
Adaptively Secure (Aggregatable) PVSS and Application to
Distributed Randomness Beacons

Renas Bacho

CISPA Helmholtz Center for Information Security,

Universität des Saarlandes

Saarbrücken, Germany

renas.bacho@cispa.de

Julian Loss

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

lossjulian@gmail.com

ABSTRACT
Publicly Verifiable Secret Sharing (PVSS) is a fundamental primi-

tive that allows to share a secret 𝑆 among 𝑛 parties via a publicly

verifiable transcript 𝑇 . Existing (efficient) PVSS are only proven

secure against static adversaries who must choose who to corrupt

ahead of a protocol execution. As a result, any protocol (e.g., a

distributed randomness beacon) that builds on top of such a PVSS

scheme inherits this limitation. To overcome this barrier, we revisit

the security of PVSS under adaptive corruptions and show that,

surprisingly, many protocols from the literature already achieve it

in a meaningful way:

• We propose a new security definition for aggregatable PVSS,
i.e., schemes that allow to homomorphically combine mul-

tiple transcripts into one compact aggregate transcript 𝐴𝑇

that shares the sum of their individual secrets. Our notion

captures that if the secret shared by 𝐴𝑇 contains at least

one contribution from an honestly generated transcript, it

should not be predictable. We then prove that several exist-

ing schemes satisfy this notion against adaptive corruptions

in the algebraic group model.

• To motivate our new notion, we show that it implies the

adaptive security of two recent random beacon protocols,

SPURT (S&P ‘22) and OptRand (NDSS ‘23), who build on

top of aggregatable PVSS schemes satisfying our notion

of unpredictability. For a security parameter 𝜆, our result

improves the communication complexity of the best known

adaptively secure random beacon protocols to 𝑂 (𝜆𝑛2) for
synchronous networks with 𝑡 < 𝑛/2 corruptions and par-

tially synchronous networks with 𝑡 < 𝑛/3 corruptions.

KEYWORDS
Adaptive Security, Randomness Beacon, Aggregatable PVSS, Pairing-

Based Cryptography

1 INTRODUCTION
In publicly verifiable secret sharing (PVSS) [74], a dealer 𝐷 shares a

secret 𝑆 among 𝑛 parties 𝑃1, . . . , 𝑃𝑛 by broadcasting a transcript 𝑇

consisting of encrypted shares ®𝐸 = (𝐸1, . . . , 𝐸𝑛) along with a proof

𝜋 . Any subset of 𝑡 + 1 parties can pool their (decrypted) shares

to reconstruct 𝑆 , whereas 𝑡 or fewer shares give no information

about 𝑆 . Using 𝜋 , anyone can efficiently determine whether the

shares in ®𝐸 can be decrypted by the appropriate parties and indeed

yield a sharing of 𝑆 . This sets PVSS apart from the more common

notion of verifiable secret sharing (VSS) [31], which typically re-

quires expensive communication among parties to ensure that the

sharing is correct. As such, PVSS is an important building block in

high-performance distributed protocols that aim to minimize com-

munication. Recent examples of such protocols include distributed

randomness beacons [15, 16, 34, 70] and distributed key generation

(DKG) [3, 53]. In these types of protocols, one typically assumes

a malicious adversary who can corrupt some 𝑡 < 𝑛 of the parties

and make them behave arbitrarily. Most of the literature considers

a static adversary who must commit to its corruptions before the

protocol execution begins. However, a recent trend in this area

has been toward considering a stronger adaptive adversary who

can corrupt parties dynamically over the course of the protocol

execution [2, 7, 16, 33].

Unfortunately, protocol designers currently face the following

limitation: existing (efficient) PVSS schemes are only proven se-

cure with respect to static corruptions. Hence, adaptively secure

protocols must often resort to less efficient (but adaptively secure)

alternatives such as VSS. To ameliorate this unsatisfactory state

of affairs, we ask the following question: Are there efficient and
adaptively secure PVSS protocols?

1.1 Our Contribution
In this work, we provide a nuanced answer to the above question.

Our contributions are summarized in the following.

New Security Notions for Aggregatable PVSS. One particularly
useful feature supported by some PVSS schemes is the ability to

homomorphically aggregate sharings. In more detail, suppose that

we are given 𝑡 + 1 PVSS transcripts 𝑇1, . . .𝑇𝑡+1 sharing respective
secrets 𝑆1, . . . , 𝑆𝑛 . Then aggregation allows to efficiently combine

them into a compact transcript 𝑇 sharing 𝑆 =
∑
𝑖 𝑆𝑖 .

Aggregate PVSS has served as an indispensible building block in

many higher-order constructions, most notably leader-based ran-

domness beacons [15, 16, 34]. In such constructions, a designated

leader 𝐿 aggregates PVSS transcripts of different parties and com-

mits them to consensus. To ensure that a malicious leader cannot

propose a self-chosen value,𝑇 should prove that at least one honest

party has contributed to the combined secret 𝑆 . This, intuitively,

ensures that 𝑆 remains unpredictable. We observe that while several

constructions from the literature already have this property, it is

usually proven as part of a security proof for a broader system (see,

e.g., the recent work of Bhat et al. [15]). Given the importance of

aggregated PVSS as a modular building block, we believe that it

is useful to capture the above unpredictability property in a new

standalone security notion that we call aggregated unpredictability.
While aggregatable unpredictability does not ensure full secrecy in

the sense of previous indistinguishability-based notions [56], we

show that it is sufficient to prove the security of recent distributed

randomness beacons (see below).

1

Renas Bacho & Julian Loss

We prove that several existing aggregatable PVSS protocols

achieve our notion of unpredictability against adaptive corruptions
in the algebraic group model (AGM). Here, we rely on techniques

from the recent work of Bacho and Loss [7], who gave the first adap-

tive security analysis of the threshold BLS signature [17, 19]. Our

proof faces many additional challenges compared to theirs that we

elaborate on in more detail in our technical overview. In particular,

our proofs are complicated by the fact that the adversary obtains

partial information about the secret 𝑆 from the encrypted shares ®𝐸.
Therefore, it must be argued that it cannot use this information to

cancel out honest parties’ contribution to the aggregated secret 𝑆

and render it predictable.

Applications to Randomness Beacons. We conclude by showing

that our newly introduced notion of unpredictability for PVSS suf-

fices to prove the security of two recent distributed randomness

beacon protocols, SPURT [34] and OptRand [15]. Recall that the

objective of a distributed random beacon protocol is for 𝑛 parties

𝑃1, . . . , 𝑃𝑛 to agree on an a sequence of (computationally) uniformly

random values 𝜎1, 𝜎2, The crucial property of a randomness

beacon is that an adversary controlling some minority of 𝑡 < 𝑛 par-

ties can neither predict these values too early before they are output
nor bias them. While both SPURT and OptRand achieve these prop-

erties (under different network conditions and corruption regimes),

both of them are proven secure only with respect to static adver-
saries. We observe, however, that this limitation is directly inherited

from the respective (statically secure) PVSS schemes that they are

built on. Hence, it is plausible that their security can be improved

to the same number of adaptive corruptions if the underlying PVSS

provides such security guarantees. We confirm this intuition by

introducing a weak unpredictability notion for randomness bea-

cons and showing that both SPURT and OptRand achieve it against

adaptive adversaries. In our new notion, a beacon produces values

that remain unpredictable, yet possibly not uniformly distributed

from the perspective of the adversary, up to a certain point before

being output. However, since most beacon protocols assume the

random oracle model [14] (ROM) anyway, it is trivial to transform

an unpredictable beacon into one fully-fledged one. To do so, each

party simply hashes each value that it outputs from the weak (i.e.,

unpredictable) beacon to obtain its final output. In this manner, one

immediately obtains the first adaptively secure randomness bea-

cons achieving 𝑂 (𝜆𝑛2) communication complexity per computed

value (𝜆 denotes a security parameter) in the synchronous regime

with 𝑡 < 𝑛/2 corruptions and in the partially synchronous regime

with 𝑡 < 𝑛/3 corruptions. Previously, adaptively secure randomness

beacons in these settings relied on (more expensive) VSS [16], thus

incurring at least 𝑂 (𝜆𝑛3) communication per output.

Our proofs also give a modular template which allows to infer

unpredictability of leader-based beacon protocols in a black-box

fashion from the unpredictability of the underlying PVSS scheme.

Thus, we believe that our new security notions will be of use to the

design of randomness beacons in the future.

1.2 Technical Overview
We proceed with a brief overview of our techniques. We remark

that the discussion below is informal and as such does not depend

on particular components of the PVSS we consider in this work. For

example, non-interactive zero-knowledge proofs (NIZKs) can be

implemented using Fiat-Shamir type proofs of discrete logarithm

equality, pairing-based proofs, or code-based proofs, but we omit

these distinctions here as they are not relevant for this high-level

overview.

A Short Recap of PVSS. To begin, we describe the common high-

level idea behind many efficient PVSS schemes in the literature.

Let again 𝑔 and ℎ be known generators of some cyclic group G
of prime order 𝑝 . In the sharing phase, the dealer 𝐷 picks a value

𝛼 ∈ Z𝑝 and computes a (𝑡, 𝑛)-sharing of a group element 𝑆 := ℎ𝛼 by

interpolating a random polynomial 𝑃 over Z𝑝 of degree 𝑡 through

points 𝛼𝑖 =: 𝑃 (𝑖) and computing the shares ℎ𝛼𝑖 for all 𝑖 = 0, . . . , 𝑛.

In addition, 𝐷 also computes the commitments 𝑔𝛼0 , . . . , 𝑔𝛼𝑛 . It then

computes ciphertexts 𝐸𝑖 := Enc(𝑝𝑘𝑖 , ℎ𝛼𝑖) for all 𝑖 and shares the

vector ®𝐸 of encrypted shares together with the proof 𝜋 consisting of

the values 𝑔𝛼0 , . . . , 𝑔𝛼𝑛 and NIZKs proving that ®𝐸 is an encryption

of values ℎ𝛼𝑖 . This can be achieved by using the values 𝑔𝛼0 , . . . , 𝑔𝛼𝑛 .

Using the NIZKs and these values, anyone is convinced that ®𝐸
provides a correct sharing of 𝑆 . To reconstruct, party 𝑖 decrypts its

share viaℎ𝛼𝑖 = Dec(sk𝑖 , ®𝐸𝑖) and sends this value to all parties. Upon
receiving 𝑡 + 1 shares ℎ𝛼𝑘1 , . . . , ℎ𝛼𝑘𝑡+1 , the secret can be recovered

via Lagrange interpolation in the exponent of ℎ.

A Common Proof Strategy. The main difficulty in the context of

adaptive corruptions that our simulator Sim has to overcome is to

balance two seemingly mutually exclusive tasks. First, Sim has to

simulate the security experiment without knowing the values sk𝑖
and the secret shares of all of the honest parties. If, instead, it knew

all these values, the adversary’s final output would be useless to Sim
with regards to breaking the hardness assumption underlying the

security of the PVSS scheme. Also, it is clear that guessing the sub-

set of eventually corrupted parties is out of the question, as it would

lead to a security loss exponential in 𝑡 and𝑛. On the other hand, Sim
must be able to provide the values sk𝑖 along with the share of party 𝑖 ,
upon 𝑖 becoming adaptively corrupted during simulation. We stress

that this issue does not occur when corruptions are static, as Sim
knows all the corrupted parties upfront. This allows Sim to inter-

polate a properly distributed polynomial through a secret 𝑆 as well

as the corrupted parties’ shares, without actually knowing them.

This simulation strategy is well-known from the the literature on

distributed key generation protocols [24, 47, 48, 57]. Unfortunately,

it is not applicable to a setting with adaptive corruptions, which,

instead, requires different arguments. As such, schemes commonly

resort to heavy machinery such as non-committing encryption [57]

to attain adaptive security.

Our techniques for addressing this problem are inspired by the

recent work of Bacho and Loss [7] who proved adaptive security

of the (symmetric) threshold BLS signature scheme in the AGM

under the OMDL assumption. Loosely speaking, the OMDL as-

sumption of degree 𝑘 asserts that it is difficult to return the discrete

logarithms 𝑧1, . . . , 𝑧𝑘 of 𝑘 discrete logarithm challenges 𝑔𝑧1 , . . . , 𝑔𝑧𝑘

when given (𝑘 − 1)-time access to a (perfect) discrete logarithm

oracle DL𝑔 . In more detail, on input a group element 𝜉 ∈ G, DL𝑔
returns its discrete logarithm 𝑧 ∈ Z𝑝 to base 𝑔 (where 𝑝 is the prime

order of G). The key insight of their work is the construction of a

simulator Sim which reduces from this assumption and hence can

2

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

leverage the oracle DL𝑔 to simulate adaptive corruptions. Followup

works have leveraged similar techniques to obtain adaptively secure

asynchronous DKG [2] and threshold Schnorr signatures [33].

Challenges in the Context of PVSS. As explained above, aggregat-

able PVSS are typically composed of three main components: an

encryption scheme, a commitment scheme, and a NIZK. This com-

bination opens up many different vectors of attack that add unique

challenges to our security proofs when compared to structurally

simpler primitives such as signatures and VSS. Intuitively, there

are three ways in which an attacker can learn the secret 𝑆 , each

corresponding to one of the three aforementioned components:

(1) it can break security of the encryption scheme Enc to learn a

(𝑡 + 1)𝑠𝑡 share ℎ𝛼𝑖 , (2) it can find the discrete logarithm 𝑎 of ℎ to

base 𝑔 and compute ℎ𝛼0
from the commitment (𝑔𝛼0) via (𝑔𝛼0)𝑎 ,

(3) it can pick up to 𝑡 transcripts 𝑇1, . . . ,𝑇𝑡 dependent on a single

honest transcript 𝑇 ∗ in such a way that their aggregate becomes

entirely independent of 𝑇 ∗. In particular, it could choose them in

such a way that𝑇 ∗’s contribution is cancelled out entirely, in which

case the secret shared by the aggregate transcript 𝐴𝑇 is no longer

unpredictable. Intuitively, this lane of attack should be prevented

by the NIZK component of the scheme, as it forces the attacker to

know the discrete logarithms of the secrets.

Following this high-level template, our proof broadly distin-

guishes multiple cases by providing appropriate simulations of

the unpredictability experiment to the adversary in each of which

the OMDL instance is embedded into different components of the

scheme. The main difficulty of our proof is to balance these sim-

ulation strategies without the adversary being able to tell them

apart.

Additional Issues with Asymmetric Groups. While we could prove

all of our claims for symmetric variants of the pairing-based PVSS

schemes we consider directly under the OMDL assumption, we

insist on proving these schemes directly in their original and more

performant versions over asymmetric pairing groups. Because of

this, the OMDL assumption unfortunately turns out to be insuffi-

cient for our purposes. To see the issue, note that PVSS schemes

over asymmetric pairing groups typically share the secret in both
source groups G1 and G2. As a consequence, our reduction would

have to supply the discrete logarithm challenges in both groups

as 𝑔
𝑥1
1
, . . . , 𝑔

𝑥𝑘
1
, 𝑔

𝑥1
2
, . . . , 𝑔

𝑥𝑘
2
, where 𝑔1 and 𝑔2 are the groups’ re-

spective generators. To remedy this issue, we introduce a natural

extension of OMDL to asymmetric pairing groups, in which the

adversary obtains all of these generators and can query the oracle

DL𝑔1 for elements in G1. We refer to this assumption as Co-OMDL
and provide a rigorous proof of its hardness in the generic group

model (GGM). Our proof follows along the lines of Bauer et al. [8],

but requires a new mathematical lemma due to the higher degree

of polynomials in the exponents of target group elements.

We believe that, similar to established asymmetric hardness as-

sumptions such as SXDH [5] or Co-CDH [19], Co-OMDL has many

applications to schemes based on asymmetric pairing groups and,

as such, is of independent interest. As an example, we refer again

to the work of Bacho and Loss who prove adaptive security for

the (symmetric) threshold BLS from OMDL. As we explain in more

detail in Appendix D, their proof faces similar issues in the asym-

metric setting that would also require Co-OMDL.

1.3 Related Work and Discussion
We give an overview of the literature on PVSS and how our work

fits in. We also briefly discuss some limitations of our work.

Publicly Verifiable Secret Sharing. The idea of publicly verifiable

secret sharing (PVSS) was first formally stated in the seminal work

of Stadler [74], although Stadler notes that it already was implicitly

conceived in the work of Chor et al. [32]. Over the years, many

improved schemes have been proposed. The common idea behind

many of these schemes is the following. The dealer samples a poly-

nomial 𝑓 ∈ Z𝑝 [𝑋] of degree 𝑡 uniformly at random and commits

to it via Feldman commitments [40] (i.e. it commits to the 𝑡 + 1
coefficients of 𝑓). The dealer also provides encryptions of shares

to an (𝑡, 𝑛)-Shamir secret sharing of 𝑓 . The Feldman commitments

are used by non-dealer parties to compute commitments to the

shares 𝑓 (𝑖) that are proven via zero-knowledge proofs to corre-

spond to the encrypted shares. Stadler realized these proofs via

the Fiat-Shamir heuristics in the random oracle model. Security of

the scheme is reduced from the Decisional Diffie-Hellman (DDH)

assumption. Schoenmakers [71] gives a more efficient variant of

Stadler’s construction, in which the security of the scheme is re-

duced from the computational Diffie-Hellman (CDH) assumption.

Ruiz and Villar [68] and Jhanwar et al. [59] gave standard model

constructions which replace random oracle model proofs through

checks based on Paillier encryption [66]. The security of both these

schemes is reduced from the Decisional Composite Residuosity

(DCR) assumption. Heidarvand and Villar [56] and Jhanwar [58]

proposed alternative pairing-based PVSS constructions in the plain

model with security under the Decisional Bilinear Square (DBS)

assumption and the multi-sequence of exponents Diffie-Hellman

(MSE-DDH) assumption. A significant drawback of these schemes

is that parties must each compute O(𝑛𝑡) exponentiations to verify

the validity of the encrypted shares. Since one is mostly interested

in the case 𝑡 ∈ O(𝑛), this results in high computation cost of O(𝑛2).
This barrier in quadratic computation cost was first overcome by

SCRAPE, an elegant scheme proposed by Cascudo and David [25].

The idea of their scheme is the following. Instead of committing to

the coefficients of 𝑓 , the dealer directly commits to the polynomial

evaluations 𝑓 (𝑖) by publishing 𝑔𝑓 (𝑖) . With the help of linear error

correcting codes (and their dual codes), parties can verify with

high probability that the commitments published by the dealer

actually correspond to a polynomial of degree 𝑡 . In this manner,

the total computation cost reduces to O(𝑛) exponentiations. The
authors provide two construction based on the underlying model.

In the random oracle model, the proofs are realized via NIZKs and

security of the scheme is reduced from the DDH assumption. In

the standard model, the authors use pairings to realize these proofs

and security of the scheme is reduced from the Decisional Bilinear

Square (DBS) assumption. This construction has inspired several

followups, which we elaborate on below.

In the context of randomness beacons, Das et al. [34] propose

SPURT, which gives a variant of SCRAPE that relies on the stan-

dard Decisional Bilinear Diffie-Hellman (DBDH) assumption and

achieves similar performance to SCRAPE. The work of Gurkan et

al. [53] also gives a variant of the pairing-based SCRAPE and uses

it as a building block to design a DKG protocol. To support efficient

3

Renas Bacho & Julian Loss

aggregation of PVSS transcripts, their construction relies on sig-

natures of knowledge and is proven secure under the Symmetric

External Diffie-Hellman (SXDH) assumption for Type 3 pairings.

Security of Publicly Verifiable Secret Sharing. The literature on
PVSS has considered two main security notions, both of which

capture the notion of indistinguishability of secrets. These notions

were first formally defined in [56]. In the weaker notion of IND1-
secrecy, the adversary cannot distinguish between the sharings of

two secrets 𝑆1, 𝑆2 chosen uniformly at random by the challenger. In

the stronger notion of IND2-secrecy, the adversary has the additional
power to choose the two secrets 𝑆1, 𝑆2 by itself. As already pointed

out by Heidarvand and Villar, there is a generic transformation

from an IND1-secure PVSS scheme to an IND2-secure PVSS scheme.

Omitting some details, the transform uses an IND1-secret PVSS to

share a uniform key 𝐾 which in turn is used to encrypt a secret 𝑆 .

In the following, we compare these notions to our notion of

unpredictability. Intuitively, IND-secrecy says that an adversary

cannot learn any information about the secret 𝑆 shared in the dis-

tribution protocol. Therefore, proofs achieving this security notion

have to provide simulator Sim that on input a uniformly random

𝑆 simulates protocol execution in which the secret 𝑆 is shared. As

discussed above, it is unknown how to instantiate Sim efficiently

for adaptive corruption without modifying the scheme. Our no-

tion of (aggregated) unpredictability obviates the need for this type

of simulation. This is because unpredictability allows the adver-

sary to obtain partial information about the secret 𝑆 , with the only

condition that it cannot fully recover the secret.

1.4 Organization of this Article
In Chapter 2, we define preliminaries and our model. In Chapter 3,

we formalize the notion of an aggregatable PVSS scheme and in-

troduce a new security notion for it. Following this, we show that

the PVSS schemes used in OptRand and SPURT are secure under

this notion. In Chapter 4, we infer the adaptive security of the ran-

domness beacons OptRand and SPURT. In Appendix A, we provide

a warm-up for our main body, in which we introduce the syntax

and a new security notion for standard PVSS schemes, prove that

Schoenmakers’ PVSS is secure under it, and infer the adaptive se-

curity of the randomness beacon GRandPiper [16]. In Appendix B,

we provide a detailed discussion on the literature of randomness

beacons. Due to space constraints, some formal definitions and

proofs are deferred to Appendices C and E. Finally, we provide

in Appendix D a proof for the hardness of our newly introduced

Co-OMDL assumption in the generic group model.

2 PRELIMINARIES AND MODEL
Throughout the paper, we consider a complete network P of 𝑛 par-

ties connected by pairwise authenticated channels, i.e. the receiver

of a message is aware of the sender’s identity. We assume known

party identifiers, w.l.o.g from 𝑃1 to 𝑃𝑛 . An unknown subset of these

parties is faulty and controlled by an adversary.

General Notation. We denote the set of integers by Z, the group
of integers modulo 𝑝 by Z𝑝 = Z/𝑝Z and its multiplicative unit

group by Z∗𝑝 . We denote the set of integers from 𝑎 to 𝑏 by [𝑎, 𝑏]; if
𝑎 = 1, we write [𝑏], and if 𝑎 = 0, we write J𝑏K. For an element 𝑥

in a set 𝑆 , we write 𝑥 ← 𝑆 to indicate that 𝑥 was sampled from 𝑆

uniformly at random. We consider the standard notion of proba-

bilistic polynomial time algorithms. As such, all of our algorithms

are randomized (unless stated otherwise) and are written in upper-

case serif-free letters. We write 𝑥 ← A(𝑥1, . . . , 𝑥𝑛) to denote that

algorithm A is run on inputs (𝑥1, . . . , 𝑥𝑛) and produces output 𝑥 .

We write 𝑥 ∈ A(𝑥1, . . . , 𝑥𝑛) to denote that 𝑥 is a possible output of

a (randomized) algorithm A on input (𝑥1, . . . , 𝑥𝑛). If A has oracle

access to some algorithm B during its execution, we write AB. Fur-
thermore, we write GA

to denote the output of the experiment G
involving algorithm A. We define LC to be the Reed-Solomon code

over Z𝑝 of length 𝑛 and dimension 𝑡 + 1 of the following form
LC := {(𝑓 (1), . . . , 𝑓 (𝑛)) | 𝑓 (𝑋) ∈ Z𝑝 [𝑋], deg(𝑓) ≤ 𝑡},

where 𝑓 (𝑋) ranges over all polynomials in Z𝑝 [𝑋] of degree at most

𝑡 . Its dual code LC⊥ is defined as

LC⊥ := {(𝜗1𝑟 (1), . . . , 𝜗𝑛𝑟 (𝑛)) | 𝑟 (𝑋) ∈ Z𝑝 [𝑋], deg(𝑟) ≤ 𝑛 − 𝑡}

with the coefficients 𝜗𝑖 :=
∏

𝑗∈[𝑛]\{𝑖 } 1/(𝑖 − 𝑗). Equivalently, LC⊥
is the vector space consisting of all 𝑐⊥ ∈ Z𝑛𝑝 that are orthogonal to

all of LC, i.e. ⟨𝑐⊥, 𝑐⟩ = 0 for all 𝑐 ∈ LC where ⟨·, ·⟩ is the standard
inner product operation on Z𝑛𝑝 .

Setup Assumptions and Adversary Model. We assume that par-

ties have established a public key infrastructure (PKI) via a public

bulletin board. This means that every party 𝑃𝑖 is associated with a

public-secret key pair (pk𝑖 , sk𝑖) of a public key encryption scheme,

where pk𝑖 is known to all parties.
1
We assume an adversary who

can take full control of up to 𝑡 < 𝑛 parties and may cause them

to deviate from the protocol arbitrarily. We refer to the correct

parties as honest and to the faulty parties as corrupt. The adversary
is adaptive, i.e. it chooses the faulty parties at any time during

the execution of the protocol. We do not assume that the keys are

computed in a trusted manner. Instead, we assume only that each

party generates its keys locally (faulty parties may choose their

keys arbitrarily) and then makes its public keys known to all other

parties by using the public bulletin board. However, the adversary

is assumed to be rushing and can corrupt some subset C ⊂ [𝑛]
of parties so as to replace their keys with keys of its own choice,

before they get posted to the bulletin board.

Random Oracle Model. We assume the random oracle model

(ROM) [14]. In this model, a hash function H is treated as an ideal-

ized random function. Concretely, H is modeled as an oracle with

the following properties. The oracle internally keeps a list 𝐻 for

bookkeeping purposes. At the beginning, all entries of 𝐻 are set

to ⊥. On input 𝑚 from the domain of H, the oracle first checks

whether 𝐻 [𝑚] ≠ ⊥. If so, it returns 𝐻 [𝑚]. Otherwise, it sets 𝐻 [𝑚]
to a uniformly random value in the codomain of H and then returns

𝐻 [𝑚]. We write 𝑞ℎ to denote the maximum number of allowed

hash queries, i.e. the number of times the adversary may query the

oracle H.

Cryptographic Groups. Let 𝜆 be the security parameter. Through-

out, we assume that global system parameters par are fixed and

known to all parties. Depending on the setting, we either assume

1
In some specific cases, we will also require that parties share private and public keys

for a digital signature scheme.

4

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

that par = (G, 𝑔, ℎ, 𝑝) defines a cyclic groupG of prime order 𝑝 with

generators𝑔, ℎ or that par = (G1,G2,G𝑇 , 𝑝, 𝑔, 𝑔, ℎ, 𝑒) defines a triple
of groups G1,G2,G𝑇 of prime order 𝑝 such that 𝑔,𝑔 ∈ G1, ℎ ∈ G2
and 𝑒 : G1 × G2 → G𝑇 is a bilinear asymmetric pairing of Type 3.

That is, there is no efficiently computable isomomorphism from G1
to G2 and vice versa. For concrete choices, we will assume 𝜆 = 128

and that G1,G2 are instantiated with 256-bit elliptic curves.

Algebraic Group Model. In the algebraic group model (AGM) [43],

all algorithms are treated as algebraic. Intuitively, whenever an

algorithm outputs a group element, it must also output a represen-

tation of that element relative to all of the inputs the algorithm

has received up to that point. This captures the intuition that any

reasonable algorithm should know how it computes its outputs

from its inputs. In terms of assumptions, the algebraic group model

lies in between the generic group model [73] and the plain model.

Definition 2.1 (Algebraic Algorithm). An algorithm A is called

algebraic (over group G) if for all group elements 𝜁 ∈ G that A
outputs, it additionally outputs a vector ®𝑧 = (𝑧0, . . . , 𝑧𝑚) of inte-
gers such that 𝜁 =

∏
𝑖 𝑔

𝑧𝑖
𝑖
, where (𝑔0, . . . , 𝑔𝑚) is the list of group

elements A has received so far.

3 ADAPTIVELY SECURE APVSS SCHEMES
In this section, we provide a formal definition for aggregatable PVSS
(APVSS). Additionally, we propose our new security notion and

prove several schemes from the literature secure with respect to it.

An APVSS scheme allows a dealer to share a secret 𝑆 via ADist
via a transcript𝑇 = (®𝐸, 𝜋). ®𝐸 contains a vector of encrypted shares of
𝑆 , each to a different public key pk𝑖 , such that any 𝑡 + 1 decryptions
uniquely reconstruct 𝑆 . 𝑇 is publicly verifiable using algorithm Ver.
The aggregation routine Agg allows to homomorphically combine

the secrets corresponding to transcripts 𝑇1, . . . ,𝑇𝑘 into an aggre-
gate transcript 𝐴𝑇 . To be useful as a building block, we endow an

aggregatable PVSS scheme with an additional verification routine

AVer for aggregated transcripts. Intuitively, AVer can be used to

detect whether an aggretated transcript 𝐴𝑇 has at least one contri-

bution from an honest party. In order for this to be well-defined,

we also define the notion of ownership of a transcript 𝑇 . This is

captured via the auxiliary algorithmOwnId that can efficiently find

the creator of 𝑇 . In concrete schemes, this is usually implemented

by parties holding signing keys in addition to their encryption keys

and digitally signing their transcripts. Rather than unnecessarily

convoluting our syntax, we simply require that the distribution

algorithm ADist take in a party’s secret key as part of its input.

(This would, for example, allow a party holding a signing key as

part of its overall secret key to sign its transcript upon distributing

it.) We remark that in our definitions, we syntactically distinguish

between transcripts and aggregated transcripts.

Definition 3.1 (Aggregatable PVSS Scheme). Let ˆG be a cyclic

group of prime order 𝑝 specified by par . A (𝑡, 𝑛)-threshold ag-
gregatable PVSS (APVSS) scheme over ˆG is a tuple of algorithms

APVSS = (Keys, Enc,Dec,ADist,OwnId,Ver,AVer,Rec,Agg) with
the following properties:

• Keys: The randomized key generation algorithm takes as

input system parameters par and an identity index 𝑖 ∈ [𝑛].
It outputs a public key pk𝑖 and a secret key sk𝑖 .

• Enc: The randomized encryption algorithm takes as input a

public key pk𝑖 and a message𝑚. It outputs a ciphertext 𝑐 .

• Dec: The deterministic decryption algorithm takes as input

a secret key sk𝑖 and a ciphertext 𝑐 . It outputs a message𝑚

(optionally with a proof of correct decryption). We require

that for all messages𝑚,

Pr[Decsk𝑖 (Encpk𝑖 (𝑚)) =𝑚] = 1.

• ADist: The randomized aggregatable secret sharing algo-
rithm takes as input a secret key sk𝑖 and public keys pk1, . . . , pk𝑛 .
It outputs a vector of encrypted shares ®𝐸 = (Encpk

1

(𝑆1), . . . ,
Encpk𝑛 (𝑆𝑛)) and a proof 𝜋 , where 𝑆1, . . . , 𝑆𝑛 are shares of

a secret 𝑆 ∈ ˆG. We refer to 𝑇 := (®𝐸, 𝜋) as a PVSS transcript.
• Ver: The deterministic verification algorithm takes as input

public keys pk
1
, . . . , pk𝑛 , and a PVSS transcript 𝑇 = (®𝐸, 𝜋).

It outputs 1 (accept) or 0 (reject). In the first case we call

the transcript 𝑇 valid (relative to pk
1
, . . . , pk𝑛); otherwise

we call it invalid.
• OwnId: The deterministic owner identifier algorithm takes

as input a PVSS transcript 𝑇 = (®𝐸, 𝜋) and a public key pk𝑖 .
It outputs 1 (accept) or 0 (reject). In the first case, we refer

to 𝑃𝑖 as the owner of 𝑇 .2

• Agg: The deterministic aggregation algorithm takes as in-

put 𝑡 + 1 PVSS transcripts (®𝐸1, 𝜋1), . . . , (®𝐸𝑡+1, 𝜋𝑡+1) with
pairwise distinct owners. It outputs an aggregated PVSS
transcript 𝐴𝑇 := (®𝐸, 𝜋).

• AVer: The deterministic aggregation verification algorithm
takes as input public keys pk

1
, . . . , pk𝑛 , and an aggregated

PVSS transcript 𝐴𝑇 = (®𝐸, 𝜋). It outputs 1 (accept) or 0

(reject). In the first case we call the aggregated transcript

𝐴𝑇 valid; otherwise we call it invalid.
• Rec: The deterministic reconstruction algorithm takes as

input 𝑡 + 1 shares 𝑆1, . . . , 𝑆𝑡+1. It outputs a reconstructed
secret 𝑆 ∈ ˆG. In case Rec gets more than 𝑡 + 1 shares as input,
it takes the first lexicographical 𝑡 + 1.

For an aggregatable PVSS scheme APVSS = (Keys, Enc,Dec,
ADist,OwnId,Ver,AVer,Rec,Agg) as defined above, we define pub-

lic verifiability of transcripts and aggregated transcripts as well as

correctness as follows:

• Correctness (of Aggregatable PVSS). We say that APVSS is
correct if for all (pk

1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par) and

all 𝑖 ∈ [𝑛],
Pr[Ver({pk 𝑗 } 𝑗∈[𝑛] ,𝑇) = 1 ∧OwnId(pk𝑖 ,𝑇) = 1] = 1,

where the probability is taken over all𝑇 ← ADist(sk𝑖 , {pk 𝑗 } 𝑗∈[𝑛]).
• Public Verifiability (of Transcripts). We say that APVSS is

publicly verifiable if for all (pk
1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par)

and all (®𝐸, 𝜋) s.t. Ver({pk 𝑗 } 𝑗∈[𝑛] , (®𝐸, 𝜋)) = 1, there exists a

unique 𝑆 ∈ ˆG s.t.

Rec({Decsk𝑖 (®𝐸𝑖)}𝑖∈I) = 𝑆 ∀I ⊂ [𝑛], |I | = 𝑡 + 1.
• Public Verifiability (of Aggregated Transcripts). We say that

APVSS is publicly verifiable if for all (pk
1
, sk1), . . . , (pk𝑛, sk𝑛)

∈ Keys(par) and all aggregated transcripts 𝐴𝑇 = (®𝐸, 𝜋) s.t.
2
We remark that OwnId could return 1 on an invalid transcript.

5

Renas Bacho & Julian Loss

AVer({pk 𝑗 } 𝑗∈[𝑛] , (®𝐸, 𝜋)) = 1, there exists a unique 𝑆 ∈ ˆG
s.t.

Rec({Decsk𝑖 (®𝐸𝑖)}𝑖∈I) = 𝑆 ∀I ⊂ [𝑛], |I | = 𝑡 + 1.
We say that an APVSS scheme is publicly verifiable if both its

transcripts and aggregated transcripts are publicly verifiable. We

would also like to guarantee that the secret reconstructed from an

aggregated transcript 𝐴𝑇 = Agg(𝑇1, . . . ,𝑇𝑡+1) corresponds to the

sum of the secrets 𝑆𝑖 that can be reconstructed from 𝑇𝑖 . This is

captured in the following definition.

Definition 3.2 (Correctness of Aggregation). We say that an ag-

gregatable and publicly verifiable (𝑡, 𝑛)-threshold APVSS scheme

APVSS = (Keys, Enc,Dec,ADist,OwnId,Ver,AVer,Rec,Agg) over
ˆG is correctly aggregatable if for all keys (pk

1
, sk1), . . . , (pk𝑛, sk𝑛) ∈

Keys(par) and all PVSS transcripts 𝑇1 = (®𝐸1, 𝜋1), . . . ,𝑇𝑡+1 = (®𝐸𝑡+1,
𝜋𝑡+1) with pairwise distinct owners, the following is true. If for all

𝑖 ∈ [𝑡 +1], Ver({pk 𝑗 } 𝑗∈[𝑛] ,𝑇𝑖) = 1, then for all I ⊂ [𝑛], |I | = 𝑡 +1,
the aggregated transcript 𝐴𝑇 = (®𝐸′, 𝜋 ′) := Agg(𝑇1, . . . ,𝑇𝑡+1) satis-
fies

Rec({Decsk𝑖 (®𝐸
′
𝑖)}𝑖∈I) =

∏
𝑗∈[𝑡+1]

Rec({Decsk𝑖 (®𝐸 𝑗,𝑖)}𝑖∈I),

where we write ®𝐸 𝑗 = (®𝐸 𝑗,1, . . . , ®𝐸 𝑗,𝑛).

3.1 New Security Notions for APVSS
We introduce a new security notion for APVSS schemes called

aggregated unpredictability. This is a kind of non-malleability kind

property specifically for aggregatable PVSS schemes. It prohibits

an adversary controlling 𝑡 parties from learning the secret of an

aggregated transcript with at least one honest contribution, even if

the adversary is allowed to contribute itself to the aggregate. This

models an active adversary who can contribute to the final secret

itself. In the following, we define this notion formally.

Definition 3.3 (Aggregated Unpredictability of Aggregatable PVSS
Scheme). LetAPVSS = (Keys, Enc,Dec,ADist,OwnId,Ver,AVer,Rec,
Agg) be a publicly verifiable aggregatable (𝑡, 𝑛)-PVSS scheme over

ˆG. For an algorithm A, define the aggregated unpredictability exper-

iment AggPredAAPVSS,𝑡 as follows:
• Offline Phase. For all 𝑖 ∈ [𝑛], run Keys on input (par, 𝑖)

to generate keys (pk𝑖 , sk𝑖) ← Keys(par, 𝑖). On input par
and {pk𝑖 }𝑖∈[𝑛] , A returns an index set C ⊂ [𝑛] of initially
corrupted parties along with updated public keys { ˆpk 𝑗 } 𝑗∈C .
Set pk 𝑗 := ˆpk 𝑗 for all 𝑗 ∈ C.

• Corruption Queries. At any point of the experiment, A may

submit an index 𝑖 ∈ [𝑛] \ C. In this case, return the secret

key sk𝑖 and update C := C ∪ {𝑖}. If A is static, it submits an
index set C′ ⊂ [𝑛] \ C at the beginning of the experiment.
Return the secret keys {sk𝑖 }𝑖∈C′ and update C := C′ ∪ C.

• Random Oracle Queries. At any point of the experiment, A
gets access to an oracle that answers queries of the follow-

ing type: When A submits a query𝑚, check if 𝐻 [𝑚] = ⊥.
If so, set 𝐻 [𝑚] ← Z∗𝑝 and return 𝐻 [𝑚]. Otherwise, return
𝐻 [𝑚].

• Transcript Queries. At any point of the experiment, A gets

access to an oracle that answers queries of the following

type: When A submits a request (givePVSS, 𝑖) for an 𝑖 ∈
[𝑛] \ C, do the following. On behalf of dealer 𝑃𝑖 , run ADist
on input sk𝑖 and pk1, . . . , pk𝑛 . Return the output transcript

𝑇 = (®𝐸, 𝜋).
• Output Determination.When A outputs an aggregated tran-

script 𝐴𝑇 ′ = (®𝐸′, 𝜋 ′) and an element 𝑆∗ ∈ ˆG, do:

– Return 1 if |C| ≤ 𝑡 , AVer({pk𝑖 }𝑖∈[𝑛] , (®𝐸′, 𝜋 ′)) = 1, and

𝑆∗ = Rec({Decsk𝑖 (®𝐸′𝑖)}𝑖∈[𝑡+1]).
– Return 0 otherwise.

We say that APVSS is (𝜀,𝑇 , 𝑡, 𝑞𝑘 , 𝑞ℎ)-aggregated unpredictable if

for all algorithms A that run in time at most 𝑇 , make at most 𝑞𝑘
transcript queries, and make at most 𝑞ℎ random oracle queries,

Pr[AggPredAAPVSS,𝑡 = 1] ≤ 𝜀. Conversely, we say that A (𝜀,𝑇 , 𝑡, 𝑞𝑘 ,
𝑞ℎ)-breaks aggregated unpredictability of APVSS if it runs in time

at most 𝑇 , makes at most 𝑞𝑘 transcript queries, makes at most 𝑞ℎ
random oracle queries, and Pr[AggPredAAPVSS,𝑡 = 1] > 𝜀.

3.2 Security Analysis of APVSS in the AGM,
OptRand’s & SPURT’s Scheme

We analyze the (adaptive) security of two recent APVSS schemes

from the literature that are designed upon Type 3 asymmetric pair-

ings, OptRand’s and SPURT’s APVSS. As already explained in the

introduction, the standard OMDL assumption is not sufficient any-

more for this setting. The reason is that the secret is shared in

both source groups, which makes it impossible for the simulation

to work when relying on OMDL. We elaborate on this in more

detail in Appendix D. We observe that this issue can be resolved

by relying on an extended version of OMDL, which we call the co
one-more discrete logarithm (COMDL) assumption. In the following,

letG1 andG2 be two cyclic groups of prime order 𝑝 with respective

generators 𝑔 ∈ G1 and ℎ ∈ G2. We denote by DL𝑔 an oracle that on

input 𝜉 := 𝑔𝑧 ∈ G1 returns the discrete logarithm 𝑧 of 𝜉 to base 𝑔.

Definition 3.4 (Co One-More Discrete Logarithm Problem). For an
algorithm A and 𝑛 ∈ N, define the co one-more discrete logarithm

experiment 𝑛-COMDLA for G1 and G2 as follows:

• Offline Phase. Sample (𝑧1, . . . , 𝑧𝑛) ← Z𝑛𝑝 uniformly at ran-

dom and set 𝜉𝑖 := (𝑔𝑧𝑖 , ℎ𝑧𝑖) ∈ G1 × G2 for all 𝑖 ∈ [𝑛].
• Online Phase. Run A on input (par, 𝜉1, . . . , 𝜉𝑛). In this phase,

A gets access to the oracle DL𝑔 in G1.
• Output Determination. When A outputs (𝑧′

1
, . . . , 𝑧′𝑛), return

1 if (i) 𝑧′
𝑖
= 𝑧𝑖 for all 𝑖 ∈ [𝑛], and (ii) DL𝑔 was queried at

most 𝑛−1 times during the online phase. Otherwise, return

0.

We say that the co one-more discrete logarithm problem of degree

𝑛 is (𝜀,𝑇)-hard if for all algorithms A that run in time at most 𝑇 ,

Pr[𝑛-COMDLA = 1] ≤ 𝜀. Conversely, we say that an algorithm A
(𝜀,𝑇)-solves the co one-more discrete logarithm problem of degree

𝑛 if it runs in time at most 𝑇 , and Pr[𝑛-COMDLA = 1] > 𝜀.

In Appendix D, we provide a proof of hardness of COMDL in

the generic group model (GGM) when the groups are equipped

with a bilinear pairing 𝑒 : G1 × G2 → G𝑇 . This structure gives

the adversary additional power and makes our proof even more

valuable. Our proof follows along the lines of Bauer et al.’s [8] proof

of hardness of OMDL in the GGM. At the heart of their proof is a

6

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

Let 𝑒 : G1 × G2 → G𝑇 be an asymmetric pairing and independent generators 𝑔,𝑔 ∈ G1 and ℎ ∈ G2. Let (pk𝑖 , sk𝑖) be the key pair of

party 𝑃𝑖 with pk𝑖 = ℎ
sk𝑖

. The dealer 𝑃𝐿 with key pair (pk𝐿, sk𝐿) wants to share secret 𝑒 (𝑔, ℎ𝛼) for an 𝛼 ← Z∗𝑝 . The ADist algorithm
takes as input sk𝐿 and public keys pk

1
, . . . , pk𝑛 . It outputs the transcript 𝑇𝐿 := {𝐶𝑖 , 𝑌𝑖 , 𝜋}𝑖∈[𝑛] defined as follows. In the following,

⟨𝑚⟩𝑖 := (𝑚,𝜎) denotes the pair consisting of message𝑚 and a signature 𝜎 on𝑚 from party 𝑃𝑖 .

(1) Choose a polynomial 𝑓 (𝑋) = 𝛼 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] of degree 𝑡 uniformly at random.

(2) Publish commitments 𝐶𝑖 = 𝑔
𝑓 (𝑖) ∈ G1 for 𝑖 ∈ [𝑛]. Also publish encrypted shares 𝑌𝑖 = pk𝑓 (𝑖)

𝑖
∈ G2 for 𝑖 ∈ [𝑛].

(3) Compute 𝜁 = 𝑔𝛼 and a NIZK proof 𝜃 = (𝑐, 𝑟) of knowledge of 𝛼 where the challenge is 𝑐 = H(𝑔𝑟𝜁 −𝑐 , 𝜁). Publish 𝜋 := ⟨𝜁 , 𝜃⟩𝐿 .
The transcript verification algorithm Ver takes as input the public keys pk

1
, . . . , pk𝑛 (including pk𝐿) and transcript 𝑇𝐿 . It outputs 1

(accept) or 0 (reject). Let LC be the linear code as defined in General Notation 2 and let LC⊥ be its dual code.

(4) Check that 𝑒 (𝑔,𝑌𝑖) = 𝑒 (𝐶𝑖 , pk𝑖) for all 𝑖 ∈ [𝑛]. Sample a random codeword (𝜈1, . . . , 𝜈𝑛) ∈ LC⊥ and check that𝐶
𝜈1
1
· . . . ·𝐶𝜈𝑛

𝑛 = 1.

(5) Check that 𝜁 = 𝑔𝑓 (0) via Lagrange interpolation in the exponent from the 𝐶𝑖 .

(6) Check that the NIZK proof 𝜃 = (𝑐, 𝑟) verifies using 𝜁 and H. Check that the signature on ⟨𝜁 , 𝜃⟩𝐿 verifies using pk𝐿 .
(7) If one of the above checks fails, output 0 (invalid transcript). Otherwise, output 1 (valid transcript).

Figure 1: Aggregatable distribution protocol ADist and transcript verification algorithm Ver of OptRand’s APVSS.

On input the encrypted shares 𝑌1, . . . , 𝑌𝑛 , the decryption Dec and reconstruction Rec algorithms work as follows.

(1) Using sk𝑖 , compute the secret share 𝑆𝑖 = ℎ
𝑓 (𝑖)

from 𝑌𝑖 via extracting the root 𝑆𝑖 = 𝑌
1/sk𝑖
𝑖

. Publish the decryption 𝑆𝑖 .

(2) Upon receiving a secret share 𝑆ℓ from party 𝑃ℓ , check that 𝑒 (𝐶ℓ , ℎ) = 𝑒 (𝑔, 𝑆ℓ). Otherwise, the secret share is invalid.
(3) Upon receiving 𝑡 + 1 valid secret shares 𝑆 𝑗 = ℎ

𝑓 (𝑗)
from different parties, compute 𝑆 = ℎ𝑓 (0) via Lagrange interpolation in

the exponent. Finally, the secret is computed as 𝑒 (𝑔, 𝑆) ∈ G𝑇 and output.

Figure 2: Decryption Dec and reconstruction Rec algorithms of OptRand’s APVSS.

We demonstrate aggregation for the first 𝑡 + 1 parties 𝑃1, . . . , 𝑃𝑡+1. The algorithm Agg takes as input the individual parties’ transcripts

{𝐶𝑖, 𝑗 , 𝑌𝑖, 𝑗 , 𝜋 𝑗 }𝑖∈[𝑛] for all party indices 𝑗 ∈ [𝑡 + 1] and outputs an aggregated transcript 𝐴𝑇 := {𝐶𝑖 , 𝑌𝑖 , 𝜋}𝑖∈[𝑛] . In the following, let

𝜇1, . . . , 𝜇𝑡+1 denote the Lagrange coefficients for the set [𝑡 + 1] at the point 𝑥 = 0, i.e. 𝜇𝑖 :=
∏

𝑗∈[𝑡+1]\{𝑖 } 𝑗/(𝑗 − 𝑖) for 𝑖 ∈ [𝑡 + 1].
(1) For 𝑖 ∈ [𝑛], compute 𝐶𝑖 := 𝐶𝑖,1 · . . . ·𝐶𝑖,𝑡+1 and 𝑌𝑖 := 𝑌𝑖,1 · . . . · 𝑌𝑖,𝑡+1. Let 𝜋 := (𝜋1, . . . , 𝜋𝑡+1) where as above 𝜋 𝑗 = ⟨𝜁 𝑗 , 𝜃 𝑗 ⟩𝑗 for

all 𝑗 ∈ [𝑡 + 1]. Publish the aggregated transcript 𝐴𝑇 := {𝐶𝑖 , 𝑌𝑖 , 𝜋}𝑖∈[𝑛] .
The aggregation transcript verification algorithm AVer takes as input public keys pk

1
, . . . , pk𝑛 and an aggregated transcript 𝐴𝑇 :=

{𝐶𝑖 , 𝑌𝑖 , 𝜋}𝑖∈[𝑛] as above. It outputs 1 (valid aggregated transcript) or 0 (invalid aggregated transcript).

(2) Check as usual that {𝐶𝑖 , 𝑌𝑖 }𝑖∈[𝑛] and that ⟨𝜁𝑖 , 𝜃𝑖 ⟩𝑖 for 𝑖 ∈ [𝑡 + 1] verify. Also check that 𝜁1 · . . . · 𝜁𝑡+1 = 𝐶𝜇1
1
· . . . ·𝐶𝜇𝑡+1

𝑡+1 . If one
of these checks fails, output 0 (invalid aggregated transcript). Otherwise, output 1 (valid aggregated transcript).

Figure 3: Aggregation algorithm Agg and aggregation transcript verification algorithm AVer of OptRand’s APVSS.

technical lemma on vector spaces generated by the vanishing set of

linear (multivariate) polynomials. Their proof relies on techniques

from linear algebra, especially the theory of linear vector spaces.

In our case, however, this lemma does not suffice anymore, since

we obtain polynomials of degree 2 from the pairing operation.

Nevertheless, using techniques from algebraic geometry and the

theory (of rational points) on projective varieties, we are able to

extend their lemma to our setting and thus get a proof of hardness

of COMDL in the generic group model. We note that the proof

Some notes on OptRand’s APVSS.. In their scheme, the authors

use an unspecified digital signature scheme to sign the commit-

ment 𝜁 = 𝑔𝛼 along with the NIZK proof of knowledge 𝜃 . In our

description of their scheme, we assume for convenience that the

generated pairs (pk𝑖 , sk𝑖) also (implicitly) include the verification-

signing key pair (vk𝑖 , dk𝑖) of the underlying signature scheme for

party 𝑃𝑖 so that we do not have to keep track of these pairs in

our description of the scheme. We will use a signature scheme

DS = (SKey, Sign,Ver) as defined in Definition C.1 to implement

their (and SPURT’s) underlying APVSS scheme. For this, we will

write APVSSDS to denote that APVSS is implemented with DS. In
particular, (vk𝑖 , dk𝑖) ← SKey(par, 𝑖) is used for the owner identifier
algorithm. In Definition C.2, we define the security of a signature

scheme bymeans of the unforgeability under chosenmessage game.

Subsequently, we give a tight security reduction from the hard-

ness of 𝑛-COMDL to the aggregated unpredictability of OptRand’s

APVSS scheme. In the following, we provide an intuition for our

proof. Our analysis starts with the observation that the adversary

controlling 𝑡 parties essentially has four options to successfully

predict the secret 𝑆 of the aggregate. Firstly, it learns an additional

(𝑡 + 1)-th decryption key controlled by an honest party, in which

case it can derive 𝑆 from enough decryptions of secret shares. Sec-

ondly, it breaks the underlying encryption scheme directly and thus

obtains an additional secret share. Thirdly, it finds the discrete log-

arithm ℓ of the second generator 𝑔 ∈ G1 to base 𝑔, in which case it

7

Renas Bacho & Julian Loss

can compute the secret 𝑆 = 𝑒 (𝑔, ℎ𝛼) from the element 𝑔𝛼 (which is

derived via Lagrange interpolation in the exponent from the public

commitments) by the identity 𝑒 (𝑔, ℎ𝛼) = 𝑒 (𝑔𝛼 , ℎ)ℓ . Lastly, it forms

its contributions to the aggregate such that honest parties’ contri-

butions erase (malleability attack). The key idea of our reduction

therefore is to embed the 𝑛-COMDL challenge 𝜉 in the public keys

pk
1
, . . . , pk𝑛 of parties, the polynomial 𝑓 ∈ Z𝑝 [𝑋] chosen by the

challenger to answer a transcript query, or the second generator

𝑔 ∈ G1, a choice that remains hidden from the adversary. In the

first case, we simulate by using the discrete logarithm oracle DL𝑔 to
answer corruption queries. In the second case, we simulate by using

an honest-verifier zero knowledge simulation in the random oracle

to generate the NIZK proofs for the transcripts of honest parties. In

the third case, we execute the protocol honestly. Additionally, our

reduction is able to leverage the algebraic equations that result from

the random oracle queries by the adversary to generate its NIZK

proofs of knowledge to handle the malleability attack. Overall, our

reduction is tight and loses only a factor of 1/6. The running time

of the reduction has only a quadratic overhead.

Theorem 3.5. If 𝑛-COMDL is (𝜀,𝑇)-hard in the AGM and DS
is (𝜀𝑠 ,𝑇𝑠 , 𝑞𝑠)-secure, then OptRand’s APVSSDS is (𝜀′,𝑇 ′, 𝑡, 𝑞𝑘 , 𝑞ℎ)-
aggregated unpredictable in the AGM & ROM, where

𝜀 ≥ 𝜀
′ − 𝜀𝑠
6

− 𝑞ℎ
6𝑝
, 𝑇 ≤ 𝑇 ′ +𝑇𝑠 + O(𝑛2) .

Proof. Let A be an algebraic adversary that (𝜀′,𝑇 ′, 𝑡, 𝑞𝑘 , 𝑞ℎ)-
breaks aggregated unpredictability of APVSS. In our proof, we

assume that all parties are honest prior to the execution of APVSS.
It is easy to adjust the proof to the case where the adversary has

already corrupted some parties before the execution of the protocol.

Additionally, we assume that the aggregated transcript output by

the adversary at the end of the game has contribution from ex-

actly one corrupt party. At the end of the proof we explain how

to adjust the proof (at one place) to obtain the general case. In the

following, let C ⊂ P = {𝑃1, . . . , 𝑃𝑛} be the dynamically changing

set of corrupt parties andH = P \ C the set of honest parties. In

particular, we assume that C = {} prior to the execution of the

protocol. We consider the following game between a challenger

and the adversary.

GameG: This is the real game. The challenger generates the system

parameters (G1,G2, 𝑝, 𝑔, 𝑔, ℎ), where 𝑒 : G1 ×G2 → G𝑇 is an asym-

metric pairing of cyclic groups of prime order 𝑝 with independent

generators 𝑔,𝑔 ∈ G1 and ℎ ∈ G2. Furthermore, the challenger gen-

erates the public-secret key pairs (pk𝑖 , sk𝑖) = (ℎ𝑥𝑖 , 𝑥𝑖) of the honest
parties. Whenever A decides to corrupt a party 𝑃𝑖 , the challenger

returns the internal state of that party, which consists of 𝑃𝑖 ’s secret

key 𝑥𝑖 = sk𝑖 , and sets C = C ∪ {𝑃𝑖 }, H = H \ {𝑃𝑖 }. In addition,

A gets full control over party 𝑃𝑖 . Random oracle queries 𝑚𝑖 are

answered by sampling 𝑟𝑖 ← Z∗𝑝 uniformly at random and returning

𝐻 [𝑚𝑖] = 𝑟𝑖 . Transcript oracle queries are answered by sampling a

polynomial 𝑓𝑘 ← Z𝑝 [𝑋] of degree 𝑡 uniformly at random, running

the ADist algorithm and returning the transcript 𝑇𝑘 with recon-

structed secret 𝑒 (𝑔, ℎ𝛼0,𝑘) where 𝛼
0,𝑘 = 𝑓𝑘 (0). The transcript also

includes 𝜁𝑘 = 𝑔𝛼0,𝑘
and a Chaum-Pedersen non-interactive zero-

knowledge (NIZK) proof of knowledge 𝜋𝑘 = (𝑐𝑘 , 𝑟𝑘) of 𝛼0,𝑘 . The
challenge 𝑐𝑘 for the proof is computed as the hash H(−) of 𝑔𝑠𝑘 ∥𝜁𝑘 ,

where 𝑠𝑘 = 𝑟𝑘 −𝑐𝑘𝛼0,𝑘 and ∥ denotes the concatenation of elements

in G1. From now on, we write 𝑃 := 𝑓1 ∈ Z𝑝 [𝑋] for 𝑓1. At the end of
the game, A outputs an aggregated transcript 𝐴𝑇 with contribution

from 𝑡 + 1 different parties along with a secret 𝜎∗ ∈ G𝑇 .
Game G1: This game is identical to the game before, except that

the game aborts and the adversary loses when it forges a signature

of an honest party. Clearly, the statistical distance between game G
andG1 is bounded by the advantage 𝜀𝑠 of A in the UF-CMA game of

the underlying signature scheme DS. This observation is necessary,

otherwise A could forge signatures on the NIZK and aggregate 𝑡 + 1
transcripts it sampled itself. Note that in the APVSS scheme the

signature is used as proof of ownership of a transcript.

The strategy of our reduction will be to embed the COMDL

instance into the generator𝑔, the public keys pk
1
, . . . , pk𝑛 of parties,

or the polynomials 𝑓𝑘 ∈ Z𝑝 [𝑋] of transcripts 𝑇𝑘 . In the following,

we make the simplification by embedding the instance in only one

particular polynomial, w.l.o.g. the first one 𝑓1, and that the adversary

picks the corresponding transcript 𝑇1 for his aggregated transcript.

At the end of the proof, we will eliminate these simplifications.

Having said that, our reduction now samples all but the first queried

transcript honestly. As A is an algebraic adversary, it returns the

secret 𝜎∗ together with a representation(
𝑎, 𝑏, {𝑐𝑖 }𝑛𝑖=1, {𝑑𝑖 }

𝑛
𝑖=1, {𝑒𝑖 }

𝑛
𝑖=1, {𝑓𝑖 }

𝑛
𝑖=1, {𝑢𝑖 }

𝑛
𝑖=1, {𝑣𝑖, 𝑗 }

𝑛
𝑖,𝑗=1, {𝑤𝑖, 𝑗 }𝑛𝑖,𝑗=1

)
of elements in Z𝑝 such that

𝜎∗ = 𝑒 (𝑔, ℎ)𝑎 · 𝑒 (𝑔, ℎ)𝑏 ·
𝑛∏
𝑖=1

𝑒 (𝐶𝑖 , ℎ)𝑐𝑖 ·
𝑛∏
𝑖=1

𝑒 (𝑔, pk𝑖)𝑑𝑖 ·
𝑛∏
𝑖=1

𝑒 (𝑔,𝑌𝑖)𝑒𝑖

·
𝑛∏
𝑖=1

𝑒 (𝑔, pk𝑖) 𝑓𝑖 ·
𝑛∏
𝑖=1

𝑒 (𝑔,𝑌𝑖)𝑢𝑖 ·
𝑛∏

𝑖, 𝑗=1

𝑒 (𝐶𝑖 , pk 𝑗)𝑣𝑖,𝑗 ·
𝑛∏

𝑖, 𝑗=1

𝑒 (𝐶𝑖 , 𝑌𝑗)𝑤𝑖,𝑗 .

(1)

Here, the representation is split (from left to right) into powers of

pairing evaluations on combinations of the generators 𝑔,𝑔 ∈ G1
and ℎ ∈ G2, the public keys pk

1
, . . . , pk𝑛 ∈ G2, the polynomial

commitments 𝐶1, . . . ,𝐶𝑛 ∈ G1 of 𝑓1, and the encrypted shares

𝑌1, . . . , 𝑌𝑛 ∈ G2. As already clarified, we do not explicitly present

the elements from the outputs {𝑇𝑘 }𝑘≥2 in the equation because

these can directly be put into the other terms in on the right-hand

side of the equation (since the 𝑇𝑘 for 𝑘 > 1 are honestly gener-

ated). We also do not include 𝜁 into the equation because it can

be computed via Lagrange interpolation in the exponent from the

commitments𝐶1, . . . ,𝐶𝑛 . In the following, let 𝑅𝑖 for 𝑖 ∈ [𝑞ℎ] denote
the random oracle queries made by the adversary. Let 𝑅† and 𝜁 ′

be the elements corresponding to the contribution of the corrupt

party. Since A is an algebraic adversary, it returns the elements

𝑅†
!

= 𝑔𝑟
′
𝜁 ′−𝑐

′
∈ G1 and 𝜁 ′ ∈ G1 together with an algebraic repre-

sentation. Note that we assume w.l.o.g. that the adversary queries

the random oracle on 𝑅†∥𝜁 to obtain a challenge for the NIZK 𝜋 ′

corresponding to its contribution. For 𝑅†, let (𝑎′, 𝑏′, 𝑐′1, . . . , 𝑐
′
𝑛) be

elements in Z𝑝 such that

𝑅† = 𝑔
𝑎′ · 𝑔𝑏

′
·𝐶𝑐

′
1

1
· . . . ·𝐶𝑐

′
𝑛
𝑛 . (1’)

8

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

And for 𝜁 ′, let (𝑎†, 𝑏†, 𝑐†
1
, . . . , 𝑐

†
𝑛) be elements in Z𝑝 such that

𝜁 = 𝑔𝑎
†
· 𝑔𝑏

†
·𝐶𝑐

†
1

1
· . . . ·𝐶𝑐

†
𝑛
𝑛 . (1”)

In the following, let ℓ ∈ Z𝑝 denote the discrete logarithm of 𝑔 to

base 𝑔 (i.e. 𝑔ℓ = 𝑔). And let 𝛼0,𝑖 = 𝑓𝑖 (0) for 𝑖 ∈ [2, 𝑞𝑘] denote the
secret field elements chosen by the reduction to answer the 𝑖-th

transcript oracle query 𝑇𝑖 . Assuming the adversary wins the game

G by outputting the secret of the aggregated transcript 𝐴𝑇 (w.l.o.g.

it has contributions (𝛼 ′, 𝛼, 𝛼0,2, . . . , 𝛼0,𝑡), where 𝛼 ′ comes from the

adversary), the above equation (1) to base 𝑒 (𝑔, ℎ) yields

ℓ (𝛼 + 𝛼 ′ +
𝑡∑︁
𝑖=2

𝛼0,𝑖) = 𝑎 + ℓ𝑏 +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑑𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑒𝑖

+ ℓ
𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 + ℓ
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑢𝑖 +
𝑛∑︁

𝑖, 𝑗=1

𝑃 (𝑖)𝑥 𝑗𝑣𝑖, 𝑗 +
𝑛∑︁

𝑖, 𝑗=1

𝑃 (𝑖)𝑃 (𝑗)𝑥 𝑗𝑤𝑖, 𝑗 .

Since the 𝛼0,𝑖 for 𝑖 > 1 are known and the sum with coefficients 𝑒𝑖
also appears in the sum with coefficients 𝑣𝑖,𝑖 , this equation reduces

to (using the same symbols for the coefficients)

ℓ (𝛼 + 𝛼 ′) = ℓ
(
𝑏 +

𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑢𝑖
)
+ 𝑎 +

𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑑𝑖

+
𝑛∑︁

𝑖, 𝑗=1

𝑃 (𝑖)𝑥 𝑗𝑣𝑖, 𝑗 +
𝑛∑︁

𝑖, 𝑗=1

𝑃 (𝑖)𝑃 (𝑗)𝑥 𝑗𝑤𝑖, 𝑗 , (2)

which we write as ℓ (𝛼 + 𝛼 ′) = 𝛼𝐴 + 𝐵 for appropriate variables 𝐴

and 𝐵. On the other hand, equation (1’) together with the condition

that 𝑅†
!

= 𝑔𝑟
′
𝜁 −𝑐

′
yields

𝛼 ′𝑐′ = 𝑟 ′ − 𝑎′ − ℓ𝑏′ −
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐′𝑖 . (2’)

We make the crucial observation that the adversary necessarily

queries the random oracle on input 𝑅†∥𝜁 before obtaining the

challenge 𝑐′, thus fixing the value 𝛼 ′ before 𝑐′ was chosen by the

reduction. Therefore, all appearing variables including 𝛼 ′ are in-
dependent from 𝑐′ and the above equation (2’) is equivalent to

𝛼 ′ = 𝑎 + ℓ ˜𝑏 +∑
𝑖≤𝑛 𝑃 (𝑖)𝑐𝑖/𝑐′ (2”), where the elements 𝑎, ˜𝑏, 𝑐𝑖 ∈ Z𝑝

are appropriately defined. Plugging this equation into the above

one (2) with the same notation for 𝐴 and 𝐵 yields

ℓ2 ˜𝑏 + ℓ (𝛼 + 𝑎 +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐𝑖/𝑐′ −𝐴) − 𝐵 = 0. (♠)

Not to forget, equation (1”) yields

𝛼 ′ = 𝑎† + ℓ𝑏† +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐†
𝑖
, (†)

where the coefficients on the right-hand side are again independent

from 𝑐′. In the following, we denote by 𝑉 the Vandermonde matrix

corresponding to the polynomial 𝜔 (𝑋) = 1 +𝑋 + . . . +𝑋 𝑡 ∈ Z𝑝 [𝑋]
of degree 𝑡 at the points {1, 2, . . . , 𝑛}. Since 𝑉 is Vandermonde, its

rank is 𝑡 +1 and thus its kernel ker(𝑉) is of dimension 𝑛− (𝑡 +1) = 𝑡 .
We define the following four events:

• 𝐸1 defined by
˜𝑏 = 0 ∧ 𝛼 + 𝑎 +∑𝑛

𝑖=1 𝑃 (𝑖)𝑐𝑖/𝑐′ −𝐴 = 0.

• 𝐸2 defined by: (𝑐1, . . . , 𝑐𝑛) ∈ Z𝑛𝑝 is in the kernel of 𝑉 .

• 𝐸3 defined by 1 = 𝑥1𝑢1 + . . . + 𝑥𝑛𝑢𝑛 .

• 𝐸4 defined by: There is no index 𝑖 ∈ H s.t. 𝑢𝑖 ≠ 0.
3

We have the following technical lemma.

Lemma 3.6. Let G1 and 𝐸𝑖 for 𝑖 ∈ [4] be defined as above. Then
there exist (algebraic) algorithms A𝑗 for 𝑗 ∈ [5] playing in game
𝑛-COMDL that run in time at most 𝑇 such that:

Pr[𝑛-COMDLA1 = 1] = Pr[GA
1
= 1 ∧ ¬𝐸1],

Pr[𝑛-COMDLA2 = 1] =
(
1 − 1

𝑝

)
· Pr[GA

1
= 1 ∧ 𝐸1 ∧ ¬𝐸2],

Pr[𝑛-COMDLA3 = 1] = Pr[GA
1
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3],

Pr[𝑛-COMDLA4 = 1] = Pr[GA
1
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ ¬𝐸4],

Pr[𝑛-COMDLA5 = 1] = Pr[GA
1
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ 𝐸4] .

Moreover, 𝑇 ≤ 𝑇 ′ + O(𝑛2).

Proof. Let 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ (G1 × G2)𝑛 with 𝜉𝑖 = (𝑔𝑧𝑖 , ℎ𝑧𝑖)
for 𝑖 ∈ [𝑛] be the COMDL instance of degree 𝑛. Algorithms A𝑖 for
𝑖 ∈ [5] have access to a (perfect) discrete logarithm oracle DL𝑔 in
G1 (to base 𝑔) which they can query at most 𝑛 − 1 times. When we

say algorithm A𝑖 queries the discrete logarithm oracle on 𝜉 𝑗 , we

mean that it queries DL𝑔 on the first component of 𝜉 𝑗 which is a

group element in G1. The algorithms A𝑖 , 𝑖 ∈ [5], simulate game G1

as described in the following.

Algorithm A1 (𝜉, par): Algorithm A1 works as follows. On input

𝜉 , A1 queries the discrete logarithm oracle DL𝑔 on 𝜉2, . . . , 𝜉𝑛 and

gets (𝑧2, . . . , 𝑧𝑛). It publishes the generator 𝑔 by setting 𝑔 = 𝜉1,1.

In particular, it is ℓ = DL𝑔 (𝑔) = 𝑧1. Furthermore, A1 generates the

public-secret key pairs of parties and the polynomial 𝑃 (𝑋) ∈ Z𝑝 [𝑋]
honestly (by sampling sk𝑖 , 𝛼 𝑗 ← Z𝑝 uniformly at random). Random

oracle queries𝑚𝑖 are answered honestly by sampling 𝑟𝑖 ← Z𝑝 and

returning 𝐻 [𝑚𝑖] = 𝑟𝑖 . Transcript oracle queries are answered hon-

estly by sampling a polynomial 𝑓𝑘 ← Z𝑝 [𝑋] of degree 𝑡 uniformly

at random and running the distribution phase on it. Corruption

queries are answered by returning the secret key of the correspond-

ing party. It is not hard to see that A1’s simulation of G1 is perfect.

Suppose that A1 wins G1 and that event ¬𝐸1 happens. Equation (♠)
is then a non-trivial equation of degree one or two in ℓ over the

field Z𝑝 (either the coefficient of ℓ2 or the one from ℓ is non-zero).

By standard techniques, A1 can efficiently compute ℓ = 𝑧1 and thus

solve the COMDL instance. Overall, we obtain

Pr[𝑛-COMDLA2 = 1] = Pr[GA
1
= 1 ∧ ¬𝐸1] .

The bound on the running time of A1 is obvious.
Algorithm A2 (𝜉, par): Algorithm A2 works on input 𝜉𝑖 = (𝑔𝑧𝑖 , ℎ𝑧𝑖),
𝑖 ∈ [𝑛], as follows. It samples ℓ ← Z𝑝 uniformly at random and

publishes 𝑔 = 𝑔ℓ . It generates the public-secret key pairs of parties

honestly. It chooses the polynomial 𝑃 (𝑋) = 𝛼0 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡

s.t. 𝑔𝛼𝑖 = 𝜉𝑖+1,1 for all 𝑖 ∈ J𝑡K. In particular, it is 𝛼𝑖 = 𝑧𝑖+1 for 𝑖 ∈ J𝑡K.
Commitments 𝐶𝑖 = 𝑔

𝑃 (𝑖)
and encryptions 𝑌𝑖 = pk𝑃 (𝑖)

𝑖
= (ℎ𝑃 (𝑖))𝑥𝑖

are computed via Lagrange interpolation in the exponent from

the elements 𝜉1, . . . , 𝜉𝑡+1 and returned to the adversary. The NIZK

proof 𝜋 is generated via an HVZK simulation and returned. Random

oracle queries𝑚𝑖 are answered by sampling 𝑟𝑖 ← Z𝑝 and returning

3
At this stage, H ⊂ P is the set of parties that remain honest at the end of the game.

9

Renas Bacho & Julian Loss

𝐻 [𝑚𝑖] = 𝑟𝑖 . Transcript oracle queries for 𝑘 > 1 are answered

by sampling a polynomial 𝑓𝑘 ← Z𝑝 [𝑋] of degree 𝑡 uniformly at

random and running the distribution phase on it. Corruption queries

are answered by returning the secret key of the corresponding party.

It is not hard to see that A2’s simulation of G1 is perfect.

Suppose that A2 wins G1 and that event 𝐸1 ∧ ¬𝐸2 happens. In

particular, the vector (𝑐1, . . . , 𝑐𝑛) ∈ Z𝑛𝑝 is not in the kernel of 𝑉 .

Comparison of the equations (2”) and (†) coming from the random

oracle query on 𝑅†∥𝜁 ′ gives

𝑎 + ℓ ˜𝑏 +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐𝑖/𝑐′ = 𝑎† + ℓ𝑏† +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐†
𝑖

⇐⇒
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝛿𝑖 = 𝑎† − 𝑎 + ℓ (𝑏† − ˜𝑏),

where 𝛿𝑖 := (𝑐𝑖/𝑐′ − 𝑐†𝑖) for all 𝑖 ∈ [𝑛]. With the previously defined

notation 𝑃 (𝑋) = 𝛼0+𝛼1𝑋 +. . .+𝛼𝑡𝑋 𝑡
, the last equation is equivalent

𝑡∑︁
𝑖=0

𝛼𝑖 (𝛿1 + 2𝑖𝛿2 + 3𝑖𝛿3 + . . . + 𝑛𝑖𝛿𝑛) = 𝑎† − 𝑎 + ℓ (𝑏† − ˜𝑏)

⇐⇒
𝑡∑︁
𝑖=0

𝛼𝑖𝐹 (𝑖) = 𝑎† − 𝑎 + ℓ (𝑏† − ˜𝑏), (r)

where 𝐹 (𝑋) := 𝛿1 + 2𝑋𝛿2 + 3𝑋𝛿3 + . . . + 𝑛𝑋𝛿𝑛 . Assuming 𝐹 (𝑖) = 0

for all 𝑖 ∈ J𝑡K, we get the following system of linear equations in

the variables 𝛿1, . . . , 𝛿𝑛 written in matrix form:

©­­­­«
1 1 · · · 1

1 2 · · · 𝑛

.

.

.
.
.
.

.

.

.

1 2
𝑡 · · · 𝑛𝑡

ª®®®®¬
·
©­­­­«
𝛿1
𝛿2
.
.
.

𝛿𝑛

ª®®®®¬
=

©­­­­«
0

0

.

.

.

0

ª®®®®¬
⇐⇒ 𝑉 ·

©­­­­«
𝑐1
𝑐2
.
.
.

𝑐𝑛

ª®®®®¬
/𝑐′ = 𝑉 ·

©­­­­­«
𝑐
†
1

𝑐
†
2

.

.

.

𝑐
†
𝑛

ª®®®®®¬
.

By assumption that event ¬𝐸2 happens, the left-hand side is an

𝑛-dimensional non-zero vector with scaling factor 1/𝑐′, whereas
the right-hand side is an 𝑛-dimensional vector independent from

𝑐′ (since the coefficients 𝑐
†
𝑖
and 𝑐𝑖 were fixed by the adversary

before seeing 𝑐′). As a result, both sides are equal with probability

at most 1/𝑝 . Therefore, there is an 𝑖 ∈ J𝑡K such that 𝐹 (𝑖) ≠ 0 with

probability 1− 1/𝑝 and algorithm A2 proceeds as follows. It queries
the discrete logarithm oracleDL𝑔 on 𝜉𝑖+1 for all 𝑖 ∈ J𝑛−1K\ {𝑖} and
obtains 𝑧𝑖 for all 𝑖 ∈ [𝑛] \ {𝑖 + 1}. In particular, A3 has knowledge

of the polynomial coefficients 𝛼𝑖 for all 𝑖 ≠ 𝑖 and computes the

remaining value 𝛼𝑖 from the above equation (r) using 𝐹 (𝑖) ≠ 0. As

a result, it solves the COMDL instance with 𝑛 − 1 oracle queries.
Overall, we obtain

Pr[𝑛-COMDLA2 = 1] =
(
1 − 1

𝑝

)
· Pr[GA

1
= 1 ∧ 𝐸1 ∧ ¬𝐸2] .

The bound on the running time of A2 is clear.
Algorithm A3 (𝜉, par): Algorithm A3 works on input 𝜉𝑖 = (𝑔𝑧𝑖 , ℎ𝑧𝑖),
𝑖 ∈ [𝑛], as follows. It queries the discrete logarithm oracle DL𝑔
on 𝜉2, . . . , 𝜉𝑛 and gets (𝑧2, . . . , 𝑧𝑛). It samples ℓ ← Z𝑝 uniformly

at random and publishes 𝑔 = 𝑔ℓ . It generates the public-secret

key pairs of parties honestly. It chooses the polynomial 𝑞(𝑋) =
𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] uniformly at random and lets 𝑃 (𝑋) =
𝛼 +𝑞(𝑋) such that 𝑔𝛼 = 𝜉1,1. In particular, it is 𝛼 = 𝑧1 and A3 knows
the coefficients 𝛼𝑖 for 𝑖 ∈ [𝑡] (since it chose them uniformly at

random). Commitments 𝐶𝑖 = 𝑔
𝑃 (𝑖)

are computed as 𝐶𝑖 = 𝜉1,1𝑔
𝑞 (𝑖)

and returned. Encrypted shares 𝑌𝑖 = pk𝑃 (𝑖)
𝑖

are computed as 𝑌𝑖 =

(ℎ𝑃 (𝑖))𝑥𝑖 where ℎ𝑃 (𝑖) = 𝜉1,2ℎ
𝑞 (𝑖)

and returned. The NIZK proof

𝜋 is generated via an HVZK simulation and returned. Random

oracle queries 𝑚𝑖 are answered honestly by sampling 𝑟𝑖 ← Z𝑝
and returning 𝐻 [𝑚𝑖] = 𝑟𝑖 . Transcript oracle queries for 𝑘 > 1

are answered honestly by sampling a polynomial 𝑓𝑘 ← Z𝑝 [𝑋] of
degree 𝑡 uniformly at random and running the distribution phase

on it. Corruption queries are answered by returning the secret key

of the corresponding party. It is not hard to see that A3’s simulation

of G1 is perfect.

Suppose that A3 wins G1 and that event 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3 happens.
The equation defining event 𝐸1 is given by

𝛼 + 𝑎 +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐𝑖/𝑐′ = 𝑏 +
𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑢𝑖 .

The knowledge that (𝑐1, . . . , 𝑐𝑛) ∈ ker(𝑉) given by event 𝐸2 reduces
this equation to

𝛼 + 𝑎 = 𝑏 +
𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑢𝑖 .

With the same notation 𝑃 (𝑋) = 𝛼 + 𝑞(𝑋) as above, this yields

𝛼 + 𝑎 = 𝑏 +
𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑞(𝑖)𝑢𝑖 + 𝛼
𝑛∑︁
𝑖=1

𝑥𝑖𝑢𝑖 . (q)

With the condition that event ¬𝐸3 happens, equation (q) is a non-
trivial linear equation in 𝛼 and thus yields

𝛼 =

(
𝑏 − 𝑎 +

𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑞(𝑖)𝑢𝑖

) (
1 −

𝑛∑︁
𝑖=1

𝑥𝑖𝑢𝑖

)−1
,

since the second factor is non-zero. As a result, A3 can efficiently

compute 𝛼 = 𝑧1 and thus solve the COMDL instance with 𝑛 − 1

oracle queries. Overall, we obtain

Pr[𝑛-COMDLA3 = 1] = Pr[GA
1
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3] .

The bound on the running time of algorithm A3 is obvious.
Algorithm A4 (𝜉, par): Algorithm A4 works on input 𝜉𝑖 = (𝑔𝑧𝑖 , ℎ𝑧𝑖),
𝑖 ∈ [𝑛], as follows. It samples ℓ ← Z𝑝 uniformly at random and

publishes 𝑔 = 𝑔ℓ . It generates the polynomial 𝑃 (𝑋) ∈ Z𝑝 [𝑋] hon-
estly by sampling 𝛼𝑖 ← Z𝑝 for all 𝑖 ∈ J𝑡K uniformly at random.

It chooses party 𝑃 𝑗 ’s public key pk 𝑗 as pk 𝑗 = 𝜉 𝑗,2 for all 𝑗 ∈ [𝑛].
In particular, it is 𝑥 𝑗 = sk 𝑗 = 𝑧 𝑗 for all 𝑗 ∈ [𝑛]. Commitments 𝐶𝑖 ,

encrypted shares 𝑌𝑖 , and NIZK proof 𝜋 are computed honestly and

returned (which is possible, since the polynomial 𝑃 (𝑋) is completely

known to A4). Random oracle queries𝑚𝑖 are answered honestly

by sampling 𝑟𝑖 ← Z𝑝 and returning 𝐻 [𝑚𝑖] = 𝑟𝑖 . Transcript oracle
queries for 𝑘 > 1 are answered honestly by sampling a polynomial

𝑓𝑘 ← Z𝑝 [𝑋] of degree 𝑡 uniformly at random and running the

distribution phase on it. Corruption queries are answered with the

help of the discrete logarithm oracle DL𝑔 . A corruption query on

party 𝑃 𝑗 is answered by computing DL𝑔 (pk 𝑗) and returning the

secret key sk 𝑗 . It is easy to see that A4’s simulation of G1 is perfect.

Suppose that A4 wins G1 and that event 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ ¬𝐸4 hap-
pens. In particular, event ¬𝐸4 implies that there is an index 𝑖 ∈ H
such that 𝑢𝑖 ≠ 0. Given the equation 1 = 𝑥1𝑢1 + . . . + 𝑥𝑛𝑢𝑛 (♣)

10

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

defined by 𝐸3, algorithm A4 proceeds as follows. It queries the dis-
crete logarithm oracle DL𝑔 on 𝜉𝑖 for all 𝑖 ∈ H \ {𝑖} and obtains

𝑥𝑖 for all 𝑖 ∈ H \ {𝑖}. Therefore, A4 has knowledge of 𝑥𝑖 for all

𝑖 ∈ H \ {𝑖} ∪ C = P \ {𝑖} and computes the remaining value 𝑥𝑖 by

the above equation (♣). As a result, it solves the COMDL instance

with 𝑛 − 1 oracle queries. Overall, we obtain

Pr[𝑛-COMDLA4 = 1] = Pr[GA
1
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ ¬𝐸4] .

The bound on the running time of algorithm A4 is clear.
Algorithm A5 (𝜉, par): Algorithm A5 works on input 𝜉𝑖 = (𝑔𝑧𝑖 , ℎ𝑧𝑖),
𝑖 ∈ [𝑛], as follows. The simulation of the game G1 is identical

to that of A2; in particular A5 chooses the polynomial 𝑃 (𝑋) =

𝛼0 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡
such that 𝑔𝛼𝑖 = 𝜉𝑖+1,1 for all 𝑖 ∈ J𝑡K, and thus

it is 𝛼𝑖 = 𝑧𝑖+1 for all 𝑖 ∈ J𝑡K. Again, A5’s simulation of G1 is perfect.

Suppose that A5 wins G and that event 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ 𝐸4 happens.
With the same notation 𝑃 (𝑋) = 𝛼 + 𝑞(𝑋) as before, events 𝐸1 to 𝐸4
yield the identities (note that 𝑢𝑖 = 0 for all 𝑖 ∈ H by 𝐸4)

𝑎 = 𝑏 +
𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
∑︁
𝑖∈C

𝑥𝑖𝑞(𝑖)𝑢𝑖 , 1 =
∑︁
𝑖∈C

𝑥𝑖𝑢𝑖 . (★)

The latter implies that there is an index 𝑗 ∈ C such that 𝑥 𝑗𝑢 𝑗 ≠ 0.

The first equation in the above identity (★) is then equivalent to

𝑞(𝑗) = − 1

𝑥 𝑗𝑢 𝑗
· ©­«𝑏 − 𝑎 +

𝑛∑︁
𝑖=1

𝑥𝑖 𝑓𝑖 +
∑︁

𝑖∈C\{ 𝑗 }
𝑥𝑖𝑞(𝑖)𝑢𝑖ª®¬ .

Algorithm A5 proceeds as follows. It queries the discrete logarithm
DL𝑔 on 𝜉1, 𝜉𝑡+2, . . . , 𝜉𝑛 and 𝑔𝑞 (𝑖) for all 𝑖 ∈ C \ { 𝑗}. Note that since
𝑔𝑃 (𝑋) = 𝑔𝛼0 · 𝑔𝑞 (𝑋) = 𝜉1 · 𝑔𝑞 (𝑋) , algorithm A5 can compute (and

hence query) 𝑔𝑞 (𝑖) for any 𝑖 ∈ Z𝑝 . W.l.o.g. we may assume that

|C| = 𝑡 (otherwise, A5 simply simulates, for itself, 𝑡 − |C| corruption
queries for random parties fromH). As a result, A5 can compute

𝑞(𝑗) from the above identity and has finally knowledge of 𝑡+1 points
in the range of [𝑛] on the polynomial 𝑞 of degree 𝑡 . In particular,

A5 knows the coefficients of 𝑞, i.e. 𝛼1 = 𝑧2, . . . , 𝛼𝑡 = 𝑧𝑡+1. From
previous oracle queries it knows 𝑧1, 𝑧𝑡+2, . . . , 𝑧𝑛 and thus solves the

COMDL instance with 1 + (𝑛 − 𝑡 − 1) + (𝑡 − 1) = 𝑛 − 1 queries to
DL𝑔 . Overall, we obtain

Pr[𝑛-COMDLA5 = 1] = Pr[GA
1
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ 𝐸4] .

The bound on the running time of algorithm A5 is obvious. □

To end the proof, consider algorithm B playing in 𝑛-COMDL
as follows: B samples 𝑖∗ ← [5] and then internally emulates A𝑖∗ .
Clearly, B is an algebraic algorithm running in time at most 𝑇 (the

running time of A𝑖 , 1 ≤ 𝑖 ≤ 5). An application of the law of total

probability yields

Pr[𝑛-COMDLB = 1] = 1

5

5∑︁
𝑖=1

Pr[𝑛-COMDLA𝑖 = 1]

≥ 1

5

(
1 − 1

𝑝

)
· Pr[GA

1
= 1]

≥ 1

6

· Pr[GA
1
= 1] ≥ 1

6

(
𝜀′ − 𝜀𝑠 −

𝑞ℎ

𝑝

)
,

where the last equality comes from the soundness error of the NIZK

proof of knowledge of discrete logarithm output by the adversary,

one try for each random oracle query. Finally, in Appendix E.1 we

elaborate on the simplifications made at the beginning of the proof,

which completes our analysis. □

We conclude with a theorem on the aggregated unpredictability

of SPURT’s APVSS scheme. The proofmostly follows the lines of the

above one with some modifications. For this, we observe that there

are only two differences between SPURT’s and OptRand’s APVSS.

(1) The former assumes an additional generator
ˆℎ ∈ G2 (resulting

in a total of four generators 𝑔,𝑔 ∈ G1, ℎ, ˆℎ ∈ G2) whose purpose
being solely to help their security analysis, which is a reduction

from the decisional bilinear Diffie-Hellman (DBDH) problem. (2)

The NIZK proof 𝜋 = (𝑐, 𝑟) of knowledge of 𝛼 = 𝑓 (0) is replaced
by 𝑛 independently generated knowledge-sound NIZK proofs 𝜋𝑖 =

{(𝑐𝑖 , 𝑟𝑖)} for 𝑖 ∈ [𝑛] of discrete logarithm equality of commitment

𝐶𝑖 and encrypted share 𝑌𝑖 (thus obviating the need to compute 𝑛

pairings for this task). Here, a challenge 𝑐𝑖 , 𝑖 ∈ [𝑛], is computed as

the cryptographic hash H(𝐶𝑖 , 𝑔𝑟𝑖𝐶𝑐𝑖𝑖 , 𝑌𝑖 , ℎ
𝑟𝑖𝑌

𝑐𝑖
𝑖
) defined by the non-

interactive Chaum-Pedersen Σ-protocol. For a proof and a formal

description of their scheme, we refer to Appendix E.

Theorem 3.7. If 𝑛-COMDL is (𝜀,𝑇)-hard in the AGM and DS is
(𝜀𝑠 ,𝑇𝑠 , 𝑞𝑠)-secure, then SPURT’s APVSSDS is (𝜀′,𝑇 ′, 𝑡, 𝑞𝑘 , 𝑞ℎ)-aggre-
gated unpredictable in the AGM & ROM, where

𝜀 ≥ 𝜀
′ − 𝜀𝑠
6

− 𝑞ℎ
6𝑝
, 𝑇 ≤ 𝑇 ′ +𝑇𝑠 + O(𝑛2) .

4 APPLICATION TO STATE-OF-THE-ART
RANDOMNESS BEACONS

In this chapter, we discuss the adaptive security of the state-of-

the-art randomness beacon protocols in their respective network

models: OptRand [15] in the synchronous network model, and

SPURT [34] in the partially synchronous network model. In Ap-

pendix B, we provide a detailed discussion (including a comparison

table) on existing work of randomness beacons. We begin by for-

mally defining a randomness beacon protocol.

Randomness Beacon. A randomness beacon is a distributed pro-

tocol that allows a system of 𝑛 parties to generate a sequence of

unpredictable and unbiased random values, one for each epoch.

Each party 𝑃𝑖 has a local log that is defined as a write-once ar-

ray Σ𝑖 = (Σ𝑖 [1], Σ𝑖 [2], . . .) with Σ𝑖 [ℓ] being its beacon output at

epoch ℓ ≥ 1. Initially, each value is set to ⊥. We say that party 𝑃𝑖
outputs a beacon value in epoch ℓ if it writes a value on Σ𝑖 [ℓ]. A
secure randomness beacon has to satisfy the following properties:

consistency, availability, bias-resistance, and 𝑑-unpredictability.

Definition 4.1 (𝑑-Secure Randomness Beacon). LetRB be an epoch-

based protocol executed by parties 𝑃1, . . . , 𝑃𝑛 . We define the follow-

ing security properties for RB:
• Consistency. RB is (𝑡, 𝐿)-consistent if the following holds

whenever at most 𝑡 parties are corrupted: if an honest party

outputs a value 𝜎ℓ ∈ {0, 1}𝜆 in epoch ℓ ∈ [𝐿], then all

honest parties output 𝜎ℓ in epoch ℓ .

• Availability. RB is (𝑡, 𝐿)-available if the following holds

whenever at most 𝑡 parties are corrupted: for each ℓ ∈ [𝐿],
every honest party outputs a value 𝜎ℓ ∈ {0, 1}𝜆 in epoch ℓ .

11

Renas Bacho & Julian Loss

• Bias-Resistance. RB is (𝜀,𝑇 , 𝑡, 𝐿)-bias-resistant if it is (𝑡, 𝐿)-
available, (𝑡, 𝐿)-consistent, and the following holds for all

algorithms A,D s.t. A corrupts at most 𝑡 parties and both A
and D run in time at most𝑇 . Denote by ΣA,𝐿 the probability

distribution induced by the outputs of an honest party in an

execution of RB until epoch 𝐿 with A as adversary. Then��
Pr

𝜎←ΣA,𝐿
[D(𝜎) = 1] − Pr

𝑢←𝑈𝐿

[D(𝑢) = 1]
�� ≤ 𝜀,

where𝑈𝐿 denotes the uniform distribution over the 𝐿-times

Cartesian product of {0, 1}𝜆 with itself.

• 𝑑-Unpredictability. RB is (𝜀,𝑇 , 𝑡, 𝐿, 𝑞ℎ, 𝑑)-unpredictable if
it is (𝑡, 𝐿)-available, (𝑡, 𝐿)-consistent, and for all ℓ ∈ [𝐿]
and algorithms A that run in time at most 𝑇 and make at

most 𝑞ℎ random oracle queries, the following experiment

outputs 1 with probabillity at most 𝜀 :

– Offline Phase. For all 𝑖 ∈ [𝑛], run Keys on input (par, 𝑖)
to generate keys (pk𝑖 , sk𝑖) ← Keys(par, 𝑖). On input

par and {pk𝑖 }𝑖∈[𝑛] , A returns an index set C ⊂ [𝑛] of
initially corrupted parties along with updated public

keys { ˆpk 𝑗 } 𝑗∈C . Set pk 𝑗 := ˆpk 𝑗 for all 𝑗 ∈ C. Initiate
an execution of RB with A controlling parties in C.

– RandomOracle Queries.At any point of the experiment,

A gets access to an oracle that answers queries of the

following type: When A submits a query𝑚, check if

𝐻 [𝑚] = ⊥. If so, set 𝐻 [𝑚] ← {0, 1}𝜆 . Return 𝐻 [𝑚].
– Online Phase. Run RB with A. When A outputs a value

(𝜎′𝑒 , 𝑒) for an 𝑒 > ℓ , the experiment ends with output 0

in case there is an honest party that has output a value

𝜎ℓ+1 for epoch ℓ + 1. Continue the execution of RB for

another 𝑒 − ℓ epochs.
– Corruption Queries. During the online phase, A may

corrupt a party 𝑃𝑖 by submitting an index 𝑖 ∈ [𝑛] \ C.
In this case, return the internal state of 𝑃𝑖 and set

C := C ∪ {𝑖}. Henceforth, A controls 𝑃𝑖 .

– Output Determination. Return 1 if |C| ≤ 𝑡 , 𝑒 ≥ ℓ + 𝑑 ,
𝐿 ≥ 𝑒 , and 𝜎′𝑒 = 𝜎𝑒 . Otherwise, return 0.

We say that RB is a (𝜀,𝑇 , 𝑡, 𝐿, 𝑞ℎ, 𝑑)-secure randomness beacon pro-

tocol if it is (𝜀,𝑇 , 𝑡, 𝐿)-bias-resistant, (𝜀,𝑇 , 𝑡, 𝐿, 𝑞ℎ, 𝑑)-unpredictable,
(𝑡, 𝐿)-available, and (𝑡, 𝐿)-consistent.

Discussion. We briefly elaborate on the security notions defined

above. Consistency and availability guarantee that each honest

party outputs the same value 𝜎𝑒 ∈ {0, 1}𝜆 in each epoch 𝑒 ≥ 1. Bias-

resistance guarantees that the beacon outputs are indistinguishable

from uniformly random numbers. This property ensures that the

adversary has no power in biasing the beacon output, even when

controlling up to 𝑡 parties in the system. On the other hand, this

notion does not prohibit the adversary from learning the beacon

output some epochs ahead of the honest parties. That is ensured

by the notion of 𝑑-unpredictability, which states that the adversary

does not learn the beacon output 𝑑 epochs before the honest parties.

Conversely, an adversary could predict the beacon output some

epochs ahead of the honest parties, e.g. by corrupting the next 𝑡

leaders whose previously committed values determine the next 𝑡

beacon outputs as in GRandPiper [16] or HydRand [70], without

having the power to bias it. In our notions, we introduce an epoch

bound 𝐿 upon which the randomness beacon protocol can run.

In Appendix C.2, we introduce the notion of a weakly secure
randomness beacon to capture the properties of SPURT. Since the

construction of SPURT allows parties to output a bot symbol ⊥RB
whenever the leader of an epoch does not behave correctly, the

protocol does not achieve full availability. Still, every 𝑛 epochs the

randomness beacon outputs at least 𝑛 − 𝑡 proper non-⊥RB values

and thus has a form of weak availability. We adapt the other security

notions of a randomness beacon accordingly.

4.1 OptRand’s and SPURT’s Beacon Design
We give a high-level description of the randomness beacons of inter-

est, OptRand and SPURT. For more detailed descriptions, we refer

the reader to Appendix F or their papers [15, 34]. Both protocols are

built upon (respective) leader-based state machine replication (SMR)
protocols. In leader-based SMR, parties run a protocol to agree on

a public ledger. The protocol proceeds through epochs, where each
epoch 𝑒 has a designated leader 𝐿𝑒 responsible for choosing the

value to agree on for that epoch. In our setting, 𝐿𝑒 will be instructed

to gather and aggregate PVSS transcripts that other parties send to

it at the beginning of epoch 𝑒 .

The protocol rotates through leaders in round-robin fashion (or

using a randomized scheduling) so that even a malicious leader

cannot stall progress for more than one round. Whenever 𝐿𝑒 is

honest, parties are guaranteed to agree on a correct value for epoch

𝑒 (where correctness here refers to that of the aggregate transcript

𝐿𝑒 proposes). We stress that the details of these consensus protocols

are immaterial for the ensuing discussion. However, it is impor-

tant to note that while both OptRand and SPURT achieve only

static security for their beacon constructions, their underlying SMR

protocols are adaptively secure. We elaborate more on this below.

OptRand. The protocol employs their APVSS scheme and an op-

timistically responsive extension of RandPiper’s adaptively secure

leader-based SMR [16]. This gives a communication complexity of

O(𝑛ℓ + 𝜆𝑛2) bits per consensus decision on a block of size ℓ bits.

In each epoch 𝑒 ≥ 1, the leader 𝐿𝑒 first collects 𝑡 + 1 valid PVSS

transcripts from other parties, aggregates them, and then puts the

aggregate on the ledger. If 𝐿𝑒 does not put anything on the ledger

or the aggregate is invalid, parties blacklist 𝐿𝑒 from future leader

elections. Apart from this policy, parties adhere to a round-robin

leader election. When the same party is elected as a leader 𝐿𝑒′ in

epoch 𝑒′ > 𝑒 + 𝑡 the next time, parties take its previously published

(valid) aggregate and reconstruct the secret 𝑆𝑒 . The beacon output

𝑂𝑒′ for epoch 𝑒
′
is computed as hash 𝑂𝑒′ = H(𝑆𝑒). Finally, to en-

sure availability the first time a party is elected as the leader, the

protocol relies on a setup where parties start with agreed-upon

buffersB(𝑃𝑖) for 𝑖 ∈ [𝑛] that contain random PVSS transcripts each.

Ignoring the pre-processing phase for buffers, OptRand outputs a

randomness beacon value with a communication cost of O(𝜆𝑛2)
bits and optimal resilience 𝑡 < 𝑛/2 in the synchronous setting.

SPURT. The protocol employs their APVSS scheme and a leader-

based SMR protocol based on HotStuff [78]. Adaptive security of

this SMR protocol follows directly from the adaptive security of

HotStuff [63, 64, 78]. Furthermore, their SMR has a communication

complexity of O(ℓ𝑛2) bits per consensus decision on a block of size

ℓ bits. In each epoch 𝑒 ≥ 1, the leader 𝐿𝑒 collects 𝑡 + 1 valid PVSS

12

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

transcripts from other parties, aggregates them and multicasts the

aggregate. Additionally, 𝐿𝑒 distributes other parts of the collection

of 𝑡 + 1 transcripts among the parties via the private channels such

that each non-leader party checks a disjoint part of the aggregation

such that any subset of 𝑡 + 1 honest parties collectively checks the

entire aggregation. For efficiency reasons, the SMR is only used for

the hash of the aggregate. Again, parties adhere to a round-robin

leader election. However, SPURT does not use a blacklisting strategy

and a pre-processing phase for buffers and thus does not guarantee

availability. When the same party is elected as a leader 𝐿𝑒′ in epoch

𝑒′ = 𝑒 + 𝑛 the next time, parties take its previously agreed-upon

aggregate and reconstruct the secret 𝑆𝑒 (in case the leader did not

behave correctly, parties do not output a beacon value for that

epoch). The randomness beacon value 𝑂𝑒′ is computed as 𝑒 (𝑆𝑒 , ℎ).
Spurt outputs a beacon with a communication cost of O(𝜆𝑛2) bits
and optimal resilience 𝑡 < 𝑛/3 in the partially synchronous setting.

4.2 Security Analysis of OptRand and SPURT
We prove that the state-of-the-art randomness beacons OptRand

and SPURT are indeed adaptively secure. In their respective papers,

the authors only provide a security analysis against a much weaker

static adversary. For this, we employ our results from the previous

chapter. For our analysis, we consider the derived protocol SPURT+

which results from SPURT by hashing its final output (OptRand

does hash the reconstructed secret at the end anyway). This is

necessary, since our aggregated unpredictability notion allows the

adversary to obtain partial information about the secret. Thus, by

hashing the result, we obtain a truly random beacon output (in the

random oracle model, which both protocols assume anyway). We

provide a proof of the following theorem in Appendix F.1.

Theorem 4.2. If the underlying APVSSDS is (𝜀,𝑇 , 𝑡, 𝑞𝑘 , 𝑞ℎ)-aggre-
gated unpredictable in the AGM & ROM, then OptRand (SPURT+) is
an (𝜀′,𝑇 ′, 𝑡, 𝐿, 𝑞′

ℎ
, 1)-(weakly) secure randomness beacon protocol in

the AGM & ROM, where

𝜀 ≥ 𝜀
′

𝐿
−
𝑞′
ℎ

𝑝
, 𝑇 ≤ 𝑇 ′ + O(𝐿𝑛2).

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) – 507237585, and by the European

Union, ERC-2023-STG, Project ID: 101116713. Views and opinions

expressed are however those of the author(s) only and do not nec-

essarily reflect those of the European Union. Neither the European

Union nor the granting authority can be held responsible for them.

REFERENCES
[1] 2020. Drand - a distributed randomness beacon daemon,. (2020). https://github.

com/drand/drand

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2022. Bingo: Adaptively Secure Packed Asynchronous Verifiable Secret

Sharing and Asynchronous Distributed Key Generation. Cryptology ePrint

Archive, Report 2022/1759. (2022). https://eprint.iacr.org/2022/1759.

[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Reaching Consensus for Asynchronous Distributed

Key Generation. CoRR abs/2102.09041 (2021). arXiv:2102.09041 https://arxiv.org/

abs/2102.09041

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2018. Dfinity

Consensus, Explored. Cryptology ePrint Archive, Report 2018/1153. (2018).

https://eprint.iacr.org/2018/1153.

[5] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. 2005. Untraceable

RFID Tags Via Insubvertible Encryption. In ACM CCS 2005: 12th Conference
on Computer and Communications Security, Vijayalakshmi Atluri, Catherine

Meadows, and Ari Juels (Eds.). ACM Press, Alexandria, Virginia, USA, 92–101.

https://doi.org/10.1145/1102120.1102134

[6] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. 2018. Winning the

Caucus Race: Continuous Leader Election via Public Randomness. (2018).

arXiv:cs.CR/1801.07965

[7] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Threshold

BLS Signature Scheme. In ACM CCS 2022: 29th Conference on Computer and
Communications Security, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine

Shi (Eds.). ACM Press, Los Angeles, CA, USA, 193–207. https://doi.org/10.1145/

3548606.3560656

[8] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. 2021. The One-More

Discrete Logarithm Assumption in the Generic Group Model. In Advances in
Cryptology – ASIACRYPT 2021, Part IV (Lecture Notes in Computer Science), Mehdi

Tibouchi and Huaxiong Wang (Eds.), Vol. 13093. Springer, Heidelberg, Germany,

Singapore, 587–617. https://doi.org/10.1007/978-3-030-92068-5_20

[9] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. 2020. CRAFT: Composable Randomness and Almost Fairness from

Time. Cryptology ePrint Archive, Report 2020/784. (2020). https://eprint.iacr.

org/2020/784.

[10] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. 2004. Security

Proofs for Identity-Based Identification and Signature Schemes. In Advances in
Cryptology – EUROCRYPT 2004 (Lecture Notes in Computer Science), Christian
Cachin and Jan Camenisch (Eds.), Vol. 3027. Springer, Heidelberg, Germany,

Interlaken, Switzerland, 268–286. https://doi.org/10.1007/978-3-540-24676-3_17

[11] Mihir Bellare, Chanathip Namprempre, David Pointcheval, andMichael Semanko.

2003. The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind

Signature Scheme. Journal of Cryptology 16, 3 (June 2003), 185–215. https:

//doi.org/10.1007/s00145-002-0120-1

[12] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-

Key model and a general forking lemma. In ACM CCS 2006: 13th Conference
on Computer and Communications Security, Ari Juels, Rebecca N. Wright, and

Sabrina De Capitani di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA,

390–399. https://doi.org/10.1145/1180405.1180453

[13] Mihir Bellare and Adriana Palacio. 2002. GQ and Schnorr Identification Schemes:

Proofs of Security against Impersonation under Active and Concurrent Attacks.

In Advances in Cryptology – CRYPTO 2002 (Lecture Notes in Computer Science),
Moti Yung (Ed.), Vol. 2442. Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 162–177. https://doi.org/10.1007/3-540-45708-9_11

[14] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. In ACM CCS 93: 1st Conference on
Computer and Communications Security, Dorothy E. Denning, Raymond Pyle,

Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM Press, Fairfax,

Virginia, USA, 62–73. https://doi.org/10.1145/168588.168596

[15] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2022. Op-

tRand: Optimistically responsive distributed random beacons. Cryptology

ePrint Archive, Paper 2022/193. (2022). https://doi.org/10.14722/ndss.2023.24832

https://eprint.iacr.org/2022/193.

[16] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. RandPiper - Reconfiguration-Friendly Random Beacons with Quadratic

Communication. In ACM CCS 2021: 28th Conference on Computer and Communi-
cations Security, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event,

Republic of Korea, 3502–3524. https://doi.org/10.1145/3460120.3484574

[17] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind Sig-

natures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography
(Lecture Notes in Computer Science), Yvo Desmedt (Ed.), Vol. 2567. Springer, Heidel-

berg, Germany, Miami, FL, USA, 31–46. https://doi.org/10.1007/3-540-36288-6_3

[18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable

Delay Functions. In Advances in Cryptology – CRYPTO 2018, Part I (Lecture
Notes in Computer Science), Hovav Shacham and Alexandra Boldyreva (Eds.),

Vol. 10991. Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 757–788.

https://doi.org/10.1007/978-3-319-96884-1_25

[19] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In Advances in Cryptology – ASIACRYPT 2001 (Lecture Notes in
Computer Science), Colin Boyd (Ed.), Vol. 2248. Springer, Heidelberg, Germany,

Gold Coast, Australia, 514–532. https://doi.org/10.1007/3-540-45682-1_30

[20] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-delay

and randomness beacons in Ethereum.

[21] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptog-

raphy. Journal of Cryptology 18, 3 (July 2005), 219–246. https://doi.org/10.1007/

s00145-005-0318-0

[22] Antonio Cafure and Guillermo Matera. 2007. AN EFFECTIVE BERTINI THEO-

REM AND THE NUMBER OF RATIONAL POINTS OF A NORMAL COMPLETE

INTERSECTION OVER A FINITE FIELD. Acta Arithmetica 130 (2007), 19–35.

13

https://github.com/drand/drand
https://github.com/drand/drand
https://eprint.iacr.org/2022/1759
https://arxiv.org/abs/2102.09041
https://arxiv.org/abs/2102.09041
https://arxiv.org/abs/2102.09041
https://eprint.iacr.org/2018/1153
https://doi.org/10.1145/1102120.1102134
https://arxiv.org/abs/cs.CR/1801.07965
https://doi.org/10.1145/3548606.3560656
https://doi.org/10.1145/3548606.3560656
https://doi.org/10.1007/978-3-030-92068-5_20
https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/784
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1145/168588.168596
https://doi.org/10.14722/ndss.2023.24832
https://eprint.iacr.org/2022/193
https://doi.org/10.1145/3460120.3484574
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/s00145-005-0318-0

Renas Bacho & Julian Loss

[23] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor

Shoup, and Dominic Williams. 2021. Internet Computer Consensus. Cryptology

ePrint Archive, Report 2021/632. (2021). https://eprint.iacr.org/2021/632.

[24] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.

1999. Adaptive Security for Threshold Cryptosystems. InAdvances in Cryptology –
CRYPTO’99 (Lecture Notes in Computer Science), Michael J. Wiener (Ed.), Vol. 1666.

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 98–115. https://doi.

org/10.1007/3-540-48405-1_7

[25] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness

Attested by Public Entities. In ACNS 17: 15th International Conference on Applied
Cryptography and Network Security (Lecture Notes in Computer Science), Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.), Vol. 10355. Springer, Hei-

delberg, Germany, Kanazawa, Japan, 537–556. https://doi.org/10.1007/978-3-319-

61204-1_27

[26] Ignacio Cascudo and Bernardo David. 2020. ALBATROSS: Publicly AttestabLe

BATched Randomness Based On Secret Sharing. In Advances in Cryptology –
ASIACRYPT 2020, Part III (Lecture Notes in Computer Science), Shiho Moriai and

Huaxiong Wang (Eds.), Vol. 12493. Springer, Heidelberg, Germany, Daejeon,

South Korea, 311–341. https://doi.org/10.1007/978-3-030-64840-4_11

[27] Fabrizio Catanese. 1992. Chow varieties, Hilbert schemes, and moduli spaces of

surfaces of general type. Journal of Algebraic Geometry 1 (01 1992).

[28] David Chaum and Torben P. Pedersen. 1993. Wallet Databases with Observers.

In Advances in Cryptology – CRYPTO’92 (Lecture Notes in Computer Science),
Ernest F. Brickell (Ed.), Vol. 740. Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 89–105. https://doi.org/10.1007/3-540-48071-4_7

[29] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. 2019. Homomorphic

Encryption Random Beacon. Cryptology ePrint Archive, Report 2019/1320.

(2019). https://eprint.iacr.org/2019/1320.

[30] Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. 2023. Bicorn:

An optimistically efficient distributed randomness beacon. Cryptology ePrint

Archive, Report 2023/221. (2023). https://eprint.iacr.org/2023/221.

[31] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Verifi-

able secret sharing and achieving simultaneity in the presence of faults. 26th
Annual Symposium on Foundations of Computer Science (sfcs 1985) (1985), 383–
395.

[32] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults

(Extended Abstract). In 26th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Portland, Oregon, 383–395. https:

//doi.org/10.1109/SFCS.1985.64

[33] Elizabeth Crites, Chelsea Komlo, and Mary Maller. 2023. Fully Adaptive Schnorr

Threshold Signatures. Cryptology ePrint Archive, Paper 2023/445. (2023). https:

//eprint.iacr.org/2023/445 https://eprint.iacr.org/2023/445.

[34] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt:

Scalable Distributed Randomness Beacon with Transparent Setup. In 2022 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco,

CA, USA, 2502–2517. https://doi.org/10.1109/SP46214.2022.9833580

[35] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In Advances in Cryptology – EUROCRYPT 2018, Part II (Lecture
Notes in Computer Science), Jesper Buus Nielsen and Vincent Rijmen (Eds.),

Vol. 10821. Springer, Heidelberg, Germany, Tel Aviv, Israel, 66–98. https:

//doi.org/10.1007/978-3-319-78375-8_3

[36] Pierre Deligne. 1974. La conjecture de Weil : I. Publications Mathématiques de
l’IHÉS 43 (1974), 273–307. http://eudml.org/doc/103930

[37] Yvo Desmedt and Yair Frankel. 1990. Threshold Cryptosystems. In Advances
in Cryptology – CRYPTO’89 (Lecture Notes in Computer Science), Gilles Brassard
(Ed.), Vol. 435. Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 307–315.

https://doi.org/10.1007/0-387-34805-0_28

[38] Justin Drake. 2018. Minimal VDF randomness beacon. (2018). https://ethresear.

ch/t/minimal-vdf-randomness-beacon/3566

[39] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gre-

gory Neven, and Igors Stepanovs. 2019. On the Security of Two-Round Multi-

Signatures. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, San Francisco, CA, USA, 1084–1101. https://doi.org/10.1109/SP.

2019.00050

[40] Paul Feldman. 1987. A Practical Scheme for Non-interactive Verifiable Secret

Sharing. In 28th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Los Angeles, CA, USA, 427–437. https://doi.org/10.1109/

SFCS.1987.4

[41] Marc Fischlin and Nils Fleischhacker. 2013. Limitations of the Meta-reduction

Technique: The Case of Schnorr Signatures. In Advances in Cryptology – EURO-
CRYPT 2013 (Lecture Notes in Computer Science), Thomas Johansson and Phong Q.

Nguyen (Eds.), Vol. 7881. Springer, Heidelberg, Germany, Athens, Greece, 444–

460. https://doi.org/10.1007/978-3-642-38348-9_27

[42] Nils Fleischhacker, Tibor Jager, and Dominique Schröder. 2014. On Tight Security

Proofs for Schnorr Signatures. In Advances in Cryptology – ASIACRYPT 2014,
Part I (Lecture Notes in Computer Science), Palash Sarkar and Tetsu Iwata (Eds.),

Vol. 8873. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C., 512–531.

https://doi.org/10.1007/978-3-662-45611-8_27

[43] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The Algebraic Group Model

and its Applications. In Advances in Cryptology – CRYPTO 2018, Part II (Lecture
Notes in Computer Science), Hovav Shacham and Alexandra Boldyreva (Eds.),

Vol. 10992. Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 33–62.

https://doi.org/10.1007/978-3-319-96881-0_2

[44] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. 2020. Blind Schnorr

Signatures and Signed ElGamal Encryption in the Algebraic Group Model. In

Advances in Cryptology – EUROCRYPT 2020, Part II (Lecture Notes in Computer
Science), Anne Canteaut and Yuval Ishai (Eds.), Vol. 12106. Springer, Heidelberg,

Germany, Zagreb, Croatia, 63–95. https://doi.org/10.1007/978-3-030-45724-2_3

[45] William Fulton. 1998. Intersection Theory. Springer New York, NY XIII (June

1998), 470.

[46] Andreas Gathmann. 2021/2022. Algebraic Geometry (Class Notes). (2021/2022).

https://agag-gathmann.math.rptu.de/class/alggeom-2021/alggeom-2021.pdf

[47] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. In Advances
in Cryptology – EUROCRYPT’99 (Lecture Notes in Computer Science), Jacques
Stern (Ed.), Vol. 1592. Springer, Heidelberg, Germany, Prague, Czech Republic,

295–310. https://doi.org/10.1007/3-540-48910-X_21

[48] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology 20, 1 (Jan. 2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

[49] Rosario Gennaro, Darren Leigh, R. Sundaram, and William S. Yerazunis. 2004.

Batching Schnorr Identification Scheme with Applications to Privacy-Preserving

Authorization and Low-Bandwidth Communication Devices. In Advances in
Cryptology – ASIACRYPT 2004 (Lecture Notes in Computer Science), Pil Joong
Lee (Ed.), Vol. 3329. Springer, Heidelberg, Germany, Jeju Island, Korea, 276–292.

https://doi.org/10.1007/978-3-540-30539-2_20

[50] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. Cryptology

ePrint Archive, Report 2017/454. (2017). https://eprint.iacr.org/2017/454.

[51] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures. In Advances in Cryptology – ASIACRYPT 2006
(Lecture Notes in Computer Science), Xuejia Lai and Kefei Chen (Eds.), Vol. 4284.

Springer, Heidelberg, Germany, Shanghai, China, 444–459. https://doi.org/10.

1007/11935230_29

[52] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.

Cryptology ePrint Archive, Report 2021/339. (2021). https://eprint.iacr.org/2021/

339.

[53] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and

Alin Tomescu. 2021. Aggregatable Distributed Key Generation. In Advances in
Cryptology – EUROCRYPT 2021, Part I (Lecture Notes in Computer Science), Anne
Canteaut and François-Xavier Standaert (Eds.), Vol. 12696. Springer, Heidelberg,

Germany, Zagreb, Croatia, 147–176. https://doi.org/10.1007/978-3-030-77870-5_6

[54] Runchao Han, Jiangshan Yu, and Haoyu Lin. 2020. RandChain: Decentralised

Randomness Beacon from Sequential Proof-of-Work. Cryptology ePrint Archive,

Report 2020/1033. (2020). https://eprint.iacr.org/2020/1033.

[55] Robin Hartshorne. 1977. Algebraic Geometry. Graduate Texts in Mathematics,

Vol. 52. Springer. http://www.worldcat.org/oclc/2798099

[56] Somayeh Heidarvand and Jorge L. Villar. 2009. Public Verifiability from Pairings

in Secret Sharing Schemes. In SAC 2008: 15th Annual International Workshop on
Selected Areas in Cryptography (Lecture Notes in Computer Science), Roberto Maria

Avanzi, Liam Keliher, and Francesco Sica (Eds.), Vol. 5381. Springer, Heidelberg,

Germany, Sackville, New Brunswick, Canada, 294–308. https://doi.org/10.1007/

978-3-642-04159-4_19

[57] Stanislaw Jarecki and Anna Lysyanskaya. 2000. Adaptively Secure Threshold

Cryptography: Introducing Concurrency, Removing Erasures. In Advances in
Cryptology – EUROCRYPT 2000 (Lecture Notes in Computer Science), Bart Preneel
(Ed.), Vol. 1807. Springer, Heidelberg, Germany, Bruges, Belgium, 221–242. https:

//doi.org/10.1007/3-540-45539-6_16

[58] Mahabir Prasad Jhanwar. 2011. A Practical (Non-interactive) Publicly Verifiable

Secret Sharing Scheme. In Information Security Practice and Experience (ISPEC),
Vol. 6672. Springer, 273–287.

[59] Mahabir Prasad Jhanwar, Ayineedi Venkateswarlu, and Reihaneh Safavi-Naini.

2014. Paillier-based publicly verifiable (non-interactive) secret sharing. Designs,
Codes and Cryptography, Volume 73, 2 (2014), 529–546.

[60] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology – CRYPTO 2017, Part I (Lecture Notes in Computer Science), Jonathan
Katz and Hovav Shacham (Eds.), Vol. 10401. Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[61] Rudolf Lidl and Harald Niederreiter. 1996. Finite fields and their applications.

[62] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).

https://bitcoin.org/bitcoin.pdf

[63] Kartik Nayak. 2023. https://decentralizedthoughts.github.io/2023-01-05-player-

replaceability-II/. (2023). https://decentralizedthoughts.github.io/2023-01-05-

14

https://eprint.iacr.org/2021/632
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/3-540-48071-4_7
https://eprint.iacr.org/2019/1320
https://eprint.iacr.org/2023/221
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://eprint.iacr.org/2023/445
https://eprint.iacr.org/2023/445
https://eprint.iacr.org/2023/445
https://doi.org/10.1109/SP46214.2022.9833580
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
http://eudml.org/doc/103930
https://doi.org/10.1007/0-387-34805-0_28
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://agag-gathmann.math.rptu.de/class/alggeom-2021/alggeom-2021.pdf
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-540-30539-2_20
https://eprint.iacr.org/2017/454
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://doi.org/10.1007/978-3-030-77870-5_6
https://eprint.iacr.org/2020/1033
http://www.worldcat.org/oclc/2798099
https://doi.org/10.1007/978-3-642-04159-4_19
https://doi.org/10.1007/978-3-642-04159-4_19
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/978-3-319-63688-7_12
https://bitcoin.org/bitcoin.pdf
https://decentralizedthoughts.github.io/2023-01-05-player-replaceability-II/
https://decentralizedthoughts.github.io/2023-01-05-player-replaceability-II/

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

player-replaceability-II/

[64] Kartik Nayak. 2023. Player Replaceability - Towards Adaptive Security

and Sub-quadratic Communication Simultaneously (Part I). (2023). https:

//decentralizedthoughts.github.io/2023-01-05-player-replaceability-I/

[65] Jonas Nick, Tim Ruffing, and Yannick Seurin. 2021. MuSig2: Simple Two-Round

Schnorr Multi-signatures. In Advances in Cryptology – CRYPTO 2021, Part I
(Lecture Notes in Computer Science), Tal Malkin and Chris Peikert (Eds.), Vol. 12825.

Springer, Heidelberg, Germany, Virtual Event, 189–221. https://doi.org/10.1007/

978-3-030-84242-0_8

[66] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. InAdvances in Cryptology – EUROCRYPT’99 (Lecture Notes in
Computer Science), Jacques Stern (Ed.), Vol. 1592. Springer, Heidelberg, Germany,

Prague, Czech Republic, 223–238. https://doi.org/10.1007/3-540-48910-X_16

[67] Pascal Paillier and Damien Vergnaud. 2005. Discrete-Log-Based Signatures May

Not Be Equivalent to Discrete Log. In Advances in Cryptology – ASIACRYPT 2005
(Lecture Notes in Computer Science), Bimal K. Roy (Ed.), Vol. 3788. Springer,

Heidelberg, Germany, Chennai, India, 1–20. https://doi.org/10.1007/11593447_1

[68] Alexandre Ruiz and Jorge L. Villar. 2005. Publicly verifiable secret sharing

from paillier’s cryptosystem. In WEWoRC 2005 – Western European Workshop on
Research in Cryptology, Christopher Wulf, Stefan Lucks, and Po-Wah Yau (Eds.).

Gesellschaft für Informatik e.V., Bonn, 98–108.

[69] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and

Edgar R. Weippl. 2021. RandRunner: Distributed Randomness from Trapdoor

VDFs with Strong Uniqueness. In ISOC Network and Distributed System Security
Symposium – NDSS 2021. The Internet Society, Virtual.

[70] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. 2020.

HydRand: Efficient Continuous Distributed Randomness. In 2020 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA,

73–89. https://doi.org/10.1109/SP40000.2020.00003

[71] Berry Schoenmakers. 1999. A Simple Publicly Verifiable Secret Sharing Scheme

and Its Application to Electronic. InAdvances in Cryptology – CRYPTO’99 (Lecture
Notes in Computer Science), Michael J. Wiener (Ed.), Vol. 1666. Springer, Heidel-

berg, Germany, Santa Barbara, CA, USA, 148–164. https://doi.org/10.1007/3-540-

48405-1_10

[72] Yannick Seurin. 2012. On the Exact Security of Schnorr-Type Signatures in the

Random Oracle Model. In Advances in Cryptology – EUROCRYPT 2012 (Lecture
Notes in Computer Science), David Pointcheval and Thomas Johansson (Eds.),

Vol. 7237. Springer, Heidelberg, Germany, Cambridge, UK, 554–571. https://doi.

org/10.1007/978-3-642-29011-4_33

[73] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.

In Advances in Cryptology – EUROCRYPT’97 (Lecture Notes in Computer Science),
Walter Fumy (Ed.), Vol. 1233. Springer, Heidelberg, Germany, Konstanz, Germany,

256–266. https://doi.org/10.1007/3-540-69053-0_18

[74] Markus Stadler. 1996. Publicly Verifiable Secret Sharing. In Advances in Cryp-
tology – EUROCRYPT’96 (Lecture Notes in Computer Science), Ueli M. Mau-

rer (Ed.), Vol. 1070. Springer, Heidelberg, Germany, Saragossa, Spain, 190–199.

https://doi.org/10.1007/3-540-68339-9_17

[75] Douglas R. Stinson and Reto Strobl. 2001. Provably Secure Distributed Schnorr

Signatures and a (𝑡, 𝑛) Threshold Scheme for Implicit Certificates. In ACISP 01:
6th Australasian Conference on Information Security and Privacy (Lecture Notes
in Computer Science), Vijay Varadharajan and Yi Mu (Eds.), Vol. 2119. Springer,

Heidelberg, Germany, Sydney, NSW, Australia, 417–434. https://doi.org/10.1007/

3-540-47719-5_33

[76] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. In 2017 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, San Jose, CA, USA, 444–460. https:

//doi.org/10.1109/SP.2017.45

[77] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,

Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping

Authorities “Honest or Bust” with Decentralized Witness Cosigning. In 2016
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Jose,

CA, USA, 526–545. https://doi.org/10.1109/SP.2016.38

[78] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In 38th
ACM Symposium Annual on Principles of Distributed Computing, Peter Robin-
son and Faith Ellen (Eds.). Association for Computing Machinery, Toronto, ON,

Canada, 347–356. https://doi.org/10.1145/3293611.3331591

15

https://decentralizedthoughts.github.io/2023-01-05-player-replaceability-II/
https://decentralizedthoughts.github.io/2023-01-05-player-replaceability-I/
https://decentralizedthoughts.github.io/2023-01-05-player-replaceability-I/
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11593447_1
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1145/3293611.3331591

Renas Bacho & Julian Loss

A WARM-UP: PVSS SCHEMES & PLAIN
UNPREDICTABILITY

Publicly Verifiable Secret Sharing (PVSS). In a VSS scheme, a

dealer distributes shares of a secret among a group of parties such

that it can be reconstructed only if a threshold of these parties collab-

orate. In a PVSS scheme, any third party can verify the correctness

of the sharing, thus avoiding the need for a complaint phase as in

VSS schemes. In the following, we define a (non-interactive) PVSS

scheme.

Definition A.1 (PVSS Scheme). Let ˆG be a cyclic group of prime

order 𝑝 specified by par . A (𝑡, 𝑛)-threshold PVSS scheme over ˆG is

a tuple of algorithms PVSS = (Keys, Enc,Dec,Dist,Ver,Rec) with
the following properties:

• Keys: The randomized key generation algorithm takes as

input system parameters par and an identity index 𝑖 ∈ [𝑛].
It outputs a public key pk𝑖 and a secret key sk𝑖 .

• Enc: The randomized encryption algorithm that takes as in-

put a public key pk𝑖 and amessage𝑚. It outputs a ciphertext

𝑐 .

• Dec: The deterministic decryption algorithm takes as input

a secret key sk𝑖 and a ciphertext 𝑐 . It outputs a message𝑚

(optionally with a proof of correct decryption). We require

that for all messages𝑚,

Pr[Decsk𝑖 (Encpk𝑖 (𝑚)) =𝑚] = 1.

• Dist: The randomized secret sharing algorithm takes as input

public keys pk
1
, . . . , pk𝑛 . It outputs a vector of encrypted

shares ®𝐸 = (Encpk
1

(𝑆1), . . . , Encpk𝑛 (𝑆𝑛)) and a proof 𝜋 ,

where 𝑆1, . . . , 𝑆𝑛 are shares of a secret 𝑆 ∈ ˆG. We refer to

𝑇 := (®𝐸, 𝜋) as a PVSS transcript.
• Ver: The deterministic verification algorithm takes as input

public keys pk
1
, . . . , pk𝑛 , and a PVSS transcript 𝑇 = (®𝐸, 𝜋).

It outputs 1 (accept) or 0 (reject). In the first case we call

the transcript 𝑇 valid (relative to pk
1
, . . . , pk𝑛); otherwise

we call it invalid.
• Rec: The deterministic reconstruction algorithm takes as

input 𝑡 + 1 shares 𝑆1, . . . , 𝑆𝑡+1. It outputs a reconstructed
secret 𝑆 ∈ ˆG. In case Rec gets more than 𝑡 + 1 shares as input,
it takes the first lexicographical 𝑡 + 1.

When the parameters 𝑡, 𝑛, and ˆG are clear from the context, we

will sometimes refer to a (𝑡, 𝑛)-threshold PVSS scheme over
ˆG sim-

ply as a PVSS scheme. Next, we define correctness and verifiability

notions for a PVSS scheme:

Definition A.2 (Correctness and Verifiability). LetPVSS = (Keys,Dist,
Enc,Dec,Ver,Rec) be a (𝑡, 𝑛)-threshold PVSS scheme over

ˆG. We

define the following correctness and verifiability notions for PVSS.
• Correctness (of PVSS).We say that PVSS is correct if for all
(pk

1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par),
Pr[Ver({pk𝑖 }𝑖 ,Dist({pk𝑖 }𝑖) = 1] = 1.

• Public Verifiability (of Transcripts).We say that PVSS is pub-
licly verifiable if for all (pk

1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par)

and all (®𝐸, 𝜋) s.t. Ver({pk𝑖 }𝑖 , (®𝐸, 𝜋)) = 1, there exists a

unique 𝑆 ∈ ˆG s.t.

Rec({Decsk𝑖 (®𝐸𝑖)}𝑖∈I) = 𝑆 ∀I ⊂ [𝑛], |I | = 𝑡 + 1.

We introduce a new security notion for PVSS schemes. The no-

tion of unpredictability prohibits an adversary controlling 𝑡 parties

from learning the secret by observing a transcript. This models a

passive adversary who can observe distributions of transcripts, but

does not contribute itself to the final secret. The notion of aggre-
gated unpredictability introduced in the main body of the paper is

a non-malleability kind of property specifically for aggregatable

PVSS schemes. It prohibits an adversary controlling 𝑡 parties from

learning the secret of an aggregated transcript with at least one

honest contribution, even if the adversary is allowed to contribute

itself to the aggregate. This models an active adversary who can

contribute to the final secret itself. In the following, we define the

notion of unpredictability formally.

Definition A.3 (Unpredictability of PVSS Scheme). Let PVSS =

(Keys,Dist, Enc,Dec,Ver,Rec) be a (𝑡, 𝑛)-PVSS scheme over
ˆG. For

an algorithm A, define the unpredictability experiment PredAPVSS,𝑡
as follows:

• Offline Phase. For all 𝑖 ∈ [𝑛], run Keys on input (par, 𝑖)
to generate keys (pk𝑖 , sk𝑖) ← Keys(par, 𝑖). On input par
and {pk𝑖 }𝑖∈[𝑛] , A returns an index set C ⊂ [𝑛] of initially
corrupted parties along with updated public keys { ˆpk 𝑗 } 𝑗∈C .
Set pk 𝑗 := ˆpk 𝑗 for all 𝑗 ∈ C.

• Corruption Queries. At any point of the experiment, A may

submit an index 𝑖 ∈ [𝑛] \ C. In this case, return the secret

key sk𝑖 and update C = C ∪ {𝑖}. If A is static, it submits an
index set C′ ⊂ [𝑛] \ C at the beginning of the experiment.
Return the secret keys {sk𝑖 }𝑖∈C′ and update C := C′ ∪ C.

• Random Oracle Queries. At any point of the experiment, A
gets access to an oracle that answers queries of the follow-

ing type: When A submits a query𝑚, check if 𝐻 [𝑚] = ⊥.
If so, set 𝐻 [𝑚] ← Z∗𝑝 and return 𝐻 [𝑚]. Otherwise, return
𝐻 [𝑚].

• Challenge Phase. Run Dist on input pk
1
, . . . , pk𝑛 to obtain

the challenge transcript 𝑇 = (®𝐸, 𝜋). Run A on input 𝑇 .

• Output Determination. Let 𝑆 = Rec({Decsk𝑖 (®𝐸𝑖)}𝑖≤𝑡+1).When

A outputs an element 𝑆∗ ∈ ˆG, return 1 if |C| ≤ 𝑡 and 𝑆∗ = 𝑆 .
Otherwise, return 0.

We say that PVSS is (𝜀,𝑇 , 𝑡, 𝑞ℎ)-unpredictable if for all algorithms A
that run in time at most 𝑇 , make at most 𝑞ℎ random oracle queries,

Pr[PredAPVSS,𝑡 = 1] ≤ 𝜀. Conversely, we say that A (𝜀,𝑇 , 𝑡, 𝑞ℎ)-
breaks unpredictability of PVSS if it runs in time at most 𝑇 , makes

at most 𝑞ℎ random oracle queries, and Pr[PredAPVSS,𝑡 = 1] > 𝜀.

A.1 Security Analysis of PVSS in the AGM,
Schoenmakers’ Scheme

In this section, we give a tight security reduction from the hardness

of 𝑛-OMDL to the unpredictability of Schoenmakers’ PVSS. In the

following, letG be a cyclic group of prime order 𝑝 with independent

generators 𝑔, ℎ. We denote by DL𝑔 an oracle that on input 𝜉 = 𝑔𝑧 ∈
G returns the discrete logarithm 𝑧 of 𝜉 to base 𝑔.

16

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

The One-More Discrete Logarithm Assumption. A mathematical

hardness assumption that finds wide-ranging application in modern

cryptography is the one-more discrete logarithm (OMDL) assump-
tion [11]. It is the foundation for the security analysis of identi-

fication protocols [10, 13, 49], blind signature [43, 44] and multi-

signature schemes [12, 65], such as blind Schnorr signatures [28].

Beyond that, OMDL is also assumed for various impossibility re-

sults of certain classes of reductions [39, 41, 42, 67, 72]. Recently, it

has also found applications in the context of the adaptive security

of distributed protocols [2, 7, 33].

Definition A.4 (One-More Discrete Logarithm Problem). For an
algorithm A and 𝑛 ∈ N, define the one-more discrete logarithm

experiment 𝑛-OMDLA in G as follows:

• Offline Phase. Sample (𝑧1, . . . , 𝑧𝑛) ← Z𝑛𝑝 uniformly at ran-

dom and set 𝜉𝑖 := 𝑔
𝑧𝑖 ∈ G for all 𝑖 ∈ [𝑛].

• Online Phase. Run A on input (par, 𝜉1, . . . , 𝜉𝑛). In this phase,

A gets access to the oracle DL𝑔 .
• Output Determination. When A outputs (𝑧′

1
, . . . , 𝑧′𝑛), return

1 if (i) 𝑧′
𝑖
= 𝑧𝑖 for all 𝑖 ∈ [𝑛], and (ii) DL𝑔 was queried at

most 𝑛−1 times during the online phase. Otherwise, return

0.

We say that the one-more discrete logarithm problem of degree

𝑛 is (𝜀,𝑇)-hard if for all algorithms A running in time at most 𝑇 ,

Pr[𝑛-OMDLA = 1] ≤ 𝜀. Conversely, we say that an algorithm A
(𝜀,𝑇)-solves the one-more discrete logarithm problem of degree 𝑛

if it runs in time at most 𝑇 and Pr[𝑛-OMDLA = 1] > 𝜀.

In the following, we provide an intuition for our proof of unpre-

dictability. For this, we start with the observation that an adversary

controlling 𝑡 parties essentially has three options to successfully

predict the secret 𝑆 ∈ G. Firstly, it learns an additional (𝑡 + 1)-th
decryption key controlled by an honest party, in which case it can

derive 𝑆 from enough decryptions of secret shares. Secondly, it

breaks the underlying encryption scheme directly and thus obtains

an additional secret share. Lastly, it finds the discrete logarithm 𝑒 of

the second generator ℎ ∈ G to base 𝑔, in which case it can compute

the secret 𝑆 = ℎ𝛼 directly from the commitment 𝑔𝛼 . The key idea

of our reduction therefore is to embed the 𝑛-OMDL challenge 𝜉 in

the public keys pk
1
, . . . , pk𝑛 of parties, the polynomial 𝑓 ∈ Z𝑝 [𝑋]

chosen by the dealer, or the second generator ℎ ∈ G, a choice that
remains hidden from the adversary. In the first case, we simulate

by using the discrete logarithm oracle DL𝑔 to answer corruption

queries. In the second case, we simulate by using an honest-verifier

zero knowledge simulation in the random oracle to generate the

NIZK proofs of correctness of the sharing. In the third case, we

simulate by an honest execution of the protocol. In either case, we

solve the 𝑛-OMDL challenge 𝜉 directly from the algebraic equation

that comes from the secret prediction/forgery (with its algebraic

representation) by the adversary. Overall, our reduction is tight and

loses only a factor of 1/4. The running time of the reduction has

only a quadratic overhead.

Theorem A.5. If𝑛-OMDL is (𝜀,𝑇)-hard in the AGM, then Schoen-
makers’ PVSS is (𝜀′,𝑇 ′, 𝑡, 𝑞ℎ)-unpredictable in the AGM & ROM,
where

𝜀 ≥ 𝜀
′

4

, 𝑇 ≤ 𝑇 ′ + O(𝑛2) .

Proof. Let A be an algebraic adversary that (𝜀′,𝑇 ′, 𝑡, 𝑞ℎ)-breaks
unpredictability of PVSS. In our proof, we assume that all parties are

honest prior to the execution of PVSS. It is easy to adjust the proof

to the case where the adversary has already corrupted some parties

before the execution of the protocol. Let C ⊂ P = {𝑃1, . . . , 𝑃𝑛} be
the dynamically changing set of corrupt parties and H = P \ C
the set of honest parties. In particular, we assume that C = {} prior
to the execution of the protocol. We consider the following game

between a challenger and the adversary.

Game G: This is the real game. The challenger runs PVSS on be-

half of the honest parties and the designated dealer. In particu-

lar, it generates the system parameters (G, 𝑝, 𝑔, ℎ), where G is a

cyclic group of order 𝑝 , and 𝑔 and ℎ are two independent genera-

tors of G, and a uniformly at random chosen polynomial 𝑃 (𝑋) =
𝛼0 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] of degree 𝑡 such that ℎ𝛼 = ℎ𝑃 (0) is
the secret to be shared among all parties. Furthermore, the chal-

lenger generates the public-secret key pairs (pk𝑖 , sk𝑖) = (ℎ𝑥𝑖 , 𝑥𝑖)
of the honest parties. Whenever A decides to corrupt a party 𝑃𝑖 ,

the challenger honestly returns the internal state of that party,

which consists of 𝑃𝑖 ’s secret key 𝑥𝑖 = sk𝑖 , and sets C = C ∪ {𝑃𝑖 },
H = H\{𝑃𝑖 }. In addition, A gets full control over party 𝑃𝑖 . Random

oracle queries𝑚𝑖 are answered by sampling 𝑟𝑖 ← Z𝑝 uniformly

at random and returning 𝐻 [𝑚𝑖] = 𝑟𝑖 . The challenger broadcasts
the commitments 𝐶𝑖 = 𝑔

𝛼𝑖
for all 𝑖 ∈ J𝑡K and the encrypted shares

𝑌𝑖 = pk𝑃 (𝑖)
𝑖

for all 𝑖 ∈ [𝑛] using the public keys pk𝑖 of parties. Let
𝑋𝑖 = 𝑔

𝑃 (𝑖)
for all 𝑖 ∈ [𝑛], which can be computed by Lagrange in-

terpolation in the exponent from the commitments𝐶 𝑗 . Additionally,

the challenger broadcasts Chaum-Pedersen non-interactive zero-

knowledge (NIZK) proofs 𝜋𝑖 of knowledge of the polynomial shares

𝑃 (𝑖) for all 𝑖 ∈ [𝑛] such that 𝑋𝑖 = 𝑔
𝑃 (𝑖)

and 𝑌𝑖 = pk𝑃 (𝑖)
𝑖

. The com-

mon challenge 𝑐 for the proof is computed as the hash H : G→ Z𝑝
of all elements 𝑋𝑖 , 𝑌𝑖 , 𝑔

𝑤𝑖 , pk𝑤𝑖

𝑖
, 𝑖 ∈ [𝑛], where𝑤𝑖 ← Z𝑝 is chosen

uniformly at random. The NIZK 𝜋 consists of 𝑐 and the 𝑛 responses

𝑠𝑖 := 𝑤𝑖 − 𝑃 (𝑖)𝑐 for 𝑖 ∈ [𝑛]. At the end of the game, A outputs a

secret 𝜎∗ ∈ G.
As A is an algebraic adversary, at the end of game G it returns a

secret 𝜎∗ together with a representation

(𝑎, ˆ𝑏, 𝑎1, . . . , 𝑎𝑛, 𝑏0, . . . , 𝑏𝑡 , 𝑐1, . . . , 𝑐𝑛)
of elements in Z𝑝 such that

𝜎∗ = 𝑔𝑎 · ℎ ˆ𝑏 · pk𝑎1
1
· . . . · pk𝑎𝑛𝑛 ·𝐶𝑏00 · . . . ·𝐶

𝑏𝑡
𝑡 · 𝑌

𝑐1
1
· . . . · 𝑌𝑐𝑛𝑛 .

Here, the representation is split (from left to right) into powers of

the generators 𝑔, ℎ, the public keys pk
1
, . . . , pk𝑛 , the polynomial

commitments 𝐶0, . . . ,𝐶𝑡 , and the encrypted shares 𝑌1, . . . , 𝑌𝑛 . In

the following, let 𝑒 ∈ Z𝑝 denote the discrete logarithm of ℎ to

base 𝑔 (i.e. 𝑔𝑒 = ℎ). Assuming the adversary wins the game G by

outputting the secret ℎ𝑃 (0) = 𝑔𝑒𝑃 (0) chosen by the challenger, the

above equation is with 𝛼 = 𝑃 (0) equivalent to

𝑒𝛼 = 𝑎 + 𝑒 ˆ𝑏 + 𝑒
𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 +
𝑡∑︁
𝑖=0

𝛼𝑖𝑏𝑖 + 𝑒
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑐𝑖 . (♠)

We define the following three events:

• 𝐸1 defined by 𝛼 = ˆ𝑏 +∑𝑛
𝑖=1 𝑥𝑖𝑎𝑖 +

∑𝑛
𝑖=1 𝑥𝑖𝑃 (𝑖)𝑐𝑖 .

• 𝐸2 defined by the identity 1 =
∑𝑛
𝑖=1 𝑥𝑖𝑐𝑖 .

17

Renas Bacho & Julian Loss

Let G be a cyclic group of prime order 𝑝 and independent generators 𝑔, ℎ ∈ G. The protocol takes as input a tuple (𝑔,𝑋,ℎ,𝑌) of group
elements in G and outputs a NIZK proof of knowledge of an 𝛼 ∈ Z∗𝑝 such that 𝑋 = 𝑔𝛼 and 𝑌 = ℎ𝛼 holds.

(1) Sample 𝑠 ← Z∗𝑝 uniformly at random and compute the challenge 𝑐 ∈ Z∗𝑝 as 𝑐 := H(𝑋,𝑔𝑠 , 𝑌 , ℎ𝑠).
(2) Compute the response 𝑟 ∈ Z∗𝑝 as 𝑟 := 𝑠 − 𝛼𝑐 and output the proof of knowledge 𝜋 := (𝑐, 𝑟).
(3) The NIZK proof of knowledge 𝜋 = (𝑐, 𝑟) is valid if and only if equality 𝑐 = H(𝑋,𝑔𝑟𝑋𝑐 , 𝑌 , ℎ𝑟𝑌𝑐) holds.

Figure 4: Non-interactive zero-knowledge proof Dleq for equality of discrete logarithms.

Let G be a cyclic group of prime order 𝑝 and independent generators 𝑔, ℎ ∈ G. Let (pk𝑖 , sk𝑖) be the key pair of party 𝑃𝑖 with pk𝑖 = ℎ
sk𝑖

.

The dealer 𝑃𝐿 with key pair (pk𝐿, sk𝐿) wants to share secret ℎ𝛼 for an 𝛼 ← Z∗𝑝 . The Dist algorithm takes as input sk𝐿 and public keys

pk
1
, . . . , pk𝑛 . It outputs the transcript 𝑇𝐿 := {𝐶𝑖 , 𝑌𝑖 , 𝜋}𝑖∈[𝑛] defined as follows.

(1) Choose a polynomial 𝑓 (𝑋) = 𝛼 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] of degree 𝑡 uniformly at random.

(2) Publish commitments 𝐶𝑖 = 𝑔𝛼𝑖 ∈ 𝐺𝑟 for 𝑖 ∈ J𝑡K. Also publish encrypted shares 𝑌𝑖 = pk𝑓 (𝑖)
𝑖

∈ G for 𝑖 ∈ [𝑛]. Let 𝑋𝑖 :=∏𝑗∈J𝑡K𝐶𝑖
𝑗

𝑗
.

(3) Compute NIZK proofs 𝜋𝑖 := Dleq(𝑔,𝑋𝑖 , pk𝑖 , 𝑌𝑖) for 𝑖 ∈ [𝑛] using the simultaneous challenge 𝑐 := H({𝑋𝑖 , 𝑔𝑤𝑖 , 𝑌𝑖 , pk
𝑤𝑖

𝑖
}𝑖∈[𝑛]).

Compute the responses 𝑟𝑖 ∈ Z∗𝑝 as 𝑟𝑖 := 𝑤𝑖 − 𝑓 (𝑖)𝑐 for 𝑖 ∈ [𝑛], and publish the proof 𝜋 := (𝑐, 𝑟1, . . . , 𝑟𝑛).
The transcript verification algorithm Ver takes as input the public keys pk

1
, . . . , pk𝑛 (including pk𝐿) and transcript 𝑇𝐿 . It outputs 1

(accept) or 0 (reject).

(4) Compute 𝑋𝑖 :=
∏𝑗∈J𝑡K𝐶𝑖

𝑗

𝑗
for 𝑖 ∈ [𝑛]. Also compute 𝑔𝑤𝑖 = 𝑔𝑟𝑖𝑋𝑐

𝑖
and pk𝑤𝑖

𝑖
= 𝑦

𝑟𝑖
𝑖
𝑌𝑐
𝑖
for 𝑖 ∈ [𝑛] using {𝑋𝑖 , 𝑌𝑖 , pk𝑖 , 𝑟𝑖 , 𝑐}𝑖∈[𝑛] .

(5) Check that equality 𝑐 = H({𝑋𝑖 , 𝑔𝑤𝑖 , 𝑌𝑖 , pk
𝑤𝑖

𝑖
}𝑖∈[𝑛]) holds and thus the cumulated NIZK proof 𝜋 verifies.

(6) If one of the above checks fails, output 0 (invalid transcript). Otherwise, output 1 (valid transcript).

Figure 5: Distribution protocol Dist and transcript verification algorithm Ver of Schoenmakers’ PVSS.

On input the encrypted shares 𝑌1, . . . , 𝑌𝑛 , the decryption Dec and reconstruction Rec algorithms work as follows.

(1) Using sk𝑖 , compute the secret share 𝑆𝑖 = ℎ
𝑓 (𝑖)

from 𝑌𝑖 via extracting the root 𝑆𝑖 = 𝑌
1/sk𝑖
𝑖

. Also provide a proof of correct

decryption 𝜃𝑖 := Dleq(ℎ,ℎ𝑟 , 𝑆𝑖 , 𝑆𝑟𝑖) for an 𝑟 ← Z
∗
𝑝 sampled uniformly at random. Publish (𝑆𝑖 , 𝜃𝑖).

(2) Upon receiving a secret share tuple (𝑆ℓ , 𝜃ℓ) from party 𝑃ℓ , check that the proof 𝜃ℓ verifies. Otherwise, the secret share is

invalid.

(3) Upon receiving 𝑡 + 1 valid secret shares 𝑆 𝑗 = ℎ𝑓 (𝑗) from different parties, compute the secret 𝑆 = ℎ𝑓 (0) via Lagrange

interpolation in the exponent and output.

Figure 6: Decryption Dec and reconstruction Rec algorithms of Schoenmakers’ PVSS.

• 𝐸3 defined by: There is an index 𝑖 ∈ H s.t. 𝑐𝑖 ≠ 0.
4

We have the following technical lemma.

Lemma A.6. Let G and 𝐸𝑖 for 𝑖 = 1, 2, 3 be defined as above. Then
there exist (algebraic) algorithms A𝑗 for 𝑗 ∈ [4] playing in game
𝑛-OMDL that run in time at most 𝑇 such that:

Pr[𝑛-OMDLA1 = 1] = Pr[GA = 1 ∧ ¬𝐸1],

Pr[𝑛-OMDLA2 = 1] = Pr[GA = 1 ∧ 𝐸1 ∧ ¬𝐸2],

Pr[𝑛-OMDLA3 = 1] = Pr[GA = 1 ∧ 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3],

Pr[𝑛-OMDLA4 = 1] = Pr[GA = 1 ∧ 𝐸1 ∧ 𝐸2 ∧ 𝐸3] .

Moreover, 𝑇 ≤ 𝑇 ′ + O(𝑛2).

Proof. Let 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ G𝑛 with 𝜉 = 𝑔𝑧𝑖 for 𝑖 ∈ [𝑛] be the
OMDL instance of degree 𝑛. Algorithms A𝑖 for 𝑖 ∈ [4] have access
to a (perfect) discrete logarithm oracle DL𝑔 (to base 𝑔) which they

can query at most 𝑛 − 1 times. The algorithms A𝑖 , 𝑖 ∈ [4], simulate

game G as described in the following.

4
At this stage, H ⊂ P is the set of parties that remain honest at the end of the game.

Algorithm A1 (𝜉, par): Algorithm A1 works as follows. On input 𝜉 ,

A1 queries the discrete logarithm oracle DL𝑔 on 𝜉2, . . . , 𝜉𝑛 and gets

(𝑧2, . . . , 𝑧𝑛). It publishes the second generator ℎ by setting ℎ = 𝜉1.

In particular, it is 𝑒 = DL𝑔 (ℎ) = 𝑧1. Furthermore, A1 generates the

public-secret key pairs of parties and the polynomial 𝑃 (𝑋) ∈ Z𝑝 [𝑋]
honestly (by sampling sk𝑖 , 𝛼 𝑗 ← Z𝑝 uniformly at random). Com-

mitments 𝑋𝑖 , encrypted shares 𝑌𝑖 , and NIZK proofs 𝜋 are computed

honestly and published. Random oracle queries𝑚𝑖 are answered

honestly by sampling 𝑟𝑖 ← Z𝑝 and returning 𝐻 [𝑚𝑖] = 𝑟𝑖 . Cor-

ruption queries are answered by returning the secret key of the

corresponding party. It is not hard to see that A1’s simulation of G
is perfect.

Suppose that A1 wins G and that event ¬𝐸1 happens. Equation (♠)
is then equivalent to

𝑒 =

(
𝑎 +

𝑡∑︁
𝑖=0

𝛼𝑖𝑏𝑖

) (
𝛼 − ˆ𝑏 −

𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 −
𝑛∑︁
𝑖=1

𝑥𝑖𝑃 (𝑖)𝑐𝑖

)−1
,

18

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

since the second factor is non-zero. As a result, A1 can efficiently

compute 𝑒 = 𝑧1 and solve the OMDL instance. Overall, we obtain

Pr[𝑛-OMDLA1 = 1] = Pr[GA = 1 ∧ ¬𝐸1] .
The bound on the running time of A1 (number of group operations

and exponentiations) is obvious.

Algorithm A2 (𝜉, par): Algorithm A2 works on input 𝜉𝑖 = 𝑔𝑧𝑖 ,

𝑖 ∈ [𝑛], as follows. It samples 𝑒 ← Z𝑝 uniformly at random and

publishes ℎ = 𝑔𝑒 . It generates the public-secret key pairs of parties

honestly. It chooses the polynomial 𝑃 (𝑋) = 𝛼0+𝛼1𝑋+. . .+𝛼𝑡𝑋 𝑡
such

that 𝑔𝛼𝑖 = 𝜉𝑖+1 for all 𝑖 ∈ J𝑡K. In particular, it is 𝛼𝑖 = 𝑧𝑖+1 for all 𝑖 ∈
J𝑡K. The commitments𝑋𝑖 = 𝑔

𝛼𝑖 = 𝜉𝑖 are published without the need

of computation. The encrypted shares 𝑌𝑖 = pk𝑃 (𝑖)
𝑖

are computed

as 𝑌𝑖 = (ℎ𝑃 (𝑖))𝑥𝑖 and published. Note that Lagrange interpolation

in the exponent allows A2 to compute 𝑔𝑃 (𝑖) for any 𝑖 ∈ [𝑛] from
the commitments 𝐶 𝑗 , 𝑗 ∈ J𝑡K. The NIZK proofs 𝜋 are created via

an honest-verifier zero-knowledge (HVZK) simulation using the

random oracle. Corruption queries are answered by returning the

secret key of the corresponding party. Random oracle queries𝑚𝑖 are

answered honestly by sampling 𝑟𝑖 ← Z𝑝 and returning 𝐻 [𝑚𝑖] = 𝑟𝑖 .
It is not hard to see that A2’s simulation of G is perfect.

Suppose that A2 wins G and that event 𝐸1 ∧¬𝐸2 happens. With the

notation 𝑃 (𝑋) = 𝛼0+𝑞(𝑋) for polynomial𝑞(𝑋) = 𝛼1𝑋+. . .+𝛼𝑡𝑋 𝑡 ∈
Z𝑝 [𝑋], the equation defined by event 𝐸1 then reduces to

𝛼 = ˆ𝑏 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑞(𝑖)𝑐𝑖 + 𝛼
𝑛∑︁
𝑖=1

𝑥𝑖𝑐𝑖 .

With the condition that ¬𝐸2 is satisfied, this equation is equivalent

to

𝛼 =

(
ˆ𝑏 +

𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑞(𝑖)𝑐𝑖

) (
1 −

𝑛∑︁
𝑖=1

𝑥𝑖𝑐𝑖

)−1
. (q)

Algorithm A2 proceeds as follows. It queries the discrete logarithm
oracle DL𝑔 on 𝜉2, . . . , 𝜉𝑛 and obtains (𝑧2, . . . , 𝑧𝑛). In particular, it

knows 𝛼1 = 𝑧2, . . . , 𝛼𝑡 = 𝑧𝑡+1 and thus 𝑞(𝑖) for all 𝑖 ∈ Z𝑝 (i.e. it

knows the coefficients of the polynomial 𝑞(𝑋)). From identity (q),
A2 can efficiently compute 𝑧1 = 𝛼 and solve the OMDL instance.

Overall, we obtain

Pr[𝑛-OMDLA2 = 1] = Pr[GA = 1 ∧ 𝐸1 ∧ ¬𝐸2] .
The bound on the running time is obvious, since A2 has to compute

the group elements 𝑞𝑃 (𝑖) for all 𝑖 ∈ [𝑛] by Lagrange interpolation

in the exponent from the commitments, which results in additional

O(𝑛2) running time.

Algorithm A3 (𝜉, par): Algorithm A3 works on input 𝜉𝑖 = 𝑔𝑧𝑖 ,

𝑖 ∈ [𝑛], as follows. The simulation of the game G is identical to that

of A2; in particular, A3 chooses 𝑃 (𝑋) ∈ Z𝑝 [𝑋] such that 𝑔𝛼𝑖 = 𝜉𝑖+1
for all 𝑖 ∈ J𝑡K. The only difference lies in how A3 extracts the

solution to the OMDL instance after the game has finished. Again,

A3’s simulation of G is perfect.

Suppose that A3 wins G and that event 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3 happens.

With the same notation 𝑃 (𝑋) = 𝛼0 + 𝑞(𝑋) as before, the equations
defined by events 𝐸1 and 𝐸2 then reduce to

0 = ˆ𝑏 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑞(𝑖)𝑐𝑖 , 1 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑐𝑖 , (♣)

where 𝑐𝑖 = 0 for all 𝑖 ∈ H by condition ¬𝐸3. Therefore,

1 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑐𝑖 =
∑︁
𝑖∈C

𝑥𝑖𝑐𝑖

implies that there is an index 𝑗 ∈ C such that 𝑥 𝑗𝑐 𝑗 ≠ 0. The first

equation in (♣) is then equivalent to

𝑞(𝑗) = − 1

𝑥 𝑗𝑐 𝑗
· ©­« ˆ𝑏 +

𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑖 +
∑︁

𝑖∈C\{ 𝑗 }
𝑥𝑖𝑞(𝑖)𝑐𝑖ª®¬ .

Algorithm A3 proceeds as follows. It queries the discrete logarithm
DL𝑔 on 𝜉1, 𝜉𝑡+2, . . . , 𝜉𝑛 and 𝑔𝑞 (𝑖) for all 𝑖 ∈ C \ { 𝑗}. Note that since
𝑔𝑃 (𝑋) = 𝑔𝛼0 · 𝑔𝑞 (𝑋) = 𝜉1 · 𝑔𝑞 (𝑋) , algorithm A3 can compute (and

hence query) 𝑔𝑞 (𝑖) for any 𝑖 ∈ Z𝑝 . W.l.o.g. we may assume that

|C| = 𝑡 (otherwise, A3 simply simulates, for itself, 𝑡 − |C| corruption
queries for random parties fromH). As a result, A3 can compute

𝑞(𝑗) and has finally knowledge of 𝑡 + 1 points in the range of [𝑛]
on the polynomial 𝑞(𝑋) of degree 𝑡 . In particular, A3 knows the

coefficients of 𝑞, i.e. 𝛼1 = 𝑧2, . . . , 𝛼𝑡 = 𝑧𝑡+1. From previous oracle

queries it knows 𝑧1, 𝑧𝑡+2, . . . , 𝑧𝑛 and thus solves the OMDL instance

with 1 + (𝑛 − 𝑡 − 1) + (𝑡 − 1) = 𝑛 − 1 queries to DL𝑔 . Overall, we
obtain

Pr[𝑛-OMDLA3 = 1] = Pr[GA = 1 ∧ 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3] .
The bound on the running time of algorithm A3 is obvious from

the previous case.

Algorithm A4 (𝜉, par): Algorithm A4 works on input 𝜉𝑖 = 𝑔𝑧𝑖 ,

𝑖 ∈ [𝑛], as follows. It samples 𝑒 ← Z𝑝 uniformly at random and

publishes ℎ = 𝑔𝑒 . It generates the polynomial 𝑃 (𝑋) ∈ Z𝑝 [𝑋] hon-
estly by sampling 𝛼𝑖 ← Z𝑝 for all 𝑖 ∈ J𝑡K uniformly at random. It

chooses party 𝑃 𝑗 ’s public key as pk 𝑗 = 𝜉 𝑗 for all 𝑗 ∈ [𝑛]. In particu-

lar, it is 𝑥 𝑗 = sk 𝑗 = 𝑧 𝑗 for all 𝑗 ∈ [𝑛]. Commitments 𝑋𝑖 , encrypted

shares 𝑌𝑖 , and NIZK proofs 𝜋 are computed honestly and published

(which is possible, since the polynomial 𝑃 (𝑋) is completely known

to A4). Random oracle queries𝑚𝑖 are answered honestly by sam-

pling 𝑟𝑖 ← Z𝑝 and returning 𝐻 [𝑚𝑖] = 𝑟𝑖 . Corruption queries are

answered with the help of the discrete logarithm oracle DL𝑔 . A cor-

ruption query on party 𝑃 𝑗 is answered by computing DL𝑔 (pk 𝑗)/𝑒
and returning the secret key sk 𝑗 (note that pk 𝑗 = ℎsk 𝑗 and the

oracle returns the discrete logarithm to base 𝑔 so that we have to

divide the result by 𝑒 afterwards to get sk 𝑗). It is not hard to see

that A4’s simulation of G is perfect.

Suppose that A4 wins G and that event 𝐸1 ∧ 𝐸2 ∧ 𝐸3 happens. The
equation 1 =

∑𝑛
𝑖=1 𝑥𝑖𝑐𝑖 defined by event 𝐸2 together with condition

𝐸3 imply that there is an index 𝑖 ∈ H such that

𝑥𝑖 =
1

𝑐𝑖

∑︁
𝑖≠𝑖

𝑥𝑖𝑐𝑖 . (r)

Algorithm A4 proceeds as follows. It queries the discrete logarithm
oracleDL𝑔 on 𝜉 𝑗 for all 𝑗 ∈ H \{𝑖} and obtains 𝑥 𝑗 for all 𝑗 ∈ H \{𝑖}.
Therefore, A4 has knowledge of 𝑥 𝑗 for all 𝑗 ∈ H \ {𝑖} ∪ C = P \ {𝑖}
and computes the remaining value 𝑥𝑖 by the above identity (r).
As a result, it solves the OMDL instance with 𝑛 − 1 oracle queries.
Overall, we obtain

Pr[𝑛-OMDLA4 = 1] = Pr[GA = 1 ∧ 𝐸1 ∧ 𝐸2 ∧ 𝐸3] .
The claim on the running time of A4 is clear. □

19

Renas Bacho & Julian Loss

To end the proof, consider algorithm B playing in 𝑛-OMDL as

follows: B samples 𝑖∗ ← [4] and then internally emulates algorithm

A𝑖∗ . Clearly, B is an algebraic algorithm running in time at most 𝑇

(the running time of A𝑖 , 1 ≤ 𝑖 ≤ 4). An application of the law of

total probability yields

Pr[𝑛-OMDLB = 1] =
4∑︁

𝑖=1

Pr[𝑛-OMDLB = 1 | 𝑖∗ = 𝑖] · Pr[𝑖∗ = 𝑖]

=
1

4

4∑︁
𝑖=1

Pr[𝑛-OMDLA𝑖 = 1]

≥ 1

4

Pr[GA = 1] = 𝜀′

4

.

□

Remark A.1. By breaking down our above proof, we find that it can

be adapted to obtain a security reduction (with the same parameters

for tightness) from the plain discrete logarithm problem assuming a

weaker static adversary. The main idea being to embed the discrete

logarithm challenge 𝜉 ∈ G into the public keys {pk𝑖 }𝑖∈H of honest

parties (which is fixed from the very beginning in the static cor-

ruption model) via pk𝑖 = 𝜉
𝑢𝑖𝑔𝑣𝑖 for uniformly random 𝑢𝑖 , 𝑣𝑖 ← Z𝑝 ,

into the polynomial 𝑓 (𝑋) = 𝛼0 + 𝛼𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] chosen
by the dealer via 𝑔𝛼𝑖 = 𝜉𝑢𝑖𝑔𝑣𝑖 for uniformly random 𝑢𝑖 , 𝑣𝑖 ← Z𝑝 ,
or into the second generator ℎ ∈ G via ℎ = 𝜉 . Using this technique,

the above proof can be adapted accordingly for the static case to

reduce the security from the plain discrete logarithm problem.

A.2 Application to Randomness Beacons
We discuss the adaptive security of the previous state-of-the-art

randomness beacon protocol from the literature, GRandPiper [16]

in the synchronous network model. The protocol employs an un-

specified PVSS scheme in its design. Thus by instantiating their

generic construction with Schoenmakers’ PVSS, this results in the

adaptive security of the randomness beacon. We briefly discuss the

randomness beacon.

GRandPiper. The protocol employs an unspecified PVSS scheme

(any secure PVSS scheme can be used) and a leader-based SMR pro-

tocol with a communication cost of O(𝑛ℓ + 𝜆𝑛2) bits per consensus
decision on a block of size ℓ . In each epoch 𝑒 ≥ 1, the leader 𝐿𝑒
puts a randomly sampled PVSS transcript on the ledger. If 𝐿𝑒 does

not put anything on the ledger or the transcript is invalid, parties

blacklist 𝐿𝑒 from future leader elections. Apart from that, parties

adhere to a randomized election with blacklisting. Concretely, the

leader for epoch 𝑒′ is chosen based on the beacon output𝑂𝑒′−1 and
by removing the leaders 𝐿𝑒′−1, . . . , 𝐿𝑒′−𝑡 of the previous 𝑡 epochs.
Incorrectly behaving leaders are blacklisted from future leader elec-

tions. When the same party is elected as a leader 𝐿𝑒′ in epoch

𝑒′ > 𝑒 + 𝑡 the next time, parties take its previously published (valid)

transcript and reconstruct the secret 𝑆𝑒 . The beacon output 𝑂𝑒′

for epoch 𝑒′ is computed as hash𝑂𝑒′ = Hash(𝑂𝑒′−1, . . . ,𝑂𝑒′−𝑡 , 𝑆𝑒).
Finally, to ensure availability the first time a party is elected as

the leader, the protocol relies on a setup where parties start with

agreed-upon buffers B(𝑃𝑖) for 𝑖 ∈ [𝑛] that contain random PVSS

transcripts each. Ignoring the pre-processing phase for the buffers,

GRandPiper outputs a randomness beacon value with a communica-

tion cost of O(𝜆𝑛2) bits and optimal resilience in the synchronous

setting. However, we note that even if the underlying PVSS scheme

was adaptively secure, the randomness beacon remains only (𝑡 + 1)-
unpredictable, since an adaptive adversary can predict the next 𝑡

beacon values (by sequentially computing the next beacon value

and corrupting the next leader). The reason for that is that single

transcripts are proposed by leaders and not aggregated transcripts.

TheoremA.7. If Schoenmakers’PVSS is (𝜀,𝑇 , 𝑡, 𝑞ℎ)-unpredictable
in the AGM&ROM, then GRandPiper is an (𝜀′,𝑇 ′, 𝑡, 𝐿, 𝑞′

ℎ
, 𝑡+1)-secure

randomness beacon protocol in the AGM & ROM, where

𝜀 ≥ 𝜀
′

𝐿
−
𝑞′
ℎ

𝑝
, 𝑇 ≤ 𝑇 ′ + O(𝐿𝑛2).

Proof. The proof follows along the same lines as the proofs for

OptRand and SPURT in Appendix F.1 (for Theorem 4.2). □

B RELATEDWORK ON RANDOMNESS
BEACONS

In this appendix, we discuss existing works on distributed random-

ness beacon protocols from the literature.

Randomness Beacons. Over the years, numerous randomness

beacon protocols have been proposed, each having its own set of

strengths and weaknesses, depending on factors such as the net-

work model, setup assumptions, desired efficiency and security

properties, and reliance on cryptographic tools or specialized hard-

ware. We briefly categorize several notable randomness beacon

protocols found in the literature:

• DKG-based protocols: These randomness beacon protocols

employ threshold cryptography to generate random val-

ues. More specifically, the randomness beacon output is a

unique threshold signature on the hash of the epoch number.

Typically, the threshold BLS signature is used in conjunc-

tion with an initial distributed key generation (DKG) phase.

Most protocols in this category achieve a communication

cost of O(𝜆𝑛2) bits per beacon output when ignoring the

setup phase. A significant drawback of these protocols is

their reliance on a DKG, which implies an expensive setup

phase and limited reconfiguration guarantees.

• VDF/PoW-based protocols: These randomness beacon pro-

tocols employ verifiable delay functions (VDFs) or Proof-of-

Work (PoW) to generate random values. VDFs are functions

that require a certain amount of time to compute but can be

verified quickly. While VDF-based protocols can offer high

efficiency, they require specialized hardware to compute

the VDF, which might not be accessible to all parties. The

same applies to PoW-based protocols, which have a very

high computation cost. These protocols utilize heavy and

expensive cryptographic or hardware tools.

• Other protocols: These randomness beacon protocols do

not rely on a DKG and do not utilize heavy cryptographic

tools such as VDFs. Most of these protocols employ a PVSS

or a VSS to generate random values. As such, they are

reconfiguration-friendly, efficient, and simple. With some

exceptions, these protocols have cubic or even quartic com-

munication cost.

20

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

Table 1: Comparison table of existing distributed randomness beacon protocols.

Protocol Network Resil. Adap. Adv. Unpred. Bias-res. Commun. Crypto. Primit. Assump. Setup

Cachin et al. [21] async 1/3 ✗ ✓ ✓ O(𝜆𝑛2) Uniq. Thresh. Signature CDH DKG
RandHerd [76] async 1/3 ✗ ✓ ✓ O(𝜆𝑐2 log(𝑛)) PVSS & Thresh. Schnorr DL DKG
Dfinity [4, 23] part sync 1/3 ✗ ✓ ✓ O(𝜆𝑛2) Thresh. BLS CDH DKG
Herb [29] sync 1/3 ✗ ✓ ✓ O(𝜆𝑛3) Thresh. ElGamal DDH DKG
Drand [1] sync 1/2 ✗ ✓ ✓ O(𝜆𝑛2) Thresh. BLS CDH DKG

Algorand [50] part sync 1/3 ✗ Ω (𝑡) ✗ O(𝜆𝑐𝑛) VRF VRF CRS
SPURT [34] part sync 1/3 ✗ ✓ ✓ O(𝜆𝑛2) PVSS & Pairing DBS CRS
HydRand [70] sync 1/3 ✗ 𝑡 + 1 ✓ O(𝜆𝑛2) PVSS DDH CRS
Proof-of-Work [62] sync 1/2 ✗ Ω (𝑡) ✗ O(𝜆𝑛) Hash function PoW CRS
GRandPiper [16] sync 1/2 ✗ 𝑡 + 1 ✓ O(𝜆𝑛2) PVSS SXDH 𝑞-SDH
OptRand [15] sync 1/2 ✗ ✓ ✓ O(𝜆𝑛2) PVSS & Pairing SXDH 𝑞-SDH

RandShare [76] async 1/3 ✓ ✓ ✓ O(𝜆𝑛4) VSS DL CRS
RandChain [54] sync 1/2 ✓ O(𝜆) ✓ O(𝜆𝑛2) Seq. PoW & Naka. Cons. VDF & PoW CRS
RandRunner [69] sync 1/2 ✓ 𝑡 + 1 ✓ O(𝜆𝑛2) Trapdoor VDF tVDF & DL CRS
BRandPiper [16] sync 1/2 ✓ ✓ ✓ O(𝜆𝑓 𝑛2) VSS SXDH 𝑞-SDH

We explain the table. Resil. denotes the Byzantine resilience threshold. Adap. Adv. denotes adaptive adversary. Unpred. denotes unpredictability. Bias.-res. denotes bias-resistance.
Comm. denotes communication complexity in bits. In RandHerd and Algorand, 𝑐 denotes the average size of a randomly chosen committee. In BRandpiper, 𝑓 ≤ 𝑡 denotes the

actual number of faults in the system. Crypto. Primit. denotes the cryptographic primitives in usage. Assump. denotes the underlying hardness assumption for the security proof.

Setup denotes the setup assumption. We note that all protocols achieve availability.

Protocols in the first category include [1, 4, 21, 23, 29, 76]. Most

of these works rely on the same idea from Cachin et al., in which a

randomness beacon value in epoch 𝑒 ≥ 1 is computed as a unique

threshold signature onHash(𝑒). In more detail, each party 𝑃𝑖 gener-

ates a partial signature 𝜎
(𝑖)
𝑒 on the message Hash(𝑒) and sends this

share to every other party. Upon collecting 𝑡 + 1 of these partial sig-
natures, any party can locally compute the beacon output as a full

signature 𝜎𝑒 . Cachin et al. works in asynchrony and neither speci-

fies the threshold signature nor the DKG. Dfinity works in partial

synchrony and uses threshold BLS together with a non-interactive

DKG [52]. Drand [1] works in synchrony and uses threshold BLS

together with Gennaro et al.’s DKG [48]. Other threshold signatures

are also employed: Herb works in synchrony and uses the threshold

ElGamal signature [37], and RandHerd works in asynchrony and

uses threshold Schnorr signatures with collective signing [75, 77].

For setup, all these protocols incur at least a communication cost of

O(𝜆𝑛3) bits. Once the setup phase is finished, the protocols achieve
an improved communication cost of O(𝜆𝑛2) bits per beacon output.

The protocols in this category are unpredictable and bias-resistance,

but security is only guaranteed against a static adversary. The most

significant drawback of the protocols in this category is that they

do not support efficient reconfiguration. In case a party is removed

from the network and another one joins, the DKGmust be run again

among all parties. In particular, these protocols are not well-suited

for public permissionless blockchain environments.

Protocols in the second category include [9, 20, 26, 30, 38, 54, 69].

These protocols rely on computationally expensive tools such as

Proof-of-Work (PoW) [62] and Verifiable Delay Functions (VDF) [18,

38] that require specialized hardware and rely on strong and new

assumptions about verifiable time-lock puzzles. Protocols in this

category are highly energy-consuming. These works essentially

rely on the same idea, in which it takes a certain amount of energy

(in the case of PoW) or time (in the case of VDF) to compute the next

block or beacon output. VDF-based protocols rely on the assump-

tion that the adversary has no advantage over the honest parties in

computing the VDF faster. PoW-based protocols rely on the assump-

tion that the adversary has less computational hash power than the

honest parties. RandRunner [69] works in synchrony and uses a

trapdoor VDF. Such a trapdoor VDF can generate unique function

values efficiently with the knowledge of the trapdoor, but takes

some high specified time𝑇 otherwise. RandRunner is bias-resistant

against an adaptive adversary and has a communication cost of

O(𝜆𝑛2) bits per beacon output. However, it only achieves (𝑡 + 1)-
unpredictability, since an adaptive adversary can simply corrupt

the next 𝑡 leaders and thus learn the beacon values for the next 𝑡

epochs. Other protocols in this category such as RandChain [54]

that uses a combination of sequential PoW, Nakamoto Consensus

and VDF even achieve a communication cost of O(𝜆𝑛) bits per bea-
con output while providing security against an adaptive adversary.

Besides the high energy costs another drawback is that the beacon

output is only guaranteed to be 1/5-fair (1-fairness means that each

party in the system controls comparable power on deciding random

outputs). Apart from that, it also suffers from problems concerning

blockchain-oriented attacks.

Protocols in the third category include [6, 15, 16, 25, 34, 35, 50,

54, 60, 69, 70, 76]. These protocols are reconfiguration-friendly and

do not rely on heavy tools such as PoW or VDF. Most notably are

HydRand [70], SPURT [34], GRandPiper [16], BRandPiper [16], and

OptRand [15]. We briefly elaborate on some of them. SPURT works

in partial synchrony, achieves bias-resistance and unpredictability

against a static adversary, and has a communication cost of O(𝜆𝑛2)
bits per beacon output. It relies on a pairing-based PVSS scheme

and a modified version of the HotStuff SMR protocol [78]. Since it

relies on a PVSS scheme, it does not provide security against an

adaptive adversary. GRandPiper is a protocol from the RandPiper

family of randomness beacons. It works in synchrony, achieves

bias-resistance against a static adversary, and has a communication

cost of O(𝜆𝑛2) bits per beacon output. It relies on a PVSS scheme

and the RandPiper SMR protocol. However, against an adaptive

21

Renas Bacho & Julian Loss

adversary it only provides (𝑡 + 1)-unpredictability (apart from the

problem of adaptive security of the PVSS scheme) and even against

a static adversary it achieves only min(𝜆, 𝑡)-unpredictability. Hy-
dRand works in synchrony with sub-optimal Byzantine resilience

threshold 𝑡 < 𝑛/3 and achieves a communication cost of O(𝜆𝑛2)
bits. Similar to GRandPiper, it only provides bias-resistance and

(𝑡 + 1)-unpredictability against a static adversary. It relies on the

Scrape PVSS scheme and the repeated execution of a Byzantine

agreement protocol. Since it uses a PVSS scheme, it also suffers

from the existence of a security proof against adaptive adversaries.

BRandPiper is a self-claimed better version of GRandPiper from

the family of RandPiper protocols. It works in synchrony with

optimal-resilience threshold and provides complete security (i.e.

unpredictability and bias-resistance) against an adaptive adversary.

It achieves a communication cost ofO(𝜆𝑓 𝑛2) bits per beacon output,
where 𝑓 ≤ 𝑡 is the actual number of faults in the system. It relies

on an efficient VSS scheme and the RandPiper SMR protocol. In

BRandPiper, the leader of an epoch shares 𝑛 secrets at once and for

the beacon output parties reconstruct a random value accumulating

secrets from 𝑡 + 1 different (previous) leader parties. The other only
protocol in this category that provides complete security against an

adaptive adversary is RandShare [76]. It works in asynchrony with

optimal-resilience threshold, and has a worst-case communication

cost of O(𝜆𝑛4) bits per beacon output with best-case communica-

tion of O(𝜆𝑛3) bits per beacon output. It relies on a VSS scheme

and a Byzantine agreement protocol. In RandShare, parties run 𝑛

independent Byzantine agreement instances in parallel, from which

the beacon value is then computed.

C FORMAL DEFINITIONS AND SECURITY
NOTIONS

In this appendix, we formally define syntax and security notions of

the primitive used in the paper.

C.1 Cryptographic Notions
Digital Signature Scheme. A digital signature scheme provides a

user with a verification-signing key pair (vk, dk), where the signing
key is only known to the user but the verification key is public.

The signing key allows the user to sign any message of its choice,

while any third party that knows vk can verify that the message

was indeed signed by that particular user. We formally define this

as follows.

Definition C.1 (Digital Signature Scheme). A digital signature

scheme is a tuple of algorithms DS = (SKey, Sign,Ver) with the

following properties:

• SKey: The randomized key generation algorithm takes as

input system parameters par and an identity index 𝑖 ∈ [𝑛].
It outputs a verification key vk𝑖 and a signing key dk𝑖 .

• Sign: The possibly randomized signing algorithm takes as

input a signing key dk𝑖 and a message𝑚. It outputs a signa-

ture 𝜎 . We also write ⟨𝑚⟩𝑖 to denote the message-signature

pair (𝑚,𝜎) where 𝜎 ← Sign(dk𝑖 ,𝑚).
• Ver: The deterministic verification algorithm takes as input

a verification key vk𝑖 , a message𝑚, and a signature 𝜎 . It

outputs 1 (accept) or 0 (reject). In the first case we call

the signature 𝜎 valid (relative to vk𝑖); otherwise we call it
invalid.

For a secure digital signature scheme, we require that an adver-

sary (not knowing the signing key) cannot create a signature on a

new message, even after obtaining many signatures on messages

of its choice.

Definition C.2 (Unforgeability Under Chosen Message Attack). Let
DS = (SKey, Sign,Ver) be a digital signature scheme. For an algo-

rithm A, define the unforgeability under chosen message experi-

ment UF-CMAA
DS as follows:

• Offline Phase. Run SKey on input (par, 𝑖) to obtain a key

pair (vk𝑖 , dk𝑖). Run A on input (par, vk𝑖). InitializeM := ∅.
• Signing Oracle Queries. At any point of the experiment,

A gets access to an oracle that answer queries of the fol-

lowing type: When A submits a message 𝑚, return 𝜎 ←
Sign(dk𝑖 ,𝑚) and updateM :=M ∪ {𝑚}.

• Output Determination.When A outputs a message𝑚∗ and
a signature 𝜎∗, do the following. If Ver(vk𝑖 ,𝑚∗, 𝜎∗) = 1 and

𝑚∗ ∉M, return 1. Otherwise, return 0.

We say thatDS is (𝜀,𝑇 , 𝑞𝑠)-unforgeable under chosen message attacks
(UF-CMA) if for all algorithms A that run in time at most 𝑇 and

make at most 𝑞𝑠 signing oracle queries, Pr[UF-CMAA
DS = 1] ≤ 𝜀.

Conversely, we say that A (𝜀,𝑇 , 𝑞𝑠)-breaks unforgeability of DS
under chosen message attacks if it runs in time at most𝑇 , makes at

most 𝑞𝑠 signing oracle queries, and Pr[UF-CMAA
DS = 1] > 𝜀.

Non-Interactive Zero-Knowledge Proof. A zero-knowledge proof

is an interactive protocol between a prover Prove and a verifier Ver
which enables the prover to convince the verifier that a statement 𝑥

is in an NP languageL without leaking any information besides the

fact that the statement is true. A non-interactive zero-knowledge

(NIZK) proof is a class of zero-knowledge proofs, where no inter-

action is required. The prover Prove outputs only one message,

called a proof, which convinces the verifier Ver of the truth of the

statement.

Definition C.3 (Non-Interactive Proof System). Let R be an effi-

ciently decidable binary relation and let L be the corresponding

language. For pairs (𝑥,𝑤) ∈ R, we call 𝑥 the statement and𝑤 the

witness. L consists of statements in R. A non-interactive proof

system for R is a tuple of probabilistic polynomial-time algorithms

Σ = (Gen, Prove,Ver) with the following properties:

• Gen: This is a randomized parameter generation algorithm

that takes as input the security parameter 𝜆 and the relation

R. It outputs public parameters par . All other algorithms

implicitly take par as input.
• Prove: This is a possibly randomized proving algorithm that

takes as input a statement 𝑥 , and a witness𝑤 . It outputs a

proof 𝜋 .

• Ver: This is a deterministic verification algorithm that takes

as input a statement 𝑥 , and a proof 𝜋 . It outputs 1 (accept)

if the proof is valid and 0 (reject) otherwise.

We continuewith the standard security notions for a non-interactive

zero-knowledge proof [51]: perfect completeness, zero-knowledge,

and simulation-soundness. For this let R and L be as above.

22

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

Definition C.4 (Perfect Completeness). Let Σ = (Gen, Prove,Ver)
be a non-interactive proof system as defined above. For an algo-

rithm A, define the perfect completeness experiment PerfCompAΣ
as follows:

• Offline Phase. Run the parameter generation algorithm on

input 𝜆 to get par ← Gen(𝜆). Run A on input par .
• Online Phase. When A outputs (𝑥,𝑤), compute the proof

𝜋 ← Prove(𝑥,𝑤).
• Output Determination.Return 1 if (𝑥,𝑤) ∈ R andVer(𝑥, 𝜋) =

1. Otherwise, return 0.

We say that Σ has perfect completeness if for all algorithms A,
Pr[PerfCompAΣ = 1] = 1.

Definition C.5 (Zero-Knowledge). Let Σ = (Gen, Prove,Ver) be a
non-interactive proof system as defined above. Let Sim = (Sim1, Sim2)
be a pair of PPT algorithms (called the simulator). Furthermore, let

algorithm Sim′ be such that Sim′ (par, 𝜏, 𝑥,𝑤) = Sim2 (par, 𝜏, 𝑥) if
(𝑥,𝑤) ∈ R and Sim′ (par, 𝜏, 𝑥,𝑤) = 0 otherwise. For an algorithm

A, we define the zero-knowledge advantage of A as

Adv-zkA,SimΣ = | Pr[par ← Gen(𝜆) : AProve(par,·,·) (par) = 1]

− Pr[(par, 𝜏) ← Sim1 (𝜆) : ASim
′ (par,𝜏,·,·) (par) = 1] |.

We say that Σ is zero-knowledge if there exists a simulator Sim
as above such that for all non-uniform PPT algorithms A, its zero-
knowledge advantage is negligible in 𝜆.

Definition C.6 (Simulation-Soundness). Let Σ = (Gen, Prove,Ver)
be a non-interactive proof system as defined above. Let Sim =

(Sim1, Sim2) be a pair of PPT algorithms. For an algorithm A, we
define the simulation-soundness advantage of A as

Adv-ssA,SimΣ (𝜆) = Pr[(par, 𝜏) ← Sim1 (𝜆), (𝑥, 𝜋) ← ASim2 (par,𝜏,·) (par) :
𝑤 ← Ver(par, 𝑥, 𝜋) = 1, (𝑥, 𝜋) ∉ 𝑄, 𝑥 ∉ L],

where𝑄 is the list of simulation queries and responses. We say that

Σ has simulation-soundness if there exists a simulator Sim as above

such that for all non-uniform PPT algorithms A, its simulation-

soundness advantage is negligible in 𝜆.

C.2 Consensus Notions
Weakly Secure Randomness Beacon. We weaken the definition of

a secure randomness beacon to capture the properties of SPURT.

Since the construction of SPURT allows the parties to output a bot

symbol ⊥RB whenever the leader of an epoch does not behave

correctly, every 𝑛 epochs the protocol only given 𝑛−𝑡 truly random
outputs 𝜎𝑖 ∈ {0, 1}𝜆 . As a consequence, we have to weaken the

security notions of a randomness beacon accordingly.

Definition C.7 (𝑑-Weakly Secure Randomness Beacon). Let RB be

an epoch-based protocol executed by parties 𝑃1, . . . , 𝑃𝑛 . We define

the following security properties for RB:
• Weak Consistency. RB is (𝑡, 𝐿)-weakly consistent if the fol-

lowing holds whenever at most 𝑡 parties are corrupted: if

an honest party outputs a value 𝜎 ∈ {0, 1}𝜆 ∪ {⊥RB} in
epoch ℓ ∈ [𝐿], then all honest parties output 𝜎 in epoch ℓ .

• Weak Availability. RB is (𝑡, 𝐿)-weakly available if the fol-

lowing holds whenever at most 𝑡 parties are corrupted:

for each ℓ ∈ [𝐿], every honest party outputs a value 𝜎ℓ ∈

{0, 1}𝜆 ∪ {⊥RB} in epoch ℓ . Furthermore, the sequence

𝜎1, 𝜎2, . . . of beacon outputs has the following property:

for all ℓ ∈ J𝐿 − 𝑛K, any 𝑛 consecutive values 𝜎ℓ+1, . . . , 𝜎ℓ+𝑛
contain at most 𝑡 values ⊥RB .

• Weak Bias-Resistance.RB is (𝜀,𝑇 , 𝑡, 𝐿)-weakly bias-resistant
if it is (𝑡, 𝐿)-weakly available, (𝑡, 𝐿)-weakly consistent, and

the following holds for all algorithms A,D such that A cor-

rupts at most 𝑡 parties and both A andD run in time at most

𝑇 . Denote by ΣA,𝐿 the probability distribution induced by

the outputs of an honest party in an execution of RB until

epoch 𝐿 with A as adversary. And denote by 𝑈𝐿 the uni-

form distribution over the 𝐿-times Cartesian product of

{0, 1}𝜆 ∪ {⊥RB} with itself. Then��
Pr[D(𝜎) = 1] − Pr[D(𝑢) = 1]

�� ≤ 𝜀,
where the probabilities are taken over all (𝜎,𝑢) ∈ ΣA,𝐿 ×𝑈𝐿
such that 𝑢𝑖 = ⊥RB whenever 𝜎𝑖 = ⊥RB for 𝑖 ∈ [𝐿]. This
captures the condition that 𝑢 is sampled from a distribution
with ⊥RB at all points where 𝜎 ← ΣA,𝐿 also has ⊥RB .

• 𝑑-Weak Unpredictability. RB is (𝜀,𝑇 , 𝑡, 𝐿, 𝑑)-weakly unpre-

dictable if it is (𝑡, 𝐿)-weakly available, (𝑡, 𝐿)-weakly con-

sistent, and the following holds for all algorithms A that

corrupt at most 𝑡 parties and run in time at most 𝑇 : A’s ad-
vantage in the 𝑑-weak unpredictability experiment defined

hereafter is at most 𝜀.

We say that RB is a (𝜀,𝑇 , 𝑡, 𝐿, 𝑑)-weakly secure randomness beacon

protocol if it is (𝜀,𝑇 , 𝑡, 𝐿)-weakly bias-resistant, (𝜀,𝑇 , 𝑡, 𝐿, 𝑑)-weakly
unpredictable, (𝑡, 𝐿)-weakly available, and (𝑡, 𝐿)-weakly consistent.

Definition C.8 (𝑑-Weak Unpredictability for RB). Let RB be

an epoch-based protocol as defined above. For an algorithm A
and an ℓ ∈ [𝐿], define the 𝑑-weak unpredictability experiment

𝑑-wUnpredA,ℓRB,𝑡 as follows:

• Offline Phase. Initialize sets C = {} and H = P \ C. Run
the parameter generation algorithm on input 𝜆 to obtain

par . Run A on input par .
• Corruption Queries. At any point of the experiment, A may

corrupt a party 𝑃𝑖 by submitting an index 𝑖 ∈ P. In this

case, return the internal state of 𝑃𝑖 and set H = H \ {𝑖},
C = C ∪ {𝑖}. Henceforth, A controls 𝑃𝑖 .

• Online Phase I. Run RB for ℓ epochs until the first honest

party outputs value 𝜎ℓ . Note that A may also participate in
the protocol through the corrupt parties. Let 𝜎 = (𝜎1, . . . , 𝜎ℓ)
denote its output values and𝑇ℓ its protocol transcript up to

that point. Run A on input (𝑇ℓ , 𝜎).
• Online Phase II.When A outputs a value (𝜎′𝑒 , 𝑒) for an 𝑒 > ℓ ,

run RB for 𝑒 − ℓ further epochs to obtain the output values

(𝜎ℓ+1, . . . , 𝜎𝑒). Again, A may participate in the execution of

RB through the corrupt parties.

• Output Determination. Return 1 if |C| ≤ 𝑡 , 𝑒 ≥ ℓ + 𝑑 , 𝐿 ≥ 𝑒 ,
and 𝜎′𝑒 = 𝜎𝑒 ≠ ⊥RB . Otherwise, return 0.

Define the advantage of A in the above experiment as

AdvARB = Pr[𝑑-wUnpredA,ℓRB,𝑡 = 1],
where the probability is taken over all possible executions of RB
and all ℓ ≤ 𝐿.

23

Renas Bacho & Julian Loss

D ON THE HARDNESS OF CO-OMDL IN THE
GENERIC GROUP MODEL

In this appendix, we provide a proof for the hardness of the Co-

OMDL assumption in the generic group model (GGM). We assume

that the groups are equipped with a pairing 𝑒 : G1 × G2 → G𝑇 . In
that case the adversary has access to an additional pairing evalu-

ation oracle that on input (𝑢, 𝑣) ∈ G1 × G2 returns 𝑒 (𝑢, 𝑣) ∈ G𝑇 .
Our proof is inspired from the original proof for the hardness of

the standard OMDL assumption in the GGM of Bauer et al. [8].

D.1 Do we really need the Co-OMDL
Assumption? An Heuristic Argument

We give two examples from the literature (including this work)

and explain why the ordinary OMDL assumption does not suffice

anymore to provide adaptive security in the context of asymmet-

ric pairings. We believe this observation to be of high significance,

since actual implementations of pairing-based schemes do use asym-

metric pairings for efficiency reasons.

Asymmetric PVSS Schemes. In our warm-up chapter, we gave a re-

duction from plain unpredictability of Schoenmakers’ PVSS (which

uses a group G with generators 𝑔, ℎ and no pairing is involved) to

the hardness of 𝑛-OMDL. In the setting of Type 3 asymmetric pair-

ing, our reduction cannot rely on the𝑛-OMDL assumption anymore.

We explain the reason for that. Summarizing our proof for Schoen-

makers’ PVSS in Appendix A.1, the reduction embeds the OMDL

challenge 𝜉 in the second generator ℎ, the public keys pk
1
, . . . , pk𝑛

of parties, or the degree-𝑡 polynomial 𝑓 ∈ Z𝑝 [𝑋] chosen by the

dealer/challenger (in the plain unpredictability notion, there is no

aggregation involved). For the simulation to work, it needs to gener-

ate the commitments 𝑔𝑓 (𝑖) and encrypted shares pk𝑓 (𝑖)
𝑖

for 𝑖 ∈ [𝑛].
In the case where the reduction embeds 𝜉 into the polynomial 𝑓 , it

relies on the knowledge of the discrete logarithm of ℎ to base 𝑔 to

compute the elements ℎ𝑓 (𝑖) and from that generate the encrypted

shares. This strategy also works for symmetric (Type 1) pairings

and Type 2 pairings where there is an efficient way to map between

𝑔 and ℎ, even if these elements live in different source groups. How-

ever, for Type 3 pairingsG1×G2 → G𝑇 , there is no such connection
between generators 𝑔 ∈ G1 and ℎ ∈ G2 from different groups. In

particular, the reduction is not able to compute ℎ𝑓 (𝑖) from 𝑔𝑓 (𝑖)

(and vice versa) and thus fails. This issue can be resolved by relying

instead on the Co-OMDL assumption that simultaneously provides

challenges with the same exponents in both source groups.

Asymmetric Threshold BLS. We recall the threshold BLS signature

scheme. Given a symmetric pairing 𝑒′ : G ×G→ G′ and a random

oracle H : {0, 1}∗ → G, a threshold BLS signature share 𝜎𝑖 from

party 𝑃𝑖 on a message𝑚 is computed as 𝜎𝑖 = H(𝑚)sk𝑖 . Verification
of 𝜎𝑖 is done by checking the equality 𝑒′ (𝑔, 𝜎𝑖) = 𝑒′ (pk𝑖 ,H(𝑚)).
Now, the security reduction of Bacho and Loss [7] embeds the

OMDL instance either in the public keys pk
1
, . . . , pk𝑛 of parties or

in the answers H(𝑚) to random oracle queries. In the first case,

signature shares 𝜎𝑖 on a message𝑚 are simulated by sampling 𝑟 ←
Z∗𝑝 uniformly at random and returning H(𝑚)sk𝑖 = (𝑔sk𝑖)𝑟 = pk𝑟𝑖 . In
the asymmetric version of the threshold BLS scheme, the underlying

pairing 𝑒 : G1×G2 → G𝑇 is of Type 3with public keys pk𝑖 ∈ G1 and
hash values H(𝑚) ∈ G2. Since there is no connection between the

two source groups, signature shares cannot be simulated as before

if the secret keys are unknown to the reduction. More concretely, a

signature share on𝑚 is 𝜎𝑖 = H(𝑚)sk𝑖 = ℎsk𝑖𝑟 for an 𝑟 ∈ Z∗𝑝 and the

generator ℎ ∈ G2. Obviously, there is no way to compute this value

unless ℎsk𝑖 is known. However, the public keys 𝑔sk𝑖 are elements

in G1 and do not help in the Type 3 setting. Consequently, the

simulation fails. This issue could potentially be resolved by relying

instead on the Co-OMDL assumption that simultaneously provides

challenges with the same exponents in both source groups.

D.2 Proof of Hardness of Co-OMDL in GGM
TheoremD.1. LetA be an adversary that (𝜀,𝑇)-solves the COMDL

problem of degree 𝑛 in the generic group model, making at most𝑚
group operation queries and 𝑞𝑒 pairing evaluation queries. Then

𝜀 ≤ 2𝑚2

𝑝 −𝑚2
+ 4(𝑚 + 𝑞𝑒)2

𝑝 − 4(𝑚 + 𝑞𝑒)2
+ 1

𝑝
.

Proof. Let 𝑒 : G1 × G2 → G𝑇 be a pairing of prime order 𝑝

cyclic groups with generators 𝑔 ∈ G1, ℎ ∈ G2, and 𝑒 (𝑔, ℎ) ∈ G𝑇 .
And let A be an adversary that tries to break 𝑛-COMDLA defined

for 𝑒 : G1×G2 → G𝑇 . We consider the generic group model (GGM).

In the GGM, the adversary does not see actual group elements of

the form 𝑔𝑥 ∈ G1 with 𝑥 ∈ Z𝑝 , but encodings Ξ1 (𝑥) of them, where

Ξ1 : Z𝑝 → {0, 1}log(𝑝) is a random injective function correspond-

ing to the group G1. The same holds true for the groups G2 and G𝑇
with encoding functions Ξ2 and Ξ𝑇 , respectively. Furthermore, the

adversary cannot compute the encoding of 𝑔𝑥 · 𝑔𝑦 from encodings

of 𝑔𝑥 and 𝑔𝑦 . Instead, it is provided with an group operation oracle

that on input the pair (Ξ1 (𝑥),Ξ1 (𝑦)) returns Ξ1 (𝑥 + 𝑦). The same

holds true for the groupG2 andG𝑇 with its encoding functions. Ad-

ditionally, the adversary can query the pairing on evaluations. That

is, on input a pair (Ξ1 (𝑎),Ξ2 (𝑏)) which corresponds to (𝑔𝑎, ℎ𝑏),
the oracle returns Ξ𝑇 (𝑎𝑏) which corresponds to 𝑒 (𝑔, ℎ)𝑎𝑏 ∈ G𝑇 .

In their proof, the authors of [8] observed the following. In

general GGM proofs, the challenger replaces the secrets (that the

adversary is supposed to find) by indeterminates. For instance in

the case of the discrete logarithm problem, the challenger provides

the adversary with an encoding Ξ(𝑋) of a group element 𝑔𝑋 where

𝑋 ∈ Z𝑝 [𝑋] is an undefined variable instead of an actual value

𝑥 ∈ Z𝑝 . As long as the simulation succeeds, the adversary can-

not distinguish between 𝑔𝑋 and an actual group element 𝑔𝑥 . The

idea is then, after the adversary outputs a solution 𝑥 ′ ∈ Z𝑝 to the

discrete logarithm problem 𝑔𝑋 , the challenger chooses an actual

value 𝑥 ← Z𝑝 uniformly at random to replace 𝑋 with 𝑥 . How-

ever, an issue arises. During the game the adversary queried the

group operation oracle GC to compute several group elements, e.g.

𝑔𝑋 ·𝑔𝑋 , 𝑔 ·𝑔𝑋 , (𝑔𝑋)7 ·𝑔5, . . . (note that the adversary can only query
the oracle GC on input two already computed group elements 𝐴, 𝐵

along with a bit 𝑏 ∈ {−1, 1} to compute 𝐴 · 𝐵𝑏 , but we simply as-

sume the adversary already computed the elements (𝑔𝑋)7, 𝑔5 etc.).
More general, we assume that the adversary computed the group

elements 𝑔𝑃𝑖 (𝑋) for 𝑖 ∈ [𝑚] (where 𝑚 denotes the total number

of group operation oracle queries) for polynomials 𝑃𝑖 ∈ Z𝑝 [𝑋]
of degree 1. Obviously, different polynomials 𝑃𝑖 ≠ 𝑃 𝑗 correspond

to different group elements and thus different encodings 𝜉𝑖 ≠ 𝜉 𝑗
that the challenger provided the adversary with. However, if the

24

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

variable 𝑋 is set to be defined 𝑋 := 𝑥 for the actual (uniformly

random) value 𝑥 ∈ Z𝑝 , it could happen that there are polynomials

𝑃𝑖 ≠ 𝑃 𝑗 such that 𝑃𝑖 (𝑥) = 𝑃 𝑗 (𝑥). In that case, the adversary de-

tects incorrect behavior and thus the simulation fails. However, by

the well-known Schwartz-Zippel lemma, for a fixed pair (𝑃𝑖 , 𝑃 𝑗)
of polynomials 𝑃𝑖 ≠ 𝑃 𝑗 , the probability that 𝑃𝑖 (𝑥) = 𝑃 𝑗 (𝑥) is the
probability that (𝑃𝑖 −𝑃 𝑗) (𝑥) = 0, which is at most 1/𝑝 by Schwartz-

Zippel, since 𝑥 ← Z𝑝 is chosen uniformly at random (after the

polynomials 𝑃𝑖 , 𝑃 𝑗 are defined). As a consequence, when consid-

ering all O(𝑚2) pairs of polynomials (𝑃𝑖 , 𝑃 𝑗) with (𝑖, 𝑗) ∈ [𝑚]2
and 𝑖 ≠ 𝑗 , Schwartz-Zippel tells us that the simulation fails with

probability at most𝑚2/𝑝 which is negligible. This is the original

proof idea of Shoup [73].

However, Bauer et al. observed that this technique does not suf-

fice anymore in the OMDL game. Again, the strategy is to replace

the 𝑛-OMDL challenge ®𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛𝑝 with independent

indeterminates ®𝑋 = (𝑋1, . . . , 𝑋𝑛) ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] from the 𝑛-

dimensional ring Z𝑝 [𝑋1, . . . , 𝑋𝑛]. In contrast to the discrete loga-

rithm (DL) game, the adversary has access to a discrete logarithm

oracle DL𝑔 that it can query on (encodings 𝜉𝑖 = Ξ(𝑎𝑖) of) group
elements 𝐴 = 𝑔𝑎𝑖 to obtain 𝑎𝑖 ∈ Z𝑝 . In particular, if it queries

the oracle DL𝑔 on e.g. a challenge element 𝑔𝑋𝑖
, the challenger is

forced to return an actual value 𝑥𝑖 ∈ Z𝑝 and thus the adversary

gains (partial) information on the challenge ®𝑥 . Hence, the adversary
can choose the polynomials 𝑃𝑖 (after obtaining 𝑥𝑖) dependent on

𝑥𝑖 and for this reason the Schwartz-Zippel lemma does not apply

anymore, since the polynomials 𝑃1, . . . , 𝑃𝑚 may not be independent

from (𝑥1, . . . , 𝑥𝑛) anymore. However, the idea is that even though

the adversary gains information on ®𝑥 via its DL𝑔 queries, the total

information can only encode a space of dimension 𝑞 < 𝑛 in Z𝑛𝑝
where 𝑞 is the total number of queries to DL𝑔 (when we think of

one DL𝑔 query giving the adversary one information on ®𝑥). Let us
informally encode this information in the space L ⊂ Z𝑛𝑝 . Following
this, the intuition is that, when sampling ®𝑥 uniformly at random

(when the adversary queries DL𝑔 on a newly 𝑔𝑋𝑖
, the challenger

simply returns a uniformly random 𝑥𝑖 ← Z𝑝), there is still one

dimension in the vector left that is completely independent from all

the polynomials 𝑃1, . . . , 𝑃𝑚 and thus by (some form of) Schwartz-

Zippel the probability that a collision appeared somewhere outside

of the space L should be at most 1/𝑝 . Indeed, the authors provide
a technical lemma that exactly captures the above intuition and

can be seen as some form of the Schwartz-Zippel lemma that deals

with polynomials of degree 1.

We will follow that idea. However, in our case, since there is a

pairing 𝑒 : G1 × G2 → G𝑇 involved, we have to deal with poly-

nomials of degree 2 that appear in the target group G𝑇 . Precisely,

when the adversary obtains encodings of polynomials 𝑃 (®𝑋) via
the group operation oracle GC1 in the group G1, 𝑄 (®𝑋) via GC2

in G2 (recall that ®𝑋 = (𝑋1, . . . , 𝑋𝑛) is the list of indeterminates),

then it can query the pairing oracle on (𝑔𝑃 (®𝑋) , ℎ𝑄 (®𝑋)) to obtain

𝑒 (𝑔𝑃 (®𝑋) , ℎ (®𝑋)) = 𝑒 (𝑔, ℎ) (𝑃𝑄) (®𝑋) where 𝑃𝑄 is now a polynomial of

degree 2. We will deal with this issue by carefully keeping track of

three different lists, each for one group G1,G2,G𝑇 , for the simula-

tion to go through. We also provide a generalization of their tech-

nical lemma to incorporate polynomials of degree 2. However, the

structure and simulation of our proof follows the one of Bauer et al.

with some adaptions to deal with the pairing. Our proof progresses

through a series of games that we describe now. In the following,

we write 𝐸𝑃 := {0, 1}log(𝑝) for the space of strings and we let gen-

erators be 𝑔1 := 𝑔 ∈ G1, 𝑔2 := ℎ ∈ G2, and 𝑔𝑇 := 𝑒 (𝑔, ℎ) ∈ G𝑇 . For
a set 𝐿 = {𝑃1, . . . , 𝑃𝑞} ⊂ Z𝑝 [𝑋1, . . . , 𝑋𝑛] of polynomials in 𝑛 vari-

ables, we write Span(𝐿) for the Z𝑝 -subspace spanned by 𝑃1, . . . , 𝑃𝑞 ,
that is Span(𝐿) := {𝛼1𝑃1 + . . . + 𝛼𝑞𝑃𝑞 | 𝛼𝑖 ∈ Z𝑝 }.

Game0: This is the real game in the generic group model. The

challenger C initializes the challenge counter 𝑛 := 0, the discrete

logarithm oracle counter 𝑞 := 0, a group operation oracle counter

𝑐 𝑗 := 0 for the group G𝑗 for each group index 𝑗 ∈ {1, 2,𝑇 }, the
pairing evaluation oracle counter 𝑞𝑒 := 0, the challenge vector

®𝑥 := (), and the field element 𝑎0, 𝑗 := 1 corresponding to the gen-

erator 𝑔 𝑗 ∈ G𝑗 for each 𝑗 ∈ {1, 2,𝑇 }. The adversary has access to

an OMDL challenge oracle Chal, a discrete logarithm oracle DL𝑔
in the group G1, a group operation oracles GC𝑗 in the group G𝑗

for each 𝑗 ∈ {1, 2,𝑇 }, and a pairing oracle 𝑒 (−,−). For 𝑗 ∈ {1, 2,𝑇 },
the challenger C has an encoding function Enc𝑗 that implements

an injective random function Ξ𝑗 : Z𝑝 → 𝐸𝑝 to return encodings

of group elements (in the generic group model). For this, the chal-

lenger initializes listsM 𝑗 for 𝑗 ∈ {1, 2,𝑇 } that keeps track of already
assigned encodings 𝜉𝑖, 𝑗 := Ξ𝑗 (𝑎𝑖) for a field element 𝑎𝑖 ∈ Z𝑝 corre-

sponding to the group element 𝑔
𝑎𝑖
𝑗
∈ G𝑗 . Each time the function

Enc𝑗 is called on a field element 𝑎𝑖 ∈ Z𝑝 , it returns 𝜉𝑖, 𝑗 if 𝑎𝑖 is
already assigned an element 𝜉𝑖, 𝑗 . Otherwise, it returns a uniformly

random 𝜉𝑖, 𝑗 ← 𝐸𝑝 \ {𝜉𝑘,𝑗 }𝑘<𝑖 and updatesM 𝑗 :=M 𝑗 ⊔ {(𝜉𝑖, 𝑗 , 𝑎𝑖)}
where ⊔ means that the pair (𝜉𝑖, 𝑗 , 𝑎𝑖) is appended to the listM 𝑗

with associated index 𝑖 . For each 𝑗 ∈ {1, 2,𝑇 }, these listsM 𝑗 are

initially empty and the challenger inserts uniformly at random

chosen 𝜉0, 𝑗 ← 𝐸𝑝 strings for to represent the generators 𝑔 𝑗 ∈ G𝑗 ,

i.e. it updatesM 𝑗 := M 𝑗 ⊔ {(𝜉0, 𝑗 , 1)} for each 𝑗 . By abuse of no-

tation, we may sometimes write 𝑎𝑖 ∈ M 𝑗 or 𝜉𝑖, 𝑗 ∈ M 𝑗 to mean

(𝜉𝑖, 𝑗 , 𝑎𝑖) ∈ M 𝑗 . If the adversary calls the group operation oracle

GC𝑗 for an 𝑗 ∈ {1, 2,𝑇 } on input (𝜉, 𝜉 ′, 𝑏) where 𝑏 ∈ {0, 1} is a
bit (which indicates if the actual group operation 𝐴 · 𝐴′ should
be computed or the inverse 𝐴 · 𝐴−1), the challenger returns ⊥ if

𝜉 ∉ M 𝑗 or 𝜉
′ ∉ M 𝑗 (because the group operation can only be

queried on already known group elements). Otherwise, it updates

the group operation counter 𝑐 𝑗 := 𝑐 𝑗 +1 and returns Enc𝑗 (𝑎𝑘) where
𝑎𝑘 := 𝑎𝑖 + (−1)𝑏𝑎′𝑖 where 𝑘 := 𝑐 𝑗 and 𝑎𝑖 , 𝑎

′
𝑖
are the representatives

for 𝜉, 𝜉 ′, respectively. This captures the idea that the challenger

keeps track of already returned (encodings of) group elements so

that it does not assign different values 𝜉𝑖, 𝑗 ≠ 𝜉
′
𝑖, 𝑗

to the same group

element. Further, if the adversary calls the pairing oracle on in-

put (𝜉𝑖,1, 𝜉 𝑗,2) corresponding to the pair (𝑔𝑎𝑖
1
, 𝑔

𝑎 𝑗

2
) ∈ G1 × G2, the

challenger returns ⊥ if 𝜉𝑖,1 ∉ M1 or 𝜉 𝑗,2 ∉ M2 (one of the two

input elements are not assigned and thus unknown to the adver-

sary at this point). Otherwise, it updates 𝑐𝑇 := 𝑐𝑇 + 1 and returns

Enc𝑇 (𝑎𝑖𝑎 𝑗) where the value 𝑎𝑖𝑎 𝑗 ∈ Z𝑝 is considered modulo 𝑝 as

usual. If the adversary calls the challenge oracle Chal, update the
challenge counter𝑛 := 𝑛+1, sample a challenge 𝑥𝑛 ← Z𝑝 uniformly

at random, update the group operation counters 𝑐1 := 𝑐1 + 1 and
𝑐2 := 𝑐2 + 1 (since the challenge is provided in both source groups

G1 and G2), return Enc1 (𝑎𝑐1) and Enc2 (𝑎𝑐2) where 𝑎𝑐1 := 𝑥𝑛 and

𝑎𝑐2 := 𝑥𝑛 , and update the challenge vector ®𝑥 ⊔ {𝑥𝑛} (append the

25

Renas Bacho & Julian Loss

element 𝑥𝑛 at the end of the vector ®𝑥). This captures the idea that
the challenger samples a new random challenge 𝑥𝑛 (resulting in

the total challenge (𝑥1, . . . , 𝑥𝑛) up to that point), and returns (an

encoding of) the corresponding group elements in G1 and G2. Fi-
nally, if the adversary calls the discrete logarithm oracle DL𝑔 on

input 𝜉 (which operates in the group G1 only), return ⊥ if 𝜉 ∉M1

(that is, the element 𝜉 is unknown to the adversary or not in the

group G1). Otherwise, update the discrete logarithm oracle counter

𝑞 := 𝑞 + 1, set 𝑣 := 𝑎𝑖 where 𝑖 = min𝑘∈J𝑐1K{𝜉 = 𝜉𝑘,1}, and return 𝑣 .

This captures the idea that the challenger returns the to 𝜉 already

assigned value 𝑎𝑖 .

The following game is where we (acting as the challenger) intro-

duce polynomials and the set of polynomials 𝐿 ⊂ Z𝑝 [𝑋1, . . . , 𝑋𝑛]
that encodes the information the adversary gets through the dis-

crete logarithm oracle queries. Initially, the set 𝐿 is empty. For in-

stance, if the adversary queries DL𝑔 the first time on input Ξ1 (𝑋1)
corresponding to the group element 𝑔𝑋1

, we return a uniformly

random 𝑥1 ← Z𝑝 and update 𝐿 := 𝐿 ∪ {𝑋1 − 𝑥1}. If the adversary
queries DL𝑔 the second time on input Ξ1 (3𝑋1 +4), we are supposed
to return the element 3𝑥1 + 4. For this, we simply consider the

Z𝑝 -subspace Span(1, 𝐿) ⊂ Z𝑛𝑝 [𝑋1, . . . , 𝑋𝑛] spanned by 1 and the

polynomials in 𝐿. The composition 3𝑋1 + 4 = (3𝑥1 + 4) + 3(𝑋1 −𝑥1)
lets us return the value 3𝑥1 + 4 if DL𝑔 is queried on 3𝑋1 + 4. This
strategy just ensures that we do not sample a new uniform value

𝑥2 ← Z𝑝 to answer the discrete logarithm query on Ξ1 (3𝑋1 + 4).
In that case, the adversary would detect incorrect behavior directly.

Recollecting the idea of the GGM proof for the discrete logarithm

problem, the simulation aborts when there is a pair 𝑃𝑖 ≠ 𝑃 𝑗 such

that 𝑃𝑖 (®𝑥) = 𝑃 𝑗 (®𝑥). For the OMDL problem, the simulation of Bauer

et al. allow the existence of pairs 𝑃𝑖 ≠ 𝑃 𝑗 for which the current

knowledge of ®𝑥 allows to deduce 𝑃𝑖 (®𝑥) = 𝑃 𝑗 (®𝑥) (this is necessary,
since the adversary adaptively obtains information on ®𝑥 and thus

can construct such polynomials). However, if 𝑃𝑖 −𝑃 𝑗 ∉ Span(𝐿) and
still 𝑃𝑖 (®𝑥) = 𝑃 𝑗 (®𝑥), then the simulation should abort. On the other

hand, if 𝑃𝑖 − 𝑃 𝑗 ∈ Span(𝐿), then obviously 𝑃𝑖 (®𝑥) = 𝑃 𝑗 (®𝑥). Hence,
the event 𝑃𝑖 (®𝑥) = 𝑃 𝑗 (®𝑥) can be phrased as 𝑃𝑖 − 𝑃 𝑗 ∈ Span(𝐿) in
the OMDL game. As a further consequence, if a new polynomial 𝑃 𝑗
(which replaces the scalar 𝑎 𝑗 that corresponds to the group element

𝑔𝑎 𝑗
) is getting encoded, their simulation sets 𝜉 𝑗 := 𝜉𝑖 if there is an

index 𝑖 ∈ J 𝑗 − 1K such that 𝑃 𝑗 − 𝑃𝑖 ∈ Span(𝐿) (since this corre-

sponds to the event 𝑃𝑖 (®𝑥) = 𝑃 𝑗 (®𝑥) in the plain discrete logarithm

game). On the other hand, the simulation fails if there is a pair of

polynomials 𝑃𝑖 ≠ 𝑃 𝑗 such that 𝑃𝑖 − 𝑃 𝑗 ∈ Span(𝐿) but 𝜉𝑖 ≠ 𝜉 𝑗 . Since
we have now three groups and a pairing, this argument adapts

slightly. For this, we let 𝑃1,1, . . . , 𝑃𝑚1,1 be the polynomials the ad-

versary constructs in the groupG1, and 𝑃1,2, . . . , 𝑃𝑚2,2 the ones that

it constructs in G2, and 𝑃1,𝑇 , . . . , 𝑃𝑚𝑇 ,𝑇 the ones that it obtains in

G𝑇 . Note that the 𝑃𝑖,1 and 𝑃𝑖,2 are polynomials of degree 1, but

the 𝑃𝑖,𝑇 are polynomials of degree 1 or 2 because of the pairing.

In this case, the simulation fails if there is an ℓ ∈ {1, 2,𝑇 } with
a pair of polynomials 𝑃𝑖,ℓ ≠ 𝑃 𝑗,ℓ such that 𝑃𝑖,ℓ − 𝑃 𝑗,ℓ ∈ Span(𝐿)
but 𝜉𝑖,ℓ ≠ 𝜉 𝑗,ℓ . This will be the idea for the final game. But before

that, we will formally define an intermediate game that tells the

simulation to abort when it finds a collision among some 𝑃𝑖,ℓ ≠ 𝑃 𝑗,ℓ
evaluated at ®𝑥 while 𝑃𝑖,ℓ − 𝑃 𝑗,ℓ ∉ Span(𝐿). For this game, we will

derive a technical lemma that bounds the probability of simulation

failure and thus bounds the statistical distance betweenGame0 and
Game1. Afterwards, we will define the final game and show that

the intermediate and final game are equally distributed. Having

obtained that, we upper-bound the probability of the adversary in

winning the final game.

Game1: This is the intermediate game. We introduce polyno-

mials 𝑃𝑖, 𝑗 that replace the scalars 𝑎𝑖 , the set of polynomials 𝐿 ⊂
Z𝑝 [𝑋1, . . . , 𝑋𝑛] that encodes the information the adversary gets

through the discrete logarithm oracle queries, and the abort condi-

tion that tells the simulation to abort if it finds a collision among

a pair of distinct polynomials whose difference does not lie in the

span Span(𝐿) of 𝐿. Apart from that, there is no difference to the

previous game. For this reason, we will keep the following descrip-

tion short. The challenger C initializes as usual 𝑛 := 0, 𝑞 := 0,

𝑐 𝑗 := 0 for each 𝑗 ∈ {1, 2,𝑇 }, 𝑞𝑒 := 0, ®𝑥 := (). Additionally, the
challenger initializes polynomials 𝑃0, 𝑗 := 1 for 𝑗 ∈ {1, 2,𝑇 } instead
of scalars 𝑎0, 𝑗 and an initially empty set 𝐿 := ∅. The adversary has

access to the oracles Chal, DL𝑔 , GC𝑗 for 𝑗 ∈ {1, 2,𝑇 }, and 𝑒 (−,−).
For the encoding functions Enc𝑗 , the challenger has its bookkeep-
ing listsM 𝑗 for 𝑗 ∈ {1, 2,𝑇 } that keep track of already assigned

encodings 𝜉𝑖, 𝑗 := Ξ𝑗 (𝑃𝑖, 𝑗) for a polynomial 𝑃𝑖, 𝑗 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛]
corresponding to the group element 𝑔

𝑃𝑖,𝑗
𝑗
∈ G𝑗 . Additionally, the

challenger C checks for each new request Enc𝑗 (𝑃ℓ, 𝑗) if there exists
an already assigned polynomials 𝑃𝑖, 𝑗 with 𝑖 ∈ Jℓ − 1K such that

𝑃ℓ, 𝑗 − 𝑃𝑖, 𝑗 ∈ Span(𝐿). In that case, it sets 𝜉ℓ, 𝑗 := 𝜉𝑖, 𝑗 . (Otherwise,

it sets 𝜉ℓ, 𝑗 ← 𝐸𝑝 \M 𝑗 to a uniformly random string that has not

already been assigned). If the adversary calls the challenge ora-

cle Chal, update 𝑛 := 𝑛 + 1, sample a new indeterminate 𝑋𝑛 and

a value 𝑥𝑛 ← Z𝑝 uniformly at random (this value should help

the simulation to abort directly when it finds a collision), update

𝑐1 := 𝑐1 + 1 and 𝑐2 := 𝑐2 + 1 (since the challenge is provided in

both source groups G1 and G2), return Enc1 (𝑃𝑐1,1) and Enc2 (𝑃𝑐2,2)
where 𝑃𝑐1,1 := 𝑋𝑛 and 𝑃𝑐2,2 := 𝑋𝑛 , and update ®𝑥 ⊔ {𝑥𝑛}. On the

other hand, if there is a polynomial 𝑃𝑖, 𝑗 with 𝑖 ∈ Jℓ − 1K such that

𝑃ℓ, 𝑗 −𝑃𝑖, 𝑗 ∉ Span(𝐿) but with a collision 𝑃ℓ, 𝑗 (®𝑥) = 𝑃𝑖, 𝑗 (®𝑥), then the

simulation aborts the game. We will after the definition of this game

bound the probability that this happens. For 𝑗 ∈ {1, 2} with groups

G1,G2, the polynomials are of degree 1 so that the technical lemma

of Bauer et al. applies. However, in the case of G𝑇 , these polynomi-

als can be of degree 2, so that we have to come up with a new lemma

that captures also quadratic polynomials. To upper-bound the final

probability that a collision occurs in any of the three groups, we

simply sum up the individual probabilities. Continuing with the

game, if the adversary calls the group operation oracle GC𝑗 for an

𝑗 ∈ {1, 2,𝑇 } on input (𝜉, 𝜉 ′, 𝑏), the challenger updates 𝑐 𝑗 := 𝑐 𝑗 + 1
and returns Enc𝑗 (𝑃𝑘,𝑗) where 𝑃𝑘,𝑗 := 𝑃𝑖, 𝑗 + (−1)𝑏𝑃𝑖′, 𝑗 where 𝑘 := 𝑐 𝑗
and 𝑃𝑖, 𝑗 , 𝑃𝑖′, 𝑗 are the representatives for 𝜉, 𝜉

′
, respectively. (In case

one of the inputs is invalid/not already assigned, the challenger

returns⊥ as usual). If the adversary calls the pairing oracle on input

(𝜉𝑖,1, 𝜉 𝑗,2), the challenger returns ⊥ or it updates 𝑐𝑇 := 𝑐𝑇 + 1 and
returns Enc𝑇 (𝑃𝑖,1𝑃 𝑗,2). We point out that this is exactly the point

where the quadratic polynomials appear. Finally, if the adversary

calls the discrete logarithm oracle DL𝑔 on input 𝜉 (which operates

in the group G1 only), return ⊥ if the input is invalid and otherwise

26

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

do the following. Let 𝑖 ∈ J𝑐1K be such that 𝜉 = 𝜉𝑖,1 with correspond-

ing polynomial 𝑃𝑖,1. Set 𝑣 := 𝑃𝑖,1 (®𝑥). If 𝑃𝑖,1 ∈ Span(1, 𝐿), then let

𝑃𝑖,1 = 𝛼0 + 𝛼1𝑄1 + . . . + 𝛼𝑞−1𝑄𝑞−1 be the decomposition of 𝑃𝑖,1 in

the Z𝑝 -subspace Span(1, 𝐿), where the coefficients are 𝛼𝑘 ∈ Z𝑝 ,
and update 𝑣 := 𝛼0. Return 𝑣 , set 𝑄𝑞 := 𝑃𝑖,1 − 𝑣 and 𝐿 := 𝐿 ∪ {𝑄𝑞}.
This captures the idea that the challenger should be consistent with

its answers to discrete logarithm oracle queries in case the adver-

sary queries for redundant information (if A asks for the discrete

logarithm of 𝑋1 to obtain 𝑥1 and then asks for 3𝑋1, the challenger

should consistently return 3𝑥1).

In the following, we will upper-bound the probability that the

simulation aborts the game. That is, we will bound the probability

that for an 𝑗 ∈ {1, 2,𝑇 } there is a pair of polynomials 𝑃ℓ, 𝑗 ≠ 𝑃𝑖, 𝑗 such

that 𝑃ℓ, 𝑗 − 𝑃𝑖, 𝑗 ∉ Span(𝐿) but 𝑃ℓ, 𝑗 (®𝑥) = 𝑃𝑖, 𝑗 (®𝑥). For this, we will
need two lemmas. We introduce some notation. For a polynomial

𝑃 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛], we let the corresponding calligraphicP denote

the zero set of the polynomial in Z𝑛𝑝 , i.e. P := {®𝑥 ∈ Z𝑛𝑝 | 𝑃 (®𝑥) = 0}.

Lemma D.2. Let 𝐷1, . . . , 𝐷𝑚, 𝑄1, . . . , 𝑄𝑞+1 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] be
polynomials of degree 1. And let

C :=

(⋂
𝑖∈[𝑞]

Q𝑖
)
\
(⋃
𝑖∈[𝑚]

D𝑖

)
be the set of points at which all polynomials 𝑄𝑖 vanish but none
of the polynomials 𝐷𝑖 do. Assume that Q𝑞+1 ∩ C ≠ ∅ and that
(Q1 ∩ . . . ∩ Q𝑞) ⊈ Q𝑞+1. If ®𝑥 ∈ Z𝑛𝑝 is sampled uniformly at random
from the set C, then

𝑝 −𝑚
𝑝2

≤ Pr[𝑄𝑞+1 (®𝑥) = 0] ≤ 1

𝑝 −𝑚 .

Proof. See Bauer et al. [8] on page 9. □

Lemma D.3. Let 𝑄1, . . . , 𝑄𝑞 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] be polynomials of
degree 1, and let 𝐷1, . . . , 𝐷𝑚, 𝑄𝑞+1 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] be polynomials
of degree 𝑑𝑖 ∈ {1, 2}. And let

C :=

(⋂
𝑖∈[𝑞]

Q𝑖
)
\
(⋃
𝑖∈[𝑚]

D𝑖

)
be the set of points at which all polynomials 𝑄𝑖 vanish but none
of the polynomials 𝐷𝑖 do. Assume that Q𝑞+1 ∩ C ≠ ∅ and that
(Q1 ∩ . . . ∩ Q𝑞) ⊈ Q𝑞+1. If ®𝑥 ∈ Z𝑛𝑝 is sampled uniformly at random
from the set C, then

𝑝 − 4𝑚
𝑝2

≤ Pr[𝑄𝑞+1 (®𝑥) = 0] ≤ 4

𝑝 − 4𝑚 .

Proof. Since ®𝑥 is sampled uniformly at random from the above

non-empty set C, it is Pr[®𝑥 ∈ Q𝑞+1] = |Q𝑞+1 ∩ C|/|C|. In the fol-

lowing, we bound both these set sizes. We begin with C. In the

following, we write F𝑝 := Z𝑝 for the field of 𝑝 elements.

We let Q := ∩𝑖∈[𝑞]Q𝑖 be the affine space with dimension 𝑑 (note

that the polynomials 𝑄1, . . . , 𝑄𝑞 are of degree 1). By assumption

we know that Q is non-empty, otherwise C would be empty. In

particular, Q contains 𝑝𝑑 elements. We write the set C as

C = Q \
(⋃
𝑖∈[𝑚]

(Q ∩ D𝑖)
)
.

For an 𝑖 ∈ [𝑚], we want to upper-bound the size of the set Q ∩ D𝑖

and at the end sum up over all 𝑖 ∈ [𝑚] to obtain a bound on C.
For this, we fix an 𝑖 ∈ [𝑚] and consider Q ∩ D𝑖 . There are two

cases two consider: (i) the polynomial 𝐷𝑖 is of degree 1, and (ii) the

polynomial 𝐷𝑖 is of degree 2. The first case is easy to handle, which

we do now. Obviously, Q cannot be contained in D𝑖 , otherwise

we would get C = ∅. Therefore, either Q ∩ D𝑖 = ∅ or Q ∩ D𝑖 is

of dimension 𝑑 − 1 (since 𝐷𝑖 defines a hyperplane in F
𝑛
𝑝). In both

cases, the space contains at most 𝑝𝑑−1 elements. And as a result,

we obtain by summing over all 𝑖 ∈ [𝑚] the bound
𝑝𝑑 −𝑚𝑝𝑑−1 ≤ |C| ≤ 𝑝𝑑 . (1)

The second case (ii) is more complicated, since 𝐷𝑖 does not define

a hyperplane anymore but a hypersurface of degree 2 and linear

algebraic methods do not apply anymore (as was done above for

the case where 𝐷𝑖 is of degree 1). Additionally, since 𝐷𝑖 defines a

multivariate polynomial of degree 2, its vanishing set intersection

with Q can contain more points if 𝐷𝑖 was of degree 1. As a result,

the union over the sets Q ∩ D𝑖 could be close to Q so that their

set-theoretic difference C could be very small (e.g. of size 1). This,

however, would result in a lower-bound |C| ≥ 1 which would have

a devastating effect on our probability bound, since that would yield

Pr[®𝑥 ∈ Q𝑞+1] = |Q𝑞+1 ∩ C|/|C| ≤ 1, giving us no way to properly

bound the probability of simulation failure in our security game.

Our intuition, however, tells us that the set Q ∩ D𝑖 for a degree 2

polynomial 𝐷𝑖 should only be about twice (or some other constant

factor) as big as if 𝐷𝑖 was of degree 1. Indeed, we back up this

intuition by escaping the realm of linear algebra to enter the realm

of algebraic geometry. In the following, let 𝐷𝑖 be a polynomial of

degree 2 and let F𝑝 be the algebraic closure of the field F𝑝 . We

will pass to the 𝑛-dimensional projective space P𝑛 (F𝑝) over the
field F𝑝 to analyze the zero set Q ∩ D𝑖 . In order to do so, the

polynomials 𝑄1, . . . , 𝑄𝑞 and 𝐷𝑖 are homogenized and considered

in F𝑝 [𝑋1, . . . , 𝑋𝑛, 𝑋0] where 𝑋0 is a new variable that homogenizes

the polynomials. Now we can do algebraic geometry. We denote by

𝑑 ≤ 𝑛−𝑞 the dimension of the variety Q which is simply a complete

intersection of hyperplanes. Again, Q cannot be contained in D𝑖 ,

otherwise we would get C = ∅. Therefore, either it is Q∩D𝑖 = ∅ or
Q ∩ D𝑖 defines a projective variety of dimension 𝑑 − 1. The reason
for the latter is: Since Q ⊈ D𝑖 and Q ∩ D𝑖 ≠ ∅, the set Q ∩ D𝑖

is a proper closed subvariety of Q and thus of dimension < 𝑑 (see

any textbook on algebraic geometry, e.g. Hartshorne [55]). On the

other hand, since any new equation cuts out at most one dimension,

and D𝑖 is defined by one equation, the intersection Q ∩ D𝑖 drops

by at most one dimension (can also see Gathmann [46]). Since

we want to upper bound the size of Q ∩ D𝑖 , we ignore the case

Q ∩ D𝑖 = ∅ of empty intersection (anyway, this gives the trivial

bound |Q ∩D𝑖 | ≤ 0). An important tool in the study of F𝑝 -rational
points on an algebraic variety is Bezout’s inequality [27, 45] which

states that for two (projective) varieties 𝑉 and𝑊 , the following

inequality holds:

deg(𝑉 ∩𝑊) ≤ deg(𝑉) · deg(𝑊) .
For our variety Q ∩ D𝑖 this gives a degree of at most 2, since Q
is defined by polynomials of degree 1 and D𝑖 by a polynomial of

degree 2. A long line of works in mathematics has studied estimates

on the number of F𝑝 -rational points on a projective variety𝑉 ⊂ P𝑛 ,
27

Renas Bacho & Julian Loss

which even goes back to the fundamental work of Deligne [36].

Extending classical results [61], Cafure and Matera [22] find an

elementary bound on this number depending on the degree 𝛿 and

dimension 𝑟 of 𝑉 .

Theorem D.4. Let 𝑉 ⊂ P𝑛 (F𝑝) be a projective variety of dimen-
sion 𝑟 and degree 𝛿 . Then the following estimate on the number𝑉 (F𝑝)
of F𝑝 -rational points on 𝑉 holds:

|𝑉 (F𝑝) | ≤ 𝛿 · |P𝑟 (F𝑝) | = 𝛿 (𝑝𝑟 + . . . + 𝑝 + 1) .

In our case, we have the degree 𝛿 = deg(Q ∩ D𝑖) ≤ 2 and the

dimension 𝑟 = dim(Q ∩ D𝑖) = 𝑑 − 1. Given the above bound, we

find the resulting bound over F𝑝 ,

|Q ∩ D𝑖 | ≤ 𝛿 (𝑝𝑑−1 + . . . + 𝑝 + 1) ≤ 2𝛿𝑝𝑑−1 ≤ 4𝑝𝑑−1 .

As a result, we obtain by summing over all 𝑖 ∈ [𝑚] the bound
𝑝𝑑 − 4𝑚𝑝𝑑−1 ≤ |C| ≤ 𝑝𝑑 . (2)

Next, we want to bound the size |Q𝑞+1 ∩C|. We define the intersec-

tion set Q′ := Q ∩ Q𝑞+1. Again, there are two cases two consider:

(i) the polynomial 𝑄𝑞+1 is of degree 1, and (ii) the polynomial 𝑄𝑞+1
is of degree 2. The first case is easy to handle, which we do now. By

assumption Q ⊈ Q𝑞+1, and therefore Q𝑞+1 cuts out one dimension

of Q, i.e. dim(Q′) = 𝑑 − 1 where as before 𝑑 := dim(Q). For a fixed
𝑖 ∈ [𝑚], using the same techniques as before applied to Q′ now
(instead of Q), we find the bound

𝑝𝑑−1 − 4𝑚𝑝𝑑−2 ≤ |Q𝑞+1 ∩ C| ≤ 𝑝𝑑−1 . (3)

In the second case, we directly pass to the projective space P𝑛 over

the algebraic closure F𝑝 . The only difference now is that we directly

apply Theorem D.4 to the variety Q′ (which is now of degree 2 by

Bezout) and then to the varieties Q′ ∩ D𝑖 (which is now of degree

4 by Bezout). With the updated degrees of the respective varieties,

the same calculation as before gives

4𝑝𝑑−1 − 8𝑚𝑝𝑑−2 ≤ |Q𝑞+1 ∩ C| ≤ 4𝑝𝑑−1 . (4)

Taking all bounds (1)-(4) together, we finally obtain

𝑝𝑑 − 4𝑚𝑝𝑑−1 ≤ |C| ≤ 𝑝𝑑 ,

𝑝𝑑−1 − 4𝑚𝑝𝑑−2 ≤ |Q𝑞+1 ∩ C| ≤ 4𝑝𝑑−1 .

Combining these identities, we obtain

𝑝𝑑−1 − 4𝑚𝑝𝑑−2

𝑝𝑑
≤
|Q𝑞+1 ∩ C|
|C| ≤ 4𝑝𝑑−1

𝑝𝑑 − 4𝑚𝑝𝑑−1

⇐⇒ 𝑝 − 4𝑚
𝑝2

≤
|Q𝑞+1 ∩ C|
|C| ≤ 4

𝑝 − 4𝑚 .

This completes the proof of our technical lemma. □

We continue with our sequence of games. We now compare the

statistical distance ofGame0 andGame1. Recall that the simulation

in Game1 aborts when it finds a collision among a pair of distinct

polynomials in one of the groups G1,G2,G𝑇 . More concretely, let

us for 𝑗 ∈ {1, 2,𝑇 } define the event 𝐹 𝑗 as: There exists an 𝑖 ∈ J𝑐 𝑗 −1K
such that 𝑃𝑐 𝑗 , 𝑗 (®𝑥) = 𝑃𝑖, 𝑗 (®𝑥) and 𝑃𝑐 𝑗 , 𝑗 − 𝑃𝑖, 𝑗 ∉ Span(𝐿). Since the
group operation oracles are called at most𝑚 times, we get

AdvAGame0 ≤Adv
A
Game1 +𝑚 Pr[𝐹1] +𝑚 Pr[𝐹2]

+ (𝑚 + 𝑞𝑒) Pr[𝐹3] . (♠)

We upper-bound the probability Pr[𝐹 𝑗] that event 𝐹 𝑗 happens. Be-
fore a call to Enc𝑗 , the oracle defines 𝑃𝑐 𝑗 , 𝑗 . We fix 𝑗 ∈ {1, 2,𝑇 }
and consider a fixed 𝑖 ∈ J𝑐 𝑗 − 1K and let 𝑃 𝑗 := 𝑃𝑐 𝑗 , 𝑗 − 𝑃𝑖, 𝑗 . We

want to use our two technical lemmas to bound the probability that

𝑃 𝑗 (®𝑥) = 0 while 𝑃 𝑗 ∉ Span(𝐿). Therefore, we let 𝐿 := {𝑄1, . . . , 𝑄𝑞}
with the𝑄𝑖 ’s being defined as in Game1 and𝑄𝑞+1 := 𝑃 𝑗 . According
to Bauer et al., we further observe that the adversary A knows

𝑃𝑖1, 𝑗 (®𝑥) ≠ 𝑃𝑖2, 𝑗 (®𝑥) when 𝜉𝑖1, 𝑗 ≠ 𝜉𝑖2, 𝑗 . By writing 𝐷®𝑖 := 𝑃𝑖1, 𝑗 − 𝑃𝑖2, 𝑗
for ®𝑖 ∈ 𝐼 := {(𝑖1, 𝑖2) ∈ J𝑐 𝑗 − 1K2 | 𝜉𝑖1, 𝑗 ≠ 𝜉𝑖2, 𝑗 }, we know that A
knows 𝐷®𝑖 (®𝑥) ≠ 0. Using previously defined notation, we get that

®𝑥 ∈ C :=

(⋂
𝑖∈[𝑞]

Q𝑖
)
\
(⋃
𝑖∈𝐼
D𝑖

)
.

The same argumentation as in [8] on page 17ff allows us to use

our technical lemmas. Since for 𝑗 ∈ {1, 2} in the group G𝑗 all

appearing polynomials are of degree 1, we can directly apply the

more straightforward Lemma D.2. In the case 𝑗 = 𝑇 for the group

G𝑇 the appearing polynomials can be of degree 2, so that we need

to apply the more complicated Lemma D.3. We will now apply these

lemmas. For 𝑗 ∈ {1, 2}, we obtain

Pr[𝑃 𝑗 (®𝑥) = 0] ≤ 1

𝑝 −𝑚2
,

since there are at most𝑚2
elements in the set 𝐼 which define the

polynomials 𝐷®𝑖 . Since we fixed an 𝑖 ∈ J𝑐 𝑗 − 1K to define 𝑃 𝑗 , we get

the following when running over all such 𝑖 ≤ 𝑚:

Pr[𝐹1] ≤
𝑚

𝑝 −𝑚2
, Pr[𝐹2] ≤

𝑚

𝑝 −𝑚2
.

On the other hand, for 𝑗 = 𝑇 in the group G𝑇 with quadratic

polynomials, we obtain

Pr[𝑃 𝑗 (®𝑥) = 0] ≤ 4

𝑝 − 4(𝑚 + 𝑞𝑒)2
,

since the queries to the pairing operation give additional 𝑞𝑒 poly-

nomials (i.e. the set 𝐼 is of size (𝑚 +𝑞𝑒)2). Running over all possible
𝑖 ≤ (𝑚 + 𝑞𝑒), we obtain

Pr[𝐹𝑇] ≤
4(𝑚 + 𝑞𝑒)

𝑝 − 4(𝑚 + 𝑞𝑒)2
.

Combining all these identities, (♠) then reduces to

AdvAGame0 ≤Adv
A
Game1 +

2𝑚2

𝑝 −𝑚2
+ 4(𝑚 + 𝑞𝑒)2

𝑝 − 4(𝑚 + 𝑞𝑒)2
.

We end with the final game Game2 which is described as Game4
in Bauer et al.’s proof. In this game, we completely get rid of actual

values for the challenge ®𝑥 = (𝑥1, . . . , 𝑥𝑛) and only use polynomials.

The only use of ®𝑥 in the previous game Game1 was in the abort

conditions in the encoding function and how to sample the answer

𝑣 to an discrete logarithm query. However, as already noted previ-

ously, we can transfer these events to the discrete logarithm oracle

by letting the simulation to abort when it finds a collision among a

pair of polynomials 𝑃𝑖,ℓ ≠ 𝑃 𝑗,ℓ such that 𝑃𝑖,ℓ −𝑃 𝑗,ℓ ∈ Span(𝐿) while
𝜉𝑖,ℓ ≠ 𝜉 𝑗,ℓ for an ℓ ∈ {1, 2,𝑇 }. As observed by Bauer et al., the abort

conditions in Game1 and Game2 are indeed equivalent from the

view of the adversary. Furthermore, the authors also show why it is

possible to sample 𝑣 ← Z𝑝 uniformly at random when there is no

®𝑥 involved anymore. Therefore, we can define the final game now.

28

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

Game2: This is the final game. We will keep the following de-

scription short (since there is barely a difference to the previous

game). The challenger C initializes as usual 𝑛 := 0, 𝑞 := 0, 𝑐 𝑗 := 0

for each 𝑗 ∈ {1, 2,𝑇 }, 𝑞𝑒 := 0, ®𝑥 := (). Additionally, the challenger
initializes polynomials 𝑃0, 𝑗 := 1 for 𝑗 ∈ {1, 2,𝑇 } and 𝐿 := ∅. The
adversary has access to the oracles Chal, DL𝑔 , GC𝑗 for 𝑗 ∈ {1, 2,𝑇 },
and 𝑒 (−,−). For the encoding functions Enc𝑗 , the challenger has
its bookkeeping lists M 𝑗 for 𝑗 ∈ {1, 2,𝑇 } that keep track of al-

ready assigned encodings 𝜉𝑖, 𝑗 := Ξ𝑗 (𝑃𝑖, 𝑗) for a polynomial 𝑃𝑖, 𝑗 . The

challenger C checks for each new request Enc𝑗 (𝑃ℓ, 𝑗) if there exists
an already assigned polynomials 𝑃𝑖, 𝑗 with 𝑖 ∈ Jℓ − 1K such that

𝑃ℓ, 𝑗 − 𝑃𝑖, 𝑗 ∈ Span(𝐿). In that case, it sets 𝜉ℓ, 𝑗 := 𝜉𝑖, 𝑗 . (Otherwise,

it sets 𝜉ℓ, 𝑗 ← 𝐸𝑝 \M 𝑗 to a uniformly random string that has not

already been assigned). If the adversary calls the challenge oracle

Chal, update 𝑛 := 𝑛 + 1, sample a new indeterminate 𝑋𝑛 , update

𝑐1 := 𝑐1 + 1 and 𝑐2 := 𝑐2 + 1, return Enc1 (𝑃𝑐1,1) and Enc2 (𝑃𝑐2,2)
where 𝑃𝑐1,1 := 𝑋𝑛 and 𝑃𝑐2,2 := 𝑋𝑛 . Furthermore, if the adversary

calls the group operation oracle GC𝑗 for an 𝑗 ∈ {1, 2,𝑇 } on input

(𝜉, 𝜉 ′, 𝑏), the challenger updates 𝑐 𝑗 := 𝑐 𝑗 + 1 and returns Enc𝑗 (𝑃𝑘,𝑗)
where 𝑃𝑘,𝑗 := 𝑃𝑖, 𝑗 + (−1)𝑏𝑃𝑖′, 𝑗 where 𝑘 := 𝑐 𝑗 and 𝑃𝑖, 𝑗 , 𝑃𝑖′, 𝑗 are

the representatives for 𝜉, 𝜉 ′, respectively. (In case one of the in-

puts is invalid/not already assigned, the challenger returns ⊥ as

usual). If the adversary calls the pairing oracle on input (𝜉𝑖,1, 𝜉 𝑗,2),
the challenger returns ⊥ or it updates 𝑐𝑇 := 𝑐𝑇 + 1 and returns

Enc𝑇 (𝑃𝑖,1𝑃 𝑗,2). Finally, if the adversary calls the discrete logarithm

oracle DL𝑔 on input 𝜉 (which operates in the group G1 only), re-
turn ⊥ if the input is invalid and otherwise do the following. Let

𝑖 ∈ J𝑐1K be such that 𝜉 = 𝜉𝑖,1 with corresponding polynomial 𝑃𝑖,1.

Sample 𝑣 ← Z𝑝 uniformly at random. If 𝑃𝑖,1 ∈ Span(1, 𝐿), then let

𝑃𝑖,1 = 𝛼0 + 𝛼1𝑄1 + . . . + 𝛼𝑞−1𝑄𝑞−1 be the decomposition of 𝑃𝑖,1 in

the Z𝑝 -subspace Span(1, 𝐿) and update 𝑣 := 𝛼0. Set 𝑄𝑞 := 𝑃𝑖,1 − 𝑣
and 𝐿 := 𝐿 ∪ {𝑄𝑞}. If there is a pair of polynomials 𝑃𝑖,ℓ ≠ 𝑃 𝑗,ℓ for

(𝑖, 𝑗) ∈ J𝑐ℓK2 such that 𝑃𝑖,ℓ − 𝑃 𝑗,ℓ ∈ Span(𝐿) and 𝜉𝑖,ℓ ≠ 𝜉 𝑗,ℓ for

ℓ ∈ {1, 2,𝑇 }, then abort the game. Otherwise, return the value 𝑣 .

To end the proof, we bound the probability that the adversary

wins the final game. To this end, we show that there is a component

of ®𝑥 that is sampled uniformly at random after the adversary outputs

its solution ®𝑦 to the COMDL game. After A outputs ®𝑦, the set 𝐿 is of

size 𝑞 and thus dim(Span(𝐿)) ≤ 𝑞 < 𝑛. Therefore, Span(1, 𝐿) is of
dimension ≤ 𝑞+1 ≤ 𝑛. On the other hand, dim(Span(𝑋1, . . . , 𝑋𝑛)) =
𝑛 while 1 ∉ Span(𝑋1, . . . , 𝑋𝑛). Having said that, we obtain

Span(𝑋1, . . . , 𝑋𝑛) ⊈ Span(1, 𝐿).
In particular, there is an index 𝑖 ∈ [𝑛] such that𝑋𝑖 ∉ Span(1, 𝐿). Let
𝑖 ∈ [𝑛] be the smallest such index. The discrete logarithm oracle

DL𝑔 outputs a value 𝑥𝑖 uniformly at random when queried on

𝜉 𝑗𝑖 ,1. However, this 𝑥𝑖 is sampled uniformly at random after the 𝑖-th

component of ®𝑦 output by the adversary A. Hence, Pr[®𝑥 = ®𝑦] ≤ 1/𝑝 .
Finally, this yields the winning probability

AAGame2 ≤
1

𝑝
.

Taking together the obtained distances between sequential games,

gives us the desired final bound

𝜀 ≤ 2𝑚2

𝑝 −𝑚2
+ 4(𝑚 + 𝑞𝑒)2

𝑝 − 4(𝑚 + 𝑞𝑒)2
+ 1

𝑝
.

□

E SECURITY ANALYSIS OF APVSS SCHEMES
In this appendix, we provide the full security proof for SPURT’s

APVSS from Chapter 3. Additionally, we provide a formal descrip-

tion of their scheme which is given in Figure 7. Finally, we also

elaborate on the simplifications made in our security proof in Chap-

ter 3.2 for OptRand’s APVSS. To recapitulate, there are only two

differences to OptRand’s APVSS: (i) the former uses an additional

generator
ˆℎ ∈ G2, and (ii) the former uses 𝑛 NIZKs to prove cor-

rectness of the transcript.

E.1 On the Security Proof of OptRand’s APVSS
In the following, we justify our simplifications made at the begin-

ning of the proof given in 3.2. The first point was to assume that

there is contribution in the aggregated transcript from precisely one

corrupt party. If we more generally assume contribution from 𝑓 ≤ 𝑡
corrupt parties, then the corresponding NIZKs yield 𝑓 pairs of equa-

tions for 𝛼 ′
1
, . . . , 𝛼 ′

𝑓
(instead of only 𝛼 ′) as given in the identities

(2’) and (†):

𝛼 ′𝑗𝑐
′
𝑗 = 𝑟

′
𝑗 − 𝑎

′
𝑗 − ℓ𝑏

′
𝑗 −

𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐′𝑖, 𝑗 , 𝛼 ′𝑗 = 𝑎
†
𝑗
+ ℓ𝑏†

𝑗
+

𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐†
𝑖, 𝑗

for all 𝑗 ∈ [𝑓]. By summation of these equations over 𝑗 ∈ [𝑓] and
observing that the last queried challenge (w.l.o.g. the adversary

queries and gets 𝑐′
1
, . . . , 𝑐′

𝑓
in ascending order) is truly independent

from all the algebraic coefficients output by A for all previously

queried challenges, we can reduce to the single-challenge case that

we already considered because 𝑐′
1
+ . . . + 𝑐′

𝑓
is now completely inde-

pendent from the algebraic coefficients on the right-hand side of the

resulting equation. The second point was to embed the challenge

in only one answer to the transcript queries and that the adversary

picks this transcript for his aggregate (which actually only happens

with probability at most 1/𝑞𝑘). We resolve this with the trick of

embedding this instance re-randomized into all transcript. That is,

whenever in a simulation that embeds 𝜉1, . . . , 𝜉𝑡+1 into the poly-

nomial 𝑓1, we instead embed 𝜉
(𝑖)
1
, . . . , 𝜉

(𝑖)
𝑡+1 into polynomial 𝑓𝑖 for

𝑖 ∈ [𝑞𝑘], where 𝜉
(𝑖)
𝑗

:= 𝜉
𝑢𝑖,𝑗
𝑗
· 𝑔𝑣𝑖,𝑗 for uniformly at random chosen

𝑢𝑖, 𝑗 , 𝑣𝑖, 𝑗 ← Z∗𝑝 for 𝑗 ∈ [𝑡 + 1] and 𝑖 ∈ [𝑞𝑘]. The initial algebraic
equation coming from the forgery of the adversary is then identical

with polynomial 𝑃 = 𝑓1 replaced by 𝑓 :=
∑𝑞𝑘
𝑖=1

𝑓𝑖 . The correspond-

ing coefficients are then not DL𝑔 (𝜉𝑖) = 𝑧𝑖 (for 𝑖 ∈ [𝑡 + 1]), but they
are 𝑧′

𝑖
:=

∑𝑞𝑘
𝑗=1

𝑢𝑖, 𝑗𝑧𝑖 + 𝑣𝑖, 𝑗 . Still, the reduction can solve for the 𝑧′
𝑖

in each scenario and thus compute the 𝑧𝑖 (since it chose the values

𝑢𝑖, 𝑗 , 𝑣𝑖, 𝑗 by itself). This justifies our simplifications and completes

our proof.

E.2 Security Analysis of SPURT’s APVSS
We give a proof for Theorem 3.7 which states the following.

Theorem E.1. If 𝑛-COMDL is (𝜀,𝑇)-hard in the AGM and DS is
(𝜀𝑠 ,𝑇𝑠 , 𝑞𝑠)-secure, then SPURT’s APVSSDS is (𝜀′,𝑇 ′, 𝑡, 𝑞𝑘 , 𝑞ℎ)-aggre-
gated unpredictable in the AGM & ROM, where

𝜀 ≥ 𝜀
′ − 𝜀𝑠
6

− 𝑞ℎ
6𝑝
, 𝑇 ≤ 𝑇 ′ +𝑇𝑠 + O(𝑛2) .

29

Renas Bacho & Julian Loss

Let 𝑒 : G1 × G2 → G𝑇 be an asymmetric pairing and independent generators 𝑔,𝑔 ∈ G1 and ℎ, ˆℎ ∈ G2. Let (pk𝑖 , sk𝑖) be the key pair of

party 𝑃𝑖 with pk𝑖 = ℎ
sk𝑖

. The dealer 𝑃𝐿 with key pair (pk𝐿, sk𝐿) wants to share secret 𝑒 (𝑔, ℎ𝛼) for an 𝛼 ← Z∗𝑝 . The ADist algorithm
takes as input sk𝐿 and public keys pk

1
, . . . , pk𝑛 . It outputs the transcript 𝑇𝐿 := {𝐶𝑖 , 𝑌𝑖 , 𝜋𝑖 }𝑖∈[𝑛] defined as follows.

(1) Choose a polynomial 𝑓 (𝑋) = 𝛼 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] of degree 𝑡 uniformly at random.

(2) Publish commitments 𝐶𝑖 = 𝑔
𝑓 (𝑖) ∈ G1 for 𝑖 ∈ [𝑛]. Also publish encrypted shares 𝑌𝑖 = pk𝑓 (𝑖)

𝑖
∈ G2 for 𝑖 ∈ [𝑛].

(3) Compute NIZK proofs 𝜋𝑖 = Dleq(𝑔,𝐶𝑖 , pk𝑖 , 𝑌𝑖) of discrete logarithm equality for 𝑖 ∈ [𝑛]. Publish 𝜋𝑖 for 𝑖 ∈ [𝑛].
The transcript verification algorithm Ver takes as input the public keys pk

1
, . . . , pk𝑛 (including pk𝐿) and transcript 𝑇𝐿 . It outputs 1

(accept) or 0 (reject). Let LC be the linear code as defined in General Notation 2 and let LC⊥ be its dual code.

(4) Check that 𝑒 (𝑔,𝑌𝑖) = 𝑒 (𝐶𝑖 , pk𝑖) for all 𝑖 ∈ [𝑛]. Sample a random codeword (𝜈1, . . . , 𝜈𝑛) ∈ LC⊥ and check that𝐶
𝜈1
1
· . . . ·𝐶𝜈𝑛

𝑛 = 1.

(5) Check that the NIZK proofs 𝜋1, . . . , 𝜋𝑛 verify using public keys pk
1
, . . . , pk𝑛 and H.

(6) If one of the above checks fails, output 0 (invalid transcript). Otherwise, output 1 (valid transcript).

Figure 7: Aggregatable distribution protocol ADist and transcript verification algorithm Ver of SPURT’s APVSS.

On input the encrypted shares 𝑌1, . . . , 𝑌𝑛 , the decryption Dec and reconstruction Rec algorithms work as follows.

(1) Using sk𝑖 , compute the secret share 𝑆𝑖 = ℎ
𝑓 (𝑖)

from 𝑌𝑖 via extracting the root 𝑆𝑖 = 𝑌
1/sk𝑖
𝑖

. Publish the decryption 𝑆𝑖 .

(2) Upon receiving a secret share 𝑆ℓ from party 𝑃ℓ , check that 𝑒 (𝐶ℓ , ℎ) = 𝑒 (𝑔, 𝑆ℓ). Otherwise, the secret share is invalid.
(3) Upon receiving 𝑡 + 1 valid secret shares 𝑆 𝑗 = ℎ

𝑓 (𝑗)
from different parties, compute 𝑆 = ℎ𝑓 (0) via Lagrange interpolation in

the exponent. Finally, the secret is computed as 𝑒 (𝑔, 𝑆) ∈ G𝑇 and output.

Figure 8: Decryption Dec and reconstruction Rec algorithms of SPURT’s APVSS.

We demonstrate aggregation for the first 𝑡 + 1 parties 𝑃1, . . . , 𝑃𝑡+1. The algorithm Agg takes as input the individual parties’ transcripts

{𝐶𝑖, 𝑗 , 𝑌𝑖, 𝑗 , 𝜋𝑖, 𝑗 }𝑖∈[𝑛] for party indices 𝑗 ∈ [𝑡 + 1] and outputs an aggregated transcript 𝐴𝑇 := {𝐶𝑖 , 𝑌𝑖 }𝑖∈[𝑛] . In the following, let

𝜇1, . . . , 𝜇𝑡+1 denote the Lagrange coefficients for the set [𝑡 + 1] at the point 𝑥 = 0, i.e. 𝜇𝑖 :=
∏

𝑗∈[𝑡+1]\{𝑖 } 𝑗/(𝑗 − 𝑖) for 𝑖 ∈ [𝑡 + 1].
(1) For 𝑖 ∈ [𝑛], compute 𝐶𝑖 := 𝐶𝑖,1 · . . . ·𝐶𝑖,𝑡+1 and 𝑌𝑖 := 𝑌𝑖,1 · . . . · 𝑌𝑖,𝑡+1. Publish the aggregated transcript 𝐴𝑇 := {𝐶𝑖 , 𝑌𝑖 }𝑖∈[𝑛] .

The aggregation transcript verification algorithm AVer takes as input public keys pk
1
, . . . , pk𝑛 and an aggregated transcript 𝐴𝑇 :=

{𝐶𝑖 , 𝑌𝑖 }𝑖∈[𝑛] as above. It outputs 1 (valid aggregated transcript) or 0 (invalid aggregated transcript).

(2) Check as usual that {𝐶𝑖 , 𝑌𝑖 }𝑖∈[𝑛] verifies using the pairing. If this checks fails, output 0 (invalid aggregated transcript).

Otherwise, output 1 (valid aggregated transcript).

Note on aggregation verification. The aggregated transcript 𝐴𝑇 does not include any NIZK proofs in contrast to OptRand’s scheme.

However, to ensure security SPURT introduces a novel collective verification mechanism in which the set of elements of the individual

transcripts 𝑇1, . . . ,𝑇𝑡+1 is distributed among all parties. This allows the parties to collectively verify that 𝐴𝑇 is indeed an aggregation

of single transcripts 𝑇1, . . . ,𝑇𝑡+1.

Figure 9: Aggregation algorithm Agg and aggregation transcript verification algorithm AVer of SPURT’s APVSS.

In the following, we explain how the proof differs from the

proof of OptRand’s APVSS. For this, we observe that there are only

two differences between SPURT’s and OptRand’s APVSS. (1) The

former assumes an additional generator
ˆℎ ∈ G2 (resulting in a

total of four generators 𝑔,𝑔 ∈ G1, ℎ, ˆℎ ∈ G2) whose purpose being
solely to help their security analysis, which is a reduction from the

decisional bilinear Diffie-Hellman (DBDH) problem. In particular,

their PVSS scheme itself makes no use of this additional generator

besides in the system parameter generation. (2) The NIZK proof

𝜋 = (𝑐, 𝑟) of knowledge of 𝛼 = 𝑓 (0) is replaced by 𝑛 independently
generated knowledge-sound NIZK proofs 𝜋𝑖 = {(𝑐𝑖 , 𝑟𝑖)}𝑖∈[𝑛] of
discrete logarithm equality of commitment 𝐶𝑖 and encrypted share

𝑌𝑖 for 𝑖 ∈ [𝑛] (thus obviating the need to compute 𝑛 pairings for this

task). Here, a challenge 𝑐𝑖 , 𝑖 ∈ [𝑛], is computed as the cryptographic

hashH(𝐶𝑖 , 𝑔𝑟𝑖𝐶𝑐𝑖𝑖 , 𝑌𝑖 , ℎ
𝑟𝑖𝑌

𝑐𝑖
𝑖
) defined by the non-interactive Chaum-

Pedersen Σ-protocol. In particular, challenge 𝑐𝑖 depends only on

the pair (𝐶𝑖 , 𝑌𝑖) and does not establish a connection to the whole

transcript {𝐶𝑖 , 𝑌𝑖 , . . . }𝑖∈[𝑛] . In contrast to that, in Schoenmakers’

PVSS scheme there is only one challenge 𝑐 for all 𝑛 NIZKs that is

computed as hash of the whole transcript. The reason for SPURT’s

choice of using 𝑛 separate challenges is that the design of their

randomness beacon would not work otherwise, as we will see in

the next chapter.

This choice, however, comes with a subtle nuance in the security

analysis of SPURT’s APVSS compared to the one fromOptRand that

we explain now. An argument in the analysis of OptRand’s APVSS

involves the observation that the challenge 𝑐 = H(𝑔𝑟𝜁 −𝑐 , 𝑔𝛼) for
the proof of knowledge of 𝛼 is completely independent from the

algebraic coefficients for 𝑔𝛼 chosen by the adversary. In the case of

SPURT’s APVSS, the algebraic adversary could choose the algebraic

coefficients for a tuple (𝐶𝑖 , 𝑌𝑖) (that is input into the random oracle

H to obtain the corresponding challenge 𝑐𝑖) dependent from previ-

ously obtained challenges 𝑐 𝑗 for different (𝐶 𝑗 , 𝑌𝑗), 𝑗 ≠ 𝑖 , so that our

30

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

above argument does not apply directly anymore. We solve this

issue by regarding the onH last queried tuple (𝐶ℓ , 𝑌ℓ) which gives a
challenge 𝑐ℓ that is truly independent from the algebraic coefficients

for all previously queried tuples (𝐶𝑖 , 𝑌𝑖) chosen by the adversary.

This allows us by summation over the algebraic equations coming

from the 𝑛 NIZKs to reduce to the single-challenge NIZK case as

is given in OptRand’s APVSS security analysis. Together with the

fact that the additional generator
ˆℎ ∈ G2 in SPURT’s APVSS is an

auxiliary element used only in their security analysis, allows us

in the algebraic group model to transform the resulting algebraic

equations to the algebraic equations that arose in the analysis of

OptRand’s APVSS, thus getting SPURT’s APVSS aggregated unpre-

dictability.

Proof. In the following, we explain how to adapt the proof for

OptRand’s PVSS into one for SPURT’s PVSS. To this end, we first

recapitulate the differences between these two designs. (1) SPURT’s

PVSS assumes an additional generator
ˆℎ ∈ G2 (resulting in a total

of four generators 𝑔,𝑔 ∈ G1, ℎ, ˆℎ ∈ G2) which the scheme itself

makes no use of besides in the system parameter generation (its

purpose is solely to help their security analysis, which is a reduction

from the decisional bilinear Diffie-Hellman (DBDH) problem). (2)

The NIZK proof 𝜋 = (𝑐, 𝑟) of knowledge of 𝛼 = 𝑓 (0) in OptRand’s

PVSS is replaced in SPURT’s PVSS by 𝑛 independently generated

knowledge-sound NIZK proofs 𝜋𝑖 = {(𝑐𝑖 , 𝑟𝑖)}𝑖∈[𝑛] of discrete loga-
rithm equality of commitment𝐶𝑖 and encrypted share𝑌𝑖 for 𝑖 ∈ [𝑛].
Here, a challenge 𝑐𝑖 for 𝑖 ∈ [𝑛] is computed as the cryptographic

hashH(𝐶𝑖 , 𝑔𝑟𝑖𝐶𝑐𝑖𝑖 , 𝑌𝑖 , ℎ
𝑟𝑖𝑌

𝑐𝑖
𝑖
) defined by the non-interactive Chaum-

Pedersen Σ-protocol. In particular, challenge 𝑐𝑖 depends only on

the pair (𝐶𝑖 , 𝑌𝑖) and does not establish a connection or dependence

to other elements of the transcript {𝐶𝑖 , 𝑌𝑖 , 𝜋}𝑖∈[𝑛] . In contrast to

that, in Schoenmakers’ PVSS scheme there is only one challenge 𝑐

for all 𝑛 NIZKs simultaneously that is computed as the hash of the

whole transcript.

Let A be an algebraic adversary that (𝜀′,𝑇 ′, 𝑡, 𝑞𝑘 , 𝑞ℎ)-breaks ag-
gregated unpredictability of PVSS. As in the previous proof, we

make some simplifications. First, we assume that all parties are hon-

est prior to the execution of PVSS. Second, we assume that there

is contribution from exactly one corrupt party in the aggregated

transcript. Third, we embed the COMDL instance in only the first an-

swer to the transcript queries. The justification of these three points

is analog to the one in the proof for OptRand’s PVSS. The adver-

sary wins the aggregated unpredictability game if it can predict the

secret of the aggregation that it outputs at the end. In the following,

let C ⊂ P = {𝑃1, . . . , 𝑃𝑛} be the dynamic set of corrupt parties and

H = P\C the set of honest parties. The game between a challenger

and the adversary is the same as in the previous proof with the

following modifications as described above: (1) the system parame-

ters are generated as (G1,G2, 𝑝, 𝑔, 𝑔, ℎ, ˆℎ), where 𝑒 : G1 ×G2 → G𝑇
is an asymmetric pairing of cyclic groups of prime order 𝑝 with

independent generators 𝑔,𝑔 ∈ G1 and ℎ, ˆℎ ∈ G2, and (2) a transcript
{𝐶𝑖 , 𝑌𝑖 }𝑖∈[𝑛] is generated with 𝑛 NIZKs proofs {𝜋𝑖 }𝑖∈[𝑛] . At the
end of the game, A outputs an aggregated transcript 𝐴𝑇 along with

a secret 𝜎∗ ∈ G𝑇 . As A is an algebraic adversary, it returns the

secret 𝜎∗ together with a representation(
𝑎, 𝑏, {𝑐𝑖 }𝑛𝑖=1, {𝑑𝑖 }

𝑛
𝑖=1, {𝑒𝑖 }

𝑛
𝑖=1, {𝑓𝑖 , 𝑢𝑖 }

𝑛
𝑖=1, {𝑣𝑖, 𝑗 }

𝑛
𝑖,𝑗=1, {𝑤𝑖, 𝑗 }𝑛𝑖,𝑗=1, {𝜈𝑖 }

𝑛+2
𝑖=1

)

of elements in Z𝑝 such that

𝜎∗ = 𝑒 (𝑔, ℎ)𝑎 · 𝑒 (𝑔, ℎ)𝑏 ·
𝑛∏
𝑖=1

𝑒 (𝐶𝑖 , ℎ)𝑐𝑖 ·
𝑛∏
𝑖=1

𝑒 (𝑔, pk𝑖)𝑑𝑖

·
𝑛∏
𝑖=1

𝑒 (𝑔,𝑌𝑖)𝑒𝑖 ·
𝑛∏
𝑖=1

𝑒 (𝑔, pk𝑖) 𝑓𝑖 ·
𝑛∏
𝑖=1

𝑒 (𝑔,𝑌𝑖)𝑢𝑖

·
𝑛∏

𝑖, 𝑗=1

𝑒 (𝐶𝑖 , pk 𝑗)𝑣𝑖,𝑗 ·
𝑛∏

𝑖, 𝑗=1

𝑒 (𝐶𝑖 , 𝑌𝑗)𝑤𝑖,𝑗

· 𝑒 (𝑔, ˆℎ)𝜈1 · 𝑒 (𝑔, ˆℎ)𝜈2 ·
𝑛∏
𝑖=1

𝑒 (𝐶𝑖 , ˆℎ)𝜈𝑖+2 . (♠)

All our simulations will generate
ˆℎ ∈ G2 honestly by sampling

ℓ′ ← Z𝑝 uniformly at random and setting
ˆℎ = ℎℓ

′
. By replac-

ing the elements 𝑒 (𝑋, ˆℎ) with 𝑒 (𝑋,ℎ)ℓ ′ for 𝑋 ∈ {𝑔,𝑔,𝐶1, . . . ,𝐶𝑛},
the above equation reduces to the initial equation coming from

the adversary’s forgery obtained in OptRand’s PVSS proof. The

only difference is that the coefficients for 𝑒 (𝑋,ℎ) are shifted by

ℓ′ which sets no problem, since the reduction knows the value ℓ′.
The other modification to OptRand’s PVSS proof comes from the 𝑛

NIZKs output by the adversary corresponding to the transcript of

the contribution of the corrupt party (for the reduction, it simply

simulates the 𝑛 NIZKs for a transcript via 𝑛-time honest-verifier

zero-knowledge (HVZK) simulation instead of one time). Let the

corresponding equations be the following.

𝑓 ′ (𝑗) = 𝑎 𝑗 + ℓ ˜𝑏 𝑗 +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐 𝑗,𝑖/𝑐′𝑗 ∀𝑗 ∈ [𝑛], (r)

which come directly from the NIZKs 𝜋 ′
𝑗
= (𝑐′

𝑗
, 𝑟 ′

𝑗
) output by the

adversary with degree-𝑡 polynomial 𝑓 ′ ∈ Z𝑝 [𝑋]. From the input

to the random oracle, there are also the equations

𝑓 ′ (𝑗) = 𝑎†
𝑗
+ ℓ𝑏†

𝑗
+

𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐†
𝑗,𝑖
, ∀𝑗 ∈ [𝑛] . (†)

Without loss of generality we assume that the adversary queries

the random oracle on the corresponding group elements (𝐶 𝑗 , 𝑌𝑗)
in ascending order starting from 𝑗 = 1 up to 𝑗 = 𝑛. Since we

assume that the adversary wins the game, its output transcript

is valid and thus 𝑓 ′ is a polynomial of degree 𝑡 . Therefore, once

the adversary queried the random oracle on the group elements

(𝐶 𝑗 , 𝑌𝑗) for 𝑗 ∈ [𝑡 + 1], the other elements (𝐶𝑖 , 𝑌𝑖) for 𝑖 > 𝑡 + 1
can be computed (by the adversary) via Lagrange interpolation

in the exponent and thus their algebraic representations won’t

give more information than needed. So we only consider the first

𝑡 + 1 equations. An argument in the analysis of OptRand’s PVSS

involved the observation that the challenge 𝑐 = H(𝑔𝑟𝜁 −𝑐 , 𝑔𝛼) for
the proof of knowledge of 𝛼 is completely independent from the

algebraic coefficients for 𝑔𝛼 chosen by the adversary. In the above

case, however, the algebraic adversary could choose the algebraic

coefficients for a tuple (𝐶𝑖 , 𝑌𝑖) dependent from previously obtained

challenges 𝑐 𝑗 for different (𝐶 𝑗 , 𝑌𝑗), 𝑗 < 𝑖 , so that the previous

argument does not apply directly anymore. We solve this issue by

regarding the last queried tuple (𝐶𝑡+1, 𝑌𝑡+1) which gives a challenge
𝑐𝑡+1 that is truly independent from the algebraic coefficients for all

previously queried tuples (𝐶𝑖 , 𝑌𝑖), 𝑖 < 𝑡 + 1 chosen by the adversary.

Let 𝜇1, . . . , 𝜇𝑡+1 be the Lagrange coefficients for the set [𝑡 + 1] at
31

Renas Bacho & Julian Loss

the point 𝑥 = 0. By Lagrange interpolation (and summation), the

equations (r) and (†) with the notation 𝛼 ′ = 𝑓 ′ (0) reduce to

𝛼 ′ = 𝑎 + ℓ ˜𝑏 +
𝑛∑︁
𝑖=1

𝑃 (𝑖) (𝑐𝑖,1 + 𝑐𝑖,2/𝑐′𝑡+1),

𝛼 ′ = 𝑎† + ℓ𝑏† +
𝑛∑︁
𝑖=1

𝑃 (𝑖)𝑐†
𝑖
,

with appropriately defined coefficients. In OptRand’s PVSS proof,

event 𝐸2 was defined by (𝑐1, . . . , 𝑐𝑛)/𝑐′ ∈ Z𝑛𝑝 being in the kernel of

the linear map 𝑉 . We replace this condition by 𝐸′
2
defined by

(𝑐1,1 + 𝑐1,2/𝑐′𝑡+1, . . . , 𝑐𝑛,1 + 𝑐𝑛,2/𝑐
′
𝑡+1) ∈ Z

𝑛
𝑝

being in the kernel of 𝑉 . Since the coefficients (𝑐𝑖,1, 𝑐𝑖,2) for 𝑖 ∈
[𝑛] are independent from 𝑐′

𝑡+1, the same argumentation as in the

previous proof applies and there is no other difference. With the

same simulations and same extraction of solutions to the OMDL

challenge, the proof goes through. This completes our proof. □

Remark E.1. By breaking down our above proof, we find that it can

be adapted to obtain a security reduction (with the same parameters

for tightness) from the plain discrete logarithm problem assuming a

weaker static adversary. The main idea being to embed the discrete

logarithm challenge 𝜉 ∈ G into the public keys {pk𝑖 }𝑖∈H of honest

parties (which is fixed from the very beginning in the static cor-

ruption model) via pk𝑖 = 𝜉
𝑢𝑖𝑔𝑣𝑖 for uniformly random 𝑢𝑖 , 𝑣𝑖 ← Z𝑝 ,

into the polynomial 𝑓1 (𝑋) = 𝛼0 + 𝛼𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] chosen
by the simulator via𝑔𝛼𝑖 = 𝜉𝑢𝑖𝑔𝑣𝑖 for uniformly random𝑢𝑖 , 𝑣𝑖 ← Z𝑝 ,
or into the second generator 𝑔 ∈ G via 𝑔 = 𝜉 . Using this technique,

the above proof can be adapted accordingly for the static case to

reduce the security from the plain co-discrete logarithm problem

(i.e. our asymmetric version of the discrete logarithm problem). The

same is true for the security proof of OptRand’s PVSS.

F SECURITY ANALYSIS AND DESCRIPTION OF
THE OPTRAND AND SPURT RANDOMNESS
BEACONS

In this appendix, we provide formal descriptions of the randomness

beacons OptRand (Figure 10) and SPURT (Figure 11) in an abstracted

manner. We do this for two reasons: (i) the abstractions that we

provide, capture the most important building blocks of the beacons

that are sufficient to understand them, and (ii) the actual protocols

contain a lot of involved consensus parts.

Network Models. In a synchronous network as in OptRand, honest

parties have local clocks that move at the same speed. Protocols

proceed in rounds of fixed and a-priori known length Δ and parties

start executing the protocol within Δ time from each other. Here,

Δ corresponds to an upper known bound on the network delay:
hen an honest party 𝑃 sends a message at time 𝜏 , the message is

guaranteed to be delivered by time 𝜏 + Δ. In particular, messages

sent by honest parties cannot be dropped from the network and are

always delivered. Thus, messages sent at the beginning of a round

𝑟 are guaranteed to be delivered by the end of round 𝑟 . However,

the adversary has full control of the network subject to the above

constraints and may deliver some messages much faster, i.e. within

time 𝛿 ≪ Δ. In addition, the adversary is rushing and may pick

its messages after seeing the honest parties’ messages within a

round. In SPURT, the network is partially synchronous. This means

that the network can have unbounded message delays which are

under full control of the adversary (however, messages of honest

parties may not be dropped). However, there is an unknown global
stabilization time (GST), which occurs eventually. After GST, the
network behaves synchronously with parameter Δ as above.

F.1 Security Proof for the OptRand and SPURT
Randomness Beacons

Here, we provide a full proof of Theorem 4.2.

Proof. In the following, we provide a security analysis of the

randomness beacons of interest. There are four security notions

to consider: consistency, availability, unpredictability, and bias-

resistance. Regarding the first two notions, their validity follows di-

rectly from the analysis of the randomness beacon protocols in their

respective papers [15, 34] by additionally noting that the underlying

SMR protocols are already proven adaptively secure. The defining

reason is that consistency and availability (also called safety and

liveness in the context of SMR protocols) are exclusively part of the

consensus layer and not affected by the security of the underlying

APVSS scheme. For the last two notions, we provide a reduction to

the aggregated unpredictability of the underlying APVSS schemes

(which themselves reduce to the hardness of 𝑛-COMDL as seen

before). To provide an intuition for the latter two notions, we have

the following. Regarding 1-unpredictability of the randomness bea-

cons, we observe: until reconstruction of a secret 𝑆𝑒 in epoch 𝑒 , the

hash H(𝑆𝑒) is uniformly random for the adversary A that corrupts

up to 𝑡 parties and does not break aggregated unpredictability of

the underlying APVSS. Therefore, the inequality for the parameter

𝜀 in the theorem directly follows from the results on the underlying

APVSS schemes from Chapter 3; the loss in 1/𝐿 comes from the

reduction now guessing which of the at most 𝐿 beacon outputs

the adversary can predict. This implies 1-unpredictability. To argue

bias-resistance, we observe that according to the above H(𝑆𝑒) is
uniformly random to A up to reconstruction of 𝑆𝑒 , at which point

it is fixed in the view of all honest parties and can no longer be

altered. The algorithm D gets strictly less information than A about

all output beacon values (since D only gets these values, but no in-

formation about the protocol execution). Therefore, the uniformity

ofH(𝑆𝑒) for A prior to reconstruction of 𝑆𝑒 implies uniformity forD
of H(𝑆𝑒) under the same assumptions. In the following, we denote

by RB the DRB of consideration, i.e. RB ∈ {𝑂𝑝𝑡𝑅𝑎𝑛𝑑, 𝑆𝑃𝑈𝑅𝑇 }.
• (𝑡, 𝐿)-consistency and (𝑡, 𝐿)-availability. Frompreviouswork

[16, 64, 78], we know that the randomness beacon RB
builds upon an already adaptively secure SMR (state ma-

chine replication) protocol. As a consequence, the analysis

on (the weak variants of) consistency and availability re-

mains the same as in their respective papers [15, 34], since

the security of the consensus layer is not affected by the

security of the underlying APVSS scheme.

• (𝜀′,𝑇 ′, 𝑡, 𝐿, 𝑞ℎ, 1)-unpredictability. Let A be an algebraic ad-

versary that breaks (𝜀′,𝑇 ′, 𝑡, 𝐿, 𝑞ℎ, 1)-unpredictability of the
randomness beacon protocol RB. In particular, there is an

epoch ℓ ∈ [𝐿] in which A outputs a prediction (𝜎′𝑒 , 𝑒) for

32

Adaptively Secure (Aggregatable) PVSS and Randomness Beacons

Let P = {𝑃1, . . . , 𝑃𝑛} be the distributed system of 𝑛 parties. All parties run the underlying (responsive) state machine replication

protocol SMR. The beacon protocol starts with epoch 𝑒 = 1.

• Setup Phase. Set 𝑒 = 1 and let G := {𝑃1, . . . , 𝑃𝑛} denote the dynamic set of potentially good leaders. Parties agree on a buffer

B(𝑃𝑖) := {𝐴𝑇𝑖 } of a valid random PVSS transcript for each 𝑖 ∈ [𝑛].
• Leader Election. Use a round-robin leader election with respect to G. If an epoch leader 𝐿𝑒 fails to publish a valid aggregated

PVSS transcript on SMR, blacklist it from future leader elections by setting G := G \ {𝐿𝑒 }.
• Leader Proposal. Upon receiving 𝑡 + 1 valid PVSS transcripts from other parties at the beginning of epoch 𝑒 , the leader 𝐿𝑒

creates an aggregated PVSS transcript 𝐴𝑇𝑒 and publishes it on SMR.
• Buffer Update. Upon observing a valid aggregated transcript 𝐴𝑇𝑒 published by the leader 𝐿𝑒 of some epoch 𝑒 , update the

buffer B(𝐿𝑒) := B(𝐿𝑒) ∪ {𝐴𝑇𝑒 }. At the end of epoch 𝑒 , if no valid aggregated transcript was proposed for epoch 𝑒 − 𝑡 by
leader 𝐿𝑒−𝑡 , remove 𝐿𝑒−𝑡 from future leader elections by setting G := G \ {𝐿𝑒−𝑡 }.

• Reconstruction Phase. Upon entering epoch 𝑒 with leader 𝐿𝑒 , pick the aggregated PVSS transcript 𝐴𝑇𝑒 from B(𝐿𝑒) and run

the PVSS reconstruction protocol on 𝐴𝑇𝑒 among all parties. Additionally, update B(𝐿𝑒) := B(𝐿𝑒) \ {𝐴𝑇𝑒 }.
• Output Generation. Upon reconstruction of the secret 𝑆𝑒 in epoch 𝑒 , output the beacon value 𝜌𝑒 = Hash(𝑆𝑒) ∈ {0, 1}𝜆 .

On the Setup Phase. In order to agree on 𝑛 valid random PVSS transcripts in their buffers, parties can run the SMR protocol for an

initial 2𝑛 epochs, after which the first epoch 𝑒 = 1 of the actual randomness beacon starts. This ensures that by the time the beacon

protocol starts at least 𝑛 valid aggregated transcripts are available to every party.

Figure 10: Distributed randomness beacon protocol OptRand described from the view of party 𝑃𝑖 .

Let P = {𝑃1, . . . , 𝑃𝑛} be the distributed system of 𝑛 parties. All parties run the underlying (responsive) state machine replication

protocol SMR. The beacon protocol starts with epoch 𝑒 = 1.

• Setup Phase. There is no setup phase. As a result, the protocol does not guarantee full availability.

• Leader Election. Use a deterministic round-robin leader election with respect to P.
• Leader Proposal. Upon receiving 𝑡 + 1 valid PVSS transcripts 𝑇1, . . . ,𝑇𝑡+1 from other parties at the beginning of epoch 𝑒 , the

leader 𝐿𝑒 creates an aggregated PVSS transcript 𝐴𝑇𝑒 that consists of the commitments and encrypted shares only. It publishes

Hash(𝐴𝑇𝑒) on SMR, multicasts 𝐴𝑇𝑒 , and additionally sends a part (𝐴𝑇𝑒)𝑖 to party 𝑃𝑖 (see bottom explanation).

• Buffer Update. Upon observing a valid aggregated transcript 𝐴𝑇𝑒 published by the leader 𝐿𝑒 of some epoch 𝑒 , update the

buffer B(𝐿𝑒) := B(𝐿𝑒) ∪ {𝐴𝑇𝑒 }. At the end of epoch 𝑒 , if no valid aggregated transcript was proposed for epoch 𝑒 − 𝑡 by
leader 𝐿𝑒−𝑡 , output ⊥RB as beacon output for that epoch.

• Output Generation. Upon entering epoch 𝑒 with leader 𝐿𝑒 , pick the aggregated PVSS transcript 𝐴𝑇𝑒 from B(𝐿𝑒) and run

the PVSS reconstruction protocol on 𝐴𝑇𝑒 among all parties to obtain the secret 𝑆𝑒 . Output the beacon value 𝜌𝑒 = 𝑆𝑒 ∈ {0, 1}𝜆 .
Additionally, update B(𝐿𝑒) := B(𝐿𝑒) \ {𝐴𝑇𝑒 }.

On the Leader Proposal and Aggregation. The aggregated transcript 𝐴𝑇𝑒 consists only of the commitments and encrypted shares,

the NIZK proofs are ignored for 𝐴𝑇𝑒 . However, the leader also sends (𝐴𝑇𝑒)𝑖 to party 𝑃𝑖 which is defined as the 𝑖-th part of the

collection {𝑇1, . . . ,𝑇𝑡+1} of individual transcripts including the NIZKs. Via quorum certificates the parties can collectively verify that

the aggregate 𝐴𝑇𝑒 is indeed a valid aggregation of the single transcripts 𝑇1, . . . ,𝑇𝑡+1.

Figure 11: Distributed randomness beacon protocol SPURT described from the view of party 𝑃𝑖 .

an 𝑒 ∈ [ℓ + 1, 𝐿] such that 𝜎′𝑒 = 𝜎𝑒 where 𝜎𝑒 is the random-

ness beacon output for epoch 𝑒 . We use algorithm A and

its prediction to build an algebraic reduction R that breaks

aggregated unpredictability of the underlying APVSS. For
this, we simulate an execution of RB for the adversary A
with the help of the oracles provided by the aggregated

unpredictability game for APVSS. In the following, let C ⊂
P := {𝑃1, . . . , 𝑃𝑛} be the dynamically changing set of cor-

rupt parties andH := P \ C the set of honest parties. We

consider the following game of aggregated unpredictability

of APVSS between R (with black-box access to the random-

ness beacon predictor A) and a challenger C.
Reduction R: In the following, we describe the workings

of the reduction R. The challenger C provides R with public

keys {𝑝𝑘𝑖 }𝑖∈[𝑛] along with system parameters par . Before

starting the simulation of the randomness beacon RB with

A (having full control over parties in C), algorithm Rmakes

a guess which of the at most 𝐿 beacon outputs the adver-

sary will predict. For this, the reduction samples a number

𝑒∗ ← [𝐿] uniformly at random from the set [𝐿]. Then, R be-

gins the offline phase of an execution of RB and runs A on

input par and {pk𝑖 }𝑖∈[𝑛] . A returns an index set C ⊂ [𝑛]
of initially corrupted parties along with updated public

keys { ˆpk 𝑗 } 𝑗∈C , which R forwards to C. The challenger sets

pk 𝑗 := ˆpk 𝑗 for all 𝑗 ∈ C. Subsequently, R begins an execu-

tion of RB with A controlling parties in C. At any point of

the execution, A may corrupt a party 𝑃𝑖 by submitting an

index 𝑖 ∈ [𝑛] \ C. In this case, R forwards this corruption

query to C who returns the secret key sk𝑖 of 𝑃𝑖 to R. Upon
receiving this secret key, R forwards it to A and gives A

33

Renas Bacho & Julian Loss

also full control over 𝑃𝑖 . Additionally, at any point of the

execution of RB, A may query the random oracle H on in-

put𝑚𝑖 . In this case, R checks if 𝐻 [𝑚𝑖] = ⊥. If so, it samples

𝑟𝑖 ← {0, 1}𝜆 uniformly at random and returns 𝐻 [𝑚𝑖] := 𝑟𝑖 .
Now, for all epochs ℓ ∈ [𝐿] \ {𝑒∗}, algorithm R simulates

an honest execution of RB on behalf of all honest parties.

For this, R samples on behalf of each honest party 𝑃𝑖 ∈ H a

polynomial 𝑓𝑖,ℓ ← Z𝑝 [𝑋] of degree 𝑡 uniformly at random,

runs the aggregated distribution protocol ADist on it, and

sends the corresponding PVSS transcript𝑇𝑖,ℓ to the leader 𝐿ℓ
of the epoch. All other instructions of the randomness bea-

con protocol are also executed honestly. For epoch 𝑒∗ ∈ [𝐿],
however, R does the following. On behalf of all honest par-

ties 𝑃𝑖 ∈ H , it queries the transcript oracle provided by C.
More precisely, it submits (givePVSS, 𝑖) for all 𝑖 ∈ H , upon

which C returns PVSS transcripts 𝑇𝑖,𝑒∗ . Algorithm R uses

these transcripts to simulate the behavior of honest parties

in the execution of RB with A. Denote the aggregated tran-
script of that epoch 𝑒∗ by 𝐴𝑇𝑒∗ . We define the event 𝐸 by

𝑒 = 𝑒∗. Obviously, we have Pr[𝐸] = 1/𝐿, since 𝑒∗ ∈ [𝐿] is
sampled uniformly at random and unknown to A. In case

event 𝐸 does not happen, R aborts the game with C and the

execution of RB. Note that this happens with probability

1 − Pr[𝐸] = 1 − 1/𝐿. Otherwise, A outputs with probability

𝜀′ a successful prediction (𝜎′𝑒 , 𝑒) such that 𝜎′𝑒 = 𝜎𝑒∗ before
the reconstruction of𝐴𝑇𝑒∗ . Since 𝜎𝑒∗ = H(𝑆𝑒∗), where 𝑆𝑒∗ is
the reconstructed secret of the aggregated transcript 𝐴𝑇𝑒∗ ,

algorithm A must have queried the random oracle H on 𝑆𝑒∗

before outputting its prediction. As a consequence, it must

have submitted 𝑆𝑒∗ to R before outputting 𝜎𝑒∗ . Following

the prediction output by A, R aborts the execution of RB

with A and submits (𝐴𝑇𝑒∗ , 𝑆𝑒∗) as a solution to C for the

aggregated unpredictability game. R’s success probability
in breaking aggregated unpredictability of APVSS is then
given by

𝜀 = Pr[AggPredRAPVSS = 1]

≥ Pr[𝐸] · Pr[UnpredARB = 1] −
𝑞′
ℎ

2
𝜆

≥ 1

𝐿
· 𝜀′ −

𝑞′
ℎ

2
𝜆
=
𝜀′

𝐿
−
𝑞′
ℎ

𝑝
,

where the negative summand𝑞′
ℎ
/2𝜆 (which is equal to𝑞′

ℎ
/𝑝 ,

since 𝑝 has 𝜆-bit size) comes from the fact that the hash

H(𝑆𝑒∗) ∈ {0, 1}𝜆 could occur more than once in the list of

𝑞′
ℎ
queried hashes by A, in which case R cannot recover 𝑆𝑒∗ .

Regarding the running time bound, R has to simulate each

of the at most 𝐿 epochs which comes with a computational

overhead of 𝐿 · O(𝑛2).
• (𝜀′,𝑇 ′, 𝑡, 𝐿)-bias-resistance. We begin with the observation

that D gets strictly less information than A about the bea-

con outputs (since D only gets these output values and no

other information about the RB protocol execution). Now,

our previous analysis on the 1-unpredictability of the ran-

domness beacon output for A, however, implies that even A
cannot distinguish the beacon output before reconstruction

from uniform with probability better than 𝜀′. As a result,
D’s success probability in distinguishing the beacon out-

puts from uniform is bounded by A’s success probability 𝜀′

in predicting the beacon output. Thus yielding the desired

(𝜀′,𝑇 ′, 𝑡, 𝐿)-bias-resistance property.
□

34

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Work and Discussion
	1.4 Organization of this Article

	2 Preliminaries and Model
	3 Adaptively Secure APVSS Schemes
	3.1 New Security Notions for APVSS
	3.2 Security Analysis of APVSS in the AGM, OptRand's & SPURT's Scheme

	4 Application to State-of-the-Art Randomness Beacons
	4.1 OptRand's and SPURT's Beacon Design
	4.2 Security Analysis of OptRand and SPURT

	Acknowledgments
	References
	A Warm-Up: PVSS Schemes & Plain Unpredictability
	A.1 Security Analysis of PVSS in the AGM, Schoenmakers' Scheme
	A.2 Application to Randomness Beacons

	B Related Work on Randomness Beacons
	C Formal Definitions and Security Notions
	C.1 Cryptographic Notions
	C.2 Consensus Notions

	D On the Hardness of Co-OMDL in the Generic Group Model
	D.1 Do we really need the Co-OMDL Assumption? An Heuristic Argument
	D.2 Proof of Hardness of Co-OMDL in GGM

	E Security Analysis of APVSS Schemes
	E.1 On the Security Proof of OptRand's APVSS
	E.2 Security Analysis of SPURT's APVSS

	F Security Analysis and Description of the OptRand and SPURT Randomness Beacons
	F.1 Security Proof for the OptRand and SPURT Randomness Beacons

