
Compressed M-SIDH: An Instance of
Compressed SIDH-like Schemes with Isogenies of

Highly Composite Degrees

Kaizhan Lin1, Jianming Lin1, Shiping Cai1, Weize Wang1, and Chang-An
ZhaoB1,2

1 School of Mathematics, Sun Yat-sen University,
Guangzhou 510275, P. R. China

{linkzh5,linjm28,caishp6,wangwz}@mail2.sysu.edu.cn
zhaochan3@mail.sysu.edu.cn

2 Guangdong Key Laboratory of Information Security,
Guangzhou 510006, P. R. China

Abstract. Recently, SIDH was broken by a series of attacks. To avoid
the attacks, several new countermeasures, such as M-SIDH and binSIDH,
have been developed. Different from SIDH, the new SIDH-like schemes
have relatively large public key sizes. Besides, the orders of the torsion
groups considered in new SIDH-like schemes are the products of many
primes. Therefore, the key compression techniques in SIDH can not be
directly applied to these schemes. It remains an open problem to com-
press the public key in new SIDH-like schemes.
This paper takes M-SIDH as an instance to explore how to compress the
public key in new SIDH-like schemes efficiently. We propose compressed
M-SIDH, which is reminiscent of compressed SIDH. We also show that
our approach to compress the public key of M-SIDH is valid and prove
that compressed M-SIDH is secure as long as M-SIDH is secure. In ad-
dition, new algorithms to accelerate the performance of public-key com-
pression in M-SIDH are presented in this paper.
We provide a proof-of-concept implementation of compressed M-SIDH
in SageMath. Experimental results show that our approach fits well with
compressed M-SIDH. The techniques proposed in this work also benefit
public-key compression in other SIDH-like protocols, such as binSIDH
and terSIDH. Besides, our method for torsion basis generation has the
potential to improve the performance of SQALE and dCSIDH.

Keywords: M-SIDH · Post-quantum Cryptography · Public-key Com-
pression · SIDH

1 Introduction

Since Supersingular Isogeny Diffie-Hellman (SIDH) [27] was proposed by Jao and
De Feo, isogeny-based cryptosystems are attractive in post-quantum cryptogra-
phy. As the NIST [2] round 4 finalist, Supersingular Isogeny Key Encapsulation
(SIKE) [4] is famous for its small public key size.

To make SIDH/SIKE more attractive, a large variety of works target public-
key compression in SIDH/SIKE to reduce the public key size. Public-key com-
pression in SIDH was first proposed by Azarderakhsh et al. [5]. The key was
further compressed by Costello et al. [17]. There are three main procedures in
public-key compression in SIDH: torsion basis generation, pairing computation
and discrete logarithm computation. Zanon et al. [45] utilized several techniques
to accelerate the implementation significantly. Later, Naehrig and Renes [34]
adapted the dual isogeny to speed up the performance of pairing computation,
while Pereira, Doliskani and Jao [36] extended the work of [45] and gave a fast
method to generate binary torsion basis. However, most of the techniques re-
quire large storage for precomputation. An efficient method to compute discrete
logarithms with smaller lookup tables was proposed in [25]. Lin et al. [28] im-
proved the Miller evaluation, making the implementation faster with less storage.
Several works [29,35] also managed to compress the key using other approaches.

Recently, Castryck and Decru [11] proposed an efficient key recovery attack
on SIDH and SIKE if the endomorphism ring of the starting curve is known.
Maino et al. [31] gave a subexponential algorithm to attack SIDH with arbitrary
starting curves. Inspired by these two works, Robert [40] presented a determin-
istic polynomial time attack on SIDH in all cases. The attacks also apply to
Séta [20] and B-SIDH [16].

However, not all is lost. All the mentioned attacks entirely rely on the fol-
lowing information:

– the degree of the secret isogeny;
– the torsion point images.

Therefore, the attacks do not apply to a few SIDH-based schemes such as the
isogeny-based Proof of Knowledge proposed in [19]. Furthermore, one could con-
struct new schemes by hiding either of the above information to avoid the at-
tacks. Moriya managed to hide the degree of the secret isogenies and proposed
a new SIDH-like scheme, while Fouosta proposed another scheme, called M-
SIDH (Masked torsion points SIDH), to avoid the attacks by masking auxiliary
points [33,21,22]. However, to satisfy the desired security, both of SIDH-like
schemes require relatively large parameter sizes, resulting in larger public key
sizes compared with those of SIDH. Since the new isogeny degrees are the prod-
ucts of many prime factors, the approach to compress the public key of SIDH can
not be directly extended to the case of new SIDH-like schemes. Therefore, how
to compress the public key in new SIDH-like schemes is still an open problem.

In this paper, we give an approach to overcome this problem. We take M-
SIDH as an instance and propose several new techniques to compress the public
key of M-SIDH, whose size is 6 log2 p bits. This work is summarized as follows:

– We propose methods to compress the public key of M-SIDH. Reminiscent
of compressed SIDH/SIKE, our method to compress the key also involves
torsion basis generation, pairing computation and discrete logarithm com-
putation. We prove that the problem underlying compressed M-SIDH is the

2

same as that of M-SIDH, and the key size is reduced from 6 log2 p bits to
4 log2 p bits.

– We propose several techniques to enhance the performance of compressed
M-SIDH. Firstly, we propose a novel way to generate torsion basis. In par-
ticular, to determine whether two points can form a torsion basis we utilize
compressed pairings and Lucas sequences. Secondly, an efficient approach is
proposed for discrete logarithm computation. Finally, we utilize the Chinese
Remainder Theorem to further compress the public key, reducing the key
size to around 3.5 log2 p bits.

– We give the first instantiation of compressed M-SIDH in SageMath. Exper-
imental results verify the validity of our algorithms.

It should be noted that our techniques also benefit other isogeny-based pro-
tocols. Our method can be applied to compress the public key of binSIDH and
terSIDH [7]. For some non SIDH-like schemes, such as SQALE [14] and dC-
SIDH [10], the technique to generate a full-torsion basis can also be utilized for
speeding up their implementations.

Very recently, Castryck and Vercauteren [13] introduced a polynomial time
attack to break M-SIDH when the initial (or end) curve is defined over the
base field. This attack also applies to the case that the initial (or end) curve
is connected to its Frobenius conjugate by a small degree isogeny. However,
with overwhelming probability M-SIDH is still secure when the initial curve
is generated by using an MPC protocol, which is proposed in [6]. Therefore,
compressed M-SIDH is still secure as well.

The rest of this paper is as follows. In Section 2 we recall the reduced Tate
pairing, compressed pairings, Lucas sequences, M-SIDH and public-key compres-
sion in SIDH/SIKE. Section 3 sketches our approach to compress the public key
of M-SIDH and proves that compressed M-SIDH is secure if M-SIDH is secure.
In Section 4 we present several novel techniques to compress the public key of
M-SIDH efficiently. Section 5 reports our implementation and we conclude in
Section 6.

2 Preliminaries

In this section, we first introduce the reduced Tate pairings, compressed pair-
ings and Lucas sequences. Next, we recall M-SIDH. Finally, we review several
techniques used in public-key compression in SIDH/SIKE.

2.1 Reduced Tate pairings

Let E be an elliptic curve over the finite field Fq, where q is a power of a prime
p. Let µn be the cyclic group of order n in F∗q with n|q − 1, and fn,R to be a
rational function on E satisfying div(fn,R) = n(R)− n(O), where R ∈ E(Fq)[n]
and O is the point at infinity. The reduced Tate pairing [23] is defined as:

3

en : E(Fq)[n]× E(Fq)/nE(Fq)→ µn,

(R,S) 7→ fn,R(S)
q−1
n .

Similar with the Tate pairing [43], the reduced Tate pairing has the following
properties:

– Bilinearity: ∀R,R1, R2 ∈ E(Fq)[n], ∀S, S1, S2 ∈ E(Fq)/nE(Fq),

en(R,S1 + S2) = en(R,S1) · en(R,S2),

en(R1 +R2, S) = en(R1, S) · en(R2, S).

– Non-degeneracy: If en(R,S) = 1 for all S ∈ E(Fq)/nE(Fq) then R = O, and
if en(R,S) = 1 for all R ∈ E(Fq)[n] then S ∈ nE(Fq).

– Compatibility with isogenies: Assume φ : E → E′ is a non-zero isogeny
of degree m defined over Fq. For R ∈ E(Fq)[n], S ∈ E(Fq)/nE(Fq), R′ ∈
E′(Fq)[n],

en(φ(R), φ(S)) = en(R,S)
m,

en(R
′, φ(S)) = en(φ̂(R

′), S).

2.2 Compressed pairings and Lucas sequences

Compressed pairings were first introduced by Scott and Barreto [41]. This kind
of pairings reduces the size of pairing values by replacing them with their traces.
Assume that the elliptic curve is supersingular and it is defined over Fp2 =
Fp[i]/〈i2+1〉 with p ≡ 3 mod 43. In this case, computing the trace of the pairing
value is more efficient than computing the pairing value itself.

The final exponentiation of pairings consists of a raising to the power of p−1
and the power of (p+1)/n. The former one is an easy part, but the latter requires
relatively large computational resources. Thanks to Lucas sequences [18, Section
3.6.3], one can efficiently obtain trFp2/Fp

(γz) from trFp2/Fp
(γ) for γ ∈ µp+1 and

z = (z0z1 · · · zt)2 ∈ N, as shown in Algorithm 1. Therefore, this technique can
improve the costly part of the final exponentiation.

Lucas sequences have the potential to improve the exponentiation in the
group µp+1 as well. According to the observation in [41], for γ = γ1+γ2 ·i ∈ µp+1

and z ∈ N,

(γ1 + γ2 · i)z =
LS(γ, z)

2
+
γ1 · LS(γ, z)− LS(γ, z − 1)

2γ21 − 2
· γ2 · i.

Note that when computing LS(γ,z − 1), the explicit value of LS(γ,z) is also
obtained. When the inverse operation is not costly (for instance one can adapt
the binary GCD algorithm) and z is large, utilizing Lucas sequences will improve
the performance significantly. The main idea is summarized in Algorithm 2.
3 Indeed, the techniques proposed in this subsection also works when the elliptic curve
is defined over Fq2 , where q is a prime power.

4

Algorithm 1 LS: Lucas sequences
Require: trF

p2
/Fp(γ) with γ ∈ µp+1, z = (z0z1 · · · zt)2 ∈ N;

Ensure: trF
p2

/Fp(γ
z).

1: v0 ← 2, v1 ← trF
p2

/Fp(γ), tmp← v1;
2: for each j ∈ {0, 1, · · · , t} do
3: if zj = 1 then
4: v0 ← v0 · v1, v0 ← v0 − tmp, v1 ← v21 , v1 ← v1 − 2;
5: else
6: v0 ← v20 , v0 ← v0 − 2, v1 ← v0 · v1, v1 ← v1 − tmp;
7: end if
8: end for
9: return v0.

Algorithm 2 ELS: Exponentiation using Lucas sequences
Require: γ = γ1 + γ2 · i ∈ µp+1, z ∈ N+;
Ensure: γz.
1: tmp1 ← LS(γ, z), tmp2 ← LS(γ, z − 1);

//when computing LS(γ,z − 1), LS(γ,z) is also obtained
2: tmp1 ← tmp1/2, tmp2 ← tmp2/2;
3: tmp2 ← γ1 · tmp1 − tmp2, tmp2 ← tmp2/(γ

2
1 − 1), tmp2 ← tmp2 · γ2;

4: return tmp1 + tmp2 · i.

2.3 M-SIDH

Let p = 4 · f · `1 · `2 · · · `t − 1, where the primes `1, `2, · · · , `t are the first t
odd primes and f is a small cofactor such that p is a prime. Denote `0 = 2,
NA = `0 · `2 · · · `t−1 and NB = `1 · `3 · · · `t. Define E0 be a supersingular curve
over Fp2 together with E0[NA] = 〈PA, QA〉 and E0[NB] = 〈PB , QB〉. Similar to
the SIDH protocol, M-SIDH proceeds as follows:

– Key Generation: Alice chooses a random integer sA ∈ Z/NAZ as her se-
cret key. She computes the point PA + [sA]QA and constructs the NA-
isogeny φA with kernel 〈PA + [sA]QA〉. Then she evaluates two torsion
point images φA(PB), φA(QB) and the image curve EA. Finally, she trans-
mits the tuple (EA, [a]φA(PB), [a]φA(QB)) to Bob, where a ∈ µ2(NB) =
{x ∈ Z/NBZ|x2 ≡ 1 mod NB}. Similar to Alice, Bob selects a random
integer sB ∈ Z/NBZ to compute PB + [sB]QB as the kernel generator
of the NB-isogeny φB . His public key is (EB , [b]φB(PA), [b]φB(QA)) with
b ∈ µ2(NA) = {x ∈ Z/NAZ|x2 ≡ 1 mod NA}.

– Key Agreement: Alice begins her key agreement phase after receiving Bob’s
public key. She first checks whether eNA

([b]φB(PA), [b]φB(QA)) is equal to
eNA

(PA, QA)
NB , if not she aborts. Then she computes the point [b]φB(PA)+

[sA]([b]φB(QA)) to construct the NA-isogeny φ′A with kernel 〈φB(PA) +
[sA]φB(QA)〉 and regards the j-invariant j(EBA) of the image curve as her
shared key. Analogously, Bob checks whether eNB

([a]φA(PB), [a]φA(QB)) is

5

equal to eNB
(PB , QB)

NA , if not he aborts. He computes the image curve
EAB of the NB-isogeny φ′B and the shared key j(EAB).

The security of M-SIDH relies on the hardness of Problem 1:

Problem 1. Let NA = `0`2 · · · `t−1 and NB = `1`3 · · · `t be two smooth integers,
and f be a small cofactor such that p = NANBf − 1 is a prime, with NA ≈ NB .
Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) = (p + 1)2 =
(NANBf)

2. Suppose that E0[NA] = 〈PA, QA〉. Let φB : E0 → EB be a uniformly
random NB-isogeny and let b be a uniformly random element of µ2(NA) = {x ∈
Z/NAZ|x2 ≡ 1 mod NA}.
Given E0, PA, QA, EB , [b]φB(PA), [b]φB(QA), compute φB .

2.4 Public-key compression in SIDH/SIKE

In this subsection, we briefly review the main techniques utilized in public-key
compression in SIDH/SIKE. For simplicity, we only consider how to compress
the key (EB , φB(PA), φB(QA)).

The main idea of public-key compression is to deterministically generate
a basis of the NA-torsion group, and then use this basis to linearly represent
φB(PA) and φB(QA), i.e.,[

φB (PA)
φB (QA)

]
=

[
a0 b0
a1 b1

] [
UA
VA

]
. (1)

After computing a0, a1, b0 and b1, Bob checks whether a0 is invertible in Z/NAZ×.
If so, Bob sends (EB , 0, a−10 b0, a

−1
0 a1, a

−1
0 b1) to Alice. Otherwise, the element b0

must be invertible in Z/NAZ× and Bob transmits (EB , 1, b
−1
0 a0, b

−1
0 a1, b

−1
0 b1)

instead.
Assume that a0 ∈ Z/NAZ×, while the other case is similar. After receiving

Bob’s public key, Alice can compute the kernel of the isogeny φ′A as follows [17]:

〈φB(PA) + [sA]φB(QA)〉 = 〈[a0]UA + [b0]VA + [sAa1]UA + [sAb0]VA〉
= 〈UA + [a−10 b0]VA + [sAa

−1
0 a1]UA + [sAa

−1
0 b0]VA〉

= 〈[1 + sA(a
−1
0 a1)]UA + [(a−10 b0) + sA(a

−1
0 b0)]VA〉.

Therefore, Alice can complete the key agreement phase without recovering φA(PB)
and φA(QB).

It remains how to obtain a−10 b0, a−10 a1 and a−10 b1. Zanon et al. [45] proposed
a new technique to speed up the performance. Since φB(PA) and φB(QA) also
form a basis of EB [NA], they can also linearly represent UA and VA, i.e.,[

UA
VA

]
=

[
c0 d0
c1 d1

] [
φB (PA)
φB (QA)

]
. (2)

It is easy to verify that

(a−10 b0, a
−1
0 a1, a

−1
0 b1) = (−d−11 d0/D,−d−11 c1/D, d

−1
1 c0/D),

6

where D = c0d1 − c1d0 mod NA. With the help of bilinear pairings,

h0 = eNA
(φB (PA) , φB (QA)) = eNA

(PA, QA)
NB ,

h1 = eNA
(φB (PA) , UA) = eNA

(φB (PA) , c0φB (PA) + d0φB (QA)) = hd00 ,

h2 = eNA
(φB (PA) , VA) = eNA

(φB (PA) , c1φB (PA) + d1φB (QA)) = hd10 ,

h3 = eNA
(φB (QA) , UA) = eNA

(φB (QA) , c0φB (PA) + d0φB (QA)) = h−c00 ,

h4 = eNA
(φB (QA) , VA) = eNA

(φB (QA) , c1φB (PA) + d1φB (QA)) = h−c10 .
(3)

Note that h0 only depends on public parameters. Therefore, one can recover
c0, c1, d0, d1 by computing four discrete logarithms of h1, h2, h3, h4 to the base
h0 efficiently with precomputed lookup tables [45,25,34,28]. Another approach
is to compute only three discrete logarithms of h1, h3, h4 (resp. h2, h3, h4) to
the base h2 (resp. h1) [29]. Compared with the former method, the latter only
needs to compute discrete logarithms, but the precomputation technique is not
available since h2 (resp. h1) can not be computed in advance.

3 Public-key Compression in M-SIDH

In this section, we sketch our approach to compress the public key of M-SIDH
and give Proposition 2 to show that compressed M-SIDH is secure if Problem 1
is hard.

3.1 Setup Modification

Different from the setup in M-SIDH, we make a minor modification of the
parameters p, NA and NB for compressed M-SIDH. In our implementation, we
set the parameter p as

p = 4 · `1 · `2 · · · `t−1 · `t · `t+1 − 1,

where `1, `2, · · · , `t are the first t odd primes, while the prime `t+1 is slightly
larger than `t such that p is a prime. Correspondingly, define NA = `1 · `3 · · · `t
and NB = `2 · `4 · · · `t+1.

Clearly, this modification does not affect the hardness of Problem 1. The
main reason why we modify the parameters is to compress the public key with
the help of the reduced Tate pairing correctly. We will give a more detailed
explanation in the following. Another advantage of applying the reduced Tate
pairing is that the pairing computation would be more efficient compared to the
case when using the Weil pairing [32].

3.2 Our approach to compress the key

Our approach to compress the public key of M-SIDH is reminiscent of public-key
compression in SIDH/SIKE. Given the tuple (EB , φB(PA), φB(QA)), a sketch of
our approach to compress the key is as follows:

7

1. Torsion basis generation: deterministically generate {UA, VA} such that 〈UA, VA〉 =
EB [NA];

2. Pairing computation: Compute the following four reduced Tate pairings:

h1 = eNA
(φB(PA), UA) , h2 =eNA

(φB(PA), VA) ,

h3 = eNA
(φB(QA), UA) , h4 = eNA

(φB(QA), VA) ;
(4)

3. Discrete logarithm computation: Compute discrete logarithms of hi, i =
1, 2, 3, 4 to the base h0 = eNA

(PA, QA)
NB . Randomly select b ∈ µ2(NA) and

then compute si = b · logh0
(hi).

The compressed key is (EB , s1, s2, s3, s4). A question raised here is whether
Equation (3) is correct in compressed M-SIDH when applying the reduced Tate
pairing, because in general we do not have eNA

(P, P) = 1 for every P ∈
EB(Fp2)[NA]. Now we prove the following proposition to confirm that Equa-
tion (3) still holds in this situation.

Proposition 1. Let E be a supersingular elliptic curve defined over Fp2 with
p ≡ 3 mod 4. Suppose that N is odd and it divides p+1. Then eN (P, P) = 1 for
every P ∈ E(Fp2)[N].

Proof. Since isogeny graphs for supersingular elliptic curves have the Ramanujan
property [37], there exists an isogeny ψ : E → E′ of degree 2•, where the elliptic
curve E′ : y2 = x3 + x has j-invariant 1728. Since N is odd, we can deduce that
ψ(P) has order N for every P ∈ E(Fp2)[N]. Therefore,

eN (ψ(P), ψ(P)) = eN (P, P)2
•
.

This implies that eN (P, P) = 1 for every P ∈ E(Fp2)[N] if and only if eN (P ′, P ′) =
1 for every P ′ ∈ E′(Fp2)[N]. In the following, we prove that eN (P ′, P ′) = 1 for
every P ′ ∈ E′(Fp2)[N].

From E′(Fp) ∼= Z/(p+ 1)Z, we can find a point P0 ∈ E′(Fp)[N] of order N .
Since the distortion map

ι : E′ → E′,

(x, y) 7→ (−x, iy).
is an isomorphism of E′ such that P0 and ι(P0) are linearly independent. This
implies that 〈P0, ι(P0)〉 = E′(Fp2)[N]. Hence, for every P ′ there exist r, s ∈
Z/NZ such that P ′ = [r]P0 + [s]ι(P0). As a consequence,

eN (P ′, P ′) = eN ([r]P0 + [s]ι(P0), [r]P0 + [s]ι(P0))

= eN (P0, P0)
r2eN (P0, ι(P0))

rseN (ι(P0), P0)
rseN (ι(P0), ι(P0))

s2

= eN (P0, P0)
r2eN (P0, ι(P0))

rseN (P0, ι̂(P0))
rseN (P0, P0)

deg(ι)s2

= eN (P0, P0)
r2+deg(ι)s2eN (P0, ι(P0) + ι̂(P0))

rs.

Since the trace of ι is 0 and deg(ι) = 1, we have

eN (P ′, P ′) = eN (P0, P0)
r2+s2eN (P0,O)rs = eN (P0, P0)

r2+s2 . (5)

8

Note that P0 ∈ E′(Fp)[N] and the final exponentiation is (p − 1) · p+1
N . There-

fore, eN (P0, P0) is equal to 1. It follows from Equation (5) that eN (P ′, P ′) = 1
for every P ′ ∈ E′(Fp2)[N], i.e., eN (P, P) = 1 for every P ∈ E(Fp2)[N]. This
completes the proof.

From Proposition 1, it is easy to see that our method to compress the key is
valid.

Corollary 1. One can compress the public key by performing the above proce-
dures.

Remark 1. In the compressed SIDH protocol, it is impossible that none of hi is a
generator. However, it happens in compressed M-SIDH with small possibility. For
example, in Equation (2) the prime `2 may divide c0 and d1, while `4 may divide
d0 and c1. This is the reason why Bob needs to compute four discrete logarithms
to the base h0 instead of computing three discrete logarithms to one of hi. In
addition, it is possible that none of si is invertible in Z/NAZ. Hence, we can not
further compress the key by directly applying the technique proposed by Costello
et al. [17, Section 6]. In Section 4.3, we will propose a method to overcome this
issue, compressing the key size from 4 log2 p bits to around 3.5 log2 p bits.

Remark 2. As mentioned in Section 1, one can utilize dual isogenies to optimize
pairing computation [34,28] in compressed SIDH. However, the dual isogeny
construction in compressed M-SIDH is much more costly compared to that of
compressed SIDH. According to our experiments, directly computing h1, h2, h3
and h4 in Equation (4) without the dual isogeny technique is more efficient.
Therefore, we do not utilize the dual isogeny technique in our implementation.

In the following, we show that compressed M-SIDH is secure as long as Prob-
lem 1 is hard.

Proposition 2. Compressed M-SIDH is secure if Problem 1 is hard.

Proof. Without loss of generality, we only consider Bob’s case, while the other
case is similar. Obviously, from the compressed key one can deduce that[

[b]φB(PA)
[b]φB(QA)

]
=

1

D

[
s2 −s1
s4 −s3

] [
UA
VA

]
.

where D = s1s4 − s2s3 mod NA and b ∈ µ2(NA) is unknown. Conversely, given
the uncompressed key (EB , [b]φB(PA), [b]φB(QA)) where b is unknown, one can
compress it by adapting the procedures we proposed above. Therefore, com-
pressed M-SIDH is secure as long as M-SIDH is secure, i.e., Problem 1 is hard.

4 Optimizations on Compressed M-SIDH

To avert the attacks proposed in [11,31,40], M-SIDH requires two large scalar
multiplications of length ≈ √p, while compressed M-SIDH avoids this procedure.

9

Instead, we compute si = b · logh0
(hi), i = 1, 2, 3, 4 to mask the torsion points.

However, it should be noted that the performance of compressed M-SIDH is still
not as efficient as that of M-SIDH because of torsion basis generation, pairing
computation and discrete logarithm computation. In this section we will opti-
mize the performance of key compression to close the gap. As before, we only
handle Bob’s case and Alice can also adapt all the techniques to accelerate the
performance.

4.1 Torsion basis generation

Since NA and NB are not the power of 2 and 3, torsion basis generation in
compressed M-SIDH can not benefit from several techniques such as shared
Elligator [45] and 3-descent of elliptic curves [17]. In this subsection we propose
a new method to deterministically generate {UA, VA} such that 〈UA, VA〉 =
EB [NA], while torsion basis generation of the NB-torsion group of EA is similar.
Note that some of the results proposed in this section rely on the fact that NA
is squarefree. For simplicity, we abbreviate UA and VA to U and V , respectively.

Generating one of the torsion points is relatively easy: we can determin-
istically choose a point of order NA and then set it as U . After U is suc-
cessfully generated, we deterministically generate another point V such that
〈U, V 〉 = EB [NA].

As for the first torsion point, a naive way is to deterministically sample a
point R ∈ EB(Fp2), and then check whether the order of [4NB]R is NA. Here
we propose Algorithm 3 to generate U , which is more efficient than the naive
approach. We also output {Uj |j ∈ I} with I = {j|`j divides NA}, which is useful
for the generation of the second torsion point V .

Algorithm 3 GenerationU: deterministically generate a point of order NA
Require: EB/Fp2 : a supersingular curve, I : {j|`j divides NA};
Ensure: A point U ∈ EB(Fp2) of order NA, {Uj |j ∈ I}.
1: Deterministically generate a point R ∈ EB(Fp2) using Elligator;
2: U ← [4NB]R;
3: {Uj} ←BCM(U, I); // Algorithm 4
4: IU ← {j|Uj = O};
5: while IU 6= ∅ do
6: Deterministically generate a point R ∈ EB(Fp2) using Elligator;
7: U ′ ← [4NB]R;
8: U ′ ← [

∏
j∈I\IU

`j]U
′;

9: {U ′j} ←BCM(U ′, IU); // Algorithm 4
10: for each j ∈ {k|U ′k 6= O} do
11: U ← U + U ′j , Uj ← U ′j ;
12: end for
13: IU ← {j|U ′j = O};
14: end while
15: return U , {Uj |j ∈ I}.

10

The main idea of Algorithm 3 is as follows.
Firstly, we deterministically generate a point R using Elligator [9] and set

U = [4NB]R.
Next, we use Algorithm 4 to compute Uj = [NA/`j]U , where j ∈ I =

{j|`j divides NA}. Since NA is squarefree, it is easy to see that Uj is a point
of order `j if `j divides the order of U . Otherwise, Uj is the point at infinity.

Denote IU = {j|Uj = O}. If IU is not empty, we deterministically sample
another point R and compute U ′ = [4NB]R. According to IU , we compute
U ′j = [NA/`j]U

′ where j ∈ IU . If U ′j is not the point at infinity, set U = U +U ′j .
Finally, let IU = {j|U ′j = O}. We repeat the above progress to generate U ′ until
IU is empty. As a result, for each j ∈ I we have Uj 6= O. Therefore, U is a point
of order NA.

Remark 3. The approach to compute Uj is inspired by the public-key valida-
tion of CSIDH [12]. The authors check the key by generating a point and then
check the order of the point using a divide-and-conquer approach [42]. Although
this approach consumes slightly larger memory, it performs more efficient than
directly computing each Uj .

Algorithm 4 BCM: Batch cofactor multiplication
Require: U : a point on EB [NA], IU : a subset of I = {j|`j divides NA};
Ensure: {Uk|k ∈ IU}, where Uk = [

∏
j∈IU\{k}

`j]U .
1: n′ ← #IU ;
2: if n′ = 1 then
3: return {U};
4: end if
5: m′ ← bn′/2c;
6: Divide IU into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
7: L1 ←

∏
i∈I2 `i, L2 ←

∏
i∈I1 `i;

8: left← [L1]U ;
9: right← [L2]U ;
10: r1 ←BCM(left,I1);
11: r2 ←BCM(right,I2);
12: return r1 ∪ r2.

In the following we focus on how to deterministically generate another point
V such that 〈U, V 〉 = EB [NA]. A naive approach is to generate V with respect
to the above method, and then check if U and V can generate the NA-torsion
group. However, this method is not so practical because the success probability
is relatively small. Here we present a more efficient method to generate V thanks
to Proposition 3.

Proposition 3. Assume that U is a point of order NA = `1`3 · · · `t on EB, and
V a point on EB(Fp2). Let I = {j|`j divides NA}, Uk = [

∏
j∈I\{k} `j]U . Denote

11

by ord(γ) the order of γ in µNA
. Then

ord(eNA
(U, V)) =

∏
j∈I

e`j (Uj ,V)6=1

`j . (6)

In particular, eNA
(U, V) is a generator of µNA

if and only if 〈U, V 〉 = EB [NA].

Proof. Let sk =
∏

j∈I\{k}
`j and s′k = s−1k mod `k. From Uk = [

∏
j∈I\{k} `j]U we

have U =
∑
k∈I [s

′
k]Uk. Utilizing the bilinearity of the reduced Tate pairing,

eNA
(U, V)

=eNA
([s′1]U1, V) · eNA

([s′3]U3, V) · · · eNA
([s′t]Ut, V)

=eNA
(U1, V)s

′
1 · eNA

(U3, V)s
′
3 · · · eNA

(Ut, V)s
′
t .

(7)

From [24, Theorem IX.9], we have

eNA
(Uk, V) = e`k(Uk, V).

Let Vk = [
∏
j∈I\{k} `j]V . Obviously, e`k(Uk, V) = 1 if and only if e`k(Uk, Vk) = 1.

In the following, we will prove that Vk and Uk are linearly dependent if and
only if e`k(Uk, Vk) = 1, i.e., eNA

(Uk, V) = 1.
We first assume that Vk and Uk are linearly dependent. Then we have

– Vk = O, or
– Vk 6= O, but Vk ∈ 〈Uk〉,

and vice versa. It follows from Proposition 1 that e`k(Uk, Vk) = 1. Conversely, if
Vk and Uk are linearly independent, we can easily deduce that eNA

(Uk, V) 6= 1
from the non-degeneracy of the reduced Tate pairing. In this case, eNA

(Uk, V)
is a generator of the group µ`k .

It is clear that eNA
(Uk, V) 6= 1 if and only if eNA

(Uk, V)s
′
k 6= 1. According to

Equation (7), the order of eNA
(U, V) depends on the order of each eNA

(Uk, V):

ord (eNA
(U, V)) =

∏
k∈I

ord
(
eNA

(Uk, V)s
′
k

)
=
∏
k∈I

ord(eNA
(Uk, V)).

If eNA
(Uk, V) is not equal to 1, then eNA

(U, V) has order divisible by `k. Oth-
erwise, we know that `k does not divide the order of eNA

(U, V). Consequently,
we have Equation (6).

If eNA
(U, V) is a generator of µNA

, for each k we have e`k(Uk, Vk) 6= 1, thus
Uk and Vk are linearly independent. It follows that 〈Uk, Vk〉 = EB [`k] for each
k. It should be noted that

EB [NA] ∼= EB [`1]⊕ EB [`3]⊕ · · · ⊕ EB [`t]. (8)

12

Therefore, 〈U, V 〉 = EB [NA]. Suppose that 〈U, V 〉 = EB [NA], and now we are
going to prove eNA

(U, V) ∈ µNA
is of order NA. Assume that `k does not divide

the order of eNA
(U, V) ∈ µNA

. Then

eNA
(U, V)NA/`k = eNA

([NA/`k]U, V) = eNA
(Uk, V) = e`k(Uk, Vk) = 1.

This induces 〈Uk, Vk〉 ∼= Z/`kZ. From Equation (8), we can deduce that {U, V }
is not the torsion basis of EB [NA], which is a contradiction. This completes the
proof.

Proposition 3 gives an approach to test whether two points generate the
torsion group EB [NA] by checking the order of the pairing value in the group
µNA

. One can deterministically generate a point V ∈ EB(Fp2)[NA] using El-
ligator, and compute the order of eNA

(U, V) in µNA
. Then we have a subset

IV = {jk|e`jk (Ujk , V) = 1} of the set I = {j|`j divides NA}. Similar to the
method to deterministically generate the point U , we deterministically generate
another point V ′ 6= V and compute:

f ′ = e∏
jk∈IV

`jk
(
∑
jk∈IV

Ujk , [
∏

j∈I\IV

`j]V
′). (9)

After that, we check whether `jk divides the order of f ′ ∈ µNA
for each jk ∈

IV . If so, set V = V + V ′jk , where V ′jk = [NA/`jk]V
′. We deterministically

generate another new point V ′ and repeat the procedure until the set IV =
{jk|e`jk (Ujk , V

′) = 1} is empty. Finally, we have a point V such that eNA
(U, V)

is a generator of µNA
, then 〈U, V 〉 = EB [NA] according to Proposition 3.

It seems that once we would like to generate V , we need to deterministically
generate a point R on E(Fq) and then perform a large scalar multiplication
V = [4NB]R such that ord(V)|NA. Fortunately, this large scalar multiplication
is not necessary when just computing ord(eNA

(U, V)). It is obvious that 4NB
and NA are coprime and therefore,

ord(eNA
(U, V))=ord

(
(eNA

(U,R))
4NB

)
=ord(eNA

(U,R)).

It confirms that we can just deterministically generate a point R ∈ E(Fq) to
compute ord(eNA

(U, V)) = ord(eNA
(U,R)). For the same reason we can save

the scalar multiplication of V ′ in Equation (9) as well.
Checking the order of the pairing value is also a costly step. Indeed, the aim

of the pairing computation is not to compute the precise pairing value but its
order. Here we give a lemma, which allows us to compute compressed pairings
to reach the goal.

Lemma 1. If γ ∈ µp+1 = {x ∈ Fp2 |xp+1 = 1} with Fp2 ∼= Fp[i]/〈i2 + 1〉 and
p ≡ 3 mod 4, then γ = 1 if and only if trFp2/Fp

(γ) = 2.

Proof. The necessity is obvious. Now we show the sufficiency. Suppose that γ =
γ1 + γ2 · i. From trFp2/Fp

(γ) = 2, we have 2γ1 = 2 and hence γ1 = 1. Since
γ ∈ µp+1, γp+1 = γ21 + γ22 = 1. It implies that γ2 = 0.

13

Therefore, to check the order of the pairing value f ′, one can first compute
trFp2/Fp

(f ′), and then utilize Lucas sequences to obtain trFp2/Fp

(
(f ′)NA/`k

)
for

each k ∈ IV . Similar to Algorithm 4, we present Algorithm 5 to compute them
efficiently.

Algorithm 5 BCE: Batch cofactor exponentiation

Require: f ′ ∈ trF
p2

/Fp(µNA), IV : a subset of I = {j|`j divides NA};

Ensure: {f ′k|k ∈ IV }, where f ′k = trF
p2

/Fp

(
(f ′)

∏
j∈IV \{k}

`j
)
.

1: n′ ← #IV ;
2: if n′ = 1 then
3: return {f ′};
4: end if
5: m′ ← bn′/2c;
6: Divide IV into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
7: L1 ←

∏
i∈I2 `i, L2 ←

∏
i∈I1 `i;

8: left← LS(f ′, L1); // Algorithm 1
9: right← LS(f ′, L2); // Algorithm 1
10: r1 ← BCE(left,I1);
11: r2 ← BCE(right,I2);
12: return r1 ∪ r2.

After that, we check if each of them is equal to 2 or not. Thanks to Lemma 1,
we can deduce whether (f ′)NA/`k is equal to 1, and thus its order can be deter-
mined.

In a nutshell, we present Algorithm 6 to deterministically generate V .

Remark 4. During the torsion basis generation, the first batch cofactor multipli-
cation of U in Line 3 of Algorithm 3 and the first pairing computation in Line 2
of Algorithm 6 consume large computational resources. To eliminate these two
expensive parts for Alice, Bob could send her the initial IU (in Line 4 of Algo-
rithm 3) and IV (in Line 4 of Algorithm 6). They can be translated into two
(t + 1)/2-bit strings. It would be a trade-off between the compressed key size
and efficiency.

4.2 Discrete logarithm computation

Different from the case we handle in SIDH, one should compute discrete log-
arithms in the multiplicative group µNA

where NA = `1 · · · `3 · · · `t. Since NA
is smooth, one can use the Pohlig-Hellman algorithm [38] to transfer a dis-
crete logarithm in µNA

to discrete logarithms in the groups µ`j with j ∈ I =
{j|`j divides NA}, and finally use the Chinese Remainder Theorem to recom-
bine.

14

Algorithm 6 GenerationV: deterministically generate a point of order NA such
that 〈U, V 〉 = EB [NA]

Require: EB/Fp2 : a supersingular curve, I : {j|`j divides NA}, U and {Uk}: output
of Algorithm 3;

Ensure: A point V ∈ EB(Fp2) of order NA such that 〈U, V 〉 = EB [NA].
1: Deterministically generate a point V ∈ EB(Fp2) using Elligator;
2: f ′ ← trF

p2
/Fp (eNA(U, V));

3: {f ′j} ←BCE(f ′, I); // Algorithm 5
4: IV ← {jk|f ′jk = 2};
5: while IV 6= ∅ do
6: Deterministically generate a point V ′ ∈ EB(Fp2) using Elligator;
7: U ′ ←

∑
jk∈IV

Ujk , L←
∏

jk∈IV
`jk ;

8: f ′ ← trF
p2

/Fp (eL(U
′, V ′));

9: {f ′jk} ←BCE(f ′, IV); // Algorithm 5
10: if f ′jk 6= 2 for some jk then
11: V ′ ← [

∏
j∈I\IV

`j]V
′;

12: {V ′jk} ←BCM(V ′, IV); // Algorithm 4
13: end if
14: for each jk ∈ {jk|f ′jk 6= 2} do
15: V ← V + V ′jk ;
16: end for
17: IV ← {jk|f ′jk = 2};
18: end while
19: V ← [2fNB]V ;
20: return V .

Firstly, we compute hNA/`j
i with j ∈ I and i = 1, 2, 3, 4 using a divide-and-

conquer approach. Note that this step is accelerated with the help of Lucas
sequences [41, Section 3], as we proposed in Algorithm 7.

After that, for each j ∈ I we compute the discrete logarithms of hNA/`j
i

to the base hNA/`j
0 , where h0 = eNA

(PA, QA)
NB . Since PA and QA are fixed,

all the values hNA/`j
0 can be precomputed to accelerate the performance. From

Equation (3), it is clear that di = logh0
hi, ci = − logh0

hi+2, i = 0, 1. For each
j ∈ I = {j|`j divides NA}, let c(j)i = ci mod `j , d

(j)
i = di mod `j , i = 0, 1.

Finally, from d
(j)
i , c(j)i with j ∈ I we respectively recover di = logh0

hi, ci =
− logh0

hi+2, i = 0, 1. This step is fast with the help of the Chinese Remainder
Theorem.

Algorithm 8 is the pseudocode summarizing our ideas to compute discrete
logarithms.

4.3 Further compression

In this subsection we propose an approach to overcome the issue mentioned in
Remark 1. The technique further reduces the public key size and simultaneously

15

Algorithm 7 BCEA: Batch cofactor exponentiation in µNA

Require: h′ ∈ µNA , I
′: a subset of I = {j|`j divides NA};

Ensure: {h′1, h′2, · · · , h′n′}, where h′k =
(
(h′)

∏
j∈I′\{k} `j

)
and n′ = #I ′.

1: if n′ = 1 then
2: return {h′};
3: end if
4: m′ ← bn′/2c;
5: Divide I ′ into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
6: L1 ←

∏
i∈I2 `i, L2 ←

∏
i∈I1 `i;

7: left← ELS(h′, L1); // Algorithm 2
8: right→ ELS(h′, L2); // Algorithm 2
9: r1 ←BCEA(left,I1);
10: r2 ←BCEA(right,I2);
11: return r1 ∪ r2.

Algorithm 8 Discrete logarithm computation
Require: : I: {j|`j divides NA}; h1, h2, h3, h4: the values computed in Equation (4);
Ensure: : c0, c1, d0, d1: Integers in {0, 1, · · · , NA − 1} such that h1 = hd0

0 , h2 = hd1
0 ,

h3 = h−c0
0 and h4 = h−c1

0 .
1: for k ∈ {1, 2, 3, 4} do
2: {h(j)

k } ← BCEA(hk, I); // Algorithm 7
3: end for
4: for k ∈ {1, 2} do
5: for each j ∈ I do

6: find d(j)k such that h(j)
k =

(
h
(j)
0

)d(j)
k , find c(j)k such that h(j)

k+2 =
(
h
(j)
0

)−c
(j)
k ;

7: end for
8: Use the Chinese remainder theorem to compute dk mod NA and ck mod NA

such that dk ≡ d(j)k mod `j and ck ≡ c(j)k mod `j with j ∈ I;
9: end for
10: return c0, c1, d0, d1.

improve the performance of discrete logarithm computation. We also prove that
the modification does not affect the security of compressed M-SIDH.

As mentioned in Remark 1, none of si is invertible in Z/NAZ when none of
hi is a generator of µp+1. Nevertheless, from Equation (2) we have

[
Uj
Vj

]
=

[
c
(j)
0 d

(j)
0

c
(j)
1 d

(j)
1

] [
[NA/`j]φB (PA)
[NA/`j]φB (QA)

]
. (10)

where c(j)i = ci mod `j , d
(j)
i = di mod `j , i = 0, 1 and j ∈ I = {j|`j divides NA}.

Note that 〈U, V 〉 = 〈φB(PA), φB(QA)〉 = EB [NA] and `j is prime. Therefore,
either d(j)0 or d(j)1 is invertible, i.e., either hNA/`j

1 or hNA/`j
2 is a generator of µ`j .

From this observation, we can compute the discrete logarithms as follows.

16

Firstly, compute hNA/`j
i with j ∈ I and i = 1, 2, 3, 4 using a divide-and-

conquer approach. This step can be done by Algorithm 7.
Secondly, for each j ∈ I we check whether hNA/`j

1 is the generator of µ`j . Note
that it is equivalent to check whether hNA/`j

1 is equal to 1 since `j is a prime. If
h
NA/`j
1 generates µ`j , compute discrete logarithms of hNA/`j

2 , hNA/`j
3 , hNA/`j

4 to
the base hNA/`j

1 . Otherwise, we can deduce that hNA/`j
2 is a generator and then

compute discrete logarithms of hNA/`j
3 , hNA/`j

4 to the base hNA/`j
2 . Suppose that

S
(j)
i i = 1, 2, 3 are the solutions and the label labelj is used to mark whether
h
NA/`j
1 is the generator. Hence, we have

(
S
(j)
1 , S

(j)
2 , S

(j)
3 , labelj

)
=


(
(d

(j)
0)−1d

(j)
1 ,−(d(j)0)−1c

(j)
0 ,−(d(j)0)−1c

(j)
1 , 1

)
, if d(j)0 6= 0,(

1,−(d(j)1)−1c
(j)
0 ,−(d(j)1)−1c

(j)
1 , 0

)
, otherwise.

(11)
Thanks to the Chinese Remainder Theorem, one can obtain Si mod NA such

that Si ≡ S(j)
i mod `j for each j ∈ I.

Using the above method, the compressed key is (EB , S1, S2, S3, label), where

label = label1 + label3 · 2 + · · ·+ labelt · 2(t−1)/2. (12)

Algorithm 9 illustrates our new approach to compute the discrete logarithms.

Proposition 4. After applying Algorithm 9 and modifying the compressed key,
one can still compress the public key or decompress the compressed key success-
fully.

Proof. It is obvious that one can compress the public key successfully. It re-
mains to show how to generate a kernel generator GA of the group 〈φB(PA) +
[skA]φB(QA)〉 = 〈[d1−c1·skA]U+[−d0+c0·skA]V 〉 according to (EB , S1, S2, S3, label).

Using Algorithms 3 and 6, one can deterministically generate U and V such
that 〈U, V 〉 = EB [NA] and then construct

S
(j)
4 ≡ 1 mod `j if labelj = 1, or S(j)

4 ≡ 0 mod `j otherwise. (13)

Utilizing the Chinese Remainder Theorem, the value S4 mod NA such that S4 ≡
S
(j)
4 mod `j can be obtained according to Equation (13). Let

GA = [S1 + S3 · skA]U − [S4 + S2 · skA]V.

Now we show that GA is a generator of 〈φB(PA)+[skA]φB(QA)〉. It is equiv-
alent to show that for each k ∈ I,

〈[NA/`k]GA〉 = 〈[d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk〉, (14)

where Uk = [NA/`k]U and Vk = [NA/`k]V . If labelj = 1, then S4 ≡ 1 mod `j
and hence

[NA/`k]GA = [S1 + S3 · skA]Uk − [1 + S2 · skA]Vk.

17

Algorithm 9 Another approach to compute discrete logarithms
Require: I: {j|`j divides NA}; h1, h2, h3, h4: the values computed in Equation (4);
Ensure: : label: A (t + 1)/2-bit integer defined in Equation (12); S1, S2, S3: Integers

in {0, 1, · · · , NA − 1}, which satisfy Si ≡ S
(j)
i mod `j (S(j)

i are defined in Equa-
tion (11)) for each j ∈ I.

1: for k ∈ {1, 2, 3, 4} do
2: {h(j)

k } ← BCEA(hk, I); // Algorithm 7
3: end for
4: for each j ∈ I do
5: if h(j)

1 6= 1 then
6: for each k ∈ {1, 2, 3} do
7: find S(j)

k such that h(j)
k+1 = (h

(j)
1)S

(j)
k ;

8: end for
9: else
10: S

(j)
1 = 1;

11: for each k ∈ {2, 3} do
12: find S(j)

k such that h(j)
k+1 = (h

(j)
2)S

(j)
k ;

13: end for
14: end if
15: end for
16: for each k ∈ {1, 2, 3} do
17: Use the Chinese remainder theorem to compute Sk mod NA such that Sk ≡

S
(j)
k mod `j with j ∈ I;

18: end for
19: label←

∑
j∈I labelj · 2

(j−1)/2;
20: return S1, S2, S3, label.

Note that

[S1 + S3 · skA]Uk − [1 + S2 · skA]Vk
=[S

(j)
1 + S

(j)
3 · skA]Uk − [S

(j)
1 + S

(j)
2 · skA]Vk

=[(d
(j)
0)−1d

(j)
1 − (d

(j)
0)−1c

(j)
1 · skA]Uk − [1− (d

(j)
0)−1c

(j)
0 · skA]Vk

=[(d
(j)
0)−1] ·

(
[d

(j)
1 − c

(j)
1 · skA]Uk + [−d(j)0 + c

(j)
0 · skA]Vk

)
.

In other words, we have

[NA/`k]GA ∈ 〈[d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk〉

when S(j)
4 = 1. Similarly, we can deduce that [NA/`k]GA and [d1− c1 · skA]Uk+

[−d0 + c0 · skA]Vk are linearly dependent when S
(j)
4 = 0. Therefore, the point

GA satisfies Equation (14).

Now we show that the modification we propose in this subsection does not
affect the security of compressed M-SIDH. We prove that Problem 2 is the prob-
lem underlying the security of compressed M-SIDH, and compressed M-SIDH is
secure as long as M-SIDH is secure, i.e., Problem 1 is hard.

18

Problem 2. Let NA = `0`2 · · · `t−1 and NB = `1`3 · · · `t be two smooth integers,
and f be a small cofactor such that p = NANBf−1 is a prime, where NA ≈ NB .
Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) = (p + 1)2 =
(NANBf)

2. Suppose that E0[NA] = 〈PA, QA〉. Let φB : E0 → EB be a uniformly
random NB-isogeny and let b be a uniformly random element of Z/NAZ×.
Given E0, PA, QA, EB , [b]φB(PA) and [b]φB(QA), compute φB .

Proposition 5. After applying Algorithm 9 and modifying the public key, com-
pressed M-SIDH is secure whenever Problem 1 is hard.

Proof. From the compressed key (EB , S1, S2, S3, label), we can recover S4 using
the Chinese Remainder Theorem, thus we are able to compute

P ′A = [S1]UA − [S4]VA = [b]φB(PA),

Q′A = [S3]UA − [S2]VA = [b]φB(QA),

where b ∈ Z/NAZ× satisfies{
bd

(j)
0 ≡ 1 mod `j , if labelj = 1,

bd
(j)
1 ≡ 1 mod `j , otherwise.

Note that d(j)0 mod NA ∈ {−1, 1} and d
(j)
1 mod NA ∈ {−1, 1} do not always

hold. Using the Chinese Remainder Theorem, we can deduce that b2 mod NA is
not always equal to 1. On the other hand, it is clear that one can also compress
the public key successfully according to Proposition 4. Therefore, the problem
underlying the security of compressed M-SIDH is Problem 2.

The main difference between Problem 1 and Problem 2 is that the former one
has an additional restriction that b ∈ µ2(NA). Indeed, according to [22, Section
3.1], one can execute a discrete logarithm computation of eNA

([b]φB(PA), [b]φB(QA))
to the base eNA

(PA, QA) to obtain b2 mod NA. Note that it is easy to solve the
discrete logarithm since NA is smooth. After that, one can scale the torsion
points by one square root of b2 mod NA to transfer Problem 2 to Problem 1.
Therefore, Problem 2 and Problem 1 are equivalent. This ends the proof.

Compared to the former method in Section 4.2, the new method not only
further compresses the key but performs better. The main reason is that the
latter method saves at least one discrete logarithm in µ`j for each j ∈ I. Fur-
thermore, it saves considerable storage for precomputation since there is no need
to compute discrete logarithms to the base h0.

4.4 Section summary

In this subsection, we summarize our approach to compress the public key of
M-SIDH from 6 log(p) bits to 3.5 log(p) bits, using all the techniques proposed
in this section. A review of the key decompression is also presented. Finally,
we briefly describe how to apply our techniques to benefit other isogeny-based
protocols.

19

The optimized approach to compress the key

1. Torsion basis generation: Execute Algorithm 3 to deterministically generate
a point UA ∈ EB(Fp2) of order NA, and then use Algorithm 6 to determin-
istically generate VA such that 〈UA, VA〉 = EB [NA];

2. Pairing computation: Compute the following four reduced Tate pairings:

h1 = eNA
(φB(PA), UA) , h2 =eNA

(φB(PA), VA) ,

h3 = eNA
(φB(QA), UA) , h4 = eNA

(φB(QA), VA) ;

3. Discrete logarithm computation: Using Algorithm 9, compute integers S1, S2, S3 ∈
{0, 1, · · · , NA − 1} and a label label, as defined in Equation (12).

The compressed key is (EB , S1, S2, S3, label), whose size is around 3.5 log(p) bits.

The approach to decompress the key

1. Torsion basis generation: Execute Algorithm 3 to deterministically generate
a point UA ∈ EB(Fp2) of order NA, and then use Algorithm 6 to determin-
istically generate VA such that 〈UA, VA〉 = EB [NA];

2. Construction of S4: From the knowledge of label, construct S4 mod NA such
that

S4 ≡ 1 mod `j if labelj = 1, or S4 ≡ 0 mod `j otherwise.

As shown in Proposition 4, a generator of 〈φB(PA) + [skA]φB(QA)〉 can be
computed by

GA = [S1 + S3 · skA]UA − [S4 + S2 · skA]VA.

Improvement of other isogeny-based protocols Very recently, Basso and
Fouosta [7] proposed new SIDH-like protocols called binSIDH and terSIDH.
Similar to M-SIDH, the public key of these protocols is of the form (E,P,Q),
where E is a supersingular elliptic curve and {P,Q} is a torsion basis of E[N],
with N is a highly composite integer. It is obvious that our work can also be
extended easily to compress the public key in these SIDH-like schemes.

Besides, our approach to generate full-torsion points has the potential to
enhance the performance of non SIDH-like schemes, such as SQALE [14] and
dCSIDH [10]. In the implementations of dCSIDH, a full-torsion basis are gen-
erated and involved in the public key. It accelerates the performance of the key
agreement phase, but increases the computational cost of key generation. Given
a supersingular elliptic curve E, one can use Algorithm 3 to generate one full-
torsion point U ∈ E(Fp), and then apply Algorithm 6 to compute another full-
torsion point V ∈ Et(Fp) such that U and V are linearly independent, where Et
is the twist of E. It seems that the improvement is similar to the independent
work by Reijnders [39, Section 4.3]. However, the latter one is a probabilistic
algorithm, while our algorithms can always generate a full-torsion basis.

20

5 Implementation Results

In this section, we implement compressed M-SIDH in SageMath (version 9.5) [1]
and give our experimental results.

Isogeny computation is the most expensive part of (compressed) M-SIDH.
There are mainly two ways to construct the isogeny. One is the traditional Vélu’s
formula [44], and the other is a more efficient formula to construct the large
degree isogeny [8]. We combine both of them to implement compressed M-SIDH.
For small degree isogeny computations we use traditional Vélu’s formula, and
use the method proposed in [8] to compute the large degree isogeny.

Based on the code1 from [8], we give a proof-of-concept implementation of
compressed M-SIDH in SageMath. Our code is available at

https://github.com/CompressedMSIDH/CompressedMSIDH.

Table 1 reports the performance of the key generation phase. For discrete
logarithm computation we apply the method proposed in Section 4.3.

Procedure Alice Bob
Isogeny Computation 304.67s 305.89s
Torsion Basis Generation 18.00s 18.81s
Pairing Computation 15.75s 15.66s
Discrete Logarithm Computation 5.68s 5.61s
Total Cost (the whole key generation phase) 344.10s 345.97s

Table 1. Experimental results of key generation of Alice in compressed M-SIDH for
the NIST-1 level of security.

As shown in Table 1, isogeny computation dominates the cost of key genera-
tion. One may try to utilize several techniques proposed in the literature to speed
up the compressed M-SIDH implementation. We adapt the technique proposed
in [30] to recover the Montgomery coefficient of the codomain of the isogeny,
which offers a significant speedup to isogeny computation. Besides, there are sev-
eral works on the optimizations of CSIDH [12]. For example, the approach [15]
to find an optimal strategy of CSIDH can be easily extended to the isogeny com-
putation of M-SIDH. It is also possible to improve the performance by changing
the permutation of the `j-isogeny computation [26]. The improvement of large
degree isogeny computation is explored by [3].

Torsion basis generation and pairing computation are the efficiency bottle-
necks of public-key compression in M-SIDH. The computational cost of discrete
logarithm computation is approximately one third of that of torsion basis gen-
eration. We leave the exploration of the faster implementation of compressed
SIDH-like schemes for future work.
1 https://velusqrt.isogeny.org/

21

https://github.com/CompressedMSIDH/CompressedMSIDH
https://velusqrt.isogeny.org/

6 Conclusion

In this paper, we took M-SIDH as an instance to demonstrate how to compress
the public key in new SIDH-like schemes. We proposed compressed M-SIDH,
reducing the public key size from 6 log2 p bits to around 3.5 log2 p bits, and proved
that compressed M-SIDH is secure as long as M-SIDH is secure. In addition,
several novel techniques were proposed to accelerate the performance.

It should be noted that some techniques proposed in this paper can optimize
other isogeny-based cryptosystems. Our approach to compress the key also ap-
plies to other SIDH-like protocols. The implementation of (compressed) M-SIDH
is not so efficient now because of the huge characteristic of the base field and
expensive isogeny computation, but we believe that the techniques developed in
this work would be more attractive with further research on SIDH-like schemes,
including binSIDH and terSIDH. In addition, our method for torsion basis gen-
eration can improve finding full-torsion points in non SIDH-like protocols, such
as SQALE and dCSIDH.

References

1. The Sage Developers: SageMath, the Sage Mathematics Software System (version
9.5) (2022), https://sagemath.org

2. The National Institute of Standards and Technology (NIST): Post-quantum
cryptography standardization (2022), https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

3. Adj, G., Chi-Domínguez, J.J., Rodríguez-Henríquez, F.: Karatsuba-based square-
root Vélu’s formulas applied to two isogeny-based protocols. Journal of Crypto-
graphic Engineering (Jul 2022)

4. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key
Encapsulation (2020), http://sike.org

5. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key Compression
for Isogeny-Based Cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10 (2016)

6. Basso, A., Codogni, G., Connolly, D., De Feo, L., Fouotsa, T.B., Lido, G.M., Morri-
son, T., Panny, L., Patranabis, S., Wesolowski, B.: Supersingular Curves You Can
Trust. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT
2023. pp. 405–437. Springer Nature Switzerland, Cham (2023)

7. Basso, A., Fouotsa, T.B.: New SIDH Countermeasures for a More Efficient Key
Exchange. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT
2023. pp. 208–233. Springer Nature Singapore, Singapore (2023)

8. Bernstein, D., Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of
large prime degree. Open Book Series 4, 39–55 (2020)

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-Curve
Points Indistinguishable from Uniform Random Strings. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security. p. 967–980
(2013)

22

 https://sagemath.org
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
http://sike.org

10. Campos, F., Chavez-Saab, J., Chi-Domínguez, J.J., Meyer, M., Reijnders, K.,
Rodríguez-Henríquez, F., Schwabe, P., Wiggers, T.: On the Practicality of Post-
Quantum TLS Using Large-Parameter CSIDH. Cryptology ePrint Archive, Paper
2023/793 (2023), https://eprint.iacr.org/2023/793

11. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 423–447.
Springer Nature Switzerland, Cham (2023)

12. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An Efficient
Post-Quantum Commutative Group Action. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology – ASIACRYPT 2018. pp. 395–427. Springer International
Publishing, Cham (2018)

13. Castryck, W., Vercauteren, F.: A Polynomial Time Attack on Instances of M-
SIDH and FESTA. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology –
ASIACRYPT 2023. pp. 127–156. Springer Nature Singapore, Singapore (2023)

14. Chávez-Saab, J., Chi-Domínguez, J.J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low ex-
ponents. Journal of Cryptographic Engineering 12(3), 349–368 (Sep 2022)

15. Chi-Domínguez, J.J., Rodríguez-Henríquez, F.: Optimal strategies for CSIDH. Ad-
vances in Mathematics of Communications 16(2), 383–411 (2022)

16. Costello, C.: B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion.
In: Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp.
440–463. Springer International Publishing, Cham (2020)

17. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
Compression of SIDH Public Keys. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 679–706. Springer International Publishing,
Cham (2017)

18. Crandall, R.E., Pomerance, C.: Prime numbers: a computational perspective, 2nd
edition. Springer, New York (2005)

19. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH Proof of Knowledge.
In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022. pp.
310–339. Springer Nature Switzerland, Cham (2022)

20. De Feo, L., Delpech de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A.,
Petit, C., Silva, J., Wesolowski, B.: Séta: Supersingular Encryption from Torsion
Attacks. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT
2021. pp. 249–278. Springer International Publishing, Cham (2021)

21. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint Archive,
Paper 2022/1054 (2022), https://eprint.iacr.org/2022/1054

22. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering SIDH
Attacks by Masking Information. In: Hazay, C., Stam, M. (eds.) Advances in Cryp-
tology – EUROCRYPT 2023. pp. 282–309. Springer Nature Switzerland, Cham
(2023)

23. Frey, G., Rück, H.G.: A Remark Concerning M-Divisibility and the Discrete Log-
arithm in the Divisor Class Group of Curves. Math. Comput. 62(206), 865–874
(1994)

24. Galbraith, S.: Pairings, pp. 183–214. London Mathematical Society Lecture Note
Series, Cambridge University Press, New York (2005)

25. Hutchinson, A., Karabina, K., Pereira, G.: Memory Optimization Techniques for
Computing Discrete Logarithms in Compressed SIKE. In: Cheon, J.H., Tillich, J.P.
(eds.) Post-Quantum Cryptography. pp. 296–315. Springer International Publish-
ing, Cham (2021)

23

https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2022/1054

26. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further Optimizations of
CSIDH: A Systematic Approach to Efficient Strategies, Permutations, and Bound
Vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) Applied
Cryptography and Network Security. pp. 481–501. Springer International Publish-
ing, Cham (2020)

27. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

28. Lin, K., Lin, J., Wang, W., Zhao, C.A.: Faster Public-Key Compression of SIDH
With Less Memory. IEEE Transactions on Computers 72(9), 2668–2676 (2023)

29. Lin, K., Wang, W., Wang, L., Zhao, C.A.: An Alternative Approach for Comput-
ing Discrete Logarithms in Compressed SIDH. Cryptology ePrint Archive, Paper
2021/1528 (2021), https://eprint.iacr.org/2021/1528

30. Lin, K., Wang, W., Xu, Z., Zhao, C.A.: A Faster Software Implementation of
SQISign. Cryptology ePrint Archive, Paper 2023/753 (2023), https://eprint.
iacr.org/2023/753

31. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A Direct Key
Recovery Attack on SIDH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
– EUROCRYPT 2023. pp. 448–471. Springer Nature Switzerland, Cham (2023)

32. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology
17(4), 235–261 (Sep 2004)

33. Moriya, T.: Masked-degree SIDH. Cryptology ePrint Archive, Paper 2022/1019
(2022), https://eprint.iacr.org/2022/1019

34. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-Key Com-
pression for Isogeny-Based Cryptography. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology – ASIACRYPT 2019. pp. 243–272. Springer International
Publishing, Cham (2019)

35. Pereira, G.C.C.F., Barreto, P.S.L.M.: Isogeny-Based Key Compression Without
Pairings. In: Garay, J.A. (ed.) Public-Key Cryptography – PKC 2021. pp. 131–
154. Springer International Publishing, Cham (2021)

36. Pereira, G.C.C.F., Doliskani, J., Jao, D.: x-only point addition formula and faster
compressed SIKE. Journal of Cryptographic Engineering 11, 57–69 (2021)

37. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society 23(1), 127–137 (1990)

38. Pohlig, S., Hellman, M.: An Improved Algorithm for Computing Logarithms over
GF(p) and Its Cryptographic Significance (Corresp.). IEEE Trans. Inf. Theor.
24(1), 106–110 (2006)

39. Reijnders, K.: Effective Pairings in Isogeny-Based Cryptography. In: Aly, A., Ti-
bouchi, M. (eds.) Progress in Cryptology – LATINCRYPT 2023. pp. 109–128.
Springer Nature Switzerland, Cham (2023)

40. Robert, D.: Breaking SIDH in Polynomial Time. In: Hazay, C., Stam, M. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2023. pp. 472–503. Springer Nature Switzer-
land, Cham (2023)

41. Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) Advances
in Cryptology – CRYPTO 2004. pp. 140–156. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

42. Sutherland, A.: Order computations in generic groups. PhD thesis, Massachusetts
Institute of Technology (2007)

43. Tate, J.: WC-groups over p-adic fields. Exposé no. 156. In Années 1956/57 -
1957/58, exposés 137-168, volume 4 of Séminaire Bourbaki p. 265–277 (1956-1958)

24

https://eprint.iacr.org/2021/1528
https://eprint.iacr.org/2023/753
https://eprint.iacr.org/2023/753
https://eprint.iacr.org/2022/1019

44. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus Hebdomadaires des
Séances de l’Académie des Sciences, Série A 273, 238–241 (1971)

45. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster Key Compression for Isogeny-Based Cryptosystems. IEEE Trans-
actions on Computers 68(5), 688–701 (2019)

25

	Compressed M-SIDH: An Instance of Compressed SIDH-like Schemes with Isogenies of Highly Composite Degrees

