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Abstract. Sigma protocols are one of the most common and efficient zero-knowledge proofs (ZKPs).
Over the decades, a large number of Sigma protocols are proposed, yet few works pay attention to the
common design principal. In this work, we propose a generic framework of Sigma protocols for algebraic
statements from verifiable secret sharing (VSS) schemes. Our framework provides a general and unified
approach to understanding Sigma protocols. It not only neatly explains the classic protocols such as
Schnorr, Guillou–Quisquater and Okamoto protocols, but also leads to new Sigma protocols that were
not previously known.
Furthermore, we show an application of our framework in designing ZKPs for composite statements,
which contain both algebraic and non-algebraic statements. We give a generic construction of non-
interactive ZKPs for composite statements by combining Sigma protocols from VSS and ZKPs fol-
lowing MPC-in-the-head paradigm in a seamless way via a technique of witness sharing reusing. Our
construction has advantages of requiring no “glue” proofs for combining algebraic and non-algebraic
statements. By instantiating our construction using Ligero++ (Bhadauria et al., CCS 2020) and de-
signing an associated Sigma protocol from VSS, we obtain a concrete ZKP for composite statements
which achieves a tradeoff between running time and proof size, thus resolving the open problem left by
Backes et al. (PKC 2019).

Keywords: Sigma protocols · Verifiable secret sharing · Composite statements · MPC-in-the-head.

1 Introduction

Zero-knowledge proofs (ZKPs), introduced by Goldwasser, Micali and Rackoff [GMR85], allow a prover to
convince a verifier that a statement is true without revealing any further information. Goldreich, Micali, and
Wigderson [GMW86] further showed that ZKP exists for every NP language, making it an extremely power-
ful tool in modern cryptography. Since its introduction in the mid 1980s, ZKPs have been used as an instru-
mental building block in a myriad of cryptographic protocols/schemes like identification protocols [FFS87],
digital signatures [BCC+16, Sch91], CCA-secure public-key encryption [NY90, Sah99], anonymous creden-
tials [CL01], voting [CF85], maliciously secure multi-party computation [GMW87], and privacy-preserving
cryptocurrency [GK15, BCG+14].

In the realm of ZKPs1, there are three types of statements. The first is algebraic statements, which are
defined by relations over algebraic groups like prime-order groups and RSA-type groups, such as knowledge
of discrete logarithm or modular root. The second is non-algebraic statements, which are expressed by
arithmetic/boolean circuits, such as knowledge of preimage of SHA256 or knowledge of plaintext of AES
encryption. The third is composite statements that mix algebraic and non-algebraic statements, e.g. the
value w committed by Com also satisfies C(w) = 1, where the predicate C represents an arithmetic/boolean
circuit. Below we briefly survey ZKPs for the three types of statements.
1 For the sake of convenience, we will not distinguish between computational and information-theoretic soundness,

and thus refer to both proofs and arguments as “proofs”.
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ZKPs for non-algebraic statements. Since boolean/arithmetic circuits can describe arbitrary compu-
tations, ZKPs for non-algebraic statements are usually referred to as general-purpose. The last decade has
seen tremendous progress in designing and implementing efficient general-purpose ZKPs (see [Tha22] for a
comprehensive survey). These efforts can be roughly divided into four categories according to the underlying
machinery.

The first is built upon probabilistic checkable proof (PCP). Following the seminal works of Kilian [Kil92]
and Micali [Mic94] based on classical PCPs, recent works [AHIV17, BBHR18, BCR+19, ZXZS20, COS20,
Set20] begin to build general-purpose ZKP from interactive variants of PCP, first in the model of interactive
PCP [KR08] and then in the more general model of interactive oracle proofs [BCS16, RRR16]. ZKPs of
this category have the advantages of not relying on public-key cryptography, not requiring trusted setup,
and offering conjectured post-quantum security. The second is based on linear PCP, initiated by Ishai,
Kushilevitz, and Ostrovsky [IKO07], and followed by a sequence of works [Gro10, Lip12, GGPR13, Gro16,
MBKM19, CHM+20]. ZKPs of this category are featured with constant size proofs and fast verification, but
they are quite slow on the prover side and require long and “toxic” common reference string. The third is
based on inner product arguments. Initial work [Gro09] of this line has square root size proof and linear
verification time. Followup works [BCC+16, BBB+18] managed to achieve logarithmic size proof, and the
verification cost is finally reduced to logarithmic complexity [Lee21]. The fourth is based on garbled circuits.
The original protocol due to Jawurek, Kerschbaum and Orlandi [JKO13] is secret-coin in nature. Recently,
Cui and Zhang [CZ21] showed how to tweak the JKO protocol to public-coin. ZKPs of this category require
linear prover time, proof size and verification time.
ZKPs for algebraic statements. Almost exclusively, the most common and efficient ZKPs for algebraic
statements fall into a class known as Sigma protocols, introduced by Cramer [Cra96]. Let L be an NP
language associated with relation R, i.e., L = {x | ∃w s.t. R(x,w) = 1}. A Sigma (Σ) protocol for L is
a 3-move public coin interactive proof system that allows a prover to convince a verifier that he knows a
witness w of a public instance x without disclosing w. The Greek letter Σ visualizes the 3-move structure
(commit, challenge and response). The prover sends an initial message a called a commitment to the verifier,
the verifier replies with a uniformly and independently random chosen challenge e from some finite challenge
space, and the prover answers with a response z as the final message. Finally, the verifier decides whether
to accept or reject the statement based on the transcript (a, e, z).

Sigma protocols are very appealing due to many attractive properties. First, Sigma protocols are ex-
tremely efficient for algebraic statements. They yield short proof sizes, only require a constant number of
public-key operations and do not need trusted common reference string generation. Although seemingly
specific, Sigma protocols for algebraic statements cover a wide variety of tasks arise from practice such as
proving the knowledge of discrete logarithm/modular root, a tuple is of the Diffie-Hellman type, an ElGa-
mal/Paillier encryption is to a certain value, and many more. Second, Sigma protocols are closed under
parallel composition, and thus it is possible to efficiently combine several simple Sigma protocols to prove
compound statements. This further increases the usability of Sigma protocols. Third, the so-called special
soundness make Sigma protocols easy to work with by providing a simple way to establish proof of knowledge
property. Moreover, Sigma protocols can be made non-interactive using the Fiat-Shamir heuristic [FS86].
The above properties make Sigma protocols an incredibly powerful tool for various cryptographic tasks.

In contrast to the state of affairs of general-purpose ZKP, though Sigma protocols have been intensively
studied in the last four decades, few attentions are paid to generic constructions. This is probably because
that the design of Sigma protocols is relatively easier than that of general-purpose ZKPs. Sigma protocols in
the literature such as the classic Schnorr [Sch91], Batching Schnorr [GLSY04], Guillou-Quisquater [GQ88],
and Okamato protocol [Oka92] are ingenious but hand-crafted, and they came with a separate proof. It is
curious to know whether there exists a common design principal.
ZKPs for composite statements. A composite statement is one that contains both algebraic and non-
algebraic statements, e.g., x is a Pederden commitment to w such that SHA256(w) = y. As noted in [CGM16,
AGM18, BHH+19], ZKPs for composite statements have various applications, such as proof of solvency for
Bitcoin exchanges, anonymous credentials based on RSA and (EC-)DSA signatures, and 2PC with authen-
ticated inputs.
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To prove composite statements, a naïve approach is transforming composite statements into a single form,
namely either algebraic or non-algebraic form, and then using only Sigma protocols or general-purpose ZKPs
to prove it. In one direction, one could turn the non-algebraic statements expressed as a circuit into algebraic
statements by expressing each gate of the circuit as an algebraic relation between input and output, and
then use Sigma protocols to prove these relations. However, it would cost several public-key operations and
group elements per gate, which is prohibitively expensive when the circuit is large. As noted by [AGM18], in
case of hash functions and block-ciphers, it costs tens of thousands of exponentiations and group elements
when proving the associated algebraic relations of the circuits. In the other direction, one could turn the
algebraic statements into non-algebraic statements and then use general-purpose ZKPs to prove it. But this
results in a substantial increase in the size of the statements. For example, the circuit for computing a single
exponentiation could be of thousands or millions of gates depending on the group size. This in turn increases
the overheads of both prover’s/verifier’s work and proof size. As mentioned before, the computation cost and
proof size of all transparent general-purpose ZKPs grow with the circuit size. General-purpose ZKPs based
on linear PCP offer efficient verification and constant proof size, while the prover’s work is still heavy and
they require a trusted setup.

A better approach, employed by most of prior works on this direction, is that: using Sigma protocols to
prove the algebraic part, using off-the-shelf efficient general-purpose ZKPs to prove the non-algebraic part,
then additionally designing customized protocols as a “glue” to link the two parts. “Glue” proofs play a crucial
role in this approach. Without “glue” proofs, a cheating prover can easily generate proofs of the two parts
using inconsistent witnesses (e.g., a cheating prover may give a proof π1 for proving knowledge of w1 such
that Com(w1) = x and a proof π2 for proving knowledge of w2 such that SHA256(w2) = y where w1 ̸= w2).
The resulting proof systems will inherit the advantages and disadvantages of the underlying general-purpose
ZKPs. For instance, [CGM16] presented two tailor-made “glue” proofs to link Sigma protocols with the JKO
protocol [JKO13], yielding ZKPs which have a fast prover and verifier while they are private-coin inherently;
[AGM18, CFQ19, ABC+22] each gave a generic construction of “glue” proofs to link Sigma protocols with
ZKPs based on linear PCP, yielding proofs which are featured with constant size proofs and fast verification,
but they are quite slow on the prover side and require a trusted setup; [BHH+19] customized two “glue”
proofs to link Sigma protocols with the ZKBoo [GMO16]/ZKB++ [CDG+17] protocols, yielding transparent
ZKPs which have a fast prover, but the proof size is linear in the circuit size.

However, this approach servers from two main drawbacks. First, “glue” proofs inevitably introduce addi-
tional overheads in both computation cost and proof size to enforce the witness consistency. Second, “glue”
proofs must be tailored in a specific way to align with the general-purpose ZKPs, limiting the space of
possible general-purpose ZKPs we can use. Particularly, “glue” proofs in [BHH+19] are tailored for the
ZKBoo [GMO16]/ZKB++ [CDG+17] and they could not be applied to other similar proof systems like
Ligero [AHIV17]/Ligero++ [BFH+20]. The authors left a more efficient and compact ZKP for composite
statements using Ligero/Ligero++ as an open problem 2. Therefore, an intriguing question is that whether
the seemingly indispensable “glue” proofs are necessary when designing ZKPs for composite statements.

The above discussion motivates the main questions that we study in this paper:

Is there a generic framework of Sigma protocols? Can this framework help to give a generic construction of
efficient ZKPs for composite statements without “glue” proofs?

1.1 Our Contributions
In this work, we positively answer the above two questions and summarize our contributions as below.

1.1.1 A Framework of Sigma Protocols for Algebraic Statements
We present a framework of Sigma protocols for algebraic statements from verifiable secret sharing (VSS)
schemes. Our framework not only neatly explains existing classic Sigma protocols including the Schnorr,
2 Actually, it is hard to give a more efficient ZKP for composite statement using Ligero/Ligero++ than those using

ZKBoo/ZKB++, since the former two protocols reduce the proof size, at the cost of increasing the computation.
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Batching Schnorr, GQ, and Okamoto protocols, but also provides a unified paradigm of designing Sigma
protocols for proving knowledge of openings of algebraic commitments.

MPC-in-the-head paradigm revisit. Ishai et al. [IKOS07] showed how to build general-purpose ZKPs
by using MPC in a black-box manner. In a nutshell, to prove the knowledge of w such that C(y, w) =
1 for a circuit C and a value y, their construction proceeds as below: the prover simulate an execution
of an n-party secure-computation protocol Πf that evaluates the function fy(w1, . . . , wn) which outputs
“1” iff C(y, w) = 1 with w = w1 ⊕ · · · ⊕ wn, and commit the views of the parties in the protocol. The
verifier then picks and asks a random subset of those parties, and the prover opens the corresponding views.
The verifier finally accepts if the opened views all output “1” and are consistent with each other. Their
approach, known as MPC-in-the-head, presents a generic connection between ZKP and MPC, and gives
rise to a rich line of transparent general-purpose ZKPs with continually improved performance, including
ZKBoo [GMO16], ZKB++ [CDG+17], KKW [KKW18], Ligero [AHIV17], Ligero++ [BFH+20] and more,
forming a promising subclass of general-purpose ZKPs based on PCP machinery. Interestingly, we find that
the ZKPs from the MPC-in-the-head paradigm also follow the commit-challenge-response pattern. In light
of this observation, the MPC-in-the-head paradigm actually gives a generic construction of Sigma protocols
for non-algebraic statements. This suggests that when seeking for a generic framework of Sigma protocols
for algebraic statements, one may start from some lite machinery than MPC.

VSS-in-the-head. An (n, tp, tf )-verifiable secret sharing (VSS) scheme allows a dealer to distribute a secret
s among n participants, in such a way that no group of up to tp participants could learn anything about
s, any group of at least tf participants could recover the secret, and the cheating behaviors of both the
dealer and the participants can be detected. VSS is an essential building block employed for numerous MPC
protocols with malicious players [GMW87, BGW88, CCD88, RB89]. Based on the above reasoning, VSS is
arguably the right backbone of Sigma protocols for algebraic statements.

A refined definition of VSS. In this work, we restrict ourselves to non-interactive VSS schemes. For
simplicity, we will omit non-interactive hereafter when the context is clear. Before describing the framework,
we first give a refined definition of VSS, which differs from the original definition proposed by Feldman [Fel87]
in both syntax and security properties. In terms of syntax, there are two primary differences as below: (1)
The secret is committed rather than being encrypted, such relaxation makes our definition more general;
(2) The sharing algorithm is asked to additionally output authentication information, denoted by aut, which
essentially commits to the sharing method (e.g., in the case of Feldman’s VSS scheme, it is a vector of
commitments to the polynomial’s coefficients), and will later be used to check the validity of each share.
This kind of information does not appear in the original definition. In terms of security properties, there are
two differences as follows: (1) For correctness, the secrets recovered by different groups of participants are
not stipulated to be consistent as in [Fel87], instead the recovered secrets are required to be an opening of
the commitment. This property is crucial in this work and is actually met by many existing VSS schemes,
but it has never been formally defined; (2) For privacy, we provide a simulation-based definition instead of
a game-based one, making it more convenient to use in the context of ZKP and MPC. See Section 3.1 for
the details of the refined definition.

Sigma protocols from VSS. Having settled on a satisfactory definition of VSS, we are ready to describe
the framework of Sigma protocols for algebraic statements—“given a commitment x, prove the knowledge
of an opening (s, r) such that Com(s; r) = x”. Our framework is built upon (n, tp, tf )-VSS schemes with
respect to Com. Roughly speaking, in the commit phase, the prover shares the witness (s, r) into n pieces
of shares v1, . . . , vn “in his head” and generates the associated authentication information aut, then sends
aut to the verifier. In the challenge phase, the verifier picks a random subset I from the challenge space [n],
where |I| ≤ tp, and acts as the set of participants in I to query their private shares. In the response phase,
the prover answers with corresponding shares (vi)i∈I . Finally, the verifier decides to accept or reject the
statement by checking whether each vi is a valid share for participant Pi. For the security of the resulting
Sigma protocols, the special soundness property follows from the correctness of VSS and the special honest
verifier zero-knowledge property follows from the privacy of VSS.
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The above framework from VSS encompasses almost all the classic Sigma protocols for proving knowledge
of openings of algebraic commitments. As a concrete example, we show how to derive the celebrated Schnnor
protocol from our framework. The start point is the Feldman’s (n, tp, tf )-VSS scheme [Fel87] where tf = tp+1:
to distribute a secret s ∈ Fp among n participants P1, . . . , Pn, the dealer first computes a commitment c = gs

to secret s, chooses a tp-degree polynomial f(x) = a0 + a1x + · · · + atpx
tp where a0, . . . , atp−1

R←− Fp and
atp = s (the coefficients of the polynomial could be viewed as the compact description of the sharing
method), and sets the private share vi for Pi as f(i), then generates the commitment of the randomnesses
as the authentication information, i.e., aut = (c0, . . . , ctp−1) where cj = gaj for 0 ≤ j ≤ tp − 1. The dealer
then broadcasts c and aut, and sends vi to Pi in private. Upon receiving the share, each participant checks
the validity of the share with respect to c and aut, and rejects if it is invalid. The secret s can be recovered
by pooling more than tp valid shares. By setting the number of participants n to p (the size of the field Fp),
the privacy threshold tp to 1, we immediately recover the classic Schnorr protocol. More examples can be
found in Section 4.

1.1.2 A Framework of ZKPs for Composite Statements
To demonstrate the usefulness of our framework, we show its application in designing ZKPs for composite
statements. Among various types of composite statements, commit-and-prove, i.e., a committed value w
satisfies a circuit C, is the most common one. According to [CGM16, BHH+19], it is an building block for
some other types. Therefore, we restrict ourselves to the commit-and-prove type.

In this work, we show that by reusing the witness sharing process, Sigma protocols from VSS and ZKPs
following MPC-in-the-head paradigm can be combined seamlessly, yielding a generic construction of ZKPs
for composite statements without “glue” proofs. Our generic construction enjoys two benefits: (i) eliminating
the cost introduced by “glue” proofs; (ii) expanding the space of possible general-purpose ZKPs that we can
use.

Enforcing consistency via witness sharing reusing. As mentioned before, ZKPs from MPC bear strong
resemblance with Sigma protocols, as both of them follow the same commit-challenge-response pattern. This
implies that ZKPs from MPC might be easily coupled with Sigma protocols from VSS to prove composite
statements. However, if we combine them as the mainstream approach, “glue” proofs are still necessary. A
key observation is that ZKPs from MPC and Sigma protocols from VSS not only follow the same pattern
but also share a common witness sharing procedure: at the very beginning, the provers share the witnesses
into n shares in their heads; in the challenge phase, the verifiers ask to reveal a subset of witness shares; in
the response phase, the provers reply with corresponding shares (albeit in ZKPs from MPC, the shares are
included as a part of parties’ views), and finally the verifiers use the received shares to check the verification
equations. This suggests that when combining Sigma protocols from VSS and ZKPs from MPC to prove
composite statements, the witness sharing procedure of them are able to be reused. More precisely, the prover
shares the witness only once, the verifier picks and asks only one challenge I, and then the prover responds
with only one subset of shares, whereas the verifier accepts if and only if the shares pass verifications of both
algebraic and non-algebraic parts. Such “reusing” enforces the prover to use a consistent witness without
any additional “glue” proofs. From the perspective of security proof, one can construct an extractor Ext of
ZKPs for composite statements by invoking extractors ExtΣ of Sigma protocols from VSS and ExtZKP of
ZKPs from MPC as subroutines, both of which run the same recovering algorithm on the same input, and
thus output the same witness satisfying both algebraic and non-algebraic statements. When implementing
the above high-level idea, we encounter the following two main technical obstacles.

A Generalization of MPC-in-the-Head Paradigm. One obstacle comes from the MPC-in-the-Head
Paradigm. Recall that the secret sharing mechanism in the original ZKPs from MPC [IKOS07] sticks to
the XOR-based secret sharing (SS) schemes, which is a special case of (n, n − 1, n)-SS, making it hard to
interact with (n, tp, tf )-VSS schemes. To address this issue, we generalize the MPC-in-the-head paradigm
by extending the XOR-based SS scheme to the (n, tp, tf )-SS schemes. Specifically, in the commit phase the
prover P shares the witness w into n shares w1, . . . , wn by running SS.Share(w), which does not fix to picking
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n shares satisfying w = w1 ⊕ · · · ⊕ wn. This, in turn, requires an MPC protocol Π that evaluates n-party
function f satisfying fy(w1, . . . , wn) = 1 iff C(y, ·) = 1 on input w = SS.Recover(w1, . . . , wn). The proof of
knowledge property is not explicitly given in [IKOS07]. In this work, we rigorously prove this property, which
is crucial for our construction of ZKPs for composite statements and might be of independent interest.

Separable VSS Schemes. The other obstacle is that the relationship between VSS and SS is unclear,
making it difficult to reuse the common witness sharing procedure. To overcome this obstruction, we introduce
a mild property called separability for VSS which has been satisfied by many existing VSS schemes. Roughly
speaking, we say a VSS scheme satisfies separability if its procedure of generating shares (v1, . . . , vn) and
authentication information aut could be separated. Particularly, we say a VSS scheme aligns with an SS
scheme if it generates the shares as per this SS scheme. Such delicate dissection allows us to distill the
common secret sharing mechanism used in Sigma protocols from VSS and ZKPs from MPC, paving the way
to implement the witness sharing reusing technique.

An efficient instantiation. We instantiate above framework of ZKPs for composite statements by choosing
Ligero++ [BFH+20] as the underlying general-purpose ZKPs and designing a Sigma protocol from VSS which
aligns with the SS component underlying Ligero++. The resulting protocol requires no trusted setup and
no “glue” proofs, and achieves a tradeoff between proof size and running time. Concretely, the proof size
is polylogarithmic to the circuit size and the number of expensive public-key operations required by prover
and verifier is independent of the circuit size. See Section 6.2 for a detailed efficiency analysis.

Table 1 shows a brief comparison between closely related works. Among them, the protocols in [BHH+19]
and [BBB+18] are the only two that are both public-coin and transparent. Compared to [BHH+19], our
instantiation achieves asymptotically smaller proof size, thus settling the open problem in [BHH+19]: whether
a more compact ZKP for composite statements can be constructed by using Ligero/Ligero++. Though the
work [BBB+18] also proposed a proof system that achieves succinct proof size, the prover’s work is still
expensive. As noted in [Tha22, Section 19.3.2], for circuits with small size, O(|C| log(|C|)) field operations
are likely to be faster than O(|C|) group operations. Thus, our instantiation is likely to have better prover
performance when the circuit size is small.

Table 1: Comparisons among ZKPs for composite statements
Protocols Public-coin Transparent Prover time Verifier time Proof size
[CGM16]
Constr.1 7 3

O(|w|) pub
O(|C|) sym

O(|w|) pub
O(|C|) sym O(|C|+ |w|)

[CGM16]
Constr.2 7 3

O(λ) pub
O(|C|+ |w|λ) sym

O(λ) pub
O(|C|+ |w|λ) sym O(|C|+ |w|λ)

[BBB+18] 3 3 O(|C|) pub O( |C|
log(|C|) ) pub O(log(|C|))

[AGM18] 3 7 O(|C|+ λ) pub O(|w|+ λ) pub O(1)

[BHH+19] 3 3
O((|w|+ λ) pub
O(|C| · λ) sym

O((|w|+ λ) pub
O(|C| · λ) sym O(|C|λ+ |w|)

[CFQ19]
LegoAC1

3 7
O(|C|) pub
O(|C| log(|C|)) sym O(|w|) pub O(1)

[ABC+22] 3 7 O(|C|+ |w|) pub O(|w|) pub O(log(|w|))

This work 3 3
O(λ) pub
O(|C| log(|C|)) sym

O( (|w|+λ)2

log(|w|+λ)
) pub

O(|C|) sym
O(polylog(|C|) + λ)

We use pub to indicate a public-key operation, sym to a symmetric-key operation. We denote by |C| the circuit size,
by |w| the witness length, by λ the security parameter.
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1.2 Related Work

Sigma protocols. The notion was first proposed by Cramer [Cra96] as an abstraction of Schnorr proto-
col [Sch91] for proving knowledge of discrete logarithm and Guillou-Quisquater protocol [GQ88] for proving
knowledge of modular root. Since its introduction, Sigma protocols have received much attention due to
their simplicity and high efficiency, and a great deal of works have focused on improving the efficiency
or extending the functionality of Sigma protocols. For example, Beullens [Beu20] introduced a new notion
called sigma protocols with helper, referring to the Sigma protocols where the prover and the verifier are
assisted by a trusted third party, and further improved the efficiency of several Sigma protocols using the
new notion. Cramer, Damgård and Schoenmakers (CDS) [CDS94] applied the secret sharing technique to
construct proofs of partial knowledge, i.e., given n statements x1, . . . , xn, convincing the verifier that the
prover knows a witness w for at least one of the statements. Our framework seems like a dual construction of
theirs. In their construction, the prover shares the challenge e rather than the witness w, while in ours, the
prover shares the witness w instead of the challenge e. In any case, we both showed that (verifiable) secret
sharing is an important technique for constructing Sigma protocols. Abe et al. [AAB+20] then improved the
CDS technique by letting the prover hash the shares before using them as challenges, resulting in several
significant benefits. Abe et al. [AAB+21] also introduced a model of monotone computation called acyclicity
program (ACP), and proposed an alternative method for proving partial knowledge based on the ACP.

However, few works study the common design principal of Sigma protocols. To our knowledge, [Mau15]
is the only work on this direction. In [Mau15], Maurer proposed a template for building Sigma protocols for
algebraic statements that can be captured by preimage of a group homomorphism. Despite a large number
of classic Sigma protocols can be explained by this template, it still has deficiencies in generality and utility.
First, Maurer’s template is tied to group homomorphism, and is less flexible cause it imposes fixed formats
on three move messages. For instance, it fails to encompass the variant Schnorr and the batching Schnorr
protocol introduced in [GLSY04] where the initial message is not computed using the same homomorphism
as the statement. Second, Maurer’s template does not establish connection between Sigma protocols and
other cryptographic primitives. So far, the machinery of Sigma protocols is still unclear.
ZKPs for composite statements. This line of research started with the work of Chase et al. [CGM16].
They gave two efficient ZKPs for proving composite statement, of which the number of expensive public-key
operations is independent of the size of the circuit C. However, both of the two constructions are based on
the general-purpose ZKPs from garbled circuits proposed by [JKO13], which makes the protocols interactive
inherently. Agrawal et al. [AGM18] further presented non-interactive protocols, which use the QAP-based
succinct non-interactive arguments of knowledge (SNARK) to prove the non-algebraic part of the statement.
Their protocols take advantage of having a small proof size and fast verification time, while require a trusted
setup for generating the structured common reference string (CRS). Backes et al. [BHH+19] presented non-
interactive protocols which require no trusted setup, and have efficient prover and verifier running time.
However, their protocol makes use of the ZKBoo [GMO16]/ZKB++ [CDG+17] protocols which follow the
MPC-in-the-head paradigm to prove the non-algebraic statement, thus resulting in a large proof size that is
linear to |C|. Campanelli et al. [CFQ19] proposed a framework of ZKPs for composite statements utilizing
pairing-based general-purpose ZKPs, achieving succinct proof size while all the instantiations they given
require a trusted setup. Among these instantiations, the one reported in Table 1 has the shortest proof size
and the most efficient verifier. Recently, Aranha et al. [ABC+22] proposed a general method of compiling
Algebraic Holographic Proofs into ZKPs for composite statements, whose proof size is logarithmic to the
number of commitments in the statements while also requiring a trusted setup. See Table 1 for a brief
comparison between these works.

All the works above used customized “glue” proofs for proving consistency, which severely limit the
space of general-purpose ZKPs that can be used and also causes additional overheads in both computation
and communication. Aside from the works mentioned above, general-purpose ZKPs based on inner product
arguments, such as [BBB+18, HKR19] are able to be combined with Pedersen commitments without any
“glue” proofs. However, the algebraic parts of them are fixed to Pedersen commitments with some certain
constraints, making the construction semi-generic. For example, the algebraic part of [BBB+18] is fixed to |w|
Pedersen commitments, each of which commits to an entry of the witness w. Once the algebraic part changes
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to a single vector commitment to w, an additional “glue” proof is required. What’s more, the prover’s work
is still expensive, since the number of public-key operations required by the prover is linear to the circuit
size. To our knowledge, there is no generic construction of ZKPs for composite statements that is without
“glue” proofs.

2 Preliminaries

Notations. For an integer n, we use [n] to denote the set {1, . . . , n}. For a set X and integer t, we use |X|
to denote the size of X, use Xt to indicate the set consisting of all t-sized subsets of X, and use x

R←− X
to denote sampling x uniformly at random from X. We use the abbreviation PPT to indicate probabilistic
polynomial-time. We denote a negligible function in λ by negl(λ).

2.1 Commitment Schemes

We first recall the definition of commitment schemes.

Definition 1 (Commitment Schemes). A commitment scheme is a triple of polynomial time algorithms
as below:

– Setup(1λ): on input a security parameter λ, outputs the public commitment key pp, which includes the
descriptions of the message space M , randomness space R, and commitment space C.

– Com(m; r): on input a message m ∈M and a randomness r ∈ R, outputs a commitment c.
– Verify(c,m, r): on input a commitment c ∈ C, a message m ∈ M and a randomness r ∈ R, outputs “1”

if Com(m; r) = c and “0” otherwise.

Additionally, we require the following properties of a commitment scheme.

Correctness. For any pp← Setup(1λ), any m ∈M and any r ∈ R, it holds that Verify(Com(m; r),m, r) = 1.
Hiding. A commitment Com(m; r) should reveal no information about m. Formally, it is computationally
(resp. statistically) hiding if for any PPT (resp. unbounded) adversary A, it holds that:

Pr

b′ = b :

pp← Setup(1λ);
(m0,m1)← A(pp);
b

R←− {0, 1}, r R←− R, c← Com(mb; r);
b′ ← A(c);

 ≤ 1

2
+ negl(λ).

For commitment schemes with deterministic Com algorithm, namely the randomness is null, we consider a
weaker security notion called one-way hiding, which can be defined similarly as above. Roughly speaking, we
say a commitment scheme is one-way hiding if the adversary only takes a negligible probability to open a
randomly chosen commitment.
Binding. A commitment can not be opened to two different messages. Formally, it is computationally (resp.
statistically) binding if for any PPT (resp. unbounded) adversary A, it holds that:

Pr

[
m0 ̸= m1∧

Com(m0; r0) = Com(m1; r1)
:
pp← Setup(1λ);
(m0, r0,m1, r1)← A(pp);

]
≤ negl(λ).

2.2 Sigma Protocols

Let L be an NP language and R be the associated binary relation. We say an instance x lies in L if and only
if there exists a witness w such that (x,w) ∈ R. Consider following three-move interaction between two PPT
algorithms P and V : (1) Commit: P sends an initial message to V ; (2) Challenge: V sends a challenge e to
P ; (3) Response: P replies with a response z. A formal definition of Sigma protocols is presented as below.
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Definition 2 (Sigma Protocols). A Sigma protocol for a relation R is a three-move public-coin protocol
with above communication pattern and satisfies the following three properties:

Completeness. If P and V follow the protocol on input x and private input w to P where (x,w) ∈ R, then
V always accepts the transcript.
n-Special soundness. There exists a PPT extraction algorithm Ext that on input any instance x and any
n accepting transcripts (a, e1, z1), . . . , (a, en, zn) for x where all ei’s are distinct, outputs a witness w for x.
Special honest-verifier zero-knowledge (SHVZK). There exists a PPT simulator Sim that on input any
instance x and any challenge e, generates a transcript (a, e, z) such that the triple is distributed identically
to an accepting transcript generated by a real protocol run between the honest P (x,w) and V (x).

Lemma 1 ( [ACK21, GMO16]). Let n be a positive integer bounded by a polynomial and ⟨P, V ⟩ be a
Sigma protocol with n-special soundness. If the verifier V samples the challenge uniformly at random from
the challenge space C, then ⟨P, V ⟩ is knowledge sound with knowledge error bounded by (n− 1)/|C|.

2.3 Secure Multiparty Computation

A multiparty computation (MPC) protocol allows n parties P1, . . . , Pn to jointly compute an n-party function
f over their inputs while maintaining the privacy of their inputs. For a set of parties I ⊆ [n], we denote
by fI the outputs of parties in I after the joint computation of f . Let viewi be the view of Pi during the
execution of an MPC protocol, including its private input, randomness and the received messages. Below,
we recall some important definitions and lemmas of MPC protocols from [IKOS07] .

Definition 3 (Consistent Views). We say a pair of views (viewi, viewj) are consistent, with respect to
the protocol Π and some public input x, if the outgoing messages implicit in viewi, x are identical to the
incoming messages reported in viewj and vice versa.

Lemma 2 (Local vs. Global Consistency). Let Π be an n-party protocol, x be a public input and
view1, . . . , viewn be n (possible incorrect) views. Then all pairs of views are consistent with respect to Π and
x if and only if there exists an honest execution of Π with public input x (and some choice of private inputs
and random inputs).

In the semi-honest model, the security of an MPC protocol can be divided into the following two require-
ments.

Definition 4 (Correctness). An MPC protocol Π realizes an n-party functionality f(x,w1, . . . , wn) with
perfect correctness, if for all inputs x,w1, . . . , wn, the probability that the outputs of some players are different
from the output of f is 0.

Definition 5 (t-privacy). Let 1 ≤ t < n. We say an MPC protocol Π realizes an n-party functional-
ity f with perfect t-privacy, if there exists a PPT simulator Sim such that for any inputs x,w1, . . . , wn,
and any set of parties I ⊂ [n] where |I| ≤ t, the joint view of parties in I is distributed identically to
Sim(I, x, (wi)i∈I , fI(x,w1, . . . , wn)).

2.4 (Verifiable) Secret Sharing

A secret sharing (SS) scheme [Sha79] among a dealer and n participants P1, . . . , Pn consists of two phases,
called Sharing and Reconstruction. In the Sharing phase, the dealer shares a secret s (either a single value or
a vector) among n participants, in such a way that no unauthorized subsets of participants can learn anything
about the secret, while any authorized subsets of participants can recover the secret in the Reconstruction
phase. The formal definition is as below.

Definition 6 (Secret Sharing). A secret sharing scheme consists of three polynomial-time algorithms as
follows:
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– Setup(1λ): on input a security parameter λ, outputs the system parameters pp, including descriptions
of secret space M , share space S, the number of participants n, the privacy threshold tp and the fault-
tolerance threshold tf , where all the three parameters n, tp and tf are positive integers and hold that
n ≥ tf > tp.

– Share(s): on input the secret s ∈M , outputs n shares (si)i∈[n] ∈ Sn.
– Recover(I, (si)i∈I): on input a set of participants I ⊆ [n] and a vector of shares (si)i∈I where si ∈ S,

outputs a secret s ∈M or a special reject symbol ⊥ denoting failure.

An SS scheme should satisfy the following two properties:

tf -Correctness. In Reconstruction phase, any group of at least tf participants can recover the secret.
Formally, for any pp ← Setup(1λ) where pp include the fault-tolerance threshold tf , any secret s ∈ M , any
(si)i∈[n] ← Share(s) and any subset I ⊆ [n] where |I| ≥ tf , it holds that Recover(I, (si)i∈I) = s.
tp-Privacy. In Sharing phase, the joint view of at most tp participants reveals nothing about the secret.
Formally, for any pp← Setup(1λ) where pp include the privacy threshold tp, any s ∈M and any set I ⊂ [n]
where |I| ≤ tp, there exists a simulator Sim such that the distributions of the outputs of Sim(I) and (si)i∈I

that generated by a real execution of Share(s) are identical.

Verifiable secret sharing. Note that a secret sharing scheme only considers semi-honest dealer and par-
ticipants, while in many applications, a scheme which is able to prevent malicious behaviours from them is
needed. Thereby, Chor et al. [CGMA85] put forward a stronger notion called verifiable secret sharing (VSS)
schemes, where each participant is able to check the validity of the received share, such that the behavior of
delivering invalid shares will be detected. Feldman [Fel87] further introduced the concept of non-interactive
VSS schemes, where each participant could check the validity of his own share without interaction between
other participants.

3 A Framework of Sigma Protocols From VSS

3.1 A Refined Definition of VSS Schemes

Before describing the framework, we first give a refined definition of VSS, adapted from the definition
in [Fel87].

Definition 7 (Verifiable Secret Sharing). A verifiable secret sharing scheme consists of following four
algorithms:

– Setup(1λ): on input the security parameter λ, outputs system parameters pp, including descriptions of
secret space M , share space S, randomness space R (if there is any), commitment space C, the number of
participants n, the privacy threshold tp and the fault-tolerance threshold tf , where all the three parameters
n, tp and tf are positive integers and hold that n ≥ tf > tp.

– Share(s): on input a secret s ∈ M , outputs a commitment c ∈ C, n shares (vi)i∈[n] ∈ Sn and the
authentication information aut. For ease of exposition, we describe the process by two algorithms:

c← Com(s; r),

((vi)i∈[n], aut)← Share∗(s, r),

where the randomness r could be null in some settings.
– Check(i, vi, c, aut): on input Pi’s index i and share vi, a commitment c and the authentication information

aut, outputs “1” iff vi is valid for Pi w.r.t. c and aut; outputs “0”, otherwise.
– Recover(I, (vi)i∈I): on input a set of participants I ⊆ [n] and a vector of shares (vi)i∈I where vi ∈ S,

outputs a secret s ∈M and a randomness r ∈ R (if there is any), or a special reject symbol ⊥ denoting
failure.

A VSS scheme should satisfy following three properties:
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Acceptance. If the dealer honestly shares the secret, then all honest participants who receive correct
shares will output “accept” in the end of Sharing phase. Formally, for any pp ← Setup(1λ), s ∈ M ,
(c, (vi)i∈[n], aut)← Share(s), it holds that Check(i, vi, c, aut) = 1 for all 1 ≤ i ≤ n.
tf -Correctness. Any group with at least tf honest participants who output “accept” at the end of Sharing
phase can recover a secret via algorithm Recover and the reconstructed secret must be an opening of the public
commitment. Formally, for any pp← Setup(1λ) where pp include the fault-tolerance threshold tf , any c ∈ C,
any aut and any vector of shares (vi)i∈I ∈ S|I| where I ⊆ [n] and |I| ≥ tf , if for all 1 ≤ j ≤ m, it holds that
Check(i, vi, c, aut) = 1, then for (s, r)← Recover(I, (vi)i∈I), it satisfies Com(s; r) = c.
tp-Privacy. The joint view of tp or less participants reveals nothing about the secret except a commitment to
it. Formally, for any pp← Setup(1λ) where pp include the privacy threshold tp, any s ∈M , any c← Com(s; r)
and any set I ⊂ [n] where |I| ≤ tp, there exists a simulator Sim such that the distributions of the output of
Sim(c, I) and ((vi)i∈I , aut) that generated by the real execution of Share∗(s, r) are identical.

For notation convenience, we denote (n, tp, tf )-(V)SS by (verifiable) secret sharing schemes with number
of participants n, privacy threshold tp and fault-tolerance threshold tf . Particularly, we say a verifiable
secret sharing scheme VSS is with respect to a commitment scheme Com, if VSS.Share runs Com.Com as a
subroutine to commit to the secret.

A dissection of Share∗ algorithm. In conventional syntax of VSS, Share∗ algorithm outputs all shares
(v1, ..., vn) in one shot, where n denotes the maximum number of possible participants. Such syntax is fine
when n is polynomial in λ. But, it is problematic when n is superpolynomial3 in λ becasue Share∗ algorithm
becomes inefficient. To fix this issue, we further dissect Share∗ algorithm as below:
(i) Share-in-Mind(s, r): on input a secret s and a randomness r, outputs a compact description of the sharing

method SHcpt and the associated authentication information aut. Both of their sizes are no larger than
poly(λ).

(ii) Distribute(s, r, SHcpt, i): on input the secret s, the randomness r, the compact description of the sharing
method SHcpt and an index i, generates share vi for participant Pi as per the prefixed sharing method.
This step is analogous to the private key extraction algorithm in identity-based cryptography, which
generates the private keys for users on-the-fly upon request.

Evidently, our refined syntax can precisely captures all VSS schemes, while the conventional syntax is only
suitable for VSS schemes with polynomial size n.

Flexible design of VSS. The VSS schemes can be designed in a flexible manner. For example, when
the secret s is a vector, the commitment c could either be a single vector commitment committing to the
multiple entries of the secret at once (e.g., using Pedersen vector commitment [Ped91, BBB+18]), or a vector
of commitments committing to each entry of the secret (e.g., the VSS scheme in Section 4.2). Meanwhile,
the shares vi’s could either be packed shares of the multiple entries of s (e.g., being generated by using
packed Shamir’s secret sharing scheme [FY92] as the VSS scheme in Section 4.2), or be a collection of
separate shares of each entry of the secret. Moreover, the authentication information aut could be viewed
as a commitment to the sharing procedure, which possibly are in the form of polynomial commitments,
non-interactive zero-knowledge proofs or something else.

Comparing with the definition in [Fel87]. Our refined definition has several differences from the defi-
nition in [Fel87]. In terms of syntax, there are four differences:
1. In our definition, the secret s is committed via an algorithm Com rather than being encrypted as in

Feldman’s definition. This change makes our definition more general, as it allows for utilizing a broader
range of cryptographic techniques.

2. Our definition incorporates the committing as a sub-process of sharing, while committing and sharing
are treated as separate processes in Feldman’s definition. This modification emphasizes the inherent
connection between the committed value and the shared secret, rendering the definition more in line
with the functionality of VSS.

3 The value n could even be exponential in security parameter λ (e.g. the size of a finite field).
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3. The algorithm Share in our definition will additionally output authentication information aut (and a
commitment c generated by its subroutine Com), while in Feldman’s definition, the algorithm Share only
outputs the shares. The information aut is crucial for participants to check the validity of their own
shares.

4. The algorithm Recover in our definition will output the opening of a commitment, i.e., the secret s and
the randomness r (if there is any), while in Feldman’s definition, the algorithm Recover only outputs
the secret s. Looking ahead, this modification is crucial for the security proof of our Sigma protocols
framework.

In terms of security properties, there are two differences:

1. For the correctness, our definition does not stipulate that the secrets recovered by different groups of
participants are consistent as in Feldman’s definition, instead we require that the recovered secrets and
randomness (if there is any) must be an opening of the commitment c. Looking ahead, this requirement
is crucial for our application and in fact has been met by many existing VSS schemes, such as the
Feldman’s [Fel87] and Pedersen’s VSS schemes [Ped91], but it has never been formally defined.

2. For privacy, we provide a simulation-based definition rather than a game-based one as in Feldman’s
definition. Such adoption makes our definition more convenient to use in the context of ZKP and MPC.
In particular, the simulator Sim is given the commitment c as an auxiliary input, making the definition
more general, as it allows the use of commitment schemes satisfying merely one-way hiding property.

3.2 The Framework of Sigma Protocols

Having settled a satisfactory definition of VSS, we are ready to describe our framework of Sigma protocols. Let
Com = (Setup,Com,Verify) be an algebraic commitment scheme, and VSS = (Setup, Share,Check,Recover)
be an (n, tp, tf )-VSS scheme w.r.t Com. The framework of Sigma protocols for relation RCom = {(x; s, r) :
Com(s; r) = x} proceeds as below (see Figure 1 for a pictorial view).

– Commit: the prover P acts as the dealer running ((vi)i∈[n], aut)← VSS.Share∗(s, r) “in his head”, and
then sends the authentication information aut to the verifier V ;

– Challenge: V chooses a random set of participants I ⊂ [n] subject to |I| = tp, and queries P for
corresponding shares;

– Response: P replies with the shares (vi)i∈I .

Finally, V verifies whether (vi)i∈I are valid shares for (Pi)i∈I w.r.t. aut and x, and outputs accept iff
Check(i, vi, x, aut) = 1 for all i ∈ I.

Theorem 1. Suppose VSS is an (n, tp, tf )-VSS scheme where tf log tf = O(log λ), then the protocol described
in Figure 1 is a Sigma protocol for NP relation RCom with

((
tf−1
tp

)
+ 1
)

-special soundness.

Proof. We separately argue its completeness, special soundness and SHVZK.
Completeness. This follows readily from the acceptance property of the underlying VSS schemes.
Special Soundness. We argue this by constructing a PPT extractor Ext as below. For notation convenience,
let k =

(
tf−1
tp

)
+ 1. Since tf log tf = O(log λ), k is bounded by poly(λ). Given any k accepting transcripts

(aut, Ij , (vi)i∈Ij )j∈[k], where |Ij | = tp and Ij ̸= Ij′ for all j ̸= j′, first note that, there exist at least tf distinct
indices i1, . . . , itf ∈ [n] along with corresponding shares vi1 , . . . , vitf (which are possibly not unique) subject
to VSS.Check(ij , vij , x, aut) = 1 for all j ∈ [tf ]. This is because if not, then there must be a (tf − 1)-sized set
T , such that all Ij ’s are subsets of T . Since the total number of tp-sized subsets of T is

(
tf−1
tp

)
<
(
tf−1
tp

)
+ 1,

there must exist two sets Ij = Ij′ where j ̸= j′ by the pigeonhole principle. This contradicts to the hypothesis
that Ij ̸= Ij′ for all j ̸= j′. Thus, Ext can extract a witness simply through running VSS.Recover on input
(ij)j∈[tf ], (vij )j∈[tf ] and taking the output (s, r) as its own output. By the correctness of VSS scheme, the
reconstructed witness (s, r) must hold that Verify(x, s, r) = 1. This implies that the soundness error of the
Sigma protocol in 1 is

(
tf−1
tp

)
/
(
n
tp

)
, which is no greater than (tf/n)

tp .
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Com(s; r) = x

P (x; s, r) V (x)

((vi)i∈[n], aut)← VSS.Share∗(s, r) aut

I
R←− [n]tpI

(vi)i∈I accept iff ∀i ∈ I,
VSS.Check(i, vi, x, aut) = 1

Fig. 1: A framework of Sigma protocols for algebraic commitments

SHVZK. We prove the SHVZK property by constructing a simulator Sim as below. Given the statement x
and a challenge I ∈ [n]tp , the simulator Sim invokes the simulator of VSS scheme SimVSS on input (x, I) and
outputs the same as SimVSS does, which includes the joint views of parties in I, namely the shares (vi)i∈I

and the authentication information aut. Based on the tp-privacy of VSS scheme, the simulated transcript is
distributed identically to real one.

A more detailed framework. In the light of the dissection of Share algorithm in Section 3.1, the frame-
work of Sigma protocols from VSS could also be dissected. Specifically, in the Commit phase, P runs
(SHcpt, aut) ← VSS.Share-in-Mind(s, r) and sends aut to V . In the Challenge phase, V chooses and sends
random set I ⊂ [n] as before. In the Response phase, P runs vi ← VSS.Distribute(s, r, SHcpt, i) for all i ∈ I.
In fact, this framework could yield more efficient Sigma protocols, since the prover only needs to compute
the requested shares, not all the shares. Sigma protocols in Sections 4.2 to 4.4 all follow this framework.

Parameters selection. The three parameters n, tp, tf of the underlying VSS schemes could be any positive
integers subject to |F| ≥ n ≥ tf > tp where F is the field to which parameters n, tp, tf belong. However, there
are two caveats that warrant attention:

1. When n is superpolynomial in the security parameter λ, the Sigma protocols from such VSS schemes
follow the detailed version of the framework. This is because, the underlying Share algorithm in this case
must be dissected for efficiency reasons.

2. If the soundness error (tf/n)
tp in a single execution of the protocol is not negligible in the security

parameter λ, one should repeat the protocol in parallel to amplify soundness. To achieve soundness error
of 2−λ, one should set the repetition number ρ = λ

tp(log n−log tf )
.

Size of I. For the sake of simplicity, we set the size of I to tp, which is equal to the privacy threshold of the
VSS scheme. Actually, it is possible to set the size of I to be an arbitrary positive number k smaller than
tp, thus leading to Sigma protocols with

((
tf−1
k

)
+ 1
)
-special soundness. This can be proved similarly as in

the proof of Theorem 1.

4 Instantiations of Our Framework

In this section, we demonstrate the generality of our framework by recovering the classic Schnorr [Sch91],
Batching Schnorr [GLSY04], Okamoto [Oka92] and GQ [GQ88] protocols from corresponding VSS schemes.
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4.1 Proof of Knowledge of A Discrete Logarithm

Let G be a cyclic group with generator g and prime order p, define Com(s) = gs. Given a commitment x ∈ G,
we show how to prove knowledge of s such that gs = x. In Section 1.1.1, we have showed how to recover the
classic Schnorr protocol from Feldman’s VSS scheme. Below, we present another Sigma protocol from the
following additive VSS scheme.

– Setup(1λ): runs (G, p, g) ← GroupGen(1λ), sets the total number of participants n ≤ p, the privacy
threshold tp = n− 1 and the fault-tolerance threshold tf = n, outputs pp = ((G, p, g), n, tp, tf ).

– Share(s): computes commitment c = gs, picks s1, . . . , sn
R←− Zp subject to s =

∑n
i=1 si mod p, then

sets Pi’s share vi = si and aut = (c1, . . . , cn−1) where ci = gsi for i ∈ [n − 1], outputs the vector
(c, (vi)i∈[n], aut).

– Check(i, vi, c, aut): parses aut = (c1, . . . , cn−1), if i ∈ [1, n− 1], then outputs “1” iff gvi = ci and outputs
“0” otherwise; if i = n, then outputs “1” if gvi = c/

∏n−1
j=1 cj and “0” otherwise.

– Recover(I, (vi)i∈I): outputs s =
∑

i∈I vi mod p.

Theorem 2. The above VSS scheme satisfies acceptance, n-correctness and (n− 1)-privacy properties.

By plugging the above VSS scheme into our framework, we obtain a variant of Schnorr protocol for
proving knowledge of a discrete logarithm (as depicted in Figure 2).

x = gs

P (x; s) V (x)

s1, . . . , sn
R←− Zp

s.t. s =
∑n

i=1 si mod p
for i ∈ [n− 1], ci = gsi

aut = (c1, . . . , cn−1)

I
R←− [n]n−1

I

(si)i∈I
accept iff for i ∈ I,

if i ∈ [1, n− 1], gsi = ci,
if i = n, gsi = x/

∏n−1
j=1 cj

Fig. 2: A Sigma protocol for proving knowledge of a discrete logarithm

4.2 Proof of Knowledge of Several Discrete Logarithms

Define Com(s) = (gsj )j∈{1,...,|s|}. Given a vector of commitments x = (xj)j∈[ℓ], we show how to prove
knowledge of s = (sj)j∈[ℓ] such that gsj = xj for all j ∈ [ℓ]. Consider following VSS scheme:

– Setup(1λ): runs (G, p, g) ← GroupGen(1λ), picks a positive number ℓ ∈ Z∗
p, sets the total number of

participants n ≤ p and the privacy threshold tp and the fault-tolerance threshold tf = tp + ℓ, outputs
pp = ((G, p, g), n, tp, tf , ℓ).

– Share(s): on input the secret s = (sj)j∈[ℓ], runs following three algorithms and outputs (c, SHcpt, aut):
• Com(s): computes cj = gsj for j ∈ [ℓ], outputs c = (cj)j∈[ℓ] ∈ Gℓ;
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• Share-in-Mind(s): selects a1, . . . , atp
R←− Z∗

p, defines a polynomial A(x) =
∑tp+ℓ

j=1 aj ·xj−1 where atp+j =
sj for all j ∈ [ℓ], sets SHcpt = (aj)j∈[tp] and aut = (c̃j)j∈[tp] where c̃j = gaj for j ∈ [tp], outputs
(SHcpt, aut);

• Distribute(s, SHcpt, i): parses s = (sj)j∈[ℓ] and SHcpt = (aj)j∈[tp], sets atp+j = sj for j ∈ [ℓ], computes
vi =

∑tp+ℓ
j=1 aj · ij−1 mod p, outputs vi. (This algorithm is run upon request.)

– Check(i, vi, c, aut): parses c = (cj)j∈[ℓ] and aut = (c̃j)j∈[tp], outputs “1” if it holds that gvi =
(∏tp

j=1 c̃
ij−1

j

)
·(∏ℓ

j=1 c
itp+j−1

j

)
and “0” otherwise.

– Rec(I, (vi)i∈I): computes a polynomial A(x) such that A(i) = vi for all i ∈ I, sets sj be the (tp + j)-th
coefficient of A, outputs (sj)j∈[ℓ].

Theorem 3. Above VSS scheme satisfies acceptance, (tp + ℓ)-correctness and tp-privacy.

By plugging the above VSS scheme into our framework, we obtain a Sigma protocol for proving knowledge
of several discrete logarithms (as depicted in Figure 3). By setting parameters n = p and tp = 1, we recover
the Batching Schnorr protocol [GLSY04].

x1 = gs1 , . . . , xℓ = gsℓ

P ((xj)j∈[ℓ]; (sj)j∈[ℓ]) V ((xj)j∈[ℓ])

a1, . . . , atp
R←− Z∗

p

for j ∈ [tp], c̃i = gai

aut = (c̃j)j∈[tp]

I
R←− [n]tp

I

for i ∈ I,

vi =
tp∑
j=1

aj · ij−1 +
ℓ∑

j=1

sj · itp+j−1 mod p

(vi)i∈I
accept iff for i ∈ I,

gvi =
tp∏
j=1

c̃i
j−1

j ·
ℓ∏

j=1

xitp+j−1

j

Fig. 3: A Sigma protocol for proving knowledge of several discrete logarithms

4.3 Proof of Knowledge of A Representation

Define Com(s; r) = gshr where g, h are two different generators of group G. Given a commitment x, we show
how to prove knowledge of (s, r) such that gshr = x from the Pedersen’s VSS scheme [Ped91] as below:

– Setup(1λ): runs (G, p, g, h) ← GroupGen(1λ), sets the total number of participants n ≤ p, the privacy
threshold tp and the fault-tolerance threshold tf = tp + 1, outputs pp = ((G, p, g, h), n, tp, tf ).

– Share(s): on input the secret s, runs following three algorithms and outputs (c, SHcpt, aut):
• Com(s; r): picks a random element r

R←− Z∗
p, outputs c = gshr;

• Share-in-Mind(s, r): picks two random tp-degree polynomials A(x) =
∑tp

i=0 ai ·xi and B(x) =
∑tp

i=0 bi ·
xi subject to atp = s and btp = r, computes cj = gajhbj for 0 ≤ j ≤ tp − 1, sets SHcpt =
(aj , bj)0≤j≤tp−1 and aut = (cj)0≤j≤tp−1, outputs (SHcpt, aut);

• Distribute(s, r, SHcpt, i): parses SHcpt = (aj , bj)0≤j≤tp−1, sets atp = s and btp = r, computes si =∑tp
j=0 aj · ij mod p and ri =

∑tp
j=0 bj · ij mod p, outputs vi = (si, ri). (This algorithm is run upon

request.)
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– Check(i, vi, c, aut): parses vi = (si, ri) and aut = (cj)0≤j≤tp−1, outputs “1” if gsihri = ci
tp ·

∏tp−1
j=0 ci

j

j

and “0” otherwise.
– Recover(I, (vi)i∈I): parses vi = (si, ri), constructs two polynomials A(x), B(x) such that A(i) = si and

B(i) = ri for all i ∈ I, sets s be the coefficient of the tp-degree term of A and r be that of B, outputs
(s, r).

Theorem 4. Pedersen’s VSS scheme satisfies acceptance, (tp + 1)-correctness and tp-privacy.
By plugging the above VSS scheme into our framework, we obtain a Sigma protocol for proving knowledge

of a representation (as depicted in Figure 4). By setting parameters n = p and tp = 1, we recover the classic
Okamoto protocol [Oka92].

x = gshr

P (x; s, r) V (x)

a0, . . . , atp−1
R←− Z∗

p;
b0, . . . , btp−1

R←− Z∗
p;

for 0 ≤ j ≤ tp − 1, cj = gajhbj

aut = (cj)0≤j≤tp−1

I
R←− [n]tp

I

for i ∈ I, compute
si = s · itp +

∑tp−1
j=0 aj · ij mod p

ri = r · itp +
∑tp−1

j=0 bj · ij mod p

(si, ri)i∈I

accept iff ∀i ∈ I,
gsihri = xitp ·

∏tp−1
j=0 ci

j

j

Fig. 4: A Sigma protocol for proving knowledge of a representation

4.4 Proof of Knowledge of An eth Root
Let GenRSA be a PPT algorithm that on input security parameter λ, outputs an RSA public key (N, e),
where e is prime. Given an x ∈ Z∗

N , we show how to prove knowledge of s such that x = se mod N from
following VSS scheme:

– Setup(1λ): runs (N ; e)← GenRSA(1λ), where e is prime, sets the total number of participants n ≤ e, and
sets the privacy threshold tp = 1 and the fault-tolerance threshold tf = 2, outputs pp = ((N, e), n, tp, tf ).

– Share(s): on input a secret s ∈ Z∗
N , runs following three algorithms and outputs (c, SHcpt, aut):

• Com(s): computes the commitment c = se mod N , outputs c;
• Share-in-Mind(s): picks a random element a ∈ Z∗

N , defines a function f(x) = a · sx mod N , sets
SHcpt = a, computes aut = ae mod N , outputs (SHcpt, aut);

• Distribute(s, SHcpt, i): parses SHcpt = a, computes si = a · si mod N , outputs vi = si. (This
algorithm is run upon request.)

– Check(i, vi, c, aut): outputs “1” if vei = aut · ci mod N and “0” otherwise.
– Recover(I, (vi)i∈I , c): if |I| < 2 outputs ⊥; else, runs the extended Euclidean algorithm yields integers α,

β ∈ Z∗
N such that α · e+ β · (i2 − i1) = 1, outputs s = cα(vi2/vi1)

β mod N .

Theorem 5. The above VSS scheme satisfies acceptance, 2-correctness and 1-privacy properties.
By plugging the above VSS scheme into our framework, we obtain a Sigma protocol for proving knowledge

of an e-th root (as depicted in Figure 5). By setting the parameter n = e, we recover the classic GQ
protocol [GQ88].

16



x = se mod N

P (x; s) V (x)

a
R←− Z∗

N

aut = ae mod N

aut

i
R←− [n]

i

vi = a · si mod N
vi accept iff

vei = aut · xi mod N

Fig. 5: A Sigma protocol for proving knowledge of an e-th root

5 A Framework of ZKPs for Composite Statements

In this section, we are going to show the application of the Sigma protocols from VSS in giving a generic con-
struction of efficient ZKPs for composite statements. In this work, we focus on a common form of composite
statement where given a commitment x and a value y, the prover wants to prove the knowledge of (s, r)
such that Com(s; r) = x ∧ C(s) = y, where C is an arithmetic/boolean circuit. In a nutshell, we use Sigma
protocols from VSS to prove the algebraic parts, use ZK protocols from MPC to prove the non-algebraic
parts, and enforce consistency between the witnesses used in two parts via witness sharing reusing.

5.1 A Generalization of MPC-in-the-Head Paradigm

Before designing the framework of ZKPs for composite statements, we first generalize the MPC-in-the-head
paradigm introduced by Ishai et al. [IKOS07] via extending the XOR-based secret sharing scheme to an
(n, tp, tf )-SS scheme. Precisely, to construct a ZK protocol for NP relation RC = {(y; s) : C(s) = y} using
MPC-in-the-head technique, we need three building blocks: a secret sharing scheme, an MPC protocol and
a commitment scheme.

Let SS = (Setup, Share,Recover) be an (n, tss
p , tf )-secret sharing scheme, Ĉom = (Setup,Com,Verify) be

a commitment scheme and Πf be a tmpc
p -private n-party protocol that realizes a n-party function f , where

f(y, s1, . . . , sn) = 1 if and only if C(Recover([n], (si)i∈[n])) = y, and integers tmpc
p < tss

p . Then, ZK protocols
following MPC-in-the-head paradigm proceeds as below (as depicted in Figure 6):

– Commit: the prover P shares the witness s into n shares s1, . . . , sn by running SS.Share(s), then runs
MPC protocol Πf “in his head” with shares s1, . . . , sn as input of n virtual parties, then commits to
each party’s share si and view viewi (without loss of generality, we separate Pi’s input si from his view
viewi and concatenate them with notation ||), and sends the n commitments to V ;

– Challenge: V picks a random tmpc
p -sized subset I of [n] and sends it to P ;

– Response: P opens corresponding commitments through revealing corresponding shares and views to
V .

Finally, V outputs “accept” iff the three conditions listed hereunder hold:

1. the commitments are successfully opened;
2. all the outputs of participants in I are “1”, which are determined by their inputs si and views viewi;
3. all the opened views are consistent with each other with respect to y and Πf .
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C(s) = y

P (y; s) V (y)

(si)i∈[n] ← SS.Share(s)
(si||viewi)i∈[n] ← Πf(y,s1,...,sn)

∀i ∈ [n], ci ← Ĉom.Com(si||viewi)

c1 . . . , cn

I
R←− [n]tmpc

p

I

(si||viewi)i∈I
accept iff ∀i ∈ I

Ĉom.Verify(ci, si||viewi) = 1
Πfy (Pi, si||viewi) = 1

si||viewi is consistent with others

Fig. 6: A ZKP from MPC-in-the-head paradigm

Theorem 6. Let n > 2, tss
p ≥ tmpc

p , tmpc
p · log n = O(log λ), and RC , f be as above. Suppose SS is an

(n, tss
p , tf )-secret sharing scheme, the MPC protocol Πf realizes the n-party functionality f with correctness

and tmpc
p -privacy and Ĉom is a commitment scheme, then the protocol in Figure 6, is a Sigma protocol for

relation RC with
((

n−2
tmpc
p

)
+ 2
(

n−2
tmpc
p −1

)
+ 1
)

-special soundness.

Proof. We separately argue its completeness, special soundness and SHVZK.

Completeness. If (y, s) ∈ RC and the prover is honest, then by the correctness of Ĉom, the requested
commitments are always opened successfully. By the correctness of the secret sharing scheme SS, the shares
s1, . . . , sn hold that Recover([n], (si)i∈[n]) = s and thus f(y, s1, . . . , sn) = 1. Then, by the correctness of
Πf , the views s1||view1, . . . , sn||viewn always have output “1”. Besides, since the views are produced by an
honest execution of the Πf , by Lemma 2, they are all consistent with each other.
Special Soundness. For notation convenience, let k =

(
n−2
tmpc

)
+ 2

(
n−2

tmpc−1

)
+ 1. We argue the k-special

soundness by constructing a PPT extractor Ext that can extract a witness s such that (y, s) ∈ RC , given any
k accepting transcripts with the same initial message and different challenges. Since tmpc

p · log n = O(log λ),
k is bounded by poly(λ). In following argument, we assume for simplicity that both binding of commitment
scheme and correctness of MPC protocol never fail.

Consider k accepting transcripts ((ci)i∈[n], Ij , (si||viewi)i∈Ij )j∈[k]: first note that since the k sets I1, . . . , Ik
are distinct tmpc

p -sized subset of [n] and k >
(
n−1
tmpc
p

)
, we have ∪kj=1Ij = {1, . . . , n}, which implies that for all

1 ≤ i ≤ n, Pi’s view si||viewi is revealed at least once. (This is because if not, namely if there exists at least
one index i ∈ [n] such that i /∈ ∪kj=1Ij , then all Ij ’s are tmpc

p -sized subsets of the set [n] \ i. Since the total
number of such subsets is only

(
n−1
tmpc
p

)
< k, there must exist two sets Ij = Ij′ where j ̸= j′ by pigeonhole

principle. This contradicts to the hypothesis that the k sets (Ij)j∈[k] are distinct.) Thanks to the binding
property of Ĉom, for the same index i, all si||viewi’s revealed in different transcripts are identical. Thereby,
the k transcripts provide unique n views s1||view1, . . . , sn||viewn and the extractor Ext is able to compute
a witness s through running the efficient algorithm Recover([n], (si)i∈[n]) = s. Below, we argue that s is a
valid witness such that C(s) = y.

First note that for each accepting transcript ((ci)i∈[n], I, (si||viewi)i∈I), it indicates that for each i ∈ I,
the output of player Pi with respect to Πf , and si||viewi is “1”, and si||viewi, sj ||viewj are consistent for
all i, j ∈ I. Then, we prove that in the n-tuple views s1||view1, . . . , sn||viewn provided by the k accepting
transcripts, all pairs of views si||viewi, sj ||viewj are consistent with each other. Namely, for all i, j ∈ [n],
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there is a set I ∈ {I1, . . . , Ik} such that i ∈ I ∧ j ∈ I. The reason is that, if there is a pair of i′, j′ ∈ [n] which
does not hold above, then for each set I ∈ {I1, . . . , Ik}, it must be one of the following cases:

– i′ /∈ I ∧ j′ /∈ I: there are
(
n−2
tmpc
p

)
cases;

– i′ ∈ I ∧ j′ /∈ I: there are
(

n−2
tmpc
p −1

)
cases;

– i′ /∈ I ∧ j′ ∈ I: there are
(

n−2
tmpc
p −1

)
cases.

However, the total number of the above cases is only
(
n−2
tmpc
p

)
+ 2
(

n−2
tmpc
p −1

)
, which is smaller than k. By the

pigeonhole principle, there must be two identical sets in I1, . . . , Ik, which contradicts the hypothesis that
all of them are distinct. Therefore, for all pairs i, j ∈ [n], there must be a set I ∈ {I1, . . . , Ik} such that
i ∈ I ∧ j ∈ I and thus all pairs of views si||viewi, sj ||viewj are consistent with each other. By Lemma 2, the
n-tuple views provided by the k accepting transcripts correspond to an honest execution of Πf . Moreover,
by the correctness of Πf , in an honest execution of Πf on input s1, . . . , sn, the probability that the output
of some player is different from the output of f is 0. Besides, as mentioned before, all the revealed views
si||viewi’s are such that the output of Pi is “1”. Thus, it holds that f(y, s1, . . . , sn) = 1 and as the definition
of f , we have C(Recover([n], (sj)j∈[n]) = C(s) = y.
SHVZK. Let SimSS and SimΠf

be the simulators for the underlying secret sharing scheme SS and MPC
protocol Πf , respectively. We prove SHVZK by constructing a PPT simulator Sim(y, I) where I ⊂ [n] and
|I| = tmpc

p , by invoking SimSS and SimΠf
as below:

1. Run SimSS on input I, receiving a vector of shares (si)i∈I .
2. Run SimΠf

on input (I, y, (si)i∈I , 1), receiving tmpc
p views (si||viewi)i∈I .

3. For i ∈ [n] ∧ i /∈ I, select random string stri
R←− {0, 1}|s||view| and set si||viewi = stri.

4. For i ∈ [n], compute Ĉom.Com(si||viewi)→ ci.
5. Output ((ci)i∈[n], I, (si||viewi)i∈I).

Then we show that the transcripts output by Sim are indistinguishable from transcripts of real executions
of the protocol with an honest verifier via a sequence of hybrid transcripts as follows:

– Hybrid0: Real transcript.
– Hybrid1: Same as Hybrid0, except that the simulator is given a random challenge I

R←− [n]tmpc
p

in advance,
and for i ∈ [n]∧ i /∈ I, it selects random string stri

R←− {0, 1}|w||view|, and computes ci ← Ĉom.Com(stri).
– Hybrid2: Same as Hybrid1, except that the simulator runs SimΠf

on input (I, y, (si)i∈I , 1), obtaining the
simulated views (si||viewi)i∈I .

– Hybrid3: Same as Hybrid2, except that the simulator is not provided the witness and instead it runs
SimSS on input I and obtains a vector of shares (si)i∈I .

Since the commitments (ci)i∈[n]∧i/∈I are never opened, the indistinguishability of Hybrid0 and Hybrid1

follows directly from the hiding property of the commitment scheme. The indistinguishability of Hybrid1 and
Hybrid2 follows from the tmpc

p -privacy property of Πf . Since tmpc
p ≤ tss

p , The indistinguishability of Hybrid2

and Hybrid3 follows straightforwardly from the tss
p -privacy property of the underlying secret sharing scheme

SS.

5.2 Separable VSS Schemes

As discussed in Section 1, in order to combine Sigma protocols from VSS and ZK protocols from MPC
seamlessly, we are interested in VSS schemes which satisfy a mild property called Separability. Since the
parameter n in the MPC-in-the-head paradigm is bounded by poly(λ), we consider the separability of VSS
schemes simply using the syntax in Definition 7. Informally, for a VSS scheme, we say it satisfies Separability
if the following two conditions hold:
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1. The algorithm Share∗(s, r) could be separated into two sub-algorithms, one for generating the shares
(vi)i∈[n] and the other for generating the authentication information aut. Particularly, the shares (vi)i∈[n]

are generated as per some secret sharing schemes and aut is generated by committing to the sharing
method (i.e., the shares (vi)i∈[n] in the syntax in Definition 7 or the compact description of the sharing
method SHcpt in the dissected version).

2. If the randomness r is not a dummy value, then each share vi could be divided into two values si and
ri, where the former is a share of the secret s and the later is a share of the randomness r. That is, s
and r are secret-shared separately.

Below, we formally define the Separability property.

Definition 8 (Separability). For an (n, tp, tf )-VSS scheme VSS, we say it satisfies separability if there is
an (n, tp, tf )-SS scheme SS and an algorithm AutGen such that the algorithms VSS.Share∗ and VSS.Recover
can be separated as below:

VSS.Share∗(s, r) : (si)i∈[n] ← SS.Share(s)
(ri)i∈[n] ← SS.Share(r)
aut← AutGen((si, ri)i∈[n])

return ((si, ri)i∈[n], aut)

VSS.Recover(I, (vi)i∈I) : ∀1 ≤ j ≤ |I|, parse vi = (si, ri)

s← SS.Recover(I, (si)i∈[n])

r ← SS.Recover(I, (ri)i∈[n])

return (s, r)

If r is null, then only the s will be secret-shared and recovered.

Particularly, we say a VSS scheme aligns with an SS scheme if it generates the shares as per this SS
scheme.

Remark 1. More generally, in such separable VSS schemes, the SS schemes used to share secret s and
randomness r could be different in some settings.

5.3 Generic Construction of ZKPs for Composite Statements

Now, we proceed to describe the generic construction of ZKPs for composite statements. Formally, let Com
be an algebraic commitment algorithm and C be an arbitrary circuit, we give a zero-knowledge proof for
relation:

Rcs = {(x, y; s, r) : Com(s; r) = x ∧ C(s) = y}.

Let ΠMPC
C be a Sigma protocol for {(y; s) : C(s) = y} from MPC as depicted in Figure 6 and using

building blocks: an (n, tss
p , tf )-SS scheme SS, a commitment scheme Ĉom, and a tmpc

p -private n-party protocol
Πf . Let ΠVSS

Com be a Sigma protocol for {(x; s, r) : Com(s; r) = x} following the framework as in Figure 1 and
using building blocks: an (n, tvss

p , tf )-VSS scheme VSS w.r.t. Com and SS. Below, we show how to obtain a
ZK protocol ΠCom,C for composite statements through combining ΠMPC

C and ΠVSS
Com, which is also a Sigma

protocol. The full protocol is presented in Figure 7 and the overlap between ΠMPC
C and ΠVSS

Com are highlighted
in rectangles.

– Commit: P proceeds as in ΠVSS
Com, running algorithm ((si, ri)i∈[n], aut) ← VSS.Share∗(s, r), which

can be separated into three algorithms (si)i∈[n] ← SS.Share(s), (ri)i∈[n] ← SS.Share(r) and aut ←
AutGen((si, ri)i∈[n]). Then, P proceeds as in ΠMPC

C while reusing the shares (si)i∈[n]. Next, P sends
c1, . . . , cn and aut to V .
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– Challenge: V picks a random tmpc-sized subset I of [n] as in ΠMPC
C .

– Response: P responds with participants’ inputs and views (si||viewi)i∈I as in ΠMPC
C and shares of

randomness (ri)i∈I as in ΠVSS
Com.

Finally, V outputs “accept” iff (si||viewi)i∈I pass the verification of ΠMPC
C and (si, ri)i∈I pass the veri-

fication of ΠVSS
Com.

Com(s; r) = x ∧ C(s) = y

P (x, y; s, r) V (x, y)

(si)i∈[n] ← SS.Share(s)
(ri)i∈[n] ← SS.Share(r)

aut← AutGen((si, ri)i∈[n])
(si||viewi)i∈[n] ← Πf(y,s1,...,sn)

∀i ∈ [n], ci ← Ĉom.Com(si||viewi)

c1 . . . , cn, aut

I
R←− [n]tmpc

p

I

(ri, si ||viewi)i∈I
accept iff ∀i ∈ I,

Ĉom.Verify(ci, si||viewi) = 1
Πf (Pi, si||viewi) = 1

si||viewi is consistent with others
VSS.Check(i, (si, ri), x, aut) = 1

Fig. 7: A ZKP for composite statements

Theorem 7. Let n > 2, tss
p ≥ tmpc

p , tmpc
p · log n = O(log λ). Suppose the protocol ΠMPC

C constructed as in
Figure 6 using building blocks SS, Ĉom and Πf as above, is a Sigma protocol for relation {(y; s) : C(s) = y}
with

((
n−2
tmpc
p

)
+ 2
(

n−2
tmpc
p −1

)
+ 1
)

-special soundness, protocol ΠVSS
Com constructed as in Figure 1 using building

block VSS which is with respect to Com and aligns with SS, is a Sigma protocol for relation {(x; s, r) :
Com(s; r) = x}, then the protocol ΠCom,C constructed as in Figure 7 is a Sigma protocol for Rcs with((

n−2
tmpc
p

)
+ 2
(

n−2
tmpc
p −1

)
+ 1
)

-special soundness.

Proof. We separately argue its completeness, special soundness and SHVZK.

Completeness. We first argue the correctness of protocol ΠCom,C . For an honestly generated transcript
((c1, . . . , cn, aut), I, (ri, si||viewi)i∈I), it is obvious that ((c1, . . . , cn), I, (si||viewi)i∈I) is actually an honestly
generated transcript of ΠMPC

C , thus by the correctness of ΠMPC
C , the verifier will pass the first three checks.

And (aut, I, (si, ri)i∈I) is an honestly generated transcript of ΠVSS
Com, thus by the correctness of ΠVSS

Com the
verifier will pass the last check, and finally outputs “accept”.
Special soundness. For notation convenience, let k =

(
n−2
tmpc

)
+ 2

(
n−2

tmpc−1

)
+ 1. We argue the k-special

soundness by constructing a PPT extractor Ext that can extract a valid witness w = (s, r), given any k
accepting transcripts with the same initial message and different challenges. Since tmpc

p · log n = O(log λ), k
is bounded by poly(λ). Likewise, we assume for simplicity that both binding of Ĉom and correctness of Πf

never fail.
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First note that, both ΠMPC
C and ΠVSS

Com satisfy k-special soundness. The former has been proved in
Theorem 6. As shown in the proof of Theorem 6, the PPT extractor ExtC works as follows: on input k
accepting transcripts as required, runs SS.Recover([n], (si)i∈[n]) = s where (si)i∈[n] is uniquely determined
by the k accepting transcripts, outputs a witness s such that C(s) = y. The latter can be proved similarly as
the proof of Theorem 1. Since VSS aligns with SS, there exists a PPT extractor ExtCom proceeds as follows: on
input k accepting transcripts as required, runs SS.Recover([n], (si)i∈[n]) = s and SS.Recover([n], (ri)i∈[n]) = r
where the shares (si, ri)i∈[n] are subject to VSS.Check(i, (si, ri), x, aut) = 1 for all i ∈ [n], and then outputs
(s, r). By the correctness of VSS, it holds that Com(s; r) = x.

Next, we show how the extractor Ext makes use of ExtC and ExtCom to extract a witness w = (s, r) such
that (x, y; s, r) ∈ Rcs. Concretely, on input k accepting transcripts ((ci)i∈[n], aut), Ij , (ri, si||viewi)i∈Ij )j∈[k],
Ext works as below:

1. Run ExtC on input ((ci)i∈[n], Ij , (si||viewi)i∈Ij )j∈[k] and obtain s;
2. Run ExtCom on input (aut, Ij , (ri, si)i∈Ij )j∈[k] and obtain (s′, r);
3. outputs (s, r).

Since both s and s′ are output by the deterministic algorithm SS.Recover on the same input ([n], (si)i∈[n])
(where (si)i∈[n] is uniquely determined by the k accepting transcripts), we have s = s′. Furthermore, by the
k-special soundness of ΠMPC

C and ΠVSS
Com, it holds that Com(s; r) = x ∧ C(s) = y.

SHVZK. We prove this by constructing a PPT simulator Sim that on input any tuple ((x, y), I) where
|I| ≤ tmpc

p could simulate the transcript of ΠCom,C .
First note that, both ΠMPC

C and ΠVSS
Com satisfy the SHVZK property. The former has been proved in

Theorem 6. As shown in the proof of Theorem 6, the PPT simulator SimC(y, I) where |I| ≤ tmpc
p generates

(si)i∈I essentially by running (si)i∈I ← SimSS(I). The latter has been proved in Theorem 1. As shown in
the proof Theorem 1, the PPT simulator SimCom(x, I) where |I| ≤ tvss

p simulates the transcripts essentially
by running ((si, ri)i∈I , aut) ← SimVSS(x, I). Furthermore, since VSS aligns with SS, we have tvss

p = tss
p and

the simulator SimVSS(x, I) generates (si)i∈I by running (si)i∈I ← SimSS(I) as well.
Next, we show how Sim makes use of SimC and SimCom to simulate a transcript for ΠCom,C . Concretely,

on input ((x, y), I) where |I| ≤ tmpc
p ≤ tss

p , it works as below:

1. Run SimC(y, I) and obtain ((ci)i∈[n], I, (si||viewi)i∈I);
2. Run SimCom(x, I), and obtain (aut, I, (si, ri)i∈I), where (si)i∈I is a reuse of (si)i∈I that generated in

Step 1, rather than a new one generated by running SimSS(I) a second time;
3. Output (((ci)i∈[n], aut), I, (ri, si||viewi)i∈I).

By the SHVZK property of ΠMPC
C and ΠVSS

Com, it is straightforward that the distribution of Sim’s output is
indistinguishable with a real transcription of ΠCom,C .

Remark 2 (Key element required for combining). In order to get better efficiency, some practical protocols
in the MPC-in-the-head paradigm slightly deviate from the template in Section 5.1, depending on the
concrete MPC protocols they used. For example, the KKW protocol [KKW18] utilizes an MPC protocol
designed in the preprocessing model and the Ligero [AHIV17]/Ligero++ [BFH+20] protocols make use of
a particular type of MPC protocols in the malicious model. Nevertheless, they all retain the secret sharing
procedure (though different secret sharing schemes are employed), which is the key element that is required
for combining with our Sigma protocols framework in Section 3.2.

6 An Instantiation of ZKP for Composite Statements

In this section, we give a ZK protocol for composite statements by instantiating the underlying MPC-in-the-
head protocol with Ligero++ [BFH+20]. Let Fp be a large prime field and C : Fm

p → Fp be an arithmetic
circuit. We show how to prove following composite statements: given a vector of Pedersen commitments
x = (x1, . . . , xm), the prover wants to convince the verifier that he knows the witness (s, r) ∈ Fm

p × Fm
p such

that C(s) = 1 ∧ xi = gsihri for 1 ≤ i ≤ m.
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As we have noticed, in order to construct a ZK protocol for composite statements using Ligero++, the
key point is giving a VSS scheme that aligns with the SS scheme used by Ligero++, and then constructing
a Sigma protocol from it.

6.1 Review of Ligero++

We briefly recall the Ligero++ protocol and analyze the SS scheme it uses. (Notably, Ligero++ uses the
same SS scheme as Ligero [AHIV17].) At a high level, to prove knowledge of s = (si)i∈[m] ∈ Fm

p such that
C(s) = 1, the Ligero++ prover first generates an extended witness which contains the circuit input s and the
outputs of |C| gates, then arranges the extended witness in a matrix of size C

polylog|C| × polylog|C| (where the
first m entries are (si)i∈[m]) and encodes each row using Reed-Solomon (RS) Code. The verifier challenges
the prover to reveal the linear combinations of the rows of the codeword matrix, and checks its consistency
through invoking inner-product argument (IPA) protocols on t̃ randomly picked columns. As mentioned
in [BFH+20], to remain zero-knowledge during the consistency check, it is desirable to either utilize zero-
knowledge IPA protocols or make the encoding randomized. For further consideration, we use a randomized
RS encoding to ensure zero knowledge. The formal definition of RS code is presented below.

Definition 9 (Reed-Solomon Code). For positive integers n, k, a finite field F, and a vector η =
(η1, . . . , ηn) of distinct elements of F, the code RSF,n,k,η is the [n, k, n−k+1] linear code over F that consists
of all n-tuples (P (η1), . . . , P (ηn)) where P is a polynomial of degree < k over F.

Definition 10 (Encoded message). Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζℓ) be a vector of
distinct elements of F for ℓ ≤ k. For a codeword u = (u1, . . . , un) ∈ L, we say it encodes (or rather, can be
decodes to) the message (Pu(ζ1), . . . , Pu(ζℓ)), where Pu is the polynomial (of degree < k) corresponding to u.

Encoding & Sharing. We can simply make the RS code RSF,n,k,η randomized via increasing the degree of
polynomials by t̃ where t̃ < k, and it is evident that the randomized RS code RSF,n,k,η can be viewed as the
(variant) packed Shamir’s SS scheme [FY92] with number of participants n, privacy threshold tp = t̃ and the
fault-tolerance tf = k. That is, encoding a message is equivalent to sharing the message: to encode (resp.,
share) a message (si)i∈[ℓ] using randomized RSF,n,k,η (resp., packed Shamir’s SS scheme), one first selects t̃

random elements α1, . . . , αt̃ ∈ F where ℓ+ t̃ = k and generates a polynomial P (x) with degree < ℓ+ t̃ such
that P (ζi) = si for all i ∈ [ℓ] and P (ζℓ+i) = αi for all i ∈ [t̃], then sets the codeword (resp., shares) to be
(P (η1), . . . , P (ηn)). Therefore, the codeword matrix aforementioned is also the shares matrix.

Modifications to Ligero++. As mentioned before, the Ligero++ protocol does not strictly conform to
the generalized MPC-in-the-head paradigm in Section 5.1, due to the different MPC model it used. There
are two main differences that could pose challenges in combining Ligero++ with Sigma protocols. First, the
witness to be shared is an expanded version that encompasses the input of circuit and the outputs of all
circuit gates, rather than only the input itself, making the shares opened later be an expanded version as
well. Second, the t̃ random columns of shares matrix will not be opened directly due to the invocation of IPA
protocols, causing obstructions of reusing witness shares. Fortunately, both of them can be overcame with
a few modifications to Ligero++: dividing the shares matrix into two vertically concatenated sub-matrices
and handling them differently when in the consistency check. Specifically, the two sub-matrices and their
respective handling methods are as follows:

– The first sub-matrix is the first m/ℓ rows of the shares matrix (WLOG., we assume m = c · ℓ for some
integer c > 0), which in fact is the shares of circuit input s. When in the consistency check, the prover
opens its t̃ entries directly to the verifier and the verifier computes the inner product of these entries with
random vectors directly. Thereby, the shares of circuit input s could be reused later. Since the encoding
is randomized, the openings leak nothing about the witness.

– The second sub-matrix is the remaining rows of the shares matrix, which are the shares of outputs of
gates. When in the consistency check, the prover inputs its t̃ entries on IPA protocols as originally while
the inner product checked in IPA protocols should be modified according to the opened entries of the
first sub-matrix.
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By doing so, the shares of inputs s and shares of gates’ outputs are separated. Moreover, it makes witness
shares reusing available while maintaining the advantage of utilizing IPA technique.

6.2 A Sigma Protocol for Pedersen Commitments

Having specified the SS scheme that Ligero++ employs, we are now ready to present a VSS scheme that
aligns with this SS scheme and later give a corresponding Sigma protocol from it.

The following notation will be useful below: for a field F, an integer m and a vector a = (ai)i∈[m] ∈ Fm,
we denote by V(a) the m × m Vandermonde matrix (vi,j)i,j∈[m] where vi,j = aj−1

i for all i, j ∈ [m] and
denote by V(a)−1 the inverse of this Vandermonde matrix.

Since the parameter n in the SS scheme used by Ligero++ is bounded by poly(λ), we describe the VSS
scheme simply using the syntax in Definition 7. The VSS scheme consists following four algorithms:

– Setup(1λ): runs (G, p, g, h)← GroupGen(1λ), sets the total number of participants n, the privacy threshold
tp, the fault-tolerance threshold threshold tf = ℓ+ tp, picks two disjoint vectors ζ = (ζj)j∈[ℓ+tp] ∈ Fℓ+tp

p

and η = (ηi)i∈[n] ∈ Fn
p , and both ζ, η contain distinct elements, outputs pp = ((G, p, g, h), n, tp, tf , ℓ, ζ,η).

– Share(s): on input a vector of secret s = (sj)j∈[ℓ] ∈ Fℓ
p, runs following two algorithms and outputs

(c, (vi)i∈[n], aut):
• Com(s; r): selects a vector of randomness r = (rj)j∈[ℓ]

R←− Fℓ
p, outputs a vector of commitments

c = (cj)j∈[ℓ], where cj = gsjhrj for all j ∈ [ℓ].
• Share∗(s, r): chooses two random vectors (αj)j∈[tp], (βj)j∈[tp]

R←− Ftp
p , interpolates two polynomials

A(x) and B(x) such that

∀1 ≤ j ≤ ℓ, A(ζj) = sj , B(ζj) = rj ;

∀ℓ+ 1 ≤ j ≤ ℓ+ tp, A(ζj) = αj−ℓ, B(ζj) = βj−ℓ,
(1)

outputs shares (vi)i∈[n] where vi = (A(ηi), B(ηi)) for all i ∈ [n] and aut = (c̃j)j∈[tp] where c̃j = gαjhβj

for all j ∈ [tp].
– Check(i, vi, c, aut): parses vi = (vi1, vi2) and aut = (c̃j)j∈[tp], computes hk =

(∏ℓ
j=1 c

δk,j

j

)
·
(∏tp

j=1 c̃
δk,ℓ+j

j

)
for k ∈ [ℓ+tp], where the matrix (δk,j)1≤k,j≤ℓ+tp is equal to V(ζ)−1, outputs “1” if gvi1hvi2 =

∏ℓ+tp
k=1 h

ηk−1
i

k

and “0” otherwise.
– Recover(I, (vi)i∈I): parses vi = (vi1, vi2), uses Lagrange Interpolation to compute polynomials A(x) and

B(x) such that A(ηi) = vi1 and B(ηi) = vi2 for all i ∈ I, outputs (s, r) where (sj , rj) = (A(ζj), B(ζj))
for j ∈ [ℓ].

Theorem 8. The VSS scheme described above satisfies acceptance, (ℓ+ tp)-correctness and tp-privacy.

By plugging the above VSS scheme into the framework in Section 1.1.1, we obtain a Sigma protocol (as
depicted in Figure 8) for proving knowledge of openings of several Pedersen commitments.

Parameters selection. In order to combine with Ligero++, some of the public parameters of above VSS
scheme, including p, n, tp, ℓ, ζ and η, should be in line with that of Ligero++. Since Ligero++ performs
interpolation and evaluation using fast Fourier transform (FFT), above VSS scheme should be implemented
using elliptic curves whose scalar fields Fp are FFT-friendly. One can refer to [AHG22] for a suitable elliptic
curve.

Security analysis. Based on Lemma 1, Theorem 1 and Theorem 8, it is straightforward that the protocol
in Figure 8 is a Sigma protocol with soundness error

(
tf−1
tp

)
/
(
n
tp

)
. When setting n = c · tf for some constant

c ≥ 1, we must set tp = λ/ log c to achieve a soundness error of 2−λ without repetition. Since
(
tf−1
tp

)
/
(
n
tp

)
is

smaller than the soundness error of Ligero++, the soundness error of ZK protocols for composite statements,
obtained by combining Sigma protocols in Figure 8 and Ligero++, is dominated by the soundness error of
Ligero++.
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x1 = gs1hr1 , . . . , xℓ = gsℓhrℓ

P ((xj)j∈[ℓ]; (sj , rj)j∈[ℓ]) V ((xj)j∈[ℓ])

(αj)j∈[tp], (βj)j∈[tp]
R←− Ftp

p

compute A(x), B(x) as in (1)
∀ i ∈ [n]: si = A(ηi), ri = B(ηi)

∀ j ∈ [tp], c̃j = gαjhβj

aut = (c̃j)j∈[tp]

I
R←− [n]tpI

(si, ri)i∈I
(δk,j)1≤k,j≤ℓ+tp = V(ζ)−1

∀k ∈ [ℓ+ tp], hk =
ℓ∏

j=1

x
δk,j

j ·
ℓ+tp∏
j=ℓ+1

c̃
δk,j

j−ℓ

accept iff ∀i ∈ I, gsihri =
ℓ+tp∏
k=1

h
ηk−1
i

k

Fig. 8: A Sigma protocol for Pedersen commitments

Efficiency analysis. Let λ be the security parameter and ℓ = |x| be the number of commitments in the
statement. Fix parameters n, tp, tf where n = c · tf for some constant c ≥ 1 and tf = ℓ+ tp. Then, the proof
consists of tp group elements and 2tp field elements, which asymptotically is O(tp) (according to the security
analysis, tp = O(λ)). The prover’s work includes the computations of ck’s, which need O(tp) group operations;
interpolation and evaluation of polynomials, which need O((ℓ+ tp) · log(ℓ+ tp) field operations by using FFT.
The verifier’s work includes the computations of matrix (δk,j), which need O((ℓ+ tp)

2) field operations; the
computations of hk’s, which need O(ℓ+ tp) multi-exponentiations of size ℓ+ tp; and the computations in the
verification equations, which need O(tp) multi-exponentiations of size ℓ+ tp. (Pippenger’s [Pip80] algorithm
could be used to accelerate the computations of multi-exponentiations.)

Having given the Sigma protocol for Pedersen commitments, it is not difficult to combine it with the
Ligero++ protocol and get a ZK protocol for composite statements, following the method in Section 5.3,
and we omit the details in this paper. The efficiency of the final ZK protocol reported in Table 1 is obtained
by directly summing the costs of Ligero++ and above Sigma protocol. Since the underlying SS components
are identical in Ligero and Ligero++, the Sigma protocol could also be combined with Ligero seamlessly by
choosing appropriate parameters. This will lead to a faster prover while a larger proof size.

7 Conclusion

Sigma protocols are the most efficient ZKPs for proving knowledge of openings of algebraic commitments,
which are defined as relations over algebraic groups. They have now become an important building block for a
variety of cryptosystems. In this work, we presented a framework of Sigma protocols for algebraic statements
from verifiable secret sharing schemes. This framework neatly explains the design principal underlying those
classic Sigma protocols, including the Schnorr, Batching Schnorr, GQ and Okamoto protocol. In addition,
it gives a generic construction of Sigma protocols for proving knowledge of algebraic commitments, thus
being able to lead to new Sigma protocols that were not previously known. Furthermore, we also showed its
application in designing ZKPs for composite statements. By using the witness sharing reusing technique, we
combined the Sigma protocols from VSS and general-purpose ZKPs following MPC-in-the-head paradigm
seamlessly, yielding a generic construction of ZKPs for composite statements which enjoys the advantages
of requiring no “glue” proofs. Through instantiating the underlying general-purpose ZKPs with Ligero++
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and tailoring a corresponding Sigma protocol, we obtain a concrete ZKP for composite statements, which
achieves a tradeoff between running time and proof size, thus resolving the open problem left by Backes et
al. (PKC 2019).
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A Missing Proofs

A.1 A Proof for Theorem 2

Proof. We separately argue the three properties.
Acceptance. For all honestly generated (vi)i∈[n], c and aut = (c1, . . . , cn−1), it always holds that gvi = ci

for all i ∈ [n− 1] and gvn = gsn = gs−
∑n−1

i=1 si = gs/
∏n−1

j=1 gsj = c/
∏n−1

j=1 cj .
n-Correctness. For any commitment c, aut = (c1, . . . , cn−1), participants I = {1, . . . , n} and shares
(vi)i∈[n], if it holds that Check(i, vi, c, aut) = 1 for all 1 ≤ i ≤ n (namely gvi = ci for all 1 ≤ i ≤ n − 1 and
gvi = c/

∏n−1
j=1 cj for i = n), then it is evident that g

∑n
i=1 vi =

∏n
i=1 g

vi = c. Thus, s =
∑n

i=1 vi is an opening
for c.
(n− 1)-privacy. We argue this by constructing the simulator Sim(c, I). In the two different cases, it works
as follows:

1. Case I: n /∈ I. Without loss of generality, we assume I = {1, . . . , n − 1}. Sim simulates the shares
for (Pi)i∈I , by picking s1, . . . , sn−1

R←− Zp, and setting vi = si. Then compute ci = gsi and set the
authentication information aut = (c1, . . . , cn−1). Output ((vi)i∈[n−1], aut).

2. Case II: n ∈ I. Without loss of generality, we assume I = {2, . . . , n}. Sim simulates the shares for
(Pi)i∈I , by picking (si)i∈[2,n]

R←− Zp, and setting vi = si. Then compute ci = gsi for i ∈ [2, n] and
c1 = c/(

∏n
j=2 cj), set the authentication information aut = (c1, . . . , cn−1). Output ((vi)i∈[2,n], aut).
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It is direct that the distributions of the outputs of simulator Sim(c, I) are identical to that of the outputs of
algorithm Share∗(s) for participants in I.

A.2 A Proof for Theorem 3

Proof. We separately argue the three properties.

Acceptance. For all honestly generated vi, c = (cj)j∈[ℓ] and aut = (c̃j)j∈[tp], it always holds that gvi =

gA(i) = g
∑tp+ℓ

j=1 aj ·ij−1

=
∏tp+ℓ

j=1 gaj ·ij−1

=
(∏tp

j=1 c̃
ij−1

j

)
·
(∏ℓ

j=1 c
itp+j−1

j

)
.

(tp + ℓ)-Correctness. For any set of participants I ⊂ [n] where |I| = m ≥ tp + ℓ and corresponding shares
(vi)i∈I , if it holds that Check(i, vi, c, aut) = 1 for all i ∈ I, then we have gvi =

(∏tp
j=1 c̃

ij−1

j

)
·
(∏ℓ

j=1 c
itp+j−1

j

)
for all i ∈ I. Let A(x) =

∑m
k=1 ak · xk−1 be the polynomial that interpolates the points (i, vi)i∈I . Note that,

the degree of A(x) is at most m − 1. Then, it holds that atp+j =
∑m

i=1 δtp+j,i · vi mod p for j ∈ [ℓ], where
the vector (δtp+j,i)i∈[m] is the (tp + j)-th row of the matrix V(1, . . . ,m)−1. Thus, for j ∈ [ℓ], we have

gatp+j =g
∑m

i=1 δtp+j,i·vi

=

m∏
i=1

(gvi)
δtp+j,i

=

m∏
i=1

((
tp∏

k=1

c̃i
k−1

k

)
·

(
ℓ∏

k=1

ci
tp+k−1

k

))δtp+j,i

=

(
tp∏

k=1

c̃
∑m

i=1 ik−1·δtp+j,i

k

)
·

(
ℓ∏

k=1

c
∑m

i=1 itp+k−1·δtp+j,i

k

)
=cj

tp-privacy. We argue this by constructing the simulator Sim(c, I). Without loss of generality, we assume
I = [tp]. The simulator Sim(c, I) proceeds as follows:

1. Simulate the shares for P1, . . . , Ptp , by picking v1, . . . , vtp
R←− Zp;

2. Compute the authentication information aut = (c̃j)j∈[tp] based on the algorithm Check. Concretely, set
c̃j =

∏tp
i=1(g

vi/
∏ℓ

k=1 c
itp+k−1

k )γj,i for j ∈ [tp], where the tp × tp matrix (γj,i)1≤j,i≤tp is the inverse of the
Vandermonde matrix V(1, . . . , tp):

3. Output ((vi)i∈[tp], aut).

It is direct that the outputs of simulator Sim(c, I) are distributed identically to the outputs of algorithm
Share∗(s) for participants in I.

A.3 A Proof for Theorem 4

Proof. We separately argue the three properties.

Acceptance. For all honestly generated vi = (si, ri), c and aut = (cj)0≥j≥tp−1, it holds that gsihri =

g
∑tp

j=0 aj ·ijh
∑tp

j=0 bj ·ij =
∏tp

j=0 g
aj ·ijhbj ·ij =

∏tp−1
j=0 ci

j

j · ci
tp .

(tp + 1)-Correctness. For any set of participants I ⊂ [n] where |I| = m ≥ tp + 1 and corresponding
shares (vi)i∈I where vi = (si, ri), if it holds that Check(i, vi, c, aut) = 1 for all i ∈ I, then we have gsihri =∏tp−1

j=0 ci
j

j · ci
tp for all i ∈ I. Let A(x) =

∑m−1
j=0 aj · xj and B(x) =

∑m−1
j=0 bj · xj be the two polynomials that

interpolate two sets of points (i, si)i∈I and (i, ri)i∈I respectively. Note that, both the degrees of A(x) and
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B(x) are at most m−1. Then, it holds that atp =
∑m

i=1 δtp+1,i ·si mod p and btp =
∑m

i=1 δtp+1,i · ri mod p,
where the vector (δtp+1,i)i∈[m] is the (tp + 1)-th row of the matrix V(1, . . . ,m)−1. Therefore, we have

gatphbtp =g
∑m

i=1 δtp+1,i·sih
∑m

i=1 δtp+1,i·ri

=

m∏
i=1

(gsihri)δtp+1,i

=

m∏
i=1

(

tp−1∏
j=0

ci
j

j · ci
tp
)δtp+1,i

=

tp−1∏
j=0

c
∑m

i=1 ij ·δtp+1,i

j · c
∑m

i=1 itp ·δtp+1,i

=c

tp-privacy. We argue this by constructing the simulator Sim(c, I). Without loss of generality, we assume
I = {1, . . . , tp}. On input a commitment c and a set I, the simulator Sim(c, I) proceeds as follows:

1. Simulate the private shares for participants in I, by picking s1, . . . , stp , r1, . . . , rtp
R←− Zp and setting

vi = (si, ri);
2. Compute the authentication information aut = (cj)0≥j≥tp based on the algorithm Check. Concretely,

set cj =
∏tp

i=1(g
si · hri/ci

tp
)γj,i , where the tp × tp matrix (γj,i)1≤j+1,i≤tp is the inverse of Vandermonde

matrix v(1, . . . , tp).
3. Output ((vi)i∈I , aut).

It is direct that outputs of simulator Sim(c, I) are distributed identically to the outputs of algorithm
Share∗(s, r) for (Pi)i∈I .

A.4 A Proof for Theorem 5

Proof. We separately argue the three properties.

Acceptance. For all honestly generated vi, c and aut, it always holds that vei = (a ·si)e = ae · (se)i = aut · ci
mod N .
2-Correctness. For any set of participants I = {ij}j∈|I| ⊂ [n] where |I| ≥ 2 and corresponding shares
(vi)i∈I , if it holds that Check(i, vi, c, aut) = 1 for i ∈ I, then we have vei = aut · ci for i ∈ I. Therefore, the
secret s output by Rec holds that se = (cα(vi2/vi1)

β)e = cα·ec(i2−i1)β = c.
1-privacy. we argue this by constructing the simulator Sim(c, i), where i ∈ [e]. Concretely, the simulator
Sim(c, i) proceeds as follows:

1. Simulate the share for Pi, by picking random vi
R←− Z∗

N ;
2. Compute the authentication information aut = vei · c−i.
3. Output (vi, aut).

It is straightforward to check that the (vi, aut) output by the simulator Sim(c, i) satisfies Check(i, vi, c, aut) =
1 and it is distributed identically to the output of algorithm Share∗(s) for Pi.

A.5 A Proof for Theorem 8

Proof. We separately argue the three properties.
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Acceptance. For honestly generated c = (cj)j∈[ℓ], (vi)i∈[n] and aut = (c̃j)j∈[tp], we show Check(i, vi, c, aut) =
1 for all i ∈ [n]. First note that for honestly generated polynomials A(x) =

∑ℓ+tp−1
k=1 ak · xk−1 and B(x) =∑ℓ+tp−1

k=1 bk · xk−1, their coefficients ak’s and bk’s hold that ak =
∑ℓ

j=1 δk,j · sj +
∑ℓ+tp

j=ℓ+1 δk,j · αj−ℓ mod p

and bk =
∑ℓ

j=1 δk,j · rj +
∑ℓ+tp

j=ℓ+1 δk,j · βj−ℓ mod p, where the matrix (δk,j)1≤k,j≤ℓ+tp is equal to V(ζ)−1.
Moreover, if c and aut are computed honestly, we have gakhbk =

∏ℓ
j=1 c

δk,j

j ·
∏ℓ+tp

j=ℓ+1 c̃
δk,j

j−ℓ = hk for all
k ∈ [ℓ+ tp]. Thus, for honestly generated vi, parsed as (vi1, vi2), it holds that

gvi1hvi2 = gA(ηi)hB(ηi)

= g
∑ℓ+tp

k=1 ak·ηk−1
i h

∑ℓ+tp
k=1 bk·ηk−1

i

=

ℓ+tp∏
k=1

(gakhbk)η
k−1
i

=

ℓ+tp∏
k=1

h
ηk−1
i

k .

(ℓ + tp)-Correctness. For any set of participants I ⊂ [n] where |I| = m ≥ tp + ℓ and corresponding
shares (vi)i∈I where vi = (vi1, vi2), if it holds that Check(i, vi, c, aut) = 1 for all i ∈ I, then we have
gvi1hvi2 =

∏ℓ+tp
k=1 h

ηk−1
i

k and hk =
∏ℓ

j=1 c
δk,j

j ·
∏ℓ+tp

j=ℓ+1 c̃
δk,j

j−ℓ, where the matrix (δk,j)1≤k,j≤ℓ+tp is equal to
V(ζ)−1.

Let A(x) =
∑m

k=1 ak ·xk−1 and B(x) =
∑m

k=1 bk ·xk−1 be the two polynomials that interpolate the points
(ηi, vi1)i∈I and (ηi, vi2)i∈I , respectively. Note that, both the degrees of A(x) and B(x) are at most m − 1.
Then, for all k ∈ [m], it holds that ak =

∑m
i=1 γk,i · vi1 mod p and bk =

∑m
i=1 γk,i · vi2 mod p, where the

matrix (γk,i)1≤k,j≤m is equal to V((ηi)i∈I)
−1. Therefore, for all j ∈ [ℓ], we have

gsjhrj =gA(ζj)hB(ζj)

=g
∑m

k=1 ak·ζk−1
j · h

∑m
k=1 bk·ζk−1

j

=

m∏
k=1

(
gak · hbk

)ζk−1
j

=

m∏
k=1

(
g
∑m

i=1 γk,i·vi1 · h
∑m

i=1 γk,i·vi2
)ζk−1

j

=

m∏
k=1

(
m∏
i=1

(gvi1hvi2)
γk,i

)ζk−1
j

=

m∏
k=1

ℓ+tp∏
t=1

(
h
∑m

i=1 ηt−1
i ·γk,i

t

)ζk−1
j

=

m∏
k=1

(hk)
ζk−1
j

=

m∏
k=1

 ℓ∏
u=1

c
δk,u
u ·

ℓ+tp∏
u=ℓ+1

c̃
δk,u

u−ℓ

ζk−1
j

=cj
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tp-privacy. we argue this by constructing a PPT simulator Sim((cj)j∈ℓ, I) as below. Without loss of gener-
ality, we assume I = {1, . . . , tp}. On input the commitments (cj)j∈ℓ ∈ Gℓ and the set I, the simulator Sim
proceeds as follows:

1. Simulate the private shares for participants in I, by picking two random vectors (vi1)i∈[tp], (vi2)i∈[tp]
R←−

Ftp
p and setting vi = (vi1, vi2);

2. Compute the tp × (ℓ+ tp) matrix G as below:

G =


1 η1 · · · η

ℓ+tp−1
1

1 η2 · · · η
ℓ+tp−1
2

...
... . . . ...

1 ηtp · · · η
ℓ+tp−1
tp

 ·V(ζ)−1,

Let G1 be the matrix formed by the first ℓ columns of G and G2 be the matrix formed by the last tp
columns of G.

3. Compute aut = (c̃1, . . . , c̃tp) on the basis of deterministic algorithm Check. Specifically, set c̃k =∏tp
i=1(g

vi1hvi2/
∏ℓ

j=1 c
γi,j

j )υk,i , where the tp × ℓ matrix (γi,j)i∈[tp],j∈[ℓ] is equal to the matrix G1 and
the tp × tp matrix (υk,i)k,i∈[tp] is the inverse of the matrix G2:

4. Output (v1, . . . , vtp , aut).

It is direct that the outputs of simulator Sim are distributed identically to the outputs of algorithm Share∗(s, r)
for participants in I.
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