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Abstract

Homomorphic encryption is a central object in modern cryptography, with far-reaching applications.
Constructions supporting homomorphic evaluation of arbitrary Boolean circuits have been known for
over a decade, based on standard lattice assumptions. However, these constructions are leveled, meaning
that they only support circuits up to some a-priori bounded depth. These leveled constructions can
be bootstrapped into fully homomorphic ones, but this requires additional circular security assumptions,
which are construction-dependent, and where reductions to standard lattice assumptions are no longer
known. Alternative constructions are known based on indistinguishability obfuscation, which has been
recently constructed under standard assumptions. However, this alternative requires subexponential
hardness of the underlying primitives.

We prove a new bootstrapping theorem relying on functional encryption, which is known based on
standard polynomial hardness assumptions. As a result we obtain the first fully homomorphic encryption
scheme that avoids both circular security assumptions and super-polynomial hardness assumptions. The
construction is secure against uniform adversaries, and can be made non-uniformly secure, under a widely-
believed worst-case complexity assumption (essentially that non-uniformity does not allow arbitrary
polynomial speedup).

At the heart of the construction is a new proof technique based on cryptographic puzzles. Unlike
most cryptographic reductions, our security reduction does not fully treat the adversary as a black box,
but rather makes explicit use of its running time (or circuit size).

1 Introduction

Starting from the breakthrough work of Gentry [Gen09], homomorphic encryption has changed the face of
cryptography, bringing about the era of encrypted computation, with an abundance of new applications
and new cryptographic tools. In the context of homomorphic encryption for general Boolean circuits, an
important distinction is between schemes that are fully homomorphic and schemes that are only leveled
homomorphic. Leveled homomorphic schemes have an a-priori bound d on the depth of circuits for which
homomorphic evaluation is supported. In particular, the size of parameters in these schemes may scale with
d. In contrast, fully homomorphic schemes allow to evaluate circuits of arbitrary polynomial depth with no
a-priori bound.

By now there are various, relatively simple, constructions of leveled homomorphic encryption schemes
based on standard lattice assumptions (c.f. [BV11, BGV12, GSW13]). However, constructing fully homo-
morphic encryption from similar assumptions remains a long standing open problem. Nonetheless, Gentry
[Gen09] showed that by making an additional circular security assumption the above schemes (and in fact
any leveled scheme that can evaluate its own decryption circuit) can be made fully homomorphic. However,
in this case we no longer have a reduction to similar lattice assumptions. Furthermore, the corresponding
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assumption is construction-dependent, in the sense that it assumes circular security of any specific encryption
scheme considered, rather than based on a clean problem that can be studied in isolation.

An alternative construction of fully homomorphic encryption was shown by Canetti et al. [CLTV15]
based on indistinguishability obfuscation. Combining this with the recent breakthrough of Jain, Lin, and
Sahai [JLS21, JLS22] who constructed indistinguishability obfuscation from standard assumptions, leads to
fully homomorphic encryption from standard assumptions. The resulting construction, however, suffers from
a caveat — it requires that the underlying assumptions are all sub-exponentially secure.

The work of Agrikola et al. [ACH20] showed that fully homomorphic encryption can be obtained from
polynomially-secure indistinguishability obfuscation and extremely lossy functions (ELFs) [Zha16]. However,
the above mentioned constructions of indistinguishability obfuscation are based on subexponential hardness
assumptions, whereas ELFs are only known based on exponential hardness assumptions. Other constructions
of fully homomorphic encryption are based on non-standard forms of obfuscation or functional encryption,
which are not known to be reducible to standard assumptions [ABF+13].

Overall, a construction of fully homomorphic encryption based on standard polynomial assumptions has
yet to be achieved.

1.1 Our Result

In this work we prove a new bootstrapping theorem based on functional encryption.

Theorem 1.1 (Informal). Assuming (polynomially-secure) semi-compact public-key functional encryption,
any leveled homomorphic encryption scheme that can evaluate (slightly more than) its own decryption circuit,
can be turned into a fully-homomorphic scheme. The scheme is secure against uniform efficient adversaries.
Assuming also that for any c ∈ N, P ̸⊆ ioSIZE(nc), it is secure against efficient non-uniform adversaries.

The required functional encryption schemes were recently constructed by Jain, Lin, and Sahai from
standard polynomial assumptions (LPN, Bilinear SXDH, and shallow PRGs) [JLS21, JLS22] and thus com-
bining with known leveled homomorphic encryption schemes (e.g. [BV11] from LWE [Reg05]), we obtain
the first fully homomorphic encryption scheme that does not rely on circular security nor does it require
super-polynomial hardness assumptions.

The assumption that for all c ∈ N, P ̸⊂ ioSIZE(nc), required in the non-uniform setting, essentially
means that circuits of a fixed polynomial size nc, cannot decide all of P in the worst case. (Formally, there
is a language Lc in P, which they fail to decide in the worst-case for all large enough instances.) This can be
viewed as a natural generalization of the time hierarchy theorem, which holds unconditionally. In particular,
this assumption follows from widely believed worst-case assumptions such as the non-uniform exponential
time hypothesis.

Polynomial Security through Cryptographic Puzzles. Our main conceptual contribution is a new
proof technique that leverages cryptographic puzzles for the sake of polynomial security. An interesting
aspect of the technique is that unlike most cryptographic security reductions, our security reduction does
not fully treat the adversary as a black box, but rather makes explicit use of its running time (or circuit
size).

1.2 Technical Overview

In this section we provide an overview of the main new technical ideas behind our results.
We first briefly recall the syntax and requirements from leveled and fully homomorphic encryption

schemes. A homomorphic encryption scheme consists of an encryption algorithm Enc, a decryption algorithm
Dec, and a homomorphic evaluation algorithm Eval. These algorithms have associated public encryption and
evaluation keys ek, evk and a secret decryption key dk, which are sampled jointly from some generation
algorithm Gen. In a leveled scheme, this generation algorithm depends on the maximal depth d of supported
circuits, and the size of keys ek, evk, dk may scale polynomially with d. In contrast, in fully homomorphic
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schemes the keys are of fixed size, and yet can support the homomorphic evaluation of circuits of arbitrary
polynomial depth.

Gentry’s Bootstrapping. Our starting point is Gentry’s bootstrapping technique [Gen09]. Here the basic
idea is that a leveled scheme that supports slightly more than the depth d∗ of its own decryption circuit can
be transformed into a leveled scheme for computations of arbitrary depth. Specifically, to support circuits
of depth d ≫ d∗, we generate d + 1 sets of keys (ek0, evk0, dk0), . . . , (ekd, evkd, dkd), and produce a new set
of keys:

ek = ek0

evk =

(
Encek1(dk0) Encek2(dk1) . . . Encekd(dkd−1)

evk1 evk2 . . . evkd

)
dk = dkd

Then, starting from an encryption of the message Encek0(m), a circuit of arbitrary depth d can be homo-
morphically evaluated layer by layer according to the following invariant: given encryptions Enceki(vi) of the
circuit wire values vi in layer i, we can obtain encryptions Enceki+1(vi+1) of the wire values vi+1 in the next
layer. This is done starting from Enceki+1(dki), which is part of the evaluation key evk, and homomorphically
evaluating the circuit that given as input the decryption key dki, decrypts Enceki(vi), and computes vi+1

from vi. The security of the scheme reduces to that of the underlying encryption by a standard hybrid
argument, where starting from Encekd(dkd−1), we switch each encryption Enceki(dki−1) with an encryption
Enceki(0) of garbage (say, the all-zero string), which is possible as we have already eliminated dki from the
adversary’s view.

The above is still a leveled scheme as the size of keys grows with the maximal depth d that can be
evaluated. To make the scheme fully homomorphic, Gentry samples a single set of keys (ek, evk, dk) and
collapses the chain of encryptions Encek1(dk0) . . .Encekd(dkd−1) into one encryption Encek(dk) where the
decryption key is encrypted under its corresponding encryption key. While the size of keys is now fixed
regardless of the depth of evaluated circuit, we can no longer invoke the above reduction to the security of
the underlying encryption scheme. Proving security requires that the underlying scheme is circularly secure,
namely that an encryption of the scheme’s own decryption key does not compromise its security.

Compressing the Keys via Obfuscation. Aiming to avoid the circular security assumption, Canetti et
al. [CLTV15] consider an alternative approach toward compressing Gentry’s bootstrapping. (To be more
precise, the exact details in [CLTV15] are somewhat different, but the core is essentially similar). The
basic observation is that, using a pseudo-random function (PRF) family {fk}k, the process of generating
the long evaluation key evk can be described by a succinct circuit EVK that has a hardwired PRF key k.
Specifically, for i ≥ 1, the randomness ri for generating the i-th set of keys, and encryption randomness r′i for
the i-th encryption, are both derived using PRF fk(i). The succinct circuit EVK given input i, derives the
key generation randomness (ri−1, ri) and encryption randomness r′i, computes the corresponding keys, and
outputs (evki,Enceki(dki−1; r

′
i)). We then replace the previously large evaluation key evk with an obfuscated

version ẼVK of the succinct circuit EVK. To allow for homomorphic evaluation of circuits of arbitrary
polynomial depth, the space of input indices { 1, . . . , d } is taken to be of super-polynomial size λω(1) in the
security parameter λ.

Using similar techniques to those in [BGL+15, CLTV15] this construction can be proven secure if the
obfuscation is instantiated using indistinguishability obfuscation (IO) and the PRF is puncturable [BW13,
KPTZ13, BGI14] (the concept of puncturing is discussed in more detail later on). However, the proof
requires that the PRF, IO, and underlying leveled homomorphic encryption are all super-polynomially
secure. Roughly speaking, the cause for this loss is that the security reduction extends the previously
described hybrid argument, and in particular suffers a loss in the indistinguishability gap through d = λω(1)

hybrids.
Overall, this construction has two sources of super-polynomial loss:

1. The super-polynomial number of hybrids described above.
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2. Known IO reductions incur a loss proportional to the size of the input space of obfuscated circuits,
which in this case is again super-polynomial (and in fact conjectured to be inherent [GLSW15]).

Our solution essentially addresses these two sources of super-polynomial loss separately. We next explain
the main ideas involved.

Polynomial Number of Hybrids through Cryptographic Puzzles. The essential problem is that the
two requirements of full homomorphism on one hand, and a polynomial reduction on the other hand, collide.
To support computations of arbitrary polynomial depth, we cannot restrict the length d of the key chain
to any specific polynomial. At the same time if the length d of the key chain is super-polynomial, then the
number of hybrids and loss in the security proof is also super-polynomial. Roughly speaking, to avoid the
super-polynomial loss, we aim that an adversary of polynomial running time (or circuit size) t = poly(λ)
will only be able to access a corresponding prefix of the key chain

Encek1(dk0) Encek2(dk1) . . . Encekt(dkt−1)
evk1 evk2 . . . evkt

Encekt+1
(dkt) . . . Encekd(dkd−1)

evkt+1 . . . evkd
.

Had we managed that, then the number of hybrids will become proportional to the adversary’s polynomial
running time, as required.

To achieve this guarantee, we use an appropriate notion of cryptographic puzzles. Generally speaking,
cryptographic puzzles are encryption schemes where decryption does not require a decryption key, but rather
the investment of some pre-specified amount of computational resources. Relevant to our context are relaxed
time-lock puzzles (RTLPs) as defined in [BGJ+16], where this resource is simply time. Specifically, an RTLP
allows anyone to encrypt a message m relative to a difficulty parameter T so that the resulting ciphertext
(aka puzzle) Z can be decrypted in time ≈ T , whereas adversaries running in time ≪ T do not learn
anything about the underlying message. Encryption on the other hand, only requires time polylog(T ).
(Both encryption and decryption also have some fixed polynomial dependence on the security parameter λ,
which we suppress here for simplicity.)

Such RTLPs relax the notion of (non-relaxed) TLPs by Rivest, Shamir, and Wagner [RSW96], which
requires that decryption is hard even for parallel adversaries that have sequential time ≪ T , although
possibly a number of processors larger than T . Following [BGJ+16], RTLPs against uniform adversaries can
be constructed based on one-way functions and succinct randomized encodings [BGL+15, CHJV15, KLW15],
which in turn can be constructed from indistinguishability obfuscation with logarithmic input space [AL18,
GS18, KNTY19] (and accordingly also from standard polynomial assumptions [JLS21, JLS22]). We obtain
RTLPs against non-uniform adversaries, under the worst-case complexity assumption stated in Theorem 1.1
(in addition to succinct randomized encodings). The security guarantee achieved by the construction that
for any polynomial t = poly(λ), there exists a polynomial T = tO(1) such that adversaries running in time
t cannot break the semantic security of puzzles of difficulty T . The construction itself is similar in spirit to
the construction of TLPs from succinct randomized encodings and non-parallelizing languages in [BGJ+16]
and can be found in Section 2.1.

Augmenting the Construction with RTLPs. Equipped with RTLPs we augment the previous construc-
tion as follows. Rather than considering the circuit EVK that explicitly outputs the key chain, we augment
the circuit EVK so that it outputs increasingly difficult puzzles encrypting the key chain. That is, on input
i, EVK will not output Enceki(dki−1) in the clear, but rather output a RTLP Zi encrypting Enceki(dki−1).
The required randomness for computing the puzzle Zi, will again be derived by applying another PRF fk′

to i. In terms of functionality, we can still homomorphically evaluate circuits of arbitrary polynomial depth
d, by simply solving the puzzles. This only incurs an additive overhead of ≈ d2 (we explain later how this
overhead can be reduced). At the same time, we are now able to obtain a polynomial reduction, as we
effectively prevent the adversary from accessing the key chain, except for a polynomially bounded prefix.

In a bit more detail, given an adversary of polynomial running time t = poly(λ). The hybrid strategy
will start from index T , such that puzzles of difficulty cannot be solved by t-size adversaries. Intuitively,
we can now replace the puzzle ZT encrypting the key chain link EncekT (dkT−1), with a puzzle that encrypts
garbage. Now, having eliminated the secret key dkT−1 from the adversary’s view, we can proceed with the

4



hybrid argument to the next link and so on. Overall, we will have a polynomial number T = tO(1) of hybrids.
The exact details behind this hybrid argument are overall similar to [CLTV15], they are based on IO, used
to obfuscate the augmented circuit EVK, and puncturable PRFs.

Unlike typical cryptographic reductions that treat the adversary as a complete black-box, regardless of
its efficiency, our reduction depends on the specific running time of the adversary, and has a diagonalization
flavour.

Avoiding the Super-polynomial Loss of General Purpose IO. Having removed the first mentioned
source of super-polynomial loss (the super-polynomial number of hybrids), we now turn to deal with the
second source, which is the inherent loss in using general-purpose IO. Toward this, we aim to leverage the
fact that for circuits with a polynomial-size input domain, existing IO constructions do admit a polynomial
reduction to standard (polynomial) assumptions. However, as explained above, we cannot directly rely on
this fact since the circuit EVK (generating the key chain) has a super-polynomial size input space [d] =
{ 1, . . . , d = λω(1) }, so that it will be able to support homomorphic evaluation of circuits of any polynomial
depth. Nevertheless, we show a simple trick to overcome this difficulty.

The basic idea is that rather than having a single key generation circuit EVK over the domain [d], we
split it to ℓ circuits EVK1, . . . ,EVKℓ where d = 2ℓ and EVKi is defined over (2i−1, 2i]. Each of these circuits
EVKi has its own PRF key ki used to generate the chain links in the corresponding interval as well as the last
decryption key dk2i−1 of the previous interval, allowing EVKi to “continue the chain” from where EVKi−1
left off. Now we can resort to the same hybrid strategy as before only that we only ever invoke IO security

for the obfuscated circuits ẼVK1, . . . , ẼVKlog T , which are all defined over domains of size at most T = tO(1),
determined by the adversary’s polynomial size t.1

On the Overhead of Homomorphic Evaluation. As mentioned above, homomorphically evaluating a
circuit of depth d in our scheme incurs an additive overhead of ≈ d2. Indeed, as the complexity of puzzles
grows with time, the overall work needed is proportional to

∑
i∈[d] i. This overhead can be reduced to ≈ d by

embedding cryptographic puzzles only in a sparse set of positions rather than in every position as described
before. For instance, we can embed a puzzle in every position that is a power of two. This way the overall
work is

∑
i∈log d 2

i = O(d). This strategy still enables a polynomial security reduction.
While the amortized overhead in the above adaptation is linear, most of the computational overhead is

incurred toward the end of the homomorphic evaluation. However, by another simple tweak to the scheme,
we can ensure that the worst-case overhead in each individual step is fixed and independent of the total
depth of the computation. The idea is to equally divide the process of solving the puzzle corresponding to
position 2i among all 2i−1 steps in the interval [2i−1, 2i), so that at every step we incur a fixed overhead.
This can be easily done by obtaining the corresponding puzzle already at step 2i−1 and unrolling the puzzle
computation through the next 2i−1 steps.

Even after these optimizations a caveat of the solution is that the space complexity of homomorphic
evaluation may now grow with the space complexity of solving puzzles, which could be as large as the
difficulty T . This is in contrast to schemes based on circular security where the required space will be the
same as required for the evaluated computation. To circumvent this additional overhead, we may use a leveled
scheme which requires space proportional to space used by the evaluated computation, along stronger puzzles,
which can be solved using fixed space, independent of the difficulty parameter. We note that existing lattice-
based constructions (for example [BV11, BGV12, GSW13]) of leveled scheme satisfy this space-preserving
condition. We also note such puzzles follow for example from the sequential hardness of iterated squaring,
previously used in the context of verifiable delay functions [EFKP20]. Alternatively, such puzzles may
be constructed using the same recipe of [BGJ+16] assuming the complexity assumption that there exists
d ∈ N such that for all c ∈ N, P ∩DSPACE(nd) ̸⊂ ioSIZE(nc) and assuming a space-preserving succinct
randomized encoding scheme. While there do exist such constructions based on (super-polynomial domain)
IO (c.f. [CH16]), a construction from functional encryption (and in particular, polynomial assumptions) is
not known. We conjecture that it may be constructed using existing techniques [AL18, GS18, KNTY19] and

1We note that in the ITCS 2023 proceedings version of this paper, a significantly more complicated solution, based on
decomposalbe IO [LZ21], was presented.
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leave it for future work.

2 Preliminaries

Strings And Binary Representation:

• Given a string x ∈ {0, 1}∗, let |x| be its length.

Efficient Computation:

• We denote by PPT probabilistic polynomial-time Turing machines.

• For a PPT algorithm M , we denote by M(x; r) the output of M on input x and random coins r, and
by M(x) the random variable, given by sampling the coins r uniformly at random.

• A polynomial-size circuit family C is a sequence of circuits C = {Cλ }λ∈N, such that each circuit Cλ is

of polynomial size λO(1) and has λO(1) input and output bits. We also consider probabilistic circuits
that may toss random coins.

Indistinguishability:

• A function f : N→ [0, 1] is negligible if f(λ) = λ−ω(1) and is noticeable if f(λ) = λ−O(1).

• Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over the same set of indices
I = ·∪λ∈NIλ are said to be computationally indistinguishable (respectively, statistically indistinguish-
able), denoted by X ≈c Y (respectively, X ≈s Y), if for every polynomial-size (respectively, unbounded)
distinguisher A = {Aλ }λ∈N there exists a negligible function negl such that for all λ ∈ N, i ∈ Iλ,

|Pr(A(Xi) = 1)− Pr(A(Yi) = 1)| ≤ negl(λ) .

2.1 Relaxed Time-Lock Puzzles

A puzzle instance is associated with a pair of parameters: a security parameter λ determining the crypto-
graphic security of the puzzle, and a difficulty parameter t determining how computationally difficult is to
solve the puzzle.

Definition 2.1 (Puzzle). A puzzle scheme Puzzle consists of two algorithms Puzzle = (Gen,Solve) satisfying
the following:

• Syntax:

– Z ← Gen(t, s) is a probabilistic algorithm that takes as input a difficulty parameter t and a solution
s ∈ {0, 1}λ, where λ is a security parameter, and outputs a puzzle Z.

– Solve(Z) is a deterministic algorithm that takes as input a puzzle Z and outputs a solution s.

• Completeness: For every security parameter λ ∈ N, difficulty parameter t ∈ N, solution s ∈ {0, 1}λ
and a puzzle Z ∈ {0, 1}∗ in the support of Gen(t, s), Solve(Z) outputs s.

• Efficiency:

– Z ← Gen(t, s) can be computed in time poly(log(t), λ).

– Solve(Z) can be computed in time t · poly(λ).
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Definition 2.2 (Relaxed Time-Lock Puzzle). A puzzle scheme Puzzle is said to be Relaxed Time-Lock Puzzle
(RTLP) if for every polynomial q(·) there exists a polynomial t(·) such that for any large enough λ ∈ N and
s0, s1 ∈ {0, 1}λ and adversary A of size at most q, it holds that

Pr

[
b← A(Z)

∣∣∣∣ b← {0, 1}
Z ← Gen(t(λ), sb)

]
≤ 1

2
+

1

q(λ)
.

Where the probability is also over the random coins tossed by A.

Comparison to previous notions of TLPs. The classical notion of TLPs [RSW96] focuses on the depth
of the adversary rather than its total size, which is allowed to be polynomially larger than the difficulty
parameter. Bitansky et al. [BGJ+16] also consider a relaxed version of TLPs, which focuses on size rather
than depth as does our definition. Their definition of RTLP is stronger. Specifically, they require a fixed
polynomial gap between q and t. That is, there exists a constant ε < 1 such that the definition holds for
any two polynomials q, t such that q ≤ tε. In contrast, in our definition, there is no such fixed gap.

The (non-relaxed) TLP constructed in [BGJ+16] relies on SRE in conjunction with a complexity assump-
tion about non-parallelizable languages. We observe that RTLP can be obtained by a similar construction
and proof as in [BGJ+16] with the following weaker complexity assumption, which essentially says that
non-uniformity doesn’t provide arbitrary polynomial speed-up for uniform polynomial computations.

Assumption 2.1. For any polynomial q(·) there exists a polynomial Q(·) and a language L ∈ DTIME(Q)
such that any family C = {Cλ} of size-q(λ) circuits fails to decide Lλ = L ∩ {0, 1}λ for all large enough λ.2

Theorem 2.3 (RTLP under SRE and Assumption 2.1). Assuming SRE and Assumption 2.1 there exists
Relaxed Time-Lock Puzzle.

We find Assumption 2.1 rather mild. It can be seen as a generalization of the (unconditional) time-
hierarchy theorem for uniform computation. It is in the same spirit of Nisan-Impagliazzo-Wigderson style
assumptions used to derandomize BPP [NW94, IW97]. We also note that this assumption follows easily for
instance from the non-uniform ETH assumption [BPSS23]. For completeness we provide the construction
of RTLP and its security proof in Appendix A.

Next, since SRE can be constructed from semi-compact FE [AL18, GS18, KNTY19], we have the following
corollary:

Corollary 2.4 (RTLP under FE and Assumption 2.1). Assuming semi-compact FE and Assumption 2.1,
there exists Relaxed Time-Lock Puzzle.

2.1.1 Uniform Relaxed Time-Lock Puzzle

RTLP can be further relaxed by considering only unifrom PPT adversaries. Note in this case the challenge
is also sampled uniformly by the adversary.

Definition 2.5 (Uniform Relaxed Time-Lock Puzzle). A puzzle scheme Puzzle is said to be Uniform Relaxed
Time-Lock Puzzle (denoted URTLP) if for every polynomial q(·) there exists a polynomial t(·) such that for
any large enough λ ∈ N and uniform PPT adversary A = (M,D) where the running time of both M and D
is at most q, it holds that:

Pr

b← D(a, Z)

∣∣∣∣∣∣
a, s0, s1 ←M(1λ),where s0, s1 ∈ {0, 1}λ and a ∈ {0, 1}∗

b← {0, 1}
Z ← Gen(t(λ), sb)

 ≤ 1

2
+

1

q(λ)
.

Where the probability is also over the random coins tossed by A.

In the uniform setting Assumption 2.1 is not required, and the following is theorem B.5 from [BGJ+16].

2This is a more explicit statement of the assumption that for any c ∈ N, P ̸⊆ ioSIZE(nc), which is stated in the introduction.
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Theorem 2.6 (URTLP exists under SRE). Assuming SRE and OWF, there exists Uniform Relaxed Time-
Lock Puzzle.

And again, since SRE can be constructed from semi-compact FE [AL18, GS18, KNTY19] we have the
following corollary:

Corollary 2.7 (Uniform Relaxed Time-Lock Puzzle under FE). Assuming semi-compact FE, there exists
Uniform Relaxed Time-Lock Puzzle.

2.2 Indistinguishability Obfuscation

We now define Indistinguishability Obfuscation (iO) for circuits. This notion guarantees that the obfusca-
tions of two circuits are computationally indistinguishable, as long as the circuits are of the same size and
are functionally equivalent. We restrict the definition to circuits with a polynomial size input space.

Definition 2.8 (Polynomial Domain Secure Indistinguishability Obfuscation (iO) For Circuits). A uniform
PPT algorithm iO is called polynomial domain secure indistinguishability obfuscator for polynomial-sized
circuits if the following holds:

• Correctness. For every λ ∈ N, circuit C, and circuit C ′ in the support of iO(1λ, C), the circuits C
and C ′ are functionally equivalent.

• Polynomial Domain Security. For every constant c ∈ N and every two circuit ensembles {C0,λ}λ∈N
and {C1,λ}λ∈N of polynomial-sized circuits with input length c · log(λ) where for every λ ∈ N, C1,λ and
C1,λ are of the same size and are functionally equivalent, it holds that:

{iO(1λ, C0,λ)}λ∈N ≈c {iO(1λ, C1,λ)}λ∈N .

Theorem 2.9 (iO Exists assuming FE [AJ15, BV18, LZ21]). Assuming polynomial secure FE, there exists
polynomial domain secure indistinguishability obfusactor iO.

2.3 Puncturable pseudorandom function

Definition 2.10 (PPRF). Let n(·),m(·) be some polynomials. A puncturable pseudorandom function
(PPRF) consists of efficient algorithms PPRF = (Punc,Eval) where:

• Syntax:

– Punc(s, x) is a deterministic algorithm that punctures a seed s at a point x ∈ {0, 1}n(λ) and outputs
s{x}. We call s{x} the punctured seed at the point x.

– Eval(s, x) is a deterministic algorithm that takes as input a seed s and query input x ∈ {0, 1}n(λ)
and outputs y ∈ {0, 1}m(n).

• Correctness: For every λ ∈ N and two distinct inputs x, x′ ∈ {0, 1}n(λ) it holds that

Eval(s, x′) = Eval(s{x}, x′) ,

where s← {0, 1}λ and s{x} ← Punc(s, x).

• Pseudorandomness at the punctured point:

{s{x},Eval(s, x)}λ∈N,x∈{0,1}n(λ) ≈c {s{x}, r}λ∈N,x∈{0,1}n(λ) ,

where s← {0, 1}λ and s{x} ← Punc(s, x), and r ← {0, 1}m(λ) is sampled in uniform.

8



2.4 Homomorphic Encryption

Definition 2.11 (Encryption Scheme). An encryption scheme consists of three PPT algorithms (Gen, Enc,
Dec) satisfying:

• Syntax:

– Gen(1λ) is a probabilistic algorithm that takes as input 1λ and outputs the keys dk, ek, evk ∈ {0, 1}∗.
– Encek(m) is a probabilistic algorithm that takes as input a message m ∈ {0, 1}∗ and a key ek ∈
{0, 1}∗ and outputs a ciphertext ct ∈ {0, 1}∗.

– Decdk(ct) is a determinisitc algorithm that takes as input a ciphertext ct ∈ {0, 1}∗ and a key
dk ∈ {0, 1}∗ and outputs a message m ∈ {0, 1}∗.

• Correctness: For any λ ∈ N and (dk, ek, evk)← Gen(1λ), message m ∈ {0, 1}∗,

Decdk(Encek(m))) = m

• Semantic Security. For any polynomial-size distinguisher A = {Aλ }λ∈N there exists a negligible
function negl such that for all λ ∈ N,

|Pr [A(ek, evk,Encek(0)) = 1]− Pr [A(ek, evk,Encek(1)) = 1]| ≤ negl(λ) ,

where (dk, ek, evk)← Gen(1λ).

Definition 2.12 (Fully Homomorphic Encryption). A scheme FHE is said to be fully homomorphic en-
cryption scheme if it is an encryption scheme, with an additional PPT algorithm Eval, with the following
additional properties:

1. Full homomorphism: For any polynomial ℓ(λ), large enough λ ∈ N, circuit C of size at most ℓ(λ),
and message m,

Pr
(dk,ek,evk)←Gen(1λ)

[Decdk(Evalek(C,Encek(m))) = C(m)] = 1 .

2. Compactness There exists a fixed polynomial poly, such that for any λ ∈ N and (dk, ek)← Gen(1λ),
message m ∈ {0, 1}∗, and circuit C with input size |m|

|Evalevk(C,Encek(m))| ≤ poly(|C(m)|, λ) .

2.4.1 Chain Homomorphic Encryption

We now turn to define a chain homomorphic encryption scheme. The definition captures the idea of iteratively
evaluating the circuit level by level using a chain of encrypted keys, where Enceki(dki−1) is used to evaluate
the i-th level of the circuit. This is a specific form of leveled homomorphic schemes, which is satisfied by
common constructions. The definition abstracts away the low level details of Gentry’s construction [Gen09].
We first define an ℓ-key-chain, which is an array of length ℓ where the i-th element is Enceki(dki−1).

Definition 2.13 (ℓ-key-chain). Let CHE be an encyrption scheme, let ℓ ∈ N, and let (ek0, dk0), ..., (ekℓ, dkℓ)
be ℓ+ 1 tuples of keys, where for each i, (eki, dki) are in the support of Gen. An ℓ-key-chain is the following
array of ciphertexts

Lℓ = [Encek1(dk0), ...,Encekℓ(dkℓ−1)] .

We say a chain begins with dk0 to indicate the first element in the array Lℓ is Encek1(dk0). Similarly, we
say the chain ends with ekℓ to indicate the last element in the array is Encekℓ(dkℓ−1).

Definition 2.14 (Chain Homomorphic Encryption). An encryption scheme CHE is said to be chain homo-
morphic if there exists a deterministic polynomial algorithm CEval for which the following holds:
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• Chain homomorphism: For any ℓ, λ ∈ N and (dk0, ek0)← CHE.Gen(1λ), message m ∈ {0, 1}∗, and
circuit C with input size |m| and depth at most ℓ, and a ℓ-key-chain Lℓ beginning with dk0 and ending
with ekℓ

Decdkℓ(CEval(Lℓ, C,Encek0(m))) = C(m) .

• Compactness There exists a fixed polynomial poly, such that for any ℓ, λ ∈ N and (dk0, ek0) ←
Gen(1λ), message m ∈ {0, 1}∗, and circuit C with input size |m| and depth at most ℓ, and a ℓ-key-
chain Lℓ beginning with dk0,

|CEval(Lℓ, C,Encek0(m))| ≤ poly(|C(m)|, λ) .

3 Constructing Fully Homomorphic Encryption

3.1 FHE Construction Details

In this section we build fully homomorphic encryption scheme secure against polynomial adversaries.

Chain of encrypted keys. Our FHE encryption scheme has in the background an exponentially long
(≈ 2λ-long) chain of encrypted keys. The i-th node in the chain is the (i − 1)-th decryption key encrypted
under the i-th encryption key, i.e. CHE.Enceki(dki−1).

Partition the chain to intervals. We partition the range [0, 2λ − 1] into λ intervals. For 1 ≤ j ≤ λ− 1,
the j-th interval is of length 2j and consists of the nodes in the range [2j , 2j+1 − 1] in the chain. For j = 0
we add 0 to the first interval, and set the interval to be [0, 1]. For 0 ≤ i ≤ 2λ − 1 we denote by J(i) the
index j of the corresponding interval where i resides.

Compressing the intervals. The first interval j = 0 is just CHE.Encek1(dk0). For j ≥ 1, the scheme
compresses the intervals using the circuits {EVKj} and puzzles {Zj} in the following manner:

• The first node of the j-th interval, corresponding to the index 2j in the chain, is provided by the puzzle
Zj = Puzzle.Gen(i,CHE.Enceki(dki−1)).

• The rest of the nodes are compressed by EVKj . The circuit EVKj admits inputs of length j, where
a string in {0, 1}j is identified as an integer in the range [2j , 2j+1 − 1] in the natural way. On input
i ∈ [2j + 1, 2j+1 − 1] the circuit EVKj outputs CHE.Enceki(dki−1) (for i = 2j the circuit outputs ⊥).

Randomness. The randomness for generating the nodes in the chain is derived using a PPRF. The j-th
interval has a corresponding PPRF seed Sj . The seed is used for deriving randomness for the keys and the
encryption.

Ciphertexts. A ciphertext in this scheme is a ciphertext of the underlying leveled homomorphic scheme
CHE, paired with a key index, which is the index of the decryption key from the chain that should be used
for decryption. Formally, an encryption in the scheme is a tuple ct = (c, i), where i represents the key index
in the chain, and the decryption of ct = (c, i) is CHE.Decdki(c). So a fresh encryption is encrypted under ek0,
i.e. of the form (ct, 0), and the output of a homomorphic evaluation of a circuit of depth d1 is decryptable
under dkd1 , i.e. of the form (c, d1).

Keys.

• ek: The encryption key of the scheme is ek0.

• evk: The evaluation key is (CHE.Encek1(dk0), {(iO(EVKj), Zj)}) (the circuits EVKj are defined formally
in Fig. 1 and are padded to some upper bound.)

• dk: The decryption key is the set of seeds {Sj} from which the randomness for generating the keys is
derived using PPRF.
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Function evaluation. A function f is given to FHE.Eval as a circuit compatible with CEval. FHE.Eval
evaluates the function by first producing long enough key-chain L, and then evaluating CEval(L,C, ct).
Finally, the output of the FHE.Eval algorithm contains the output of the last evaluated layer, plus the index
of the current position in the chain of keys, which is the key under which the output is decryptable.

3.2 FHE Formal Description

In this section we formally describe the construction. The construction uses the following primitives:

• Puncturable pseudorandom function PPRF.

• Chain homomorphic encryption scheme CHE.

• Polynomial domain secure indistinguishability obfuscation for circuits iO.

• Puzzle scheme Puzzle.

For simplicity of representation we assume w.l.o.g. the following about CHE schemes:

• CHE.Gen and CHE.Enc use λ bits of randomness and that CHE.CEval is deterministic.

• We assume that a decryption key dk is of size d for some function d = λε, and that an encryption
CHE.Encek(dk) of a decryption key dk is of size λ.

We also assume w.l.o.g. the output of the PPRF is of length 2λ, where the first λ bits of PPRF.Eval(Sj(i), i) are
used as randomness for generating eki, dki, and the second λ bits are used as randomness for the encryption
procedure itself, i.e. in order to encrypt dki−1 under eki.

The scheme is defined formally by the following algorithms:

Algorithm FHE.Gen
Input: A security parameter λ ∈ N.

1. Sample PPRF seeds S0..., Sλ−1 ← {0, 1}λ.
2. Generate decryption keys for the indices { 2k − 1 | 1 ≤ k ≤ λ− 1 } and encryption keys for the

indexes { 2k | 1 ≤ k ≤ λ− 1 }. Each such key eki / dki is generated using pseudorandom coins
derived from Sj(i).

3. For j = 0, ...λ− 1, encrypt dk2j−1 under ek2j by

ctj ← CHE.Encek2j (dk2j−1) .

4. For j = 1, ...λ− 1 generate puzzle with difficulty 2j by

Zj ← Puzzle.Gen(2j , ctj) .

5. For j = 1, ...λ− 1 generate obfuscated key-chain circuits by

evkj ← iO(1λ,EVKj) ,

where the seed Sj is hardwired in EVKj .

6. Set evk0 = ct0.

7. Set evk = evk0, (Z1, evk1), ..., (Zλ−1, evkλ−1).

8. Set dk = S0, ..., Sλ−1.

9. Set ek = ek0.

10. Output dk, ek, evk.

11



Algorithm FHE.Enc
Input: An encryption key ek = ek0 and a message m ∈ {0, 1}∗

1. Encrypt ct← CHE.Encek0(m).

2. Output (ct, 0).

Algorithm FHE.Dec
Input: A decryption key dk = S0, ..., Sλ−1 and a ciphertext ct = (ct′, ℓ)

1. Generate dkℓ using the pseudorandom coins PPRF.Eval(Sj(ℓ), ℓ) by

dkℓ ← CHE.Gen(1λ) ,

2. Output the decryption CHE.Decdkℓ(ct
′).

Algorithm FHE.Eval
Input:

• A circuit C of depth ℓ, compatible with CEval.

• A ciphertext ct = (ct′, 0).

• Evaluation key evk = ct0, (Z1, evk1), ..., (Zλ−1, evkλ−1).

Evaluation:

1. Generate ℓ-key-chain Lℓ by computing evkj(i)(i) for i = 1, ..., ℓ and solving the corresponding

puzzles Zj along the way, i.e. for indexes ℓ ≥ i = 2k for k ≥ 1.

2. Evaluate CEval(Lℓ, C, ct
′) and output the result.

3.3 Security

In this section we state and prove the security of the scheme.

Theorem 3.1 (FHE scheme is secure). If iO is polynomial domain secure indistinguihsability obfuscator,
PPRF is a puncutrable pseudorandom function, CHE is a semantically secure leveled homomorphic encryption
scheme, and Puzzle is URTLP, then the FHE scheme is semantically secure against uniform PPT adversaries.
Furthermore, if Puzzle is also RTLP, then the scheme is semantically secure against non-uniform polynomial
adversaries as well.

Proof. We prove security against non-uniform adversaries assuming the puzzle is sound against non-uniform
adversaries. The uniform case is analogous. Let A = {Aλ}λ∈N be a poly-size adversary. We go through a
series of hybrids. Fix b ∈ {0, 1}, and let pbi the probability of A to output 1 in hybrid i when it gets an
encryption of b, i.e.

pbi = Pr [A(ek, evk,Encek(b)) = 1] .

Let δ(·) = 1
poly(·) be some inverse polynomial function. We will show that for large enough λ it holds that∣∣p00 − p10

∣∣ ≤ δ ,

and achieve semantic security since δ was arbitrary inverse polynomial function. Throughout the proof we
use the following common notations:

cti ← CHE.Enceki(dki−1)

ct′i ← CHE.Enceki(0
d)

Zj ← Puzzle.Gen(2j , ct2j )

Z ′j ← Puzzle.Gen(2j , ct′2j ) .

We go through the following hybrids:

12



Circuit EVKj, for j ≥ 1

Hardwired values:

• Seed Sj .

Input: An index i ∈ [2j + 1, 2j+1 − 1] (described as a j bits string).

1. Generate pseudorandom coins by

(ri−1
g , ri−1

e ) = PPRF.Eval(Sj , i− 1) ,

(rig, r
i
e) = PPRF.Eval(Sj , i) .

2. Generate i− 1-th decryption key using pseudorandom coins ri−1
g by

(dki−1, eki−1) = CHE.Gen(1λ; ri−1
g ) .

3. Generate i-th encryption key using pseudorandom coins rig by

(dki, eki) = CHE.Gen(1λ; rig) .

4. Encrypt dki−1 under eki using pseudorandom coins rie by

cti = CHE.Enceki(dki−1; r
i
e) .

5. Output cti.

Figure 1: Circuit for generating the j-interval of the key chain.

• H0: This is the original security game, when A gets an encryption of b.

• H1: This is like H0, except that for some interval j∗, the puzzle Zj∗ , wrapping an encryption of dk2j∗ ,
is switched with the puzzle Z ′j∗ , wrapping an encryption of 0d instead. It follows by puzzle security

that there exists an index j∗ = O(log(λ)), independent of b, such that |pb0−pb1| ≤
δ(λ)
3 . This is formally

proven in Proposition 3.2.

• Hj
2 for j = j∗ − 1, ..., 1: Each such hybrid is like the previous one, except that the j-th chain interval

generator circuit EVKj (Fig. 1) is switched with the circuit EVK′j (Fig. 2), generating a dummy interval

containing encryptions of 0d. Also, the puzzle Zj , wrapping an encryption of dk2j , is switched with

the puzzle Z ′j , wrapping encryption of 0d. Indistinguishability between Hj∗−1
2 and H1 and between

two consecutive hybrids Hj
2 and Hj−1

2 is proved in Proposition 3.3.

• H3: This is like H1
2, but evk0 is an encryption of 0d under ek1, instead of an encryption of dk0.

Moreover, the encryption key ek = ek0 is sampled using independent randomness. Indistinguishability
is proved in Proposition 3.4.

• H4: This is like H3, but we switch to an encryption of 0 instead of encryption of b. In particular, pb4 is
in fact independent of b. Indistinguishability follows directly from the semantic security of the scheme
CHE.

Now, when we switched between H0 and H1, the probability of A to output 1 changed by at most δ
3 . In

the rest of the hybrids the probability changed by at most µ(λ) for some negligible function µ(·), since there
are O(2j

∗
) = poly(λ, 1

δ(λ) ) = poly(λ) many such hybrids and between two consecutive hybrids it changed

only negligibly. Finally, by triangle inequality, it follows that∣∣p00 − p10
∣∣ ≤ ∣∣p00 − p04

∣∣+ ∣∣p10 − p04
∣∣ ≤ δ(λ)

3
+

δ(λ)

3
+ 2µ(λ) < δ(λ) ,
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Circuit EVK′
j, for j ≥ 1

Hardwired values:

• Seed Sj .

Input: An index i ∈ [2j + 1, 2j+1 − 1] (described as a j bits string).

1. Generate pseudorandom coins by

(rig, r
i
e) = PPRF.Eval(Sj , i) .

2. Generate i-th encryption key using pseudorandom coins rig by

(dki, eki) = CHE.Gen(1λ; rig) .

3. Encrypt 0ℓ under eki using pseudorandom coins rie by

cti = CHE.Enceki(0
d; rie) .

4. Output cti.

Figure 2: Circuit for generating a garbage j-interval

for large enough λ.

Proposition 3.2 (Switching Puzzles). Let δ = 1
poly(λ) , and let A be an adversary of size poly(λ). Then

there exists an interval j∗ = O(log(λ)) such that with respect to it

∀b ∈ {0, 1} |pb0 − pb1| ≤
δ(λ)

3
.

Proof. Fix b ∈ {0, 1}, and let j∗ be an interval number to be decided later, let i∗ = 2j
∗
, and let

cti∗ ← CHE.Enceki∗ (dki∗−1)

ct′i∗ ← CHE.Enceki∗ (0
d) .

Consider the following non-uniform adversary B to the puzzle security game. It samples s0 = cti∗ and
s1 = ct′i∗ and sends them to its challenger, and receives a puzzle Ẑj∗ of difficulty i∗. It then uses the puzzle
to sample an evaluation key of the scheme and runs A. B outputs as A does. Observe that if the puzzle
wraps cti∗ then A runs in the settings of H0, and if the puzzle wraps ct′i∗ then A runs in the settings of H1.
Therefore it follows that B’s success chances are:

Pr

[
α← B(Z)

∣∣∣∣ α← {0, 1}
Z ← Puzzle.Gen(i∗, sα)

]
=

1

2
+

1

2
(pb1 − pb0) .

Consider now a bound on the size of B and denote it as qB(·). Let qA(·) be a polynomial bound on the size of
A. Note the size of the B is a fixed polynomial overhead of the size of A, and in particular this overhead does
not depend on j∗. We may assume w.l.o.g. that qB ≥ 6

δ . Let t(·) the polynomial guaranteed from the puzzle
security with respect to the polynomial qB(·), and set j∗ = ⌈log(t)⌉. So we can apply the puzzle security,
and obtain that for this i∗, B’s success chance is bounded by 1

2 + 1
qB
≤ 1

2 + δ
6 for large enough λ. Since this

argument is symmetrical, we get that
∣∣pb1 − pb0

∣∣ ≤ δ
3 . Moreover, by construction i∗ = poly(λ, 1

δ(λ) ) = poly(λ),

so j∗ = O(log(λ)). Finally, note the same argument holds for both b = 0, 1.

Remark 3.1. Note that the above reduction is actually uniform, and just needs the index i∗, which only
depends on the running time or size of A, its success chance and the overhead of the reduction. In the

14



non-uniform settings B can get it as a non-uniform advice. In the uniform case, note that i∗ = 2O((log(λ)) =
poly(λ) for some polynomial poly. The function i∗(·) can be part of the code of the reduction. Therefore,
the same proof works in case A is uniform and the puzzle is URTLP. We also note that if there is a fixed
polynomial poly(·) such that i∗ = poly(qB), one can compute such appropriate i∗ given only a bound on A’s
running time and success chance, resulting in a single uniform reduction B to all PPT adversaries. We note
the Uniform Relaxed Time-Lock Puzzle from [BGJ+16] has such fixed polynomial gap.

Proposition 3.3 (Moving Along The Chain). Let j∗ = O(log(λ)) be an interval number. Then hybrids H1

and Hj∗−1
2 are indistinguishable, and for any 1 ≤ j ≤ j∗ − 2 hybrids Hj+1

2 and Hj
2 are indistinguishable.

Proof. We prove indistinguishability between Hj+1
2 and Hj

2, indistinguishability between H1 and Hj∗−1
2 is

proved analogously, see Remark 3.2. Fix 1 ≤ j ≤ j∗ − 2, and consider the following hybrids:

• T2j+1 : This is Hj+1
2 , i.e. we the use j-th chain interval generator circuit EVKj (Fig. 1) and the puzzle

Zj , which wraps an encryption dk2j .

• Tk for k = 2j+1 − 1, ..., 2j + 1: In this hybrid we switch to use the hybrid circuit EVKk
j (Fig. 3), which

outputs encryptions of 0d on inputs i ≥ k and encryption of dki−1 on inputs i < k.

• T2j : The circuit hybrid EVK2j+1
j is replaced with the dummy interval generator circuit EVK′j (Fig. 2),

generating a dummy interval containing encryptions of 0d. Also, the puzzle Zj , wrapping an encryption
of dk2j , is switched with the puzzle Z ′j , wrapping encryption of 0d.

We start with proving indistinguishability between Tk+1 and Tk, for k = 2j+1 − 2, ..., 2j + 1. Indistin-
guishability between T2j+1 and T2j+1−1 is proved analogously, see Remark 3.2. Indistinguishability between
T2j+1 and T2j is also proved along the same lines and is handled later. Fix 2j + 1 ≤ k ≤ 2j+1 − 2, and
consider the following hybrids:

• T 0
k+1: This is Tk+1, i.e. the hybrid circuit EVKk+1

j is used.

• T 1
k : In this hybrid we replace the seed Sj hardwired in the circuit EVKk+1

j with a punctured seed Sj [k],

and use hardwired randomness (rkg , r
k
e ) = PPRF.Eval(Sj , k) for generating ekk and the encryption ctk,

respectively. Let C1 be the circuit after the above changes. Note that the circuits C1 and EVKk+1
j

are functionally equivalent, and that their input space is of size poly(λ) since they admit input of size
j ≤ j∗ = O(log(λ)). Thus the hybrids are indistinguishable by polynomial domain security of iO.

• T 2
k+1: In this hybrid the pseudorandom coins (rkg , r

k
e ) = PPRF.Eval(Sj , k) are replaced with independent

uniform coins (r̂kg , r̂
k
e ) ← {0, 1}2λ. Indistinguishability is due to pseudorandomness at the punctured

point of PPRF. Let C2 be the circuit after the above changes.

• T 3
k+1: In this hybrid on the input k a hardwired ciphertext ctk = CHE.Encekk(dkk−1; r̂

k
e ) is used instead

of computed. Let C3 be the circuit after the above changes. Note that C2 and C3 are functionally
equivalent, thus the hybrids are indistinguishable by polynomial domain security of iO.

• T 4
i : In this hybrid the ciphertext ctk is replaced with the ciphertext ct′k = CHE.Encekk(0

d; r̂ke ). Let C4

be the circuit after the above changes. The hybrids are indistinguishable by the semantic security of
CHE.

• T 5
k+1: In this hybrid we switch back to use pseudorandom coins (rkg , r

k
e ) = PPRF.Eval(Sj , k) for gener-

ating ekk and the encryption ct′k, respectively. Indistinguushability is due to pseudorandomness at the
punctured point of PPRF. Let C5 be the circuit after the above changes.
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• T 6
k+1: This is Tk, i.e. the hybrid circuit EVKk

j is used, which outputs an encryption of 0d also on input k.

Note that the circuits EVKk
j and C5 are functionally equivalent, thus the hybrids are indistinguishable

by polynomial domain security of iO.

Finally, proving that T2j+1 and T2j are indistinguishable can be done along the same lines. In particular,

the circuits EVK′j and EVK2j+1
j are functionally equivalent, thus their obfuscations are indistinguishable.

Replacing the puzzle is done by puncturing the seed Sj in position 2j , and then switching from the ciphertext
ct2j to ct′2j , resulting in switching from Zj to Z ′j , and then returning to the original seed Sj .

Remark 3.2. Proving that hybrids T2j+1 and T2j+1−1 are indistinguishable is done by the exact same argu-
ment. In particular, the puzzle Z ′j+1 wraps an encryption of 0d, and thus does not leak information about

Sj . This is also the case when proving indistinguishability between H1 and Hj∗−1
2 .

Proposition 3.4 (Removing dk0). Hybrids H1
2 and H3 are indistinguishable.

Proof. We go through the following hybrids:

• T1: This is H1
2.

• T2: In this hybrid the encryption key ek = ek1 and the encryption CHE.Encek1(dk0) are generated using
uniform independent random coins instead of using pseudorandom coins. Indistinguushability is due
to pseudorandomness at the punctured point of PPRF.

• T3: In this hybrid we switch to encryption CHE.Encek1(0
d) instead of CHE.Encek1(dk0). Indistinguisha-

bility is due to the semantic security of the CHE scheme.
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A Constructing Relaxed Time-Lock Puzzles

In this section we prove Theorem 2.3. We follow the blueprint of [BGJ+16] to construct Relaxed Time-
Lock Puzzle based on SRE and Assumption 2.1, which says that uniform polynomial computations cannot
be computed non uniformly in a fixed polynomial size. In other words, non-uniformity doesn’t provide
arbitrary polynomial speed up for uniform polynomial computations.

Definition A.1 (Succinct Randomized Encoding). A succinct randomized encoding scheme SRE consists of
two algorithms SRE = (Encode,Decode) satisfying the following properties:

• Syntax:

– M̂(x)← Encode(M,x, t, 1λ) is a probabilistic algorithm that takes as input a machine M , input x,

time bound t, and a security parameter 1λ. The algorithms outputs a randomized encoding M̂(x).

– y ← Decode(M̂(x)) is a deterministic algorithm that takes as input a randomized encoding M̂(x)
and computes an output y ∈ {0, 1}λ.

• Functionality: for every input x and machine M such that on input x, M halts in t steps and produces
a λ-bit string, it holds that y = M(x) with overwhelming probability over the coins of Encode.

• Security: There exists a PPT simulator Sim satisfying: for any poly-size distinguisher D = {Dλ}λ∈N
and polynomials m(·), n(·), t(·) there exists a negligible function µ(·), such that for any λ, machine
M ∈ {0, 1}m(λ) and input x ∈ {0, 1}n(λ)∣∣∣∣Pr [D(M̂(x)) = 1

∣∣∣ M̂(x)← Encode(M,x, t(λ), 1λ)
]
−

Pr
[
D(Ŝy) = 1

∣∣∣ Ŝy ← Sim(y, 1m(λ), 1n(λ), t(λ), 1λ)
] ∣∣∣∣ ≤ µ(λ) ,

where y is the output of M(x) after t(λ) steps.

• Efficiency: For any machine M that on input x produces a λ-bit output in t steps:

19



– Encode(M,x, t, 1λ) can be computed in time poly log(t) · poly(|M |, |x|, λ).
– Decode(M̂(x)) can be computed in time t · poly(|M |, |x|, λ).

RTLP Construction. Let SRE be a succinct randomized encoding scheme. For s ∈ {0, 1}λ and t ≤ 2λ,
let M t

s be a machine that on input x ∈ {0, 1}λ, outputs the string s after t steps (we assume here that
t ≥ λ + ω(1)). Further, assume that M t

s is described using 3λ bits (which is possible for large enough λ).
Then, the relaxed time-lock puzzle Puzzle = (Gen,Solve) is defined as follows:

Gen(t, s): Samples M̂ t
s(0

λ)← SRE.Encode(M t
s , 0

λ, t, 1λ).

Solve(Z) : Outputs SRE.Decode(Z).

Theorem A.2. Under Assumption 2.1, Puzzle is RTLP.

Proof. Note that completeness and efficiency follow readily from the functionality and efficiency properties of
the SRE scheme. We therefore focus on proving security. Suppose toward contradiction this is not RTLP, so
there exists a polynomial q(·) such that for every polynomial t(·) there exists q-size adversary A = {Aλ}λ∈N
and infinitely many λ ∈ N and s0, s1 ∈ {0, 1}λ for which it holds that

Pr

[
b← Aλ(Z)

∣∣∣∣ b← {0, 1}
Z ← Puzzle.Gen(t(λ), sb)

]
≥ 1

2
+

1

q(λ)
. (1)

Let Q(·) be any polynomial and let L ∈ DTIME(Q) be a language. Denote by MLs0,s1 a machine that

on input x ∈ {0, 1}λ outputs s1 if x ∈ L and s0 if x ̸∈ L. For Q > λ there exists such machine that runs
in time t = O(Q), since s0, s1 ∈ {0, 1}λ and since L ∈ DTIME(Q). Further, assume w.l.o.g. that MLs0,s1 is
described by 3λ bits (which is possible for large enough λ), and has the same description length as M t

s . Let
A = {Aλ}λ∈N be the corresponding q-size adversary for which Eq. (1) holds, i.e. for infinitely many λ ∈ N
it holds that

Pr [Aλ(Z) = 1 | Z ← Puzzle.Gen(t(λ), s1)]− Pr [Aλ(Z) = 1 | Z ← Puzzle.Gen(t(λ), s0)] ≥
2

q(λ)
. (2)

Consider now the following probabilistic non-uniform decider B′ = {B′λ}λ∈N to L. Given x ∈ {0, 1}λ, B′λ
acts as follows:

• Samples Z := M̂Ls0,s1 ← SRE.Encode(MLs0,s1 , x, t(λ), 1
λ).

• Obtains b← A(Z).

Success Probability. We now show that B′ distinguishes instances x ∈ L from instances x ̸∈ L with
noticeable advantage. For any x ∈ {0, 1}λ, let b ∈ {0, 1} indicate whether x ∈ Lλ, and note that sb =
MLs0,s1(x) = M t

sb
(0λ). Therefore, by the security of the succinct randomized encoding scheme, there exists a

PPT simulator Sim and a negligible function µ(·) such that

Pr [B′λ(x) = 1] =

Pr
[
Aλ(M̂

L
s0,s1) = 1

∣∣∣ M̂Ls0,s1 ← SRE.Encode(MLs0,s1 , x, tλ), 1
λ)
]
=

Pr
[
Aλ(Ŝsb) = 1

∣∣∣ Ŝsb ← Sim(sb, 1
3λ, 1λ, t(λ), 1λ)

]
± µ(λ)

Moreover,

Pr [Aλ(Zb) = 1 | Zb ← Puzzle.Gen(t(λ), sb)] =

Pr
[
Aλ(M̂

t
sb
) = 1

∣∣∣ M̂ t
sb
← SRE.Encode(M t

sb
, 0λ, t(λ), 1λ)

]
=

Pr
[
Aλ(Ŝsb) = 1

∣∣∣ Ŝsb ← Sim(sb, 1
3λ, 1λ, t(λ), 1λ)

]
± µ(λ)
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It follows by our assumption towards contradiction (Eq. (1)) that for infinitely many large enough λ and
any x, x̄ ∈ {0, 1}λ where x ∈ Lλ and x̄ ̸∈ Lλ, it holds that

Pr [B′λ(x) = 1]− Pr [B′λ(x̄) = 1] ≥ 2

q(λ)
− 4µ(λ) ≥ 1

q(λ)
, (3)

To obtain a deterministic decider B = {Bλ}λ∈N for L from B′, we rely on standard amplification showing
that BPP/poly ⊆ P/poly, ([Gol01], theorem 1.3.7). To that end we first construct a decider B′′ = {B′′λ}λ∈N.
Consider the threshold

α :=
minx∈Lλ

Pr [B′λ(x) = 1] + maxx̄ ̸∈Lλ
Pr [B′λ(x̄) = 1]

2
,

The decider B′′ gets α as a non uniform advice, and runs B′ for C · q2(λ) · λ times, for large enough
constant C (C = 10 suffices). It then outputs 1 if B′ outputs 1 at least α-fraction of the times, and otherwise
outputs 0. Then, by standard Chernoff argument,

Pr [B′′λ(x) ̸= L(x)] < 2−λ .

The final decider B is constructed by non-uniformly fixing the random coins of B′′.
Size. By the efficiency of the SRE scheme, the encoding takes time

poly(log(t(λ)) · poly(|M |, |x|, λ) < poly(λ) · poly(|M |, |x|, λ) = p′SRE(λ) = poly(λ) ,

since t = O(Q), and Q is polynomial. So the size of B′λ is at most O(q(λ) + p′SRE(λ)) = qB′(λ) for

some polynomial qB′(·). Since we repeat B′λ for O(q2(λ) · λ) times, the final decider Bλ is of size qB(λ) =
O(q2(λ) · λ · qB′(λ)) = poly(λ). Note the polynomial bound qB(·) does not depend on the polynomial Q(·).

Finally, we achieve a contradiction to Assumption 2.1, with respect to the polynomial qB(·). That is we
get a size-qB circuit family that for any polynomial Q, decides any language L ∈ DTIME(Q) for infinitely
many input length λ.
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Circuit EVKk
j , for j ≥ 1

Hardwired values:

• Seed Sj .

Input: An index i ∈ [2j + 1, 2j+1 − 1] (described as a j bits string).

1. If i ≥ k:

• Generate pseudorandom coins by

(rig, r
i
e) = PPRF.Eval(Sj , i) .

• Generate i-th encryption key using pseudorandom coins rig by

(dki, eki) = CHE.Gen(1λ; rig) .

• Encrypt 0ℓ under eki using pseudorandom coins PPRF.Eval(Sj , i) by

cti = CHE.Enceki(0
d; rie) .

• Output cti.

2. Otherwise:

• Generate pseudorandom coins by

(ri−1
g , ri−1

e ) = PPRF.Eval(Sj , i− 1) ,

(rig, r
i
e) = PPRF.Eval(Sj , i) .

• Generate i− 1-th decryption key using pseudorandom coins ri−1
g by

(dki−1, eki−1) = CHE.Gen(1λ; ri−1
g ) .

• Generate i-th encryption key using pseudorandom coins rig by

(dki, eki) = CHE.Gen(1λ; rig) .

• Encrypt dki−1 under eki using pseudorandom coins rie by

cti = CHE.Enceki(dki−1; r
i
e) .

• Output cti.

Figure 3: Circuit for generating the j-interval of the key chain, punctured on inputs i ≥ k.
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