
Combined Private Circuits - Combined Security Refurbished
Jakob Feldtkeller

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

jakob.feldtkeller@rub.de

Tim Güneysu

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

tim.gueneysu@rub.de

Thorben Moos

Université catholique de Louvain

Crypto Group, ICTEAM Institute

Louvain-la-Neuve, Belgium

thorben.moos@uclouvain.be

Jan Richter-Brockmann

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

jan.richter-brockmann@rub.de

Sayandeep Saha

Université catholique de Louvain

Crypto Group, ICTEAM Institute

Louvain-la-Neuve, Belgium

sayandeep.saha@uclouvain.be

Pascal Sasdrich

Ruhr University Bochum

Horst Görtz Institute for IT Security

Bochum, Germany

pascal.sasdrich@rub.de

François-Xavier Standaert

Université catholique de Louvain

Crypto Group, ICTEAM Institute

Louvain-la-Neuve, Belgium

fstandae@uclouvain.be

ABSTRACT
Physical attacks are well-known threats to cryptographic imple-

mentations. While countermeasures against passive Side-Channel

Analysis (SCA) and active Fault Injection Analysis (FIA) exist indi-

vidually, protecting against their combination remains a significant

challenge. A recent attempt at achieving joint security has been

published at CCS 2022 under the name CINI-MINIS. The authors

introduce relevant security notions and aim to construct arbitrary-

order gadgets that remain trivially composable in the presence of

a combined adversary. Yet, we show that all CINI-MINIS gadgets

at any order are susceptible to a devastating attack with only a

single fault and probe due to a lack of error correction modules

in the compression. We explain the details of the attack, pinpoint

the underlying problem in the constructions, propose an additional

design principle, and provide new (fixed) provably secure and com-

posable gadgets for arbitrary order. Luckily, the changes in the

compression stage help us to save correction modules and registers

elsewhere, making the resulting Combined Private Circuits (CPC)

more secure and more efficient than the original ones. We also ex-

plain why the discovered flaws have been missed by the associated

formal verification tool VERICA (TCHES 2022) and propose fixes

to remove its blind spot. Finally, we explore alternative avenues to

repair the compression stage without additional corrections based

on non-completeness, i.e., constructing a compression that never

recombines any secret. Yet, while this approach could have merit

for low-order gadgets, it is, for now, hard to generalize and scales

poorly to higher orders. We conclude that our refurbished arbitrary

order CINI gadgets provide a solid foundation for further research.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark, https://doi.org/10.1145/3576915.3623129.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.

KEYWORDS
Side-Channel Analysis; Fault-Injection Analysis; Combined At-

tacks; Gadgets; CINI MINIS

1 INTRODUCTION
Standard black-box assumptions about cryptographic primitives

often fail to hold in practice as an adversary can extract informa-

tion about the internal computations of a cryptographic device by

observing or manipulating its physical characteristics. On the one

hand, a passive adversary exploits the fact that physical effects, such
as timing [26], power consumption [27], or electromagnetic (EM)

radiation [20] of a device are correlated with the data being pro-

cessed. On the other hand, an active adversary deliberately perturbs
the operating conditions (e.g., by clock/voltage glitches [4, 42], or

EM/laser pulses [31, 41]) of the device to create computational faults

and extracts information through faulty system behavior [8, 9].

Over the years, several countermeasures have been proposed to

counter such passive Side-Channel Analysis (SCA) and active Fault

Injection Analysis (FIA). For SCA masking [13] was introduced,

which provides quantifiable security guarantees. The main idea

behind masking is to split each variable into multiple independent

random shares (cf. Section 3.1.4) so that the adversary is bound

to perform a higher-order/multivariate statistical analysis with an

exponential data complexity in the number of shares to recover the

actual intermediate values (under some assumption of noise and in-

dependence [16, 17]). A well-researched strategy to circumvent FIA

is to incorporate computational redundancy in space, time, or infor-

mation [24] to detect/correct occurring faults (cf. Section 3.2.4). In

addition to attacks and countermeasures, the research community

developed theoretical models to argue about security formally. The

formal models for SCA consider access to internal values without

1

https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0002-3293-4989
https://orcid.org/0000-0003-3809-9803
https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-5535-1102
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1145/3576915.3623129

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

or with noise [16, 23, 32]. Likewise, FIA is modeled by allowing

restricted capabilities of circuit manipulation [22, 35].

Countermeasures Against Combined Attacks. While both SCA

and FIA are well-explored in isolation, both theoretically and prac-

tically, the security against an attacker able to mount both SCA

and FIA̧ simultaneously is a new field of research. Indeed, only

recently it has been shown that such Combined Analysis (CA) is

feasible in practice, even with low-end injection and measurement

setups [2, 14, 36, 37, 39, 40]. In addition, the pure combination of

countermeasures against SCA and FIA is not sufficient to protect

against CA, neither in theoretic models [15, 34] nor in practical

implementations [36, 37, 40]. Therefore, there is a need for counter-

measures in the context of CAwith provable and formally verifiable

security claims.

Related Work: Only a few works have addressed the problem of

constructing combined countermeasures. Initial efforts in this re-

gard were based on the principles of Multi-Party Computation

(MPC) [29, 33]. However, proving security in such MPC-based

schemes is highly complex. Recently the SCA research community

has focused on designing small, secure gadgets, i.e., small subcir-

cuits dedicated to some specific functionality, for which security

can be proven even when combined to larger circuits (composi-

tion) [6]. In a nutshell, such composability notions restrict the

propagation of leakage between different gadgets with isolation

and re-randomization. The earliest notions in this regard are Non-

Interference (NI) [5] and Strong Non-Interference (SNI) [6]. Later,

Probe-Isolating Non-Interference (PINI) [12] has been proposed

as an elegant way to achieve composition by isolating so-called

share-domains (cf. Section 3.1.5). Overall, gadget-based, composable

constructions are a convenient way to build secure implementations

against physical attacks.

Similar to NI and SNI, composability notions have also been

proposed for FIA and CA [15, 19, 34]. For CA, the notions for com-

position come in two flavors: (i) the SCA-based security order (i.e.,

the number of observations an adversary can make) is dependent

on the number of injected faults, (ii) the security guarantees in SCA

and FIA are independent of each other. The most recent work in this

regard is Combined-Isolating Non-Interference (CINI) [19], where

the concept of share-domain isolation in PINI was extended to the

context of CA. More precisely, the concept of Shared Redundancy

Domains (SRDs), i.e., the intersection of shares and redundancies,

is introduced. Then the leakage of probes is isolated within share

domains, while the leakage from faults is isolated within SRDs (cf.

Section 3.3.4). The authors also adapted a verification tool for CA,

called VERICA [34], to support this composability notion for the au-

tomatic verification of small gadgets. Finally, the authors proposed

several gadget constructions (CINI-MINIS), which, to the best of our

knowledge, are the only existing gadgets based on Boolean masking

and redundancy for hardware in the context of CA which until now

have not been shown insecure. In this work, we demonstrate that

these constructions need refinement, too, since they are missing a

crucial design principle.

Contributions: In this work, we first extend the well-established

concepts of probe and fault propagation to a propagation framework

in a combined setting (Section 3.3.3). Building on that, we show

that the gadgets proposed by Feldtkeller et al. [19] are vulnerable to
a simple yet effective combined attack when composed (Section 4).

More precisely, an adversary can observe secret-dependent fault

propagation, breaking the security with only a single probe and

fault. Even worse, this attack was not detected by VERICA when

verifying for CINI. This fact highlights the complexity of designing

for CA. To tackle this complexity, design guidelines and principles

are an essential building block. Given our attack, we pinpoint the ex-

act vulnerability and extend the design principles for constructing

CINI gadgets, eventually contributing to the general understand-

ing of CA-secure constructions. The introduced principle guides

the construction of two types of new provably secure CINI gad-

gets (called Combined Private Circuit (CPC)) and a fix to VERICA
(Section 5). The first gadget adds additional correction modules

between the computation of partial products and the compression,

however, it enables us to save some corrections and registers at

other locations (Section 6). In total, this results in a net benefit

in terms of area while fixing the security. In addition, we explore

gadgets based on the non-completeness property from Threshold

Implementations (TIs) [30] (Section 7). While this approach could

have merit for low-order gadgets, it is, for now, hard to generalize

and scales poorly to higher orders. For all our gadgets, we evaluate

the performance and provide a tool-based verification (Section 8).

2 BACKGROUND
In this section, we provide important notations, describe our circuit

model, and discuss proof techniques based on simulation.

2.1 Notation
In general, we use upper-case calligraphic font for sets (e.g., S) and
sans serif font for functions (e.g., f). Further, we use superscript
to denote the replication index and subscript for the share index

of a value. Throughout the paper, the term faulty value is used as

shorthand for a fault that was injected in the gate that produces

the corresponding value.

2.2 Circuit Model
Without loss of generality, we restrict the set of combinatorial gates

to Gc = {inv, and, xor} and the set of memory gates to clocked reg-

isters Gm = {reg}. For randomized behavior, we use a randomness-

generating gate Gr = {rand}, that outputs an independent and

uniformly chosen value from F2 per clock cycle.

Then, we model a digital-logic circuit C as a directed acyclic
graph D = {V, E}, where vertices 𝑣 ∈ V represent logical gates

𝑔 ∈ Gc ∪ Gm ∪ Gr and edges 𝑒 ∈ E represent wires carrying an

element of the finite field F2.

2.3 Security via Simulation
Simulation is a technique often used for security proofs [10, 28].

It defines two games, a real and an ideal game. The ideal game is

trivially secure (under some adversary model), while the real game

is secure iff there exists no adversary who can distinguish between

the ideal and the real game with a probability higher than 1/2.
The ideal game is constructed as a probabilistic polynomial-time

simulator reproducing the view of the adversarywithout knowledge

2

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

(a) (b) (c)

(d) (e)

Figure 1. Rules for probe propagation.

of any secret. This simulator treats each input-dependent value as

deterministic.

3 PROBING & FAULTING
3.1 Side-Channel Analysis
3.1.1 Adversary Model. In the stateless 𝑑-probing model [23], the
adversary A𝑝 is given access to a circuit C that can be invoked

multiple times. Before each invocation,A𝑝 can select up to 𝑑 wires

of C to be probed. Then, while executing, the circuit leaks the

glitch-extended probes [18] to A𝑝 , i.e., all values stored in registers

the probed values directly depend on
1
. In this work, we directly

consider the glitch-extended instead of the standard probing model

to focus on hardware implementations primarily.

3.1.2 Probing Security. In this context, a circuit C is probing-secure
iff the view ofA𝑝 can be simulated without access to any secret [23].

3.1.3 Probe Propagation. The information a probing adversaryA𝑝

can learn from a set of probes is dependent on the structure of the

circuit leading up to the probes. The leaked information captured

by a set of probes can be determined via the concept of probe propa-
gation [7]. Here, a probe propagates from wire𝑤1 to wire𝑤0 iff the

value of wire𝑤0 is required for the simulation of𝑤1. We provide

the most important propagation rules in Figure 1, where probes

always propagate from right to left. In particular, probes propagate

backwards through the circuit (cf. Figure 1a and 1b) until they are

stopped by the addition of unique randomness (cf. Figure 1c). Here,

uniqueness means that the random value is not observed by any

other propagating probe or at least only while masking the same in-

termediate value (cf. Figure 1d and 1e). We emphasize that a placed

probe is first glitch-extended to the associated registers before a

probe propagates backward through the circuit, starting from the

respective registers. While probe propagation and glitch extension

of a probe have some similarities, they still have fundamentally dif-

ferent properties. Probe propagation is stopped only by refreshing

an intermediate value and is not stopped by registers. In contrast,

glitch extension is stopped by registers but not by refreshing.

3.1.4 Masking. A well-understood countermeasure against SCA

is Boolean masking [13]. Here, each value 𝑥 ∈ F2 is replaced by a

vector ⟨𝑥0, . . . 𝑥𝑠−1⟩ ∈ F𝑠
2
, where each 𝑥𝑖 ∈ F2 is uniformly random,

𝑥 =
⊕𝑠−1

𝑖=0 𝑥𝑖 , and each subset
ˆX = {𝑥𝑖 | 𝑖 ∈ [𝑠 − 1]} with | ˆX| < 𝑠

1
Glitches are short-term evaluation defects that occur due to timing differences in

the propagation path of signals. Providing A𝑝 with all stable inputs is a worst-case

assumption on the leakage via glitches [18].

is independent of 𝑥 . A component 𝑥𝑖 is called a share with share

index 𝑖 . To securely process masked values, the computation circuit

is transformed to a shared circuit, where each logical operation

consists of a set of gates manipulating the shared values. In such a

shared circuit, the initial sharing and final unsharing operation are

not part of the shared circuit and cannot be probed by A𝑝 [3, 23].

Definition 3.1 (Share Domain). The share domain 𝑖 of a shared

circuit is defined by all wires with share index 𝑖 .

3.1.5 Probe-Isolating Non-Interference. While being the fundamen-

tal goal, probing-secure circuits are not always composable, i.e.,

the combination of two probing-secure circuits is not necessarily

probing secure again. To ease the construction of probing-secure

circuits, different notions of composition were introduced, which

define how to construct atomic building blocks, so-called gadgets,
that can be securely composed into larger structures. PINI [12] re-

quires the isolation of probe propagation within share domains (cf.
Definition 3.1), i.e., a probe is only allowed to propagate within a

single share domain. This ensures that the combination of multiple

PINI gadgets is always PINI again.

Definition 3.2 (Probe-Isolating Non-Interference [12]). A gadget

G is 𝑑-PINI iff for any set of 𝑑1 internal probes and any set S2 of
𝑑2 share domains, such that 𝑑1 + 𝑑2 ≤ 𝑑 , there exists a set S1 of at
most 𝑑1 share domains such that the outputs of the share domains

in S2 and the probes can be simulated with the inputs of the share

domains in S1 ∪ S2.

3.2 Fault-Injection Analysis
3.2.1 Adversary Model. A faulting adversary A𝑓 is given access

to a circuit C that can be invoked multiple times [22, 34]. Before

each invocation, A𝑓 can select up to 𝑘 gates of C to be faulted and

for each such gate a fault type from a set of allowed fault types

T . Then, before invocation, the faulted gates are replaced by a

different gate type specified by the fault type 𝑡 ∈ T [35]. Commonly

used fault types are set, reset (replacing the targeted gate with a

constant one or zero, respectively), or bit flips (inversion of the

gate). After execution of the circuit, the correctness is leaked toA𝑓 ,

i.e., whether the output is equal to the output of the golden circuit,
which is the fault-free version of C. Please note, we do not consider
fault-detection mechanisms in this work, due to the difficulty to

implement them in hardware [34].

3.2.2 Fault Security. In this context, a circuit C is fault-secure iff
all faults can be corrected at the output [34]. That is, there exists a

correction circuit G𝐶
, such that the concatenation G𝐶 (C (·)) always

yields an output equal to the golden circuit.

3.2.3 Fault Propagation. Similar to probe propagation, fault prop-

agation is a well-known concept in the literature [1, 38]. A fault

propagates from wire 𝑤0 to 𝑤1 iff a faulty value at 𝑤0 causes a

faulty value at 𝑤1, i.e., if a difference between C and the golden

circuit in𝑤0 causes a difference between C and the golden circuit

in 𝑤1. As such, faults propagate always towards the outputs of a

circuit. Again, we provide the most important rules in Figure 2,

where faults always propagate from left to right. A fault occurs

in an output wire 𝑤𝑔 of a gate 𝑔 if the fault injected in 𝑔 causes

an effective fault at𝑤𝑔 (cf. Figure 2a), i.e., the value carried by𝑤𝑔

3

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

(a) (b) (c)

(d) (e) (f)

Figure 2. Rules for fault propagation.

in the faulted circuit differs from the value in the golden circuit.

Hence, observing this fault provides information about the correct

value of𝑤𝑔 . Similarly, a single fault propagates through a multipli-

cation (we talk about addition and multiplication in F2 from here

on) only if the other operand 𝑎 is equal to 1 (cf. Figure 2c). Again,

the observation of such a fault propagation leaks some information

about 𝑎. In contrast, a single fault always propagates through an

addition (cf. Figure 2b). When both input operands are faulty then

the fault propagates through a multiplication only if both operands

are equal and does not propagate through an addition (cf. Figure 2d

and 2e). A majority vote always stops the propagation of a certain

maximum number of incoming faults (cf. Figure 2f).

3.2.4 Redundancy. Protecting against fault attacks always requires
some form of redundancy, either in time, space, or information.

The most basic form of redundancy is replication, where all data
and computation are instantiated multiple times in parallel. Then,

correction of corrupted data is possible with 2𝑘 + 1 replications

via a majority vote maj. The initial replication and the final error

correction are not part of the replicated circuit and cannot be faulted

by A𝑓 [34]. For correctness, all replications must use the same

random values whenever a randomness gate is used in C.

Definition 3.3 (Redundancy Domain). The redundancy domain ℓ of
a redundant circuit is defined by all gates and wires with replication

index ℓ .

3.2.5 Fault-Isolating Non-Interference. The combination of two

fault-secure circuits is in general not fault-secure. Hence, additional

notions of composition were introduced for construction and anal-

ysis. Similar to PINI, Fault-Isolating Non-Interference (FINI) [19]

requires the isolation of fault propagation within redundancy do-

mains (cf. Definition 3.3). This is a natural expression of the security

guarantees given by replication codes and ensures that any combi-

nation of FINI gadgets is FINI again.

Definition 3.4 (Fault-Isolating Non-Interference [19]). A gadget G
is 𝑘-FINI iff the following holds:

(i) For any set F1 of 𝑘1 faulty redundancy domains and every

set of 𝑘2 faults injected in gates of G, with 𝑘1 + 𝑘2 ≤ 𝑘 , there

exists a set of at most 𝑘2 redundancy domains F2, such that

the gadget gives an output where all values, except those

belonging to the redundancy domains F1 ∪ F2, are equal to
the values of the golden circuit.

(ii) There exists a decoding gadget GD
, such that given an input

with at most 𝑘 faulty redundancy domains, GD
outputs a

correct result.

(a)

(b)

(c) (d)

(e) (f)

Figure 3. Rules for combined propagation.

3.3 Combined Analysis
3.3.1 Adversary Model. An adversary A𝑐 with both faulting and

probing capabilities is a trivial combination ofA𝑝 andA𝑓 [15, 34],

i.e.,A𝑐 features both capabilities (selecting 𝑑 wires for probing and

selecting 𝑘 gates with fault types for faulting) and both leakages

(glitch-extended probes and correctness of the output). However, for

CA the definition of the golden circuit is slightly modified. In par-

ticular, all faults in randomness gates 𝑔𝑟 ∈ Gr are also injected into

the golden circuit [34]. Please note, faults change the distribution

of affected intermediate values and in turn affect the observation

made by the placed probes (cf. Section 3.3.3).

3.3.2 Combined Security. In this context, a circuit C is combined-
secure iff the view of A𝑐 can be simulated without access to any

secret (privacy) and there exists a correction circuit G𝐶
, such that

the concatenation G𝐶 (C (·)) always yields an output equal to the

golden circuit (correctness) [34]. Following probing and fault se-

curity, A𝑐 is not allowed to probe or fault the initial sharing and

replication, nor the final unsharing and correction.

3.3.3 Combined Propagation. The concepts of probe and fault prop-
agation can be combined to analyze the leakage of information in

a combined attack setting. We provide the most important rules

in Figure 3. In general, a fault can impact a set of probes in four

different ways. Two are beneficial toA𝑐 , one is to the disadvantage

of A𝑐 , and one has no impact.

Entropy Removal. Since probing security is primarily achieved

through randomization the removal of entropy via faults can en-

hance the propagation of probes. For example, manipulating a ran-

dom value with a biased fault gives A𝑐 the control over the used

randomness and, hence, is equivalent to a known random value (cf.

Figure 3a) [34]. However, this is only true for biased faults, while

non-biased faults provide the adversary with no advantage at all

(cf. Figure 3b) [34].

Conditioned Fault Propagation. Whenever a fault propagation

is conditioned on some internal value 𝑎 and A𝑐 can distinguish

4

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

(a)

(b)

Figure 4. Combined propagation examples where 𝑎0 = 𝑎1 and𝑏0 = 𝑏1.

between a faulty and a non-faulty wire (i.e., whether the fault

propagates or does not propagate) the condition on 𝑎 is leaked to

A𝑐 . This can happen due to a biased fault injected into a gate since

the fault sets the output to a known value that is either correct or

not (cf. Figure 3c). Or it happens when a non-reset fault propagates

through a multiplication since the fault only propagates if the other

input is set to one (cf. Figure 3d). While propagating through the

circuit a fault can accumulate different propagation conditions and

thereby indirectly recombine multiple shares of a secret. Intuitively,

such a fault serves as an additional probe on the conditioned value.

However, without probe propagation and, therefore, no protection

via refreshing. It is important to note that such a fault alone is not

sufficient for leakage. Instead, a probe is required that captures

the existence of fault propagation, e.g., by observing a correct and

faulty redundant value.

Information Removal. A biased fault completely determines the

output distribution of an affected gate. Hence, the output is deter-

mined only by the known fault and not by the input to the gate.

This essentially disconnects the input and output of the faulted

gate and thereby stops the propagation of an incoming probe (cf.

Figure 3c). A similar effect is achieved when a reset fault propagates

through a multiplication since again the output of the gate is fully

determined by the faulty input and always set to zero (cf. Figure 3e).

No Impact. A propagating fault has no impact on probe propa-

gation for gates with deterministic inputs (cf. Figure 3f and 3d), as

long as the fault does not remove information (see above). In such

a case, the fault and probe propagation passes one another.

The four types of fault impacts are by no means exclusive and

a single fault can cause both effects at different locations of the

circuit. As probes are passive, probe propagation has no impact on

faults.

Example. For clarification of the concept of combined propaga-

tion, let us consider the example in Figure 4a. From a pure probing

security perspective, this circuit does not reveal any information

about the inputs, since 𝑎0 = 𝑎1 and 𝑏0 = 𝑏1 which means 𝑟 is ob-

served two times refreshing the same value (cf. Figure 1e). A bit-flip

fault in 𝑏0 will cause an effective fault at the output of 𝑎0𝑏0 + 𝑟 iff

𝑎0 = 1. Observing only this value also reveals no information about

the inputs, asA𝑐 cannot distinguish between an effective and an in-

effective fault. However, observing both outputs in Figure 4a allows

A𝑐 to identify effective faults (if both values are different). Hence,

the condition of the probe propagation, i.e., 𝑎0 = 1, is leaked to the

adversary, which means the input 𝑎0 is required for the simulation

of the probes (if 𝑎0 = 0 both probes are random but equal; if 𝑎0 = 1

both probes are random but different).

When injecting a set fault in 𝑏0 instead, both 𝑎0 and 𝑏0 are

required for simulation (cf. Figure 4b). The reason is that now the

effectiveness of the fault in 𝑏0 is dependent on the value of 𝑏0 in

the first place. The fault is only effective if 𝑏0 = 0. Again, the fault

propagates to the probe only if 𝑎0 = 0 and A𝑐 can observe the

effectiveness of the fault by comparing both outputs.

Definition 3.5 (Shared Redundancy Domain). The SRD (𝑖, ℓ) of
replicated and shared circuits is defined by all gates and wires with

share index 𝑖 and replication index ℓ .

3.3.4 Combined-Isolating Non-Interference. Again, the combina-

tion of two combined-secure circuits is not always combined-secure

and additional notions for composition were introduced. CINI [19]

is a combination of PINI and FINI in that it isolates probe propa-

gation and glitch extension within share domains and fault propa-

gation within SRDs (cf. Definition 3.5). An SRD is the intersection

of a share domain with a redundancy domain and it is required

to restrict a fault to a single SRD to avoid the cross-share-domain

leakage via faults [19]. In its simple form, CINI requires the order of

probing security to be always at least the sum of the injected faults

and probes, i.e., the number of injected faults reduces the number

of remaining probes. The reason is the probe-like nature of faults

when conditioned on internal values.We provide a formal definition

of CINI in Definition 3.6. With Independent Combined-Isolating

Non-Interference (CINI
ind

) [19] there exists also a variant where the

number of probes is always only restricted by the order of probing

security and independent of the injected faults, which potentially

allows more efficient implementations for a certain security order.

Both variants are trivially composable, i.e., any combination of CINI

(CINI
ind

) gadgets is CINI (CINI
ind

) again. In this work, we focus on

CINI and discuss the relation to CINI
ind

only briefly.

Definition 3.6 (Combined-Isolating Non-Interference [19]). A gad-

get G is (𝑑, 𝑘)-CINI iff for any set F1 of 𝑘1 faulty SRDs, every set

of 𝑘2 faults injected in gates of G, any set of 𝑑1 probes placed on

intermediate values, and any set S2 of 𝑑2 share domains, such that

𝑘1 + 𝑘2 ≤ 𝑘 and 𝑑1 + 𝑑2 + 𝑘1 + 𝑘2 ≤ 𝑑 , there exists a set F2 of at
most 𝑘2 SRDs and a set S1 of at most 𝑑1 + 𝑘2 share domains such

that the following holds:

Correctness: The gadget gives an output where all values, except

those belonging to the SRDs F1∪F2, are equal to the
golden circuit, and there exists a decoding gadget

GD
, such that given an input with at most 𝑘 faulty

SRDs, GD
outputs a correct result.

Privacy: The outputs of the share domains in S2, the outputs
violating the independence property of Boolean

sharing, and the probes can be simulated with the

5

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

Figure 5. Conditioned fault propagation exploited by our attack.

inputs of the share domains in S1 ∪ S2 and knowl-

edge of the faults both injected and on inputs in

F1.

4 ATTACKING THE COMBINED GADGET
In this section, we present a combined attack on the CINI and

CINI
ind

gadgets proposed by Feldtkeller et al. [19]. All three of those
gadgets follow the same design principle: computing everything

in multiple redundancy domains and performing error correction

(using all redundancy domains), and mask refreshing whenever an

intermediate value crosses SRD boundaries. This principle should

ensure that probe propagation is isolated within share domains and

fault propagation within SRDs.

In the following, we describe a combined attack on those gadgets,

based on the properties of combined propagation (cf. Section 3.3.3),

without violating the basic security conditions described by [19].

The attack requires a single probe and a single fault in a simple com-

position of gadgets, exploiting a secret-dependent fault propagation

observed by the probe.

Attack Outline. The core principle of our attack is shown in

Figure 5. The general structure of the presented gadgets follows

the structure of the attacked gadgets, even if it only has two shares

and two replications (the computation of 𝑐1 is omitted for brevity).

The attack places a fault on 𝑎0
0
which, due to the structure of the

gadget, propagates to the output 𝑐0
0
conditioned on 𝑣0

0
and 𝑣0

1
. In

particular, the fault only propagates to the output if 𝑣0
0
≠ 𝑣0

1
which

is equivalent to 𝑏 = 1. By observing both 𝑐0
0
and 𝑐1

0
the adversary

can distinguish between effective and ineffective faults in 𝑐0
0
and

hence, the secret 𝑏 is leaked to A𝑐 .

In the following, we discuss the details when attacking real-

sized gadgets. For this, our explanation focuses on HPCC
1 . However,

the attack is also applicable to the remaining gadgets. In particular,

attackingHPCI
1 is possible without any changes while for the attack

against HPCC
2 the probe placement has to be adjusted.

Algorithm 1: HPCC
1 : CINI multiplication.

1 function HPCC
1 (𝑎

0

0
, . . . , 𝑎𝑛

𝑑
, 𝑏0

0
, . . . , 𝑏𝑛

𝑑
):

Require: 𝑛 = 2𝑘 + 1
Require: 𝑎ℓ

𝑖
= 𝑎ℓ

′
𝑖

and 𝑏ℓ
𝑖
= 𝑏ℓ

′
𝑖

for 0 ≤ ℓ, ℓ ′ ≤ 𝑛, 0 ≤ 𝑖 < 𝑑

Require:
∑𝑑

𝑗=0 𝑎
ℓ
𝑗
= 𝑎 and

∑𝑑
𝑗=0 𝑏

ℓ
𝑗
= 𝑏 for 0 ≤ ℓ < 𝑛

// Initialize randomness

2 for 𝑖 = 0 to 𝑑 do
3 for 𝑗 = 𝑖 + 1 to 𝑑 do

4 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

5 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

// Refreshing

6 for ℓ = 0 to 𝑛 − 1 do
7 for 𝑗 = 0 to 𝑑 do
8 𝑣̃ℓ

𝑗
← 𝑏ℓ

𝑗
+∑𝑑

𝑖=0,𝑖≠𝑗 𝑟𝑖,𝑗

// Correction

9 for ℓ = 0 to 𝑛 − 1 do
10 for 𝑖 = 0 to 𝑑 do
11 for 𝑗 = 0 to 𝑑 do
12 𝑣ℓ

𝑖,𝑗
← maj(𝑣̃0

𝑖
. . . 𝑣̃𝑛−1

𝑖
)

// Multiplication

13 for ℓ = 0 to 𝑛 − 1 do
14 for 𝑖 = 0 to 𝑑 do
15 𝑤ℓ

𝑖
← 𝑎ℓ

𝑖
· reg[𝑣ℓ

𝑖,𝑖
]

16 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
17 𝑧ℓ

𝑖,𝑗
← 𝑎ℓ

𝑖
· reg[𝑣ℓ

𝑗,𝑖
] + 𝑟𝑖,𝑗

18 𝑐ℓ
𝑖
← reg[𝑤ℓ

𝑖
] +∑𝑑

𝑗=0;𝑗≠𝑖 reg[𝑧ℓ𝑖,𝑗]

Ensures: 𝑐ℓ
𝑖
= 𝑐ℓ

′
𝑖

for 0 ≤ ℓ, ℓ ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Ensures:
∑𝑑

𝑖=0 𝑐
ℓ
𝑖
= 𝑎 · 𝑏 for 0 ≤ ℓ ≤ 𝑛

19 return 𝑐0
0
, . . . , 𝑐𝑛

𝑑

4.1 Attack on HPCC
1

Let us consider the HPCC
1 gadget described in Algorithm 1. The

gadget is supposed to provide security against k-bit faults and

d-probing adversary even under composition. For our attack, we

inject a 1-bit fault at one of the input shares of 𝑎. Assume that

𝑎ℓ
𝑖
has been corrupted which belongs to the SRD (𝑖, ℓ). The fault

propagates through the gadget and, following CINI, corrupts only

the output belonging to SRD (𝑖, ℓ). However, the propagation is

conditioned on the secret 𝑏.

The reason is that the fault-propagation path consists of ad-

dition (xor) and multiplication (and) gates and, hence, the fault

propagation follows the principles illustrated in 2b and Figure 2c.

Therefore, the fault propagation is unaffected by additions and

conditioned when passing through a multiplication, leaking the

propagation condition when A𝑐 can distinguish between an effec-

tive/ineffective fault. We have highlighted the fault-propagation

path in Algorithm 1 (initial fault in red, conditioned variables in

blue, and fault propagation in green).

Due to the multiplication, the fault propagation to𝑤 ℓ
𝑖
, 𝑧ℓ

𝑖, 𝑗
, and 𝑐ℓ

𝑖

is conditional on the corresponding 𝑣ℓ
𝑖, 𝑗
. The algebraic expression at

6

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

the output with a fault in 𝑎ℓ
𝑖
(noted as 𝑎ℓ

𝑖
) can be reduced as follows:

𝑐ℓ𝑖 ← 𝑎ℓ𝑖 · (𝑏
ℓ
𝑖 +

𝑑∑︁
ℎ=0,ℎ≠𝑖

𝑟ℎ,𝑖) +
𝑑∑︁

𝑗=0;𝑗≠𝑖

(𝑎ℓ𝑖 · (𝑏
ℓ
𝑗 +

𝑑∑︁
ℎ=0,ℎ≠𝑗

𝑟ℎ,𝑗) + 𝑟𝑖, 𝑗)

← 𝑎ℓ𝑖 · (𝑏
ℓ
𝑖 +

𝑑∑︁
ℎ=0,ℎ≠𝑖

𝑟ℎ,𝑖 +
𝑑∑︁

𝑗=0;𝑗≠𝑖

(𝑏ℓ𝑗 +
𝑑∑︁

ℎ=0,ℎ≠𝑗

𝑟ℎ,𝑗)) +
𝑑∑︁

𝑗=0;𝑗≠𝑖

𝑟𝑖, 𝑗

← 𝑎ℓ𝑖 · (𝑏
ℓ
𝑖 +

𝑑∑︁
𝑗=0;𝑗≠𝑖

(𝑏ℓ𝑗 + 𝑟 𝑗,𝑖 +
𝑑∑︁

ℎ=0,ℎ≠𝑗

𝑟ℎ,𝑗)) +
𝑑∑︁

𝑗=0;𝑗≠𝑖

𝑟𝑖, 𝑗

← 𝑎ℓ𝑖 · 𝑏 +
𝑑∑︁

𝑗=0;𝑗≠𝑖

𝑟𝑖, 𝑗

(1)

Note, that registers have no impact on fault propagation and are,

therefore, omitted in the expression above. Due to the fact that all

(refreshed) shares of 𝑏 are combined in a single 𝑐ℓ
𝑖
, the refreshing

of 𝑏 is completely removed at this point. Under normal execution,

this is not problematic, since the refreshing of the partial prod-

ucts remains untouched. However, the rearrangement of the terms

shows that the fault propagation is conditioned on the secret 𝑏.

Still, observing 𝑐ℓ
𝑖
only does not directly leak the condition, since

A𝑐 cannot distinguish between effective and ineffective faults, i.e.,

whether the fault indeed propagates to the output or not.

To get the additional leakage, A𝑐 needs to observe the (poten-

tially) faulty 𝑐ℓ
𝑖
and a (definitely) correct 𝑐ℓ

′
𝑖
from another replication

domain. This can be achieved when gadgets are composed. Imagine

a composition of two HPCC
1 gadgets, such that the output of the

first gadget is the input 𝑏 of the second gadget (cf. Figure 7). Now,

we place a probe at 𝑣ℓ
𝑖
of the second gadget, which, due to glitch

extension, expands to all replication domains of the input. These

are all the replication domains of the output share domain 𝑖 of the

first gadget and 𝑐ℓ
𝑖
and 𝑐ℓ

′
𝑖
are in the extended probes. Hence, with

this probe, A𝑐 can distinguish effective and ineffective faults in

the above attack scenario. This leaks the secret 𝑏 to A𝑐 , violating

the privacy of CINI. This attack always requires one probe and one

fault regardless of the number of shares and duplications used in

the gadget.

Attack in the Standard Model. The above attack is also possible in
the standard probing model, i.e., a probe leaks only the value carried

by the probed wire. The reason is a dependency in the correction

logic as depicted in Figure 6. We note that [37] also mentions a

similar kind of leakage for DOM and TI gates, and DOM-based

S-Boxes. In particular, without any input fault to the correction, the

internal values of the correction are randomly distributed (since

the inputs are randomly distributed). However, if there is a faulty

input, some internal wires are always zero. Hence, again the secret-

dependent fault propagation is needed to simulate the respective

probe.

Impact of the Fault Model. The presented attack depends on

the structural features of the circuit and works for all common

fault models, i.e., set/reset and biased/unbiased bit-flips. Combined

security is a notion of perfect security, in the sense that already

a small bias towards the adversary is considered insecure. While

the fault model impacts the condition of fault propagation (e.g.,

a set fault adds a condition dependent on the faulted value), it

(a)

(b)

Figure 6. Illustration of leakage from single-bit error correction logic.
If the codewords are correct, the outputs of the AND gates toggle
with probability 0.5. If there is an error in the codeword, the probed
wire gets stuck to zero.

Figure 7. Composition of two HPCC
1 gadgets. The fault is injected at

the input of the left gadget and the leakage is measured from the
error correction logic of the right gadget.

does not change the fact that the attack is possible for some value

combinations. This already is a violation of combined security even

if this may only marginally impact the success probability of a

practical attack.

Impact of the Attack. Multiple recent works have addressed fault-

propagation based leakage [37, 40]. While the fundamental cause of

those attacks is the same as in the presented attack, none of them

considers CA-secure gadgets, but target specific S-Box construc-

tions. From that perspective, attacking gadgets is more generic,

impacting all designs derived by compositions. Several techniques

can be utilized to make the leakage exploitable. One option is to

use a template attack as shown in [37, 38]. In a recent work [40],

it has been shown that such leakages can be exploited even in a

non-profiled setting with multi-bit imprecise and random faults.

The attacks in [40] exploit the bit-slice structure of GIMLI permu-

tation to enable multi-bit fault attacks. Given that bit slicing is also

very common in gadget-based constructions (for software) [21], it

is expected that such attacks would also apply in such a context.

7

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

(a) (b)
Figure 8. Probe propagation in the case of PINI and CINI.

5 DISCUSSION OF THE ATTACK
In the following, we discuss the core flaw of the CINI proof provided

by Feldtkeller et al. [19] and give a high-level intuition about the

possible fixes.

5.1 The Concept of Probed Share Domains
The concepts of PINI and CINI distinguish between probes placed

internally to a gadget and probes placed outside of it. Specifically,

probes within a gadget are considered as normal probes placed on

individual wires. Those probes reveal the (glitch-extended) values

of the probed wires to the adversary. In contrast, external probes are
placed at share domains, leaking all values belonging to the probed

share domain. This separation allows the trivial composition of

PINI/CINI gadgets, as long as each gadget ensures the isolation

of share domains to probe propagation. This is proven by the re-

spective theorems for composition [12, 19]. Hence, the underlying

concept is free probe propagation within share domains, but a strict

isolation between them.

When combining individual gadgets, the separation of internal

and external probes is essential to prove the isolation of share do-

mains. In particular, a single external probe, probing an output

share domain, can result in the requirement to simulate multiple

output wires. Failing to do so, may lead to a gadget that is prob-

ing secure in itself, however, insecure under composition, i.e., the

gadget is not PINI/CINI.

For PINI, the scenario that more wires need to be simulated than

there are placed probes only occurs for multiple-output gadgets

(otherwise there is only one output wire per share domain). In

Figure 8a we show an exemplary gadget composition, where a

single probe propagates to multiple outputs of a multiple-output

gadget. This clearly shows that to be first-order secure, the two

outputs belonging to share domain 1 need to be simulated at once.

For CINI already a single-output gadget requires the simulation

of more wires than placed probes since the replication of a wire

explicitly belongs to the same share domain (cf. Definition 3.1).

Intuitively this makes sense since a (non-faulted) replication of a

wire contains the same information. Again, we give an exemplary

gadget composition in Figure 8b. Indeed, a probe at the output of any

(not otherwise protected) correction circuit contains all replications

of the corrected value, by glitch extension and probe propagation.

Our attack in Section 4 exploits exactly this.

5.2 Fixing VERICA

With the introduction of the CINI notion [19], the authors also pro-

vided an extension to the formal verification framework VERICA [34]
and analyzed several instantiations of corresponding multiplication

gadgets. However, the above-introduced flaws have not been de-

tected by VERICA since external probes have not been extended to

all wires with the same share domain, i.e., to all replications. In the

following, we briefly describe the structure of VERICA and present

our fixes leading to correct verifications of the CINI and CINI
ind

security notions.

VERICA is partitioned into different passes starting with a pars-

ing phase that is responsible to read the used cell library and the

netlist under test implementing the target design. Afterwards, a

preprocessing phase is executed preparing the circuit model for

the verification process. This also includes a strategy that prepares

the tool for SCA verifications determining among other things all

valid probe positions and creating all valid probe combinations of up
to 𝑑 probes. However, all probe positions are treated in the same

fashion to compute the probe combinations and no particular rules

for external probes are applied. Hence, if an external probe has

been added to the set of a valid probe combination, all outputs with

the same share domain have not been considered in this particular

set. To this end, we extended the corresponding function in VERICA
by checking if a probe combination contains an external probe and

adding all outputs with the same share domain as virtual probes
to this set (cf. Section 5.1). This distinction is necessary due to the

underlying structure and functional principle of VERICA. In the ver-

ification process, the number of original probes is used to compute

a threshold determining the maximum number of input shares that

can be used for simulation. However, the original probes plus the

virtual probes are considered to compute all possible combinations

to check statistical independence to the corresponding input shares

as introduced by Knichel et al. [25] together with the verification

framework SILVER. With these changes VERICA can detect the flaw

in the gadgets from Feldtkeller et al. [19] (cf. Table 2). We integrated

our fix into VERICA2.

5.3 The Missing Design Principle
The construction of the gadgets proposed by Feldtkeller et al. [19]
are based on a simple design principle: Every intermediate value

that crosses an SRD border needs to be refreshed (to stop probe

propagation) and corrected (to stop fault propagation). While nec-

essary, our attack shows that this design principle is not sufficient.

In particular, the principle does not prevent the recombination of

secrets due to conditional fault propagation (which is not stopped

by refreshing). In HPCC
1 all shares of the secret 𝑏 are recombined

(after refreshing and correction) within the SRD (𝑖, ℓ), as shown
by Equation 1. Then, a fault propagation within this share domain

is conditioned on the recombined secret 𝑏. Indeed, this is allowed

under the correction property of CINI. However, the privacy prop-

erty requires the simulation of all output wires belonging to the

share domain 𝑖 (cf. Section 5.1), which will fail due to the fault

propagation dependent on 𝑏.

Hence, the design principle needs to be extended as follows: A
fault shall never be conditioned on a recombined secret value (even

2
https://github.com/Chair-for-Security-Engineering/VERICA

8

https://github.com/Chair-for-Security-Engineering/VERICA

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

after refreshing). In non-linear operations, like multiplication, the

fault propagation is always conditioned (cf. Figure 2c). Therefore, it

is required that a fault propagating through a non-linear gate does

not propagate to a point in the circuit, where a secret is recombined.

This additional design principle was not discovered by Feldtkeller

et al. [19] due to a mistake in the CINI proof of their gadgets. When

looking closely at the proofs, it is apparent that an external probe

does not capture all replications of the output. Instead, only a single
wire is selected and simulated for this probe, leading always to the

same amount of wires probed and simulated. As discussed above,

this is not sufficient for CINI and the resulting gadgets are therefore

insecure in composition, precisely because of the lack of considering

the above design principle.

5.4 Fixing Gadgets
In Section 3.3.3 we discuss how a fault can impact probing security.

Intuitively, each type of impact requires a different handling to

counteract them. The first type, i.e., the removal of randomness,

can be handled via additional randomness, registers, or an increase

in the number of shares. Handling the leakage via the observation

of effective/ineffective faults is more difficult. In particular, fault

propagation remains unaffected by registers and the addition of

randomness. Indeed, the (conditioned) propagation only depends

on the logical expression of the propagation path. The only effective

way to stop fault propagation is via error correction.

Therefore, we see two fundamental ways to adhere to the above

design principle. (i) Inserting a correction module after each cross–

domain partial-product computation ensures that the fault propa-

gation is stopped before the recombination of the secret 𝑏 happens.

We provide more details on this approach in Section 6. (ii) Via

non-completeness in the compression of the gadget, we can ensure

that the secret 𝑏 is never recombined within the gadget. Hence,

fault propagation cannot be dependent on 𝑏. More details follow in

Section 7.

6 GADGETS BASED ON CORRECTION
The core vulnerability exploited in Section 4 is the reduction in

Equation 1, i.e., all shares of 𝑏 are implicitly recombined. Adding

additional error-correction modules after the refreshing of the par-

tial products belonging to cross-domains breaks this dependency

in case of fault injection. In particular, a fault in 𝑎ℓ
𝑖
(noted as 𝑎ℓ

𝑖
)

does not propagate to the refreshed cross-domain 𝑎ℓ
𝑖
𝑏ℓ
𝑗
but only to

the product 𝑎ℓ
𝑖
𝑏ℓ
𝑖
. Equation 2 shows that in this case, the different

shares do not recombine to the secret 𝑏.

𝑐ℓ𝑖 ← 𝑎ℓ𝑖 · (𝑏
ℓ
𝑖 +

𝑑∑︁
ℎ=0,ℎ≠𝑖

𝑟ℎ,𝑖) +
𝑑∑︁

𝑗=0;𝑗≠𝑖

maj(𝑎ℓ𝑖 · (𝑏
ℓ
𝑗 +

𝑑∑︁
ℎ=0,ℎ≠𝑗

𝑟ℎ,𝑗) + 𝑟𝑖, 𝑗)

← 𝑎ℓ𝑖 · (𝑏
ℓ
𝑖 +

𝑑∑︁
ℎ=0,ℎ≠𝑖

𝑟ℎ,𝑖) +
𝑑∑︁

𝑗=0;𝑗≠𝑖

𝑎ℓ𝑖 · (𝑏
ℓ
𝑗 +

𝑑∑︁
ℎ=0,ℎ≠𝑗

𝑟ℎ,𝑗) + 𝑟𝑖, 𝑗

← 𝑎ℓ𝑖 · (𝑏
ℓ
𝑖 +

𝑑∑︁
ℎ=0,ℎ≠𝑖

𝑟ℎ,𝑖) + 𝑎ℓ𝑖 ·
𝑑∑︁

𝑗=0;𝑗≠𝑖

(𝑏ℓ𝑗 +
𝑑∑︁

ℎ=0,ℎ≠𝑗

𝑟ℎ,𝑗) +
𝑑∑︁

𝑗=0;𝑗≠𝑖

𝑟𝑖, 𝑗

(2)

6.1 Combined-Isolating Non-Interference
Structure. We provide our CINI multiplication gadget for arbi-

trary order in Algorithm 2. The structure is similar to the vulnerable

gadgets proposed by Feldtkeller et al. [19] but with additional er-

ror correction. First, there is a refresh and error correction for all

shares belonging to input 𝑏. Due to the non-linearity of the multi-

plication, this is necessary to isolate the propagation of probes and

faults within share domains and SRDs, respectively. Afterward, all

partial products are computed, where cross-domain partial prod-

ucts are refreshed and corrected again. Finally, the partial products

are compressed to reduce the number of output shares to the re-

quired number. For the error correction, it is necessary to do this

computation in a replicated manner.

Interestingly, the additional correction modules after the partial-

product computation allow us to optimize the gadget for the number

of registers. In particular, the previous gadget required that each

output of the correction (after the refresh of 𝑏, cf. Algorithm 1) is

only used in one SRD, meaning that a correction and register was

required for every partial product. However, in our construction,

all cross-domain partial products are corrected again, meaning that

a fault after the correction of 𝑏 can only propagate to a single

SRD even when only computed once. Hence, while the number of

corrections remains the same we reduce the number of registers per

redundancy domain from 2𝑑2 + 4𝑑 + 2 (in HPCC
1) to 𝑑

2 + 3𝑑 + 2 (in
CPCC

1). Due to the large area footprint of registers, this optimization

leads to significant savings (cf. Section 8.1).

Formal Arguments. We continue by providing a formal argument

for the CINI property of Algorithm 2. The core idea for correctness
is that each share of input 𝑎 only influences the same SRD of the

output, while all shares of𝑏 are corrected before reaching the output.

For privacy the core idea is that probes only propagate until they

reach the intermediate values 𝑧ℓ
𝑖, 𝑗

or 𝑣ℓ
𝑗
. The reason is that the

masking of those values is refreshed by 𝑟𝑖, 𝑗 and 𝑟𝑖, 𝑗 , respectively.

Of course, the probe propagation stops only at those values if the

used randomness is not observed anywhere else in the probes and

is not faulted. However, if that is the case, there are enough probes

and internal faults to allow the probe propagation to the associated

input shares. In addition, any secret-dependent fault propagation

is carefully controlled to be either corrected before observation or

independent of secrets.

Theorem 6.1. The gadget CPCC
1 as defined in Algorithm 2 with

a register-free majority function is (𝑑, 𝑘)-CINI in the glitch-robust
probing model.

Proof Structure. For the proof, we first show the correctness and

then the privacy of the gadget. For privacy, we construct a simulator

in the following two steps: (i) We define for each probe/fault com-

bination the input shares the simulator is allowed to access, i.e., the

inputs the probes can propagate to. This is done via Algorithm 3 and

needs to adhere to the restrictions given in Definition 3.6. (ii) We

define how the simulator computes the required intermediate val-

ues. Finally, we show that the constructed simulator has the same

output distribution as the probes in the original gadget, i.e., both

are indistinguishable.

9

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

Algorithm 2: CPCC
1 : CINI multiplication.

1 function CPCC
1 (𝑎

0

0
, . . . , 𝑎𝑛

𝑑
, 𝑏0

0
, . . . , 𝑏𝑛

𝑑
):

Require: 𝑛 = 2𝑘

Require: 𝑎ℓ
𝑖
= 𝑎ℓ

′
𝑖

and 𝑏ℓ
𝑖
= 𝑏ℓ

′
𝑖

for 0 ≤ ℓ, ℓ ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Require:
∑𝑑

𝑗=0 𝑎
ℓ
𝑗
= 𝑎 and

∑𝑑
𝑗=0 𝑏

ℓ
𝑗
= 𝑏 for 0 ≤ ℓ ≤ 𝑛

// Initialize randomness

2 for 𝑖 = 0 to 𝑑 do
3 for 𝑗 = 𝑖 + 1 to 𝑑 do

4 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

5 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

// Refreshing

6 for ℓ = 0 to 𝑛 do
7 for 𝑗 = 0 to 𝑑 do
8 𝑣̃ℓ

𝑗
← 𝑏ℓ

𝑗
+∑𝑑

𝑖=0,𝑖≠𝑗 𝑟𝑖,𝑗

// Correction

9 for ℓ = 0 to 𝑛 do
10 for 𝑗 = 0 to 𝑑 do
11 𝑣ℓ

𝑗
← maj(𝑣̃0

𝑗
. . . 𝑣̃𝑛−1

𝑗
)

// Multiplication

12 for ℓ = 0 to 𝑛 do
13 for 𝑖 = 0 to 𝑑 do
14 𝑤ℓ

𝑖
← 𝑎ℓ

𝑖
· reg[𝑣ℓ

𝑖
]

15 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
16 𝑤ℓ

𝑖,𝑗
← 𝑎ℓ

𝑖
· reg[𝑣ℓ

𝑗
]

17 𝑧ℓ
𝑖,𝑗
← 𝑤ℓ

𝑖,𝑗
+ 𝑟𝑖,𝑗

// Correction and Compression

18 for ℓ = 0 to 𝑛 do
19 for 𝑖 = 0 to 𝑑 do
20 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
21 𝑧ℓ

𝑖,𝑗
← maj(𝑧0

𝑖,𝑗
. . . 𝑧𝑛−1

𝑖,𝑗
)

22 𝑐ℓ
𝑖
← reg[𝑤ℓ

𝑖
] +∑𝑑

𝑗=0;𝑗≠𝑖 reg[𝑧ℓ𝑖,𝑗]

Ensures: 𝑐ℓ
𝑖
= 𝑐ℓ

′
𝑖

for 0 ≤ ℓ, ℓ ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Ensures:
∑𝑑

𝑖=0 𝑐
ℓ
𝑖
= 𝑎 · 𝑏 for 0 ≤ ℓ ≤ 𝑛

23 return 𝑐0
0
, . . . , 𝑐𝑛

𝑑

Proof. Let F1 be a set of 𝑘1 SRDs and S2 a set of 𝑑2 share

domains. Further, let there be 𝑘2 faults injected to the gates of the

gadget and 𝑑1 probes placed on internal wires. We first show the

correctness and then the privacy of the gadget.

Correctness: For correctness, faults in a random value 𝑟𝑖, 𝑗 , 𝑟𝑖, 𝑗 can

be ignored, as otherwise, the correctness without any fault would

depend on the concrete value of the randomness and the gadget

would output a wrong result half of the time.

By construction of the gadget, the values 𝑎ℓ
𝑖
,𝑤 ℓ

𝑖
, 𝑧ℓ

𝑖, 𝑗
, and 𝑐ℓ

𝑖
are

only used for the computation of 𝑐ℓ
𝑖
. Hence, faults injected to those

values can only influence the SRD (𝑖, ℓ).
Of the values influencing more than one SRD, 𝑏ℓ

𝑗
and 𝑣ℓ

𝑗
are

corrected in Line 11 while 𝑣ℓ
𝑗
and 𝑧ℓ

𝑖, 𝑗
are corrected in Line 21.

Those corrections always work properly, as at most 𝑘 values can

be faulted. Hence, a fault in 𝑣ℓ
𝑗
can only affect the SRD (𝑗, ℓ), since

cross-domain products are corrected. Otherwise, the only way how

Algorithm 3: Share-Domain Chooser for the Simulator of

CPCC
1 .

1 function DomainChooserHPC
C
1 (P, S2, F2):

2 X ← ∅
3 for ℓ = 0 to 𝑛 do
4 for 𝑖 = 0 to 𝑑 do
5 if 𝑤ℓ

𝑖
∈ P or 𝑖 ∈ S2 then

6 X ← X ∪ {𝑖 }
7 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
8 if 𝑣ℓ

𝑖
∈ P then

9 X ← X ∪ {𝑖 }
10 if 𝑧ℓ

𝑖,𝑗
∈ P ∧ (𝑖 ∈ X or 𝑗 ∈ X) then

11 X ← X ∪ {𝑖, 𝑗 }
12 else if 𝑧ℓ

𝑖,𝑗
∈ P then

13 X ← X ∪ {𝑖 }
14 if 𝑣̃ℓ

𝑖
∈ F2, 𝑣ℓ𝑖 ∈ F2 or 𝑤𝑗,𝑖ℓ ∈F2 then

15 X ← X ∪ {𝑖 }
16 if (𝑖 ∈ X or 𝑗 ∈ X) then
17 if 𝑟𝑖,𝑗 ∈ F2 or 𝑟𝑖,𝑗 ∈ F2 then
18 X ← X ∪ {𝑖, 𝑗 }

19 return X

a fault in those values can have an impact on an SRD (𝑖, ℓ), with
𝑖 ≠ 𝑗 , is by manipulating the computation of 𝑧ℓ

𝑖, 𝑗
in which case

there is an additional fault for SRD (𝑖, ℓ).
In conclusion, each fault in an SRD at the input can cause a fault

at the same SRD at the output. In addition, the set F2 is the union
of all SRDs (𝑖, ℓ) such that the computation of an intermediate

value containing the indices 𝑖 and ℓ was faulted. Then it holds that

|F2 | ≤ 𝑘2 as each faulty intermediate value can influence at most

one SRD. As there are 2𝑘+1 repetitions of each output, the decoding
gadget GD

can be constructed as a majority function.

Privacy: Without loss of generality, we restrict the probes to only

capture 𝑣ℓ
𝑗
,𝑤 ℓ

𝑖
, 𝑧ℓ

𝑖, 𝑗
, and 𝑐ℓ

𝑖
as other glitch-extended probes are less

powerful. In particular, all probes within a majority function are

less powerful than probes on 𝑣ℓ
𝑗
or 𝑧ℓ

𝑖, 𝑗
, respectively, as the majority

function is implemented register-free.

Given a set of probes P, a set of share domains S2, and a set of

faults F2 Algorithm 3 returns a set of share domainsX, required for
the simulation of the probes and the outputs belonging to S2.We

set S1 ← X \ S2.
First, we see that Algorithm 3 adds at most one share domain per

probe, share domain in S2, and internal fault. Therefore, it always

holds that |S1 | ≤ 𝑑1 + 𝑘2. We continue, by showing that the share

domains in X and knowledge of the faults are sufficient to simulate

the probes P and outputs belonging to S2.
We define a simulator that computes all required values exactly

as defined in Algorithm 2 (required randomness is generated), ex-

cept for 𝑣ℓ
𝑗
and 𝑧ℓ

𝑖, 𝑗
. For these values, we distinguish between the

following cases: (i) if 𝑗 ∈ X compute 𝑣ℓ
𝑗
and 𝑧ℓ

𝑖, 𝑗
according to Algo-

rithm 2. (ii) if 𝑗 ∉ X then draw two fresh random values 𝑟, 𝑟 and set

10

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

∀𝑖, ℓ : 𝑣ℓ
𝑗
← 𝑟 and 𝑧ℓ

𝑖, 𝑗
← 𝑟 . Afterward, all values are manipulated

according to the given faults.

This simulator results in the same output distribution as the

probes for the following reason: All values are computed exactly

as in the gadget (Algorithm 2) except for 𝑣ℓ
𝑗
and 𝑧ℓ

𝑖, 𝑗
in Case (ii). In

this case, we argue that 𝑟𝑖, 𝑗 and 𝑟𝑖, 𝑗 are only observable through

one intermediate value and, hence, the simulation is correct. Please

note, if 𝑖 ∉ X then there is no need to compute 𝑧ℓ
𝑖, 𝑗
.

First, assume 𝑣ℓ
𝑗
← 𝑟 . We show that ∀𝑖 : 𝑟𝑖, 𝑗 is only observable

through either 𝑣ℓ
𝑗
or 𝑣ℓ

𝑖
. The randomness 𝑟𝑖, 𝑗 impacts the computa-

tion of𝑤 ℓ ′
𝑖
,𝑤 ℓ ′

𝑗
, 𝑣ℓ
′
𝑗
, 𝑣ℓ
′
𝑖
, 𝑧ℓ
′
𝑖, 𝑗
, 𝑧ℓ
′
𝑗,𝑖
, 𝑐ℓ
′
𝑖
, and 𝑐ℓ

′
𝑗
for all ℓ′. From 𝑣ℓ

𝑗
← 𝑟 it

follows that some probe is dependent on 𝑣ℓ
𝑗
and 𝑗 ∉ X. Hence, with

Algorithm 3, it follows that ∀ℓ′ : 𝑤 ℓ ′
𝑗
, 𝑣ℓ
′
𝑗
, 𝑧ℓ
′
𝑗,𝑖

∉ P, and 𝑗 ∉ S2, but
∃ℓ′ such that exactly one of 𝑧ℓ

′
𝑖, 𝑗
∈ P or 𝑖 ∈ S2. Therefore, it holds

that 𝑗 ∉ X ∧ 𝑖 ∈ X. Assume 𝑧ℓ
′
𝑖, 𝑗
∈ P, then ∀ℓ′′ : 𝑣ℓ ′′

𝑖
,𝑤 ℓ ′′

𝑖
, 𝑧ℓ
′′
𝑗,𝑖

∉ P
as otherwise 𝑖 ∈ X. Hence, 𝑟𝑖, 𝑗 is only observable through 𝑣ℓ

𝑗
in

𝑧ℓ
′
𝑖, 𝑗
. In the other case, if 𝑖 ∈ S2 then ∀ℓ′ : 𝑤 ℓ ′

𝑗
, 𝑣ℓ
′
𝑗
, 𝑧ℓ
′
𝑗,𝑖

∉ P (as

established above). Hence, 𝑟𝑖, 𝑗 is only observable through 𝑣ℓ
𝑖
.

When 𝑗 ∉ X ∧ 𝑖 ∈ X it also holds that 𝑟𝑖, 𝑗 , 𝑟𝑖, 𝑗 , 𝑣
ℓ
𝑗
, 𝑣ℓ

𝑗
,𝑤 ℓ

𝑖, 𝑗
∉ F2.

Further, any fault in some input is either corrected or disconnected

to the related probes, while faults on 𝑤 ℓ ′
𝑗
, 𝑧ℓ
′
𝑖, 𝑗
, 𝑧ℓ
′
𝑖, 𝑗
, and 𝑐ℓ

′
𝑖
can be

injected after 𝑣ℓ
𝑗
← 𝑟 and faults on𝑤 ℓ

𝑗,𝑖
are disconnected. Therefore,

the simulation is also correct under faults.

Second, assume 𝑧ℓ
𝑖, 𝑗
← 𝑟 . We show that 𝑟𝑖, 𝑗 is only observable

through 𝑧ℓ
𝑖, 𝑗
. The randomness 𝑟𝑖, 𝑗 impacts the values 𝑧ℓ

′
𝑖, 𝑗
, 𝑧ℓ

′
𝑗,𝑖
, 𝑐ℓ
′
𝑖
,

and 𝑐ℓ
′
𝑗
for all ℓ′. From 𝑧ℓ

𝑖, 𝑗
← 𝑟 it follows that some probe is

dependent on 𝑧ℓ
𝑖, 𝑗

and 𝑗 ∉ X. Hence, with Algorithm 3, it follows

that ∀ℓ′ : 𝑧ℓ ′
𝑗,𝑖

∉ P and 𝑗 ∉ S2. It also holds that 𝑧ℓ
𝑖, 𝑗

∉ P as glitch-

extended probes require the simulation of all stable inputs to 𝑧ℓ
𝑖, 𝑗

and not the value itself. Hence, the only probed values dependent

on 𝑟𝑖, 𝑗 are 𝑐
ℓ ′
𝑖
,∀ℓ′ (when 𝑖 ∈ S2) and 𝑟𝑖, 𝑗 is indeed only observable

through 𝑧ℓ
𝑖, 𝑗
.

Again, when 𝑗 ∉ X∧ 𝑖 ∈ X then it holds 𝑟𝑖, 𝑗 , 𝑟𝑖, 𝑗 , 𝑣
ℓ
𝑗
, 𝑣ℓ

𝑗
,𝑤 ℓ

𝑖, 𝑗
∉ F2.

Further, faults in inputs, or 𝑧ℓ
′
𝑖, 𝑗

are corrected, faults in𝑤 ℓ ′
𝑖
or𝑤 ℓ

𝑗,𝑖

are disconnected, while faults in 𝑧ℓ
′
𝑖, 𝑗

and 𝑐ℓ
′
𝑖
can be injected after

𝑧ℓ
𝑖, 𝑗
← 𝑟 . Therefore, the simulation is also correct under faults.

The two cases 𝑣ℓ
𝑗
← 𝑟 and 𝑧ℓ

𝑖, 𝑗
← 𝑟 are mutually exclusive, since

if both 𝑧ℓ
𝑖, 𝑗
∈ P and 𝑖 ∈ X than 𝑖, 𝑗 ∈ X. Therefore, a separate

analysis is sufficient. The given simulator shows the privacy of

Algorithm 2. □

6.2 Independent Combined-Isolating
Non-Interference

In their paper, Feldtkeller et al. [19] claim their gadget can be trans-

formed from supporting CINI to supporting CINI
ind

by adding

multiple bits of randomness whenever a sharing is refreshed. In

particular, they ensure that no combination of faults can remove

a single refresh. This surprisingly easy transformation cannot be

upheld when probing entire output share domains. In Section 8.2

we provide the results of a tool-based analysis of this gadget. The

Figure 9. Attack against the trivial extention of CPCC
1 to CINIind.

problem is that standard and efficient implementations of a majority

vote (via sorting networks) can be faulted in such a way that a fault

in the input propagates through the correction module.

Such a correction module allows an attack with 𝑑 ≥ 1 and

𝑘 ≥ 2, i.e., a gadget with at least 2 shares and 5 replications (cf.

Figure 9). Assume a reset fault in the computation of 𝑎0
0
· (𝑏0

1
+ 𝑟0),

a fault in the corresponding correction module, and a probe on

share domain 0. Then, the first fault propagates to the output 𝑐0
0

iff 𝑎0
0
= 1 and 𝑏0

1
+ 𝑟0 = 1. Since the output probe captures all

redundant values 𝑐0
0
, . . . , 𝑐4

0
, the adversary can distinguish between

effective and ineffective faults, learning the value of 𝑏0
1
+ 𝑟0. In

addition, the output probe propagates to the intermediate value

𝑏0
0
+ 𝑟0. Hence, in case of an effective fault A𝑐 can compute the

secret via 𝑏 = (𝑏0
0
+ 𝑟0) + (𝑏0

1
+ 𝑟0).

A correction module where the output never depends on any

input faults even when internal gates are faulted, would prevent this

attack. The required property is different than Fault Strong Non-

Interference (F-SNI) [15, 34] in that it not only requires an internal

fault to allow the propagation of faults to the output but also that

the distribution of the output fault is independent of any input-fault

distribution. Finding such a correction module is non-trivial and we

leave it for further research. Please note that an CINI
ind

gadget can

be trivially constructed via a CINI gadget with appropriate security

order, e.g., a (3, 1)-CINI gadget is always (2, 1)-CINI
ind

.

Essentially, the above attack translates two faults to an additional

probe and is thus applicable whenever 𝑘 ≥ 2. However, in contrast

to CINI
ind

, the CINI notion requires A𝑐 to trade faults for probes

(since 𝑑1 +𝑑2 +𝑘1 +𝑘2 ≤ 𝑑) and, hence, this attack does not apply to

the CINI gadgets presented in Section 6.1. If the required two faults

are placed in CPCC
1 or CPCC

NC there is always one probe missing

for the attack to work.

7 GADGETS BASED ON NON-COMPLETENESS
Another way to break the recombination of all shares of 𝑏 in Equa-

tion 1 is a non-complete compression. Non-completeness is a well-

known structure in SCA since it is a critical property for TI [30]. In

essence, non-completeness requires each set of up to 𝑑 probes to

be functionally independent of at least one input share. Then, an

adversary is never able to learn the input, as at least one share is

always missing.

Using non-completeness in the compression of a multiplication

gadget means that the partial products are combined in such a way

that each set of up to 𝑑 − 1 outputs is functionally independent of at
least one share of 𝑎 and one share of 𝑏. Hence, in every set of up to

11

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

Algorithm 4: CPCC
NC: (2, 1)-CINI multiplication.

1 function CPCC
NC(𝑎

0

0
, . . . , 𝑎2

2
, 𝑏0

0
, . . . , 𝑏2

2
):

Require: 𝑎ℓ
𝑖
= 𝑎ℓ

′
𝑖

and 𝑏ℓ
𝑖
= 𝑏ℓ

′
𝑖

for 0 ≤ ℓ, ℓ ′ ≤ 2, 0 ≤ 𝑖 ≤ 2

Require:
∑

2

𝑗=0 𝑎
ℓ
𝑗
= 𝑎 and

∑
2

𝑗=0 𝑏
ℓ
𝑗
= 𝑏 for 0 ≤ ℓ ≤ 2

// Initialize randomness

2 for 𝑖 = 0 to 6 do

3 𝑟𝑖
$← F2

// Refreshing and correction of b

4 for ℓ = 0 to 2 do
5 𝑣̃ℓ

0
= 𝑏ℓ

0
+ reg[𝑟0 + 𝑟1]

6 𝑣̃ℓ
1
= 𝑏ℓ

1
+ 𝑟0; 𝑣̃ℓ

2
= 𝑏ℓ

2
+ 𝑟1

7 for ℓ = 0 to 2 do
8 for 𝑖 = 0 to 2 do
9 𝑣ℓ

𝑖
← maj(𝑣̃0

𝑖
. . . 𝑣̃2

𝑖
)

10 for ℓ = 0 to 2 do
// Partial products and refreshing

11 𝑧ℓ
0,0
← 𝑎ℓ

0
· 𝑣ℓ

0
+ 𝑟3; 𝑧ℓ

0,1
← 𝑎ℓ

0
· 𝑣ℓ

1
+ 𝑟5

12 𝑧ℓ
0,2
← 𝑎ℓ

0
· 𝑣ℓ

2
+ 𝑟5; 𝑧ℓ

1,0
← 𝑎ℓ

1
· 𝑣ℓ

0
+ reg[𝑟4 + 𝑟6]

13 𝑧ℓ
1,1
← 𝑎ℓ

1
· 𝑣ℓ

1
+ 𝑟2; 𝑧ℓ

1,2
← 𝑎ℓ

1
· 𝑣ℓ

2
+ 𝑟3

14 𝑧ℓ
2,0
← 𝑎ℓ

2
· 𝑣ℓ

0
+ 𝑟6; 𝑧ℓ

2,1
← 𝑎ℓ

2
· 𝑣ℓ

1
+ 𝑟4

15 𝑧ℓ
2,2
← 𝑎ℓ

2
· 𝑣ℓ

2
+ 𝑟2

// Compression

16 𝑐ℓ
0
= reg[𝑧ℓ

1,1
] + reg[𝑧ℓ

1,2
] + reg[𝑧ℓ

2,1
]

17 𝑐ℓ
1
= reg[𝑧ℓ

2,2
] + reg[𝑧ℓ

0,2
] + reg[𝑧ℓ

2,0
]

18 𝑐ℓ
2
= reg[𝑧ℓ

0,0
] + reg[𝑧ℓ

0,1
] + reg[𝑧ℓ

1,0
]

// Correction

19 for ℓ = 0 to 2 do
20 for 𝑖 = 0 to 2 do
21 𝑐ℓ

𝑖
← reg[maj(𝑐0

𝑖
, . . . , 𝑐2

𝑖
)]

Ensures: 𝑐ℓ
𝑖
= 𝑐ℓ

′
𝑖

for 0 ≤ ℓ, ℓ ′ ≤ 2, 0 ≤ 𝑖 ≤ 2

Ensures:
∑

2

𝑖=0 𝑐
ℓ
𝑖
= 𝑎 · 𝑏 for 0 ≤ ℓ ≤ 2

22 return 𝑐0
0
, . . . , 𝑐𝑛

2

𝑑 − 1 outputs ∃𝑖, 𝑗 such that ∀𝑖′, 𝑗 ′, ℓ the terms 𝑎ℓ
𝑖
·𝑏ℓ

𝑗 ′ and 𝑎
ℓ
𝑖′ ·𝑏

ℓ
𝑗
do

not occur. We only need (𝑑 − 1)-order non-completeness since the

leakage due to the reduction in Equation 1 is crucially dependent

on the injection of at least one fault (cf. Section 4), meaningA𝑐 has

at most 𝑑 − 1 probes left. When using a (𝑑 − 1)-order non-complete

compression, the reduction in Equation 1 is no longer possible,

as the expression is missing at least one share of 𝑏. Higher-order

non-completeness is required to ensure that the remaining probes

cannot be used to learn the remaining shares.

Instantiation. A well-known problem with designs based on non-

completeness is that the structure of the circuit is highly dependent

on the required security order and cannot be expressed in a gen-

eral manner. Therefore, in the following, we focus on the specific

instantiation of a (2, 1)-CINI gadget. This gadget requires three
shares and three replications and is given in Algorithm 4. The

general structure is very similar to the previously discussed gad-

get. First, there is a refresh and correction of input 𝑏, which is

still required to prevent internal probes and faults from causing

cross-domain leakage. Then, the partial products are computed and

refreshed, before we apply the non-complete compression. Here,

each output 𝑐ℓ
𝑖
is functionally independent of the shares 𝑎ℓ

𝑖
and

𝑏ℓ
𝑖
, which is sufficient since 𝑑 = 2 and we only require first-order

non-completeness. Note, that we do not need a correction stage

before the compression due to the non-completeness. However, a

correction stage is required for each output. The reason is that each

input share 𝑎ℓ
𝑖
influences two output shares 𝑐ℓ

𝑖+1𝑚𝑜𝑑 3
, 𝑐ℓ

𝑖+2𝑚𝑜𝑑 3
.

Without correction a fault in 𝑎ℓ
𝑖
would propagate from SRD (𝑖, ℓ)

to (𝑖 + 1𝑚𝑜𝑑 3, ℓ) and (𝑖 + 2𝑚𝑜𝑑 3, ℓ), which is prohibited by the

correctness property of CINI. Also, an output register is required to

prevent the observation of effective/ineffective faults from output

probes, which otherwise would propagate to the registers before

the compression. We optimized the refreshes, both for 𝑏 and the

partial products, according to Cassiers and Standaert [11]
3
. The

refresh algorithms from this work can also be used in the previous

gadgets. However, like non-interference, they are probing order

specific, which is why we used the more general refresh method for

our general gadgets. We provide a tool-based security analysis of

this gadget in Section 8.2. This gadget should be easily extendable

to a (2, 2)-CINI gadget by increasing the number of replications to

five. The only difference between (2, 1)-CINI and (2, 2)-CINI is that
the latter has to also withstand an attack with two faults (and no

probe).

Generalization. The above gadget structure, based on non-com-

pleteness, can be scaled to higher-order gadgets. Moving the cor-

rection from the partial products to the output reduces the number

of corrections from 𝑑2 to 𝑑 + 1 per redundancy domain (excluding

the corrections required for 𝑏). However, for higher-order security,

this structure has several drawbacks and challenges to overcome.

First, the construction of the non-complete compression requires

always at least 2𝑑 − 1 shares, which means a significant overhead

in area and amount of required randomness. In addition, as already

mentioned, there is no general-order description of the algorithm,

making the circuit design and security analysis dependent on the

implemented security order. Further, due to fault and probe prop-

agation, a fault in one 𝑣ℓ
𝑖
leaks all 𝑎ℓ

𝑖
that are multiplied with 𝑣ℓ

𝑖

and observed by a probe (where randomness does not hide 𝑎ℓ
𝑖
due

conditional fault propagation). We see three solutions to overcome

this issue: (i) Adding additional constraints to the compression to

ensure that the number of leaked shares still complies with the con-

straints from CINI. In fact, this happens in the case of Algorithm 4.

However, this may not be possible for all numbers of shares and

indeed seems to be impossible for five shares. (ii) Replicate 𝑣ℓ
𝑖
not

only along fault domains but for each SRD, i.e., compute ∀𝑖 : 𝑣ℓ
𝑗,𝑖

for the multiplication with 𝑎ℓ
𝑖
. Then a fault in 𝑣ℓ

𝑗,𝑖
affects only a

single SRD. However, it is important that both the corresponding

correction and register are replicated as well. Hence, this suffers

from high overhead in terms of logical gates (for the correction) and

registers. In particular, the overhead is dependent on the number

of shares, which is higher than usual due to the non-completeness.

(iii) Additional registers within the compression function with care-

ful selection of the compression order could decrease the amount of

leakage, due to reduced fault and probe propagation. However, this

not only increases the area due to the additional registers but also

3
https://github.com/cassiersg/opt-refresh

12

https://github.com/cassiersg/opt-refresh

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1. Implementation and verification results for the fixed CINI
and CINIind gadgets and our new non-complete gadgets synthesized
with the 45 nm Open Cell Library.

Gadget Design Verification
𝑑 𝑘 rand. comb. reg. area [GE] Def. (𝑑,𝑘) Time

C
PC

C 1

1 1 2 78 18 218

C
I
N
I

(1, 1)✓ 0.6 s

2 1 6 189 36 492 (2, 1)✓ 2.0 s

3 1 12 348 60 876 (3, 1)✓ 2.6 d

1 2 2 330 30 630 (1, 2)✓ 2.5 s

2 2 6 765 60 1 420 (2, 2)✓ 3.2min

3 2 12 1380 100 2 527 * ∞
1 3 2 686 42 1 181 (1, 3)✓ 1.4 h

2 3 6 1575 84 2 660 * ∞
3 3 12 2828 140 4 732 * ∞

� CPCC 1 1 1 4 90 18 242

C
I
N
I
i
n
d (1, 1)✓ 0.6 s

2 1 12 225 36 564 (2, 1)✓ 20.7min

1 2 6 370 30 710 (1, 2)✗ 4.5min

C
PC

C N
C 2 1 7 177 48 563

C
I
N
I

(2, 1)✓ 6.3min

2 2 7 907 80 1 894 * ∞

* Due to the extensive amount of combinations, these gadgets

could not be verified with VERICA.

the latency. In conclusion, the structure based on non-completeness

is prohibitively expensive for higher-order gadgets. While further

optimization may change this assessment, we leave this for future

work.

8 EVALUATION
In this section, we provide evaluation results for the introduced

gadgets. First, we present performance numbers with respect to

gadget area and latency. Second, we perform a security analysis

using the adapted and corrected version of VERICA.

8.1 Performance
Table 1 provides implementation results for CPCC

1 and the CPCC
NC

gadgets while the corresponding numbers for the original gadgets

from Feldtkeller et al. [19] are given in Table 2. We re-implemented

those gadgets following the algorithms presented in [19] since the

netlists provided with the original paper were not functionally

correct. We would like to emphasize that the amount of required

randomness is the same for CPCC
1 and HPCC

1 gadgets and does

not need to be adapted. Additionally, due to the novel correction

strategy (i.e., splitting up the correction and moving part of it from

the refreshing of 𝑏 to the compression), the fixed gadgets require

fewer hardware resources with respect to the gate equivalences.

Comparing the CPCC
1 to the non-complete gadgets CPCC

NC, Ta-

ble 1 shows that the non-complete gadgets perform worse with

respect to required randomness and area.

8.2 Security Verification
We performed our analyses on a workstation equipped with an

Intel i9-7900X CPU with 20 cores running at 3.3GHz and 64GB

of RAM. The verification results of CPCC
1 and the non-complete

Table 2. Implementation and verification results for the original CINI
and CINIind gadgets synthesized with the 45 nm Open Cell Library.
The verification has been conducted with the adapted implementa-
tion of VERICA.

Gadget Design Verification
𝑑 𝑘 rand. comb. reg. area [GE] Def. (𝑑,𝑘) Time

H
PC

C 1

1 1 2 78 24 252

C
I
N
I

(1, 1)✓ 0.6 s

2 1 6 189 54 600 (2, 1)✗ 1.3 s

3 1 12 348 96 1 088 * ∞
1 2 2 330 40 697 (1, 2)✓ 1.8 s

2 2 6 780 90 1 600 (2, 2)✗ 61.3 s

3 2 12 1640 160 2 887 * ∞
1 3 2 700 56 1 270 (1, 3)✓ 43.2min

2 3 6 1890 126 2 918 * ∞
3 3 12 3640 224 5 236 * ∞

H
PC

I 1

1 1 4 90 24 276

C
I
N
I
i
n
d

(1, 1)✗ 0.6 s

2 1 12 225 54 672 (2, 1)✗ 10min

3 1 24 420 96 1 232 * ∞
1 2 6 370 40 777 (1, 2)✗ 3.2 s

2 2 18 900 90 1 840 * ∞
3 2 36 1640 160 3 356 * ∞
1 3 8 784 56 1 438 (1, 3)✗ 4 h

2 3 24 1848 126 3 423 * ∞
3 3 48 3360 224 6 244 * ∞

* Due to the extensive amount of combinations, these gadgets

could not be verified with VERICA.

CPCC
NC gadgets are presented in Table 1. As highlighted, all verified

gadgets are secure under the CINI security notion. However, four

configurations could not be analyzed due to an extensive amount of

combinations that need to be checked by VERICA such that the cor-

responding verification would not terminate in a reasonable time.

For completeness, we also include the verification results for three�CPCC
1 gadgets, i.e., CPCC

1 gadgets with additional randomness ana-

log to the CINI
ind

gadgets provided by Feldtkeller et al. [19]. As
shown, the (1, 2)-gadget does not support the CINI

ind
notion due

to the attack explained in Section 6.2.

In order to demonstrate that our adapted version of VERICA is ca-

pable of detecting the flaws in the original gadgets from Feldtkeller

et al. [19], we show the verification results in Table 2. AllHPCC
1 gad-

gets with 𝑑 ≥ 2 are verified insecure using our adapted version of

VERICA. Additionally, VERICA reports that all verified instantiations

of HPCI
1 gadgets are insecure. Since the flaws already occur for the

smallest instantiations, higher-order gadgets will be insecure as

well.

9 CONCLUSION
In this work, we showed an attack against the, to the best of our

knowledge, only existing composable gadgets in the context of

CA for hardware. Our attack breaks the security of arbitrary-order

gadgets under composition with a single probe and fault. We show

that the vulnerability results from insufficient handling of output

probes, both in the formal proofs and in VERICA. We then developed

a new design principle for CINI, which informs two types of gadgets

immune to our attack. First, we moved correction modules to a

13

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Feldtkeller et al.

different location, allowing us to increase the security and optimize

the gadget with respect to area consumption. Second, we explored

gadgets based on non-completeness. Unfortunately, those gadgets

scale poorly to higher security orders. We analyzed all our gadgets

with the correct treatment of output probes and, therefore, yielded

secure and composable gadgets.

All our gadgets use simple replication to archive fault security.

How to design gadgets based on other types of redundancy is still

an open research challenge. In addition, the construction of efficient

gadgets based on the CINI
ind

notation remains an open question.

In particular, this requires the construction of correction modules

that prevent all kinds of secret-dependent fault propagation in all

circumstances. We conclude that our refurbished arbitrary order

CPC gadgets provide a solid foundation for further research.

ACKNOWLEDGMENTS
François-Xavier Standaert is a senior research associate of the Bel-

gian Fund for Scientific Research (F.R.S.-FNRS). This work has been

co-funded by the EU through the ERC project SWORD (724725),

the ERC project BRIDGE (101096871), the Horizon Europe project

REWIRE (1010706275) and the Horizon Europe project CONVOLVE

(101070374), by the Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) under Germany’s Excellence Strategy -

EXC 2092 CASA - 390781972 and the project CAVE (510964147), and

by the German Federal Ministry of Education and Research BMBF

through the project VE-HEP (16KIS1345) and 6GEM (16KISK038).

Views and opinions expressed are those of the author(s) only and do

not necessarily reflect those of the European Union or the European

Research Council. Neither the European Union nor the granting

authority can be held responsible for them.

REFERENCES
[1] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,

Falk Schellenberg, and Tobias Schneider. 2020. Impeccable Circuits. IEEE Trans.
Computers 69, 3 (2020), 361–376. https://doi.org/10.1109/TC.2019.2948617

[2] Frédéric Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. 2007. Passive and

Active Combined Attacks: Combining Fault Attacks and Side Channel Analysis.

In Fourth InternationalWorkshop on Fault Diagnosis and Tolerance in Cryptography,
2007, FDTC 2007: Vienna, Austria, 10 September 2007. 92–102. https://doi.org/10.
1109/FDTC.2007.4318989

[3] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. 2018. Private Circuits: A

Modular Approach. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part III (Lecture Notes in Computer Science), Hovav Shacham and

Alexandra Boldyreva (Eds.), Vol. 10993. Springer, 427–455. https://doi.org/10.

1007/978-3-319-96878-0_15

[4] Alessandro Barenghi, Guido Bertoni, Luca Breveglieri, Mauro Pellicioli, and

Gerardo Pelosi. 2010. LowVoltage Fault Attacks to AES. InHOST 2010, Proceedings
of the 2010 IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), 13-14 June 2010, Anaheim Convention Center, California, USA, Jim
Plusquellic and Ken Mai (Eds.). IEEE Computer Society, 7–12. https://doi.org/10.

1109/HST.2010.5513121

[5] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, and Pierre-Yves Strub. 2015. Verified Proofs of Higher-Order Mask-

ing. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I (Lecture Notes in Computer Sci-
ence), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9056. Springer, 457–485.

https://doi.org/10.1007/978-3-662-46800-5_18

[6] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. Strong Non-Interference

and Type-Directed Higher-OrderMasking. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi (Eds.). ACM, 116–129. https://doi.org/10.1145/2976749.

2978427

[7] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian

Thillard, and Damien Vergnaud. 2016. Randomness Complexity of Private

Circuits for Multiplication. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. 616–648.
https://doi.org/10.1007/978-3-662-49896-5_22

[8] Eli Biham and Adi Shamir. 1997. Differential Fault Analysis of Secret Key Cryp-

tosystems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Pro-
ceedings (Lecture Notes in Computer Science), Burton S. Kaliski Jr. (Ed.), Vol. 1294.

Springer, 513–525. https://doi.org/10.1007/BFb0052259

[9] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On the Importance

of Checking Cryptographic Protocols for Faults (Extended Abstract). In Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding (Lecture Notes in Computer Science), Walter Fumy (Ed.), Vol. 1233.

Springer, 37–51. https://doi.org/10.1007/3-540-69053-0_4

[10] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. IEEE Computer

Society, 136–145. https://doi.org/10.1109/SFCS.2001.959888

[11] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert.

2021. Hardware Private Circuits: From Trivial Composition to Full Verification.

IEEE Trans. Computers 70, 10 (2021), 1677–1690. https://doi.org/10.1109/TC.2020.
3022979

[12] Gaëtan Cassiers and François-Xavier Standaert. 2020. Trivially and Efficiently

Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE Trans.
Inf. Forensics Secur. 15 (2020), 2542–2555. https://doi.org/10.1109/TIFS.2020.

2971153

[13] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. To-

wards Sound Approaches to Counteract Power-Analysis Attacks. In Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings (Lecture Notes
in Computer Science), Michael J. Wiener (Ed.), Vol. 1666. Springer, 398–412.

https://doi.org/10.1007/3-540-48405-1_26

[14] Christophe Clavier, Benoit Feix, Georges Gagnerot, and Mylène Roussellet. 2010.

Passive and Active Combined Attacks on AES: Combining Fault Attacks and

Side Channel Analysis. In 2010 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2010, Santa Barbara, California, USA, 21 August 2010. 10–19.
https://doi.org/10.1109/FDTC.2010.17

[15] Siemen Dhooghe and Svetla Nikova. 2020. My Gadget Just Cares for Me - How

NINA Can Prove Security Against Combined Attacks. In Topics in Cryptology -
CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San Francisco,
CA, USA, February 24-28, 2020, Proceedings (Lecture Notes in Computer Science),
Stanislaw Jarecki (Ed.), Vol. 12006. Springer, 35–55. https://doi.org/10.1007/978-

3-030-40186-3_3

[16] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. 2014. Unifying Leakage

Models: From Probing Attacks to Noisy Leakage. In Advances in Cryptology
- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings (Lecture Notes in Computer Science), Phong Q. Nguyen and Elisabeth

Oswald (Eds.), Vol. 8441. Springer, 423–440. https://doi.org/10.1007/978-3-642-

55220-5_24

[17] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. 2015. Making

Masking Security Proofs Concrete - Or How to Evaluate the Security of Any

Leaking Device. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I (Lecture Notes in Computer
Science), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9056. Springer, 401–429.

https://doi.org/10.1007/978-3-662-46800-5_16

[18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and

François-Xavier Standaert. 2018. Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018, 3 (2018), 89–120.

[19] Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu.

2022. CINI MINIS: Domain Isolation for Fault and Combined Security. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022. ACM, 1023–1036.

[20] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic

Analysis: Concrete Results. In Cryptographic Hardware and Embedded Systems -
CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceed-
ings (Lecture Notes in Computer Science), Çetin Kaya Koç, David Naccache, and

Christof Paar (Eds.), Vol. 2162. Springer, 251–261. https://doi.org/10.1007/3-540-

44709-1_21

[21] Dahmun Goudarzi and Matthieu Rivain. 2017. How Fast Can Higher-Order

Masking Be in Software?. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic

14

https://doi.org/10.1109/TC.2019.2948617
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1109/FDTC.2007.4318989
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1109/HST.2010.5513121
https://doi.org/10.1109/HST.2010.5513121
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1109/FDTC.2010.17
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21

Combined Private Circuits - Combined Security Refurbished CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I (Lecture
Notes in Computer Science), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.),

Vol. 10210. 567–597. https://doi.org/10.1007/978-3-319-56620-7_20

[22] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner. 2006. Private

Circuits II: Keeping Secrets in Tamperable Circuits. In Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006, Proceedings (Lecture Notes in Computer Science), Serge Vaudenay (Ed.),

Vol. 4004. Springer, 308–327. https://doi.org/10.1007/11761679_19

[23] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing

Hardware against Probing Attacks. In Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings (Lecture Notes in Computer Science), Dan Boneh

(Ed.), Vol. 2729. Springer, 463–481. https://doi.org/10.1007/978-3-540-45146-4_27

[24] Marc Joye and Michael Tunstall (Eds.). 2012. Fault Analysis in Cryptography.
Springer. https://doi.org/10.1007/978-3-642-29656-7

[25] David Knichel, Pascal Sasdrich, and Amir Moradi. 2020. SILVER - Statistical

Independence and Leakage Verification. In Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,
Part I (Lecture Notes in Computer Science), ShihoMoriai andHuaxiongWang (Eds.),

Vol. 12491. Springer, 787–816. https://doi.org/10.1007/978-3-030-64837-4_26

[26] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings (Lecture Notes in Computer Science), Neal Koblitz (Ed.), Vol. 1109.
Springer, 104–113. https://doi.org/10.1007/3-540-68697-5_9

[27] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings (Lec-
ture Notes in Computer Science), Michael J. Wiener (Ed.), Vol. 1666. Springer,

388–397. https://doi.org/10.1007/3-540-48405-1_25

[28] Ueli Maurer. 2011. Constructive Cryptography - A New Paradigm for Security

Definitions and Proofs. In Theory of Security and Applications - Joint Workshop,
TOSCA 2011, Saarbrücken, Germany, March 31 - April 1, 2011, Revised Selected
Papers (Lecture Notes in Computer Science), Sebastian Mödersheim and Catuscia

Palamidessi (Eds.), Vol. 6993. Springer, 33–56. https://doi.org/10.1007/978-3-642-

27375-9_3

[29] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and Vincent

Rijmen. 2019. M&M: Masks and Macs against Physical Attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019, 1 (2019), 25–50. https://doi.org/10.13154/

tches.v2019.i1.25-50

[30] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold

Implementations Against Side-Channel Attacks and Glitches. In Information
and Communications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings (Lecture Notes in Computer Science),
Peng Ning, Sihan Qing, and Ninghui Li (Eds.), Vol. 4307. Springer, 529–545.

https://doi.org/10.1007/11935308_38

[31] Dmytro Petryk, Zoya Dyka, and Peter Langendoerfer. 2018. Optical Fault In-

jections: a Setup Comparison. RESCUE-Interdependent Challenges of Reliability,
Security and Quality in Nanoelectronic Systems Design (2018).

[32] Emmanuel Prouff and Matthieu Rivain. 2013. Masking against Side-Channel

Attacks: A Formal Security Proof. In Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings (Lecture
Notes in Computer Science), Thomas Johansson and Phong Q. Nguyen (Eds.),

Vol. 7881. Springer, 142–159. https://doi.org/10.1007/978-3-642-38348-9_9

[33] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova,

Ventzislav Nikov, and Nigel P. Smart. 2018. CAPA: The Spirit of Beaver Against

Physical Attacks. In Advances in Cryptology - CRYPTO 2018 - 38th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part I (Lecture Notes in Computer Science), Hovav Shacham and Alexandra

Boldyreva (Eds.), Vol. 10991. Springer, 121–151. https://doi.org/10.1007/978-3-

319-96884-1_5

[34] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim Güneysu.

2022. VERICA - Verification of Combined Attacks Automated formal verification

of security against simultaneous information leakage and tampering. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022, 4 (2022), 255–284. https://doi.org/10.46586/
tches.v2022.i4.255-284

[35] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. 2023. Revisiting

Fault Adversary Models - Hardware Faults in Theory and Practice. IEEE Trans.
Computers 72, 2 (2023), 572–585. https://doi.org/10.1109/TC.2022.3164259

[36] Thomas Roche, Victor Lomné, and Karim Khalfallah. 2011. Combined Fault and

Side-Channel Attack on Protected Implementations of AES. In Smart Card Re-
search and Advanced Applications - 10th IFIP WG 8.8/11.2 International Conference,
CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised Selected Papers.
65–83. https://doi.org/10.1007/978-3-642-27257-8_5

[37] Sayandeep Saha, Arnab Bag, Dirmanto Jap, Debdeep Mukhopadhyay, and Shivam

Bhasin. 2021. Divided We Stand, United We Fall: Security Analysis of Some

SCA+SIFA Countermeasures Against SCA-Enhanced Fault Template Attacks.

In Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part II (Lecture Notes in Computer Science),
Mehdi Tibouchi and Huaxiong Wang (Eds.), Vol. 13091. Springer, 62–94. https:

//doi.org/10.1007/978-3-030-92075-3_3

[38] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and Deb-

deep Mukhopadhyay. 2020. Fault Template Attacks on Block Ciphers Exploiting

Fault Propagation. In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I (Lecture Notes in Computer
Science), Anne Canteaut and Yuval Ishai (Eds.), Vol. 12105. Springer, 612–643.

https://doi.org/10.1007/978-3-030-45721-1_22

[39] Sayandeep Saha, Dirmanto Jap, Jakub Breier, Shivam Bhasin, DebdeepMukhopad-

hyay, and Pallab Dasgupta. 2018. Breaking Redundancy-Based Countermeasures

with Random Faults and Power Side Channel. In 2018Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2018, Amsterdam, The Netherlands, September
13, 2018. IEEE Computer Society, 15–22. https://doi.org/10.1109/FDTC.2018.00011

[40] Sayandeep Saha, Prasanna Ravi, Dirmanto Jap, and Shivam Bhasin. 2023. Non-

Profiled Side-Channel Assisted Fault Attack: A Case Study on DOMREP. In

Proceedings of 29th Design, Automation and Test in Europe (DATE) 2023. IEEE,
Antwerp, Belgium, 1–6.

[41] J. M. Schmidt and Michael Hutter. 2007. Optical and EM Fault-Attacks on CRT-

based RSA: Concrete Results. In Proceedings of 15th Austrian Workhop on Micro-
electronics (Austrochip). Verlag der Technischen Universität Graz, Graz, Austria„

61–67.

[42] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. 2008. Practical Setup Time

Violation Attacks on AES. In Seventh European Dependable Computing Conference,
EDCC-7 2008, Kaunas, Lithuania, 7-9 May 2008. IEEE Computer Society, 91–96.

https://doi.org/10.1109/EDCC-7.2008.11

15

https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.13154/tches.v2019.i1.25-50
https://doi.org/10.13154/tches.v2019.i1.25-50
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.1109/TC.2022.3164259
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-030-92075-3_3
https://doi.org/10.1007/978-3-030-92075-3_3
https://doi.org/10.1007/978-3-030-45721-1_22
https://doi.org/10.1109/FDTC.2018.00011
https://doi.org/10.1109/EDCC-7.2008.11

	Abstract
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Circuit Model
	2.3 Security via Simulation

	3 Probing & Faulting
	3.1 Side-Channel Analysis
	3.2 Fault-Injection Analysis
	3.3 Combined Analysis

	4 Attacking the Combined Gadget
	4.1 Attack on HPC1C

	5 Discussion of the Attack
	5.1 The Concept of Probed Share Domains
	5.2 Fixing VERICA
	5.3 The Missing Design Principle
	5.4 Fixing Gadgets

	6 Gadgets Based on Correction
	6.1 Combined-Isolating Non-Interference
	6.2 Independent Combined-Isolating Non-Interference

	7 Gadgets based on Non-Completeness
	8 Evaluation
	8.1 Performance
	8.2 Security Verification

	9 Conclusion
	Acknowledgments
	References

