Comparse: Provably Secure Formats for Cryptographic Protocols

Théophile Wallez
theophile.wallez@inria.fr

Paris, France

ABSTRACT

Data formats used for cryptographic inputs have historically been
the source of many attacks on cryptographic protocols, but their
security guarantees remain poorly studied. One reason is that, due
to their low-level nature, formats often fall outside of the security
model. Another reason is that studying all of the uses of all of
the formats within one protocol is too difficult to do by hand, and
requires a comprehensive, automated framework.

We propose a new framework, “Comparse”, that specifically tack-
les the security analysis of data formats in cryptographic protocols.
Comparse forces the protocol analyst to systematically think about
data formats, formalize them precisely, and show that they enjoy
strong enough properties to guarantee the security of the protocol.

Our methodology is developed in three steps. First, we introduce
a high-level cryptographic API that lifts the traditional game-based
cryptographic assumptions over bitstrings to work over high-level
messages, using formats. This allows us to derive the conditions
that secure formats must obey in order for their usage to be se-
cure. Second, equipped with these security criteria, we implement
a framework for specifying and verifying secure formats in the
F* proof assistant. Our approach is based on format combinators,
which enable compositional and modular proofs. In many cases, we
relieve the user of having to write those combinators by hand, us-
ing compile-time term synthesis via Meta-F*. Finally, we show that
our F* implementation can replace the symbolic notion of message
formats previously implemented in the DY* protocol analysis frame-
work. Our newer, bit-level precise accounting of formats closes the
modeling gap, and allows DY* to reason about concrete messages
and identify protocol flaws that it was previously oblivious to.

We evaluate Comparse over several classic and real-world proto-
cols. Our largest case studies use Comparse to formalize and provide
security proofs for the formats used in TLS 1.3, as well as upcom-
ing protocols like MLS and Compact TLS 1.3 (cTLS), providing
confidence and feedback in the design of these protocols.

1 INTRODUCTION

Modern software applications rely on a variety of cryptographic
protocols to protect sensitive data as it is transmitted over or stored
on insecure media. They use Transport Layer Security (TLS) or
Noise when they need secure channels, FileVault or Bitlocker for
disk encryption, Signal or Messaging Layer Security (MLS) for
secure messaging, Bitcoin or Ethereum for distributed ledgers.
Each of these protocols can be described as a sequence of (one
or more) high-level messages sent between (one or more) partici-
pants. At each step, a sender takes a message that has a particular
meaning in the context of the protocol and encodes it into a bit-
string by following a protocol-specific format. This bitstring is then
protected using some cryptographic construction. For example, the
sender may encrypt the bitstring to guarantee the confidentiality

Jonathan Protzenko
protz@microsoft.com

Inria Microsoft Research

Redmond, Washington, USA

Karthikeyan Bhargavan
karthikeyan.bhargavan@inria.fr
Inria and Cryspen
Paris, France

for the message content (and the privacy of its metadata); or they
may add signatures, message authentication codes (MACs), or zero-
knowledge proofs to guarantee the integrity and authenticity of the
message. The output bitstring is then serialized according to a wire
format before it is sent over the network or stored on some disk.
The recipient follows the protocol in reverse, parsing the received
bitstring, applying its own sequence of cryptographic operations,
and decoding the result to obtain the high-level protocol message
that the sender (hopefully) intended to send.

Attacks on Cryptographic Protocols. As a classic example, con-
sider the core of the Needham-Schroeder public-key protocol [33]:

A— B: {NallA}pk(s)
B— A: {NallNp}pk(a)
A— B: {NB}pk(B)

Each participant generates a nonce (N4, Np), formats it along with
some identity information (N4 ||A), and encrypts the resulting bit-
string using a public-key. Note that the formatting of the message
is done within the encrypted payload; any wire-formatting that is
done outside the encryption (for example, a header mentioning the
sender and recipient) is considered to be under the control of the
network adversary, and so is ignored in the analysis of the protocol.

The protocol aims to authenticate two participants (A and B) to
each other, and to establish a shared secret (Ng) between them. How-
ever, it has a famous attack, originally found by Gavin Lowe [27],
which exploits the fact that the second message does not mention
its recipient’s name, allowing an attacker to mix messages across
two sessions, breaking the security of the protocol. Adding B inside
the encryption of the second message prevents the attack.

Interestingly, however, there is another, less-well-known attack
on this protocol that relies on a message format ambiguity. Mead-
ows [30] observed that an attacker could take the second message
(from B to A) from one session and pass it off as a first message in a
new session (seemingly from someone named Np to A). In essence,
the formats of the first two messages are not disjoint, since a priori,
Np may well be a valid identifier for a protocol participant.

Meadows finds two attacks that exploit this format ambiguity,
and Heather et al. [20] show that Lowe’s fix to the protocol does
not prevent this attack. To fix the protocol against such format
confusion attacks, it is necessary to change the internal formats and
remove the ambiguity, say by systematically tagging each internal
message by a distinct bitstring.

Formats in Real-World Protocols. Format specifications are ubig-
uitous in real-world protocols, since agreeing on formats is a neces-
sary precondition to enabling multiple interoperable implementa-
tions. Internet standards like TLS 1.3 [38] and MLS [8] devote 20%
of their text to describing message formats, relying on a custom
language called the TLS presentation language. Other protocols

https://orcid.org/0009-0007-0547-129X
https://orcid.org/0000-0001-7347-3050
https://orcid.org/0000-0002-3152-8997

rely on a variety of format description languages to encode crypto-
graphic inputs, including XML [1, 2, 15], JSON [23, 24], CBOR [41],
Protocol Buffers [40], and ASN.1 [22].

Each format description language aims to make it easier for
developers and protocol designers to design new formats and cor-
rectly implement serializers and parsers for them. However, the
sheer number of these languages should serve as a warning sign of
the diversity of formatting requirements and constraints in main-
stream protocols. Binary formats like CBOR and Protocol Buffers
prioritize conciseness, while text formats like XML and JSON aim
for Web-friendly interoperability. The TLS presentation language
is specialized for a single family of protocols, while ASN.1 aims to
be generic and self-describing. Furthermore, proprietary protocols
often use their own custom formats according to their own needs.

Unfortunately, despite the great deal of attention given to describ-
ing formats, and although the dangers of format confusions have
long been known, cryptographic protocols still get them wrong, re-
sulting in high-profile attacks that continue to be found on a regular
basis, both in published standards and in proprietary software.

Format Confusion Attacks. Mavrogiannopoulos et al. [29] de-
scribe an attack on TLS 1.2 that relies on a format confusion be-
tween the signature inputs used in two kinds of Diffie-Hellman
handshakes; the attacker takes a server signature produced in one
handshake and uses it to impersonate the server in another hand-
shake. Wallez et al. [47] describe a vulnerability in MLS draft 12,
where the inputs to signatures in the TreeSync and TreeDEM com-
ponents of MLS can be confused for each other.

More recently, Paterson et al. [35] describe a series of attacks on
Threema, including a format confusion attack between different
encrypted messages in the C2S and E2E sub-protocols. Another
attack was recently found on the Matrix protocol, where the inputs
to MACs used in two different messages could be confused [6].

These attacks involve different kinds of protocols, and different
cryptographic constructions, but in all cases, the problem can be
traced to the incorrect or ambiguous use of formats within crypto-
graphic inputs. These flaws are in the protocol itself, and so cannot
be fixed by a clever implementation.

Even finding such format confusion attacks in a large standard
like TLS 1.3 or MLS can be a real challenge, since the attacks often
involve messages in different sub-protocols, sometimes described in
different documents altogether. To systematically find and prevent
format confusion attacks in real-world protocols, we need a formal
framework for specifying and reasoning about secure formats.

Analyzing Crypto Protocols with Precise Formats. Lowe’s
attack on Needham-Schroeder and the subsequent fix have been
very influential, serving as a motivating example for a whole line
of protocol verification tools based on symbolic (or Dolev-Yao)
analysis [7], including modern tools like ProVerif [14], Tamarin [31],
and DY* [10] that have been applied to real-world cryptographic
protocols like TLS, Signal, and Noise.

However, the analysis of precise formats remains poorly sup-
ported by protocol verification tools and techniques. For exam-
ple, the default model of symbolic concatenation used in ProVerif,
Tamarin, and DY*, fails to find the format confusion attack on the
fixed Needham-Schroeder-Lowe protocol even today. While it is
possible to extend the algebra of terms to account for some format

confusion attacks, one cannot be sure that all the low-level details
of the format have been captured.

Pen-and-paper cryptographic proofs (and their mechanized vari-
ants in tools like CryptoVerif [13] and EasyCrypt [9]) technically
reason about bitstring messages, but in terms of practical format
analysis, they do even worse than symbolic tools. Proofs in the
computational model of cryptography are much harder than sym-
bolic analyses, so in order to make a security proof feasible, papers
routinely disregard any formatting concerns and focus only on the
cryptographic steps. As we will see in §4, even comprehensively
studied protocols like TLS 1.3 have not been properly analyzed for
format confusion attacks.

Our Work and Contributions. As we have seen, there is a large
gap between the academic proofs for cryptographic protocols and
real-world protocols with complex internal formats. To close this
gap, we need a framework for protocol analysis that can specify and
prove bit-level precise formats suitable for all the cryptographic in-
puts used in a protocol. To ensure that we got the formats correctly,
we need to be able to test these formats against published test vec-
tors and interoperable implementations. We then need to be able
to automatically, or semi-automatically, search for and prove the
absence of format confusion attacks across cryptographic inputs
in all the message in all related sub-protocols. Finally, we need to
be able to embed our formatting proofs within a protocol analysis
framework that can verify the security of protocols.

In this paper, we propose a new framework that addresses these
requirements. Our framework, called Comparse, uses game-based
cryptographic assumptions to establish the set of requirements
that formats must obey for their usage to be secure. Because our
usage restrictions encompass several classes of attacks, we come up
with criteria over formats that rule out not only confusion attacks,
but also other well-known attacks. Comparse is implemented and
embedded within the F* programming language and verification
framework. We demonstrate its expressiveness by using it to spec-
ify and analyze all the formats used in large Internet standards
like TLS 1.3 and MLS, as well as classic protocols like Needham-
Schroeder. We show how our framework allows us to guide the
design of new variants of TLS like Compact TLS 1.3 (cTLS). Fi-
nally, we show how our framework is embedded within the DY*
protocol verification framework and can be used to verify the secu-
rity of cryptographic protocols while accounts for bit-level precise
formats.

Ours is the first formatting framework that is embedded within
a protocol security analysis tool. We provide the first formal proof
of correctness for the formats of cTLS, an emerging standard for
IoT, and we close an important gap in prior analyses of TLS 1.3.
Although our framework does produce reference implementations
of serializers and parsers for our formats, this is primarily meant for
testing our specification, not as production-ready code. Producing
efficient, zero-copy parsers for protocol formats is not our goal.

Outline. Section 2 provides a high-level overview of secure formats
and establishes the properties they should obey via a new flavor
of cryptographic games. Section 3 describes a formalization and
implementation of our format analysis framework, Comparse in F*.
Section 4 describes TLS 1.3, cTLS, examines the gap between the

published security proofs of these protocols when deployed in par-
allel with each other, and shows how Comparse can address those.
Section 5 shows how Comparse is integrated into DY*. Section 6
discusses our results, their impact, and their limitations. Section 7
briefly describes related work, and Section 8 concludes.

2 THE ESSENCE OF SECURE FORMATS

Real-world formats in protocols like TLS are described in a com-
bination of custom language, comments, and English prose. This
has made their comprehensive study difficult, and has resulted in
several protocol attacks that leverage design flaws in these formats.
To address these shortcomings, this section introduces a formal
notion of message formats and properties over those message for-
mats, which form the foundation of our security analysis. In §3, we
shall see how this notion is formalized in a proof assistant.
Throughout this section, we define formats for objects that are
represented as bytes. This means that our formats are not just
for messages sent over the wire, but also apply to cryptographic
inputs (for signatures, MACs, transcript hashes, etc) or any protocol
session state or key material that is stored in some binary format.

2.1 Formally Defining Message Formats

We use B to denote the set of byte sequences (also known as
“bytestrings”), and a byte is a value in [0,255]. We write ¢ for
the empty bytestring, and by + by for the concatenation of two
bytestrings. We write literal bytestrings in hexadecimal notation;
for example, cOffee is a bytestring of length 3.

Message Format. A message format for a type M is a relation 2
between M and B. The index M over 2 disambiguates relations
when there are several types M, M involved. There may be several
relations for a given M, but we only ever manipulate one such 2™
in any given context.

If we pick M = B?, and define the message format (b1, b2) =My
to be e.g. by € B.bg + by + by = b, then the following three
properties hold: (co, ffee) 2M coffee, but also (coff,ee) 2M
coffee, and (cOff, ee) 2M feedcoffee.

Albeit simplistic, this example warrants two observations. First,
we define our notion of format without any reference to a parser
or a serializer. In our view, a format is defined as a relation inde-
pendently of any concrete encodings. Second, this sample format
enjoys almost no property of interest: among the many issues with
this format, we remark that a given bytestring may correspond to
multiple elements in M, and conversely, that an element in M may
be represented by several bytestrings.

Serializers and Parsers. Naturally, designers and implementers do
not think in terms of logical predicates relating M and B, but rather
in terms of concrete formats defined by parsers and serializers.
A serializer for a message format 2M is a function serializeps :
M — B such that (correctness) Ym € M.m =M serializep(m).
A parser for a message format 2M is a function parsey; : B —
M U {1}, such that (completeness) ¥b € B.(3m € M.m 2M
b) = parsey(b) # L, and (correctness) Vb € B.parsey, #
L = parsey(b) 2M b,

We note that from completeness, it follows that a parser returns
1 (meaning the input bytestring b is malformed) if and only if there
no element of M is in relation with b (meaning b cannot be parsed).

Induced Message Format. Given two functions serializeys : M —
B and parsey; : B — M U {1}, we define their induced message
formaton Massm2M b:=m = parse, (b) V serializeps(m) = b.
This is the smallest message format for which parse,; is a parser
and serializey is a serializer.

The induced message format relates the programmer-centric,
concrete view (a format is defined by its parser and serializer) with
the security-centric, more abstract view (a format is a relation be-
tween messages and bytestrings). Hence, it shows that our abstract
formats can still be defined using a concrete parser and serializer.

An advantage of our format-centric view is that it allows us to
state properties on a single concept (the format, i.e. a mathematical
relation), rather than stating two separate properties (on the parser,
and the serializer), and having to account for implementation details
(such as the possibility of parsing failure).

Furthermore, as we will see shortly, we show that security proper-
ties on an induced message format can be turned into more familiar
properties over the underlying parser and serializer, as is done in
our implementation of Comparse. There is therefore no lack of
expressivity, nor awkwardness, in adopting formats as our central
concept for which core notions are defined.

2.2 Properties of Message Formats

Leveraging the definitions above, we start with two security prop-
erties: non-ambiguity, and representation unicity. Failure to exhibit
these properties when needed typically indicates a protocol weak-
ness. We follow with two intermediary properties: non-extensibility,
and non-emptiness. These are typically established as lemmas to-
wards a functional correctness result, or a larger security proof.

Non-ambiguity. A message format 2 is non-ambiguous if it
relates at most one high-level message to each bytestring. Formally:
Vmi,mye MbeBm2Mbam 2M b = my = mo.

A non-ambiguous format is one for which the parser can only
make a single choice for a given bytestring. It is usually easy to
find and prevent ambiguity in message formats sent over the wire.
When designing the message parser, the implementer will usually
notice that multiple choices can be made, or they will typically find
the issue during interoperability testing or by fuzzing.

The format-confusion attack on Needham-Schroeder mentioned
in §1 relies on passing the contents of the second message as a valid
format for the first message. Let us see how this can be seen as a
violation of our format security properties. Since all three messages
in the protocol use the same cryptographic construction (public-
key encryption) with potentially the same keys, the three message
payloads should conservatively be treated as three sub-cases of
a single message format. However, we would then find that this
shared format violates the non-ambiguity property above, since
the formats of the first and second message overlap. To restore
non-ambiguity for the payload format, we would need to change
the protocol, by tagging each message with a distinct label, for
example. Such format confusion issues are widespread in real-world
protocols, as we shall later see in the context of TLS 1.2 (§2.3).

However, formats used in cryptographic constructions, such as
signatures, do not always involve parsing messages, and so non-
ambiguity is not naturally enforced or systematically tested. This
has resulted in high-profile attacks, as we saw in §1.

As we mentioned earlier, the induced message format allows
carrying properties of the format onto a parser and serializer.

LEMMA. Given a parser and serializer for M, the induced message
format 2M is non-ambiguous if and only if:
Vm € M. parse,(serializeys(m)) = m.

Representation unicity. A message format 2M s said to enjoy
representation unicity when at most one bytestring can be in rela-
tion with each high-level message. Formally:
Vme Mbi,by e B.m2M by ama2M by = by =b,.
Representation unicity has sometimes been referred to as non-
malleability [36]. We prefer the term “representation unicity”, to
avoid confusion with the standard notion of cryptographic mal-
leability [48]. Just like non-ambiguity, representation unicity is
mandatory in many security contexts, such as signed content. For
instance, transaction malleability is a serious concern in Bitcoin,
as described in BIP 62 [49]. Representation unicity rules out such
attacks, by imposing a unique bytestring representation for each
signed high-level message or transaction. We can also state repre-
sentation unicity as a property of parsers and serializers.

LEMMA. Given a parser and serializer for M, the induced mes-
M . L .
sage format 2" has representation unicity if and only if Vb €
B .parsey (b) # L = serializeys(parse, (b)) = b.

We now look into additional properties that are not directly
security-critical, but are oftentimes required in the course of prov-
ing functional correctness, or the security of a complete protocol.

Non-extensibility. A message format 2M is non-extensible when
for every bytestring, at most one of its prefixes is in relation with a
high-level message. Formally:

Vmi, ma, by, bo.mi 2M by Amy 2M (by +by)) = by =¢.

We remark that our format-based approach allows us to separate
this property from non-ambiguity, i.e. non-extensibility does not im-
ply my1 = my. In practice, most of the formats we care about are both
non-extensible and non-ambiguous, with the notable exception of
the extensible TLS transcript.

The non-extensibility property is not desirable in itself, but con-
stitutes an important intermediary lemma in order to establish the
non-ambiguity theorem for the dependent pair combinator (§3.2).

Non-emptiness. A message format on M is non-empty when the
empty string is associated with no high-level message. Formally:
VmbmaMb = b+e

Like non-extensibility, non-emptiness does not directly serve
any security purpose, but is a crucial property required of a format
in order to derive non-ambiguity of its list combinator (§3.4).

LEMMA. Given a parser and serializer for M, the induced message
format 2M is non-empty if and only if Vb € B . serializey; (b) # ¢

Self-contained and data-dependent message formats. A mes-
sage format is said to be data-dependent when it is parameterized
over a piece of data not contained in the bytestring. A message

format that is not data-dependent is said to be self-contained. For
instance, TLS12Signaturelnput (Figure 3), is data-dependent, over
KeyExchangeAlgorithm. A concrete consequence is we cannot make
sense of a bytestring for a data-dependent message format, until
we know all of the data dependencies. Self-contained message for-
mats are crucial in cryptographic protocol design (§2.3), and protect
against protocol-confusion attacks such as [29].

2.3 A Systematic Approach to Format Security

Having defined what we mean by message format (§2.1), and having
stated properties of interest for such message formats (§2.2), we
now connect cryptographic primitives and secure formats.

First, a remark: almost every cryptographic primitive implicitly
relies on a message format for its input. For instance, hashing an
object implicitly relies on converting the object to a bytestring. The
format must not introduce collisions in the process. Similarly, sig-
natures are implicitly carried around as bytestrings; for functional
correctness, the format must allow for a successful verification.

We now set out to review the standard toolkit of cryptographic
primitives; we lift each primitive to a high-level primitive operating
on high-level messages (instead of bytestrings) by relying on a
message format. We then proceed by reduction: we state a high-
level security assumption (for the high-level primitive operating on
messages in M), and determine which properties the format should
enjoy in order for this assumption to reduce down to a standard
security assumption on the low-level (bytestring-based) primitive.
This allows proofs of protocol security to work off of these high-
level security assumptions, and abstract message formats away.

In order to be meaningful, the security assumptions we come
up with during reduction apply to all usages of a given primitive,
across the entire protocol. This means that we can identify design
weaknesses, such as lack of disambiguation of signature inputs,
because we consider all the signatures in the entire protocol. We
explain below with the example of signatures.

Additional primitives can be added to this list, taking care to
equip them with suitable restrictions on formats that enforce correct
cryptographic usage, following the methodology we describe here.

Our security conditions are somewhat opinionated: they are
sound with respect to standard cryptographic assumptions, how-
ever there exist protocols that don’t satisfy our conditions, yet
remain secure; after all, the protocol where two parties can never
communicate is always secure, regardless of the cryptographic oper-
ations that are performed underneath. But in reality, protocols that
violate these assumptions would raise red flags in the cryptographic
community, and would most likely be shunned.

Tracking all uses of all primitives across an entire protocol is non-
trivial, and difficult to perform by hand; the next section (§3) shows
how proof assistants can help scale our comprehensive format
security analysis to real-world protocols.

Signature. We begin with signatures, whose security we consider
in some detail; other primitives use a similar argument.

Each signature key must be used to sign messages (of high-level
type M) with the same self-contained, non-ambiguous, representation-
unique message format 2M. If a signature key is used with two
different message formats, or the format is ambiguous or data-
dependent, this could lead to a signature confusion attack, such as

the one exploited in TLS 1.2 [29] (as explained in §4). This condition
therefore ensures the signed bytestrings correspond to the same
unique message, and thus rule out signature confusion attacks.

This invariant on the whole protocol can then be exploited in
security proofs. For example, we can lift the standard existential un-
forgeability under chosen message attack (EUF-CMA) assumption
and specialize it with the message format: the challenger generates a
pair of keys and give the public key to the attacker, then the attacker
can ask the challenger for signatures of messages M, and succeeds
if it manages to output x € M not queried to the challenger, along
with a valid signature for it. This lifted EUF-CMA game security
can then be reduced to the standard EUF-CMA security assumption,
using the non-ambiguity and self-contained properties of 2M.

We observe that this lifted EUF-CMA game doesn’t say anything
about a signature key used to sign two different message formats;
this means that in order for the game to apply, we must have a way
to ensure we only operate over signatures of messages in M. In
other words, we enforce the absence of format confusion across
different uses of signature within the protocol.

The input format for signatures must also enjoy representation
unicity for functional correctness, so as to rule out the scenario
where a message corresponds to two possible bytestrings, one used
by the signer and the other by the verifier, which would lead to a
verification failure for valid signatures.

Enforcing these requirements means that one must track every
usage of a signature key; notably, in the case of TLS, this requires
not only tracking signatures across TLS 1.2 and TLS 1.3, but also
anticipating future extensions or versions of the protocol.

Symmetric MACs. The same precautions as for signatures must be
used, for the exact same reasons. However, in practice, MAC keys
are short-lived and used only a few times, which makes tracking
all their uses easier. We recommend that all messages that may
be MACed with the same key must conform to the same non-
ambiguous, self-contained message format.

Authenticated Encryption with Associated Data (AEAD). As
with MACs, we recommend that all encryption inputs that might
use the same key must use the same non-ambiguous, self-contained
message format for encrypted data and additional data. In some
cases, this is stricter than necessary, and we can allow the format
for encrypted data to be data-dependent on the associated data. It
allows additional data to fulfill its duty: providing context in which
the encryption was performed, and disambiguating identical inputs
stemming from two different context. For functional correctness,
the format of additional data must enjoy representation unicity (to
prevent two parties from disagreeing on the serialization).

We note that the Threema messaging protocol fails these con-
ditions, and uses ambiguous inputs to authenticated encryption,
resulting in the attack [35] described earlier (§1).

Key Derivation Functions (KDFs). Given a secret key, a salt,
and an info field, a KDF like HKDF generates a pseudo-random
output of any desired length. In the cryptographic literature, a KDF
is typically modeled as a pseudo-random function (PRF), where
we assume that the attacker cannot distinguish the output of the
KDF from a fresh random value. Protocols like TLS typically use a
KDF to generate multiple keys for different purposes. To guarantee

key independence for these keys, which is often an important pre-
condition in security proofs, it is necessary to ensure that all the
info fields used by a KDF with the same key and salt use the same
non-ambiguous and self-contained message format. Furthermore,
to preserve functional correctness, the format of these KDF inputs
must enjoy representation unicity.

Hashing Messages and Transcripts. Many protocols use hash
functions to compute digests of high-level data, including messages
and protocol transcripts. A common requirement for this usage is
collision resistance - two different inputs should yield two different
hashes, except with negligible probability. However, even when
using a collision-resistant hash function, this property may not
hold for two high-level messages if they serialize to the same bit-
string. Hence, we recommend that all inputs to hash functions must
use non-ambiguous message formats. Furthermore, if possible, we
advise that protocol authors use a single, self-contained message for-
mat for hash functions when two hashes must be collision-resistant
in security proofs. Protocols might fail to obey this restriction, but
might still be secure, for instance if the data dependency is authen-
ticated elsewhere; such a situation will call for more sophisticated
proofs. For functional correctness, the hash input format must often
also satisfy representation unicity.

Summary. All of the cryptographic operations considered above
require non-ambiguity and representation unicity. The former rules
out confusion; the latter is required for functional correctness. As
we will see shortly, our format framework imposes, by construction,
that every format must satisfy these two properties.

3 VERIFIED FORMATS IN F*

We now put our ideas in practice, and formalize secure formats
within the F* proof assistant. F* is a dependently-typed program-
ming language that supports program proof using a mixture of
automatic (SMT-based) and manual (tactic-based) proofs. F* sup-
ports a wide array of programming patterns, including compile-time
term synthesis, which we leverage in this section. Throughout this
paper, we only ever use the pure fragment of F* and need not rely
on its effect system.

Studying formats as complex as those of TLS in a monolithic
fashion is unrealistic; any reasonable programmer will decompose
formats into basic blocks that can each be studied in isolation, then
composed together to form larger formats. To support this modular
approach, this section introduces a set of format combinators that
allow assembling complex message formats from simpler ones. We
show how security properties of complex formats (the application
of a combinator) can be deduced from the security properties of
the simpler formats they are built upon (the arguments to the
combinator). Authoring these formats by hand is tedious; we show
how to automate the process using Meta-F*.

Although minimalistic (we only use, and describe, a mere 4 com-
binators), our approach is expressive enough to describe all message
formats in TLS, cTLS and MLS. Our combinators guarantee that the
formats they produce are secure. This proof is done once and for
all, which relieves the programmer of the bulk of the proof effort.
Users may also opt out of combinators and write message formats
directly, but then are required to prove their correctness by hand,
which is more onerous.

struct {
ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
CipherSuite cipher_suites<2..2"16-2>;

opaque legacy_compression_methods<1..2"8-1>;
Extension extensions<8..2"16—1>;

} ClientHello;

type client_hello = {

legacy_version: protocol_version;
random: random;
legacy_session_id: tIs_bytes {min=0; max=32};
cipher_suites:

tls_list cipher_suite {min=2; max=(pow2 16)-2};
legacy_compression_methods:

tls_bytes {min=1; max=(pow2 8)-1};
extensions:

tls_list extension {min=8; max=(pow2 16)-1};

(a) ClientHello as defined in the TLS 1.3 RFC [38]

(b) Equivalent client_hello type in F*

Figure 1: Translation of TLS 1.3 ClientHello in F*. Note how the F* type is precise: for example, the tls_bytes type represents bytes
of bounded length, precisely corresponding to the opaque x<n..m> notation used in the TLS 1.3 RFC.

3.1 Defining Secure Message Formats in F*

Definitions, lemmas, proofs of reductions. We follow §2.1 and
define formats as logical predicates in F*. We transcribe definitions
from §2.2 and prove all of the corresponding lemmas.

Connection with parsers & serializers. Presenting formats as
relations allowed us to capture the essence of formats, along with
their security properties, free of the implementation-centric notions
of parsers and serializers.

However, in our F* library, we define our formats using parsers
and serializers. This design decision is a pragmatic one. First, this
makes life easier for the programmer and doesn’t require them
to write a logical predicate 2™ by hand. Second, this makes our
formats executable which is crucial for authoring reference imple-
mentations that can serve for interoperability testing, but also for
building further security proofs (§5). Third, we write and prove
(in F*) the connection between induced formats and parsers and
serializers (§2.1). Because this connection is verified, we not only
do not lose any expressive power, but also provably know that our
security properties over parsers and serializers are equivalent to
the original security properties over the induced format.

A type definition for secure formats. Next, we devise a “user
interface” for Comparse, that is, we write a concrete type definition
in F* for what we mean by format.

As we saw earlier (§2.3), regardless of the context in which the
formats appear, we always want them to enjoy non-ambiguity and
have a unique representation. Therefore, our type of formats, below,
takes not only a parser and a serializer, but also proofs that those
two crucial properties always hold. Per the lemmas from §2.1, those
two properties boil down to stating that the parser and serializer
are inverses of each other. Because of this design choice, our library
will refuse to handle ambiguous or non-unique formats: it is our
position that formats that fail to exhibit these properties indicate a
design weakness in the protocol.

type message_format_for (a:Type) = {
parse: bytes — option a;
serialize: a — bytes;
// Non-ambiguity
parse_serialize_inv: x:a — Lemma (parse (serialize x) == Some x);
// Representation unicity
serialize_parse_inv: buf:bytes — Lemma (
match parse buf with
| Some x — serialize x == buf
| None — T); }

Non-extensible message formats. We define a separate type,
called prefix_message_format_for, to represent non-extensible secure
message formats, where the parser only consumes a prefix of the
input bytestring, and returns the parsed element and the remaining
suffix. In this type, the parse_serialize_inv property is adapted to
allow for the suffix, as follows:

parse ((serialize x) ++ suffix) == Some (x, suffix)

Non-empty message formats. We say a message format is non-
empty when all its serializations have non-zero lengths (Lemma 2.2).
In F*, we offer this as a refinement over the earlier types.

3.2 The dependent pair combinator

We begin with our first combinator for pairs. Repeated applications
of this combinator allow encoding pairs of several elements (known
as tuples): we write AX BX...x D for AX (Bx (...xD)).

Tuples naturally occur in the wild, such in the ClientHello mes-
sage of TLS (Figure 1a), which is simply the combination of all of
its subfields. Because our combinators are generic, they cannot pro-
duce a specific user-defined type such as ClientHello; rather, they
produce a tuple of ProtocolVersion X Random X.... We show in
§3.5 how to convert a structural type (the tuple) into a nominal type
suitable for the rest of the protocol definition (the user-provided
client_hello, Figure 1b).

Sometimes, the message format for the second element of a pair
depends on the contents of the first one. This is a dependent pair,
which generalizes to dependent tuples. A dependent tuple occurs
in the Handshake message of TLS (Figure 2), where the format of
the third field depends on the value of the first one (via select), as

well as the value of the second one (via the comment referring
to length). Our combinator supports general dependent pairs, of
which non-dependent pairs are a special case; this allows to encode,
notably, the tagged union pattern of messages such as Handshake.

Message format combinator. The message format for the depen-
dent pair X X Y is defined as a simple concatenation. Formally:
(x,y) 2XY b:=3by,bab=by+by Ax 25X by Ay 2YX) by .

We write the dependency explicitly (@Y®), which captures
the fact that the format of the second element depends on the first.
We use a lightweight notation X X Y for dependent pairs to avoid
cluttering the formulas, as opposed to the traditional },.x Y (x).
In practice, the dependent pair combinator allows turning a data-
dependent format (the second element of the pair, §2.2) into a self-
contained format (if the dependency is only over the first element).
A common instance of this pattern is for tagged unions.

Formally proven security properties.

o 2XXY g non-ambiguous if 2% is non-extensible and non-
ambiguous, and 2Y() js non-ambiguous for every x € X.

o 2XXY has representation unicity if 2% and <—_’Y(x) have
representation unicity for every x € X.

o 2XXY js non-extensible if 2% is non-extensible and non-

ambiguous, and <:>Y(x) is non-extensible for every x € X.

2XXY jg non-empty if 2X s non-empty or 2Y®) are non-

empty for every x € X.

Role of non-extensibility. In the non-ambiguity theorem, non-
extensibility of the first element of the pair is crucial: for exam-
ple, consider the trivial message format on B, defined as by r_’B
by := b1 = by. This message format is non-ambiguous, but a non-
dependent pair of two such formats is, for the same reason as the
message format on B? studied in §2.1.

Formalization in F*. Two flavors exist for the dependent pair
combinator: although the message format for the first element of
the pair must always be non-extensible, there is no such restriction
on the second element of the pair. Furthermore, the result is non-
extensible if and only if the second element of the pair is non-
extensible. We reflect this with two separate F* functions.

struct {
HandshakeType msg_type; /+ handshake type +/
uint24 length; /+ remaining bytes in message +/
select (Handshake.msg_type) { /+ handshake content +/
case client_hello: ClientHello;
case server_hello: ServerHello;
[x
I8
} Handshake;

// When both mf_a and mf_b have the non-extensibility property
val prefix_message_format_for_dep_pair:
#a:Type — #b:(a — Type) —
mf_a:prefix_message_format_for a —
mf_b:(x:a — prefix_message_format_for (b x)) —
prefix_message_format_for (x:a & b x)

// When only mf _a has the non-extensibility property
val message_format_for_dep_pair:
#a:Type — #b:(a — Type) —
mf_a:prefix_message_format_for bytes a —
mf_b:(x:a — message_format_for bytes (b x)) —
message_format_for bytes (x:a & b x)

Figure 2: The Handshake message format, as defined in
TLS 1.3 [38]. The msg_type determines the format to use for
the handshake content (via select). Furthermore, the com-
ment for field length encodes a semantic restriction: the total
length (in bytes) of the select ... field is equal to length.

be encoded as T X (Uz4 X M) (or more precisely: 3.1 2.1.i7,, M(2,1)).
We note that the resulting dependent triple is no longer data-
dependent.

We cannot yet show the definition of M; is it a dependent type,
along with an added restriction over its length. To express the latter,
we need a new format: the refinement combinator.

3.3 The refinement combinator

Message formats are sometimes described as subsets of other mes-
sage formats. For example, we can define a boolean as a byte re-
stricted to the value 0 or 1.

Message format combinator. If Y C X, and we have a message
format <:>X, then we can define m 2Y b := m 2X b.

Length restriction. A particularly useful usage of the refine-
ment combinator is to enforce exact length restrictions on high-
level messages. Given a set of messages M, we define its subset
RestrictLen(M, 1) = {m € M|Vbm 2M p = length(b) = I}.
This refinement, when used in conjunction with a dependent pair,
allows encoding length-prefixed messages, wherein the first ele-
ment of the pair is a (bounded) unsigned integer that stands for the
length of the second element.

Formally proven security properties. The refinement combina-
tor preserves non-ambiguity, non-extensibility, non-emptiness and
representation unicity. When used with RestrictLen, it is uncondi-
tionally non-extensible.

Formalization in F*. The refinement combinator also comes in
two flavors, depending on whether the input format is extensible
or not. We show the extensible version here:

Encoding Handshake with dependent pairs. We illustrate the us-
age of the dependent pair combinator on the type of handshake (Fig-
ure 2). Assuming we have message formats for T (HandshakeType),
Uz4 (uint24, unsigned 24-bit integers) and M(t,) (data-dependent
handshake content of type t and serialized length [), Handshake can

val refine:
#a:Type — message_format_for a — pred:(a — bool) —
message_format_for (x:a{pred x})

We provide a dedicated combinator that captures the fact that
an extensible format can be turned into a non-extensible one, via a
length restriction.

val fixed_length_format_to_non_extensible:
#a:Type — len:nat —
mf_a:message_format_for a{V x. length (mf_a.serialize x) == len} —
prefix_message_format_for a

Encoding Handshake content with refinement. Now that we
have refinements, we can revisit our earlier Handshake example
(§3.2) and use RestrictLen to encode the constraint on the length
of the third field. As mentioned above, this means the third field
is unconditionally non-extensible, which in turn makes the whole
Handshake message non-extensible. Our format for handshake is
now of the form X;.r X1.ts,, RestrictLen(M’(¢),).

3.4 The list combinator

With the dependent pair combinator (§3.2), we can encode fixed-
sized lists as n-tuples, but cannot represent lists whose length is not
known at compile-time. For this, we need a new list combinator.

Message format combinator. Given a message format on M, we
define a message format on M*, the type of lists of Ms (with any
number of elements), as: [my, ..., my] <:>M* b:=3by,...,bp.b =
b1+ +by AVi.m; 2M b;. Our format does not require that the list
be prefixed by its length, although if the protocol mandates it, we
can always encode it using a combination of refinement, dependent
pair, and list combinator.

Formally proven security properties.

* o
° <—_’M is non-ambiguous if <—_’M is non-ambiguous, non-extensible,

non-empty.
o 2M has representation unicity if 2M has representation
unicity.

Role of non-emptiness. Requiring non-emptiness rules out de-
generate cases, such as the unit format () 2unit ¢ Lists of units
all serialize to a single empty bytestring, meaning lists of unit are
ambiguous.

Formalization in F*. To be secure, the list combinator takes as
input a non-extensible, non-empty secure message format. It returns
an extensible message format. Non-ambiguity and representation
unicity are carried over automatically, since they are bolted into
the two message format types.

M of messages we saw earlier. We give an example for the TLS 1.3
ClientHello message in Figure 1.

The three combinators we have seen so far can parse ClientHello
and Handshake, but return tuples that are isomorphic to, but not
equal, to the type that the user would write in F* for Handshake
(Figure 1).

We thus need one final combinator that goes from a generic repre-
sentations (base types, lists, and dependent pairs) into the “original”,
user-defined message type. This is the isomorphism combinator.
The isomorphism combinator is typically the final building block
used to create a message format.

Message format combinator. Given a bijective function f : T —
E, which maps a high-level type T to an encoding E, and a message
format for E, we define a message for T as m 27 b := f(m) 2F b.

Formally proven security properties. Because f is a bijection,
the isomorphism combinator preserves non-ambiguity, representa-
tion unicity, non-extensibility, non-emptiness.

Formalization in F*. We rely on two functions for the bijection,
which we require to be inverse of each other. We do this by adding
a precondition to the isomorphism combinator: we can use it only if
we prove that the two bijection functions are inverse of each other.
This precondition is crucial to prove that the resulting message
format is secure. The isomorphism combinator comes in two flavors,
depending on whether the message format is non-extensible or not.
Because they are so similar we only show the signature of the
non-extensible version.

val prefix_message_format_for_isomorphism:
#a:Type — #b:Type — mf_a:prefix_message_format_for a —
a_to_b:(a —» b) > b_to_ai(b —a) —
Pure (prefix_message_format_for b)
(requires (V x. a_to_b (b_to_a x) == x) A (V¥ x. b_to_a (a_to_b x) == x))

Finalizing our Handshake format. In §3.2, we obtained an encod-
ing of Handshake as a dependent tuple of 3 elements. However,
Handshake is not a dependent tuple, it is a nominal type in F*:

type handshake = {
msg_type: handshake_type;
length: uint24;
msg: fixed_length_handshake_content msg_type length; }

val message_format_for_list:
#a:Type — mf_a:prefix_message_format_for a{is_non_empty mf_a} —
message_format_for (list a)

Encoding the TLS 1.3 transcript. The TLS transcript is a list
of Handshake messages. Because Handshakes are non-ambiguous,
non-extensible, non-empty, and have representation unicity, the
TLS 1.3 transcript is non-ambiguous and has representation unicity,
which are crucial properties that guarantee the correct behavior of
transcript hashes in the security proof of TLS.

3.5 The isomorphism combinator

Given a message format defined in a document, such as in the
TLS 1.3 RFC [38], we write a type in F* precisely capturing the
expressivity of the message format. This corresponds to the type

We use the isomorphism combinator to link the nominal type
(handshake) and its encoding (the dependent tuple of 3 elements).

3.6 Automating Combinator Synthesis

Writing combinator applications by hand quickly becomes repeti-
tive. We now present a facility that allows the user to write only
their top-level type, such as ClientHello (Figure 1). With a few
strategically placed annotations, our facility inspects the type defi-
nition and automatically generates the combinators that will parse
and serialize elements of that type.

Our facility relies on Meta-F* [28], a general-purpose compile-
time metaprogramming framework. Using a technique known as
elaborator reflection, Meta-F* essentially allows the programmer
to “script” the compiler, to resolve proof obligations, or in our case,
inspect terms and generate fresh definitions.

We authored a meta-program that takes an annotated type defi-
nition and produces a corresponding format, complete with proofs
of non-ambiguity and representation unicity.

Inner workings. When processing a type such as client_hello (Fig-
ure 1b), the meta-program proceeds in two steps: first, it derives a
message format using anonymous types (dependent tuples), then
it uses the isomorphism combinator (§3.5) to produce a message
format for the user-defined type (client_hello, a record with user-
provided field names).

For each field, a corresponding format is looked up in the en-
vironment. If this corresponds to a user-defined type for which a
format was previously generated, or to a base type for which we
provide a hand-written format (such as uint24), all is well. Other-
wise, the meta-program fails and the user must annotate the type
by hand to indicate which format ought to be used for the given
field.

Once again, this could be done entirely by hand: our automation
relieves the user of a repetitive task. Importantly, it also makes the
program easier to maintain: if an internet draft is updated to a new
revision, the programmer just needs to change the type definition,
and the formats automatically follow.

Handshake example. In the case of the handshake, the depen-
dency of the msg field over msg_type and length is handled naturally:

the format found in the environment for fixed_length_handshake_content

takes two parameters, so the tactic instantiates that format with its
two arguments brought in scope by the dependent tuple. Thanks
to a judicious choice for our default formats, handshake serializes
exactly per the TLS 1.3 RFC [38].

Other supported types. F* sum types are also handled by our
tactic, which picks a tagged union scheme. By default, the tag
occupies the minimum number of bytes required to encode all cases;
the user can override that choice, and specify explicitly which type
should hold the tag (including its size). This allows the user to obey
a precise format specified e.g. in an RFC.

3.7 Implementation

The implementation described in this section occupies a total of
about 2,500 lines of code. This includes the combinators and base
types (942 lines), the derived types (776 lines) and the tactic (742
lines). The tactic is among the three largest Meta-F* programs
written to date. We estimate that the total effort for formalizing
Comparse in F* took a few person-months.

The overall conciseness of our development is explained by the
judicious choice of a notion of format as our base abstraction, rather
than parsers and serializers. Furthermore, the judicious choice of
combinators limits the amount of work we need to perform. Finally,
the fact that we do not need to rely on effects, along with careful
crafting of definitions, allow us to maximize the amount of proofs
performed automatically by SMT.

4 VERIFIED FORMATS FOR TLS AND CTLS

The Transport Layer Security (TLS) protocol, standardized by the
IETF, is used to secure the vast majority of Web traffic. The most
recent version, TLS 1.3, was standardized in 2018 [38] and is the
the most commonly used version of TLS, followed by TLS 1.2 [39].

struct {
select (KeyExchangeAlgorithm) {
case dhe_rsa, dhe_dss, // From TLS 1.2
dhe_rsa_export, dhe_dss_export: // From TLS 1.0
opaque client_random[32];
opaque server_random[32];
ServerDHParams params;
case ec_diffie_hellman: // From TLS 1.2 ECC
opaque client_random[32];
opaque server_random[32];
ServerECDHParams params;
I8
} TLS12Signaturelnput;

Figure 3: A common format for TLS 1.0-1.2 signature in-
puts [34, 39].

More recently, the IETF TLS working group has been working on
standardizing Compact TLS 1.3 (cTLS) [37].

In this section, we will discuss how we implemented all the
formats used in TLS and cTLS using Comparse, and show how our
work provides crucial missing properties needed for the security
analyses of these protocols, both in isolation and when they are
deployed in parallel with each other.

4.1 Format Confusion Attacks in TLS 1.0-1.2

The TLS protocol establishes a secure channel between a client and
a server. It works in two phases: first, a handshake phase performs
an authenticated key exchange to establish shared keys between the
client and server, then a transport phase allows them to exchange
application data protected with these shared keys. Typical TLS
implementations support multiple versions and ciphersuites for
backwards compatibility and to support maximum interoperability.

In TLS versions up to TLS 1.2, each handshake may use one of
multiple key exchange modes. Depending on the mode, each TLS
handshake consists of between 6 and 13 messages, which include
various cryptographic constructions: 2 MACs, 3 key derivations,
2 encryptions, and up to 2 signatures. The formats for all these
messages and cryptographic inputs are described in the custom
TLS presentation language, which looks like C structs.

For example, the input formats for server signatures used in
implementations of TLS 1.0-1.2 is depicted in Figure 3. It includes
the specification of Ephemeral Diffie-Hellman signatures (DHE)
from TLS 1.2, the signature inputs for export ciphersuites in TLS 1.0,
and the format for Elliptic Curve Diffie Hellman (ECDHE) in TLS 1.2.
These formats are actually defined in three different documents,
and we have brought them together for illustration.

We note that the format depends on a value (the key exchange
algorithm) that is external to it, which is not authenticated by the
signature itself. Indeed, in the absence of this external input, the
signatures used in DHE key exchanges can be confused for those
in ECDHE key exchanges, which leads to a concrete cross-protocol
attack [29] on TLS 1.2. Note also that the format used in DHE is the
same as the one used in Export DHE, which is one of the factors
exploited by the Logjam attack [5].

With our methodology (§2.3), we impose that every signature key
be associated to a single, self-contained, non-ambiguous message
format. These properties are violated here, because the format is
not self-contained, owing to the key exchange algorithm which is
an external input.

We formalized the signature input format for TLS 1.2 (DHE,
ECDHE) in Comparse, and proved that given the data-dependency
(KeyExchangeAlgorithm), the format has non-ambiguity and repre-
sentation unicity. We were not able to do the same without the
data-dependency, hinting at the cross-protocol attack. We once
again re-emphasize that we see all the inputs to a single primitive
as a single format, meaning that both TLS 1.2 and TLS 1.3 signature
formats are seen as sub-cases of the general “signature input for-
mat”. This systematic approach forces us to reason globally about
all the signatures in the protocols.

4.2 Verified Formats for TLS 1.3

TLS 1.3 fixes many of the attacks in TLS 1.2, including the format
confusion attacks described above. In particular, it defines a uniform
format for all signature inputs, MAC inputs, and key derivations,
by using the handshake transcript in all three cases. TLS 1.3 also
encrypts handshake messages for privacy, hence the format of
encryption inputs now includes 8 handshake messages.

The security of TLS 1.3 relies crucially on the non-ambiguity of
the format of the handshake transcript at each stage of the protocol.
It also relies on the non-ambiguity of each handshake message
format. Furthermore, if TLS 1.3 is to be safely deployed alongside
TLS 1.2, we need to prove non-ambiguity across both protocols.

Despite its importance, this property is not accounted for in many
published proofs of TLS 1.3. The mechanized proofs of TLS 1.3
in ProVerif [12], CryptoVerif [12], and Tamarin [16] all assume
that the message formats are injective and disjoint, and that the
transcript can be treated unambiguously as a tuple of handshake
messages. The pen-and-paper security proofs of TLS 1.3 (e.g. [19,
25, 26]) abstract away all formatting details; they typically assume
distinct labels for the different cryptographic inputs in the protocol
to simplify their analysis. Consequently, none of the published
proofs of the TLS 1.3 handshake actually apply to the bit-level
formats used in the protocol.

To close this gap in the literature, we formalized all the hand-
shake messages of TLS 1.3, the handshake transcript, and all inputs
to signatures, MACs, encryption, and key derivation, in Comparse,
and proved that these formats were non-ambiguous. This means
that any proof of TLS 1.3 that only considers a high-level abstrac-
tion of each message still applies to the concrete protocol that uses
low-level bitstrings within the cryptographic inputs. Furthermore,
we combined the TLS 1.2 and TLS 1.3 signature inputs to prove that
the combined format is non-ambiguous. This result shows that it is
safe to deploy TLS 1.3 and TLS 1.2 in parallel.

Some prior works do prove injectivity for TLS 1.2 transcripts [42]
but they do not consider TLS 1.3, or both in parallel. There is
also prior work on specifications and efficient implementations
of TLS 1.3 and TLS 1.2 message formats [36], but they do not model
TLS and do not prove non-ambiguity across TLS 1.3 and TLS 1.2
signatures.

10

enum {
profile(0),
version(1),
cipher_suite(2),
dh_group(3),
signature_algorithm(4),
random(5),
mutual_auth(6),
handshake_framing(7),
client_hello_extensions(8),
server_hello_extensions(9),
encrypted_extensions(10),
certificate_request_extensions(11),
known_certificates(12),
finished_size(13),
optional(65535)

} CTLSTemplateElementType;

struct {
CTLSTemplateElementType type;
opaque data<0..2"32-1>;

} CTLSTemplateElement;

struct {
uint16 ctls_version = 0;
CTLSTemplateElement elements<0..2"32-1>
} CTLSTemplate;

Figure 4: Compression templates for Compact TLS 1.3

4.3 Verified Formats for ¢TLS

The handshake messages exchanged in a TLS handshake can get
very large, primarily because TLS is designed to be interopera-
ble across a large range of devices and so the messages contain
information that may be needed in different scenarios.

Compact TLS 1.3 is a new proposal that aims to reduce the
message size by agreeing out-of-band on a compression template.
For example, if the client and server can agree beforehand on the
ciphersuite and server certificate, several elements in the handshake
can be eliminated, and others can be treated as fixed-length values
(without length prefixes).

Other than the message formats being compressed, the crypto-
graphic steps in ¢TLS are identical to TLS 1.3. Consequently, one
might hope that all the TLS 1.3 security proofs will apply to ¢TLS.
However, this only holds if we can prove that the cTLS messages
and transcripts are unambiguous, and if we can show that the ¢TLS
transcript is equivalent (for each template) to the TLS 1.3 transcript.
Finally, since cTLS is likely to be deployed in parallel with TLS 1.3,
we need to prove that the joint formats between the two protocols
are unambiguous.

Compressing TLS 1.3 using Templates. The cTLS protocol de-
fines a compression template that the client and server must agree
to in advance. CTLSTemplate (Figure 4) depicts all the elements
that a certain template can fix. Given such a template, the protocol
describes how each message in TLS 1.3 can be compressed at a
fine-grained level. For example, in the keyshare extension of the
client hello, a length field can be omitted if the template specifies a

single Diffie-Hellman group. Consequently, each message format
in ¢TLS depends on the compression template.

We follow the methodology described in §3.1 by writing types
that precisely capture what is representable by the message format,
and depend on the compression template. On the example of the
cipher suite compression in ClientHello, we define a new type for
the cipher_suites field of client_hello. Although these new types are
more complex than the ones used in TLS 1.3, they are fully handled
by the meta-program.

type ctls_cipher_suites (t:ctls_template) =
match get_template_element cipher_suite t with
| Some _— unit
| None — tls_list cipher_suite ({min=2; max=(pow2 16)-2}))

type ctls_client_hello (t:ctls_template) = {

(% %)
cipher_suites: ctls_cipher_suites t;
(% %)

}

Proofs for ¢cTLS message formats and transcripts. We prove
that given a template, each cTLS message has non-ambiguity and
representation unicity. We do this by representing each c¢TLS mes-
sage with a dependent type (on the template), and use Comparse
to derive and prove a format on each cTLS message.

The cTLS transcript includes the compression template as a first
(dummy) message and then continues with the list of ¢TLS hand-
shake messages. We show that the first handshake message of the
transcript carries enough information to deduce what modifica-
tion was applied on the transcript, whether it is hashing the first
ClientHello, or it is doing a cTLS compression with a template.

We prove that all the cTLS messages are non-ambiguous with
unique representations, and that ¢TLS transcripts and TLS 1.3 tran-
scripts are non-ambiguous with respect to each other. This means
that despite all the format changes and optimizations, cTLS is free
from format confusion attacks, and that it is safe to deploy c¢TLS in
parallel with TLS 1.3 (using the same server certificates.)

Equivalence between TLS 1.3 and cTLS transcripts. We also
prove that each ¢TLS compressed transcript correspond to a unique
TLS 1.3 transcript, up to extensions re-ordering. Each TLS 1.3 type
that is modified by c¢TLS is associated with a ¢TLS compressed
type, that depends on the compression template. We then write two
compression and decompression functions, that convert between
the TLS 1.3 type and the ¢TLS dependent type.

The compression function can fail, for instance if the compres-
sion template enforces the some ciphersuite, but the TLS 1.3 mes-
sage tries to negociate the wrong ciphersuite. The decompression
function can also fail, because compression removes some length
tags, meaning that there exist valid compressed transcripts that con-
tain elements whose length exceeds what is admissible by TLS 1.3.
This is a novel insight that seems to not have been noticed by the
cTLS designers before, and might be addressed in future drafts.

We prove round-trip properties on compression and decompres-
sion: if compression succeeds, then decompression on its result
succeeds and returns something equal to the compression input (up
to extension re-ordering); also, if decompression succeeds, then we

11

can compress back its result, it will succeed and return something
equal to the decompression input.

By proving these compression/decompression guarantees be-
tween TLS 1.3 and cTLS, we show that the messages and transcripts
in the two protocols are interchangeable. Consequently, any proof
of security for TLS 1.3 that relies on high-level message formats still
holds when the messages are formatted (i.e. compressed) according
to cTLS. This provides a foundation upon which future proofs of
cTLS can build, since they now know that all of the formats are
safe, and are in correspondence with those of TLS 1.3.

5 EMBEDDING COMPARSE IN DY*

Existing protocol verification tools often miss format confusion
attacks since they do not account for bit-level precise formats. We
now show how to close this gap, by integrating Comparse into the
DY* symbolic protocol analysis framework. In so doing, we make it
possible to apply symbolic protocol analysis to low-level message
formats. Despite this additional precision, rather than incurring an
additional proof burden, Comparse actually significantly reduces
the proof effort for DY* proofs because of its support for automation.

5.1 Background: Symbolic verification with DY*

DY* [10] extends the F* [42] proof system with a symbolic verifi-
cation framework for cryptographic protocols. In comparison to
symbolic provers like Tamarin and ProVerif, DY* proofs require
more manual annotations and are less automated. Conversely, DY*
uses a more scalable proof technique, based on typechecking, and
can exploit the full expressiveness of the F* proof assistant. Con-
sequently, DY* is particularly well-suited to the formal analysis
of large, complex cryptographic protocols with recursive protocol
flows and inductive data structures. Indeed, DY* has been used to
obtain state-of-the-art verification results for advanced protocols
like Signal [10], ACME [11], Noise [21] and MLS [47].

Symbolic Message Formats. Like other symbolic provers, DY*
relies on the Dolev-Yao model [18], where messages are treated as al-
gebraic terms that can be constructed and destructed using abstract
functions that obey simple symbolic equations. These constructors
and destructors are used to model cryptographic primitives like
encryption/decryption and signature/verification.

Most symbolic protocol analyses in tools like ProVerif and Tamarin
ignore message formatting, and simply use tuples to represent mes-
sage contents. DY* does a little better, by defining an abstract type
and interface for bytestrings that include ASCII strings, freshly
generated random values, cryptographic elements, and can fur-
thermore be concatenated and split to implement specific message
formats.

However, the underlying model is still symbolic, and hence
does not precisely model concrete bytestrings or their lengths.
For example, in this model, concat(a,concat(b,c)) is different from
concat(concat(a,b),c). Consequently, it is possible that verified DY*
code written against the symbolic bytes API may potentially still be
vulnerable to format confusion attacks that exploit such inconsis-
tencies. To counter this, we need to prove that the the bytestring
API is also sound with respect to a concrete model of bytestrings.

Verifying Message Formats. Since DY* lacks a framework for
automatic format analysis, DY* programmers are expected to write,
by hand, serialization and parsing functions for all the message
formats, cryptographic inputs, and session states used in the proto-
col and then prove non-ambiguity for all these formats, to use as
lemmas within the security proof.

DY* tracks the secrecy and authenticity of each bytestring using
secrecy labels and logical refinements, allowing users to reason
about the security guarantees of their protocol code. Hence, the
programmer also needs to prove that secrecy labels are preserved
by formatting. For example, before sending a message on the net-
work, we need to prove that the serialization of this message is
“publishable”, so that revealing it to the attacker will not leak secret
values. To prove this, the programmer needs to reason about the
format, and show that a serialized message is publishable if and
only if every field of the high-level message is publishable.

These formatting proofs are currently done by hand in DY*, in-
ducing a significant proof burden even for simple message formats.
While this is feasible for small protocols, it quickly becomes tire-
some or even impossible for real-world protocols like TLS. In the
rest of this section, we show how Comparse can help alleviate this
proof burden and close a gap in DY* by providing a concrete model
for bytestrings. Furthermore, by combining DY* and Comparse, we
are able, for the first time, to execute DY* applications concretely to
create and process wire-compatible message bytestrings.

5.2 Plugging DY* and Comparse together

Handling multiple bytes types. Until now, we assumed that
Comparse worked on one defined type for byte sequences. How-
ever, DY* defines its own type to do symbolic protocol verification,
the aforementioned symbolic bytes. To cover all the bytes types
one might want to use, we now parameterize Comparse over a
typeclass for bytes, which contains the minimal set of properties
and lemmas that work for any instantiation of the type class (i.e.
for both symbolic and concrete bytes). This means that the entire
Comparse development is carefully crafted to never rely on any
extensionality hypothesis, namely that two bytestrings are equal if
they have the same length and coincide on every index. Comparse
does not rely on concatenation associativity either; none of these
properties hold for symbolic bytes.

To the best of our knowledge, no realistic parser framework was
ever devised before to work without the use of extensionality or
associativity. This is a key contribution of our work, and a core
difference compared to other frameworks such as EverParse [36].

We can therefore use Comparse both for concrete bytes, to exe-
cute cryptographic protocols, and symbolic bytes, to prove security
of cryptographic protocols. We now give more details.

The typeclass. To simplify the instantiation of the typeclass with
various bytes types, we make it as minimal as we can. In the type-
class, we require bytes to have a length, and an empty sequence
of bytes whose length is zero. We also require concat and split
functions, which are well-behaved with respect to length. The split
function is allowed to fail, for example if the index is out-of-bounds
(in the concrete world) or if the index is not exactly at the right
position (in the symbolic world). We furthermore require split and
concat to be well-behaved with respect to each other. We are as

12

liberal as we can about this, so that it is easily implementable with
any symbolic bytes implementation. In particular, we know a split
succeeds only when the index is at the boundary of a concatenation.

Writing message formats combinators. We ensure the combi-
nators in §3 only rely on lemmas provided by the type class. This
means our proofs are more difficult to conduct, since we cannot
assume concat to be associative, we refer the reader to the supple-
mentary material [4] for the full details.

5.3 Improving message formats in DY*

Precise message formats. We are now able to precisely model
message formats as they are written in the RFCs (§3.1) by plugging
Comparse into DY*. Combined with Comparse’s automation, this
guarantees that users of DY* can easily and accurately model real-
world formats as opposed to sketches of formats.

Non-ambiguity. Non-ambiguity is a built-in feature of the for-
mats in Comparse (§3.1), meaning we immediately satisfy the DY*
requirement after integrating Comparse.

Information flow. Given a predicate pred on bytes which is pre-
served by concatenation and splitting, we define a predicate on high-
level messages is_well_formed pred, capturing the fact that every se-
quence of bytes in the high-level message satisfies the predicate
pred. Moreover, we have the property that if is_well_formed pred msg
then pred (serialize msg) and if pred buf and parse buf = Some msg then
is_well_formed pred msg. This allows us to satisfy the DY* require-
ments regarding labeling of message, and compose them with Com-
parse while retaining a high degree of automation.

Impact on DY* examples. We adapted two examples of DY* to
use Comparse for their formatting, as shown in Table 1. Before,
the protocols relied on hand-written definitions of parsers and
serializers, along with manual non-ambiguity proofs, resulting in
148 lines of code devoted to message formats in the NSL example
and 141 in the ISO-DH example. With Comparse, this proof effort
can be reduced by an order of magnitude (respectively 19 and 24
lines of code) by boiling it down to writing the type of messages,
letting Comparse generates combinators and proofs automatically.

Furthermore, with the use of Comparse, we are now able to
execute each DY* example both symbolically and concretely, pro-
viding two independent forms of debugging. The symbolic traces
show the high-level protocol flow, while the concrete traces display
the low-level bytestrings obtained by applying all the specified
cryptographic and formatting functions.

Impact on MLS verification. We also used Comparse to formalize
all the formats of the MLS RFC. In so doing, we prove that the
signature confusion attack on MLS draft 12 [47] is now fixed, and
provide strong security guarantees for all the formats used in the
MLS. Indeed, our formal security proofs form part of a larger formal
verification effort for MLS, and were used in a recently published
work on the TreeSync sub-protocol [47]. Our proofs enjoy the
automation provided by Comparse (§3.6) to write and verify the 82
formats defined in the RFC [8].

Protocol ~ Nb. formats RFC LoC F*LoC Lemmas Verif. time
NSL 7 — 19 16 1min
ISO-DH 9 - 24 21 45s
TLS 1.3 51 311 452 105 3minl5s
MLS 82 482 624 164 2min45s
cTLS 30 623 608 110 2min45s

Table 1: Evaluation over a set of protocol case studies. Lem-
mas include non-ambiguity, representation uniqueness lem-
mas, and disjointness. TLS 1.3 proofs include non-ambiguity
with TLS 1.2; ¢cTLS proofs include non-ambiguity with TLS 1.3,
and properties of compression/decompression.

6 DISCUSSION

To evaluate the effectiveness of Comparse, we applied it to several
case studies, as shown in Table 1, including two examples from DY*
(NSL, ISO-DH), TLS 1.3, ¢cTLS and MLS.

Lessons. During the course of this work, we learned several lessons.
Our approach is focused on formats used in cryptographic inputs
and is justified by the cryptographic assumptions typically used in
protocol analysis. We believe this principled approach yields more
precise security conditions than other works that focus on parsers
and serializers.

Second, our work makes it apparent why one needs to study all
of the usages of a given primitive across an entire protocol, in order
to rule out the entire class of format confusion attacks.

Third, proof assistants are crucial in making the analysis above
tractable. With pen and paper, tracking every usage of a given
key across all of TLS 1.3 (and TLS 1.2, because of backwards com-
patibility) would be impossible. With a carefully crafted library,
combinators take care of the bulk of the work, and the library
need not grow into a massive software artifact: four well-chosen
combinators suffice.

Finally, the format analysis does not need to live in isolation
as a separate development. It can be successfully integrated into
a general-purpose symbolic security analysis framework (in our
case, DY*), paving the way for future evolutions of other tools (e.g.
Tamarin or ProVerif) that might make them, too, format-aware.

Limitations. We also identified several limitations throughout our
journey in the land of formats. First, there are some real-world,
non-ambiguous messages formats with unique representation that
cannot be expressed using our combinators. One example is TLSIn-
nerPlaintext, which must be parsed starting from the end. Fortu-
nately, these are few such cases, and we can use the escape hatch we
mentioned earlier: it suffices to write the formats by hand, without
the distinguished combinators from §3. Because such hand-written
formats still use the types from Comparse, they compose with the
rest of the framework.

Second, there exist formats which intentionally do not enjoy
representation unicity, such as protocol buffers [46]. We cannot
account for such formats with Comparse, perhaps suggesting that
they should not be used for secure protocols.

7 RELATED WORK

Table 2 recaps the capabilities of the various tools we describe here.

13

Generic verified formats. EverParse with the QuackyDucky front-
end [36] generates efficient C implementation of validators and se-
rializers, proves non-ambiguity and representation unicity. Quack-
yDucky has limited support for data-dependency, e.g. a union must
have its tag immediately preceding it. The work introduces the
idea that non-ambiguity and representation unicity are important
properties for cryptographic protocols, but does not provide a the-
oretical justification for it, and does not exhibit a concrete set of
recommendations like we do (§2.3).

EverParse3D [43] generates efficient C validators from an ex-
pressive format description with good support for data-dependency.
They prove validator injectivity, which is related to representation
unicity, but is more implementation-centric, since it is a property
of the validator, as opposed to the underlying format (the relation).

Narcissus [17] is a Coq library for writing non-ambiguous and
non-extensible message formats. It does not consider representa-
tion unicity. Narcissus formats are defined using both a state and a
relation, whereas we avoid state by relying on our powerful depen-
dent pair combinator. Narcissus also uses combinators, but does
not prove general results regarding (say) the non-ambiguity of
combinator applications.

[45] defines a deep embedding of data formats into Agda. They
relate high-level data types to low-level formats by composing a
series of transformations. Lacking support for any sort of frontend
format or automatic combinator generation, their format descrip-
tions are not as concise as ours. They reason about non-ambiguity
and non-extensibility, but not representation unicity. They also rely
on combinators such as dependent pairs. Owing to the nature of
the Agda proof assistant, it is unclear to what extent this work
can achieve a high degree of proof automation; furthermore, their
choice of combinators seems geared towards their IPv4 example
and we do not know if their work would scale to e.g. all of the
formats of TLS 1.3.

Verification of specific formats. Cheerios [3] is a serialization
library for Coq types, relying on combinators. They prove non-
ambiguity and non-extensibility with an equation similar to ours
(§3.1). They serialize to a Cheerios-specific custom binary data
format that is not user-defined, meaning they cannot target real-
world, RFC-prescribed formats.

[44] prove a C implementation of a specific ASN.1 format used
in the automotive industry. They prove non-ambiguity and rep-
resentation unicity, using an equation similar to ours. The work
does not tackle the general question of proving those properties
generically, for a certain class of ASN.1 formats.

[50] builds upon Narcissus [17] to prove verified parsers and
serializers for Protocol Buffer 3. They prove non-ambiguity, but not
representation unicity, which Protocol Buffer 3 does not enjoy.

Message formats and symbolic security. [32] propose sufficient
criteria for secure message formats in a protocol, and prove that an
attack on a protocol using concrete formats implies an attack on
the protocol with abstract formats. The criterion is that all message
formats must be non-ambiguous, moreover they must be pairwise
disjoint. In our vocabulary, it means that the protocol must rely on
a single, non-ambiguous message format.

Paper Expressiveness Properties Execution
& @ RS
4 & s F P & & &
QO é& & & & ‘QQ' 2,& \0‘\
@0& zb &*;& &“\@ R ~o‘\0 & F & Q,O&
b& \b& & & «{,\Qg &’{’0 & 02;\& &‘@Q.cé’
d\‘b &Q& 6& Qo&\ &% ,‘D‘"& ‘Qfoe’ O‘é& &Q:Q (A}Q;Q Qo\\’
¢ T T S E
Comparse e 6 & o O e o o ® O o
Everparse+QD [36] ® ¢ O e O ® o O ®e O O
Everparse+3D [43] ®e 6 © o O ® o O ®e O O
Narcissus [17] ® O O O O ® O O ® O O
v(GS17 [45] ® 6 ¢ O O ® O O ® O O
MK14 [32] ® O O o o ® O O o O ©
Cheerios [3] Custom format ® O O ® O O
V2V [44] ASN.1 ® & O O @ O
Verified Protobuf [50] Protocol Buffer v3 ® O O ® O O

Table 2: Related features of other verified parser frameworks. We

These criteria are significantly stricter than the ones we propose
in §2.3, and we believe they are too strict for most real-world pro-
tocols. In particular, composing two unrelated protocols in parallel
(e.g. TLS and SSH) violates this property, even though running both
at the same time does not impact the security of each protocol. Our
criteria (§2.3) are more likely to be true on real-world protocols, are
preserved by parallel composition, and can be used in DY* proofs.

Furthermore, their approach is less expressive than ours: they do
not support data-dependency such as tagged union (which explains
their strict disjointness conditions), and they cannot modularly
analyze message formats. Finally, they neither provide a formal
analysis tool nor a reference implementation for their formats.

8 CONCLUSION

Comparse is a framework to study the security of formats in cryp-
tographic protocols, allowing the user to prove crucial properties
such as non-ambiguity, representation unicity and (absence of)
data dependency. We demonstrate the expressiveness and effective-
ness of Comparse by using it to specify and verify all the formats
in TLS 1.3, MLS, and cTLS. Our formats and their guarantees are
compatible with both symbolic and computational cryptographic
proofs. We integrate Comparse with DY* and show how the format
proofs of Comparse can be composed with symbolic security proofs
for a variety of protocols. In particular, our framework has been
used as part of a security proof for a key component of MLS [47].
Comparse encodes a strong yet flexible discipline that can help
protocol designers easily write formats that are provably secure.
Our case study on cTLS shows that cTLS formats are secure, and
paves the way to a complete security proof.

ACKNOWLEDGMENTS

This work received funding from the French Government, managed
by the ANR under grant agreements ANR-22-PECY-006 and ANR-
19-P3I1A-0001.

REFERENCES

[1] XML Encryption Syntax and Processing Version 1.1. W3C Recommendation,
April 2013.

14

[10

[11

[12

[13

[14

(15]

(17

(18

[19

=t

ntentionally omit unverified systems.

XML Signature Syntax and Processing Version 2.0. W3C Recommendation, July
2015.

Cheerios, 2016. https://github.com/uwplse/cheerios.

Comparse: Supplementary material, 2023. https://github.com/Inria-Prosecco/
comparse-artifact.

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green,] Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy: How diffie-hellman fails
in practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 5-17, 2015.

Martin R. Albrecht, Sofia Celi, Benjamin Dowling, and Daniel Jones. Practically-
exploitable cryptographic vulnerabilities in matrix. Cryptology ePrint Archive,
Paper 2023/485, 2023. https://eprint.iacr.org/2023/485.

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptography. In IEEE
Symposium on Security and Privacy (S&P), pages 777795, 2021.

Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol.
RFC 9420, July 2023.

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In Phillip Rog-
away, editor, Advances in Cryptology — CRYPTO, pages 71-90, 2011.
Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni,
Ralf Kiisters, Guido Schmitz, and Tim Wiirtele. DY*: A modular symbolic verifi-
cation framework for executable cryptographic protocol code. In IEEE European
Symposium on Security and Privacy (EuroS&P), pages 523-542. IEEE, 2021.
Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni,
Ralf Kiisters, Guido Schmitz, and Tim Wiirtele. An in-depth symbolic security
analysis of the ACME standard. In ACM SIGSAC Conference on Computer and
Communications (CCS), pages 2601-2617. ACM, 2021.

Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models
and reference implementations for the tls 1.3 standard candidate. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 483-502, 2017.

Bruno Blanchet. CryptoVerif: Computationally sound mechanized prover for
cryptographic protocols. In Dagstuhl seminar “Formal Protocol Verification Applied,
volume 117, page 156, 2007.

Bruno Blanchet et al. Modeling and verifying security protocols with the applied
pi calculus and ProVerif. Foundations and Trends® in Privacy and Security, 1(1-
2):1-135, 2016.

S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0, 2005.

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of tls 1.3. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, page
1773-1788, 2017.

Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye,
and Adam Chlipala. Narcissus: Correct-by-construction derivation of decoders
and encoders from binary formats. Proc. ACM Program. Lang., 3(ICFP), jul 2019.
Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols.
IEEE Trans. Inf. Theory, 29(2):198-207, 1983.

Benjamin Dowling, Marc Fischlin, Felix Giinther, and Douglas Stebila. A crypto-
graphic analysis of the TLS 1.3 handshake protocol. J. Cryptol., 34(4):37, 2021.

https://github.com/uwplse/cheerios
https://github.com/Inria-Prosecco/comparse-artifact
https://github.com/Inria-Prosecco/comparse-artifact
https://eprint.iacr.org/2023/485

[20] James Heather, Gavin Lowe, and Steve A. Schneider. How to prevent type flaw

[21]

[22]

[23

[24]

[25

[26]

[27]

[28]

[29]

[30

[31]

[32]

[33

[34]

attacks on security protocols. Journal of Computer Security, 11(2):217-244, 2003.
Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan.
Noise*: A library of verified high-performance secure channel protocol imple-
mentations. In IEEE Symposium on Security and Privacy (S&P), pages 107-124.
IEEE, 2022.

ITU-T. Information technology - Open Systems Interconnection — The Directory:
Public-key and attribute certificate frameworks. Recommendation ITU-T X.509,
October 2019.

Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Signature (JWS).
IETF RFC 7515, May 2015.

Michael B. Jones and Joe Hildebrand. JSON Web Encryption (JWE). IETF RFC
7516, May 2015.

Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Bjorn Tackmann, and Daniele
Venturi. (de-)constructing tls 1.3. In Progress in Cryptology — INDOCRYPT 2015,
pages 85-102, 2015.

Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu. Multiple
handshakes security of tls 1.3 candidates. In IEEE Symposium on Security and
Privacy (SP), pages 486505, 2016.

Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol
using fdr. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 147-166. Springer Berlin Heidelberg, 1996.

Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Haw-
blitzel, Catalin Hritcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément
Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, and
Nikhil Swamy. Meta-F* : Proof automation with SMT, tactics, and metaprograms.
In Luis Caires, editor, Programming Languages and Systems - European Symposium
on Programming, ESOP, volume 11423 of Lecture Notes in Computer Science, pages
30-59. Springer, 2019.

Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart
Preneel. A cross-protocol attack on the TLS protocol. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS 12, page 62-72,
New York, NY, USA, 2012. Association for Computing Machinery.

Catherine A. Meadows. Analyzing the needham-schroeder public key protocol: A
comparison of two approaches. In Computer Security — ESORICS, pages 351-364.
Springer Berlin Heidelberg, 1996.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin
prover for the symbolic analysis of security protocols. In International conference
on computer aided verification, pages 696—~701. Springer, 2013.

Sebastian Médersheim and Georgios Katsoris. A sound abstraction of the parsing
problem. In 2014 IEEE 27th Computer Security Foundations Symposium, pages
259-273, 2014.

Roger M. Needham and Michael D. Schroeder. Using encryption for authentica-
tion in large networks of computers. Communications of the ACM, 21(12):993-999,
dec 1978.

Yoav Nir, Simon Josefsson, and Manuel Pégourié-Gonnard. Elliptic Curve Cryp-
tography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2
and Earlier. RFC 8422, August 2018.

15

[35

[36

[43

'S
&

[45

[46

[47

Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong Truong. Three lessons
from Threema: Analysis of a secure messenger. In Proceedings of the 32th USENIX
Conference on Security Symposium, SEC’23, USA, 2023. USENIX Association.
Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy,
Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. Everparse: Verified secure
zero-copy parsers for authenticated message formats. In Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, page 1465-1482, USA, 2019.
USENIX Association.

E. Rescorla, R. Barnes, H. Tschofenig, and B. Schwartz. Compact TLS 1.3. IETF
Internet Draft version 8, March 2023.

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, August 2008.

J. Schaad and August Cellars. Protocol Buffers (proto 3). https://protobuf.dev,
July 2008.

J. Schaad and August Cellars. CBOR Object Signing and Encryption (COSE).
IETF RFC 8152, July 2017.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 256-270, 2016.
Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova, Haobin
Ni, Dmitry Malloy, Juan Vazquez, Michael Tang, Omar Cardona, and Arti Gupta.
Hardening attack surfaces with formally proven binary format parsers. In Pro-
ceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2022, page 31-45, New York, NY,

USA, 2022. Association for Computing Machinery.
Mark Tullsen, Lee Pike, Nathan Collins, and Aaron Tomb. Formal verification

of a vehicle-to-vehicle (v2v) messaging system. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification, pages 413-429, Cham, 2018.
Springer International Publishing.

Marcell van Geest and Wouter Swierstra. Generic packet descriptions: Verified
parsing and pretty printing of low-level data. In Proceedings of the 2nd ACM
SIGPLAN International Workshop on Type-Driven Development, TyDe 2017, page
30-40, New York, NY, USA, 2017. Association for Computing Machinery.
Kenton Varda. Protocol buffers: Google’s data interchange format. Google Open
Source Blog, Available at least as early as Jul, 72:23, 2008.

Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan
Bhargavan. TreeSync: Authenticated group management for messaging layer
security. In 32nd USENIX Security Symposium (USENIX Security 23), pages 1217—
1233, August 2023.

Wikipedia contributors. Malleability (cryptography) — Wikipedia, the free ency-
clopedia, 2022. [Online; accessed 4-May-2023].

Pieter Wuille. Dealing with malleability. BIP 62, 2014.

Qianchuan Ye and Benjamin Delaware. A verified protocol buffer compiler. In
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, page 222-233, New York, NY, USA, 2019. Association
for Computing Machinery.

https://protobuf.dev

	Abstract
	1 Introduction
	2 The Essence of Secure Formats
	2.1 Formally Defining Message Formats
	2.2 Properties of Message Formats
	2.3 A Systematic Approach to Format Security

	3 Verified Formats in F
	3.1 Defining Secure Message Formats in F
	3.2 The dependent pair combinator
	3.3 The refinement combinator
	3.4 The list combinator
	3.5 The isomorphism combinator
	3.6 Automating Combinator Synthesis
	3.7 Implementation

	4 Verified Formats for TLS and cTLS
	4.1 Format Confusion Attacks in TLS 1.0-1.2
	4.2 Verified Formats for TLS 1.3
	4.3 Verified Formats for cTLS

	5 Embedding Comparse in DY
	5.1 Background: Symbolic verification with DY
	5.2 Plugging DY and Comparse together
	5.3 Improving message formats in DY

	6 Discussion
	7 Related work
	8 Conclusion
	References

