-th query and that 0 →+ ξ(r′, i′, j′). This implies that
Eout is the output of the j′-th query Pi′ performs at round r′, but it is not
enough to imply 0 + (r′, i′, j′). Indeed, chains from E0 to Eout may involve
queries performed at the same round by different players, something + does
not allow. This is addressed by the following claim.

Claim 1 If 0 →+ ξ(r, i, j), then up to probability r · εseq we have 0 + (r, i, j),
i.e.

Pr
[
0→+ ξ(r, i, j), 0 ̸ + (r, i, j)

]
≤ r · εseq

We immediately observe this claim implies the thesis as

Pr
[
∄ r, i, j : Eout = Er,i,j , 0 + (r, i, j)

]
≤ Pr

[
∄ r, i, j : Eout = Er,i,j , 0→+ ξ(r, i, j)

]
+

+ Pr
[
Eout = Er′,i′,j′ , 0→+ ξ(r′, i′, j′), 0 ̸ + (r′, i′, j′)

]
≤ εseq + r′εseq ≤ (r′ + 1)εseq ≤ (k + 1)εseq.

Proof of Claim 1. Proceeding by induction on r, the base case r = 0 is trivially
true. Assume now the statement to be true for all r′ < r. We then construct
A computing Er,i,j which behaves as Ω for the first r − 1 rounds. At round
r it initially executes Pi and then the remaining P1, . . . , Pn. If it finds a path
0 →+ ξ(r, i, j), it computes α such that Eout = α⋆E0 and returns (α,Eout),
otherwise it aborts. A full description appears in Figure 11.

First, as for Ω, we can define an indexing partial function η : N3 → N such
that the j-th query performed by Pi at round r is also the η(r, i, j)-th query of
A. By Sequentiality Lemma 1 we get

Pr
[
0→+ ξ(r, i, j), 0 ̸→+ η(r, i, j)

]
≤ εseq

AOact(s1, . . . , sn)

1 : // Behave as Ω for the first r − 1 rounds

2 : Set trs0 ←⊥
3 : For all r′ ∈ {1, . . . , r − 1}:
4 : For all i′ ∈ {1, . . . , n}:
5 : Mr,i′ ← POact

i′ (si′ , trsr′−1)

6 : trsr′ ← trsr′−1 ∪ {Mr′,i′}ni′=1

7 : // Execute Pi first at round r

8 : Run POact
i (si, trsr−1)

9 : For i′ ∈ {1, . . . , n} \ {i}: Run POact
i′ (si′ , trsr−1)

10 : // Find a chain according to Ω’s query order

11 : If 0 ̸→+ ξ(r, i, j): Return ⊥
12 : Use a chain 0→+ ξ(r, i, j) to find α such that Er,i,j = α⋆E0

13 : Return (α,Er,i,j)

Fig. 11. Program A computing Er,i,j .

where we used the fact that 0 → ξ(r, i, j) implies that A’s outputs satisfies
α⋆E0 = Eout and η(r, i, j) is known to be the query index in which Oact returns
Er,i,j .

Assuming instead 0 →+ η(r, i, j), let (r′, i′, j′) the maximal element in the
chain such that r′ < r . Then we will show that

0→+ η(r, i, j) ⇒ 0→+ ξ(r′, i′, j′) ∧ (r′, i′, j′) + (r, i, j).

The first part of the implication follows since for all rounds before the r-th,A and
Ω behaves identically. Therefore they make the same queries in the same order,
meaning that 0→+ η(r′, i′, j′) if and only if 0→+ ξ(r′, i′, j′). For the second part,
from the way we defined (r′, i′, j′), all queries in a chain from (r′, i′, j′) to (r, i, j)
occurs at round r. Since A first executes Pi at round r, it means all these queries
only involves Pi , therefore (r′, i′, j′) + (r, i, j).

As a consequence we can bound the studied probability in the case 0 →+

η(r, i, j) as follows:

Pr
[
0→+ ξ(r, i, j), 0 ̸ + (r, i, j), 0→+ η(r, i, j)

]
≤ Pr

[
0→+ ξ(r, i, j), 0 ̸ + (r, i, j), 0→+ ξ(r′, i′, j′), (r′, i′, j′) + (r, i, j)

]
≤ Pr

[
0→+ ξ(r′, i′, j′), 0 ̸ + (r′, i′, j′)

]
≤ r′ · εseq.

where the last step follows by induction. Note that the second inequality follows
because on LHS, if 0 + (r′, i′, j′) then by transitivity 0 + (r, i, j), contradicting
the clause 0 ̸ + (r, i, j). The event on the LHS then implies 0 ̸ + (r′, i′, j′). In

conclusion, since r′ < r

Pr
[
0→+ ξ(r, i, j), 0 ̸ + (r, i, j)

]
≤ Pr

[
0→+ ξ(r, i, j), 0 ̸→+ η(r, i, j)

]
+

+ Pr
[
0→+ ξ(r, i, j), 0 ̸ + (r, i, j), 0→+ η(r, i, j)

]
≤ εseq + r′εseq ≤ rεseq.

C.4 Refined Interactive Sequentiality Lemma

Proof of Lemma 5. The proof is similar to Lemma 4. As in that case, we define
Ω as in Figure 10 and ξ(r, i, j) and indexing function so that the j-th query
performed by Pi at round r corresponds to the ξ(r, i, j)-th performed by Ω.
Through the Sequentiality Lemma 1 we then have that up to probability εseq

Eout = Er′,i′,j′ 0→+ ξ(r′, i′, j′).

For notational convenience we call Ref(r, i, j) the event 0 + (r, i, j) through a
refined chain. To conclude we need to prove the following claim

Claim 1 Pr [0→+ ξ(r, i, j), ¬Ref(r, i, j)] ≤ r · εseq.

Proof of Claim 1. We proceed by induction on r. If r = 0 the statement is
trivially true. Assuming it holds for all r′ < r we will prove it for (r, i, j). Let
j∗ be a minimal element in the poset of queries performed by Pi at round r,
ordered with →+.

By definition of →+ then there exists a chain j0, . . . , jt of queries such that

(r, i, j∗) = (r, i, j0)→ (r, i, j1)→ . . .→ (r, i, jt) = (r, i, j)

and in particular (r, i, j∗) + (r, i, j). If 0→+ ξ(r, i, j) then, summing the group
elements appearing in a chain for this relation and for (r, i, j∗) + (r, i, j) we
would obtain two group elements α, β such that

α⋆E0 = Er,i,j , β ⋆Er,i,j∗ = Er,i,j ⇒ Er,i,j∗ = (−β + α) ⋆E0

Summing the group elements appearing in this chain of queries, as well as Next
we define A which computes Er,i,j∗ by executing at round r first Pi and then all
other users. A full description of A appears in Figure 12.

As done with Ω, we define an indexing function η so that the j-th query
performed by Pi at round r is A’s η(r, i, j)-th query. Since A and Ω executes
parties in the same order until round r, ξ and η agrees for r′ < r.

Next, applying the Sequentiality Lemma 1 we have that

Pr
[
0→+ ξ(r, i, j), 0 ̸→+ η(r, i, j∗)

]
≤ εseq

because A computes the correct element if 0→+ ξ(r, i, j) and (r, i, j∗) + (r, i, j)
which is true by construction.

AOact(s1, . . . , sn)

1 : // Behave as Ω for the first r − 1 rounds

2 : Set trs0 ←⊥
3 : For all r′ ∈ {1, . . . , r − 1}:
4 : For all i′ ∈ {1, . . . , n}:
5 : Mr,i′ ← POact

i′ (si′ , trsr′−1)

6 : trsr′ ← trsr′−1 ∪ {Mr′,i′}ni′=1

7 : // Execute Pi first at round r

8 : Run POact
i (si, trsr−1)

9 : For i′ ∈ {1, . . . , n} \ {i}: Run POact
i′ (si′ , trsr−1)

10 : // Find a chain according to Ω’s query order

11 : If 0 ̸→+ ξ(r, i, j): Return ⊥
12 : Use a chain 0→+ ξ(r, i, j) to find α such that Er,i,j = α⋆E0

13 : Use a chain (r, i, j∗) + (r, i, j) to find β such that Er,i,j = β ⋆Er,i,j∗

14 : Return (−β + α,Er,i,j∗)

Fig. 12. Program A computing Er,i,j∗ .

Next, assuming 0→+ η(r, i, j∗), let (r′, i′, j′) the predecessor in a given chain
for this relation. We will show the following implications: 0→+ ξ(r, i, j)

¬Ref(r, i, j)
0→+ η(r, i, j∗)

 ⇒

0→+ ξ(r, i, j)
r′ < r

¬Ref(r′, i′, j′)


The first is trivial. The second one follow since if r = r′ then η(r, i′, j′) →
η(r, i, j∗) implies i = i′ since Pi is the first executed player in round r. In
particular this implies (r, i, j′) (r, i, j∗) which contradicts the minimality of
j∗. We also prove the third one by contradiction. If Ref(r′, i′, j′) then we can
extend any refined chain for 0 + (r′, i′, j′) with

(r′, i′, j′) (r, i, j∗) + (r, i, j)

where the first relation is true as r′ < r and η(r′, i′, j′) → η(r, i, j∗) and the
second one follows by construction of j∗. By minimality of j∗ the resulting chain
would be refined, implying Ref(r, i, j), which is assumed to be false.

Using this implication we next bound the following probability:

Pr
[
0→+ ξ(r, i, j), ¬Ref(r, i, j), 0→+ η(r, i, j∗)

]
≤ Pr

[
0→+ ξ(r, i, j), ¬Ref(r′, i′, j′), r′ < r

]
≤ r′ · εseq ≤ (r − 1)εseq.

Finally, combining the two bounds we conclude that the claim is true.

Pr
[
0→+ ξ(r, i, j), ¬Ref(r, i, j)

]
≤ Pr

[
0→+ ξ(r, i, j), 0 ̸→+ η(r, i, j∗)

]
+ Pr

[
0→+ ξ(r, i, j), ¬Ref(r, i, j), 0→+ η(r, i, j∗)

]
≤ εseq + (r − 1)εseq = rεseq.

C.5 Tall Sub-tree Properties

Proof of Proposition 1. We proceed by induction on n ≥ 1. If n = 1 then
n log2 n = 0 and T is a chain, implying |E| = m. Assuming the thesis holds
for all n′ < n, we prove it for n. Let r ∈ V be the root of T and v1, . . . , vd
be the successors of r. Then Ti := Tvi = (Vi, Ei) is a TS trees and, calling
mi = height(Ti) and ni = leaves(Ti), we have that

|E| = d+
∑d

i=1
|Ei| ≥ d+

∑d

i=1
mi +

∑d

i=1
ni log2 ni

≥ d+ d(m− 1) + n log2(n/d)

= m+ n log2 +((d− 1)m− n log2 d)

where the first inequality is the inductive hypothesis and the second one uses
mi = m − 1 and the convexity of x log2 x. To conclude we need to show that
for all integer d ≥ 1 the last term in brackets is non negative. This is true for
d = 1 and, because m ≥ n, for d = 2. Finally, for any d > 2 the function
f(d) = (d− 1)m− n log2 d is increasing as its derivative is

f ′(d) = m− n

d · ln 2
≥ m− n ≥ 0.

Therefore f(d) ≥ 0 for all integer d and the proof is complete.

Proof of Proposition 2. If |V≥2| = 0 then m ≤ 1 and therefore n ≤ 1, in which
case the inequality holds. Conversely let v1, . . . , vd be the root’s children, and
call Ti := Tvi = (Vi, Ei). Let mi = height(Ti), ni = leaves(Ti). Using the fact that
T1, . . . Td are TS trees and the same inequalities used in the proof of Proposition 1

|V≥2| =
∑d

i=1
|Vi \ vi|

=
∑d

i=1
mi + ni log2 ni

= dm− d+ n log2(n/d)

= m+ n log2 n− 2 + ((d− 1)m− d− n log2 d) .

To conclude we have to show the last term in brackets is always non negative.
For d = 1 is trivial and d = 2 is implied by m ≥ n. For d ≥ 3 we would have
n ≥ 3 in which case (2− log2 3)n− 1 is positive. Finally for d > 3 the derivative
of that term in d is always positive, using the fact that n ≥ 3.

	Introduction
	Our Contributions
	Our Techniques
	Related Work

	Preliminaries
	Notation
	Hard Homogeneous Space
	Shoup's Generic Action Model

	Technical Lemmas
	Sequentiality Lemma
	Interactive Protocols
	Interactive Sequentiality Lemma

	Round Lower Bound
	Fair Protocols Lower Bounds
	Fair Protocols
	Refined Interactive Sequentiality Lemma
	Tall Sub-tree Property
	Main Result

	Conclusions
	CSIDH Group Action
	Optimal Fair Protocols
	Postponed Proofs
	Sequentiality Lemma
	Properties
	Interactive Sequentiality Lemma
	Refined Interactive Sequentiality Lemma
	Tall Sub-tree Properties

