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Abstract. Feistel network and its generalizations (GFN) are another
important building blocks for constructing hash functions, e.g., Simpira
v2, Areion, and the ISO standard Lesamnta-LW. The Meet-in-the-Middle
(MitM) is a general paradigm to build preimage and collision attacks on
hash functions, which has been automated in several papers. However,
those automatic tools mostly focus on the hash function with Substitu-
tion–Permutation network (SPN) as building blocks, and only one for
Feistel network by Schrottenloher and Stevens (at CRYPTO 2022).
In this paper, we introduce a new automatic model for MitM attacks
on Feistel networks by generalizing the traditional direct or indirect par-
tial matching strategies and also Sasaki’s multi-round matching strategy.
Besides, we find the equivalent transformations of Feistel and GFN can
significantly simplify the MILP model. Based on our automatic model,
we improve the preimage attacks on Feistel-SP-MMO, Simpira-2/-4-DM,
Areion-256/-512-DM by 1-2 rounds or significantly reduce the complex-
ities. Furthermore, we fill in the gap left by Schrottenloher and Stevens
at CRYPTO 2022 on the large branch (b > 4) Simpira-b’s attack and
propose the first 11-round attack on Simpira-6. Besides, we significantly
improve the collision attack on the ISO standard hash Lesamnta-LW by
increasing the attacked round number from previous 11 to ours 17 rounds.

Keywords: MitM · Automatic Tool · Feistel · Simpira v2· Lesamnta-LW·
Areion

1 Introduction

The cryptographic hash function is one of the most important primitives, playing
a vital role in digital signatures, message integrity, passwords, and proof-of-work,
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etc. The collision resistance, preimage resistance, and second-preimage resistance
are the three basic security requirements for cryptographic hash functions. Be-
sides the well-known SHA-3 [12], another crucial design strategy is to build hash
functions on block ciphers [37,42]. Typical examples are PGV-modes [42], Davies-
Meyer (DM), Matyas-Meyer-Oseas (MMO), and Miyaguchi-Preneel (MP), etc.,
instantiated with AES [19] or other AES-like constructions, e.g., Whirlpool [8],
Grøstl [28], ECHO [11], Haraka v2 [36]. Feistel network and generalized Feistel
network (GFN) are important designs for block ciphers and permutations. To
share the security proof and implementation benefit, building Feistel (or GFN)
primitives with AES round function becomes popular in research communities,
e.g., Simpira v2 [29], Areion [34], and the ISO lightweight hash function stan-
dard Lesamnta-LW [31], etc., which are the main targets of this paper.

The Meet-in-the-Middle (MitM) Attack is a time-memory trade-off crypt-
analysis technique introduced by Diffie and Hellman to attack block cipher [22].
At SAC 2008, Aumasson, Meier, and Mendel [4] proposed the MitM preimage at-
tacks on reduced MD5 and full 3-pass HAVAL. At ASIACRYPT 2008, Sasaki and
Aoki formally combined the MitM and local-collision techniques to attack full
3, 4, and 5-pass HAVAL. Further, they proposed the splice-and-cut technique
[3] and the initial structure [48] to strengthen MitM attack and successfully
broke the preimage resistance of the full MD5. In the past decades, the MitM at-
tack has been widely applied to the cryptanalysis on block ciphers [40,25,14,33]
and hash functions [48,3,30]. Simultaneously, various techniques have been in-
troduced to improve the framework of MitM attack, such as internal state guess-
ing [25], splice-and-cut [3], initial structure [48], bicliques [13], 3-subset MitM
[14], indirect-partial matching [3,48], sieve-in-the-middle [17], match-box [27],
dissection [23], MitM with guess-and-determine [49], differential-aided MitM
[35,26,16], algebraic MitM [39], two-stage MitM [5], quantum MitM [50], etc.
Till now, the MitM attack and its variants have broken MD4 [38,30], MD5 [48],
KeeLoq [32], HAVAL [4,47], GOST [33], GEA-1/2 [10,1], etc.

Automatic tools are significantly boosting the MitM attacks, recently. At
CRYPTO 2011 and 2016, several automatic tools [15,21] were proposed for MitM
attacks on AES. At FSE 2012, Wu et al. [52] introduced a search algorithm for
MitM attacks on Grøstl. In [44], Sasaki first programmed the MitM attack on
GIFT into a dedicated Mixed-Integer-Linear-Programming (MILP) model. At
EUROCRYPT 2021, Bao et al. [6] introduced the MILP-based automatic search
framework for MitM preimage attacks on AES-like hashing, whose compression
function is built from AES-like block cipher or permutation. At CRYPTO 2021,
Dong et al. [24] further extended Bao et al.’s model into key-recovery and colli-
sion attacks. At CRYPTO 2022, Schrottenloher and Stevens [50] simplified the
language of the automatic model and applied it in both classic and quantum
settings. Bao et al. [7] considered the MitM attack in view of the superposi-
tion states. At EUROCRYPT 2023, Qin et al. [43] proposed MitM attacks and
automatic tools on sponge-based hashing.
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Most state-of-the-art automatic tools of MitM attacks are about AES-like
substitution–permutation network (SPN) primitives [6,7,24]. For Feistel or GFN
constructions, most MitM cryptanalysis results are achieved by hand, such as the
attacks on MD-SHA hash functions [3,2,48,30]. At ACNS 2013, Sasaki et al. [46]
studied the preimage attacks on hash functions based on Feistel constructions
with substitution-permutation (SP) round function, i.e., Feistel-SP. At CRYPTO
2022, Schrottenloher and Stevens [50] introduced an efficient MitM automatic
tool including the first application to Feistel constructions, e.g., Simpira v2 [29].

Our Contributions.

In this paper, we focus on building a new MILP-based MitM automatic tool on
hash functions with Feistel or GFN constructions.

For the first contribution, we first generalize the matching strategy for
MitM attack. The essential idea of MitM attack is to find two neutral states
(represented by and bytes), which are computed along two independent paths
(‘forward’ and ‘backward’) that are then linked in the middle by deterministic
relations, i.e. the matching point. The deterministic relations are usually of the
form fB = gR, where fB and gR are determined by and , respectively. In
[3,48], the matching equation fB = gR is usually part of the full state, which is
then named as partial matching. If fB = gR is derived directly, then it is a direct
partial matching [3]. However, if fB = gR is computed by a linear transformation
on the outputs of forward and backward computation, then it is named as indirect
partial matching [2,48]. For both direct and indirect partial matching, the relation
fB = gR is essential for MitM attacks. Almost all the recent MitM attacks and
automatic models [6,24,7,43] leverage these two traditional matching strategies.

However, in this paper, we find the relations f ′
B = g′B (or f ′

R = g′R) can also
be used for matching, where f ′

B and g′B are determined only by bytes. Together
with the direct and indirect partial matching strategies, we propose a generalized
matching strategy. After programming the new matching strategy into our MILP
model, we significantly reduce the 5-round preimage attack on Areion-256 from
2248 [34] to 2193, and improve the preimage attack on Simpira-2 from previous
5 rounds [50] to ours 7 rounds.

For the second contribution, We first generalize Sasaki’s multi-round
matching strategy for Feistel [46] into full-round matching. At ACNS 2013,
Sasaki [46] proposed a matching strategy for Feistel-SP and GFN. For the Feistel-
SP structure, it is hard to find any matching at first glance, but two-byte match-
ing obviously appeared after applying a linear transformation to 4 consecutive
rounds. In this paper, we find Sasaki’s multi-round matching can be further ex-
tended into full-round matching. Therefore, the states involved in matching come
from all round functions from the matching point to the initial structure. The
full-round matching strategy may discover more useful matching equations than
the multi-round matching. The reason is that in the multi-round matching, the
involved states are first computed along forward and backward from the known
bytes in the initial structure, and many bytes become unknown (i.e., depending
on both and bytes, denoted as bytes), and then it is hard to derive any
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matching equations through the bytes. In full-round matching, matches are
constructed by directly considering the fresh states from the initial structure.

Since many internal states are considered in full-round matching, it becomes
hard to build MILP constraints for matching. To solve this problem, we find an
equivalent transformation of Feistel and GFN that can significantly simplify the
MILP programming of the full-round matching, where each byte of the full state
can be programmed individually to determine if it is a one-byte matching.

Based on the above techniques, the achievements in this paper are listed
below and also in Table 1.

– Based on the above techniques, we improve Sasaki’s 11-round MitM attack
[46] on Feistel-SP to ours 12 rounds with almost the same time complexity.

– We improve Schrottenloher and Stevens’s MitM preimage attacks at CRYPTO
2022 [50] on Simpira v2 by improving the attack on Simpira-2 from 5
rounds [50] to ours 7 rounds, and improving the attack on Simpira-4 from 9
rounds [50] to ours 11 rounds. As stated by Schrottenloher and Stevens [51,
Appendix B7], they can not attack on Simpira-b versions with b /∈ {2, 3, 4}.
We first fill the gap by introducing the 11-round MitM attack on Simpira-6.

– For the ISO standardized lightweight hash Lesamnta-LW [31], we significantly
improve the collision attack from the previous 11-round attack to ours 17-
round attack. Moreover, we also found a 20-round Lesamnta-LW MitM char-
acteristic as shown in Section D with time 2124 which is better than the
generic birthday bound 2128, but it’s higher than the designers’ security
claim against collision attack, which is 2120.

– For the hash function Areion [34] proposed at TCHES 2023, we improve the
MitM preimage attack on Areion256-DM from the previous 5 rounds to ours
7 rounds, and improve the attack on Areion512-DM from previous 10 rounds
to ours 11 rounds. For the source code, please refer to

https://github.com/Hql-code/MitM-Feistel

Comparison to Schrottenloher and Stevens’s MitM attack. At CRYPTO
2022, Schrottenloher and Stevens [50] introduced automatic MitM tools based
on MILP, which are also applied to preimage attacks on Feistel constructions,
i.e., Simpira v2 [29] and Sparkle [9]. Their model is a top-down model with a
greatly simplified attack representation excluding many details. While our model
in this paper follows the bottom-up approach, which has been used by Bao et
al. [6,7] and Dong et al. [24]. Therefore, our model inherits the advantages of
previous works [6,7,24], which is easy to understand and use by only specifying
the admissible coloring transitions at each stage and computing the parameters
which give the time and memory complexities of the MitM attack. On Simpira

v2’s attacks [50], to simplify the model, the attacks are of branch-level. However,
in our model, all attacks are found at the byte-level, which is more fine-grained.
Combined with our new model on the matching strategy, we can improve Schrot-
tenloher and Stevens’ attacks on Simpira-2/-4 by up to 2 rounds. Also, we find
an attack on 11-round Simpira-6, while Schrottenloher and Stevens stated that
their attack can not apply to it [51, Appendix B7].

https://github.com/Hql-code/MitM-Feistel
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Table 1: A Summary of the Attacks.

Target Attacks Settings Rounds Time Memory Generic Ref.

Feistel-SP-128 Preimage
Classical 11 2112 224 2128 [46]
Classical 12 2113 248 2128 Sect. 5

Simpira-2 Preimage
Classical 5 2128 - 2256 [50]
Quantum 5 264 - 2128 [50]
Classical 7 2225 296 2256 Sect. 6.1

Simpira-4 Preimage
Classical 9 2128 - 2256 [50]
Quantum 9 264 - 2128 [50]
Classical 11 2225 2160 2256 Sect. 6.2

Simpira-6 Preimage Classical 11 2193.6 2193 2256 Sect. C

Lesamnta-LW Collision
Classical 11 297 296 2128 [31]
Classical 17 2113.58 2112 2128 Sect. 7
Classical 20 2124 2124 2128 Sect. D

Areion256-DM Preimage
Classical 5 2248 28 2256 [34]
Classical 5 2193 288 2256 Sect. 8
Classical 7 2240 264 2256 Sect. 8

Areion512-DM Preimage
Classical 10 2248 28 2256 [34]
Classical 11 2241 248 2256 Sect. 8

2 Preliminaries

In the section, we first introduce the main notations used in the following paper,
and briefly describe the Meet-in-the-Middle attack, the specification of AES,
(Generalized) Feistel Networks, Areion, Lesamnta-LW, and the idea of Sasaki’s
preimage attack on Feistel-SP.

2.1 Notations

A
(r)
SB : the internal state after operation SB in round r, r ≥ 0

A
(r)
SB [i] : the i-th byte of the internal state A

(r)
SB

, R : known byte with backward computation, (x, y) = (0, 1)
, B : known byte with forward computation, (x, y) = (1, 0)
, G : known byte with forward and backward computations, (x, y) = (1, 1)
, W : unknown byte in forward and backward computations, (x, y) = (0, 0)

λR : the byte number of the bytes in the starting state
λB : the byte number of the bytes in the starting state
DoF : degree of freedom in bytes
DoFR : the byte number of DoF of the neutral words
DoFB : the byte number of DoF of the neutral words
lB : the byte number of consumed DoF of the bytes
lR : the byte number of consumed DoF of the bytes
DoM : the byte number of DoF of the matching point
EndB : the matching point determined by bytes
EndR : the matching point determined by bytes
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2.2 The Meet-in-the-Middle Attack

Forward
chunk

Backward
chunk

Initial
Structure

Forward
chunkEndB EndR

Target

Splice

CutPartial match

Fig. 1: The closed computation path of the MitM attack

Since the pioneering works on preimage attacks on Merkle–Damg̊ard hash-
ing, e.g. MD4, MD5, and HAVAL [38,48,3,30], techniques such as splice-and-cut [3],
initial structure [48] and (indirect-) partial matching [2,48] have been invented to
significantly improve the MitM approach. In Figure 1, the compression function
is divided at certain intermediate rounds (initial structure) into two chunks:

1. In the initial structure, a starting state is chosen with λR bytes and λB
bytes, which are also denoted as the initial degree of freedom (DoF) of
and bytes. The and bytes are then constrained linearly [45,46] or

nonlinearly [24] by lR and lB byte equations, so that the two chunks can be
computed independently on two distinct solution spaces of and derived
by solving the constraint equations. The two solution spaces are named as
neutral space. The DoFs of the or neutral space are denoted as DoFR or
DoFB.

2. The two neutral spaces are computed along two independent paths (‘forward
chunk’ and ‘backward chunk’).

3. One chunk is computed across the first and last rounds via the feed-forward
mechanism of the hashing mode, and they end at a common intermediate
round (partial matching point) to derive the deterministic relation ‘EndB =
EndR’ for matching. The number of bytes for matching is denoted as the
degree of matching (DoM).

Thereafter, a closed computation path of the MitM attack is derived. After
setting up the configurations, the basic attack procedure goes as follows:

1. Choose constants for the initial structure.
2. For all 28·DoFR values of neutral space, compute backward from the initial

structure to the matching points EndR to generate a table LR[EndR].
3. Similarly, build LB for 28·DoFB values of neutral space with forward com-

putation.
4. Check for the DoM bytes match on indices between LR and LB.
5. For the pairs surviving the partial match, check for a full-state match.
6. Steps 1-5 form one MitM episode that will be repeated until a full match is

found.
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The attack complexity. AnMitM episode is performed with time 28·max(DoFR,DoFB)+
28·(DoFR+DoFB−DoM). To find an h-bit target preimage, 2h−8·(DoFR+DoFB) MitM
episodes are needed. The total time complexity of the attack is:

2h−8·min(DoFR,DoFB,DoM). (1)

Nonlinearly Constrained Neutral Words [24]. In order to compute the
allowable values for the neutral words, one has to solve certain systems of equa-
tions. In previous MitM preimage attacks [45,49], the systems of equations are
usually linear, i.e., linearly constrained neutral words, which can be solved with
ease. At CRYPTO 2021, Dong et al. [24] found that the systems of equations
can be nonlinear, which can not be solved directly like linear system. Therefore,
Dong et al. proposed a table-based method to solve those nonlinearly constrained
neutral words. Suppose in the starting state, there are λR bytes and λB bytes,
the number of nonlinear constraints are lR and lB for and bytes.

1. Fix the bytes for the initial structure,
2. For 2λR values, compute the lR bytes constraints (denoted as cR ∈ F8·lR

2 ),
and store the λR bytes in table UR[cR],

3. For 2λB values, compute the lB bytes constraints (denoted as cB ∈ F8·lB
2 ),

and store the λB bytes in table UB[cB].

Then, for given cR and cB, the values in UR[cR] and UB[cB] can be computed
independently (i.e., neutral) in one MitM episode. Therefore, we have DoFR =
λR − lR and DoFB = λB − lB. According to [24], both the time and memory
complexities of one precomputation are 2λR + 2λB . After the precomputation,
2lR+lB MitM episodes are produced.

Automated MitM based MILP. At EUROCRYPT 2021, Bao et al. [6] pro-
posed the MILP-based automatic model for MitM preimage attacks on AES-like
hashing. At CRYPTO 2021, Dong et al. extended the model into key-recovery
and collision. At CRYPTO 2022, Bao et al. [7] proposed the superposition MitM
attack, i.e., the bytes and bytes are handled independently in linear opera-
tions. A similar idea has been proposed and named as indirect-partial matching
in 2009 [2]. In the superposition MitM attack framework, each state involved
in a linear operation is separated into two virtual states, which are also called
superposition states. One state preserves the bytes, bytes, and bytes in the
original state, while the positions where bytes are located turn . The other
state can be obtained similarly but exchanging the and bytes. Therefore,
two superposition states can be propagated equally and independently along the
forward or backward computation paths through linear operations. The initial
DoFs can be consumed in both directions. Then, two superposition states are
finally combined before the next nonlinear operation after a series of linear op-
erations. The color patterns and how the states are separated and combined are
visualized in Figure 2.
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(a) Rules for separation

*

(b) Rules for combination

Fig. 2: Rules for separation and combination, where “∗” means any color

The rules MC-Rule and XOR-Rule are first introduced in [6] to model the
propagation rules of MixColumn and AddRoundKey in AES-like hashing. Since
λB bytes of the starting states are imposed lB constraints (similar to ), the
rules MC-Rule and XOR-Rule are required to describe how the impacts from the
neutral bytes in one chunk are limited on the opposite chunk. For more details
on the two basic rules, please refer to [6] and also Supplementary Material A.

2.3 AES

To be concrete, we first recall the round function of AES-128 [19]. It operates
on a 16-byte state arranged into a 4 × 4 matrix and contains four operations
as illustrated in Figure 3: SubBytes (SB), ShiftRows (SR), MixColumns (MC),
and AddRoundKey (AK). The MixColumns is to multiply an MDS matrix to each
column of the state. Embedding a block cipher into the PGV hashing modes
[42], such as Davies-Meyer (DM, Figure 4), Matyas-Meyer-Oseas (MMO, Figure
5) and Miyaguchi-Preneel (MP), is a common way to build the compression
functions for hashing.

A(r) A
(r)
SB A

(r)
SR A

(r)
MC

SB SR MC
⊕AK0

1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

Fig. 3: One round AES

hi−1 EK hi

mi−1

Fig. 4: DM

mi−1 EK hi

hi−1

Fig. 5: MMO

2.4 (Generalized) Feistel Networks

Another widely used design approach is the Feistel network, which was first used
in DES [18], and the generalized Feistel network (GFN) [53]. When the round
function of Feistel adopts AddRoundKey (AK), SubBytes (SB), and a permutation
layer, i.e., SP round function, the Feistel is named as Feistel-SP. In this paper,
the permutation layer is a MixColumns (MC) with MDS, as shown in Figure 6.
Figure 7 is an equivalent transformation of Figure 6, where Ã(r) = MC−1(A(r)),
B̃(r) = MC−1(B(r)), Ã(r+1) = MC−1(A(r+1)), and B̃(r+1) = MC−1(B(r+1)). The
round function of GFN adopts multiple branches, e.g., the round function of
4-branch Simpira v2 in Figure 8.
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A(r) B(r)

A
(r)
AK A

(r)
SB A

(r)
MC

⊕ ⊕
kr

SB MC

A(r+1) B(r+1)

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

Fig. 6: One round Feistel-SP

Ã(r) B̃(r)

Ã
(r)
MC Ã

(r)
AK Ã

(r)
SB

⊕
kr ⊕SBMC

Ã(r+1) B̃(r+1)

Fig. 7: Equivalent transform of Feistel-SP

2.5 Simpira v2

Simpira v2 [29] is a family of cryptographic permutations that support inputs
of 128 × b bits, where b is the number of branches. When b = 1, Simpira v2

consists of 12 rounds AES with different constants. When b ≥ 2, Simpira v2

is a Generalized Feistel Structure (GFS) with the F -function that consists of
two rounds of AES. We denote Simpira v2 family members with b branches as
Simpira-b. The total number of rounds is 15 for b = 2, b = 4 and b = 6, 21 for
b = 3, and 18 for b = 8. Figure 8 shows the round function of Simpira-4.

A(r) B(r) C(r) D(r)

A(r) A
(r)
SR1 A

(r)
AC1 A

(r)
SR2 A

(r)
MC2

SB
SR

MC
AC

SB
SR

MC ⊕

C(r) C
(r)
SR1 C

(r)
AC1 C

(r)
SR2 C

(r)
MC2

SB
SR

MC
AC

SB
SR

MC ⊕

A(r+1) B(r+1) C(r+1) D(r+1)

Fig. 8: The round function of Simpira-4

2.6 Areion

Areion [34] is a family of highly-efficient permutations based on AES instruc-
tion. It consists of two versions with 256-bit and 512-bit, named as Areion-256
(the round function is shown in Figure 9) and Areion-512. Based on the two
permutations, two hash functions with short input are designed with Davies-
Meyer (DM) construction, i.e., Areion256-DM and Areion512-DM, which are our
targets.

2.7 Lesamnta-LW

Lesamnta-LW is a lightweight 256-bit hash function proposed by Hirose et al. in
2010 [31], which has been specified in ISO/IEC 29192-5:2016. Lesamnta-LW is
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A(r) B(r)

A
(r,α)
SB1 A

(r,α)
SR1 A

(r,α)
AC1 A

(r,α)
SB2 A

(r,α)
SR2 A

(r,α)
MC2

SB SR MC

AC

SB SR MC ⊕

SB

SR

A
(r,β)
SB

A
(r,β)
SR

A(r+1) B(r+1)

Fig. 9: One round Areion-256

AK SB MC P ⊕

C(r) C
(r)
AK C

(r)
SB C

(r)
MC C

(r)
P

A(r) B(r) C(r) D(r)

A(r+1)B(r+1)C(r+1) D(r+1)

0
1
2
3

4
5
6
7

4
5
2
3

0
1
6
7

Fig. 10: One round Lesamnta-LW

a Merkle-Damg̊ard iterated hash function [41,20]. Figure 11 shows a hash with
two message blocks, where the i-th compression function (CF) is CF(hi−1,mi) =
E(h0

i−1,mi∥h1
i−1) = hi, with h0

i−1, h
1
i−1, mi ∈ F128

2 , hi−1, hi ∈ F256
2 , and hi−1 =

h0
i−1∥h1

i−1. The initial h0 is the initial vector and the last hN is the 256-bit digest.
The internal block cipher of CF is of 64 rounds with 256-bit plaintext and 32-bit
round keys. Our attack is independent of the key schedule which is omitted.
Figure 10 shows the round function, where mi = A(r)∥B(r), h1

i−1 = C(r)∥D(r).
Lesamnta-LW uses AES’s components, i.e., SB and MC, while P just permutes the
bytes. Lesamnta-LW claims at least 2120 security levels against both collision and
preimage attacks, and we target the MitM collision attack on Lesamnta-LW.

h0
i−1

h1
i−1

EK

mi

h0
i

h1
i EK

mi+1

h0
i+1

h1
i+1

Fig. 11: Lesamnta-LW hash with two message blocks

2.8 Sasaki’s preimage attack on Feistel-SP

At ACNS 2013, Sasaki [46] introduced the MitM preimage attacks on MMO
hashing mode with Feistel-SP block ciphers by omitting the last network twist.

In Figure 12(a), A
(6)
AK and A

(7)
AK are chosen as the initial states with λR = 11 and

λB = 3. The just represents the linear combination of and bytes. From
B(7) to A(8), the consumed DoF of is lR = 8. Therefore, the remaining DoFs
of and are DoFR = 11− 8 = 3 and DoFB = 3, respectively. In Figure 12(b),

by assigning conditions k0 = k10 ⊕HA and k1 = k9 ⊕HB , we have A
(10)
MC = A

(0)
MC

and A
(9)
MC = A

(1)
MC . Therefore, A

(2) = B(9) ⊕HA and B(2) = A(9) ⊕HB . In Figure

12(c), Sasaki applied a linear transformation in the computation from A
(3)
SB to

A
(5)
SB to derive a multi-round matching with DoM = 2 as shown in Figure 13.

The time complexity is 28×(16−min{3,3,2}) = 2112.
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A(6) B(6)

A
(6)
AK A

(6)
SB A

(6)
MC

⊕ ⊕
k6

SB MC

A(7) B(7)

A
(7)
AK A

(7)
SB A

(7)
MC

⊕
⊕

⊕

k7
SB MC

A(8) B(8)

A
(8)
AK A

(8)
SB A

(8)
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⊕ ⊕
k8

SB MC

A(9) B(9)

(a) Initial Structure

A(9) B(9)

A
(9)
AK A

(9)
SB A

(9)
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⊕ ⊕
k9

SB MC

A(10) B(10)

A
(10)
AK A

(10)
SB A

(10)
MC

⊕ ⊕

cancel

⊕⊕HA HB

k10
SB MC

A(0) B(0)

A
(0)
AK A

(0)
SB A

(0)
MC

⊕ ⊕
7

k0

k0 = k10 ⊕HA

SB MC

A(1)

(= A(9) ⊕HB)

B(1)

A
(1)
AK A

(1)
SB A

(1)
MC

⊕ ⊕
7

k1

k1 = k9 ⊕HB

SB MC

A(2)(= B(9) ⊕HA) B(2)

(b) 4-round shrink and link

A(2) B(2)

A
(2)
AK A

(2)
SB A

(2)
MC

⊕ ⊕
k2

SB MC

A(3) B(3)

A
(3)
AK A

(3)
SB A

(3)
MC

⊕ ⊕
k3

SB MC

A(4) B(4)

A
(4)
AK A

(4)
SB A

(4)
MC

⊕ ⊕
k4

SB MC

A(5) B(5)

A
(5)
AK A

(5)
SB A

(5)
MC

⊕ ⊕
k5

SB MC

A(6) B(6)

(c) Matching point

Fig. 12: Sasaki’s attack

A
(3)
SB

B(3) A(6)

MC

A
(5)
SB

⊕ MC−1⊕

(a) Original

A
(3)
SB

B(3) A(6)

MC−1
A

(5)
SB

⊕

MC−1

⊕

(b) Transformed

Fig. 13: Matching in Sasaki’s attack

3 Generalization on Matching Strategy in MitM

In the matching point of the MitM attack, with forward and backward compu-
tations, if two matching states F+ and F− are determined only by the and ,
respectively, then, the relation F+ = F− acts as a direct partial matching. This
simple matching strategy is frequently used in previous works [48,45]. In ASI-
ACRYPT 2009, Aoki et al. introduced the indirect partial matching technique
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[2], where F+ can be expressed as ϕB +ϕR, and F− = ΦB +ΦR. ϕB and ΦB are
determined by the and bytes. ϕR and ΦR are determined by the and
bytes. Therefore, the DoM-byte equation ϕB +ΦB = ϕR +ΦR can be built from
F+ = F−, which acts as the matching. In this paper, we denote EndB = ϕB+ΦB
and EndR = ϕR + ΦR.

In addition to the above two common matching strategies, we find that the
byte equation determined only by one of the two colors ( , ) can also be used
in the MitM attack. Taking the matching by combining MixColumn and XOR

operations at MixColumns and AddRoundKey for AES as an example as shown in
Figure 14(a). Suppose from the matching states, there exist MR byte-equations
πR = 0, MB byte-equations πB = 0, and DoM byte-equations EndB = EndR,
where EndR and πR are determined by and , EndB and πB are determined
by and . Figure 14(b) is a commonly used matching strategy (indirect partial
matching) in previous MitM attacks [45,46], where there exists DoM = 1 byte
matching equation EndB = EndR. Figure 14(c) is the new matching strategy,
where there exists MR = 1 byte matching equation:

πR = 7α[0]⊕ 11α[1]⊕ 4α[3]⊕ 3γ[0]⊕ 3β[0]⊕ β[1]⊕ γ[1] = 0.

This matching method in Figure 14(c) can not be included in any of the two
common matching strategies (direct or indirect partial matching), but can still
lead to valid MitM attacks. With the new matching strategy, we introduce the
new MitM procedures in the following:

⊕MC

α χ

β

γ

0
1
2
3

(a) MC then XOR

⊕MC

α
β

γ

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2






·
α[0]

α[1]
-

α[3]






=

β[0]⊕ γ[0]

β[1]⊕ γ[1]
-
-










2α[0]⊕ 3α[1]⊕ α[2]⊕ α[3] = β[0]⊕ γ[0]
α[0]⊕ 2α[1]⊕ 3α[2]⊕ α[3] = β[1]⊕ γ[1]

⇓
7α[0]⊕ 11α[1]⊕ 4α[3]⊕ 3γ[0] = 3β[0]⊕ β[1]⊕ γ[1]

(b) DoM = 1 bytes matching

⊕MC

α
β

γ

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2






·
α[0]

α[1]
-

α[3]






=

β[0]⊕ γ[0]

β[1]⊕ γ[1]
-
-










2α[0]⊕ 3α[1]⊕ α[2]⊕ α[3] = β[0]⊕ γ[0]
α[0]⊕ 2α[1]⊕ 3α[2]⊕ α[3] = β[1]⊕ γ[1]

⇓
7α[0]⊕ 11α[1]⊕ 4α[3]⊕ 3γ[0]⊕ 3β[0]⊕ β[1]⊕ γ[1] = 0

(c) MR = 1 bytes matching

Fig. 14: Examples in Generalized Matching Strategy

1. Choose constants for the initial structure.
2. For all 28·DoFR values of neutral space, compute from the initial structure

to the matching points. If πR = 0 holds, store the DoFR bytes in table
LR[EndR].

3. For all 28·DoFB values of neutral space, compute from the initial structure
to the matching points. If πB = 0 holds, store the DoFB bytes in table
LB[EndB].

4. Check for the DoM bytes matching with EndR = EndB on indices between
LR and LB.

5. For the pairs surviving the partial matching, check for a full-state match.
6. Steps 1-5 form one MitM episode that will be repeated until a full match is

found.
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The Complexity. In one MitM episode, the time complexities of Step 2 and
3 are 28·DoFR and 28·DoFB , respectively. The memory costs of Step 2 and 3 are
28(DoFR−MR) and 28(DoFB−MB). In Step 4 and 5, there expect 28(DoFR−MR) ·
28(DoFB−MB)−8·DoM surviving pairs to check for a full-state match. Therefore,
the time complexity of one MitM episode is

28·DoFR + 28·DoFB + 28(DoFR+DoFB−MR−MB−DoM).

For a given h-bit target, 2h−8(DoFR+DoFB) MitM episodes are needed to perform,
and the total time complexity is

2h−8·min(DoFR,DoFB,MR+MB+DoM). (2)

Remark 1. Compared with the attack framework proposed by Bao et al. [6],
steps 2-3 in our framework will first filter the states that do not satisfy the
matching equations containing only one color, and then store the remaining
states in tables. The overall memory is 28×min{DoFR−MR,DoFB−MB} which may
be lower than the main memory cost in [6], i.e. 28×min{DoFR,DoFB}.

Modelling the Matching Point. For a given byte in Figure 14, we introduce
a Boolean variable ω, that ω = 1 means this byte is , otherwise ω = 0. ωα

i ,

ωβ
i , and ωγ

i indicate whether the i-th byte in α, β, and γ is white respectively,

and ω
(β,γ)
i is defined by OR(ωβ

i , ω
γ
i ), i.e., ω

(β,γ)
i = 1 if ωβ

i or ωγ
i is 1. Besides,

an auxiliary state χ is introduced in Figure 14, where χ = β ⊕ γ. The rule to
generate χ follows the XOR-Rule in [6], (i.e. ⊕ = , ⊕ = , ⊕ = ,
etc.). Moreover, we introduce 4 general variables nα

B, n
α
R, nχ

B and nχ
R to count

the numbers of cells and cells or the number of cells and cells in α or
χ. For example, nα

B is the number of cells and cells in α. Another general
variable nG is introduced to count the total number of cells in α and χ. Suppose
(xα

i , y
α
i ) and (xχ

i , y
χ
i ) denote the i-th cell in α and χ respectively, then we have





nα
B =

3∑
i=0

xα
i ;

nα
R =

3∑
i=0

yαi ;





nχ
B =

3∑
i=0

xχ
i ;

nχ
R =

3∑
i=0

yχi ;

nG =
3∑

i=0

AND(xα
i , y

α
i ) + AND(xχ

i , y
χ
i ).

where AND(xi, yi) = 1 if and only if xi = yi = 1. To avoid double counting the
number of equations derived only by , let MG = max{0, nG−4} and exclude MG
equations from πR = 0. Then, the number of equations in πB = 0 and πR = 0
can be calculated by

MB = max
{
0, nα

B + nχ
B − 4

}
, MR = max

{
0, nα

R + nχ
R −MG − 4

}
. (3)

For the MC then XOR operations in Figure 14, we can build 4−∑3
i=0(ω

(β,γ)
i +ωα

i )
linear equations which are determined by only known cells ( , , ). Therefore,
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the number of byte equations EndB = EndR is equal to the total linear equations
minus MB and MR equations. We get

DoM = max



0, 4−

3∑

i=0

(ω
(β,γ)
i + ωα

i )−MB −MR



 . (4)

4 Automatic Model for Transformed Feistel Struture

In this section, we first generalize Sasaki’s multi-round matching strategy into
full-round matching. Then, we introduce an equivalent transformation of Feis-
tel and GFN, which is very friendly with the new proposed full-round match-
ing strategy. At last, we construct the MILP constraints to describe the at-
tributes propagation through transformed Feistel and how the full-round match
is deployed. Combining the equivalent transformation and full-round match, the
MILP model can be simplified and easy to program.

4.1 The Generalization of Sasaki’s Matching Strategy for Feistel

In [46], Sasaki proposed a matching strategy for Feistel with a linear transfor-
mation. As shown in Figure 13, it is hard to see any matching in the original
Figure 13(a). However, after a linear transformation in Figure 13(b), the two-
byte matching is obviously obtained. Besides the attack on balanced Feistel-SP,
Sasaki [46] also built MitM attacks on GFN with SP round function, where the
matching point covers 7 consecutive rounds. A similar linear transformation as
in Figure 13(b) is also applied, but involves more internal states.

Inspired by Sasaki’s matching strategy [46], we generalize the matching strat-
egy to full-round matching, i.e., the matching can happen by writing down the in-
ternal states involved from the matching point to the initial structure. For exam-

ple, we can further extend Figure 13(a) by replacing B(3) by MC(A
(7)
SB )⊕B(7)⊕HA

and replacing A(6) by B(7), where the internal states A
(7)
SB and B(7) come from

the initial structure. Therefore, Figure 13 becomes Figure 15. The advantages of
the generalized full-round matching are summarized below:

I Since the internal states from the initial structure preserve more useful in-
formation than other internal states (there are usually no bytes in the
initial structure), a full-round matching may be more likely to produce a
valid match than a local-round matching (e.g., 3 or 4 rounds). An example
is found for Simpira-4 in Figure 18, where the matching obviously exists for
the full-round case, but disappears for certain local-round case.

II Also a linear transformation is applied to Figure 15(a) to obtain Figure
15(b). This is essential and can not be replaced by Bao et al.’s superposition
MitM technique [7]. If we apply the superposition MitM technique in Figure

15(a), A
(3)
SB will be separated into two states following the rules in Figure 2,

then one of the two states will be all after MC. Therefore, an unknown state
will be XORed into the matching path, which leads to no matching at all.
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If we apply a linear transformation to obtain Figure 15(b), each byte of A
(3)
SB

will be involved in the matching path individually. For example, considering
the 4-th byte, there is a one-byte equation

MC−1
(
B(7)

)
[3]⊕A

(7)
SB [3]⊕A

(3)
SB [3]⊕A

(5)
SB [3] = MC−1

(
B(7) ⊕HA

)
[3], (5)

which is obviously a matching equation (no byte is involved).
III The transformed structure in Figure 15(b) is easy to program in the auto-

matic tool. As shown in Equation (5), each byte can be individually consid-
ered, which is very friendly than the untransformed case in Figure 15(a). As a
matter of fact, this is very important when building the automatic tool, since
for many (generalized) Feistel networks, the situation is much more complex
than the very easy case for Feistel-SP. For example, in our 11-round attack
on Simpira-4 (Figure 23), there are more states involved in matching than
that in Figure 15(a). Therefore, if we do not apply the linear transformation,
we have to program many MC operations into a whole matching rule, which
is very complex or even infeasible for many ciphers like Simpira-4.

B(7)

A
(7)
SB A

(3)
SB A

(5)
SB

B(7) ⊕HA

⊕

MC MC MC

⊕ ⊕

(a) Original

B(7)

A
(7)
SB A

(3)
SB A

(5)
SB

B(7) ⊕HA

⊕ MCMC−1 ⊕ ⊕

(b) Transformation

Fig. 15: Full-match in Feistel-SP

We find that the transformation in Figure 15(b) can be directly obtained if we
consider MitM attacks on an equivalent transformation of Feistel-SP, i.e., Figure
6(b). To better understand this fact, we take the MILP-based MitM attack on
transformed Simpira-4 as an example in the following part.

4.2 MILP-based MitM Attack on Transformed Feistel

As shown in Figure 8, the output A(r+1) is equivalent to B(r) ⊕ MC(A
(r)
SR2). With

a linear transformation on A(r+1), we have MC−1(A(r+1)) = MC−1(B(r)) ⊕ A
(r)
SR2.

Similarly, B(r+1), C(r+1) and D(r+1) can be handled in the same way. For the
sake of simplicity and intuition, we transform the Feistel network by putting the
last MixColumn operation first in each round like Figure 6(b). Then the output
of each round is the state after the above linear transformation in the original
structure. Therefore, we propose the following property.

Property 1. Simpira-4 is equivalent to the permutation with a round function

R′
i = SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB ◦ MC,
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except for replacing the input
(
A(r), B(r), C(r), D(r)

)
by

(
Ã(r), B̃(r), C̃(r), D̃(r)

)
=

(
MC−1(A(r)), MC−1(B(r)), MC−1(C(r)), MC−1(D(r))

)
, and the final output becomes

(
Ã(r+1), B̃(r+1), C̃(r+1), D̃(r+1)

)
.

Following Property 1, we represent the 3-round transformed Simpira-4 in Figure

16, where Ã(r+1) = B̃(r) ⊕ Ã
(r)
SR2. In this way, Ã

(r)
MC1 = MC(Ã(r)) = A(r), then

Ã
(r)
SR2 = A

(r)
SR2. According to the predefined B̃(r) = MC−1(B(r)), Ã(r+1) is equivalent

to MC−1(B(r))⊕A
(r)
SR2. Therefore, the output Ã

(r+1) in the transformed Simpira-4
is actual the state MC−1(A(r+1)) in the original Simpira-4 (Figure 8). This is also
true for B̃(r+1), C̃(r+1) and D̃(r+1).

Ã
(r+1)
MC1 Ã

(r+1)
SR1 Ã

(r+1)
MC2 Ã

(r+1)
SR2

MC SB
SR

MC
AC

SB
SR

⊕

C̃
(r+1)
MC1 C̃

(r+1)
SR1 C̃

(r+1)
MC2 C̃

(r+1)
SR2

MC SB
SR

MC
AC

SB
SR

⊕

Ã(r+2) B̃(r+2) C̃(r+2) D̃(r+2)

Ã(r)

Ã
(r)
MC1 Ã

(r)
SR1 Ã

(r)
MC2 Ã

(r)
SR2

B̃(r)

MC SB
SR

MC
AC

SB
SR

⊕

C̃(r)

C̃
(r)
MC1 C̃

(r)
SR1 C̃

(r)
MC2 C̃

(r)
SR2

D̃(r)

MC SB
SR

MC
AC

SB
SR

⊕

Ã(r+1) B̃(r+1) C̃(r+1) D̃(r+1)

Ã(r−1)

Ã
(r−1)
MC1 Ã

(r−1)
SR1 Ã

(r−1)
MC2 Ã

(r−1)
SR2

B̃(r−1)

MC SB
SR

MC
AC

SB
SR

⊕

C̃(r−1)

C̃
(r−1)
MC1 C̃

(r−1)
SR1 C̃

(r−1)
MC2 C̃

(r−1)
SR2

D̃(r−1)

MC SB
SR

MC
AC

SB
SR

⊕

Fig. 16: Equivalent transform of Simpira-4

MILP Constraints for the Computation Paths. As shown in Figure 16,

Ã
(r+1)
MC1 can be computed by MC

(
Ã

(r)
SR2 ⊕ B̃(r)

)
, where B̃(r) can be replaced by

MC−1
(
C̃

(r−1)
MC1

)
. Therefore, Ã

(r+1)
MC1 = MC

(
Ã

(r)
SR2

)
⊕ C̃

(r−1)
MC1 , which is also named

as MC-then-XOR-Rule. In fact, if we sequentially compute the colors of Ã
(r+1)
MC1

by computing B̃(r) = MC−1
(
C̃

(r−1)
MC1

)
and then Ã

(r+1)
MC1 = MC

(
Ã

(r)
SR2 ⊕ B̃(r)

)
, i.e.,

first apply MC-Rule, and then XOR-Rule, and then MC-Rule, we may lose many
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possible and useful color schemes even in the most advanced superposition MitM
framework. An example is given in Figure 17(a), when applying MC-Rule on the

superposition states of C̃
(r−1)
MC1 , it will lead to all cells. Subsequently, Ã

(r+1)
MC1 will

end up with a full column of cells. However, if we apply the MC-then-XOR-Rule
with superposition framework as shown in Figure 17(b), three cells will be
preserved by consuming three cells. This also fits our intuition, i.e. more linear
operations yield higher possibility of generating unknown cells.

⊕

⊕

⊕

MC−1

MC−1

MC

MC
Ã

(r+1)
MC1Ã

(r)
SR2 C̃

(r−1)
MC1B̃(r)

(a) Model MC-Rule and XOR-Rule separately

−3⊕

⊕

⊕

MC

MC

Ã
(r+1)
MC1Ã

(r)
SR2 C̃

(r−1)
MC1

(b) Model the link by MC-then-XOR-Rule

Fig. 17: The advantage of modeling link by applying MC-then-XOR-Rule

MILP Constraints for the Full-Round Match. In Figure 12(c), the ending
states are (A(4), B(4)) computed from two opposite directions. With a linear
transformation, two-byte partial matching is deduced as shown in Figure 13. The
matching phase involves two rounds of forward and two rounds of backward,
respectively. So we denote such multi-round matching as (2+2)-round match.
Taking the transformed Simpira-4 as an example, assume that the output state
Ã(r+1) is chosen to be the ending states in Figure 16. We have

Ã(r+1) = Ã
(r)
SR2 ⊕ B̃(r), where B̃(r) = MC−1

(
C̃

(r−1)
MC1

)
. (6)

As mentioned above, C̃
(r−1)
MC1 can be computed directly by MC

(
C̃

(r−2)
SR2

)
⊕ Ã

(r−3)
MC1

in the transformed Simpira-4 model. Hence, B̃(r) can be replaced by C̃
(r−2)
SR2 ⊕

MC−1
(
Ã

(r−3)
MC1

)
in Equation (6). Immediately, Ã

(r−3)
MC1 can also be replaced in

the same way. Subsequently, this replacement is done round by round until the
initial structure to build the so-called full-round matching. Take our 11-round
attack (Figure 23) on transformed Simpira-4 in Section 6.2 as an example. The
ending state D̃(2) is computed forward and backward to the initial structure.
The shortest round that a matching exists is the (6, 4)-round matching given in
Figure 18(a). If a shorter round is considered for matching, e.g., (6, 2)-round in

Figure 18(b), there will be no matching, since the state C̃
(3)
MC1 will be all . If we

extend the (6, 4)-round matching to the full-round matching, we get Figure 18(c),
where the two states applied MC−1 in both directions will eventually converge to
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an identical state C̃
(7)
MC1 in the initial structure. Figure 18(c) can also be displayed

with the following full-round matching Equation (7):

MC−1
(
C̃

(7)
MC1

)
⊕Ã

(8)
SR2⊕C̃

(10)
SR2 ⊕Ã

(0)
SR2⊕C̃

(2)
SR2⊕Ã

(4)
SR2⊕C̃

(6)
SR2 = MC−1

(
C̃

(7)
MC1 ⊕HB

)
, (7)

where MC−1
(
C̃

(7)
MC1

)
can be cancelled in both sides. The reason follows the fact

that the initial degrees of freedom of and cells will be consumed along the
forward or backward computation path. The number of cells only becomes
bigger through some linear or nonlinear operations. If the matching happens
within shorter rounds, there will only be more matching cases after elongation.
But on the contrary, while considering to find a shorter-round match from a
longer one, there may be cases where the state in the shorter rounds will be
after applying linear operations.

C̃
(7)
MC1

MC−1

Ã
(8)
SR2

C̃
(10)
SR2 ⊕

MC−1(HB) Ã
(0)
SR2

⊕ ⊕ ⊕

C̃
(2)
SR2 Ã

(4)
SR2

Ã
(5)
MC1

MC−1⊕ ⊕

(a) (6,4)-round matching

Match

DoM = 4

C̃
(7)
MC1

MC−1

Ã
(8)
SR2

C̃
(10)
SR2 ⊕

MC−1(HB) Ã
(0)
SR2

⊕ ⊕ ⊕

C̃
(2)
SR2

C̃
(3)
MC1

MC−1⊕

(b) No matching in (6,2)-round

Match

DoM = 0

C̃
(7)
MC1

MC−1

Ã
(8)
SR2

C̃
(10)
SR2 ⊕

MC−1(HB) Ã
(0)
SR2

⊕ ⊕ ⊕

C̃
(2)
SR2 Ã

(4)
SR2 C̃

(6)
SR2

C̃
(7)
MC1

MC−1⊕ ⊕ ⊕

(c) Matching through full-round

cancel

Match

DoM = 4

– In 18(a), cell is the linear combination of cells and cells.

– In 18(b), C̃
(3)
MC1 is computed by MC−1

(
Ã

(4)
SR2

)
⊕ Ã

(5)
MC1 in 18(a). Since there are cells in each

column of Ã
(4)
SR2 , the cells in C̃

(3)
MC1 become all unknown.

– In 18(c), MC−1
(
Ã

(5)
MC1

)
is replaced by MC−1

(
C̃

(7)
MC1

)
⊕ C̃

(6)
SR2 . The two states to perform MC−1

converge to C̃
(7)
MC1 , so both of them can be canceled in two directions.

Fig. 18: The (6,4)-round match in Simpira-4, and its impacts on the match after
being shortened or elongated

Following the above study, we only need to consider whether there exist
match cells in the full-round matching. The two states to perform MC−1 will
eventually converge into the starting states in the initial structure, or even can
be canceled in both matching directions as shown in Figure 18(c). For the general
case, assume the matching phase consists of two starting states I1 and I2, e.g.,

in Figure 18(c) I1 = I2 = C̃
(7)
MC1, and assume t internal states X1, X2, · · · , Xt

are involved in the full-round matching equation. Similar to Equation (7), the
generic full-round matching equation can be written as

MC−1(I1)⊕X1 ⊕ · · · ⊕Xt = MC−1(I2). (8)
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The matching equation can be computed for each byte individually. In the i-th
column and j-th row (i, j = 0, 1, 2, 3), the byte matching equation is linearly
computed from Xk[4i + j] (k = 1, · · · , t) and I1[4i, 4i + 1, 4i + 2, 4i + 3] and
I2[4i, 4i+ 1, 4i+ 2, 4i+ 3]. From our analysis on the generalization of matching
in Section 3, if all these involved bytes are not bytes, there will be valid
matching for MitM attack. For j-th byte of Xk, we introduce a Boolean variable
ωXk
j , where ωXk

j = 1 means this byte is , otherwise ωXk
j = 0. Let

ω4i+j = OR
(
ωX1
4i+j , · · · , ωXt

4i+j , ω
I1
4i , · · · , ωI1

4i+3, ω
I2
4i , · · · , ωI2

4i+3

)
.

If ω4i+j = 0, then we get one valid matching byte for MitM in the i-th column
and j-th row.

5 Meet-in-the-Middle Attack on Reduced Feistel-SP

With our new model, we find a 12-round preimage attack of Feistel-SP-MMO as
shown in Figure 19, which improves Sasaki’s attack [46] by 1 round. The starting

states are Ã
(7)
MC and Ã

(8)
MC . The initial DoFs for and are λB = 14, λR = 2,

respectively. From Ã
(9)
MC , Ã

(6)
MC and Ã

(5)
MC , we get 12 constraints on forward neutral

words and 0 constraints on backward neutral words, i.e. lB = 12, lR = 0. Then
we have DoFB = 2 and DoFR = 2. The matching points are Ã(5) and B̃(5). But
only a full-round match is found through B̃(5), which is

MC−1
(
Ã

(7)
MC

)
⊕ Ã

(8)
SB ⊕ MC−1(HA)⊕ Ã

(3)
SB ⊕ Ã

(5)
SB ⊕ Ã

(7)
SB = MC−1

(
Ã

(8)
MC

)
, (9)

with Ã
(1)
SB = Ã

(10)
SB by assigning the same assumption to Sasaki’s attack [46],

i.e., k0 = k11 ⊕ HA and k1 = k10 ⊕ HB . From Equation (9), 2 bytes degree of
match indexed by [6, 7] are derived, i.e. DoM = 2. The 12-round MitM attack
is given in Algorithm 1. The time complexity to precompute U is 28·λB = 2112.
The memory to store U is 28·(λB−8) = 248. The final time complexity is

264+48 + 28×(16−min{14−12, 2, 2}) ≈ 2113.

6 Meet-in-the-Middle Attack on Reduced Simpira v2

For Simpira v2 [29] with branch number bigger than 2, the designers sug-
gested the permutation-based hashing based on Davies-Meyer (DM) construc-
tion: π(x) ⊕ x, where π is Simpira v2 permutation. For the common size of
digest, i.e., 256 bits, the output of Simpira v2 has to be truncated. For a
fair comparison with Schrottenloher and Stevens’ attacks [50], we follow the
same way of truncation of the output of Simpira v2. We introduce the first
7-round attack on Simpira-2 and 11-round attack on Simpira-4. To fill a gap
left by Schrottenloher and Stevens [50], we introduce the first attack on reduced
Simpira-6 in Supplementary Material C. We also give an experiment based on a
new 7-round MitM characteristic of Simpira-2 in Supplementary Material F.
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(6)
SB

-2

⊕ ⊕
k5

MC SB

Ã
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(2)
AK Ã
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Ã
(11)
MC ⊕ k11

Ã
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(1)
SB

(a) Initial states and backward chunk

(c) Shrink and forward chunk(b) Details of shrink over 6 rounds in (c)

Fig. 19: MitM attack on 12-round Feistel-SP
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Algorithm 1: Preimage Attack on 12-round Feistel-SP

1 Set constraints on key schedule k0 = k11 ⊕HA and k1 = k10 ⊕HB

2 for gb ∈ F64
2 /* MC(Ã

(8)
SB [0-5]||0||0)⊕ Ã

(7)
MC = gb */

3 do
4 U ← [ ]

5 for vB ∈ F6×8
2 in Ã

(8)
SB [0-5] do

6 Ã
(7)
MC ← MC(vB∥0∥0)⊕ gb

7 Compute throungh AK and SB to get the values of cells in Ã
(7)
SB

8 c0∥c1 ← MC(Ã
(7)
SB )[6, 7] /* Ã

(6)
MC = MC(Ã

(7)
SB )⊕ Ã

(8)
MC */

9 Compute cells in Ã
(6)
SB

10 c2∥c3 ← MC(Ã
(6)
SB [0-5]∥0∥0)[6, 7]⊕ Ã

(7)
MC [6, 7]

11 cB ← c0∥c1∥c2∥c3
12 U [cB]← vB /* There are 216 elements in U [cB] given cB */

13 end

14 for cB ∈ F4×8
2 do

15 L← [ ]
16 for vB ∈ U [cB] do

17 Compute backward to the cells in Ã
(6)
MC . According to Figure 19,

derive 2 bytes EndB for matching by

EndB ← MC
−1

(
Ã

(6)
MC [0− 5]∥0∥0

)
[6, 7]

L[EndB]← vB
18 end

19 for 28λR values vR of the bytes in Ã
(8)
MC , λR = 2 do

20 Compute backward to the cells in Ã
(5)
SB

21 Due to the predefined constraints on key schedule, there always be

Ã
(1)
MC = Ã

(10)
MC ⊕HB and Ã

(2)
MC = Ã

(9)
MC ⊕HA

22 With Ã
(1)
MC and Ã

(2)
MC , compute forward to the cells in Ã

(3)
SB

23 From Ã
(2)
MC , Ã

(3)
SB and Ã

(5)
SB [6, 7], derive 2 bytes EndR for matching

by

EndR ← MC
−1

(
~A
(2)
MC

)
[6, 7]⊕~A(3)SB [6, 7]⊕~A

(5)
SB [6, 7]⊕MC

−1
(
0∥0∥0∥0∥0∥~A(6)MC [6, 7]

)
[6, 7]

for vB ∈ L[EndR] do
24 Reconstruct the (candidate) message X
25 if X is a preimage then
26 Output X and stop
27 end

28 end

29 end

30 end

31 end
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6.1 Meet-in-the-Middle Attack on 7-round Simpira-2

As shown in Figure 20, we give a 7-round preimage attack on Simpira-2. The

starting states are Ã
(3)
MC1 and Ã

(4)
MC1, where λR = 4 and λB = 28. Along the forward

and backward computation paths, there are 0 constraints on and 20 constraints
on , i.e. lR = 0 and lB = 20 as shown in Figure 21. Then, we have DoFR =
λR − lR = 4 and DoFB = λB − lB = 8. The matching points are Ã(2) and B̃(2)

and the full-round matching equation is (10). Due to MC−1(Ã
(3)
MC1) appears in both

directions, MC−1(Ã
(3)
MC1) makes no contribution to the match and can be canceled

without influence as shown in Figure 22.

Ã
(2)
SR2 ⊕ Ã

(4)
SR2 ⊕ Ã

(6)
SR2 ⊕ MC−1(HB) = Ã

(0)
SR2. (10)

Then, 4 bytes for matching in the Equation (10) indexed by [3, 6, 9, 12] are only
determined by the bytes, i.e. MR = 4. The detailed attack procedure is shown
in Algorithm 2. The time to construct U is 28·λB = 2224. The memory cost
to store U is 28·(λB−16) ≈ 296. According to Equation (2), the overall time
complexity to mount a MitM attack is

2224 + 28×(32−min{8,4,4}) ≈ 2225.

The memory cost is about 296 to store hash table U .

⊕

⊕ ⊕

MC SB
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MC SB
SR
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⊕MC SB
SR

MC SB
SR
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Ã
(2)
MC1 Ã
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(1)
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SR

Ã
(0)
MC1 Ã

(0)
SR1 Ã

(0)
MC2 Ã

(0)
SR2

Fig. 20: MitM attack on 7-round Simpira-2
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Ã
(4)
SR2

Ã
(3)
MC1

Ã
(5)
MC1MC

MC

⊕

⊕

-16

gb

MC

MC

Ã
(3)
SR2

Ã
(4)
MC1

Ã
(2)
MC1

⊕

⊕

-4

Fig. 21: The MC-then-XOR-Rule of Simpira-2 in superposition framework

Algorithm 2: Preimage Attack on 7-round Simpira-2

1 for gb ∈ F128
2 do

2 U ← [ ]

3 for vB ∈ F12×8
2 in Ã

(4)
MC1[0, 2-5, 7-10, 13-15] do

4 Compute the cells in Ã
(4)
SR2 from Ã

(4)
MC1

5 Let Ã
(4)
SR2[i]← 0, where i ∈ [3, 6, 9, 12]

6 Compute Ã
(3)
MC1 by MC(Ã

(4)
SR2)⊕ gb /* Left part of Figure 21 */

7 Compute Ã
(3)
SR2 from Ã

(3)
MC1

8 c0∥c1∥c2∥c3 ← MC(Ã
(3)
SR2)[1, 6, 11, 12] /* Right part of Figure 21 */

9 cB ← c0∥c1∥c2∥c3
10 U [cB]← vB /* There are 28×8 elements U [cB] given cB */

11 end

12 for cB ∈ F4×8
2 do

13 Set S to be an empty set to store the compatible values of

14 for 28λR values vR of the bytes in Ã
(4)
MC1, λR = 4 do

15 Compute to the cells in Ã
(0)
SR2, Ã

(2)
SR2, Ã

(4)
SR2 and Ã

(6)
SR2

16 As shown in Figure 22, MR=4 bytes equations are derived by(
Ã

(2)
SR2 ⊕ Ã

(4)
SR2 ⊕ Ã

(6)
SR2 ⊕ MC

−1(HB)
)
[3, 6, 9, 12] = Ã

(0)
SR2[3, 6, 9, 12]

17 Put the solution into S
18 end
19 for vB ∈ U [cB] do

20 Compute the cells in Ã
(3)
MC1 as Line 6

21 for vR ∈ S do
22 Reconstruct the (candidate) message X
23 if X is a preimage then
24 Output X and stop
25 end

26 end

27 end

28 end

29 end
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MC−1

Ã
(4)
SR2

Ã
(6)
SR2 ⊕

MC−1(HB) Ã
(0)
SR2 Ã

(2)
SR2

MC−1

Ã
(3)
MC1 Ã

(3)
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⊕ ⊕ ⊕ ⊕

cancel

MR = 4

Match

Fig. 22: Full-round matching in 7-round Simpira-2

6.2 Meet-in-the-Middle Attack on 11-round Simpira-4

Figure 23 is an 11-round MitM characteristic on Simpira-4. Figure 28 given in
Supplementary Material B is an alternative representation of the MitM character-
istic with MC-then-XOR-Rule in superposition framework. The starting states are

Ã
(7)
MC1, C̃

(6)
MC1, Ã

(6)
MC1, and C̃

(7)
MC1. The initial DoFs for and is λR = 24 and λB = 4,

respectively. Along the forward and backward computation paths, there are a
total of 20 constraints on and 0 constant constraints on , i.e. lR = 20 and
lB = 0. Hence, we get DoFR = λR − lR = 4 and DoFB = λB − lB = 4. The
matching points are (Ã(2), B̃(2), C̃(2), D̃(2)). The full-matching equation is (11),

where MC−1(C̃
(7)
MC1) appears in both directions and cancelled.

Ã
(8)
SR2 ⊕ C̃

(10)
SR2 ⊕ MC−1(HB)⊕ Ã

(0)
SR2 = C̃

(6)
SR2 ⊕ Ã

(4)
SR2 ⊕ C̃

(2)
SR2. (11)

Then, 4 bytes in Equation (11) indexed by [0, 7, 10, 13] are derived as the degree
of match, i.e. DoM = 4. The 11-round attack is given in Algorithm 3. The time to
construct V is 28·λR = 2192 and memory is 28·(λR−4) = 2160. We need to traverse

232 values of the in Ã
(6)
MC1, C̃

(6)
MC1 and C̃

(7)
MC1. Hence, the total time complexity can

be computed by 232 × 2192 + 28×(32−min{24−20,4,4}) ≈ 2225. The overall memory
is 2160 to store V .

7 Meet-in-the-Middle Attack on 17-round lesamnta-LW

We also apply our automated model to Lesamnta-LW [31]. Since the Lesamnta-LW
does not have the feed-forward mechanism, there are only two forward chunks.
We find a 17-round MitM characteristic for Lesamnta-LW without linear trans-
formation, which is shown in Figure 24. The initial DoFs for and are λB = 4,
λR = 4, respectively. Without consuming DoF of / in the computation from
round 0 to round 17, there is DoFR = DoFB = 4. The matching happens be-
tween D(17) and the targeted hash value, where DoM = 8. The procedure of
the MitM collision attack is given in Algorithm 4, where two message blocks
(m1,m2) are needed as shown in Figure 11. In our collision attack, we only use
the first column of D(17) for matching. At first, we randomly fix the 32-bit par-
tial target as constant, i.e., the first 32-bit D(17). Then, in one MitM episode, we
can get 232+32−32 = 232 (m1,m2) satisfying the 32-bit partial target. When we
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Ã
(7)
SR2

⊕ MC

C̃
(7)
MC1

SB
SR

C̃
(7)
SR1

MC

C̃
(7)
MC2

SB
SR

C̃
(7)
SR2

⊕

(+4 , +12 ) (+0 , +0 )

MC

Ã
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Ã
(2)
SR1

MC

Ã
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Fig. 23: MitM attack on 11-round Simpira-4
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Algorithm 3: Preimage Attack on 11-round Simpira-4

1 for Ã
(6)
MC1∥C̃

(6)
MC1 [1, 6, 11, 12]∥C̃

(7)
MC1 ∈ G /* |G| = 232 */

2 do
3 for gr ∈ F32

2 do
4 V ← [ ]

5 for vR ∈ F20×8
2 in Ã

(7)
MC1[0-2, 5-8, 10-13, 15] and C̃

(6)
MC1 [2-4, 7-9, 13, 14] do

6 Compute the cells in Ã
(7)
SR2 from Ã

(7)
MC1

7 Let Ã
(7)
SR2[i]← 0, where i ∈ [1, 4, 11, 14]

8 C̃
(6)
MC1 [0, 5, 10, 15]← MC(Ã

(7)
SR2)[0, 5, 10, 15]⊕ gr

9 From Ã
(7)
MC1 and Ã

(6)
MC1, compute the cells in C̃

(5)
SR2

10 Let C̃
(5)
SR2 [i]← 0, where i ∈ [1, 4, 11, 14]

11 c0∥c1∥c2∥c3 ←
(
MC(C̃

(5)
SR2)⊕ C̃

(6)
MC1

)
[0, 5, 10, 15]

12 From the known values, compute the cells in C̃
(9)
SR2 , C̃

(4)
SR2 , Ã

(3)
SR2,

and let the remaining cells be 0

13 c4∥c5∥c6∥c7 ← MC
(
C̃

(9)
SR2

)
[0, 5, 10, 15],

14 c8∥c9∥c10∥c11 ← MC
(
C̃

(4)
SR2

)
[3, 4, 9, 14]

15 c12∥c13∥c14∥c15 ← MC
(
Ã

(3)
SR2

)
[0, 5, 10, 15],

16 cR ← c0∥c1∥ · · · ∥c14∥c15
17 V [cR]← vR
18 end

19 for cR ← F16×8
2 do

20 L← [ ]
21 for vR ∈ V [cR] do

22 Compute the cells in C̃
(6)
SR2 . According to Figure 18(c), derive

4 bytes EndR for matching by

EndR ←
(
C̃

(6)
SR2 ⊕ MC

−1(HB)
)
[0, 7, 10, 13]

L[EndR]← vR
23 end

24 for 28λB values vB of the bytes in Ã
(7)
MC1, λB = 4 do

25 Compute backward to the cells in Ã
(4)
SR2 and C̃

(2)
SR2

26 Compute forward to the cells in Ã
(8)
SR2, C̃

(10)
SR2 and Ã

(0)
SR2

27 As in Figure 18(c), 4 bytes EndB for matching are derived by

EndB ←
(
Ã

(8)
SR2 ⊕ C̃

(10)
SR2 ⊕ Ã

(0)
SR2 ⊕ C̃

(2)
SR2 ⊕ Ã

(4)
SR2

)
[0, 7, 10, 13]

for vR ∈ L[EndB] do
28 Reconstruct the (candidate) message X
29 if X is a preimage then
30 Output X and stop
31 end

32 end

33 end

34 end

35 end

36 end
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Fig. 24: MitM attack on 17-round Lesamnta-LW
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find 2(256−32)/2 = 2112 different (m1,m2, h) with the same fixed 32-bit partial
target, we can find a collision on the remaining (256−32) bits of the full 256-bit
target. The time complexity is 216+64 · (232 + 232 + 232) ≈ 2113.58. The memory
complexity is 2112. The same time and memory cost can also be obtained when
considering linear transformation of collision.

Besides, we also found a 20-round MitM collision attack on Lesamnta-LW

when targeting on the linear transformation of collision, the overall time com-
plexity is 2124 which is better than the generic birthday bound 2128. However,
it’s not better than the designers’ security claim against collision attack, which
is 2120. We still put the 20-round MitM characteristic in Section D to clearly
specify the superiority of our new model.

Algorithm 4: Collision Attack on 17-round Lesamnta-LW

1 Fix the first 32 bits of D(17), i.e. 4 bytes of the first column
2 for 216 possible values of m1 do

3 for 264 possible values of B(0) in m2 /* The 128-bit message block

is placed in A(0) and B(0) */

4 do

5 for 28λR possible values of the bytes in A(0), λR = 4 do

6 Set the bytes in A(0) to 0

7 Compute forward to the bytes in D(17), and store in L1 indexed

by the first 32 bits of D(17)

8 end

9 for 28λB possible values of the bytes in A(0), λB = 4 do

10 Set the bytes in A(0) to 0

11 Compute forward to the bytes in D(17), and store in L2 indexed

by the first 32 bits of D(17)

12 end
13 for values matched between L1 and L2 do

14 Compute the 256-bit target h = (A(17), B(17), C(17), D(17)) from
the matched and bytes and store the (m1,m2, h) in L indexed
by h

15 if the size of L is 2(256−32)/2 = 2112 then
16 Check L and return (m1,m2) and (m′

1,m
′
2) with the same h

17 end

18 end

19 end

20 end

8 Meet-in-the-Middle Attack on Reduced Areion

Based on DM hashing mode, Isobe et al. [34] built hash functions Areion256-DM
and Areion512-DM. This section studies the MitM preimage attacks on these two
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ciphers. However, in the left branch of Areion, there exist additional operations,
such as SR ◦ SB for Areion-256. If we just transform it like Simpira, the left
branch still preserved additional operations so that the full-round matching (only
XORed states) cannot be applied. Therefore, we use the generalized matching
strategy proposed in Section 3 to detect matching equations at two consecutive
rounds, together with the superposition MitM technique.

8.1 Meet-in-the-Middle Attack on 5-round Areion-256

By applying the automatic MitM attack, we find a 5-round preimage attack on
Areion-256 as shown in Figure 25. The starting states are A(3) and B(3). The
initial DoFs for and are λR = 8 and λB = 23, respectively. The consuming
degrees for backward and forward are 0 and 15, i.e. lR = 0 and lB = 15. Then
we have DoFR = λR − lR = 8 and DoFB = λB − lB = 8. The matching happens

between A
(1,α)
SR2 and B(1)⊕A(2), by combining MixColumn and XOR operations as

Figure 14, where DoM = 6. According to Section 3, we get additional MR = 2
bytes from the last column of B(1) ⊕A(2), which are determined only by cells
and can also be used in matching phase.

The new 5-round attack on Areion-256 is given in Algorithm 7 in Supple-
mentary Material E. The time to construct table U is 28·λB = 2184. Hence, we

have the time complexity 28 · 2184 + 28×(32−min{23−15,8,8}) ≈ 2193. The overall
memory complexity is 288 to store U .

8.2 Meet-in-the-Middle Attack on 7-round Areion-256

The attack figure and algorithm on 7-round Areion-256 are given in Figure
34 and Algorithm 8 in Supplementary Material E. The starting states are A(4)

and B(4). The initial DoFs for and are λR = 22 and λB = 4, respectively.
The consumed DoFs of and are lR = 20 and lB = 2, so there is DoFR =

DoFB = 2. The matching happens between A
(1,α)
SR2 and B(1)⊕A(2), by combining

MixColumn and XOR operations as Figure 14, where DoM = 2. The time to
construct table V is 28·λR = 2176 and memory is 28·(λR−14) = 264. The overall

time complexity is 248 · 2176+28×(32−min{22−20,4−2,2}) ≈ 2240. The memory cost
is 264 to store V .

8.3 Meet-in-the-Middle Attack on 11-round Areion-512

The attack figure and algorithm on 11-round Areion-512 are given in Figure
35, 36, and Algorithm 9 in Supplementary Material E. The starting states are
A(3), B(3), C(3) and D(3). The initial DoFs for and are λR = 30, λB = 2,
respectively. The consuming DoF of backward and forward neutral words are
lR = 28 and lB = 0. Then, we have DoFR = λR− lR = 2 and DoFB = λB− lB =

2. The matching phase happens between C
(9,β)
SR and B(10) through MixColumn,

where DoM = 2. The time complexity to precompute V is 28·λR = 2240. The

time complexity is 2240 + 28×(32−min{30−28, 2, 2}) ≈ 2241. The overall memory
complexity is 248 to store V .
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Fig. 25: MitM attack on 5-round Areion-256
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9 Conclusion

In this paper, we build a new Meet-in-the-Middle automatic tool for Feistel
networks. In our model, we generalize the traditional direct or indirect partial
matching strategies and also Sasaki’s multi-round matching strategy. We also
find some equivalent transformations of Feistel and GFN to significanlty simplify
the MILP models. Applying our new models, we obtain improved preimage at-
tacks on Feistel-SP-MMO, Simpira-2/-4-DM,16 Areion-256/-512-DM and the
first 11-round attack on Simpira-6. Besides, we significantly improve the colli-
sion attack on the ISO standard hash Lesamnta-LW by 6 rounds.
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dum, Yann Rotella, David Rupprecht, and Lukas Stennes. Cryptanalysis of the
GPRS encryption algorithms GEA-1 and GEA-2. In EUROCRYPT 2021, Pro-
ceedings, Part II, volume 12697, pages 155–183. Springer, 2021.

11. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin,
Matt Robshaw, and Yannick Seurin. SHA-3 proposal: ECHO. Submission to NIST
(updated), page 113, 2009.
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Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3
candidate. In Symmetric Cryptography, 2009.

29. Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient permutations
using the AES round function. In ASIACRYPT 2016, Proceedings, Part I, volume
10031, pages 95–125, 2016.

30. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-
in-the-middle preimage attacks: First results on full Tiger, and improved results on
MD4 and SHA-2. In ASIACRYPT 2010, Proceedings, volume 6477, pages 56–75.

31. Shoichi Hirose, Kota Ideguchi, Hidenori Kuwakado, Toru Owada, Bart Preneel,
and Hirotaka Yoshida. A lightweight 256-bit hash function for hardware and low-
end devices: Lesamnta-lw. In ICISC 2010, volume 6829, pages 151–168. Springer,
2010.

32. Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart Pre-
neel. A practical attack on KeeLoq. In EUROCRYPT 2008, Proceedings, volume
4965, pages 1–18. Springer, 2008.

33. Takanori Isobe. A single-key attack on the full GOST block cipher. J. Cryptol.,
26(1):172–189, 2013.

34. Takanori Isobe, Ryoma Ito, Fukang Liu, Kazuhiko Minematsu, Motoki Nakahashi,
Kosei Sakamoto, and Rentaro Shiba. Areion: Highly-efficient permutations and
its applications to hash functions for short input. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2023(2):115–154, 2023.

35. Simon Knellwolf and Dmitry Khovratovich. New preimage attacks against reduced
SHA-1. In CRYPTO 2012, Proceedings, volume 7417, pages 367–383.

36. Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - efficient short-input hashing for post-quantum applications. IACR
Trans. Symmetric Cryptol., 2016(2):1–29, 2016.

37. Xuejia Lai and James L. Massey. Hash function based on block ciphers. In EU-
ROCRYPT 1992, Proceedings, volume 658, pages 55–70. Springer, 1992.
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Supplementary Material

A MILP models for MitM Attack

We briefly introduce the MC-Rule and XOR-Rule in [6].

The XOR-Rule. For the XOR operation in two different directions, the coloring
rules of the input and output cells are shown in Figure 26.

(-1 )

*

(a) For the forward computation

(-1 )

*

(b) For the backward computation

Fig. 26: The XOR-Rule in [6], where a “*” means that the cell can be any color

Let α[i], β[i] denote the input bytes and γ[i] denote the output byte, where
0 ≤ i ≤ 15. Let di denote the consumed degree of freedom, where di = 1
describes consuming one DoF to let the output be . The set of rules restrict
(xα

i , y
α
i , x

β
i , y

β
i , x

γ
i , y

γ
i , di) to a subset of F7

2, which can be described by a system
of linear inequalities by using the convex hull computation.

The MC-Rule. The rules of the MC operation are also formalized in two different
directions. Taking the forward computation as an example, the set of rules is
given as follows:

1. If there is at least one in the input column, all the outputs are ;
2. If there are but no and no in the input column, then all the outputs

are ;
3. If all the inputs are , then all the outputs are ;
4. If there are and but no in the input column, each output must be

or . Moreover, the sum of the numbers of and in the input and output
columns must be no more than 3;

5. If there are but no and no in the input column, then each output must
be or . Moreover, the number of in the input and output columns must
be no more than 3.

Some examples of valid coloring schemes of the MC-Rule in the forward compu-
tation are shown in Figure 27.

The above rules can also be described by linear inequalities. In [6], they use
three 0-1 indicator variables µ, υ, ω for the input column to describe each case:

1. µ = 1, υ = 0, ω = 0 if and only if case 1 is fulfilled;
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Fig. 27: Some valid coloring schemes for MC-Rule in forward computation in [6]

2. µ = 0, υ = 1, ω = 0 if and only if case 2 is fulfilled;
3. µ = 0, υ = 1, ω = 1 if and only if case 3 is fulfilled;
4. µ = 0, υ = 0, ω = 0 if and only if case 4 is fulfilled;
5. µ = 0, υ = 0, ω = 1 if and only if case 5 is fulfilled.

Let (α[0], α[1], α[2], α[3])T and (β[0], β[1], β[2], β[3])T be the input and output
columns. Let µ = 1 if and only if there exists i ∈ {0, 1, 2, 3} such that (xα

i , y
α
i ) =

(0, 0). Let υ = 1 if and only if xα
i = 1 for each i ∈ {0, 1, 2, 3}. Let ω = 1 if

and only if yαi = 1 for each i ∈ {0, 1, 2, 3}. Then, with the help of µ, υ, ω, the
MC-Rule in the forward computation can be a system of inequalities:





3∑

i=0

xα
i − 4υ ≥ 0;

3∑

i=0

xα
i − υ ≤ 3.





3∑

i=0

xβ
i + 4µ ≤ 4;

3∑

i=0

yβi + 4µ ≤ 4;

3∑

i=0

yβi − 4ω = 0;





3∑

i=0

(xα
i + xβ

i )− 5υ ≤ 3;

3∑

i=0

(xα
i + xβ

i )− 8υ ≥ 0.

B The MC-then-XOR-Rule in superposition states of the
11-round attack on Simpira-4

The MC-then-XOR-Rule in superposition states of the MitM attack on 11-round
Simpira-4 is given in Figure 28.

C Meet-in-the-Middle Attack on 11-round Simpira-6

For Simpira-6, we find an 11-round preimage attack as shown in Figure 29.

The starting states are Ã
(5)
MC1, C̃

(5)
MC1, Ẽ

(5)
MC1, Ã

(6)
MC1, C̃

(6)
MC1 and Ẽ

(6)
MC1 with λB = λR = 24

initial DoFs of and . For the consuming DoFs of backward neutral words, there
are 6 linear constraints and 10 nonlinear constraints as shown in Figure 30. And
there are 16 nonlinear constraints on forward neutral words as shown in Figure
30. The consuming DoFs of forward and backward neutral words are all 16, i.e.
lB = lR = 16. Then, we have DoFB = λB − lB = 8 and DoFR = λR − lR = 8.

We find a full-round match through D̃(2). Similar to Simpira-2, MC−1(C̃
(5)
MC1) is

canceled in both directions. The matching phase is

Ã
(6)
SR2 ⊕ C̃

(8)
SR2 ⊕ Ẽ

(10)
SR2 ⊕ MC−1(HB)⊕ Ã

(0)
SR2 = Ẽ

(4)
SR2 ⊕ C̃

(2)
SR2 (12)
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(0)
MC1 Ã
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Fig. 28: MitM attack on 11-round Simpira-4 in MC-then-XOR-Rule representa-
tion
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as shown in Figure 31, providing 8 bytes degree of match, i.e. DoM = 8.
For the nonlinear constraints, we use the table-based method to build two

hash tables U and V . Each table needs about 2192 time and 2192 memory to
construct. The detailed attack is proposed in Algorithm 5. According to [24], we
only need to traverse about 1 value of the cells in starting states. Hence, the
total time to apply Algorithm 5 is about

2192 + 2192 + 28×(min{24−16,24−16,8}) ≈ 2193.6.

The overall memory needed is about 2193 to store U and V .
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(10)
MC2 Ẽ
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(9)
SR2

⊕ ⊕ ⊕MC SB
SR

MC SB
SRSR

Ã
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(8)
MC2 Ã
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(5)
SR1 Ẽ
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(4)
SR2

(-0 , -4 )

⊕ ⊕ ⊕MC SB
SR

MC SB
SRSR

Ã
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(3)
MC2 Ã
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(3)
MC2 Ẽ
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(0)
SR1 Ẽ

(0)
MC2 Ẽ
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DoM = 8

Fig. 29: MitM attack on 11-round Simpira-6
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Algorithm 5: Preimage Attack on 11-round Simpira-6

1 Fix the cells in Ã
(5)
MC1, C̃

(5)
MC1 , Ẽ

(5)
MC1 , Ã

(6)
MC1, C̃

(6)
MC1 , Ẽ

(6)
MC1

2 U ← [ ], V ← [ ]

3 Traversing 28·λR = 2192 values in C̃
(5)
MC1 , C̃

(6)
MC1 and Ẽ

(6)
MC1 , compute the 16 byte

constraints (denoted as cR ∈ F128
2 ), and store the 24 bytes in table V [cR]

4 Traversing 28·λB = 2192 values in Ã
(5)
MC1 and C̃

(6)
MC1 , compute the 16 byte

constraints (denoted as cB ∈ F128
2 ), and store the 24 bytes in table U [cB]

5 for cR ∈ F16×8
2 do

6 for cB ∈ F16×8
2 do

7 L← [ ]
8 for vR ∈ V [cR] do

9 Compute to the cells in Ã
(0)
SR2, Ẽ

(10)
SR2 , C̃

(8)
SR2 and Ẽ

(4)
SR2

10 Let the cells in Ẽ
(4)
SR2 and Ẽ

(10)
SR2 be 0

11 As shown in Figure 31, 8 bytes EndR are derived by

EndR ←
(
Ã

(0)
SR2 ⊕ Ẽ

(10)
SR2 ⊕ C̃

(8)
SR2 ⊕ Ẽ

(4)
SR2

)
[0, 1, 4, 7, 10, 11, 13, 14]

12 L[EndR]← vR
13 end
14 for vB ∈ V [cB] do

15 Compute to the cells in C̃
(2)
SR2 , Ẽ

(4)
SR2 and Ẽ

(10)
SR2

16 Let the cells in Ẽ
(4)
SR2 and Ẽ

(10)
SR2 be 0

17 As shown in Figure 31, 8 bytes EndB are derived by

EndB ←
(
C̃

(2)
SR2 ⊕ Ẽ

(4)
SR2 ⊕ Ẽ

(10)
SR2 ⊕ MC

−1(HB)
)
[0, 1, 4, 7, 10, 11, 13, 14]

18 for vR ∈ L[EndB] do
19 Reconstruct the (candidate) message X
20 if X is a preimage then
21 Output X and stop
22 end

23 end

24 end

25 end

26 end



40 Q. Hou et al.
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Fig. 30: The consumption of the initial degree in the MC-Then-XOR representation
of Simpira-6
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Fig. 31: Full-round match in 11-round Simpira-6

D Meet-in-the-Middle Attack on 20-round lesamnta-LW

Instead of directly using the output as the filter, we apply a linear transfor-
mation on the output and try to find out whether there exist useful filters for
its transformation in this attack. We finally find a 20-round MitM characteris-
tic for Lesamnta-LW as shown in Figure 32. The initial DoFs for and are
λB = 4 and λR = 4, respectively. Along the forward computation path, there
are 0 constraints on and 3 constraints on , i.e. lB = 0 and lR = 3. Hence, we
have DoFB = λB − lB = 4 and DoFR = λR − lR = 1. The matching happens
on MC−1 ◦ P−1(D(20)) where the 6th byte is fixed as α ∈ F8

2, so that a one-byte
filter as shown in Figure 33 is obtained. The matching equation is also given in
Equation (13).
(
MC−1 ◦ P−1(D(0))⊕ C

(0)
SB ⊕ C

(4)
SB ⊕ C

(8)
SB ⊕ C

(12)
SB ⊕ C

(16)
SB

)
[6] = MC−1◦P−1(D(20))[6].

(13)
The procedure of the MitM collision attack is given in Algorithm 6, where two
128-bit message blocks (m1,m2) are needed as shown in Figure 11 to get enough
degree of freedom from the message. In Line 19, the size of L1 is about 232−8 =
224. From Line 16 to 24, about 28 × 224 = 232 (m1,m2, h) are computed, which
satisfy the matching Equation (13). To collide in the remaining 256 − 8 = 248



Automated Meet-in-the-Middle Attack Goes to Feistel 41

bits, we need to obtain 2(256−8)/2 = 2124 such 1-byte partial target preimages.
To derive 2124 such (m1,m2, h), 2

4 m1 and 264 values of B(0) in m2 are needed.
Together with 224 cR, 24+64+24+32 = 2124 (m1,m2, h) can be derived. The time
to construct table V is 232. Therefore, the total time complexity is 24+64×(232+
224+32) = 2124. The time complexity is better than the generic birthday bound
2128. But it is not better than the designers’ security claim against collision
attack, which is 2120.

Algorithm 6: Collision Attack on 20-round Lesamnta-LW

1 Fix the third byte in the second column of MC−1 ◦ P−1(D(20)) to be α ∈ F8
2

2 for 24 possible values of m1 do

3 for 264 possible values of B(0) in m2 do
4 V ← [ ]

5 for vR ∈ F8·4
2 in A(0)[0, 1, 2, 3] do

6 Set the bytes in A(0) to be 0

7 Computer forward to the bytes in C
(5)
SB , C

(9)
SB and C

(13)
SB

8 c0 ← MC(0∥0∥C(5)
SB [2, 3, 4, 5]∥0∥0)[6]

9 c1 ← MC(0∥0∥C(9)
SB [2, 3, 4, 5]∥0∥0)[6]

10 c2 ← MC(0∥0∥C(13)
SB [2, 3, 4, 5]∥0∥0)[6]

11 cR ← c0∥c1∥c2
12 V [cR]← vR
13 end
14 for cR ∈ F8·3

2 do
15 L1 ← [ ]

16 for 28λB values vB of bytes in A(0), λB = 4 do

17 Compute the bytes in C
(8)
SB , C

(12)
SB and C

(16)
SB

18 if (MC−1 ◦ P−1(D(0))⊕ C
(0)
SB ⊕ C

(4)
SB ⊕ C

(8)
SB ⊕ C

(12)
SB ⊕ C

(16)
SB )[6] is

equal to α then
19 Store vB in L1

20 end

21 end
22 for vR ∈ V [cR] do

23 Compute the 256-bit target h = (A(20), B(20), C(20), D(20))
from the bytes in vR and the bytes in L1 and store the
(m1,m2, h) in L indexed by h

24 end

25 end

26 end

27 end

28 if the size of L is 2(256−8)/2 = 2124 then
29 Check L and return (m1,m2) and (m′

1,m
′
2) with the same h

30 end
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Fig. 32: Collision Attack on 20-round Lesamnta-LW
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Fig. 33: Matching phase of collision Attack on 20-round Lesamnta-LW

E Figures and Algorithms for MitM Attacks on Reduced
Areion

– The details of the preimage Attack on 5-round Areion-256 in Figure 25 are
described in Algorithm 7.

– A 7-round preimage attack on Areion-256 is shown in Figure 34. The left
part of Figure 34 shows how the attributes are propagated through the for-
ward chunk. The right part provides the details of the backward chunk and
how the matching phase is deployed. The detailed attack procedure is shown
in Algorithm 8.

– By applying the automatic model on Areion-512, we found a 11-round
preimage attack as shown in Figure 35 and Figure 36. Figure 35 shows
the attributes propagation through the forward chunk. Then, the backward
chunk and matching phase are displayed in Figure 36. The detailed attack
procedure is shown in Algorithm 9.

F An experiment on 7-round preimage attack on
Simpira-2

To verify the correctness, we give a 7-round preimage attack on Simpira-2 as

shown in Figure 37. The starting states are Ã
(3)
MC1 and Ã

(4)
MC1. The initial DoFs for

and are λB = 1, λR = 17, respectively. As shown in Figure 38(a), there are
0 constraints on forward neutral words and 16 constraints on backward neutral
words, i.e. lB = 0 and lR = 16. Then, we have DoFB = 1 and DoFR = 1. The
matching points are Ã(1) and B̃(1) and only B̃(1) can be utilized as shown in
Figure 38(b), which can be represented as Equation (14),

Ã
(3)
SR2 ⊕ Ã

(1)
SR2 = Ã

(5)
SR2 ⊕ MC−1(HA) (14)

where MC−1(Ã
(4)
MC1) can be canceled in both directions. Then 8 bytes for matching

are derived in (14) indexed by [2, 3, 5, 6, 8, 9, 12, 15].
Since we only traverse 1 and 1 in each MitM episode, 2 bytes indexed by

[9, 12] in Equation (14) are enough to form a filter. Then, there will be about one
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Algorithm 7: Preimage Attack on 5-round Areion-256

1 for B(3)[9] ∈ F8
2 do

2 for gb ∈ F96
2 do

3 U ← [ ]

4 for vB ∈ F11×8
2 in A(3)[12-15] and B(3)[0-3, 8, 10, 11] do

5 Compute A
(2,α)
SR2 [0, 2, 5, 7, 8, 10, 13, 15] from B(3)

6 Let A
(2,α)
SR2 [i]← 0, where i /∈ [0, 2, 5, 7, 8, 10, 13, 15]

7 A(3)[0-11]← MC(A
(2,α)
SR2 )[0-11]⊕ gb

8 Compute A
(3,α)
SR2 from A(3)

9 c0∥c1∥c2 ← MC(A
(3,α)
SR2 )[5, 12, 14]

10 cB ← c0∥c1∥c2
11 U [cB]← vB
12 end

13 for cB ∈ F3×8
2 do

14 L← [ ]
15 for vB ∈ U [cB] do

16 Compute A(3)[0-11] as Line 7, and then compute the cells in

A(2) and B(1)

17 Let the cells in A(2) and B(1) be 0, then 6 bytes EndB are
derived by

EndB ← MC
−1

(
A(2) ⊕B(1)

)
[0, 1, 2, 8, 10, 11]

18 L[EndB]← vB
19 end

20 for 28λR values vR of the bytes in B(3), λR = 8 do

21 Compute the cells in A(2), B(1) and A
(1)
SR2

22 MR = 2 bytes compatibility of cells are tested by9 · b+ d · d, d · e+ b · b
e · b+ 9 · d, 9 · e+ d · b
b · b+ e · d, e · e+ 9 · b


T

×

A(2)[12]⊕B(1)[12]

A(2)[13]⊕B(1)[13]

A(2)[14]⊕B(1)[14]

 =

[
b ·A(1)

SR2[13]⊕ d ·A(1)
SR2[14]

e ·A(1)
SR2[14]⊕ b ·A(1)

SR2[15]

]

23 if The compatibility test is passed then

24 Let the in A(2) be 0, then 6 bytes EndR are derived by

EndR ←
(
MC

−1(A(2))⊕A
(1)
SR2

)
[0, 1, 2, 8, 10, 11]

25 for vB ∈ L[EndR] do
26 Reconstruct the (candidate) message X
27 if X is a preimage then
28 Output X and stop
29 end

30 end

31 end

32 end

33 end

34 end

35 end
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Fig. 34: MitM attack on 7-round Areion-256
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Algorithm 8: Preimage Attack on 7-round Areion-256

1 for A(4)[5, 7, 8, 10]||B(4)[9, 15] ∈ F8×6
2 do

2 for gr ∈ F112
2 do

3 V ← [ ]

4 for vR ∈ F8×8
2 in A(4)[1, 3, 4, 6, 9, 11, 12, 14] do

5 Compute A
(4,α)
SR2 [1, 3, 4, 6, 9, 11, 12, 14]

6 Let A
(4,α)
SR2 [i]← 0, where i /∈ [1, 3, 4, 6, 9, 11, 12, 14]

7 c0∥c1 ← MC(A
(4,α)
SR2 )[9, 15]

8 Let B(4)[0-8, 10-14]← MC(A
(4,α)
SR2 )[0-8, 10-14]⊕ gr

9 Compute A
(3,α)
SR2 from B(4)

10 c2∥c3∥c4∥c5 ← MC(A
(3,α)
SR2 )[0, 2, 13, 15]

11 cR ← c0∥c1∥c2∥c3∥c4∥c5
12 V [cR]← vR
13 end

14 for cR ∈ F6×8
2 do

15 for cB ∈ F2×8
2 do

16 L← [ ]

17 Compute A
(2,β)
SR [0, 2, 13, 15] by A(4)[0, 2, 13, 15]⊕ cR[2− 5]

18 Through SR ◦ SB ◦ SB−1 ◦ SR−1, A
(2,β)
SR = A

(2,α)
SR2

19 Derive the solution space S of the cells in A(4) by{
3 ·A(4)[0]⊕A(4)[2] = cB[0]

3 ·A(4)[15]⊕A(4)[13] = cB[1]

20 for vB ∈ S do

21 Compute the cells in A(2) and B(1), 2 bytes EndB are
derived by

22

EndB ←

 9 ·
(
B(1)[0]⊕A(2)[0]

)
⊕ e ·

(
B(1)[1]⊕A(2)[1]

)
⊕ b ·B(1)[2]⊕ d ·B(1)[3]

b ·B(1)[8]⊕ d ·B(1)[9]⊕ 9 ·
(
B(1)[10]⊕A(2)[10]

)
⊕ e ·

(
B(1)[11]⊕A(2)[11]

)


23 L[EndB]← vB
24 end
25 for vR ∈ V [cR] do

26 Compute B(4) as Line 8, and then compute the cells in

A2 and A
(1,α)
SR2 with cB, 2 bytes EndR are derived by

EndR ←

[
b ·A(2)[2]⊕ d ·A(2)[3]⊕A

(1,α)
SR2 [1]

b ·A(2)[8]⊕ d ·A(2)[9]⊕A
(1,α)
SR2 [11]

]

27 for vB ∈ L[EndR] do
28 Reconstruct the (candidate) message X
29 if X is a preimage then
30 Output X and stop
31 end

32 end

33 end

34 end

35 end

36 end

37 end
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Fig. 35: Forward Chunk of the MitM attack on 11-round Areion-512
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Fig. 36: Backward Chunk and Match Phase of the MitM attack on 11-round
Areion-512



Automated Meet-in-the-Middle Attack Goes to Feistel 49

Algorithm 9: Preimage Attack on 11-round Areion-512

1 for A(3)[7, 13]∥B(3)[8-11]∥C(3)∥D(3)[0, 2, 5, 7-9, 11-14] ∈ G /* |G| = 1 */

2 do
3 for gr ∈ F24×8

2 do
4 V ← [ ]

5 for vR ∈ F6×8
2 in D(3)[1, 3, 4, 6, 10, 15] do

6 From C(3) and D(3), compute C
(4,β)
SR

7 c0∥c1∥c2∥c3 ← MC(C
(4,β)
SR )[4, 6, 9, 11]

8 cR ← c0∥c1∥c2∥c3
9 V [cR]← vR

10 end

11 for cR ∈ F4×8
2 do

12 L← [ ]
13 for vR ∈ V [cR] do

14 From C(3) and D(3), compute C
(4,α)
SR

15 D(4)[0-7, 12-15]← MC(C
(4,α)
SR )[0-7, 12-15]⊕ gr[0-11]

16 Through SR−1 ◦ SB−1, 12 cells in A(3) can be derived

17 From A(3), compute A
(3,α)
SR , and the 12 cells in B(3) can be

derived by MC(A
(3,α)
SR )[0-7, 12-15]⊕ gr[12-23]

18 Compute backward to the 4 cells B(10)[4-7], 2 bytes EndR
are derived by

EndR ←

[
e ·B(10)[4]⊕ b ·B(10)[5]⊕ d ·B(10)[6]⊕ 9 ·B(10)[7]

d ·B(10)[4]⊕ 9 ·B(10)[5]⊕ e ·B(10)[6]⊕ b ·B(10)[7]

]

19 L[EndR]← vR
20 end

21 for 28λB values vB of the bytes in A(3), λB = 2 do

22 Compute forward to the 2 cells C
(9,β)
SR [4, 6] as EndB

EndB ← C
(9,β)
SR [4, 6]

for vR ∈ L[EndB] do
23 Reconstruct the (candidate) message X
24 if X is a preimage then
25 Output X and stop
26 end

27 end

28 end

29 end

30 end

31 end
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valid ( , ) pair passing the filter on average. The theoretical time to perform
one MitM episode is about 28 + 28 + 28+8−16 ≈ 29. The memory complexity is

28 to store (Ã
(3)
SR2 ⊕ Ã

(5)
SR2)[9, 12]. For more visualization, we set the partial target

MC−1(HA)[9, 12] to be 0 in global, then we get 2-byte matching for MitM. After
applying MC−1 to the input and output of Simpira-2 derived from the valid
starting states, the XOR of them should be zero at the 9th and 12th cells in the
first branch. To find the 2-byte partial target preimage, an exhaustive attack
needs 216 to find one partial target preimage.

In our practical experiment, we set the number of MitM episodes to 210, and
we get about 210 partial target preimages, which is very close to our expectation.
Some of examples of

(
MC−1(A0), MC

−1(B0)
)
and

(
MC−1(A7), MC

−1(B7)
)
are listed

in Table 2. The total time to generate the 210 partial target preimage is 210×29 =
219. We run the experiment on a platform of Intel I9 CPU with 32 GB memory,
the running time is about a few minutes. The source code of the experiment is
also given in https://github.com/Hql-code/MitM-Feistel.

Table 2: Preimage examples of 7-round Simpira-2

Round
(
MC−1(A0), MC

−1(B0)
) (

MC−1(A7), MC
−1(B7)

)

r = 7

90d64cee 5dceafc3 c0600c7b 1a4ecd95
cbce2e53 fe452225 e49464ea 31d57501

ce623383 274f3cb0 bf603c92 1a43ae10
ca060030 b89b5a75 4352d9a3 fb5c6f95

219dd799 af5d9326 87410dcb 5fadba6a
26521560 62354ef3 1cbf6fdb 8db95614

f88c49b3 61cdd8b 741d2f9 5f0f64eb
9703c507 d8aee01e 7e1bc2ae e85d7259

9cb34f0f ed08af07 8fbb1c33 ca4e3c92
95d3841e 232b28a6 ab1bdb41 8b2bc8db

9dff40f 8195fd0a 2cbb09e0 ca1afff9
ae1b2d86 e7f9c6cb 9076aed d62eb53b

6f18080e b0935918 6893fef3 93bf08f4
e06c01aa 74d76a05 dafb0f98 4746b05a

8a4a7728 45923513 7593a79d 93f6fd98
2678a9a8 df2d0006 bd8c0429 d5ce8dc5

79f752e0 1e59a66f 204b02e9 cb95b488
add1cef2 51af4f9a eb5f39f2 7fdc7f6d

bc841e8 e727f743 4d4b5507 cb316893
e762b3b6 467a8df 2b829bef f0bf4704

bce3ef4b 966eeb2e 30c03e53 e8ac0c7f
ccf29d00 25ccbe2 c727d13c 8ead16f0

f8c98bde b306b517 5dc03fb9 e829952c
fb17b554 1e6c1dc1 abd27c6d 52864d1c

https://github.com/Hql-code/MitM-Feistel
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Fig. 37: MitM attack on 7-round Simpira-2

(b) Full-round matching in 7-round Simpira-2
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Fig. 38: The details of consumption and matching phase in MitM attack on 7-
round Simpira-2
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