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Abstract. Gentry and Wichs proved that adaptively sound SNARGs
for hard languages need non-falsifiable assumptions. Lipmaa and Pavlyk
claimed Gentry-Wichs is tight by constructing a non-adaptively sound
zk-SNARG FANA for NP from falsifiable assumptions. We show that
FANA is flawed. We define and construct a fully algebraic F -position-
binding vector commitment scheme VCF. We construct a concretely ef-
ficient commit-and-prove zk-SNARK Punic, a version of FANA with an
additional VCF commitment to the witness. Punic satisfies semi-adaptive
black-box G-knowledge-soundness, a new natural knowledge-soundness
notion for commit-and-prove SNARKs. We use a new proof technique
to achieve global consistency using a functional somewhere-extractable
commitment scheme to extract vector commitment’s local proofs.
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1 Introduction

Gentry and Wichs [26] proved non-falsifiable assumptions are needed to con-
struct (even non-zero-knowledge) adaptively sound SNARGs (succinct non-
interactive arguments, [30,49,50,25,56,31]) for hard languages under black-box
reductions. Their impossibility result balances the following four properties of
NIZKs: (1) Succinctness: Non-succinct NIZKs are not suitable for many appli-
cations. (2) Falsifiability: an assumption or a primitive is falsifiable if one can
efficiently decide whether the adversary broke it. Non-falsifiable assumptions are
highly controversial. (3) Adaptive soundness: the SNARG is sound even if the
malicious prover can choose the statement x after seeing the CRS. Non-adaptive
soundness guarantees security only if x is independent of the CRS. (4) Many ap-
plications need SNARGs for hard languages (i.e., languages with hard subset
membership problem) like circuit satisfiability.

Assuming black-box reductions, Gentry-Wichs is known to be tight in
three aspects: (1) non-succinct falsifiable assumption-based adaptively sound
NIZKs are known for NP [20], (2) falsifiable assumption-based adaptively sound
SNARGs are known for P [41], and (3) non-falsifiable assumption-based adap-
tively sound zk-SNARKs are known for NP [30].
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It has been a major open problem whether Gentry-Wichs is tight in the fourth
aspect; that is, whether falsifiable assumption-based non-adaptively sound (even
non-zero knowledge) SNARGs for hard languages exist. Intuitively, it is easier
to achieve non-adaptive than adaptive black-box knowledge soundness since, in
the former case, the extractor has additional power. Namely, it can rewind the
prover to the point after the prover chose the statement, sample a new CRS,
and thus obtain many arguments of the same statement under different CRSs.

Sahai and Waters built a non-adaptively sound zk-SNARG for NP [58] us-
ing iO, one-way functions, and succinct punctured PRFs. One can use sub-
exponential but falsifiable assumptions to instantiate iO [38]. However, their
SNARG has exponential security loss in witness length [39]. Since the reduction
can decide the language, their SNARG bypasses the Gentry-Wichs impossibility
result (and can achieve adaptive security by complexity leveraging, [39]). Hence,
constructing non-adaptively sound SNARGs for NP remains open after [58]. Jain
and Jin [39] proposed a SNARG that overcomes this limitation, but only for a
subclass of languages in NP ∩ co-NP with a “PV proof of disjointness”.

Lipmaa and Pavlyk [52] proposed FANA, an efficient (and polynomial-time
challenger) falsifiable assumption-based non-adaptively sound zk-SNARG for
NP. FANA is based on two earlier constructions, DGPRS of [18] and FLPS [19].
DGPRS and FLPS are adaptively sound commit-and-prove (C&P) SNARGs for
NP. Since they have non-succinct commitments, Gentry-Wichs does not apply.

By leveraging continuous leakage-resilient one-way functions (that exist un-
der the discrete logarithm assumption [4]), Campanelli et al. [12] proved that
non-adaptive black-box extractable SNARKs (succinct non-interactive argu-
ments of knowledge, i.e., knowledge-sound arguments) for NP do not exist. Recall
that extraction is black-box if it extracts a witness from a prover only using its
input/output interface, without knowledge about its internal state or code. Note
that [12] does not contradict [52] who construct a SNARG.

Our First Contribution. We show that FANA’s security proof is flawed, and
FANA is not a non-adaptively SNARG.1 The main reason why FANA’s proof
breaks down is that, differently from DGPRS and FLPS, FANA is not a C&P
SNARG. On the other hand, DGPRS and FLPS rely on a perfectly binding
(non-succinct) commitment scheme, i.e., they are not SNARGs.

Main Question. In Table 1, we summarize the state of the art: on top of [26],
[12] proved that falsifiable assumption-based non-adaptively knowledge-sound
SNARKs for NP do not exist, while [52] (that is insecure) and [58] (with an ex-
ponential security loss) constructed falsifiable assumption-based non-adaptively
sound SNARGs for NP. This leaves two open questions: Can one construct fal-
sifiable assumption-based (1) non-adaptively sound SNARGs, and (2) SNARKs
for NP under a different adaptivity notion?

We do not know how to answer (1), i.e., formally settle the tightness of
Gentry-Wichs. Instead, the current paper aims to find a solution in the latter
1 [59] noted that FANA is insecure (and referred to a private conversation with the

authors of [52]), but they did not explain why. We will provide full details.
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Table 1. The known possibility and impossibility results for falsifiable assumption-
based SNAR(G|K)s for hard languages.

Adaptivity/Knowledge SNARG SNARK

Adaptive ✗ [26] ✗ [26]
Non-adaptive //✓/////[52] (✓ with exp. security loss [58]) ✗ [12]
Semi-adaptive ✓ This work ✓ This work

direction. There, one has the following natural question: For what notion of
adaptivity can one construct falsifiable assumption-based black-box knowledge-
sound SNARKs for NP? Moreover, can this be done efficiently?

Our (Four More) Contributions. Second, definition. We define semi-
adaptive black-box knowledge-soundness, a natural security notion for falsifi-
able assumption-based C&P SNARKs. In a black-box knowledge-sound C&P
SNARK, one can black-box extract partial witnesses by rerunning the adver-
sary on a fixed commitment key and commitment C (to the witness) but many
CRSs. One can recover the full witness from many succinct arguments and thus
overcome an information-theoretical barrier plaguing SNARKs. This is similar
to using rewinding in interactive zero-knowledge proofs; indeed, the definition
is related to that of witness-extended emulation [48]. Crucially, having a C&P
SNARK (i.e., a fixed commitment key and a commitment) lets us avoid the im-
possibility result of [12]. We emphasize that finding a correct definition is one of
the most critical tasks in cryptographic research.

Third, modular proof. We prove black-box knowledge-soundness in two steps,
as standard in the interactive arguments but unlike [18,19,52]. First, we de-
fine semi-adaptive computational special soundness, a variant of special sound-
ness [16]. We prove that every semi-adaptively computationally special sound
and CRS-indistinguishable C&P zk-SNARK is also semi-adaptively black-box
knowledge sound. Thus, we only need to prove the former two properties.

Fourth, the proof technique. We use a perfectly hiding vector commitment
scheme VC [47,36,13] to create C. Since VC is perfectly hiding, one cannot
black-box extract from C. Instead, we use a functional somewhere-extractable
(FSE) commitment scheme [19] to black-box extract a partial witness (VC’s local
opening and proof) from a FSE commitment. We then combine many partial
witnesses into a full witness. We define and construct fully algebraic F -position-
binding vector commitment schemes that allow such extractions.

Fifth, construction. We construct a C&P zk-SNARK Punic that fixes FANA
by (re)adding a language parameter lp = ck and a succinct (in our case, vec-
tor) commitment C to (x,w). We prove Punic is semi-adaptively computation-
ally special-sound and CRS-indistinguishable and thus semi-adaptively black-
box knowledge-sound. Since one of our primary goals is efficiency, the special
soundness of Punic is based on non-standard yet non-interactive and known
falsifiable assumptions.
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On Tightness of Gentry-Wichs. The current work opens a novel approach to
studying the tightness of Gentry-Wichs in the context of C&P SNARKs. Table 1
summarizes the known results. We emphasize that it is unknown whether one
can construct falsifiable assumption-based non-adaptively sound SNARGs for
NP with polynomial security loss. We leave it as the open question to state
a precise version of Gentry-Wichs for both C&P and non-C&P SNARGs and
SNARKs. In particular, is there a separation between SNARGs and black-box
knowledge-sound SNARKs?

2 Technical Overview

We will start this section with an overview of DGPRS, FLPS, and FANA. After
that, we describe our contributions in more detail.

2.1 Background

In C&P SNARGs and SNARKs, the CRS includes a commitment key (Γ.ck,
also called a language parameter lp, [40]), and the statement includes a Γ -
commitment C. Here, Γ is an extractable commitment scheme. Most of the
efficient SNARKs (e.g., [25,56,31,14,11,53]) are C&P SNARKs although usually
not stated as such; in their knowledge-soundness proof, one uses knowledge as-
sumptions to non-black-box extract the full witness from C. Different definitions
of C&P SNARGs allow or do not allow dependencies between the commitment
key, the language, and the CRS. The definition of C&P QA-SNARG (quasi-
adaptive SNARG2, [40,18]) explicitly requires that one first fixes lp = Γ.ck,
defining (for some relation R) the language

Llp = {(C,x) : (∃w, r) (C = Γ.Com(Γ.ck, (x,w); r) ∧ (x,w) ∈ R)} ,

then a CRS crs that may depend on lp (and thus Llp). Only after that does the
prover choose a statement (C,x). Quasi-adaptive soundness is defined for this
temporal order: for any honestly generated lp (that fixes Llp) and crs (that can
depend on lp and thus Llp), it must be hard to generate (C,x, π), such that the
verifier accepts (C,x, π) but (C,x) /∈ Llp.

DGPRS [18] and FLPS [19] are pairing-based C&P QA-SNARGs for cer-
tain constraint systems. DGPRS and FLPS use a perfectly binding commitment
scheme Γ and two more building blocks:
(1) a succinct functional somewhere-extractable (FSE, [19]) commitment scheme

to commit to (x,w). FSE satisfies the following property: for a small locality
parameter q, one can invisibly reprogram FSE’s commitment key FSE.ck

2 The initial QA-NIZK constructions were for linear subspaces [40,45]. They (and the
bilateral linear subspace QA-SNARG, used in [18,19] and the current paper) have a
language parameter that is not a commitment key. We use the acronym QA-SNARG
since it fits our framework better.



On Black-Box Knowledge-Sound Commit-And-Prove SNARKs 5

so that one can later black-box “somewhere-extract” the desired q linear
combinations of the coefficients of [x,w]1.3

(2) a succinct bilateral subspace QA-SNARG argument BLS [27] to prove that
a tuple of commitments belongs to a specific subspace (e.g., Γ -commitments
and FSE-commitments are to the same (x,w)).

DGPRS and FLPS are falsifiable assumption-based, quasi-adaptively sound, for
hard languages, and have a succinct argument. This does not contradict Gentry-
Wichs since their statement contains a non-succinct commitment C from which
the reduction can black-box extract the witness. (See Appendix A.1.)

Consider their soundness proof to understand why DGPRS and FLPS are
quasi-adaptively sound. Assume that an adversary A broke the quasi-adaptive
soundness by outputting an accepting (C,x, π). Thus, either (1) C is not a
commitment to (x,w) for any w, or (2) at least one constraint is unsatisfied
(C commits to (x,w) for some w, but w is not a correct witness for x ∈ Llp).
DGPRS and FLPS define two reductions B1 and B2. B1 is a reduction to the
BLS security, guaranteeing in particular that (1) cannot happen.

Let us focus on B2. B2 samples a constraint number ϱ ←$ [1, n], where n is
the number of constraints in the underlying constraint system. B2 reprograms
the CRS to depend on ϱ while lp = Γ.ck stays unchanged. It follows from the
properties of FSE that the CRS hides ϱ. After obtaining (C,x) from A, B2 black-
box extracts from the perfectly binding commitment C all variables, involved
in the ϱth constraint. B2 guesses that the ϱth constraint is unsatisfied and then
uses the extracted values to check whether its guess is correct. If the guess
is incorrect (i.e., the ϱth constraint is satisfied), then B2 aborts. Since C is
perfectly binding, the adversary’s witness w is fixed by C. Thus, the index of
the unsatisfied constraint does not depend on ϱ. (If the adversary can open C
to a different message after the CRS reprogramming, one can distinguish the
CRSs. The latter is intractable because of the properties of FSE, [18,19].)

Since the index of the unsatisfied constraint does not depend on B2’s guess
ϱ, B2 aborts with probability ≤ 1 − 1/n. In the case of non-abortion, B2 uses
FSE’s somewhere-extractor to black-box extract a succinct partial witness [pϱ]1
from a succinct FSE commitment (also output by A). Here, [pϱ]1 is sufficient to
verify whether the ϱth constraint of the constraint system is satisfied. The BLS
argument (via reduction B1) guarantees that the values extracted from C are
consistent with [pϱ]1. B2 then uses [pϱ]1 to break a falsifiable assumption.

FANA. Lipmaa and Pavlyk [52] improve on DGPRS and FLPS in several ways.
Their non-C&P zk-SNARG FANA handles the standard R1CS constraint sys-
tem [25] instead of SSP and SAP used in DGPRS and FLPS, has soundness
based on a more plausible falsifiable assumption QALINRES, and is subversion
zero-knowledge [6,1,21,2,3] (zero-knowledge even when lp and crs are maliciously
constructed). [52] claims that FANA is non-adaptively sound and thus Gentry-
Wichs is tight. We only focus on the last claim.

3 We use the standard additive bracket notation for pairings. For example, for s ∈ Zp,
[s]1 = s[1]1 ∈ G1. See Section 3.
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FANA omits ck and the commitment C. FANA’s security reduction black-box
extracts partial witnesses [pϱ]1 from the FSE commitment. As in DGPRS and
FLPS, extraction is done after reprogramming the CRS. To ensure that [pϱ]1
does not covertly depend on ϱ, [52] reverts to non-adaptivity, assuming that the
statement x (recall that there is no commitment C) is fixed before the CRS is
created. [52] argues that since x does not depend on crs, neither does the index
ϱ of an unsatisfied constraint; hence, a slight modification of the quasi-adaptive
soundness proof of [18,19] goes through.

2.2 FANA Is Not Sound

FANA’s soundness proof states that since the statement x is fixed, the unsatisfied
constraint number ϱ does not depend on the CRS. Next, we will explain why one
cannot assume that the number ϱ of the (possibly only) unsatisfied constraint
did not change after the CRS reprogramming.

If C is a perfectly binding commitment as in DGPRS and FLPS, then one
can use the properties of FSE to guarantee that one cannot open C to a different
value after the CRS reprogramming. Using a succinct FSE commitment as in
FANA, the committed message can change with each CRS reprogramming. So,
one cannot ensure that the partial witnesses are consistent. More precisely, one
cannot break a falsifiable assumption with a black-box reduction if the partial
witnesses are inconsistent (a non-black-box reduction might still be possible).
FANA’s security proof does not guarantee that the adversary uses the same
full witness w after each reprogramming; in particular, there is no guarantee
that ϱ did not change. If ϱ changed, one could not argue that the non-abortion
probability in the soundness reduction is at least 1/n. Indeed, this probability
might be zero when the adversary leaves some constraint unsatisfied, but the
number of this constraint depends on the CRS in a non-trivial manner.

2.3 Semi-Adaptive Black-Box Knowledge-Soundness

An argument system is black-box knowledge-sound if, for every PPT prover,
there exists a black-box PPT extractor Extks such that if the prover convinces
the verifier to accept a statement x with a non-negligible probability, then Extks
extracts a witness w for the validity of x. In an adaptively sound SNARG, since
the prover’s message is much shorter than the witness, one cannot black-box
extract a witness from a single argument. An alternative approach is to extract
a witness directly from the code of the prover. In all existing solutions, such
non-black-box extraction is enabled by non-falsifiable knowledge assumptions.

One can achieve black-box extractable interactive succinct arguments by al-
lowing rewinding the prover to earlier rounds. Rewinding gives the extractor
power to run the prover with different verifier’s randomnesses ϱ and thus obtain
many succinct arguments πϱ. From πϱ, the extractor can “somewhere extract” a
partial witness pϱ. If the total length of different arguments is larger than the
witness length, one does not have the information-theoretic barrier anymore and
can thus potentially compute w from {pϱ} and thus black-box extract w.
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In the interactive case, one usually splits this procedure into two parts: the
rewinding step to obtain many transcripts trϱ (that, in particular, contain πϱ)
and the gluing step that inputs the transcripts and outputs the full witness w.
One formalizes the second step by defining special soundness [16] and saying
that the argument is special-sound if the second step succeeds. The first step
essentially reduces knowledge-soundness to special soundness. We use the same
two-step methodology, albeit for non-interactive semi-adaptive arguments.

In adaptively sound SNARGs, the prover can be rewound to the point before
it creates the argument π. The extractor will not have more power since π is not
rerandomized by the verifier. In non-adaptively sound SNARGs, one can rewind
to the point before the CRS was created. One can then use a new randomness
ϱ to create a new CRS crsϱ and obtain a new succinct argument πϱ. From
πϱ, the extractor can “somewhere extract” a partial witness pϱ. Similarly to the
interactive case, one can thus breach the information-theoretic barrier. However,
a malicious prover can compute each argument using a different witness; this is
one intuition behind the impossibility result of [12] that falsifiable assumption-
based non-adaptively knowledge-sound SNARKs for NP are impossible.

Local and global consistency. If the underlying language is a constraint system,
one can think of ϱ := S as a set of constraints and p

ϱ = pS a partial witness
that satisfies all constraints in the set S. If this holds for every (small) S, the
SNARG satisfies local consistency [41]. For global consistency, one would like
the partial witness pS to be consistent with some full witness w, pS(S) = w|S .
In particular, all partial witnesses should be mutually consistent. ([41] does not
satisfy global consistency.) We will give more details in Section 5.1.

Semi-adaptive black-box knowledge-soundness. Non-adaptively sound SNARKs
can be seen as two-message protocols, where the first message is the CRS, and
the second message is the argument. A logical approach to overcome their impos-
sibility result while still staying in the realm of black-box extraction is to increase
the number of rewinding points (or messages). C&P SNARKs are a natural way
of doing that: they can be seen as four-message protocols, where the first mes-
sage is a commitment key (also known as the language parameter), the second
message is a commitment C and a statement x, the third message is a CRS, and
the fourth message is an argument. However, the CRS does not depend on the
second message; moreover, the same CRS can be used in different SNARKs by
different provers. Thus, semi-adaptivity can be seen as a trust assumption that
(C,x) does not depend on the CRS. We use the name semi-adaptive since the
adversary is allowed to output the statement after seeing ck (the first half of the
trusted parameters) and before seeing crs (another half). See Fig. 1.

Again, the extractor can repeatedly use a new ϱ to create a new CRS crsϱ and
obtain a succinct argument πϱ. From πϱ, the extractor can “somewhere extract”
a partial witness pϱ. In our soundness proof, we do not rewind the creation of
ck. The difference with the non-adaptive case is that we have the commitment C
that must be the same in different rewindings. So, all partial witnesses must be
consistent with C. If they are also consistent with each other, we can compute a
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L crs x
∗ πAdaptive

ck crs x
∗ πQuasi-adaptive

L x crs πNon-adaptive

ck x
∗ crs πSemi-adaptive

Fig. 1. C&P SNARKs: temporal dependencies. In the case of quasi-adaptive and semi-
adaptive soundness, lp = ck also fixes the language Llp. Here, x∗ = (C,x), where C
is a commitment. Non-adaptive soundness differs since x is created before any trusted
parameters (ck or crs), which means that x cannot contain a commitment.

full witness w that is consistent with all partial witnesses and thus satisfies all
constraints. Semi-adaptive knowledge-soundness states that this must always be
possible. In the soundness proof of the new SNARK, we construct a reduction
that works if this is false (i.e., two partial witnesses are not mutually consistent).

Definition. We define a new security notion for C&P SNARKs, semi-adaptive
black-box G-knowledge-soundness that insists that one can efficiently construct
G(w) given oracle access to the prover that outputs arguments corresponding
to the fixed ck, C, x but different CRSs. Its definition is inspired by non-
adaptive black-box knowledge-soundness in [12] and witness-extended emulation
(WEE, [48]). In particular, if an adversary outputs a single accepting transcript,
the black-box extractor outputs both the accepting transcript (from the correct
distribution) and G(w) with a similar probability. Here, G is a permutation
that plays a similar role to G in Groth-Sahai proofs [33] (that are usually G-
extractable) and G-unforgeable signature schemes [5]. In our new SNARK for
R1CS, G(s) := [sy]1 for a trapdoor y. When handling SSP [17] (Boolean circuits)
instead of R1CS, one can set G(s) = s.

Applications of semi-adaptivity. As argued above, black-box G-knowledge-
soundness is a natural security notion that seems to be the best one can do
in the context of SNARKs, given the impossibility results of [26,12]. It is a semi-
adaptive version of the non-adaptive black-box knowledge-soundness of [12].

Semi-adaptive knowledge-sound SNARKs have natural applications. Con-
sider, for example, e-voting for national institutions like the parliament, where
the (universal and updatable) commitment key is made public before elections.
The commitment key might be used in other applications and thus has to be cre-
ated highly securely. In a concrete election, the voters can first commit to their
ballot, the trusted third parties can create a non-universal CRS (that may de-
pend on the ballot structure and say the number of voters), and then each voter
can construct an argument, proving that the ballot is correct. When using our
results, the SNARK relies on falsifiable assumptions. Using weak assumptions is
vital for national security. Proving all NP statements is essential in the case of
complex ballot structures. Practical efficiency, as provided by Punic, is essential
for the SNARK to be used at all. Creating the CRS after the commitment phase
seems a natural compromise to achieve all the other properties.
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CRS-Indistinguishability. To prove black-box knowledge-soundness, we need
that any adversary that makes the verifier accept with a non-negligible prob-
ability must succeed with non-negligible probability for every argument ϱ to
Kcrs. Only then will Extks be able to retrieve all partial witnesses needed to out-
put G(w). To tackle this, it suffices to assume that the CRSs, corresponding to
any two values of ϱ, are indistinguishable.

Special Soundness. We define semi-adaptive computational (k,G)-special sound-
ness, stating that there exists a black-box PPT extractor Extss, such that if an
adversary outputs k consistent transcripts trϱ = (C,x, crsϱ, tdϱ, πϱ) with pairwise
distinct ϱ, then Extss outputs G(w). We prove that any semi-adaptively com-
putationally (k,G)-special-sound and CRS-indistinguishable C&P zk-SNARK is
semi-adaptively black-box G-knowledge-sound. Thus, it suffices to prove that a
zk-SNARK satisfies the first two properties.

2.4 New SNARK

Construction. Since FANA only uses FSE commitments (with commitment keys
reprogrammed by the reduction), it is not semi-adaptively sound. We construct
Punic, a falsifiable assumption-based semi-adaptively sound C&P SNARK with
a succinct commitment. Punic is CRS-indistinguishable and semi-adaptively
black-box G-knowledge-sound for G(s) := [sy]1, where y is a trapdoor. G in-
volves scalar multiplication since the extractor retrieves a group element and
the DL is hard; we need y due to using FSE and VCF. Moreover, G is needed
since we deal with R1CS (i.e., arithmetic circuits). As we note in Section 2.6, in
the case of SSP [17] (Boolean circuits), G can be the identity map.

Punic is a variant of FANA, to which we add a language parameter lp (vector
commitment scheme’s commitment key) and a vector commitment [C]1 to the
witness. Alternatively, Punic is an (optimized) variant of FLPS that replaces the
perfectly-binding commitment scheme with a well-chosen vector commitment
scheme VCF. Our completeness, zero-knowledge, and CRS-indistinguishability
proofs are relatively straightforward. We will next explain the soundness proof.

Soundness Proof. Recall that it suffices to prove special soundness. In the special
soundness proof, we fix lp = VCF.ck, where VCF is a new vector commitment
scheme, described later. In [18,19], one fixes the adversary’s statement (a vector
commitment [C]1 to (x,w), and an R1CS statement x). Then, the reduction
B samples ϱ ←$ [1, n], reprograms the CRS accordingly, runs the soundness
adversaryA once, and guesses the ϱth constraint is violated. If the guess is wrong,
B aborts. This guarantees local consistency (for every ϱ, a partial witness exists
that satisfies the ϱth constraint). [18,19] guarantee soundness (the existence of a
full witness w, consistent with each partial witness) by using a perfectly binding
commitment to (x,w) and checking its consistency with partial witnesses.

We use a different proof strategy since we do not have a perfectly binding
commitment. Our special soundness reduction B inputs n transcripts trϱ. For
each ϱ, B uses FSE to black-box extract a partial witness G(pϱ) allowing to check



10 Helger Lipmaa

whether the ϱth constraint is satisfied. For this, B reprograms FSE’s commitment
key, which is part of Punic’s CRS. The verification equation ascertains that
G(pϱ) is consistent with the value committed to by [C]1.

More precisely, we construct a special soundness extractor Extss that com-
putes G(w) given partial witnesses G(pϱ) output by the FSE black-box some-
where extractor. When Extss fails, we construct three reductions, two of which
are inspired by the reductions in [18,19,52] (we briefly described them above).
The third reduction works when for each ϱ, pϱ satisfies the ϱth constraint, but
Extss fails to output G(w) where w satisfies all constraints. Then, at least two
partial witnesses (say, pi and p

j) must be inconsistent.
The crux of our solution is using FSE to black-box extract well-defined in-

formation, allowing us to build a reduction out of this inconsistency. Let N(ϱ)
be the set of witness coefficients used in the ϱth constraint. For all k ∈ N(ϱ), we
use FSE to black-box extract VCF’s local opening and local proof for the kth
coefficient of the full witness. We need a vector commitment scheme precisely
for the existence of local proofs. Since we black-box extract both local openings
and local proofs by using FSE, VCF needs to satisfy two novel requirements:
(a) full algebraicity: one can compute the vector commitment, the local opening

(the claimed vector coefficient), and the local proof from (x,w) and the
commitment randomizer by using linear maps,

(b) F -position-binding: position-binding even for an adversary who, instead of
coordinates η ̸= η′, outputs F (η) ̸= F (η′), for a permutation F . We need it
since FSE is F -extractable, allowing one to extract only F (η) := [η]1.

In the ϱth loop of the reduction, we reprogram the CRS so that we can black-box
extract (G(ηϱk), [φ

ϱ
k]1) for k ∈ N(ϱ). Here, G(ηϱk) = [ηϱky]1 and [φϱ

k]1 are the local
opening and the local proof of the full witness wϱ the adversary used in the ϱth
iteration. If pi ̸= p

j for some i, j, then we extract two openings (G(ηik), [φ
i
k]1)

and (G(ηjk), [φ
j
k]1), such that ηik ̸= ηjk, breaking G/F -position-binding. Assuming

F -position-binding, all extracted partial witnesses are consistent. Using a greedy
algorithm, we efficiently compute G(w) from {G(pϱ)}. QED.

This is a novel proof technique for handling the case when partial witnesses
exist. We hope it will find other applications like in SNARGs for P or batch
arguments for NP [41,29,15]. A drawback is that we must extract all coefficients
at a constraint, so each R1CS constraint must have a small locality. Any R1CS
instance can be modified to be such by introducing new constraints using stan-
dard techniques. Such a restriction is well-known and used in several efficient
zk-SNARKs, [23,57]. [41] used 3CNF (with locality three) for a similar reason.

Punic’s black-box G-knowledge-soundness relies on several falsifiable bilinear
group assumptions, of which QALINRES [52] is the most complicated. As proven
in [52], QALINRES is secure in the algebraic group model (AGM [22]); for
completeness, we reprove this result.

On No-Signaling. Obtaining global consistency efficiently from local consistency
is a major open problem in constructing falsifiable assumption-based SNARGs.
One approach [42,41,29,15] is to use no-signaling PCPs and commitments. How-
ever, this approach usually works only for memory-bound computations; one
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has to use additional techniques in the general case. Our approach to achieving
global consistency has direct advantages compared to no-signaling commitments.
See Appendix A.2 for a discussion.

2.5 Fully Algebraic F -Position-Binding Vector Commitment

Punic uses a vector commitment scheme VCF. To use FSE to black-box ex-
tract VCF’s local openings and local proofs, VCF must be fully algebraic and
F -position-binding. Both properties seem novel for vector commitment schemes,
though they are similar to known requirements on other primitives (e.g., alge-
braic commitments and F -unforgeable signature schemes [5]).

VCF is based on the CDHK vector commitment scheme [10]. We show CDHK
is fully-algebraic but not F -position-binding. We introduce a new trapdoor y
(explaining the choice of G) and a knowledge component without making VCF
less efficient. VCF remains fully algebraic. We prove VCF is F -position-binding
under a new but standard-looking assumption VCSDH (Vector Commitment
Strong Diffie-Hellman). We reduce VCSDH to QALINRES.

We hope the new notion of fully-algebraic and/or F -position-binding vector
commitments will have independent applications.

2.6 Efficiency

We explicitly strived to make Punic concretely efficient. Its prover computation is
dominated by Θ(n) group operations, and the argument size and verifier compu-
tation are Θλ(1) with small constants. Notably, using vector commitments allows
us (differently from [58,12]) to avoid heavy machinery like FHE, hash trees, iO,
PCP, and SNARK recursion. In our application, efficiency is difficult to achieve:
having larger argument sizes, one can black-box extract more information at a
time, making achieving global consistency less difficult. (See comparison with
no-signaling commitments in Appendix A.2.)

With some loss in efficiency, one can construct a semi-adaptively sound
SNARK based on weaker assumptions. One can use (1) better-known
somewhere-extractable commitments [34] known to exist under various assump-
tions instead of FSE commitments and (2) hash trees instead of the new vector
commitment scheme. On the other hand, we do not know how to instantiate
linear subspace arguments efficiently on general assumptions.

Kilian. In Appendix A.3, we discuss a solution based on Kilian’s seminal inter-
active zero-knowledge argument. We will leave generalizations for future work.

3 Preliminaries

Let p be a large prime. Denote F := Zp. For a ∈ Fm and S ⊆ [1,m], let
a|S := (ai)i∈S . For two vectors a and b, let a ◦ b be their Hadamard product,
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with (a ◦ b)i = aibi. For a matrix A = (Aij), Ai denotes its ith row and A(j)

denotes its jth column. Let colspace(A) be the column space of A.
PPT denotes probabilistic polynomial-time; λ ∈ N is the security parameter.

We assume all adversaries are stateful, i.e., keep up a state between different
executions. For an algorithm A, range(A) is the range of A, i.e., the set of
valid outputs of A, RNDλ(A) denotes the random tape of A (for given λ), and
r ←$ RNDλ(A) denotes the uniformly random choice of r from RNDλ(A). By
s ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
outputs s. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write a ≈λ b if |a− b| ≤ negl(λ).

Assume n | (p−1) is a power of two. Let ω be the nth primitive root of unity
modulo p and let H := ⟨ω⟩ = {ωi−1}ni=1 be a subgroup of F∗. Let ZH(X) :=∏n

i=1(X − ωi−1) = Xn − 1 be the unique degree n monic polynomial, such
that ZH(ω

i−1) = 0 for all i ∈ [1, n]. For i ∈ [1, n], let ℓi(X) be the ith Lagrange
polynomial, that is, the unique degree-(n−1) polynomial, such that ℓi(ωi−1) = 1
and ℓi(ω

j−1) = 0 for i ̸= j. Then, ℓi(X) = (Xn − 1)ωi−1/
(
n(X − ωi−1)

)
.

Cryptography. A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT , ê,
[1]1, [1]2), where G1, G2, and GT are additive cyclic (thus, abelian) groups of
prime order p, ê : G1 ×G2 → GT is an efficient non-degenerate bilinear pairing,
and [1]γ is a fixed generator of Gγ . While [1]γ is a part of p, for the sake of
clarity, we often give it as an explicit input to different algorithms. We assume
n | (p− 1), where n is a large deterministically fixed upper bound on the size of
the statements that one handles in this bilinear group. The bilinear pairing is of
Type-3; that is, there is no efficient isomorphism between G1 and G2. We use the
standard bracket notation: for γ ∈ {1, 2, T}, we write [a]γ to denote a[1]γ . We
denote ê([a]1, [b]2) by [a]1 • [b]2. We mix freely bracket and matrix notation, e.g.,
AB = C iff [A]1•[B]2 = [C]T . We denote [A]2•[B]1 := [AB]T = ([B]⊺1•[A]⊺2)

⊺.
Let γ ∈ {1, 2}. DDHGγ

(Decisional Diffie-Hellman) holds relative to Pgen, if
for all PPT A, AdvddhPgen,Gγ ,A(λ) :=

Pr
[
A(p, [x, y, xy + βz]γ) = β | p← Pgen(1λ);x, y, z ←$ F;β ←$ {0, 1}

]
≈λ

1
2 .

Let κ∗, κ ∈ N+, with κ∗ ≥ κ, be small constants. A PPT-sampleable distri-
bution Dκ∗,κ is a matrix distribution if it samples matrices A ∈ Fκ∗×κ of full
rank κ. Dκ∗,κ is robust [40] if it samples matrices A whose upper κ × κ sub-
matrix Ā is invertible. Denote the lower (κ∗ − κ) × κ submatrix of A by A.
Let Dκ := Dκ+1,κ. Dκ∗,κ-SKerMDH (Split Kernel Diffie-Hellman, [27]) holds
relative to Pgen, if for all PPT A, Advskermdh

Pgen,Gγ ,Dκ∗,κ,A(λ) :=

Pr

[
A⊺(x1 − x2) = 0κ ∧
x1 − x2 ̸= 0κ∗

p← Pgen(1λ);A←$ Dκ∗,κ;
([x1]1, [x2]2)← A(p, [A]1, [A]2)

]
≈λ 0 .

The QALINRES Assumption . The new zk-SNARK relies on the n-
Quadratic Arithmetic Linear Residuosity (n-QALINRES) assumption from [52].
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Definition 1. n-Quadratic Arithmetic Linear Residuosity (n-QALINRES, [52])
holds relative to Pgen, if for all PPT A, AdvqalinresPgen,n,A(λ) :=

Pr


π =

(
j, [a, η̂a, φa, c, η̂c, φc, h]1, [b, η̂b, φb]2

)
∧

a = φa(x− ωj−1) + η̂a/y ∧
b = φb(x− ωj−1) + η̂b/y ∧
c = φc(x− ωj−1) + η̂c/y ∧
ab− c = hZH(x) ∧ η̂aη̂b ̸= η̂cy

p← Pgen(1λ);
x←$ F \H; y ←$ F∗;
ck← ([(xi)ni=0, y]γ)

2
γ=1;

π ← A(ck)

 ≈λ 0 .

QALINRES was introduced in [52] as a more realistic version of TSDH-like
assumptions used in [18,19]. In particular, it does not rely on A outputting
elements of GT . See [52] and Appendix B.2 for a discussion. QALINRES is not
publicly verifiable, but it has an efficient challenger.

Lipmaa and Pavlyk [52] proved that QALINRES is secure in the AGM under
the PDL assumption. Since [52] does not include this proof, we reprove it in
Appendix C. We stress that while the AGM is an idealized model that can
be used to prove non-falsifiable assumptions, QALINRES itself is a falsifiable
assumption. QALINRES is non-interactive. Moreover, QALINRES is a “Maurer-
game” [60], and thus the specific AGM criticisms of [60,61] do not apply to it.

3.1 Underlying Commitment Schemes

We use several commitment schemes. Each commitment scheme has PPT algo-
rithms Pgen : 1λ 7→ p (for parameter generation), Kck : (p, n) 7→ (ck, td) (for key
generation; here, n is the vector length) and Com : (ck,µ; r) 7→ (C,D) (for com-
mitment; D is the decommitment information). LetM be the message space, C
the commitment space, and R the randomizer space. To simplify notation, we
always assume ck implicitly contains p.

Vector Commitment. Let D be a domain. A vector commitment scheme Γ =
(Pgen,Kck,Com, LOpen, LVer) is a commitment scheme, with M = Dn for n ≤
poly(λ), that has two additional algorithms [47,36,13]:
Local opening: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), commitment C ∈ C, index j ∈

[1, n], and decommitment information D, LOpen(ck, C, j,D) returns (η, φ),
where η (local opening) is a candidate for µj and φ is a local proof.

Local verification: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), commitment C ∈ C, index
j ∈ [1, n], candidate value η for µj , and local proof φ, LVer(ck, C, j, η, φ)
returns either 0 or 1.

Γ must be complete according to the natural definition (LVer(p, ck, C, j, η, φ) = 1
for (η, φ)← LOpen(ck, C, j,D) and (C,D)← Com(ck,µ; r)). Γ must satisfy the
following security properties.
Position-binding: for all λ, PPT A, and n ∈ poly(λ), AdvposbPgen,n,Γ,A(λ) :=

Pr

 η0 ̸= η1 ∧
LVer(ck, C, j, η0, φ0) = 1∧
LVer(ck, C, j, η1, φ1) = 1

p← Pgen(1λ);
(ck, td)← Kck(p, n);
(C, j, η0, η1, φ0, φ1)← A(ck)

 ≈λ 0 .
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Kck(p, n): x←$ F \H; td← x; ck← ([(xi)ni=0]γ , [1, x]3−γ);
store [ckℓ]γ ← [ℓ1(x), . . . , ℓn(x), ZH(x)]γ ; return (ck, td);

Com(ck,µ; r): r ←$ F; [C(x)]γ ← [ckℓ]γ · (µ
r ) =

∑n
i=1 µi[ℓi(x)]γ + r[ZH(x)]γ ;

return ([C(x)]γ , (µ, r)); // (C,D)

LOpen(ck, [C(x)]γ , j, (µ, r)): η ← µj ; [φ(x)]γ ← [(C(x)− η)/(x− ωj−1)]γ ;
return (η, [φ(x)]γ);

LVer(ck, [C(x)]γ , j, η, [φ(x)]γ):
check that [C(x)− η]γ • [1]3−γ = [φ(x)]γ • [x− ωj−1]3−γ ;

Sim(ck, td = x, {ji}i∈I , {µji}i∈I): r ←$ F; r′ ← (
∑

i∈I µjiℓji(x))/ZH(x) + r;
[C(x)]γ ← Com(ck,0; r′) = r′[ZH(x)]γ ; return [C(x)]γ ;

Fig. 2. The position-binding vector commitment scheme CDHK.

Perfect zero-knowledge: there exists a PPT simulator Sim, such that for all λ,
all p ← Pgen(1λ), all (ck, td) ← Kck(p, n), all µ ∈ Dn, and any poly-size set
{ji ∈ [1, n]}i, the distributions δ0 and δ1 are identical, where

δ0 := {(ck, C, {LOpen(ck, C, ji, D)}) : r ←$ RNDλ(Com); (C,D)← Com(ck,µ; r)} ,

δ1 := {(ck, Sim(ck, td, {ji}, {µji}))} .

Modeled after the seminal KZG polynomial commitment scheme [43], Camenisch
et al. [10] proposed a vector commitment scheme. Let D = F,M = Dn, C = Gγ

for γ ∈ {1, 2}, andR = F. In Fig. 2, we depict a simplified version CDHK of their
scheme. CDHK is position-binding under the standard n-SDH assumption [9].
Straightforwardly, CDHK satisfies perfect zero-knowledge.

FSE Commitment. Let F : M → C be a (one-way, p-dependent) permuta-
tion. Let F be a function family, where f ∈ F inputs a vector µ and outputs
an element of C. A functional4 somewhere F -extractable (F -FSE) commitment
scheme [19] Γ = (Pgen,Kck,Com, swExt) for F allows one to commit to a vector
µ, s.t. for any q ≤ n, (1) the commitment key ck depends on q and a function
tuple f1, . . . , fq ∈ F , (2) commitment keys corresponding to different function
tuples are computationally indistinguishable, and (3) given the extraction key,
one can extract from the commitment the vector (F (f1(µ)), . . . , F (fq(µ))).

More precisely, an F -FSE commitment scheme Γ = (Pgen,Kck,Com, swExt)
for a function family F consists of the following (P)PT algorithms.
Parameter generation: Pgen(1λ) returns p (e.g., the group description).
Commitment key generation: for parameters p, a positive integer n ≤

poly(λ), a locality parameter q ∈ [1, n], and a tuple S = (f1, . . . , f|S|) ⊆ F
4 Defined as functional somewhere statistically binding (SSB) commitment in [19];

generalizes SSB hashes [34,54]. In SSB hashes, F is the family of point functions,
and q is always equal to one. On the other hand, we do not need the local opening
property, thus obtaining better efficiency. Since extractability is essential, we call
them functional SE. DGPRS and FLPS predate [15]. SE commitments have been
used to build SNARGs for P and batch-arguments for NP [29,15].
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with |S| ≤ q, Kck(p, n, q,S) outputs a commitment key ck and an extraction
key td = ek. We assume ck and ek implicitly specify p.

Commitment: for a commitment key ck, a message µ ∈Mn, and a randomizer
r ∈ R, Com(ck,µ; r) outputs a commitment C ∈ C.

Somewhere (black-box) extraction: for p ∈ Pgen(1λ), a positive integer
n ≤ poly(λ), a locality parameter q ∈ [1, n], a tuple S = (f1, . . . , f|S|) ⊆ F
with 1 ≤ |S| ≤ q, (ck, ek) ∈ Kck(p, n, q,S), and C ∈ C, swExt(ek, C) returns
a tuple

(
F (f1(µ)), . . . , F (f|S|(µ))

)
∈M|S|.

For S = (f1, . . . , f|S|) ⊆ F and a vector µ, denote fS(µ) = (f1(µ), . . . , f|S|(µ)).
An F -FSE commitment scheme Γ for the function family F can satisfy the

following security requirements.

Function-Set Hiding: for all λ, PPT A, n ∈ poly(λ), and q ∈ [1, n],
AdvfshPgen,Γ,n,q,A(λ) := 2 · |εfsh − 1/2| ≈λ 0, where εfsh :=

Pr

[
β′ = β ∧ S0,S1 ⊆ F
∧ |S0|, |S1| ≤ q

p← Pgen(1λ); (S0,S1)← A(p, n, q);β ←$ {0, 1};
(ck, td)← Kck(p, n, q,Sβ);β′ ← A(ck)

]
.

Intuitively, ck reveals computationally no information about S.

Almost Everywhere Perfectly Hiding (AEPH): for all λ, unbounded A, n ∈
poly(λ), and q ∈ [1, n], AdvaephΓ,n,q,A(λ) := 2 · |εaeph − 1/2| = 0, where εaeph :=

Pr

 β′ = β ∧ S ⊆ F
∧ |S| ≤ q ∧
fS(µ0) = fS(µ1)

p← Pgen(1λ);S ← A(p, n, q);
(ck, td)← Kck(p, n, q,S); (µ0,µ1)← A(ck);
β ←$ {0, 1}; r ←$R; (C,D)← Com(ck,µβ ; r);
β′ ← A(C)

 .

Intuitively, given ck, that depends on S, the commitment hides perfectly the
values of µj for j ̸∈ S.

Somewhere F -Extractability: for all λ, p ∈ Pgen(1λ), n ∈ poly(λ), q ∈ [1, n],
S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, ek)← Kck(p, n, q,S), and PPT A,

Pr

[
swExt(ek, C) ̸=

(
F (f1(µ)), . . . , F (f|S|(µ))

) (µ, r)← A(ck);
(C,D)← Com(ck,µ; r)

]
= 0 .

I.e., given ck, that depends on S, and an extraction key, one can black-box
extract F (fS(µ)). ([19] called this property somewhere perfect F -extractability.)

Construction. Fix γ ∈ {1, 2}. Let F : a 7→ [a]γ . In Fig. 3, we depict the FSE
scheme of [19] for the family of all linear maps. It represents q linear maps by
[M ]γ ∈ Gq×n

γ , where each row contains coefficients of one map. Clearly, [c]γ ←
Com(ck,µ; r) is equal to ck(µr ) = R[M ′]γ(

µ
r ) =

[
RMµ

R(ϱ⊺µ+r)

]
γ
.

Fact 1 ([19]) Fix q < n = poly(λ). The scheme in Fig. 3 is (i) function-set hid-
ing relative to Pgen under DDHGγ

: for each PPT A, there exists a PPT B, such
that AdvfshPgen,Γ,n,q,A(λ) ≤ ⌈log2(q + 1)⌉ · AdvddhGγ ,Pgen,B(λ). (ii) almost everywhere
perfectly-hiding, (iii) somewhere F -extractable for F = [·]γ .
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Kck(p, n, q, [M ]γ ∈ Gq×n
γ ): // M = R = Fn and C = Gq+1

γ

sample a full-rank R←$ F(q+1)×(q+1); ϱ←$ Fn;
[M ′]γ ←

[
M 0
ϱ⊺ 1

]
γ
∈ F(q+1)×(n+1); ck← R[M ′]γ ∈ G(q+1)×(n+1)

γ ;
td = ek← R−1; return (ck, td);

Com(ck,µ ∈ Fn; r ∈ F): return ck · (µ
r );

swExt(ek, [c]γ): compute
[

Mµ
ϱ⊺µ+r

]
γ
← ek · [c]γ ; return [Mµ]γ .

Fig. 3. The [·]γ-FSE commitment scheme FSEγ for linear maps in Gγ .

3.2 QA-NIZK

A QA-NIZK argument system [40] Π has public parameters lp (a language pa-
rameter, like a commitment key) and crs (a language-dependent common ref-
erence string). Π proves membership in the language Llp defined by a relation
Rlp = {(x,w)}. Both are determined by lp ←$ Dpar (sampled by PPT Klp),
where Dpar is a public distribution. Dpar is witness-sampleable [40] if there ex-
ists a PPT algorithm Klt that samples (lp, lt) such that lp is distributed according
to Dpar, and lp ∈? range(Dpar) can be efficiently verified given lt.

A QA-NIZK for Rpar is a tuple of PPT algorithms Π = (Pgen,Klp,Kcrs,P,V,
Sim). In the case of witness-sampleable languages, Klp is replaced by Klt. Pgen is
the parameter generation algorithm, Klp is the language parameter generation al-
gorithm, Klt is the corresponding generation algorithm in the witness-sampleable
case that creates lp and lt, Kcrs is the CRS generation algorithm, P is the prover,
V is the verifier, and Sim is the simulator. We assume that lp contains p. Sim is
a single algorithm that works for each relation in Rpar := {Rlp}lp∈range(Dpar).

Π can satisfy the following security notions.

Perfect Completeness: for all λ and PPT A,

Pr

 V(lp, crs,x, π) = 0∧
(x,w) ∈ Rlp

p← Pgen(1λ); lp← Klp(p);
(crs, td)←$ Kcrs(lp); (x,w)← A(lp, crs);
π ← P(lp, crs,x,w)

 = 0 .

Computational Quasi-Adaptive Strong Soundness: defined only if lp is witness-
sampleable. For any PPT A, AdvstrsoundPgen,Dpar,BLS,A(λ) :=

Pr

[
V(lp, crs,x, π) = 1∧
(¬∃w)(x,w) ∈ Rlp

p← Pgen(1λ); (lp, lt)← Klt(p);
(crs, td)←$ Kcrs(lp); (x, π)← A(lp, lt, crs)

]
≈λ 0 .

Perfect Zero Knowledge: for all unbounded A, |εzk1 − εzk2 | = 0, where εzkβ :=

Pr
[
AOβ(·,·)(lp, crs) = 1 p← Pgen(1λ); lp← Klp(p); (crs, td)←$ Kcrs(lp)

]
.

Here, A is given an oracle access to Oβ(·, ·), where O0(x,w) returns 0 (reject) if
(x,w) ̸∈ Rlp, and otherwise it returns P(lp, crs,x,w). Similarly, O1(x,w) returns
0 if (x,w) ̸∈ Rlp, and otherwise it returns Sim(lp, crs, td,x).
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C&P QA-SNARGs. A QA-NIZK is succinct (succinct non-interactive argument,
QA-SNARG) if the argument length is sublinear in poly(λ) · (|x| + |w|). It is
commit-and-prove (C&P) if lp is a commitment key and the statement contains
an extractable commitment (to a witness) under this commitment key.

Gentry-Wichs Impossibility Result. Gentry and Wichs [26] proved that if an
NP language L has a sub-exponentially (resp., exponentially) hard subset-
membership problem and Π is a complete SNARG in the CRS model with
|π| ≤ poly(λ) · (|x| + |w|)o(1) (resp., |π| ≤ poly(λ) · (|x| + |w|)c + o(|x| + |w|)
for some constant c < 1) for L, then there is a black-box reduction from the
adaptive soundness of Π to a falsifiable assumption X only when X is false. [12]
clarifies why linear subspace QA-SNARGs do not contradict Gentry-Wichs. In
Appendix A.1, we explain how this relates to the current work.

Bilateral Subspace QA-SNARG. Denote [M ]∗ := ([M1]1, [M2]2). A bilateral
subspace argument system, with lp = [M ]∗ ∈ Gn1×m

1 ×Gn2×m
2 , allows to prove

that ([c1]1, [c2]2) ∈ Llp, where

Llp :=
{
([c1]1, [c2]2) ∈ Gn1

1 ×Gn2
2 : (∃w ∈ Fm)( c1c2 ) =

(
M1

M2

)
w
}

,

that is, ( c1c2 ) ∈ colspace
(
M1

M2

)
. Note that it does not have the C&P property,

unless [M ]∗ is a commitment key.
For the sake of completeness, in Fig. 8 (see Appendix B.1), we depict the

González-Hevia-Ràfols bilateral subspace QA-SNARG argument system BLS for
Llp. Lipmaa and Pavlyk [52] generalized a theorem by González and Ràfols [27]
to any nγ ×m matrices M

γ
(even if m > nγ), given that rank

(
M1

M2

)
< n1 + n2.

This generalization is important for us since in Punic (see Eq. (4)), m > n1, n2.

Fact 2 ([27,52]) Fix λ, n1, n2, m. Let κ = 2. Let Dpar be a matrix distribution
on [M ]∗ ∈ Gn1×m

1 × Gn2×m
2 , such that rank

(
M1

M2

)
< n1 + n2. Then (1) BLS

is perfectly complete and perfectly zero-knowledge. (2) Assume Dpar is witness-
sampleable and Dκ is robust. If Dκ-SKerMDH holds relative to Pgen then BLS
is computationally quasi-adaptively strongly sound.

We need κ = 2 since SKerMDH does not hold for κ = 1 [27]. The prover’s work
is dominated by 2mκ scalar multiplications, the verifier’s work is dominated by
(n1 + n2 + 2κ)κ pairings, and π consists of 2κ group elements.

4 New Vector Commitment Scheme

We need a pairing-based vector commitment scheme VCF that is fully-algebraic
and F -position-binding. Since we use the [19]’s FSE to black-box extract VCF’s
local openings and local proofs, both novel requirements are needed. W.l.o.g.,
we consider commitment schemes with an output from G1.
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4.1 Definitions

Fully-Algebraic. Recall that a commitment scheme is algebraic if
Com(ck,µ; r) = [M∗]1(

µ
r ) for a matrix [M∗]1 efficiently computable from ck.

Definition 2. A vector commitment scheme is fully-algebraic, if C :=
Com(ck,µ; r) = [M∗]1(

µ
r ), [η]1 = [Mη

j ]1(
µ
r ), and [φ]1 = [Mφ

j ]1(
µ
r ), where

[η, φ]1 = LOpen(ck, C, j, (µ, r)), for some public matrices [M∗]1, [Mη
j ]1, and

[Mφ
j ]1 that can be efficiently computed from ck and (in the last two cases) j.

Let ej be the jth unit vector,. Clearly, [η]1 = [µj ]1 = [e⊺j ∥0]1 · (µr ) holds for any
vector commitment scheme. Thus, the existence of Mη

j is trivial and one needs
to only show Com(ck,µ; r) = [M∗]1(

µ
r ) and [φ]1 = [Mφ

j ]1(
µ
r ).

The vector commitment scheme of Catalano and Fiore [13] is fully algebraic,
but it has a commitment key of Θ(n2) group elements and is thus inefficient.
The more efficient vector commitment scheme of Libert et al. [47,36] is not fully
algebraic. The CDHK [10] vector commitment scheme is efficient and algebraic
but not known to be fully algebraic. In Section 4.2, we show that CDHK is fully
algebraic. However, it does not satisfy the following requirement.

F -Position-Binding. In Punic, we use FSE to black-box extract F (η) = F (µj)
for a one-way permutation F . Thus, we need the vector commitment scheme to
be position-binding even if the position-binding adversary outputs F (η) instead
of η. This is similar to how F -unforgeable signature schemes [5] is defined when
the adversary outputs F (µ) instead of the message µ. F -position-binding suffices
in our case since in the soundness proof of Punic, we are not interested in the
value of η but only in testing whether two local openings are equal. Since F is a
permutation, such testing can be performed on F (η) and F (η′).

Definition 3. An F -position-binding vector commitment scheme is a commit-
ment scheme that has the following additional algorithms:
Local F -opening: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), a commitment

C ∈ C, a coordinate j ∈ [1, n], and a decommitment information D,
LOpenF (ck, C, j,D) returns (F (η), φ), where η is a local opening (a can-
didate value of µj) and φ is a local proof.

Local F -verification: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), a commitment C ∈ C,
a coordinate j ∈ [1, n], a local opening F (η), and a local proof φ, LVerF (ck,
C, j, F (η), φ) returns either 0 or 1.

It must be complete and satisfy the following security notion:
F -position-binding: for all λ, PPT A, and n ∈ poly(λ), AdvfposbPgen,F,n,Γ,A(λ) :=

Pr

 η0 ̸= η1 ∧
LVerF (ck, C, j, F (η0), φ0) = 1∧
LVerF (ck, C, j, F (η1), φ1) = 1

p← Pgen(1λ); (ck, td)← Kck(p, n);
(C, j, F (η0), F (η1), φ0, φ1)← A(ck)


is negligible.

We will omit the subscript F when it is clear from the context. In Punic, F is
such that the FSE commitment scheme is somewhere F -extractable. In the case
of the FSE commitment scheme of [19], F = [·]1 or F = [·]2.
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Kck(p, n): x←$ F \H; y ←$ F∗; td← (x, y);
ck← ([(xi)ni=0, y]γ , [(x

i)ni=0, y, xy]3−γ); // Private verif.: [xy]γ /∈ ck

compute and store [ckℓ]γ ← [ℓ1(x), . . . , ℓn(x), ZH(x)]γ ;
return (ck, td);

Com(ck,µ; r): r ←$ F; [C(x)]γ ← [ckℓ]γ · (µ
r ) =

∑n
i=1 µi[ℓi(x)]γ + r[ZH(x)]γ ;

return ([C(x)]γ , (µ, r)); // (C,D)

LOpen(ck, [C(x)]γ , j, (µ, r)): [η̂]γ ← µj [y]γ ; // µj = C(ωj−1)

[ckℓ,j ]γ ← [Qℓ1,j(x), . . . , Qℓn,j(x), QZH,j(x)]γ ;
[φ(x)]γ ← [ckℓ,j ]γ · (µ

r ) =
∑n

i=1 µi[Qℓi,j(x)]γ + r[QZH,j(x)]γ ;
return [η̂, φ(x)]γ .

LVer(ck, [C(x)]γ , j, [η̂, φ(x)]γ): check [C(x)]γ • [y]3−γ − [η̂]γ • [1]3−γ = [φ(x)]γ •
([xy]3−γ − ωj−1[y]3−γ); // Public verification only

Sim(ck, td = x, {ji}i∈I , {µji}i∈I): r ←$ F; r′ ← (
∑

i∈I µjiℓji(x))/ZH(x)+r; return
[C(x)]γ ← Com(ck,0; r′) = r′[ZH(x)]γ ;

Fig. 4. The new [·]γ-position-binding vector commitment scheme VCFγ .

4.2 Construction

CDHK is clearly algebraic. We will show that it is fully algebraic by showing
that [φ(x)]1 can be computed by using a linear map.

For a polynomial f(X) ∈ F[X] and an integer j ∈ [1, n], let Qf,j(X) be the
quotient of (f(X)− f(ωj−1))/(X − ωj−1). Clearly, degQf,j = deg f − 1.

Lemma 1. Fix j ∈ [1, n]. For C(X) =
∑n

i=1 µiℓi(X) + rZH(X) ∈ F[X],
QC,j(X) = C(X)−C(ωj−1)

X−ωj−1 . Then, [QC,j(x)]1 = [ckℓ,j(x)]1 ·(µr ), where ckℓ,j(X) :=
(Qℓ1,j(X), . . . , Qℓn,j(X), QZH,j(X)). Thus, CDHK is fully-algebraic.

Proof. Clearly, QC,j(X) = (C(X) − C(ωj−1))/(X − ωj−1) is equal to
(
∑n

i=1 µiℓi(X) + rZH(X) − µj)/(X − ωj−1). Since
∑n

i=1 µiℓi(ω
j−1) = µj and

ZH(ω
j−1) = 0, QC,j(X) =

∑n
i=1 µiQℓi,j(X) + rQZH,j(X) = ckℓ,j(X) · (µr ). ⊓⊔

Making CDHK [·]γ-Position-Binding. One can easily break [·]γ-position-
binding of CDHK (see Fig. 2) by outputting ([C]γ , j, [η, η

′]γ , [φ,φ
′]γ), where

[C]γ = [x−ωj−1]γ , [η]γ = [0]γ , [η′]γ = [x−ωj−1]γ , [φ]γ = [1]γ , and [φ′]γ = [0]γ .
Clearly, C − η = φ(x− ωj−1) and C − η′ = φ′(x− ωj−1).

We avoid such attacks by guaranteeing that [η, η′]γ do not depend on x.
We achieve this by making the local opening depend on a new trapdoor y and
not adding [xiy]γ to ck for i > 0. (However, [y]1, [y]2, [y, xy]3−γ must be in
ck for VCF to be publicly verifiable.) Importantly, the communication does not
increase. In Fig. 4, we depict the new vector commitment scheme VCFγ . Clearly,
C(x) = (x − ωj−1)φ(x) + η̂/y since the remainder of ℓi(X)/(X − ωj−1) is 1 if
i = j and 0, otherwise. The local opening is Gγ(µj) = Gγ(η) for Gγ(s) := [sy]γ .

The soundness proofs (but not the constructions) of QA-SNARGs of [18,19]
use implicitly a version of VCF but without defining the used primitive as a
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vector commitment scheme or writing down the needed security properties. Their
implicit vector commitment scheme is less efficient, requiring the local opening
to output both µj [1]γ and µj [y]γ . Their constructions also use a perfectly-hiding
commitment scheme, while we use only VCF.

Private-Verifiability. Punic uses both VCF1 and VCF2. We need to use the
same trapdoor in both cases, and thus want to have the same ck when defining
VCFγ . Thus, although this is not necessary for VCFγ itself, we add [(xi)ni=0]3−γ
to the commitment key. However, we cannot add [xy]γ to ck since that would
break VCF’s security. To overcome this, one possibility is to reuse the trapdoor
x but have separate trapdoors y1 and y2 in VCF1 and VCF2. We opted for a
simpler possibility: since in Punic, VCFγ does not have to be publicly verifiable,
one can omit [xy]γ (only used in verification) from ck. This allows us to reuse
the same trapdoor y in both VCF1 and VCF2. From now on, we will always use
the privately verifiable version of VCFγ with ck← ([(xi)ni=0, y]γ , [(x

i)ni=0, y]3−γ).

4.3 Security Analysis

VCFγ is clearly perfectly zero-knowledge. From a position-binding collision
([C(x)]γ , j, [η̂, η̂

′]γ , [φ,φ
′]γ) with η̂ ̸= η̂′, we get [η̂′− η̂]γ • [1]3−γ = [φ−φ′]γ • [(x−

ωj−1)y]3−γ and thus [φ−φ′]γ = 1
(x−ωj−1)y [η̂

′− η̂]γ . We define a new assumption
n-VCSDH that states that it is difficult to output [φ− φ′]γ and [η̂′ − η̂]γ ̸= [0]γ
that satisfy the above equation.

Definition 4. n-Vector-Commitment Strong Diffie-Hellman (n-VCSDH) holds
relative to Pgen in Gγ , if for all PPT A, AdvvcsdhPgen,γ,n,A(λ) :=

Pr

 η̂ ̸= 0∧
[φ]γ = 1

(x−ωj−1)y [η̂]γ

p← Pgen(1λ);x←$ F \H; y ←$ F∗;
ck← ([(xi)ni=0, y]1, [(x

i)ni=0, y]2);
(j, [η̂, φ]γ)← A(ck)

 ≈λ 0 .

The following lemma is straightforward.

Lemma 2. Privately-verifiable VCF1 is [·]γ-position-binding iff n-VCSDH holds
relative to Pgen.

VCSDH is similar to known SDH-like [9] assumptions like RSDH [28].
VCSDH is privately-verifiable but clearly falsifiable. It is intuitively secure since
[η̂]γ cannot depend on xy, and thus φ(x, y) is not a polynomial. Next, prove that
VCSDH follows from QALINRES, which was proven in [52] to be secure in the
AGM, [22]. Thus, VCSDH is secure in the AGM and falsifiable. Punic relies on
QALINRES and not on VCSDH directly.

Lemma 3. Fix n = poly(λ). If n-QALINRES holds, then n-VCSDH holds.

See Appendix D.1 for the proof.
QALINRES can restated as an algebraic security property of privately-

verifiable VCFγ , observing that say a = φa(x − ωj−1) + η̂a/y iff VCF1.LVer(ck,
[a]1, j, [η̂a]1, [φa]1). Privately-verifiable VCF1 and VCF2 share the commitment
key; this is possible since we do not require QALINRES to be publicly-verifiable.
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4.4 Committing to Linear Maps

We need the following result. See Appendix D.2 for the proof.

Lemma 4. Let VCF1 be as in Fig. 4 Let µ ∈ Fm and U ∈ Fn×m.
Let uj(X) :=

∑n
i=1 Uijℓi(X) be the interpolating vector of U (j), cku :=

(u1(x)∥ . . . ∥um(x)∥ZH(x)) = ckℓ · (U 0
0 0 ), [cke,j ]1 := G(e⊺j ∥0), and cku,j :=

(Qu1,j(x)∥ . . . ∥Qum,j(x)∥QZH,j(x)). Then, [C(x)]1 ← Com(ck,Uµ; r) and
(G(η), [φ]1)← LOpen(ck, [C(x)]1, j,D = (Uµ, r)) are linear maps of (µr ):

[C(x)]1 = [cku]1 · (µr ) , G(η) = G(cke,j) · (µr ) , [φ]1 = [cku,j ]1 · (µr ) .

Thus, one can compute the commitment to Uµ and its local proof as [cku]1(
µ
r )

and [cku,j ]1(
µ
r ) given public matrices that depend on x, U , and j.

5 New C&P Zk-SNARK Security Notions

The new C&P zk-SNARK satisfies a novel soundness notion, semi-adaptive
black-box G-knowledge-soundness. As motivated in Section 2.3, semi-adaptivity
is a natural version of non-adaptivity for C&P SNARKs. Black-box G-
knowledge-soundness is stronger than local consistency (Kalai et al., [41]). Semi-
adaptive black-box G-knowledge-soundness is a semi-adaptive variant of the non-
adaptive black-box knowledge-soundness of [12]. Moreover, we need Punic to be
CRS-indistinguishable. Next, we define the new security notions.

5.1 R1CS And R1CSf

Let n be the number of constraints, m be the number of variables, and
mx < m be the number of public inputs and outputs. Let U ,V ,W ∈ Fn×m

be instance-dependent matrices and let ( x
w
) ∈ Fm. An R1CS [25] instance

J = (F,mx,U ,V ,W ) defines the following relation5:

RJ =
{
(x,w) : x ∈ Fmx ∧ w ∈ Fm−mx ∧ U( x

w
) ◦ V ( x

w
) = W ( x

w
)
}

. (1)

We say (x,w) satisfies J if (x,w) ∈ RJ. Crucially, one can check that (x,w) ∈
RJ by checking a conjugation of local constraints. For a constraint ϱ ∈ [1, n],

NJ(ϱ) := {j : Uϱj ̸= 0 ∨ Vϱj ̸= 0 ∨Wϱj ̸= 0}

(the ϱth neighborhood) is the set of variables in the neighborhood of the con-
straint ϱ. We usually omit the subscript J. W.l.o.g., assume that the set of
neighborhoods covers the whole range [1,m]. Otherwise, some variables are not
used in the instance and can thus be omitted. For f ≥ 1, let R1CSf be the
language of instances J, such that |N(ϱ)| ≤ f for all ϱ.

Fix ϱ ∈ [1, n]. Let pϱ : N(ϱ) → F be an assigment of variables from N(ϱ).
We say that (x,pϱ) locally satisfies the instance J iff
5 (U ,V ,W ) is a part of the instance and thus our SNARKs are non-universal. The

most efficient known universal SNARKs [32] in the standard model (without random
oracles) have quadratic size CRS and are thus too inefficient for practice.
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(1) p
ϱ agrees with the statement x: (∀j ∈ ([1,mx] ∩N(ϱ)))pϱ(j) = xj , and

(2) p
ϱ satisfies the ϱth constraint:

(
∑

j∈N(ϱ) Uϱjp
ϱ(j)) · (

∑
j∈N(ϱ) Vϱjp

ϱ(j)) =
∑

j∈N(ϱ) Wϱjp
ϱ(j) .

If only 1 holds, we say that pϱ satisfies the ϱth constraint. If both 1 and 2 hold,
we write (x,pϱ) ∈ Rϱ

loc,J, where Rϱ
loc,J :={

(x,pϱ)
((∀j ∈ ([1,mx] ∩N(ϱ)))pϱ(j) = xj) ∧(
(
∑

j∈N(ϱ) Uϱjp
ϱ(j)) · (

∑
j∈N(ϱ) Vϱjp

ϱ(j)) = (
∑

j∈N(ϱ) Wϱjp
ϱ(j))

)} . (2)

Note that the second element of (x,w) ∈ RJ is a full witness while the second
element of (x,pϱ) ∈ Rϱ

loc,J is a partial witness. Moreover, one can use pairings
to check (x,pϱ) ∈? Rϱ

loc,J even if only given (x, [pϱ]1).
For i, j ∈ [1, n], we define the consistency predicate

Cons(pi,pj) := (∀k ∈ (N(i) ∩N(j)))pi(k) = p
j(k) ,

Remark 1. Fix x. Clearly, there exists a full witness w ∈ RJ that satisfies all
constraints and agrees with all partial assignments pϱ if
(1) for each constraint ϱ, (x,pϱ) is locally satisfied,
(2) for all constraints i, j, Cons(pi,pj) = true.

Fix a commitment scheme and instance J. We assume the statement is x† :=
(C,x) and the witness is w† := (rC ,w), where C is a commitment and rC is a
commitment randomness. For a fixed lp = ck, we define

Rlp := {((C,x), (rC ,w)) : C = Com (( x
w
); rC) ∧ (x,w) ∈ RJ}

to be the relation Rlp from Section 3.2.

5.2 Security Definitions

We redefine C&P zk-SNARKs for R1CSf allowing Kcrs to depend on a constraint
number ϱ, where an honest execution sets ϱ ← 0 while the reductions use non-
zero ϱ’s. (An alternative approach is to define two different Kcrs’s.) Fix a (vector)
commitment scheme Γ . Then, lp = ck is a commitment key. We also assume that
there exists a black-box somewhere-extractor Extks.

The modified (QA-)SNARK security definitions follow. We highlight the
changes to the definition in Section 3.2. We require that completeness holds for
all choices of ϱ while zero-knowledge holds for the value of ϱ, ϱ = 0, used in the
honest case. Computational zero-knowledge for any ϱ follows from this and the
CRS-indistinguishability. The latter (see Definition 5) guarantees that the CRSs
corresponding to different constraints are computationally indistinguishable.
Perfect Completeness: for all λ, PPT A, and ϱ ∈ [1, n],

Pr

 V(lp, crs, x† , π) = 0
∧ (x,w) ∈ RJ

p← Pgen(1λ); lp← Klp(p);
(crs, td)←$ Kcrs(lp,RJ , ϱ);
(x,w, rC )← A(lp, crs);C ← Com(( x

w
); rC);

x
† ← (C,x);w† ← (rC ,w);π ← P(lp, crs, x† ,w†)

 = 0 .
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Perfect Zero Knowledge: for all unbounded A, |εzk1 − εzk2 | = 0, where εzkβ :=

Pr
[
AOβ(·,·)(lp, crs) = 1 p← Pgen(1λ); lp← Klp(p); (crs, td)←$ Kcrs(lp,RJ, 0)

]
.

A is given an oracle access to Oβ(·, ·), where O0(x
†,w†) returns 0 if (x†,w†) /∈

Rlp; otherwise, it returns P(lp, crs, x†,w†). Similarly, O1(x
†,w†) returns 0 if

(x†,w†) /∈ Rlp; otherwise, it returns Sim(lp, crs, td, x†).
We define a new knowledge soundness notion that has two aspects. First,

semi-adaptivity. In the quasi-adaptive case, the statement can depend on lp and
crs, while in the semi-adaptive case, it can only depend on lp. Second, in local
consistency [55,41,29] it is required that, given crsϱ ←$ Kcrs(lp,RJ, ϱ), one can
black-box somewhere-extract a partial witness that satisfies the ϱth constraint.
We strengthen this by requiring one to black-box extract a full witness that
satisfies all constraints.

Definition 5 is inspired by non-adaptive black-box knowledge-soundness
in [12] and witness-extended emulation (WEE, [48]). Let G be a permutation.
Definition 5 formalizes our expected ability to black-box extract G(w), where
w satisfies all constraints, by running the adversary with many different CRSs
crsϱ, where crsϱ is output by Kcrs(lp,RJ, ϱ), and then gluing the adversary’s out-
puts to G(w). We relate the probability that an adversary outputs an accepting
transcript to the probability that the black-box extractor outputs an accepting
transcript together with G(w). For falsifiability, we require that one can test
whether (x,w) /∈ RJ when only given (x, G(w)). This holds in our applications.

Definition 5 (Semi-Adaptive Black-Box G-Knowledge-Soundness).
Let J be an R1CS instance with n = n(λ) constraints. There exists a black-
box expected (deterministic) PT extractor Extks, such that for all non-uniform
PPT A1, D and DPT A2, AdvbbksPgen,G,Π,Extks,A(λ) := |ε2(λ)− ε1(λ)| ≈λ 0, where

ε1(λ) := Pr

 D(lp, tr) = 1
p← Pgen(1λ); lp← Klp(p);
((C,x), st)← A1(lp,RJ); (crs, td)←$ Kcrs(lp,RJ, 0);
π ← A2(st, crs); tr← (C,x, crs, π)

 ,

ε2(λ) := Pr

 D(lp, tr) = 1∧(
V(ck, tr) = 1⇒
(x,w) /∈ RJ

) p← Pgen(1λ); lp← Klp(p);
((C,x), st)← A1(lp,RJ);

(crs, π,G(w))← Ext
A2(st,·)
ks (lp,RJ, C,x, st);

tr← (C,x, crs, π)

 .

Extks is an oracle machine that makes an expected polynomial number of (adap-
tive or non-adaptive) queries. Before each query, Extks chooses ϱ ∈ [1, n] and
samples (crsϱ, tdϱ)←$ Kcrs(lp,RJ, ϱ). Extks then calls A2(st, crs

ϱ), obtaining some
(possibly invalid) argument πϱ (st is not updated between A2 queries).

We allow Extks to use the same ϱ several times, but each time, Extks can use a
different crs. In this case, πϱ depends on crsϱ and not only ϱ, but we will mostly
ignore this detail. Let Q be the set of ϱ-s, actually used by Extks. A C&P zk-
SNARK is a C&P SA-SNARK (semi-adaptive SNARK) if it meets Definition 5.



24 Helger Lipmaa

Comparison to WEE. Compared to standard WEE [48], there are several differ-
ences. We can think of a semi-adaptive SNARG as a three-round protocol with a
trusted setup, where the CRS is the verifier’s second message. However, (1) the
CRS is not public-coin, and (2) the CRS does not depend on the first message
— it instead depends on the constraint number ϱ. Thus, our soundness notion
and proof differ from the classical WEE ones. We use the name of black-box
knowledge-soundness, although WEE might be more apt.

Comparison to [15]. In the context of (non-C&P) SNARGs for NP, Choudhuri et
al. [15] define semi-adaptivity differently. Choudhuri et al. do not consider C&P
arguments, but they allow for CRS reprogramming. In their semi-adaptivity
game, the adversary first maliciously chooses the constraint ϱ, the CRS is pro-
grammed to use ϱ, and finally, the adversary outputs a statement and an argu-
ment. In our case, ϱ must stay hidden from the adversary; hence, we introduce
the requirement of CRS-indistinguishability.

On G in G-knowledge-soundness. Since the lack of a trapdoor prevents one
from efficiently computing w from G(w), G-knowledge-soundness is a standard
notion in many pairing-based schemes like Groth-Sahai. See [5,24] for further
discussions. Since we work in the pairing-based setting, we set G(s) := [sy]1 (we
need y for compatibility with VCF). Involving [·]1 is a usual restriction in the
pairing-based setting due to the hardness of the discrete logarithm.

A C&P SA-SNARK must satisfy one more requirement. Extks in Definition 5
can query A2 with CRSs corresponding to different constraints ϱ. The adver-
sary’s success is the difference between the probabilities of acceptance and extrac-
tion. In our case, it is crucial that if the adversary succeeds with a non-negligible
probability, it does so for any ϱ ∈ Q. Otherwise, the extractor might “miss” two
inconsistent partial witnesses. We solve this by requiring CRS indistinguishabil-
ity: CRSs for different ϱ are computationally indistinguishable. If that holds, the
acceptance probability is roughly the same for different ϱ; hence, if the verifier
accepts with a non-negligible probability, it does so for every ϱ. Crucially, the
values extracted by the FSE somewhere-extractor when using different ϱ’s do
not have to be consistent; the reduction Bfposb (see Section 6) handles this case.

Definition 6 (CRS-Indistinguishability). For all λ, PPT A, and ϱ ∈ [1, n],
AdvcrsindPgen,ϱ,Π,A(λ) :=

Pr

[
β′ = β

p← Pgen(1λ); lp← Klp(p);β ←$ {0, 1};
(crs, td)←$ Kcrs(lp,RJ, β · ϱ);β′ ← A(lp, crs)

]
≈λ

1
2 .

Special Soundness. We define a tailored special soundness [16] notion,
semi-adaptive computational (k,G)-special soundness. Defining special sound-
ness is a common step for interactive arguments but novel for non-interactive
ones. We prove that any semi-adaptively computationally (n,G)-specially-sound
and CRS-indistinguishable QA-SNARG Π is semi-adaptively black-box G-
knowledge-sound. As typical in similar reductions, the knowledge-soundness ex-
tractor is only expected PPT. Later, we prove that the new zk-SNARK Punic
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is semi-adaptively computationally (n,G)-specially-sound under three (strict)
PPT computational assumptions.

Definition 7 (Semi-Adaptive Computational (k,G)-Special Sound-
ness). Fix k ∈ poly(λ). There exists a black-box PPT extractor Extss, such
that for any PPT adversary Ass, Adv

specsound
Pgen,G,Π,k,Extss,Ass

(λ) :=

Pr


tr = (trj)kj=1 ∧

∀j ∈ [1, k].

 trj = (C,x, crsj , tdj , πj)
∧ (crsj , tdj)←$ Kcrs(lp,RJ, ϱ

j)
∧V(lp, crsj , (C,x), πj) = 1


∧

(
∀i ̸= j.ϱi ̸= ϱj

)
∧ (x,w) /∈ RJ

p← Pgen(1λ);
lp← Klp(p);
tr← Ass(lp,RJ);
G(w)← Extss(lp, tr)

 ≈λ 0 .

Intuitively, Definition 7 states that if Ass produces an accepting admissible k-
tuple tr (meaning that tr satisfies all conditions on the left-hand side), then one
can — except with a negligible probability — black-box extract G(w), such that
(x,w) ∈ RJ. The transcripts include trapdoors, needed in the special soundness
proof of Punic. We assume that tdj contains ϱj .

The following result is related to yet different from classical reductions of
WEE to special soundness. Note that Ass in Fig. 11 works in expected PPT.
One can use Markov’s inequality to make Ass to be strict PPT but with some
loss in the probability. The latter technique is standard, and we will not elaborate
on it. See Appendix D.3 for the proof of Theorem 1.

Theorem 1. Let G be a permutation. If Π is semi-adaptively computationally
(n,G)-special-sound and CRS-indistinguishable, then it is semi-adaptively black-
box G-knowledge-sound for any family of instances J = J(λ) with n = n(λ)
constraints. More precisely, there exists a black-box expected PPT extractor Extks
and an expected PPT adversary Ass, such that for any PPT Extss and Aks =
(A1,A2), AdvbbksPgen,G,Π,Extks,Aks

(λ) ≤ AdvspecsoundPgen,G,Π,n,Extss,Ass
(λ).

6 New C&P SA-SNARK Punic

Next, we propose a C&P SA-SNARK Punic for R1CSf by following ideas
from [18,19,52]. We will use a new proof technique based on fully algebraic
F -position-binding vector commitments and new security notions.

6.1 Intuition

We construct a C&P SA-SNARK Punic for R1CSf for a small constant f. Let
lp = VCF.ck and (x, y) be the VCF trapdoor key. The prover’s statement is
([C(x)]1,x), where [C(x)]1 is a succinct VCF commitment to z = ( x

w
). Notably,

(honest) crs is independent of the statement. Thus, crs can be created before the
statement; we only prove soundness if the statement does not depend on crs.

The argument π includes three VCF commitments ([a(x), c(x)]1 and [b(x)]2
to Uz, Wz, and V z) and a group element [h(x)]1. Here, h(X) = (a(X)b(X)−
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c(X))/ZH(X). Intuitively, [h(x)]1 is the randomizer of the VCF commitment
[a(x)b(x) − c(x)]1, Many non-universal zk-SNARKs, e.g. [25,56,31], have com-
mitments [a(x), c(x)]1 and [b(x)]2 and possibly the proof element [h(x)]1. Our
novelty is using VCF, a vector commitment. Following [18,19], we prove that
the commitments are correct (in particular, they commit to the correct public
input) by using a BLS argument BLS.π that we add to Punic’s argument.

The black-box extractor in our soundness proof extracts the local proofs
corresponding to these three vector commitments. We follow [18,19] and add to
the argument two FSE commitments [d(x)]1 and [e(x)]2 that allow us to black-
box somewhere-extract one partial witness. For black-box extraction to succeed,
the length of FSE commitments needs to be at least f group elements.

Soundness proof. Following the discussion of Section 5.2, we aim for Punic
to be semi-adaptively [·]1-knowledge-sound—a different soundness notion than
in [18,19]. Since we proved in Theorem 1 that this notion follows from special
soundness, we will explain next how we prove special soundness. This helps to
motivate the choice of primitives (VCF, FSE, and BLS).

In the honest case, [C]1 is a VCF commitment to a statement-witness pair.
We construct a special soundness extractor Extss (see Fig. 12). We also construct
three reductions that work when the extractor Extss fails. These three reductions
each call Extss to obtain a tuple of admissible transcripts tr. Let G(s) := [sy]1
to be G1 from Section 4.2. Denote G(pϱ) := G(pϱ(N(ϱ))). Each reduction loops
over ϱ ∈ [1, n]. For each ϱ ∈ [1, n], some of the reductions use FSE to black-box
somewhere-extract G(pϱ) = G(η|N(ϱ)) together with [φ|N(ϱ)]1. Here, η|N(ϱ) is an
assignment of variables from N(ϱ), [φ|N(ϱ)]1 is a tuple of VCF local proofs for
every coefficient in N(ϱ), and LVer(VCF1.ck, [C(x)]1, k,G(ηk), [φk]1) = 1 for all
k ∈ N(ϱ). (We extract more values, but they are immaterial for this subsection.)

The first reduction Bbls (see Fig. 13) is to the security of BLS. Bbls guarantees
three things: (1) the adversary uses the correct statement x, (2) commitments
like [a(x)]1 in the argument (see Fig. 5) are correctly formed, and (3) the ex-
tracted variables contain correctly computed local openings and local proofs of
the vector commitment. Assuming that (1–3) holds, the second reduction Bqal
(see Fig. 15) handles the case when there exists a ϱ such that pϱ does not sat-
isfy the ϱth coefficient. By the first two reductions, we obtain a guarantee for
local consistency: for all ϱ, (x,pϱ) locally satisfies the instance. The first two
reductions are related to the reductions in [18,19], see Lemmas 5 and 7 for more.

The third reduction Bfposb (see Fig. 14) handles the case when partial wit-
nesses exist, but Extks fails to black-box extract a full witness satisfying all
constraints. By Remark 1, then there must exist two indices i ̸= j, such that:
(1) p

i satisfies the ith constraint and p
j satisfies the jth constraint.

(2) Cons(pi,pj) = false; that is, (∃k ∈ (N(i) ∩N(j)))pi(k) ̸= p
j(k).

Given all extracted G(pϱ)-s, Bfposb can efficiently recover i, j, k. Bfposb returns
the position k and two different local openings ηik ̸= ηjk of [C(x)]1 with local
proofs φi

k and φj
k. Thus, Bfposb breaks the [·]1-position-binding property.

Recall that FSE can black-box somewhere-extract group elements. Moreover,
the extracted group elements must be linear maps of z, that is, of the form [M ]γz
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for some public matrix [M ]γ . Thus, the vector commitment scheme must be F -
position-binding and fully-algebraic, which motivates the use of VCF.

In the ϱth iteration, we need to black-box extract ηϱk and φϱ
k for all k ∈ N(ϱ).

Since the length of an FSE commitment depends on the number of extracted
values, we must limit the maximum number of such coefficients for the sake of
efficiency. Thus, we can only handle R1CSf for a small f.

We need protection against adversaries who make the verifier accept only
for specific values of ϱ, which makes it impossible to construct pϱ for all ϱ. As
explained in Section 5.2, it suffices to prove that Punic is CRS-indistinguishable.

See comparison with no-signaling commitments in Appendix A.2.

6.2 Description of Punic

Prerequisites. Punic uses VCF in G1 and G2 to commit. We use its local opening
only in the soundness proof and not in the construction. Punic also uses FSE
and BLS. Punic handles R1CSf, where f ∈ N is a small integer. Zk-SNARG(K)s
for similarly restricted constraint systems are well-known; see, e.g., [23,41,57].
Using small f only affects the efficiency: the restriction on f is like to bounding
the fan-in and fan-out in arithmetic circuits; it is easy to transform arithmetic
circuits to circuits with bounded fan-in and fan-out efficiently.

Since we need to black-box extract the neighborhood of any given constraint,
FSE has larger locality parameters than [18,19,52]. We set

q1 = 2 + 2f and q2 := 2 . (3)

We explain this choice in the soundness proof, see Appendix E. We use qγ as the
locality parameter for FSEγ .

Description. In Fig. 5, we depict Punic for an R1CSf instance J. The language
parameter lp is the commitment key of VCF. For ϱ ∈ [0, n] (in the honest case,
ϱ = 0), Punic’s CRS crs ←$ Kcrs(lp,RJ, ϱ) contains instance-dependent val-
ues BLS.lp and BLS.crs (BLS’s language parameter and CRS). Furthermore,
BLS.lp = [M ]∗ contains as submatrices FSE commitment keys, together with
commitment keys like cku required to locally open linear maps (see Lemma 4).

The FSE commitment keys are created as in Fig. 3 from ϱ-dependent ex-
traction matrices [Eϱ

1]1 and [Eϱ
2]2. Here, [E0

1]1 = [0q1×(m+3)]1 and [E0
2]2 =

[0q2×(m+1)]2. In the knowledge-soundness proof, we invoke Kcrs with a non-zero
ϱ ∈ [1, n]. If ϱ ̸= 0, then each row of [Eϱ

1]1 / [Eϱ
2]2 contains an extraction key

used in the soundness proof to black-box extract local openings and local proofs.
We describe the algorithm for creating [Eϱ

1]1 / [Eϱ
2]2 in Fig. 7. (We postpone it

to Appendix E since the case ϱ ̸= 0 is only used in the soundness proof.) Simi-
larly, [M ]∗ is created by using the algorithm in Fig. 6. In Figs. 6 and 7, the first
row (small, blue font) denotes the elements of the vector that the matrices will
be multiplied with. “Empty” entries mean zeros. We explain the construction of
these matrices in Section 7.1.
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Klp(p): // VCF2.ck = VCF1.ck, VCF2.td = VCF1.td by design
(VCF1.ck,VCF1.td)← VCF1.Kck(p, n); // VCF1.td contains x, y

return lp← VCF1.ck = VCF2.ck;

Kcrs(lp,RJ, ϱ): // n is implicit in p,RJ; honest case: ϱ = 0

([Eϱ
1]1, [E

ϱ
2]2)← CreateE(lp,RJ, ϱ); // FSE extraction matrices

(FSE1.ck,FSE1.td)← FSE1.Kck(p,m+ 3, q1, [E
ϱ
1]1); // As in Fig. 3

(FSE2.ck,FSE2.td)← FSE2.Kck(p,m+ 1, q2, [E
ϱ
2]2);

BLS.lp = [M ]∗ ← CreateM(lp,RJ,FSE1.ck,FSE2.ck);
(BLS.crs,BLS.td)← BLS.Kcrs(p,BLS.lp);
crs← (BLS.lp,BLS.crs);
ek← (FSE1.ek,FSE2.ek); td← (BLS.td, ek);
return (crs, td);

P(lp, crs, ([C(x)]1,x ∈ Fmx), (rC ,w ∈ Fm−mx)):
// z = ( x

w
); [C(x)]1 ← VCF1.Com(VCF1.ck, z, rC)

1. ra, rb, rc, rd, re ←$ F;
2. [a(x)]1 ← VCF1.Com(VCF1.ck,Uz; ra);
3. [b(x)]2 ← VCF2.Com(VCF2.ck,V z; rb);
4. [c(x)]1 ← VCF1.Com(VCF1.ck,Wz; rc);
5. h(X)← (a(X)b(X)− c(X))/ZH(X); // [h(x)]1 ←

∑n−2
i=0 hi[x

i]1

6. [d(x)]1 ← FSE1.Com(FSE1.ck, (z
⊺, rC , ra, rc)

⊺; rd);
7. [e(x)]2 ← FSE2.Com(FSE2.ck, (

z

rb ); re);
8. [C∗(x)]1 ← [C(x)]1 −

∑mx
i=1 xi[ℓi(x)]1;

9. BLS.x← ([C∗(x), a(x), c(x), d(x)]1, [b(x), e(x)]2)
⊺;

10. BLS.π ← BLS.P(BLS.lp,BLS.crs,BLS.x, (z, rC , ra, rb, rc, rd, re));
11. π ← ([a(x), c(x), d(x), h(x)]1, [b(x), e(x)]2,BLS.π);

V(lp, crs, ([C(x)]1,x ∈ Fmx), π): Parse π as in 11;
1. [C∗(x)]1 ← [C(x)]1 −

∑mx
i=1 xi[ℓi(x)]1;

2. BLS.x← ([C∗(x), a(x), c(x), d(x)]1, [b(x), e(x)]2)
⊺;

3. check BLS.V(BLS.lp,BLS.crs,BLS.x,BLS.π) = 1;
4. check [a(x)]1 • [b(x)]2 − [c(x)]1 • [1]2 = [h(x)]1 • [ZH(x)]2;

Sim(lp, crs, td = (BLS.td, ek), ([C(x)]1,x ∈ Fmx)):
1. ra, rb, rc, rd, re ←$ F;
2. [a(x)]1 ← VCF1.Com(VCF1.ck,0; ra); // = ra[ZH(x)]1

3. [b(x)]2 ← VCF2.Com(VCF2.ck,0; rb); // = rb[ZH(x)]2

4. [c(x)]1 ← VCF1.Com(VCF1.ck,0; rc); // = rc[ZH(x)]1

5. [h(x)]1 ← rarb[ZH(x)]1 − rc[1]1;
6. [d(x)]1 ← FSE1.Com(FSE1.ck,0m+3; rd);
7. [e(x)]2 ← FSE2.Com(FSE2.ck,0m+1; re);
8. [C∗(x)]1 ← [C(x)]1 −

∑mx
i=1 xi[ℓi(x)]1;

9. BLS.x← ([C∗(x), a(x), c(x), d(x)]1, [b(x), e(x)]2)
⊺;

10. BLS.π ← BLS.Sim(BLS.lp,BLS.crs,BLS.td,BLS.x);
11. π ← ([a(x), c(x), d(x), h(x)]1, [b(x), e(x)]2,BLS.π);

Fig. 5. New semi-adaptively black-box [·]1-knowledge-sound C&P SA-SNARK Punic.
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1. let ℓ̂j(X) = ℓj(X) for mx < j ≤ n and ℓ̂j(X) = 0 for j ≤ mx or j > n;
// W.l.o.g., we assume m ≥ n

2. let uj(X), vj(X), wj(X) interpolate column vectors U (j),V (j),W (j);
3. [ckℓ̂]1 ← [ℓ̂1(x), . . . , ℓ̂m(x), ZH(x)]1; [cku]1 ← [u1(x), . . . , um(x), ZH(x)]1;
4. [ckv]2 ← [v1(x), . . . , vm(x), ZH(x)]2; [ckw]1 ← [w1(x), . . . , vm(x), ZH(x)]1;
5. let n1 := q1 + 4, n2 := q2 + 2;
6. return [M ]∗ ∈ Gn1×(m+6)

1 ×Gn2×(m+6)
2 , where

[M1]1 ←


z1 ... zm rC ra rb rc rd re

ckℓ̂
cku cku
ckw ckw

FSE1.ck FSE1.ck


1

,

[M2]2 ←
[ z1 zm rC ra rb rc rd re

ckv ckv
FSE2.ck FSE2.ck FSE2.ck

]
2

.

(4)

Fig. 6. Algorithm CreateM(lp,RJ,FSE1.ck,FSE2.ck).

Efficiency. Clearly, FSE1.ck ∈ G(q1+1)×(m+3)
1 and FSE2.ck ∈ G(q2+1)×(m+2)

2 .
Using ℓ̂i(X) instead of ℓi(X) helps us to prove efficiently that the prover used
the correct R1CSf statement (z1, . . . , zmx

)⊺ = x. Assuming we have an instance
of R1CSf for f = o(|w|), the Punic argument π is succinct, consisting of 7 + 2f
elements of G1 and 5 elements of G2. Choosing a larger f potentially decreases
the number of constraints, while a smaller f decreases the argument size.

SSP. In Appendix B.3, we note that Punic can be simplified significantly by
targeting SSP [17] instead of R1CS [25].

7 Security of Punic

We postpone the following two proofs to Appendices E.1 and E.2.

Theorem 2. (1) Punic is perfectly complete. (2) If VCF1 and VCF2 are per-
fectly zero-knowledge, BLS is perfectly zero-knowledge, and FSE1 and FSE2 are
almost everywhere perfectly-hiding then Punic is perfectly zero-knowledge.

Theorem 3. Let m, q1, and q2 be as above. If FSEγ is function-set hiding
for γ ∈ {1, 2}, then Punic is CRS-indistinguishable. More precisely, there ex-
ist PPT B1 and B2, such that for every PPT A and ϱ, AdvcrsindPgen,ϱ,Punic,A(λ) ≤
AdvfshPgen,FSE1,m+3,q1,B1

(λ) + AdvfshPgen,FSE2,m+1,q2,B2
(λ).

7.1 Semi-Adaptive Computational (n,G)-Special-Soundness

On Mγ . For BLS.lp = [M ]∗ defined as in Eq. (4), we use BLS to show that

BLS.x := ([C∗(x), a(x), c(x), d(x)]1, [b(x), e(x)]2)
⊺ ∈ colspace

(
[M1]1
[M2]2

)
. (5)
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1. if ϱ = 0 then Eϱ
1 ← 0q1×(m+3); E

ϱ
2 ← 0q2×(m+1); return ([Eϱ

1]1, [E
ϱ
2]2);

2. (β1, . . . , βf)← N(ϱ); // Duplicate some entries when |N(ϱ)| < f

3. let uj(X), vj(X), wj(X) interpolate column vectors U (j), V (j), W (j);
4. as in Lemma 1, let [ckℓ,βi ]1 ← [Qℓ1,βi(x)∥ . . . ∥Qℓm,βi(x)∥QZH,βi(x)]

⊺
1.

5. as in Lemma 4, let [ckϱu]1 ← [Qu1,ϱ(x)∥ . . . ∥Qum,ϱ(x)∥QZH,ϱ(x)]
⊺
1; similarly,

define [ckϱv]2, [ckϱw]1;
6. return ([Eϱ

1]1, [E
ϱ
2]2), E

ϱ
1 ∈ Fq1×(m+3), Eϱ

2 ∈ Fq2×(m+1), where

[Eϱ
1]1 ←



z1 zm rC ra rc

e⊺
β1
y

e⊺
βf
y

ckℓ,β1

ckℓ,βf

ckϱu ckϱu
ckϱw ckϱw


1

,

[Eϱ
2]2 ←

[ z1 zm rb

V ⊺
ϱy

ckϱv

]
2

.

(7)

Fig. 7. Algorithm CreateE(lp,RJ, ϱ), where ϱ ∈ [0, n].

Eq. (5) holds iff there exists BLS.w = (z = ( x
w
), rC , ra, rb, rc, rd, re), such that

(here, [C(x)]1 follows from [C∗(x)]1)

[C∗(x)]1 = VCF1.ck ·
(

0
w

rC

)
,

[C(x)]1 = VCF1.ck · ( z

rC ) = VCF1.Com(VCF1.ck, z, rC) ,

[a(x)]1 = VCF1.ck ·
(
Uz
ra

)
= VCF1.Com(VCF1.ck,Uz; ra) ,

[c(x)]1 = VCF1.ck ·
(
Wz

rc

)
= VCF1.Com(VCF1.ck,Wz; rc) ,

[d(x)]1 = FSE1.ck · (z⊺, rC , ra, rc, rd)⊺

= FSE1.Com(FSE1.ck, (z
⊺, rC , ra, rc)

⊺; rd) ,

[b(x)]2 = VCF2.ck ·
(
V z
rb

)
= VCF2.Com(VCF2.ck,V z; rb) ,

[e(x)]2 = FSE2.ck · (z⊺, rb, re)⊺ = FSE2.Com(FSE2.ck, (
z

rb ); re) .

(6)

By Fact 2, for BLS to be strongly sound, we need the distribution of [M ]∗ to
be witness-sampleable; this is clearly the case. We also need that rank

(
M1

M2

)
<

n1 + n2. This is fine since BLS.w always exists when n1 + n2 = rank
(
M1

M2

)
.

On Eγ . Assume ϱ ̸= 0, (crsϱ, tdϱ) ←$ Kcrs(lp,RJ, ϱ), and that P computes the
argument πϱ honestly by using an ϱ-dependent full witness wϱ and randomizers
like rϱa . (BLS will guarantee the latter.) Then, FSE1.swExt(FSE1.ek, [d(x)]1) and
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FSE2.swExt(FSE2.ek, [e(x)]2) output G(ηϱ)φϱ

φϱ
a

φϱ
c


1

← [Eϱ
1]1 ·

(
z
ϱ

rϱC
rϱa
rϱc

)
and

(
G2(η

ϱ
b )

[φϱ
b ]2

)
← [Eϱ

2]2 ·
(
z
ϱ

rϱb

)
, (8)

where G2(X) := [Xy]2. From Lemma 1, the security of BLS, and Eq. (7) it
follows G(ηϱ|N(ϱ)) = G(pϱ|N(ϱ)) is a tuple of local openings and φϱ = (φϱ

j )|N(ϱ)

is the corresponding tuple of local proofs, with

(G(ηϱj ), [φ
ϱ
j ]1) = VCF1.LOpen(ck, [C(x)]1, j,D = (zϱ, rϱ))

for some z
ϱ and rϱ. (Recall that dependency from y is required to construct

a reduction to [·]1-position-binding.) Define G(ηϱa ) ←
∑

j∈N(ϱ) UϱjG(ηϱj ) and
G(ηϱc )←

∑
j∈N(ϱ) WϱjG(ηϱj ). Eqs. (7) and (8) and Lemma 4 imply that

(G(ηϱa ), [φ
ϱ
a ]1) = VCF1.LOpen(ck, [a(x)]1, j,D = (Uzϱ, rϱa ))

and (G(ηϱc ), [φ
ϱ
c ]1) = VCF1.LOpen(ck, [c(x)]1, j,D = (Wz

ϱ, rϱc )). Note that we
black-box extract [φϱ

b]2 by using FSE.
For ϱ ∈ [0, n], let Dϱ

par be the distribution of [M ]∗ in Eq. (4). We postpone
the special soundness proof to Appendix E.3.

Theorem 4. Let n be the number of R1CSf constraints. Assume FSEγ is some-
where [·]γ-extractable for γ ∈ {1, 2}, BLS is quasi-adaptively strongly sound for
Dϱ

par where ϱ ∈ [1, n], VCF1 is [·]1-position-binding, and n-QALINRES holds.
Then, Punic is semi-adaptively computationally (n,G)-special-sound. More pre-
cisely, there exist an expected PPT Extss and PPT Bfposb, Bqal, and Bϱbls for
ϱ ∈ [1, n], such that for any PPT Ass,

AdvspecsoundPgen,G,Punic,n,Extss,Ass
(λ) ≤

∑n
ϱ=1 Adv

strsound
Pgen,Dϱ

par,BLS,Bϱ
bls
(λ)+

AdvfposbPgen,[·]1,n,VCF1,Bfposb
(λ) + AdvqalinresPgen,n,Bqal

(λ) .
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A Additional Discussion

A.1 On Gentry-Wichs And QA-NIZKs

Some succinct QA-NIZKs achieve quasi-adaptive soundness for (specific) hard
languages like linear subspaces [40,45] under falsifiable assumptions. Very re-
cently, Campanelli et al. [12] clarify why this does not contradict Gentry-Wichs.
As shown in [12], Gentry-Wichs only rules out reductions that cannot efficiently
detect when the soundness property is broken. The language parameter of QA-
NIZKs like [45] hides a trapdoor lt, such that knowing lt, one can efficiently decide
membership of the statement in Llt. That is, the language family is witness-
sampleable. (See Section 3.2.) However, Punic is not witness-sampleable. Really,
while Punic has a language trapdoor (the commitment extraction key), this is
not sufficient to test if x ∈ Llt or not — precisely since the statement (including
the vector commitment) is succinct. Intuitively, in witness-sampleable languages,
the statement x is sufficiently long so that the statement, the argument, and the
trapdoor together encode the witness.

Similarly, in the case of SNARGs with an extractable commitment like
DGPRS and FLPS [18,19], the reduction can black-box extract the witness from
the commitment and use it to verify whether the input belongs to Llp.

We will leave further study of this issue as an open problem.

A.2 Comparison with No-Signaling Approach

A recent approach to obtain global consistency out of local consistency uses no-
signaling commitments [42,41,29,15]. In a nutshell, one divides the computation
process into computation steps and then proves that (1) each step is correct
(local consistency), (2) the consequent steps are consistent (global consistency).
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For example, consider layered arithmetic circuits, with the layers being individual
steps. (To connect it to what we are doing, note that each gate of the circuit
corresponds to a constraint of R1CS.)

A natural approach is to commit to the state of the computation (st1, . . . ,
stT ) after each step and then prove (1) and (2) on the committed values. To
prove both (1) and (2), [29,15] propose to use SE commitment schemes. How-
ever, their use of SE commitment schemes is different from ours. While we allow
black-box somewhere extraction of the wire values neighboring a single gate,
the basic approach of [29,15] uses the commitment scheme to black-box extract
values pertaining to two computation states. The no-signaling property of com-
mitments is used to prove consistency between different black-box extractions.
Intuitively, no-signaling guarantees that if one extracts S0 = (sti−1, sti) with one
CRS and then S1 = (sti, sti+1) with another CRS, then the value of S0∩S1 = sti
is unchanged. (See [29] for discussion.) In the case of arithmetic circuits, this
means extracting all wire values in two neighboring gate layers. The latter is
only practical if the circuit has bounded width. ([15] considers Turing machines
instead of circuits, and in this case, one needs to have bounded space.)

While methods are known to move from bounded width or bounded space to
general computation, they make the solution more costly. For example, [41,15]
considers the following approach. Simulate a Turing machineM with large space
via a RAM machine R, where the RAM machine has access to large untrusted
external memory but small internal memory. A digest of the external memory,
in the form of the root of the hash tree, is stored in the internal memory. The
prover shows that R starting at configuration s (including the large external
memory) transitions to configuration t in T steps where the verifier is only given
digests hs and ht of the two configurations. See [41,15].

Compared to that, we can directly handle general computation. Since we use
SE commitments to black-box extract only a neighborhood of a single gate, we
are restricted to limiting the fan-in and fan-out of all gates but not the width of
the circuit. Well-known standard transformations can be used to limit the fan-in
and fan-out with essentially minimal overhead. Due to that, the new zk-SNARK
is concretely efficient in every aspect. On the other hand, no such transformations
are known that limit the circuit width.

Our approach to achieving global consistency has direct advantages compared
to the approach of no-signaling commitments. We leave it as an open question
whether one can construct SNARGs for P using our approach.

A.3 On Kilian’s Zero-Knowledge Argument

One can construct a relatively simple but inefficient semi-adaptive black-
box knowledge-sound zk-SNARG based on Kilian’s seminal interactive zero-
knowledge argument [44]. Recall that in the latter, the verifier first chooses a hash
function key hk, the prover then (hash tree-)commits to the PCP-transformed
witness, the verifier makes some queries to the PCP based on fresh randomness
ϱ, and the prover answers to the queries. (The prover’s answer also includes
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corresponding hash certificates.) In the resulting black-box knowledge-sound zk-
SNARG, hk would be the language parameter, the prover’s commitment would
be the statement (that includes the public input), the verifier’s randomness ϱ
would be the CRS, and the query answers would be the SNARG argument.
For the soundness reduction to go through, the PCP must be knowledge-sound,
and the hash function must be collision-resistant; see [46] for a discussion and
a reduction in the interactive case. To get zero knowledge, the PCP must be a
ZK-PCP [35].

Kilian-based solution has direct correspondence to Punic: for example, the
hash tree plays the role of vector commitments, the verifier randomness ϱ defines
a constraint with its neighborhood, the witness can be extracted after sufficiently
many iterations (by using the knowledge-soundness property of the PCP), and
the hash certificates can be used to obtain a collision when there is no full
witness. For greater efficiency (though that would result in worse assumptions),
the hash tree can be replaced with a subvector commitment [46]. This means
that the Kilian-based solution can be based on a wide array of computational
assumptions and trust models.

Unfortunately, PCPs are very inefficient [7] (e.g., the PCP proof length is
at least Θ(n log3 n)), and thus such a solution only has a theoretical value.
Because of this, modern zk-SNARKs are based on interactive oracle proofs
(IOPs, [8]) that are multi-round alternatives to PCPs. Since (falsifiable) semi-
adaptive SNARGs have round constraints, IOPs cannot be used in our appli-
cation. To our knowledge, Punic is the only round-efficient alternative to PCP-
based SNARGs.

B Additional Preliminaries

B.1 The QA-SNARG argument system BLS

For the sake of completeness, we depict the González-Hevia-Ràfols bilateral sub-
space QA-SNARG argument system BLS for Llp in Fig. 8 (see Appendix B.1).

B.2 QALINRES: Additional Background

Motivation behind QALINRES. DGPRS and FLPS are based on TSDH-
like [56] assumptions: n-STDSH and n-QTSDH in [18] and n-SATSDH in [19].
These assumptions were tailored to the SSP and SAP constraint systems, used
in [18] and [19], correspondingly. To be able to use R1CS, [52] first defined a new
assumption (n-QATSDH) and then argued why QALINRES is simpler.

As motivated by Lipmaa and Pavlyk [52], all TSDH-type assumptions have
one serious problem. Namely, to argue that such assumptions are sensible, one
can prove that they hold in the generic group model (GGM). In a GGM proof,
one considers a generic adversary that is only allowed to (i) execute group oper-
ations in the source and target groups, (ii) perform the pairing operation, and
(iii) check for equality of two group elements. GGM is a very restrictive model.
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BLS.Klp(p):
(
[M ]∗,

(
M1
M2

))
←$ Klt(p); return lp← [M ]∗;

BLS.Kcrs (lp = [M ]∗): A←$ Dκ; // A ∈ F(κ+1)×κ, Ā is invertible
K1 ←$ Fn1×κ; K2 ←$ Fn2×κ; ∆←$ Fκ×m;
C1 ←K1Ā; C2 ←K2Ā; // Cγ ∈ Fnγ×κ

[P 1]1 ←K⊺
1[M1]1 + [∆]1; [P 2]2 ←K⊺

2[M2]2 − [∆]2; // [P γ ]γ ∈ Gκ×m
γ

crs← ([Ā,C2,P 1]1, [Ā,C1,P 2]2); td← (K1,K2); return (crs, td);
BLS.P(lp, crs; ([c1]1, [c2]2),w): rπ ←$ Fκ;

[π1]1 ← [P 1]1w + [rπ]1; [π2]2 ← [P 2]2w − rπ[1]2; // [πγ ]γ ∈ Gκ
γ

return π ← ([π1]1, [π2]2);
BLS.V(lp, crs; ([c1]1, [c2]2), π): // Equality check is done in G1×κ

T

return [c1]
⊺
1 • [C1]2 + [c2]

⊺
2 • [C2]1 =? [π1]

⊺
1 • [Ā]2 + [π2]

⊺
2 • [Ā]1;

BLS.Sim(lp, crs, td, ([c1]1, [c2]2)): r′
π ←$ Fκ; // [cγ ]γ ∈ Gnγ

γ

[π′
1]1 ←K⊺

1[c1]1 + [r′
π]1; [π′

2]2 ←K⊺
2[c2]2 − [r′

π]2; // [π′
γ ]γ ∈ Gκ

γ

return π′ ← ([π′
1]1, [π

′
2]2);

Fig. 8. The bilateral subspace QA-SNARG BLS.

One of the many criticisms against GGM is that the target group GT is a sub-
group of the finite field, and thus it is questionable whether it can be modeled
as a generic group, [37]. Indeed, one can use the finite field structure to operate
on the elements of the GT . To address this issue, [37] defined the semi-GGM,
where one assumes that only the source groups are generic. A significant draw-
back of STDSH, QTSDH, SATDSH, and QATSDH is that, in their definition,
the adversary can output a value in the target group. Thus, they are not (known
to be) secure in the semi-GGM.

Because of this, [52] defined the QALINRES assumption where the adversary
does not output GT elements. Moreover, [52] also shows that QALINRES is a
particular case of the QATSDH assumption. An additional benefit of QALINRES
is that it does not force the adversary to output pairs of elements like (ηa, η̂a =
ηay); thus, arguments that use QALINRES are potentially more efficient than
arguments that use QATSDH. See [52] for more information.

B.3 On Punic and SSP

SSP. One can simplify Punic significantly by targeting SSP [17] (i.e., Boolean
circuits) instead of R1CS [25] (i.e., arithmetic circuits). If the SSP constraints
are satisfied, all wire values are Boolean. Thus, in the special soundness proof,
the black-box extractor Extss extracts G(w) = [wy]1 for Boolean wj . Since
wj is Boolean, one can efficiently recover w, achieving black-box id-knowledge-
soundness for the identity map id. Transferring Punic to the SSP setting has
other benefits. For example, we could use the CDHK vector commitment scheme
and a standard linear subspace argument [45] instead of VCF and the bilateral
linear subspace argument. The SNARK itself would simplify, and QALINRES
(see Definition 1) would become a more standard-looking assumption.
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Since this comes at the cost of handling SSP (Boolean circuits), we chose
to present a SNARK for R1CS. However, any SNARK for R1CS can be easily
modified to a SNARK for SSP due to an observation of [51] that an SSP instance
is an R1CS instance but with all three R1CS matrices U , V , W being equal. In
addition, an SSP constraint system must have a new constraint for every wire,
enforcing the wire value to be Boolean.

C AGM + PDL ⇒ QALINRES

C.1 Preliminaries

Let n1(λ), n2(λ) ∈ poly(λ). Pgen is (n1(λ), n2(λ))-PDL (Power Discrete Loga-
rithm) secure if for any λ and non-uniform PPT A, Advpdln1,n2,Pgen,A(λ) :=

Pr
[
A(p, [(xi)n1

i=0]1, [(x
i)n2

i=0]2) = x | p← Pgen(1λ), x←$ F
]
≈λ 0 .

Algebraic Group Model. AGM [22] is a recent idealized model of compu-
tation. Essentially, in the AGM, one assumes that each PPT algorithm A is
algebraic in the following sense. Assume A’s input includes [xγ ]γ and no other
elements from the group Gγ . We assume that if A outputs a vector [sγ ]γ of group
elements, then A knows a matrix γγ , such that sγ = γ⊺

γxγ .
Fix Pgen. More precisely, a PPT algorithm A is algebraic if there exists

an efficient extractor ExtA, such that for any vector of group elements x =
([x1]1, [x2]2), Adv

agm
Pgen,A,ExtA

(λ) :=

Pr

[
s1 ̸= γ⊺

1x1∨
s2 ̸= γ⊺

2x2

p←$ Pgen(1λ); r ←$ RNDλ(A);
([s1]1, [s2]2)←$A(p,x; r); (γ1,γ2)← ExtA(x; r)

]
≈λ 0 .

C.2 Security Theorem

Theorem 5. AGM + (n, n)-PDL ⇒ n-QALINRES.

Proof. Let X = (X,Y ) be two indeterminates and let (x, y) be the corresponding
trapdoors. Denote

ck = (([xi]1, [x
i]2)

n
i=0, [y]1, [y]2) .

Let A be an algebraic n-QALINRES adversary that has a success probability εA
in breaking QALINRES. Assume that we are now in the case when A succeeds.
That is, given (ck; r) as an input, A outputs a tuple

π = (j, [a, η̂a, φa, c, η̂c, φc, h]1, [b, η̂b, φb]2) ,

such that all five conditions in Definition 1 hold.
Since A is algebraic, there exists an extractor ExtA that, on the same inputs,

succeeds with the probability

1− AdvagmPgen,D,A,ExtA
(λ) = 1− negl(λ) .
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If ExtA succeeds, then taking into account that elements of ck consist of known
polynomials in (X,Y ) and one can efficiently compute the coefficients of poly-
nomials like a(X,Y ) from the output of ExtA, we write

T (X,Y ) =Tx(X) + TyY ,

where either
T ∈ S := {a, η̂a, φa, c, η̂c, φc, h, b, η̂b, φb} .

Here, the polynomials Tx(X) have degree ≤ n while Ty are field elements. For
example, a(X,Y ) = ax(X) + ayY for deg ax(X) ≤ n. Thus, a(X,Y ), φa(X,Y ),
. . . , φb(X,Y ) are maliciously chosen polynomials, such that say a = a(X,Y ) =
ax(X) + ayY .

Following the strategy of [22], we construct a PDL adversary B. (See Fig. 9
for the description of B.) B has inputs depending on a single trapdoor x. B
implicitly creates another random trapdoor y ← sx + t, and uses it to create
a valid input for A. B then runs A. After that, B uses ExtA to extract the
coefficients of various polynomials T (X,Y ). Thus, for B, all values returned by
A are univariate polynomials (in indeterminate X, corresponding to trapdoor
x). Based on extracted polynomials T (X,Y ), B obtains all coefficients of five
verification polynomials Vi(X,Y ), where

V1(X,Y ) = a(X,Y )Y − (X − ωj−1)φa(X,Y )Y + η̂a(X,Y ) ,

V2(X,Y ) = b(X,Y )Y − (X − ωj−1)φb(X,Y )Y + η̂b(X,Y ) ,

V3(X,Y ) = c(X,Y )Y − (X − ωj−1)φc(X,Y )Y + η̂c(X,Y ) ,

V4(X,Y ) = a(X,Y )b(X,Y )− c(X,Y )− h(X,Y )ZH(X) ,

V5(X,Y ) = η̂a(X,Y )η̂b(X,Y )− η̂c(X,Y )Y.

(9)

By inspecting the winning conditions of a QALINRES adversary (see Defini-
tion 1), the QALINRES verifier checks that [V1(x, y)]1 = [0]1, [V2(x, y)]2 = [0]2,
[V3(x, y)]1 = [0]1, [V4(x, y)]T = [0]T , and [V5(x, y)]T ̸= [0]T .

Since B created y implicitly as affine polynomials of x, from his viewpoint
each Vi(X,Y ) is a known univariate polynomial V ′i (X) = Vi(X, sX+ t). We will
analyze later the case B aborts at step (*) (see Fig. 9), i.e., Vi(X,Y ) = 0 for
each i ≤ 4, and show it can happen only with negligible probability.

Assume that B did not abort. Then, for some i ∈ [1, 4], Vi(X,Y ) ̸= 0 and
Vi(x, y) = 0. Since y is a function of x, we get that V ′i (X) ̸= 0 but V ′i (x) = 0.
B uses a polynomial factorization algorithm to find all roots of V ′i (X), and one
of them has to be equal to y. Thus, B has broken the PDL assumption with
probability εA − negl(λ). (See Fig. 9.)

Analysis of abortion probability in (*). Assume now that Vi(X,Y ) = 0, for i ≤ 4,
and V5(X,Y ) ̸= 0 (all as polynomials). Since V1(X,Y ) = 0,

a(X,Y ) = ax(X) + ayY

=
(
φax(X) + (X − ωj−1)φayY

)
+ (η̂ax(X) + η̂ayY ) /Y .
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B(p,xB = ([xi]1, [x
i]2)

n
i=0)

s, t←$ Z∗
p; [y]1 ← s[x]1 + t[1]1; [y]2 ← s[x]2 + t[1]2;

ck← ([(xi)ni=0, y]1, [(x
i)ni=0, y]2);

r ←$ RNDλ(A);π ← A(ck; r);
(Tx(X), Ty)T∈S ← ExtA(ck; r);
If ExtA fails, then abort;
If V1(X,Y ) = . . . = V4(X,Y ) = 0, then abort (*);
Let i ≤ 4 be such that Vi(X,Y ) ̸= 0;
Obtain roots xk of V ′

i (X);
Return xk that satisfies [xk]1 = [x]1;

Fig. 9. QALINRES⇒ PDL reduction B.

Let R = F[X]. Think of V1(X,Y ) as a polynomial over R[Y ], V1(X,Y ) =∑
i V1i(X)Y i ∈ R[Y ]. Since V1(X,Y ) = 0, each of its R-coefficients has to be

zero. Consider next the implications:
– V11 = 0 (the coefficient of Y in V1(X,Y ) is 0): thus,

ax(X) = (X − ωj−1)φax(X) + η̂ay .

– V12 = 0 (the coefficient of Y 2 in V1(X,Y ) is 0): thus, ay = (X − ωj−1)φay.
Since ay and φay are both field elements, φay = ay = 0.

– V10 = 0 (the coefficient of 1 in V1(X,Y ) is 0): thus, η̂ax(X) = 0.
Thus, φa(X,Y ) = φax(X), η̂a(X,Y ) = η̂ayY , and thus, by V1(X,Y ) = 0,

a(X,Y ) = (X − ωj−1)φax(X) + η̂ay .

Analogously, from V2(X,Y ) = 0 and V3(X,Y ) = 0, we get

b(X,Y ) = (X − ωj−1)φbx(X) + η̂by ,

c(X,Y ) = (X − ωj−1)φcx(X) + η̂cy .

But then from V4(X,Y ) = 0, we then get that

V4(X,Y ) :=
(
(X − ωj−1)φax(X) + η̂ay

) (
(X − ωj−1)φbx(X) + η̂by

)
−(

(X − ωj−1)φcx(X) + η̂cy
)
− (hx(X) + hyY )ZH(X) = 0 .

Since the coefficient of Y in V4(X,Y ) ∈ R[Y ] is hyZH(X) and ZH(X) ̸= 0,
we finally get hy = 0. Thus,

V4(X,Y ) = ((X − ωj−1)φax(X) + η̂ay)((X − ωj−1)φbx(X) + η̂by)−
((X − ωj−1)φcx(X) + η̂cy)− hx(X)Z(X) = 0 .

Since V4(X,Y ) = 0, then also V4(X,Y ) ≡ 0 (mod X − ωj−1). Hence, η̂ay η̂by =
η̂cy, a contradiction with

V ′5(Y ) = η̂a(x, Y )η̂b(x, Y )− η̂c(x, Y )Y = η̂ay η̂by − η̂cy ̸= 0 .

Hence, if A is honest, then B never aborts. ⊓⊔
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Bqal(ck) // ck = ([(xi)ni=0, y]1, [(x
i)ni=0, y]2)

(j, [η̂, φ]1)← A(ck); [a]1 ← [1]1; [b]2 ← [1]2; [c]1 ← [1]1;
return (j, [a, y − η̂, φ, c, y, 0, 0]1, [b, y, 0]2);

Fig. 10. QALINRES adversary in Lemma 3.

D Missing Lemmas And Proofs

D.1 Proof of Lemma 3

Proof. Let A be a VCSDH adversary (Definition 4). In Fig. 10, we depict an
adversary Bqal that usesA to break QALINRES (Definition 1). WhenA succeeds,
0 = (x− ωj−1)φ− η̂/y for η̂ ̸= 0. Bqal sets a = b = c = 1. Thus,

a = 1 = (x− ωj−1)φ+ (y − η̂)/y

for η̂ ̸= 0. Clearly, b = (x−ωj−1)·0+1, c = (x−ωj−1)·0+1, ab−c = 0 = hZH(x)
(since h = 0), and (y − η̂) · y ̸= y · y. Thus, Bqal succeeds. ⊓⊔

D.2 Proof of Lemma 4

Proof. Clearly, [U jµ]1 = [cke,j ]1(
µ
r ) and

[C(x)]1 = [ckℓ]1(Uµ
r ) = [ckℓ]1(U 0

0 0 )(
µ
r ) = [cku]1(

µ
r ) .

Moreover,

Quk,j(X) =
uk(X)− uk(ω

j−1)

X − ωj−1 =

∑n
i=1 Uik(ℓi(X)− ℓi(ω

j−1))

X − ωj−1

=

n∑
i=1

Uik
ℓi(X)− ℓi(ω

j−1)

X − ωj−1 =

n∑
i=1

UikQℓi,j(X) .

Thus,

ckℓ,j(Uµ
r ) =

n∑
i=1

(Uµ)iQℓi,j(x) =

m∑
k=1

µkQuk,j(x) + rQZH,j(x) = cku,j(
µ
r ) .

⊓⊔

D.3 Proof of Theorem 1

Proof. Let Aks be a knowledge-soundness adversary that, in the first game
(Game1) of Definition 5, succeeds in convincing D with a non-negligible proba-
bility ε1(λ). If ε1(λ) is negligible, there is nothing to prove: since ε2(λ) ≤ ε1(λ),
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AA2(st,·)
ss (lp,RJ)

1 : for ϱ ∈ [1, n] do
2 : T ← ∅;
3 : while T ≠ F do
4 : r ←$ F \ T ; T ← T ∪ {r};
5 : (crsϱ, tdϱ)← Kcrs(lp,RJ, ϱ; r);
6 : πϱ ← A2(st, crs

ϱ);
7 : if V(lp, crsϱ, C,x, πϱ) = 1
8 : then break;fi
9 : endwhile

10 : if V(lp, crsϱ, C,x, πϱ) = 0
11 : then return ⊥;fi
12 : trϱ ← (C,x, crsϱ, tdϱ, πϱ);
13 : endfor
14 : return tr← (trϱ)nϱ=1;

Ext
A2(st,·)
ks (lp,RJ, C,x, st)

1 : (crs, td)←$ Kcrs(lp,RJ, 0);
2 : π ← A2(st, crs);
3 : if V(lp, crs, C,x, π) = 0
4 : then return ⊥;fi
5 : tr0 ← (C,x, crs, td, π);

6 : tr← AA2(st,·)
ss (lp,RJ);

7 : if tr = ⊥ then return (tr0,⊥);fi
8 : G(w)← Extss(lp, tr);
9 : return (tr0, G(w));

Fig. 11. Ass and Extks in the second game of Theorem 1.

|ε2(λ) − ε1(λ)| ≈λ 0. Assume Π is CRS-indistinguishable. Thus, for any PPT
Aind, ε′(λ) := AdvcrsindPgen,ϱ,Π,Aind

(λ) is negligible.
Consider the second game in Definition 5 that defines ε2(λ). Let Extss be

a PPT special soundness extractor. In Fig. 11, we depict a special soundness
adversary Ass and a black-box knowledge-soundness extractor Extks. Ass loops
over ϱ ∈ [1, n]. For each ϱ, we have an inner loop, where Ass samples (without
replacement) a randomizer r to construct crsϱ. The inner loop ends when A2

produces an acceptable argument πϱ. If no acceptable argument was found for
some ϱ, Ass aborts. Otherwise, Ass outputs an n-tuple of acceptable arguments.

Extks runs Kcrs and the adversary once with ϱ = 0 and obtains a transcript
tr0. Extks aborts when tr0 is not acceptable. Otherwise, Extks calls Ass to obtain
n more transcripts. Extks aborts when Ass aborted. Otherwise, Extks invokes
Extss(lp, tr), obtaining G(w). Finally, we run D on Ass’s output tr.

Fix lp, RJ, (C,x), and st. Consider an implicit Boolean matrix M (that
depends on lp, RJ, Aks, and st), such that Mϱr = 1 iff the Π verifier accepts
A2’s output given a fixed constraint ϱ and CRS generator’s randomness r. Since
ε1(λ) is non-negligible, the row ϱ = 0 of M has a non-negligible fraction of ones.

Since ε1(λ) is non-negligible and ε′(λ) is negligible, ε1(λ) − ε′(λ) is non-
negligible. Thus, each row of M has a non-negligible fraction ε∗(λ) ∈ [ε1(λ) −
ε′(λ), ε1(λ)+ε′(λ)] of ones. Hence,Ass always returns an admissible tr. Moreover,
Ass works in the expected time n/ε∗(λ) · poly(λ) = poly(λ).

Clearly, D succeeds with the same probability in both games. The second
part (V accepts⇒ (x,w) /∈ RJ) holds iff Extss fails to extract a valid witness w,
i.e., with the probability AdvspecsoundPgen,G,Π,n,Extss,Ass

(λ). Hence,

AdvbbksPgen,G,Π,Extks,Aks
(λ) = |ε2(λ)− ε1(λ)| ≤ AdvspecsoundPgen,G,Π,n,Extss,Ass

(λ) .
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Since Extks aborts with probability 1 − ε1(λ), it works in the expected time
≤ n · ε1(λ)/(ε1(λ)− ε′(λ)) · poly(λ) ≈ n · poly(λ) = poly(λ). ⊓⊔

E Punic’s Security Proofs

E.1 Proof of Theorem 2 (Punic Is Complete And Zero-Knowledge)

Proof. (1: perfect completeness.) Since BLS is perfectly complete, we have
only to check that the last verification equation in Fig. 5 holds. But

[a(x)]1 • [b(x)]2 − [c(x)]1 • [1]2 = [h(x)]1 • [ZH(x)]2

due to the definition of h(X).
(2: perfect zero-knowledge.) We show that the simulator in Fig. 5 func-

tions properly when ϱ = 0. Since E0
1 and E0

2 are zero matrices the almost
everywhere perfectly-hiding property of FSEγ (see Fig. 3) means FSEγ is per-
fectly hiding. We perfectly simulate [d(x)]1 and [e(x)]2 by committing to 0. In
the honest argument, [a(x)]1, [b(x)]2, and [c(x)]1 are uniformly random and inde-
pendently distributed. Sim picks ra, rb, rc ←$ F and defines [a(x)]1 ← ra[ZH(x)]1,
[b(x)]2 ← rb[ZH(x)]2, and [c(x)]1 ← rc[ZH(x)]1 as VCFγ-commitments to 0.
(That is, it simulates the vector commitments.) Sim satisfies the verification
equation by setting

[h(x)]1 ← [(a(x)b(x)− c(x))/ZH(x)]1 = rarb[ZH(x)]1 − rc[1]1 .

Finally, BLS.π can be perfectly simulated (see [27]) using BLS.td. ⊓⊔

E.2 Proof of Theorem 3 (Punic is CRS-Indistinguishable)

Proof (Sketch). We can write this as a hybrid argument, where we first change
E1 and then change E2. For simplicity, consider only the case when we change
E1. B1 checks if A’s output πϱ is an acceptable argument. If it is, B1 guesses
that β = 1. Due to semi-adaptivity, the statement ([C]1,x) does not change from
game to game; moreover, since A succeeded, ([C]1,x) does not belong to the
language. Hence, A’s succeeds in cheating iff the verification accepts. Moreover,
one can have a single adversary B1 that does not depend on ϱ. ⊓⊔

E.3 Theorem 4 (Punic is Special-Sound)

Proof. Let Ass be a special soundness adversary that succeeds with probability
ε. Recall the semi-adaptive computational (n,G)-special soundness game from
Definition 7. In this game, the challenger forwards lp to Ass, who replies with
tr. After that, the challenger invokes a special soundness extractor Extss who
returns G(w).

Fig. 12 depicts the special soundness extractor Extss that is given tr as an
input. Extss loops over all constraints ϱ. For each ϱ, since FSE1 is somewhere [·]1-
extractable and FSE1.ek

ϱ is part of tdϱ and thus trϱ, Extss can use FSE1.swExt
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Extss(lp,RJ, tr = {trϱ = ([C]1,x, crs
ϱ, tdϱ, πϱ)}nϱ=1)

1 : for ϱ ∈ [1, n] do // π
ϱ contains [dϱ]1, td

ϱ contains FSE1.ek
ϱ

2 : (G(ηϱ|N(ϱ))
⊺, [(φϱ|N(ϱ))

⊺, φϱ
a , φ

ϱ
c ]

⊺
1)← FSE1.swExt

(
FSE1.ek

ϱ, [dϱ]1
)
;

3 : G(pϱ)← G(ηϱ|N(ϱ));
4 : endfor

5 : G(z)←
(
G(x)
⊥

)
; // Glue partial witnesses together:

6 : for ϱ ∈ [1, n] do for j ∈ N(ϱ) do
7 : if G(zj) = ⊥ then G(zj)← G(pϱ

j );

8 : elseif G(zj) ̸= G(pϱ
j ) then return G(z)← ⊥;fi

9 : endfor endfor
10 : return G(w); // = G((zi)

m
i=mx+1)

Fig. 12. The semi-adaptive computational (n,G)-special soundness extractor Extss in
Theorem 4.

to black-box extract a partial witness G(pϱ) together with related values. After
the loop finishes, Extss glues {G(pϱ)} together to a full witness G(w) = [wy]1
that satisfies all constraints.

The gluing process in Fig. 12 is a greedy algorithm that assigns coefficients
of [z]1 by using partial witnesses one by one until it detects an inconsistency. At
that point, Extss has found two inconsistent partial witnesses, and it aborts.

Let us analyze the probability that Ass succeeds (thus, V accepts all proofs
πϱ), but the black-box special soundness extractor Extss aborts. In this case,
either
(1) for some ϱ, (x,pϱ) /∈ Rϱ

loc,J, that is, pϱ is either not consistent with the
input x or does not satisfy the ϱth constraint (then Extss does not abort,
but the verifier will not accept w), or

(2) (x,pϱ) ∈ Rϱ
loc,J for all ϱ, but there exist i, j such that Cons(pi,pj) = 0

(then, the extractor aborts on step 8).
More precisely, Ass succeeds if at least one of the following holds:
(a) there exists a ϱ, such that

(∃j ∈ ([1,mx] ∩N(ϱ))) ηj ̸= xj ,

(b) there exists a ϱ, such that the black-box extracted partial witness G(pϱ) =
G(ηϱ|N(ϱ)) does not satisfy the ϱth constraint, that is,(∑

j∈N(ϱ) Uϱjη
ϱ
j

)
·
(∑

j∈N(ϱ) Vϱjη
ϱ
j

)
̸=
(∑

j∈N(ϱ) Wϱjη
ϱ
j

)
,

(c) there exist i and j, such that Cons(pi,pj) = 0.
We construct three reductions that collectively succeed whenever Ass succeeds
but Extss does not (either aborts or returns a wrong witness). Each reduction
succeeds when the variable ev takes a specific value. Two of the reductions (Bbls
when ev = evbls and Bqal when ev = evqalinres) are related to (but not equal to)
reductions in [18,19,52], while the third one (Bfposb when ev = evfposb) is novel.
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Moreover, instead of just ev = evbls, we consider events evϱbls, for ϱ ∈ [1, n].
Events evibls and evjbls for i ̸= j can hold simultaneously. We will explain this now
case-by-case.

ev = evϱbls, ϱ ∈ [1, n]: in this case,

BLS.xϱ = (C∗, aϱ, cϱ, dϱ, bϱ, eϱ)⊺ /∈ colspace
(
M1

M2

)
,

that is, Eq. (5) does not hold for this ϱ. Equivalently, there does not exist

BLS.wϱ = (zϱ, rϱC , r
ϱ
a , r

ϱ
b , r

ϱ
c , r

ϱ
d , r

ϱ
e )

⊺ ,

such that Eq. (6) holds for ϱ.
In the contrary, if ev /∈ {evϱbls}, then for each ϱ, there exists at least one zϱ,

such that [C, dϱ]1 and [eϱ]2 commit to zϱ, while [aϱ]1, [bϱ]2, and [cϱ]1 commit to
Uzϱ, V z

ϱ, and Wz
ϱ. Since V accepts, (∀ϱ)aϱbϱ = cϱ. Thus, for

G(ηϱa ) :=
∑

j∈N(ϱ)

UϱjG(ηϱj )

and
G(ηϱc ) :=

∑
j∈N(ϱ)

WϱjG(ηϱj ) ,

we get

(∀ϱ) (∃zϱ)G(ηϱa ) = G(Uϱz
ϱ) ∧G2(η

ϱ
b ) = G2(Vϱz

ϱ) ∧G(ηϱc ) = G(Wϱz
ϱ) , (10)

where G2(s) := [sy]2. Moreover,

[C∗(x)]1 =

n∑
j=mx+1

z
ϱ
j [ℓj(x)]1 + rϱC [ZH(x)]1

and thus

[C]1 =

mx∑
j=1

xj [ℓj(x)]1 +

n∑
j=mx+1

z
ϱ
j [ℓj(x)]1 + rC [ZH(x)]1

uses the correct R1CSf statement x. Thus, the cheating avenue a is impossible,
and in the following cases, one only has to deal with the cheating strategies b
and c.

ev = evfposb: Eq. (5) (that is, BLS.xϱ ∈ colspace
(
M1

M2

)
) holds for all ϱ. In par-

ticular, Eq. (10) holds. However, there is no full witness w, such that z = ( x
w
)

satisfies all constraints:

(¬∃z∀ϱ) (G(ηϱa ) = G(Uϱz) ∧ G2(η
ϱ
b ) = G2(Vϱz) ∧ G(ηϱc ) = G(Wϱz)) . (11)

Due to Remark 1, this corresponds to the cheating avenue c.
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Bϱ
bls(p,BLS.lp = [M ]∗,BLS.lt =

(
M1
M2

)
,BLS.crs)

Compute x from ZH(x) ∈ F that is given in M1; y ←$ F∗;

lp← VCF1.ck = ([(xj)nj=0, y]1, [(x
j)nj=0, y]2);

tr← Ass(lp,RJ); // x = (z1, . . . , zmx )

if tr is not admissible then return ⊥;
// Use only single transcript trϱ; πϱ

=
([

aϱ, cϱ, dϱ, hϱ
]
1
,
[
bϱ, eϱ

]
2
,BLS.π

ϱ
)

[C∗(x)]1 ← [C]1 −
∑mx

j=1 xj [ℓj(x)]1;

BLS.x← ([C∗(x), aϱ, cϱ, (dϱ)⊺]1, [b
ϱ, (eϱ)⊺]2)

⊺;
return (BLS.x,BLS.π);

Fig. 13. The BLS strong-soundness adversary Bbls.

ev = evqalinres: Eq. (5) (that is, BLS.xϱ ∈ colspace
(
M1

M2

)
) holds for all ϱ. More-

over, a full witness w exists, such that z = ( x
w
) satisfies all constraints; that

is, Eq. (11) does not hold. In this case, only the cheating avenue b is possible.
Thus, there must exists a ϱ, such that (Uz)ϱ(V z)ϱ ̸= (Wz)ϱ.

In Lemmas 5 to 7 (see Appendices E.4 to E.6), we construct reductions Bϱbls
(for ϱ ∈ [1, n]), Bfposb, Bqal, such that

Pr[Ass succeeds|ev = evϱbls] ≤AdvstrsoundPgen,Dϱ
par,BLS,Bϱ

bls
(λ) ,

Pr[Ass succeeds|ev = evfposb] ≤AdvfposbPgen,[·]1,n,VCF1,Bfposb
(λ) ,

Pr[Ass succeeds|ev = evqalinres] ≤AdvqalinresPgen,n,Bqal
(λ) .

The three reductions emulate Extss from Fig. 12 internally; each takes care of
one possibility when Extss can fail. Clearly, if Ass succeeds and none of the cases
ev = evϱbls, ev = evfposb, ev = evqalinres is true, then Extss succeeds. Assuming
Lemmas 5 to 7, Theorem 4 holds. ⊓⊔

E.4 Lemma 5

Lemma 5. Let n be the number of R1CSf constraints and ϱ ∈ [1, n]. Assume
BLS is quasi-adaptively strongly sound. For every PPT special soundness adver-
sary Ass, there exists a PPT Bϱbls, such that

Pr[Ass succeeds|ev = evϱbls] ≤ AdvstrsoundPgen,Dϱ
par,BLS,Bϱ

bls
(λ) .

Here, a part of the reduction’s input is [M ]∗, which depends on FSE1.ck and
FSE2.ck. Thus, one cannot reprogram [M ]∗ inside the reduction. This is why
we construct a different reduction Bϱbls for each ϱ ∈ [1, n] that works in the case
the commitments corresponding to the ϱth CRS are not properly formed. Since
the distribution of BLS.lp depends on ϱ, Bϱbls is only required to be secure for
the distribution of BLS.lp corresponding to ϱ.
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Proof. Let Ass be a semi-adaptive computational (n, [·]1)-special soundness ad-
versary against Punic. Assume ev = evϱbls for some ϱ. That is, Ass makes the
verifier to accept but there does not exist

BLS.wϱ = (zϱ, rϱC , r
ϱ
a , r

ϱ
b , r

ϱ
c , r

ϱ
d , r

ϱ
e )

⊺ ,

such that Eq. (6) holds.
We start the reduction by creating lp for Ass. For this, we need to know x.

We black-box extract x form ZH(x), which is an entry of M1. We can do that
since BLS is strongly-sound and thus B has access to BLS.lt =

(
M1

M2

)
. We then

obtain tr = {trϱ = ([C]1,x, crs
ϱ, tdϱ, πϱ)} from Ass(lp,RJ).

After that, Bbls emulates Extss from Fig. 12, but does not execute things
not needed for this concrete reduction to work, and adds things to finish the
reduction. In particular, since Bbls only deals with one constraint ϱ, we do not
have to loop over all constraints. Hence, Bϱbls uses its input BLS.crs as the BLS
CRS corresponding to the ϱth constraint. Bbls obtains from tr an argument πϱ

and returns a BLS output computed from the rest of tr. See Fig. 13.
Clearly,

Pr[Ass succeeds|ev = evϱbls] ≤ AdvstrsoundPgen,Dϱ
par,BLS,Bϱ

bls
(λ) .

⊓⊔

E.5 Lemma 6

Lemma 6 (Position-Binding). Let n be the number of R1CSf constraints.
Assume FSE1 is somewhere [·]1-extractable and VCF1 is [·]1-position-binding.
For every PPT special soundness adversary Ass, there exists a PPT Bfposb, such
that

Pr[Ass succeeds|ev = evfposb] ≤ AdvfposbPgen,[·]1,n,VCF1,Bfposb
(λ) .

Proof. Assume ev = evfposb. Let Ass be a PPT special soundness adversary that
succeeds with probability

ε := Pr[Ass succeeds = 1|ev = evfposb] .

In Fig. 14, we depict a [·]1-position-binding adversary Bfposb. Bfposb(p,VCF1.ck)
constructs Punic’s lp and then calls Ass(lp,RJ) to obtain tr.

After that, Bfposb loops over all constraints ϱ ∈ [1, n]. On the ϱth step, Bfposb
does the following:
1. Since FSE1 is somewhere [·]1-extractable and FSE1.ek

ϱ ∈ tdϱ, Bfposb can use
the somewhere extraction procedure of FSE. More precisely, Bfposb black-box
extracts  G(ηϱ)φϱ

φϱ
a

φϱ
c


1

← [Eϱ
1]1 ·

(
z
ϱ

rϱa
rϱc
rϱC

)
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Bfposb(p,VCF1.ck = ([(xj)nj=0, y]1, [(x
j)nj=0, y]2)) // VCF1.ck = VCF2.ck

lp← VCF1.ck;
tr← Ass(lp);
if tr is not admissible then return ⊥;
for ϱ ∈ [1, n] do // π

ϱ contains [dϱ]1, td
ϱ contains FSE1.ek

ϱ

(G(ηϱ|N(ϱ))
⊺, [(φϱ|N(ϱ))

⊺, φϱ
a , φ

ϱ
c ]

⊺
1)← FSE1.swExt

(
FSE1.ek

ϱ, [dϱ]1
)
;

endfor
// Find a pair of inconsistent partial witnesses

for i ∈ [1, n] do
for j ∈ [i+ 1, n] do
for k ∈ N(i) ∩N(j) do // Partial witnesses are different

if G(ηi
k) ̸= G(ηj

k) then return ([C]1, k,G(ηi
k), [φ

i
k]1, G(ηj

k), [φ
j
k]1);fi

endfor
endfor

Fig. 14. The [·]1-position-binding adversary Bfposb in Lemma 6.

as in Eq. (8), where

G(ηϱβj
) =

∑
k z

ϱ
kG(ekβj

) = G(zϱβj
) ,

[φϱ
βj
]1 =

∑
k z

ϱ
k[Qℓk,βj (x)]1 + rϱC · [QZH,βj (x)]1 ,

and thus

(G(ηϱβj
), [φϱ

βj
]1) = LOpen(VCF1.ck, [C]1, βj , (z

ϱ, rϱC)) .

The last equality follows from taking the quotients of the equation

(. . . ,
∑

k z
ϱ
k[ℓk(x)]1 + rϱC · [ZH(x)]1) = Com(VCF1.ck, z; rC) .

(We actually only need to extract (G(ηϱβj
), [φϱ

βj
]1) for all f bits βj ∈ N(ϱ).)

Now, recall we are in the case ev = evfposb. Thus, for each ϱ, there exists a
full witness zϱ that agrees with the ϱth black-box extracted value, but there
is no full witness z that agrees with the extracted values of all n constraints.
By Remark 1, there exist i ̸= j, such that zi satisfies the ith constraint and z

j

satisfies the jth constraint, but zi does not satisfy the jth constraint. Hence,
there exists a coefficient k ∈ N(i)∩N(j), such that the kth coefficients of zi and
z
j are different. During the ith and the jth iteration of the loop, we black-box

extract G(ηik) = G(zik) and G(ηjk) = G(zjk), together with local proofs certifying
that [zik]1 and [zjk]1 are both valid local openings of [C]1. Bfposb breaks the [·]1-
position-binding of VCF1 by returning G(ηik) ̸= G(ηjk) with local proofs.

Hence,

Pr[Ass succeeds|ev = evfposb] ≤ AdvfposbPgen,[·]1,n,VCF1,Bfposb
(λ) .

⊓⊔
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Bqal(p,VCF1.ck = ([(xj)nj=0, y]1, [(x
j)nj=0, y]2)) // VCF1.ck = VCF2.ck

lp← VCF1.ck;
tr← Ass(lp);
if tr is not admissible then return ⊥;
for ϱ ∈ [1, n] do

// π
ϱ contains ([aϱ, cϱ, dϱ, hϱ]1, [b

ϱ
, eϱ]2), td

ϱ contains (FSE1.ek
ϱ
,FSE2.ek

ϱ
)

(G(ηϱ|N(ϱ)), [φ
ϱ|N(ϱ), φ

ϱ
a , φ

ϱ
c ]

⊺
1)← FSE1.swExt

(
FSE1.ek

ϱ, [dϱ]1
)
;

G(ηϱ
a )←

∑
j∈N(ϱ) UϱjG(ηϱ

j );G(ηϱ
c )←

∑
j∈N(ϱ) WϱjG(ηϱ

j );

(G2(η
ϱ
b ), [φ

ϱ
b ]2)← FSE2.swExt

(
FSE2.ek

ϱ, [eϱ]2
)
;

if G(ηϱ
a ) •G2(η

ϱ
b ) ̸= G(ηϱ

c ) •G2(1) then
return (ϱ, [aϱ]1, G(ηϱ

a ), [φ
ϱ
a , c

ϱ]1, G(ηϱ
c ), [φ

ϱ
c , h

ϱ]1, [b
ϱ]2, G2(η

ϱ
b ), [φ

ϱ
b ]2);fi

endfor

Fig. 15. The QALINRES adversary Bqal in Lemma 7.

E.6 Lemma 7

Lemma 7 (QALINRES reduction). Let n be the number of R1CSf con-
straints. Assume FSE1 is somewhere [·]1-extractable, FSE2 is somewhere [·]2-
extractable, and QALINRES holds. For every PPT special soundness adversary
Ass, there exists a PPT Bqal, such that

Pr[Ass succeeds|ev = evqalinres] ≤ AdvqalinresPgen,n,Bqal
(λ) .

Proof. Let Ass be a special soundness adversary. Assume ev = evqalinres, that is,
there exists a full witness w that is consistent with all openings. In this case,
the adversary’s only cheating avenue is to leave some constraint, say, constraint
ϱ, unsatisfied. Then, the local opening of constraint ϱ shows inconsistency.

In Fig. 15, we depict a QALINRES adversary (see Definition 1). Here,
G2(s) := [sy]2. Bqal starts by creating lp and obtaining tr from Ass. After that,
Bqal loops over all the constraints. After black-box extracting the partial wit-
ness of a constraint ϱ, Bqal checks that this constraint is satisfied by the partial
witness.

More precisely, since FSE1 is somewhere [·]1-extractable and FSE2 is some-
where [·]2-extractable, Bqal black-box extracts
1.  G(ηϱ)φϱ

φϱ
a

φϱ
c


1

← [Eϱ
1]1 ·

(
z
ϱ

rϱa
rϱC
rϱc

)
as in Eq. (8), where say

[φϱ
a ]1 =

[∑
k

z
ϱ
kQuk,ϱ + rϱaQZH,ϱ(x)

]
1

.

Setting
G(ηϱa )←

∑
UϱjG(zϱj ) = G((Uzϱ)ϱ) ,
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we get
(G(ηϱa ), [φ

ϱ
a ]1) = LOpen(VCF1.ck, [a

ϱ]1, ϱ, (Uz
ϱ, rϱa )) .

2.
(

G2(η
ϱ
b )

[φϱ
b ]2

)
← [Eϱ

2]2 ·
(
z
ϱ

rϱb

)
, where

G2(η
ϱ
b ) =

∑
VϱjG2(z

ϱ
j ) = G2((V z

ϱ)ϱ)

and

[φϱ
b]2 =

∑
k

z
ϱ
k[Qvk,ϱ(x)]2 + rϱb [QZH,ϱ(x)]2

= LOpen(VCF2.ck, [b
ϱ(x)]2, ϱ, (V z

ϱ, rϱb)) .

(In this reduction, we only need to extract (G(ηϱa ), [φ
ϱ
a ]1, G(ηϱc ), [φ

ϱ
c ]1) and

(G2(η
ϱ
b ), [φ

ϱ
b]2).)

Bqal checks if
G(ηϱa ) •G2(η

ϱ
b ) = G(ηϱc ) •G2(1) .

If the check fails (the constraint is unsatisfied), it uses the partial witness to
break the QALINRES assumption. Since we are in the case bad = evqalinres, Bqal
must succeed for at least one constraint ϱ.

Hence,
Pr[Ass succeeds|ev = evqalinres] ≤ AdvqalinresPgen,n,Bqal

(λ) .

⊓⊔
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